WO2019154425A1 - 一种导频信号生成方法及装置 - Google Patents

一种导频信号生成方法及装置 Download PDF

Info

Publication number
WO2019154425A1
WO2019154425A1 PCT/CN2019/074826 CN2019074826W WO2019154425A1 WO 2019154425 A1 WO2019154425 A1 WO 2019154425A1 CN 2019074826 W CN2019074826 W CN 2019074826W WO 2019154425 A1 WO2019154425 A1 WO 2019154425A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
indication
orthogonal code
sequence
terminal
Prior art date
Application number
PCT/CN2019/074826
Other languages
English (en)
French (fr)
Inventor
王磊
张蕾
陈雁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19751532.3A priority Critical patent/EP3739800A1/en
Publication of WO2019154425A1 publication Critical patent/WO2019154425A1/zh
Priority to US16/990,412 priority patent/US20200374097A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • H04L5/10Channels characterised by the type of signal the signals being represented by different frequencies with dynamo-electric generation of carriers; with mechanical filters or demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • H04J13/12Generation of orthogonal codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1642Formats specially adapted for sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a method and an apparatus for generating a pilot signal.
  • 5G 5th-generation, also known as the fifth-generation mobile communication technology
  • eMBB enhanced mobile broadband
  • uRLLC ultrareliable & low latency communication
  • mMTC massive machine type communication
  • the network device In the mMTC scenario, there are a large number of terminals that need to communicate with the network device for uplink communication. For uplink communication, the network device needs to configure different demodulation reference signals (DMRS) for different terminals. The network device identifies the user and performs channel estimation by receiving the DMRS of the terminal in the pilot signal. In communication systems, the number of DMRSs is limited. Therefore, in the mMTC scenario, when there are too many terminals, the limited number of available pilot signals caused by the limited DMRS will be the bottleneck of the network capacity.
  • DMRS demodulation reference signals
  • Embodiments of the present application provide a pilot signal generation method and apparatus, which can increase the number of pilot signals.
  • a pilot signal generation method includes: receiving, by the network device, a first indication of whether the first demodulation reference signal DMRS is code-multiplexed with the second DMRS, and a second indication for determining a DMRS port number, where the first DMRS is located The symbol and the symbol of the second DMRS are not adjacent; the terminal determines the DMRS port number according to the first indication and the second indication; if the terminal determines to code-multiplex the first DMRS and the second DMRS according to the first indication, Obtaining, according to the determined DMRS port number, a parameter used to generate a DMRS sequence, where the parameter used to generate the DMRS sequence includes a first orthogonal code, for example, the first orthogonal code may be two symbol lengths, the first orthogonal One element of the code is used to generate a first DMRS sequence, and one element of the second orthogonal code is used to generate a second DMRS sequence; the terminal generates
  • the first DMRS may be a front-load DMRS
  • the second DMRS may be an additional DMRS, where the symbols of the two are usually not adjacent, because when determining to multiplex the two
  • the terminal may obtain a parameter for generating a DMRS sequence according to the DMRS port number, where the parameter used to generate the DMRS sequence includes a first orthogonal code having two elements, for example, the first orthogonal code may be (+1, +1) Or (+1, -1) such that the terminal can generate a first DMRS sequence according to one element, generate a second DMRS sequence according to another element, and finally map the first DMRS sequence and the second DMRS sequence to corresponding time-frequency resource generation.
  • Pilot signal Since the first DMRS is further code-multiplexed with the second DMRS in the above process, the number of pilot signals is expanded, and more DMRS port numbers can be supported. In addition, since the first DMRS and the second DMRS are code-multiplexed by the orthogonal code, the pilot signals corresponding to different DMRS sequences can be orthogonal to each other, and the interference between the pilot signals is avoided, thereby ensuring The accuracy and channel estimation performance of the network device for user detection.
  • the number of symbols of the first DMRS is 2; the parameter used to generate the DMRS sequence further includes a second orthogonal code, and both elements in the second orthogonal code are used to generate the first DMRS sequence. And two elements in the second orthogonal code are used to generate a second DMRS sequence.
  • the second orthogonal code may be (+1, +1) or (+1, -1), and when (+1, +1) is used to generate the first DMRS sequence, both symbols of the first DMRS are Multiplying by +1, when (+1, -1) is used to generate the first DMRS sequence, one symbol of the first DMRS is multiplied by +1, and the other symbol is multiplied by -1.
  • the second DMRS sequence is processed in a similar manner.
  • the second orthogonal code includes a time domain orthogonal code, for example, a time division orthogonal cover code (TD-OCC) or a frequency domain orthogonal code, for example, a cyclic suffix/frequency division orthogonal cover code. (cyclic suffix ⁇ requency division orthogonal cover code, CS ⁇ FD-OCC).
  • the method further includes: if it is determined according to the first indication that the first DMRS and the second DMRS are code-multiplexed, the terminal determines to use the time-frequency resource of the DMRS to send the uplink data.
  • the determining, by the terminal, the DMRS port number according to the first indication and the second indication comprises: determining, by the terminal, the DMRS port number according to the first indication, the second indication, and the number of the data streams.
  • the method further includes: receiving, by the terminal, downlink control information DCI or a radio resource control RRC message sent by the network device, where the DCI includes a first indication, and the RRC message includes the first indication.
  • DCI downlink control information
  • RRC message radio resource control
  • a pilot signal receiving method includes: the network device transmitting, to the terminal, a first indication of whether to code-multiplex the first demodulation reference signal DMRS with the second DMRS, and a second indication for determining a DMRS port number, where the first DMRS is located The symbol and the symbol in which the second DMRS is located are not adjacent; the network device receives the pilot signal generated by the terminal device according to the first indication and the second indication.
  • the method further includes: the network device sends a downlink control information DCI or a radio resource control RRC message to the terminal, where the DCI includes a first indication, and the RRC message includes the first indication.
  • the network device sends a downlink control information DCI or a radio resource control RRC message to the terminal, where the DCI includes a first indication, and the RRC message includes the first indication.
  • an embodiment of the present application provides a pilot signal generating apparatus.
  • the pilot signal generating means can be used to perform any of the methods provided in the first aspect above.
  • the pilot signal generating apparatus may be specifically the terminal described in the above first and second aspects, or the functional entity of the method provided by the first or second aspect provided by the pilot signal generating apparatus to implement the foregoing first aspect, for example Can be a chip.
  • the pilot signal generating device may be divided into functional modules according to the method provided in the above first aspect.
  • each functional module may be divided according to each function, or two or more functions may be used.
  • the functions are integrated in one function module.
  • the pilot signal receiving apparatus can include a processor for executing a computer program in the memory such that any of the methods provided by the first aspect are performed.
  • an embodiment of the present application provides a pilot signal receiving apparatus.
  • the pilot signal receiving device can be used to perform any of the methods provided in the second aspect above.
  • the pilot signal receiving device may be specifically the network device described in the foregoing first and second aspects, or the function of the method provided by the second aspect provided by the pilot signal receiving device on the network device provided by the first and second aspects.
  • the entity can for example be a chip.
  • the function module of the pilot signal receiving device may be divided according to the method provided in the second aspect, for example, each function module may be divided according to each function, or two or more functions may be used.
  • the functions are integrated in one function module.
  • the pilot signal receiving apparatus can include a processor for executing a computer program in the memory such that any of the methods provided by the second aspect are performed.
  • the embodiment of the present application further provides a computer readable storage medium, where computer instructions are stored thereon, and when the computer instructions are run on a computer, causing the computer to perform any of the foregoing first aspect and the second aspect .
  • the embodiment of the present application further provides a computer program product, which when executed on a computer, causes any of the methods provided by the first aspect and the second aspect to be performed.
  • any of the devices or computer storage media or computer program products provided above are used to perform the corresponding methods provided above, and therefore, the beneficial effects that can be achieved can be referred to the beneficial effects in the corresponding methods. , will not repeat them here.
  • FIG. 1 is a schematic diagram of a system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a pilot signal generating apparatus according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a pilot signal receiving apparatus according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram 1 of a mapping type of a resource according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram 2 of a mapping type of a resource according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram 3 of a resource mapping type according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram 4 of a resource mapping type according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart diagram of a method for generating a pilot signal according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of generating a front-load DMRS sequence and an additional DMRS sequence according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of generating a front-load DMRS sequence and an additional DMRS sequence according to another embodiment of the present application.
  • FIG. 11 is a schematic diagram of a pilot signal generating apparatus according to another embodiment of the present application.
  • FIG. 12 is a schematic diagram of a pilot signal receiving apparatus according to another embodiment of the present application.
  • FIG. 1 is a simplified schematic diagram of a system architecture provided by an embodiment of the present application.
  • the system architecture includes a network device and one or more terminals.
  • the system architecture 10 can include: a network device 11, a terminal 12, and a terminal 13.
  • the interaction between the network device 11 and the terminal 12 is taken as an example to describe each device in the system architecture shown in FIG. 1 .
  • the network device 11 is configured to send, to the terminal 12, a first indication (whether an indication of whether the first DMRS is code-multiplexed with the second DMRS) and a second indication (an indication for determining the DMRS port number)
  • the terminal 12 is configured to receive the first indication and the second indication sent by the network device 11 and generate a pilot signal.
  • the present application can be applied to the mMTC scenario of the NR (new radio access technology in 3GPP, NR, 3GPP new radio access technology) system.
  • the network device 11 described above may specifically be a base station.
  • the base station may be a base station (BS) or a base station controller of wireless communication. It can also be called a wireless access point, a transceiver station, a relay station, a cell, a transmit and receive port (TRP), and the like.
  • the network device 11 is a wireless communication device deployed in the wireless access network to provide a wireless communication function for the terminal, and can be connected to the terminal, and receive data sent by the terminal and sent to the core network device.
  • the main functions of the network device 11 include one or more of the following functions: management of radio resources, compression of an internet protocol (IP) header, encryption of user data streams, selection of an MME when a user equipment is attached, and routing of user planes.
  • Data to service gateway (SGW) organization and transmission of paging messages, organization and transmission of broadcast messages, configuration of measurement and measurement reports for mobility or scheduling, and the like.
  • Network device 11 may include various forms of cellular base stations, home base stations, cells, wireless transmission points, macro base stations, micro base stations, relay stations, wireless access points, and the like.
  • the name of the base station may be different, for example, in an LTE system, called an evolved base station (evolved node B, eNB or eNodeB), in the 3rd generation mobile communication technology ( In the third generation telecommunication, 3G) system, called a base station (node B), in the NR system, called gNB, CU, DU, etc., in a wireless local access system, called an access point. .
  • This name may change as communication technologies evolve.
  • network device 11 may be other devices that provide wireless communication functionality to the terminal.
  • a device that provides a wireless communication function for a terminal is referred to as a network device.
  • Both the terminal 12 and the terminal 13 refer to a device that includes a wireless transceiver function and can cooperate with a network side device such as an access network device and/or a core network device to provide a communication service for the user.
  • Both the terminal 12 and the terminal 13 may be a wireless terminal or a wired terminal, and the wireless terminal may be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or other processing connected to the wireless modem. device.
  • the wireless terminal can communicate with one or more core networks or the Internet via a radio access network (RAN), and the wireless terminal can include various handheld devices, in-vehicle devices, and wearable devices having wireless communication functions.
  • RAN radio access network
  • Computing device or other processing device connected to the wireless modem may also include a subscriber unit, a cellular phone, a smart phone, a wireless data card, a personal digital assistant (PDA) Computer, tablet, wireless modem, handheld, laptop computer, cordless phone or wireless local loop (WLL), machine type communication (machine type communication, MTC) terminal, user equipment (UE), mobile station (MS), terminal device or relay user equipment.
  • the relay user equipment may be, for example, a 5G residential gateway (RG).
  • the solution provided by the embodiment of the present application is performed by the pilot signal generating device and the pilot signal receiving device, wherein the pilot signal receiving device may be a network device itself or a functional entity (such as a chip) configured therein, and the pilot signal
  • the generating means may be a functional entity (for example, a chip) of the terminal itself or its internal configuration.
  • FIG. 2 is a schematic diagram of a composition of a pilot signal generating apparatus according to an embodiment of the present disclosure.
  • the pilot signal generating apparatus may include at least one processor 21, a communication interface 22, and a bus 23.
  • the processor 21 is a control center of the pilot signal generating device, and may be a processor or a collective name of a plurality of processing elements.
  • the processor 21 is a central processing unit (CPU), may be an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present application.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • DSPs digital signal processors
  • FPGAs field programmable gate arrays
  • the processor 21 can perform various functions of the pilot signal generating device by running or executing a software program or instruction.
  • the pilot signal generating device may further include a memory 24 for storing the above software program or instructions, and further, may store data, for example, data required for generating a pilot signal.
  • processor 21 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG.
  • the pilot signal generating apparatus may include a plurality of processors, such as the processor 21 and the processor 25 shown in FIG.
  • processors can be a single core processor (CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the memory 24 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact dsisc read-only memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • the memory 24 can be independently present and connected to the processor 21 via a bus 23.
  • the memory 24 can also be integrated with the processor 21.
  • the memory 24 is used to store a software program that executes the solution of the present application, and is controlled by the processor 21.
  • the communication interface 22 is for communicating with other devices or communication networks. For example, it is used for communication with a communication network such as an Ethernet, a radio access network (RAN), or a wireless local area network (WLAN).
  • Communication interface 22 may include all or part of a baseband processor, and may also optionally include an RF processor.
  • the RF processor is used to transmit and receive RF signals
  • the baseband processor is used to implement processing of a baseband signal converted by an RF signal or a baseband signal to be converted into an RF signal.
  • the bus 23 may be an industry standard architecture (ISA) bus, a peripheral component interconnect (PCI) bus, or an extended industry standard architecture (EISA) bus.
  • ISA industry standard architecture
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 2, but it does not mean that there is only one bus or one type of bus.
  • the device structure shown in FIG. 2 does not constitute a limitation of the pilot signal generating device, and may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • the software program in the embodiment of the present application may also be referred to as a computer-executed instruction, which is not specifically limited in this embodiment of the present application.
  • the pilot signal generating device may further include a battery, a camera, a Bluetooth module, a global position system (GPS) module, a display screen, and the like, and details are not described herein.
  • the software program in the embodiment of the present application may also be referred to as a computer-executed instruction, which is not specifically limited in this embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a pilot signal receiving apparatus according to an embodiment of the present disclosure.
  • the pilot signal receiving apparatus may include at least one processor 31, a communication interface 32, and a bus 33.
  • pilot signal receiving apparatus The components of the pilot signal receiving apparatus will be specifically described below with reference to FIG. 3:
  • the processor 31 can be a processor or a collective name for a plurality of processing elements.
  • processor 31 may be a general purpose CPU, or an ASIC, or one or more integrated circuits for controlling the execution of the program of the present application, such as one or more DSPs, or one or more FPGAs.
  • the processor 31 can perform various functions of the pilot signal receiving apparatus by running or executing a software program stored in the memory 34 and calling data stored in the memory 34.
  • the pilot signal receiving device may further include a memory 34.
  • processor 31 may include one or more CPUs.
  • the processor 31 includes a CPU 0 and a CPU 1.
  • the pilot signal receiving apparatus may include a plurality of processors.
  • a processor 31 and a processor 35 are included.
  • Each of these processors can be a single-CPU or a multi-CPU.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the memory 34 can be a ROM or other type of static storage device that can store static information and instructions, RAM or other types of dynamic storage devices that can store information and instructions, or can be EEPROM, CD-ROM or other optical disk storage, optical disk storage. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • Memory 34 may be present independently and coupled to processor 31 via bus 33. The memory 34 can also be integrated with the processor 31.
  • the communication interface 32 is used for communicating with other devices or communication networks, such as Ethernet, RAN, WLAN, and the like.
  • the communication interface 33 may include a receiving unit that implements a receiving function, and a transmitting unit that implements a transmitting function.
  • the bus 33 can be an ISA bus, a PCI bus or an EISA bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 3, but it does not mean that there is only one bus or one type of bus.
  • the device structure shown in FIG. 3 does not constitute a limitation of the pilot signal receiving device, and may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • the technical background involved in the embodiments of the present application is introduced below:
  • the front-load DMRS is generally located in front of the scheduling resources, which allows the network device to perform channel estimation and other operations as early as possible, reducing the delay.
  • the front-load DMRS is located in the third and fourth orthogonal frequency division multiplexing (OFDM) symbols of the slot, for the mapping type B.
  • the front-load DMRS is located on the foremost OFDM symbol of the scheduling resource, where the mapping type A is shown in Figure 4-7, and the front-load DMRS is encoded by Comb frequency division and time division orthogonal coverage coding (TD-OCC).
  • TD-OCC Comb frequency division and time division orthogonal coverage coding
  • FIG. 5 correspond to a configuration type 1, a cyclic prefix (CP) modulation method applied to a physical uplink control channel (PUCCH), and a physical uplink control channel (physical uplink).
  • CP cyclic prefix
  • PUSCH physical uplink control channel
  • DFT discrete Fourier transform
  • Figure 6 and Figure 7 correspond to configuration type 2, applied to the physical uplink control channel (PUCCH) cyclic prefix (cycle prefix, CP) modulation mode.
  • FIG. 4 can multiplex 4 orthogonal ports through Comb2 (where 2 refers to the orthogonal port multiplexed by Comb mode) and CS2 (where 2 refers to the orthogonal port multiplexed by CS2 mode);
  • FIG. 5 can pass Comb2 , CS2 and TD-OCC2 (where 2 refers to the number of orthogonal ports multiplexed by TD-OCC mode) to multiplex 8 orthogonal ports;
  • Figure 6 can pass Comb3 and FD-OCC2 (where 2 refers to FD-OCC mode The number of orthogonal ports used is multiplexed with 6 orthogonal ports;
  • Figure 7 can multiplex 12 orthogonal ports through Comb3, TD-OCC2, and FD-OCC2.
  • the additional DMRS can be configured for each terminal in the 5G NR standard. Additional DMRS is generated in the same way as front-load DMRS. The additional DMRS is generally located behind the front-load DMRS and is not adjacent to the symbol of the additional DMRS. The additional DMRS can be used to improve the performance of the channel estimation. If the front-load DMRS is a single symbol, an additional DMRS of 1 to 3 symbols can be configured; if the front-load DMRS is a double symbol, an additional DMRS of 2 symbols can be configured. To better describe the number and labeling of available DMRSs, multiple DMRS ports are defined in the 5G NR standard.
  • Different DMRS ports are mutually orthogonal, and the orthogonal manner may be frequency division or code division.
  • the frequency division means that different DMRS ports occupy different frequency domain resources, and the code division refers to when different DMRS ports occupy the same time. Frequency resources, but DMRS sequences are generated using different orthogonal codes or different cyclic shifts.
  • Different maximum DMRS port(s) numbers are supported for different DMRS configurations.
  • Each different DMRS port has a different number, ranging from 0 to the maximum number of DMRS ports -1.
  • the front-load DMRS is used as the first DMRS
  • the additional DMRS is used as the second DMRS.
  • the network device sends, to the terminal, a first indication of whether to code-multiplex the first demodulation reference signal DMRS with the second DMRS, and a second indication for determining the DMRS port number.
  • the symbol where the first DMRS is located and the symbol where the second DMRS is located are not adjacent.
  • the terminal receives downlink control information (DCI) or radio resource control (RRC) message sent by the network device, where the DCI includes a first indication, and the RRC message includes a first indication.
  • DCI downlink control information
  • RRC radio resource control
  • a new RRC configuration parameter may be added in the NR standard for sending the first indication, and the RRC configuration parameter is named as UL-DMRS-port-extension (uplink demodulation reference signal port extension) in the present invention
  • the terminal receives, by the network device, a first indication of whether the first demodulation reference signal DMRS is code-multiplexed with the second DMRS, and a second indication for determining a DMRS port number.
  • the terminal determines, according to the first indication and the second indication, a DMRS port number.
  • the terminal determines the DMRS port number according to the first indication, the second indication, and the number of data streams.
  • the 3GPP's Multiplexing and Channel coding series TS38.212 defines a table (Table) 7.3.1.1.2-12/13/ for Configuration type 1 using 4 bits. 14/15.
  • Table 7.3.1.1.2-12/13/ for Configuration type 1 using 4 bits. 14/15.
  • the values of the parameters such as PUSCH-tp (PUSCH-transform precoding), UL-DMRS-config-type, UL-DMRS-max-len, and rank are determined.
  • UL-DMRS-max- Len indicates the maximum number of symbols of the uplink DMRS
  • rank indicates the number of data streams, which can be determined by the SRS (Sounding Reference Signal) resource identification field or the encoding information & number of layers field in the DCI.
  • the configuration of the uplink DMRS may be the same as the configuration of the downlink DMRS.
  • the foregoing UL-DMRS-config-type and UL-DMRS-max-len may also be replaced with DL-DMRS-config- Type and DL-DMRS-max-len, where DL-DMRS-config-type indicates the DMRS configuration type used in the downlink, and DL-DMRS-max-len indicates the maximum symbol number of the downlink DMRS.
  • the value of the first column is the value of the Antenna Ports field in the RRC or DCI.
  • DMRS CDM code division multiplexing
  • the total number of DMRS CDM group(s) is 2, when Number of DMRS CDM
  • the group(s)without data is 1, indicating that there is also a time-frequency resource location of the DMRS CDM group that can be used to transmit data.
  • the table refers to the existing NR protocol: 3GPP's Multiplexing and Channel coding series TS38.212, in Table 7.3.1.1.2-12
  • Number of The DMRS CDM group(s)without data is the largest number of CDM groups (for example, for configuration type 1, the maximum number of CDM groups is 2, and for configuration type 2, the maximum number of CDM groups is 3) That is, for the terminal, the time-frequency resources of the DMRS cannot be used to transmit the uplink data. Therefore, if it is determined according to the first indication that the first DMRS and the second DMRS are code-multiplexed, the terminal determines to use the time-frequency resource of the DMRS to transmit the uplink data.
  • a table is defined using 4 bits for configuration 2. 7.3.1.1.2-20/21/22/23
  • the terminal determines to perform code division multiplexing on the first DMRS and the second DMRS according to the first indication, obtain a parameter used to generate the DMRS sequence according to the DMRS port number.
  • the parameters for generating the DMRS sequence include a first orthogonal code, the exemplary first orthogonal code may be two symbol lengths, and one of the first orthogonal codes is used to generate a first DMRS sequence, the second orthogonal Another element in the code is used to generate a second DMRS sequence; furthermore, if the number of symbols of the first DMRS is 2; the parameter used to generate the DMRS sequence further includes a second orthogonal code, two of the second orthogonal codes
  • the elements are each used to generate a first DMRS sequence, and both elements in the second orthogonal code are used to generate a second DMRS sequence;
  • the second orthogonal code includes a time domain orthogonal code or a frequency domain orthogonal code.
  • the terminal generates a first DMRS sequence and a second DMRS sequence according to parameters used to generate the DMRS sequence, and maps the first DMRS sequence and the second DMRS sequence to corresponding time-frequency resources to generate a pilot signal.
  • the network device allocates an orthogonal code to the terminal, and the orthogonal code is associated with the DMRS port number, so according to the DMRS port number.
  • the orthogonal code allocated by the network device to the terminal may be obtained by looking up the table, and each element of the orthogonal code is multiplied by the front-load DMRS and the additional DMRS to generate a first DMRS sequence and a second DMRS sequence.
  • the orthogonal code is (+1, +1) or (+1, -1).
  • the front-loaeded DMRS and the additional DMRS are multiplied by 1, that is, unchanged. If the orthogonal code assigned by the terminal device is (+1, -1), the front-loaeded DMRS is multiplied by 1, and the additional DMRS is multiplied by -1.
  • the terminal generates a DMRS sequence according to the following formula:
  • l' may be 0 or 1, l' is 0 to generate the first symbol in the DMRS, l' is 1 to represent the second symbol in the DMRS; for the single symbol DMRS Configuration, l' is 0; k' can be 0 and 1, k' is 0 to indicate the first complex symbol in the two complex symbols of code division multiplexing in the frequency domain; k' is 1 to indicate in the frequency domain
  • w f (k') is a frequency domain orthogonal code, such as CS/FD-OCC;
  • w t (l') is a time domain orthogonal code, Such as TD-OCC; Is a time domain orthogonal code; k is a subcarrier sequence number; l is the sequence number occupied by the symbol, Is the original DMRS sequence, such as a pseudo-random sequence or a Zadoff-Chu sequence.
  • the parameter table 6.4.1.1.3-1 of the PUSCH DMRS configuration type 1 is extended to the following Table 6.4.1.1.13-1A (where the extension part is It corresponds to the first orthogonal code in the above step 104):
  • Table 6.4.1.1.3-4 shows the symbol position of the additional DMRS.
  • the position of last PUSCH symbol refers to the position of the last symbol of the PUSCH.
  • the following table shows the PUSCH mapping type A (map type A). Or when mapping type B (map type B), if the additional DMRS contains 0, 1, 2, 3 symbols, the position of the symbol, where l 0 means the symbol position may be 2, 3.
  • the parameter table 6.4.1.1.3-2 of PUSCH DMRS Configuration type 2 is extended to the following Table 6.4.1.1.3-2A (where the extension part is It corresponds to the first orthogonal code in the above step 104):
  • the network device will assign an orthogonal code to the terminal first, taking w t (l') as an example, the orthogonal code w t ( l′) is associated with the DMRS port number p. Therefore, according to the DMRS port number, the orthogonal code w t (l′) allocated by the network device to the terminal can be obtained by looking up the table, as shown in FIG. 9 and FIG. 10 , wherein FIG. 9 A schematic diagram of generating a front-load DMRS sequence and an additional DMRS sequence in configuration type 1 is shown; wherein FIG.
  • FIG. 10 shows a schematic diagram of generating a front-load DMRS sequence and an additional DMRS sequence in configuration type 2; the orthogonal code w t ( Each element of l') is multiplied by each symbol of the front-load DMRS, for example, the orthogonal code w t (l') is (+1, +1) or (+1, -1), specifically Determined according to the DMRS port number. If the orthogonal code assigned by the terminal is (+1, +1), then both symbols of the front-load DMRS are multiplied by 1, ie unchanged. If the orthogonal code assigned by the terminal is (+1, -1), the first symbol in the front-load DMRS is multiplied by 1, and the second symbol is multiplied by -1.
  • Additional DMRS is treated similarly to front-load DMRS. Further, 'time, and w t (l allocating orthogonal codes w f (k)') in a manner similar process, except w t (l ') for quadrature processing on the time domain, w f (k') with Orthogonal processing on the frequency domain.
  • Orthogonal code Each element is multiplied by a front-load DMRS and an additional DMRS, for example, the orthogonal code is (+1, +1) or (+1, -1). If the orthogonal code assigned by the terminal device is (+1, +1), both the front-loaeded DMRS and the additional DMRS are multiplied by 1, that is, unchanged. If the orthogonal code assigned by the terminal device is (+1, -1), the front-loaeded DMRS is multiplied by 1, and the additional DMRS is multiplied by -1, thereby obtaining a front-load DMRS sequence and an additional DMRS sequence.
  • the network device can allocate orthogonal codes to the terminal. For example, the network device can allocate a certain DMRS port number to the terminal, and the port number is associated with the orthogonal code. The network device can also directly assign the positive to the terminal. The serial number of the code.
  • the first DMRS is further code-multiplexed with the second DMRS, thereby expanding the number of pilot signals and supporting more DMRS port numbers.
  • the first DMRS and the second DMRS are code-multiplexed by the orthogonal code, the pilot signals corresponding to different DMRS sequences can be orthogonal to each other, and the interference between the pilot signals is avoided, thereby ensuring The accuracy and channel estimation performance of the network device for user detection.
  • the embodiment of the present application may divide the function module by using the pilot signal generating apparatus or the pilot signal receiving apparatus according to the foregoing method.
  • each functional module may be divided according to each function, or two or more of the functional modules may be divided.
  • the functions are integrated in one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 11 is a schematic structural diagram of a pilot signal generating apparatus according to an embodiment of the present application.
  • the pilot signal generating apparatus shown in FIG. 11 can be used to perform the steps performed by the corresponding terminals in any of the pilot signal generating methods provided above.
  • the pilot signal generating apparatus 110 may include: a receiving module 111 and a processing module 112.
  • the receiving module 111 is configured to receive, by the network device, a first indication of whether the first demodulation reference signal DMRS is code-multiplexed with the second DMRS, and a second indication for determining a DMRS port number, where The symbol in which a DMRS is located is not adjacent to the symbol in which the second DMRS is located.
  • the processing module 112 is configured to determine a DMRS port number according to the first indication and the second indication received by the receiving module, and the processing module 112 is further configured to: if the first DMRS is determined according to the first indication Performing code division multiplexing with the second DMRS, acquiring parameters for generating a DMRS sequence according to the DMRS port number, where the parameter for generating the DMRS sequence includes a first orthogonal code, the first positive One element in the cross code is used to generate a first DMRS sequence, one element of the second orthogonal code is used to generate a second DMRS sequence; the processing module 112 is further configured to use the parameter used to generate the DMRS sequence Generating a first DMRS sequence and a second DMRS sequence; mapping the first DMRS sequence and the second DMRS sequence to a corresponding time-frequency resource to generate a pilot signal.
  • the receiving module 111 may correspond to the communication interface 22 in FIG. 2; the processing module 112 may correspond to the processors 21, 25 in FIG.
  • FIG. 12 is a schematic structural diagram of a pilot signal receiving apparatus 120 according to an embodiment of the present application.
  • the pilot signal receiving apparatus 120 shown in FIG. 12 can be used to perform the steps performed by the corresponding network device in any of the pilot signal generating methods provided above.
  • the pilot signal receiving device 120 can include a transmitting module 121 and a receiving module 122.
  • the sending module 121 is configured to send, to the terminal, a first indication of whether to code-multiplex the first demodulation reference signal DMRS and the second DMRS, and a second indication for determining a DMRS port number, where the first DMRS The symbol in which it is located and the symbol in which the second DMRS is located are not adjacent.
  • the receiving module 122 is configured to receive a pilot signal generated by the terminal device according to the first indication and the second indication.
  • the transmitting module 121 and the receiving module 122 may correspond to the communication interface 32 of FIG.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, i.e., may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, Digital Subscriber Line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a Solid State Disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a Solid State Disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种导频信号生成方法及装置,涉及通信领域,能够提高导频信号的数量。方法包括:终端接收网络设备发送的是否将第一解调参考信号DMRS与第二DMRS进行码分复用的第一指示以及用于确定DMRS端口号的第二指示,第一DMRS所在的符号和第二DMRS所在的符号不相邻;根据第一指示、第二指示确定DMRS端口号;根据第一指示确定将第一DMRS与第二DMRS进行码分复用,则根据上述确定的DMRS端口号,获取用于生成DMRS序列的参数,用于生成DMRS序列的参数包括第一正交码,第一正交码中的一个元素用于生成第一DMRS序列,第二正交码中的一个元素用于生成第二DMRS序列;根据用于生成DMRS序列的参数生成第一DMRS序列、第二DMRS序列;将第一DMRS序列、第二DMRS序列映射到相应的时频资源生成导频信号。

Description

一种导频信号生成方法及装置
本申请要求于2018年02月12日提交中国专利局、申请号为201810147401.8、申请名称为“一种导频信号生成方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请的实施例涉及通信领域,尤其涉及一种导频信号生成方法及装置。
背景技术
5G(5th-generation,也称第五代移动通信技术)是下一代蜂窝通信网的热门标准,覆盖了eMBB(enhance mobile broadband,增强移动宽带)、uRLLC(ultrareliable&low latency communication,高可靠低延时通信)和mMTC(massive machine type communication,海量物联网通信)这三大场景。eMBB场景强调高吞吐量,uRLLC场景强调高可靠性和低时延,mMTC场景强调海量连接数。
在mMTC场景中,会有海量的终端需要和网络设备进行上行通信。对于上行通信,网络设备需要给不同的终端配置不同的解调参考信号(demodulation reference signal,DMRS)。网络设备通过在导频信号中接收终端的DMRS,来识别用户并进行信道估计。在通信系统中,DMRS的数量是有限的。因此在mMTC场景中,终端过多时,DMRS有限造成可用的导频信号的数量不足将会是网络容量的瓶颈。
发明内容
本申请的实施例提供一种导频信号生成方法及装置,能够提高导频信号的数量。
第一方面,提供一种导频信号生成方法。该方法包括:终端接收网络设备发送的是否将第一解调参考信号DMRS与第二DMRS进行码分复用的第一指示以及用于确定DMRS端口号的第二指示,该第一DMRS所在的符号和第二DMRS所在的符号不相邻;终端根据该第一指示和第二指示确定DMRS端口号;若终端根据所述第一指示确定将第一DMRS与第二DMRS进行码分复用,则根据上述确定的DMRS端口号,获取用于生成DMRS序列的参数,该用于生成DMRS序列的参数包括第一正交码,例如第一正交码可以为两个符号长度,第一正交码中的一个元素用于生成第一DMRS序列,第二正交码中的一个元素用于生成第二DMRS序列;终端根据该用于生成DMRS序列的参数生成第一DMRS序列和第二DMRS序列;将第一DMRS序列和第二DMRS序列映射到相应的时频资源生成导频信号。示例性的,第一DMRS可以为前置(front-load)DMRS,第二DMRS可以为附加(additional)DMRS,两者所在的符号通常不相邻,由于在确定将两者进行复用时,终端可以根据DMRS端口号获取用于生成DMRS序列的参数,该用于生成DMRS序列的参数包括具有两个元素的第一正交码,例如该第一正交码可以为(+1,+1)或者(+1,-1)这样终端能够根据一个元素生成第一DMRS序列,根据另一个元素生成第二DMRS序列,最后将第一DMRS序列和第二DMRS序列映射到相应的时频资源生成导频信号。由于上述过程中,进一步将第一DMRS与第二DMRS进行码分复用,因此扩展了导频信 号的数量,并且可以支持更多的DMRS端口数量。此外,由于通过正交码将第一DMRS与第二DMRS进行码分复用,因此可以实现不同的DMRS序列对应的导频信号能够相互正交,避免了导频信号之间的干扰,保证了网络设备对用户检测的准确性和信道估计性能。
在一种可能的设计中,第一DMRS的符号数为2;用于生成DMRS序列的参数还包括第二正交码,第二正交码中的两个元素均用于生成第一DMRS序列,以及第二正交码中的两个元素均用于生成第二DMRS序列。例如,第二正交码可以为(+1,+1)或者(+1,-1),将(+1,+1)用于生成第一DMRS序列时,第一DMRS的两个符号均乘以+1,将(+1,-1)用于生成第一DMRS序列时,第一DMRS的一个符号均乘以+1,另一个符号乘以-1。第二DMRS序列的处理方式类似,这样结合第一正交码时,实现了对一个DMRS的两级码分复用。其中,第二正交码包括时域正交码,例如:时分正交覆盖编码(time division orthogonal cover code,TD-OCC)或频域正交码,例如:循环后缀\频分正交覆盖编码(cyclic suffix\requency division orthogonal cover code,CS\FD-OCC)。
在一种可能的设计中,还包括:若根据第一指示确定将第一DMRS和第二DMRS进行码分复用时,终端确定不使用DMRS的时频资源发送上行数据。
在一种可能的设计中,终端根据第一指示和第二指示确定DMRS端口号包括:终端根据第一指示、第二指示以及数据流的数量确定DMRS端口号。
在一种可能的设计中,还包括:终端接收网络设备发送的下行控制信息DCI或者无线资源控制RRC消息,DCI包括第一指示,RRC消息包括第一指示。当然本方案的实施例不限于通过上述的两种方式发送第一指示。
第二方面,提供一种导频信号接收方法。该方法包括:网络设备向终端发送是否将第一解调参考信号DMRS与第二DMRS进行码分复用的第一指示以及用于确定DMRS端口号的第二指示,其中,第一DMRS所在的符号和第二DMRS所在的符号不相邻;网络设备接收终端设备根据第一指示和第二指示生成的导频信号。其所能达到的有益效果可参考第一方面中的有益效果,此处不再赘述。
在一种可能的设计中,还包括:网络设备向终端发送下行控制信息DCI或者无线资源控制RRC消息,DCI包括第一指示,RRC消息包括所述第一指示。当然本方案的实施例不限于通过上述的两种方式发送第一指示。
第三方面,本申请实施例提供了一种导频信号生成装置。该导频信号生成装置可以用于执行上述第一方面提供的任一种方法。该导频信号生成装置具体可以是上述第一、二方面中描述的终端,或该导频信号生成装置为第一、二方面提供的终端上的实施上述第一方面提供的方法的功能实体例如可以为芯片。
在一种可能的设计中,可以根据上述第一方面提供的方法对导频信号生成装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个功能模块中。
在另一种可能的设计中,该导频信号接收装置可以包括:处理器,处理器用于执行存储器中的计算机程序,使得第一方面提供的任一方法被执行。
第四方面,本申请实施例提供了一种导频信号接收装置。该导频信号接收装置可 以用于执行上述第二方面提供的任一种方法。该导频信号接收装置具体可以是上述第一、二方面中描述的网络设备,或该导频信号接收装置为第一、二方面提供的网络设备上的实施上述第二方面提供的方法的功能实体例如可以为芯片。
在一种可能的设计中,可以根据上述第二方面提供的方法对导频信号接收装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个功能模块中。
在另一种可能的设计中,该导频信号接收装置可以包括:处理器,处理器用于执行存储器中的计算机程序,使得第二方面提供的任一方法被执行。
本申请实施例还提供了一种计算机可读存储介质,其上储存有计算机指令,当该计算机指令在计算机上运行时,使得计算机执行上述第一方面、第二方面的任一种可能的方法。
本申请实施例还提供了一种计算机程序产品,当其在计算机上运行时,使得第一方面、第二方面提供的任一方法被执行。
可以理解的,上述提供的任一种装置或计算机存储介质或计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考对应的方法中的有益效果,此处不再赘述。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1为本申请的实施例提供的一种系统架构的示意图;
图2为本申请的实施例提供的一种导频信号生成装置的示意图;
图3为本申请的实施例提供的一种导频信号接收装置的示意图;
图4为本申请的实施例提供的一种资源的映射类型示意图一;
图5为本申请的实施例提供的一种资源的映射类型示意图二;
图6为本申请的实施例提供的一种资源的映射类型示意图三;
图7为本申请的实施例提供的一种资源的映射类型示意图四;
图8为本申请的实施例提供的一种导频信号生成方法的流程示意图;
图9为本申请的实施例提供的一种生成front-load DMRS序列和additional DMRS序列的示意图;
图10为本申请的另一实施例提供的一种生成front-load DMRS序列和additional DMRS序列的示意图;
图11为本申请的另一实施例提供的一种导频信号生成装置的示意图;
图12为本申请的另一实施例提供的一种导频信号接收装置的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情 况。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。另外,为了便于清楚描述本申请实施例的技术方案,本申请实施例中所述的“第一”和“第二”等是用于区别不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序。例如,第一指示和第二指示是用作不同处理的指示,第一正交码和第二正交码是用于不同码分复用过程中的正交码。
本申请实施例提供的一种导频信号生成方法,可以应用于网络设备指示终端生成导频信号的过程中。图1为本申请实施例提供的一种系统架构的简化示意图。该系统架构中包括网络设备和一个或多个终端。如图1所示,该系统架构10可以包括:网络设备11、终端12和终端13。其中,本申请实施例这里以网络设备11与终端12的交互为例,对图1所示的系统架构中的各个设备进行介绍。
在一种应用场景中,网络设备11用于向终端12发送第一指示(是否将第一DMRS与第二DMRS进行码分复用的指示)和第二指示(用于确定DMRS端口号的指示);终端12用于接收网络设备11发送的第一指示和第二指示并生成导频信号。
其中,本申请可应用于NR(new radio access technology in 3GPP,简称NR,3GPP新无线接入技术)系统的mMTC场景下。上述网络设备11具体可以是基站。基站可以是无线通信的基站(base station,BS)或基站控制器等。也可以称为无线接入点、收发站、中继站、小区、发送接收点(transmit and receive port,TRP)等等。具体的,网络设备11是一种部署在无线接入网中用以为终端提供无线通信功能的无线通信装置,其可以与终端进行连接,接收终端发送的数据并发送给核心网设备。网络设备11的主要功能包括如下一个或多个功能:进行无线资源的管理、互联网协议(internet protocol,IP)头的压缩及用户数据流的加密、用户设备附着时进行MME的选择、路由用户面数据至服务网关(service gateway,SGW)、寻呼消息的组织和发送、广播消息的组织和发送、以移动性或调度为目的的测量及测量报告的配置等等。网络设备11可以包括各种形式的蜂窝基站、家庭基站、小区、无线传输点、宏基站、微基站、中继站、无线接入点等等。
在采用不同的无线接入技术的系统中,基站的名称可能会有所不同,例如,在LTE系统中,称为演进的基站(evolved nodeB,eNB或eNodeB),在第3代移动通信技术(the third generation telecommunication,3G)系统中,称为基站(node B),在NR系统中,称为gNB、CU、DU等等,在无线本地接入系统中,称为接入点(access point)。随着通信技术的演进,这一名称可能会变化。此外,在其它可能的情况下,网络设备11可以是其它为终端提供无线通信功能的设备。为方便描述,本申请实施例中,为终端提供无线通信功能的装置称为网络设备。
终端12和终端13,均指的是包含无线收发功能,可以与接入网设备和/或核心网设备等网络侧设备配合为用户提供通讯服务的设备。终端12和终端13均可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(如,radio access network,RAN)与一个或多个核心网或者互联网进行通信,无线终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备;还可以包括用户单元 (subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端、用户设备(user equipment,UE),移动台(mobile station,MS),终端设备(terminal device)或者中继用户设备等。其中,中继用户设备例如可以是5G家庭网关(residential gateway,RG)。其中本申请的实施例提供的方案由与导频信号生成装置和导频信号接收装置执行,其中导频信号接收装置可以为网络设备本身或者其内部配置的功能实体(例如芯片),导频信号生成装置可以为终端本身或者其内部配置的功能实体(例如芯片)。
图2为本申请实施例提供的一种导频信号生成装置的组成示意图,如图2所示,导频信号生成装置可以包括至少一个处理器21、通信接口22、总线23。
下面结合图2对导频信号生成装置的各个构成部件进行具体的介绍:
处理器21是导频信号生成装置的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器21是一个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
其中,处理器21可以通过运行或执行软件程序或指令,执行导频信号生成装置的各种功能。
可选地,该导频信号生成装置还可以包括存储器24,用于存储上述软件程序或者指令,进一步地,还可以存储数据,例如,用于生成导频信号所需要的数据。
在具体的实现中,作为一种实施例,处理器21可以包括一个或多个CPU,例如图2中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,导频信号生成装置可以包括多个处理器,例如图2中所示的处理器21和处理器25。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器24可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact dsisc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器24可以是独立存在,通过总线23与处理器21相连接。存储器24也可以和处理器21集成在一起。
其中,存储器24用于存储执行本申请方案的软件程序,并由处理器21来控制执 行。
通信接口22,用于与其他设备或通信网络通信。如用于与以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等通信网络通信。通信接口22可以包括基带处理器的全部或部分,以及还可选择性地包括RF处理器。RF处理器用于收发RF信号,基带处理器则用于实现由RF信号转换的基带信号或即将转换为RF信号的基带信号的处理。
总线23,可以是工业标准体系结构(industry standard architecture,ISA)总线、外部设备互连(peripheral component interconnect,PCI)总线或扩展工业标准体系结构(extended industry standard architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图2中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图2中示出的设备结构并不构成对导频信号生成装置的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。可选的,本申请实施例中的软件程序也可以称之为计算机执行指令,本申请实施例对此不作具体限定。尽管未示出,导频信号生成装置还可以包括电池、摄像头、蓝牙模块、全球定位系统(global position system,GPS)模块、显示屏等,在此不再赘述。可选的,本申请实施例中的软件程序也可以称之为计算机执行指令,本申请实施例对此不作具体限定。
图3为本申请实施例提供的一种导频信号接收装置组成示意图。如图3所示,该导频信号接收装置可以包括至少一个处理器31、通信接口32和总线33。
下面结合图3对导频信号接收装置的各个构成部件进行具体的介绍:
处理器31可以是一个处理器,也可以是多个处理元件的统称。例如,处理器31可以是一个通用CPU,也可以是ASIC,或一个或多个用于控制本申请方案程序执行的集成电路,例如:一个或多个DSP,或,一个或者多个FPGA。其中,处理器31可以通过运行或执行存储在存储器34内的软件程序,以及调用存储在存储器34内的数据,执行导频信号接收装置的各种功能。当然该导频信号接收装置还可以包括存储器34。
在具体的实现中,作为一种实施例,处理器31可以包括一个或多个CPU。例如,如图3所示,处理器31包括CPU0和CPU1。
在具体实现中,作为一种实施例,导频信号接收装置可以包括多个处理器。例如,如图3所示,包括处理器31和处理器35。这些处理器中的每一个可以是一个single-CPU,也可以是一个multi-CPU。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器34可以是ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是EEPROM、CD-ROM或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器34可以是独立存在,通过总线33与处理器31相连接。存储器34也可以和处理器31集成在一起。
通信接口32,用于与其他设备或通信网络通信,如以太网,RAN,WLAN等。通信 接口33可以包括接收单元实现接收功能,以及发送单元实现发送功能。
总线33,可以是ISA总线、PCI总线或EISA总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图3中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图3中示出的设备结构并不构成对导频信号接收装置的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。以下对本申请实施例中涉及的技术背景进行介绍:
在5G NR系统中,用于终端上行传输的DMRS有两种:front-load DMRS和additional DMRS。front-load DMRS一般位于调度资源的前面,这样可以让网络设备尽早进行信道估计等操作,减少时延。例如对于资源的映射类型A(mapping type A),front-load DMRS位于时隙(slot)的第3和第4个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,对于mapping type B,front-load DMRS位于调度资源的最前面的OFDM符号上,其中mapping type A如图4-7所示,front-load DMRS通过梳状(Comb)频分、时分正交覆盖编码(TD-OCC)、频分正交覆盖编码(FD-OCC),循环后缀(CS,Cyclic Shift)等方式,最多可以复用4个、8个、6个或12个正交端口。其中,图4和图5对应配置类型(configuration type)1,应用于物理上行链路控制信道(physical uplink control channel,PUCCH)的循环前缀(cycleprefix,CP)调制方式以及物理上行控制信道(physical uplink shared channel,PUSCH)的离散傅里叶变换(discrete fourier transform,DFT)调制方式;图6和图7对应configuration type 2,应用于物理上行链路控制信道(physical uplink control channel,PUCCH)的循环前缀(cycle prefix,CP)调制方式。其中,图4可通过Comb2(其中,2指Comb方式复用的正交端口)以及CS2(其中,2指CS2方式复用的正交端口)复用4个正交端口;图5可通过Comb2、CS2以及TD-OCC2(其中,2指TD-OCC方式复用的正交端口数)复用8个正交端口;图6可通过Comb3以及FD-OCC2(其中,2指FD-OCC方式复用的正交端口数)复用6个正交端口;图7可通过Comb3、TD-OCC2以及FD-OCC2复用12个正交端口。
另外为了支持高速场景,5G NR标准中还可以针对每个终端配置additional DMRS。additional DMRS的生成方式与front-load DMRS相同。additional DMRS一般位于front-load DMRS的后面与additional DMRS所在的符号不相邻,additional DMRS可以用来提高信道估计的性能。其中,若front-load DMRS为单符号,则可以配置1~3个符号的additional DMRS;若front-load DMRS为双符号,则可以配置2个符号的additional DMRS。为了更好地描述可用DMRS的数量和标号,5G NR标准中定义了多个DMRS port(端口)。不同的DMRS port之间相互正交,正交的方式可以是频分或者码分,其中频分是指不同的DMRS port占用不同的频域资源,码分是指不同的DMRS port占用相同的时频资源,但DMRS序列采用不同的正交码或者不同的循环移位方式生成。
对于不同的DMRS配置,支持不同的最大DMRS port(s)数。对于configuration type1单符号,configuration type 1双符号,configuration type 2单符号,configuration type 2双符号这四种配置,分别最多支持4个、8个、6个和12个 DMRS port(s)。每个不同的DMRS端口有不同的编号,分别为0~最大DMRS端口数-1。以下方案中,以front-load DMRS作为第一DMRS,additional DMRS作为第二DMRS进行说明。
以下,结合图8说明本申请提供的导频信号生成方法。需要说明的是,本申请下述实施例中各个设备之间的指示或参数的名字只是一个示例,具体实现中也可以是其他的名字,在此进行统一说明,本申请实施例对此不作具体限定。
101、网络设备向终端发送是否将第一解调参考信号DMRS与第二DMRS进行码分复用的第一指示以及用于确定DMRS端口号的第二指示。
其中,第一DMRS所在的符号和第二DMRS所在的符号不相邻。具体的,终端接收网络设备发送的下行控制信息(downlink control information,DCI)或者无线资源控制(radio resource control,RRC)消息,DCI包括第一指示,RRC消息包括第一指示。例如,在NR标准中可以增加一个新的RRC配置参数用于发送第一指示,本发明中将该RRC配置参数命名为UL-DMRS-port-extension(上行链路解调参考信号端口扩展);当UL-DMRS-port-extension=enabled(使能)时,终端对front-load DMRS和additional DMRS进行码分复用;当UL-DMRS-port-extension没有被配置或者UL-DMRS-port-extension=Disabled(不使能)时,终端不对front-load DMRS和additional DMRS进行码分复用,即按照现有NR标准的方式来执行。示例性的,当系统运行于终端特别多的场景(例如mMTC场景)的时候,网络设备可配置UL-DMRS-port-extension=enabled。
102、终端接收网络设备发送的是否将第一解调参考信号DMRS与第二DMRS进行码分复用的第一指示以及用于确定DMRS端口号的第二指示。
103、终端根据第一指示和第二指示确定DMRS端口号。
终端根据第一指示、第二指示以及数据流的数量确定DMRS端口号。示例性的目前,在NR标准中3GPP的信道编码和复用(Multiplexing and channel coding)系列TS38.212中对于Configuration type 1使用4比特定义了表(Table)7.3.1.1.2-12/13/14/15。具体的,确定DMRS端口号前,需要根据PUSCH-tp(PUSCH-transform precoding,PUSCH预编码),UL-DMRS-config-type,UL-DMRS-max-len以及rank等参数取值去确定相应的表格,其中,PUSCH-tp=Disabled表示上行传输使用CP-OFDM的波形,PUSCH-tp=Enable表示上行传输使用DFT-S-OFDM(DFT-spread(传播)-OFDM)的波形;UL-DMRS-config-type表示上行所使用的DMRS配置类型(如:UL-DMRS-config-type=1,表示configuration type1、UL-DMRS-config-type=2,表示configuration type2等);UL-DMRS-max-len表示上行DMRS的最大符号数;rank表示数据流的数量,其可以通过DCI中的SRS(Sounding Reference Signal,探测参考信号)资源标识字段或者precoding information&number of layers字段来确定。在一个可能的实施方式中,上行DMRS的配置可以和下行DMRS的配置相同,此时,上述UL-DMRS-config-type和UL-DMRS-max-len也可以分别替换成DL-DMRS-config-type和DL-DMRS-max-len,其中,DL-DMRS-config-type表示下行所使用的DMRS配置类型,DL-DMRS-max-len表示下行DMRS的最大符号数。在本申请中的,还需要进一步的结合UL-DMRS-port-extension的取值选取表格,因此 在本申请中根据UL-DMRS-port-extension的取值根据Table7.3.1.1.2-12/13/14/15扩展出Table7.3.1.1.2-12A/13A/14A/15A;示例性的,对于configuration type1本申请的实施例提供了PUSCH-tp=Disabled,DL-DMRS-config-type=1,UL-DMRS-max-len=2,rank=1,UL-DMRS-port-extension=Disabled时的Table7.3.1.1.2-12,如下表所示:
Table7.3.1.1.2-12
Figure PCTCN2019074826-appb-000001
示例性的本申请的实施例提供了PUSCH-tp=Disabled,DL-DMRS-config-type=1,UL-DMRS-max-len=2,rank=1,UL-DMRS-port-extension=Enabled时的Table7.3.1.1.2-12A,如下表所示:
Table7.3.1.1.2-12A
Value Number of DMRS CDM group(s)without DMRS Number of front-load
0 2 0 2
1 2 1 2
2 2 2 2
3 2 3 2
4 2 4 2
5 2 5 2
6 2 6 2
7 2 7 2
8 2 8 2
9 2 9 2
10 2 10 2
11 2 11 2
12 2 12 2
13 2 13 2
14 2 14 2
15 2 15 2
其中,第一列Value为RRC或者DCI中的Antenna Ports字段的取值,根据该取值可以查表得到DMRS端口号;若UL-DMRS-port-extension=enabled,终端会根据表格Table7.3.1.1.2-12A,找到Value对应的DMRS端口号和Number of DMRS CDM(code division multiplexing,码分多路复用)group(s)without data,Number of front-load symbls等信息,其中Number of DMRS CDM group(s)without data表示没有映射数据的DMRS CDM组的个数,可以取值为1或2,对于configuration type 1来说,DMRS CDM group(s)的总个数为2,当Number of DMRS CDM group(s)without data为1,表示还有1个DMRS CDM组的时频资源位置可以用来传输数据。对于本申请,若UL-DMRS-port-extension=disable,该表格参考现有NR协议:3GPP的信道编码和复用(Multiplexing and channel coding)系列TS38.212,在Table7.3.1.1.2-12表中,Number of DMRS CDM group(s)without data可以为1也可以为2。若UL-DMRS-port-extension=enable,则需要对原有的表格进行修改如表Table7.3.1.1.2-12A所示,即增加相应的DMRS端口号,为了不增加控制信息的开销,Number of DMRS CDM group(s)without data都取值为最大的CDM group数量(例如,对于configuration type 1而言,最大的CDM group数量为2,对于configuration type 2而言,最大的CDM group数量为3),即对于终端来说,不能使用DMRS的时频资源来发送上行数据。因此若根据第一指示确定将第一DMRS和第二DMRS进行码分复用时,终端确定不使用DMRS的时频资源发送上行数据。
在另一种示例中,对于configuration 2使用4比特定义了表(Table)7.3.1.1.2-20/21/22/23本申请的实施例提供了PUSCH-tp=disabled,DL-DMRS-config-type=2,UL-DMRS-max-len=2,rank=1,UL-DMRS-port-extension=disabled时的Table7.3.1.1.2-20,如下表所示:
Table7.3.1.1.2-20
Figure PCTCN2019074826-appb-000002
示例性的本申请的实施例提供了PUSCH-tp=disabled,DL-DMRS-config-type=2,UL-DMRS-max-len=2,rank=1,UL-DMRS-port-extension=enabled时的Table7.3.1.1.2-20A,如下表所示:
Table7.3.1.1.2-20A
Figure PCTCN2019074826-appb-000003
Table7.3.1.1.2-12/12A、Table7.3.1.1.2-20/20A仅是以rank=1为例进行说明,当然rank取其他值时,例如,在NR标准中在Configuration type 1下,rank=2、3、4时还有其他Table7.3.1.1.2-13\14\15;按照上述方式对Table7.3.1.1.2-12修改得到Table7.3.1.1.2-12A的方式修改Table7.3.1.1.2-13\14\15中的Number of DMRS CDM group(s)without data、DMRS port(s)以及Number of front-load symbols可以得到Table7.3.1.1.2-13A\14A\15A,其他各表诸如在Configuration type 2下 将Table7.3.1.1.2-21\22\23扩展为Table7.3.1.1.2-21A\22A\23A的扩展方式与上述类似,不再赘述。
104、若终端根据第一指示确定将第一DMRS与第二DMRS进行码分复用,则根据DMRS端口号,获取用于生成DMRS序列的参数。
用于生成DMRS序列的参数包括第一正交码,示例性的第一正交码可以为两个符号长度,第一正交码中的一个元素用于生成第一DMRS序列,第二正交码中的另一个元素用于生成第二DMRS序列;此外,若第一DMRS的符号数为2;用于生成DMRS序列的参数还包括第二正交码,第二正交码中的两个元素均用于生成第一DMRS序列,以及第二正交码中的两个元素均用于生成第二DMRS序列;第二正交码包括时域正交码或频域正交码。
105、终端根据用于生成DMRS序列的参数生成第一DMRS序列和第二DMRS序列;将第一DMRS序列和第二DMRS序列映射到相应的时频资源生成导频信号。
举例说明:当front-load DMRS符号数为1,UL-DMRS-port-extension=enabled,网络设备会给终端分配一个正交码,该正交码与DMRS端口号相关联,因此根据DMRS端口号可以通过查表方式获取网络设备给终端分配的正交码,该正交码的每个元素分别与front-load DMRS和additional DMRS相乘生成第一DMRS序列和第二DMRS序列。例如,该正交码为(+1,+1)或(+1,-1)。若终端被分配的正交码为(+1,+1),则front-loaeded DMRS和additional DMRS都乘以1,即不变。若终端设备被分配的正交码为(+1,-1),则front-loaeded DMRS乘以1,additional DMRS都乘以-1。
当然,若front-load DMRS的符号数为2;其中,终端具体根据如下公式生成DMRS序列:
Figure PCTCN2019074826-appb-000004
其中,对于双符号的DMRS配置,l'可以为0或1,l'为0表示生成DMRS中的第1个符号,l'为1表示生产DMRS中的第2个符号;对于单符号的DMRS配置,l'为0;k'可以为0和1,k'为0表示在频域进行码分复用的两个复数符号中的第1个复数符号;k'为1表示在频域进行码分复用的两个复数符号中的第2个复数符号;w f(k′)为频域正交码,例如CS/FD-OCC;w t(l′)为时域正交码,例如TD-OCC;
Figure PCTCN2019074826-appb-000005
为时域正交码;k为子载波序号;l为符号所占的序号,
Figure PCTCN2019074826-appb-000006
为原始DMRS序列,例如伪随机序列或者Zadoff-Chu序列。上述参数是跟DMRS端口号绑定的,根据DMRS端口号p j查表可以获得该DMRS端口号对应的用于生成DMRS序列的上述参数。
因此,基于上述公式,在TS 38.211中,PUSCH DMRS configuration type 1的参数表6.4.1.1.3-1扩展为如下的表6.4.1.1.3-1A(其中扩展部分为
Figure PCTCN2019074826-appb-000007
其对应上述步骤104中的第一正交码):
Table 6.4.1.1.3-1A
Figure PCTCN2019074826-appb-000008
其中,Table 6.4.1.1.3-4示出了,additional DMRS的符号位置,如下表所示,position of last PUSCH symbol指PUSCH最后一个符号的位置,下表示出了PUSCH mapping type A(映射类型A)或mapping typeB(映射类型B)时,若additional DMRS包含0、1、2、3个符号时,符号的位置,其中l 0指符号位置可能为2、3。
Table 6.4.1.1.3-4
Figure PCTCN2019074826-appb-000009
PUSCH DMRS Configuration type 2的参数表6.4.1.1.3-2扩展为如下的表6.4.1.1.3-2A(其中扩展部分为
Figure PCTCN2019074826-appb-000010
其对应上述步骤104中的第一正交码):
Table 6.4.1.1.3-2A
Figure PCTCN2019074826-appb-000011
参照表Table 6.4.1.1.3-1,当front-load DMRS符号数为2,网络设备会给终端先分配一个正交码,以w t(l′)为例,该正交码w t(l′)与DMRS端口号p相关联,因此根据DMRS端口号可以通过查表方式获取网络设备给终端分配的正交码w t(l′),参照图9、图10所示,其中图9示出了configuration type 1中生成front-load DMRS序列和additional DMRS序列的示意图;其中图10示出了configuration type 2中生成front-load DMRS序列和additional DMRS序列的示意图;该正交码w t(l′)的每个元素分别与front-load DMRS的每个符号相乘,例如,该正交码w t(l′)为(+1,+1)或(+1, -1),具体根据DMRS端口号确定。若终端被分配的正交码为(+1,+1),则front-load DMRS的两个符号都乘以1,即不变。若终端被分配的正交码为(+1,-1),则front-load DMRS中第1个符号乘以1,第2个符号乘以-1。additional DMRS与front-load DMRS的处理方式类似。此外,分配正交码w f(k′)时,与w t(l′)的处理方式类似,只是w t(l′)用于时域上的正交处理,w f(k′)用于频域上的正交处理。当UL-DMRS-port-extension=enabled,网络设备还会给终端设备分配另一正交码
Figure PCTCN2019074826-appb-000012
该正交码
Figure PCTCN2019074826-appb-000013
与DMRS端口号p相关联,因此根据DMRS端口号可以通过查表方式获取网络设备给终端分配的正交码
Figure PCTCN2019074826-appb-000014
该正交码
Figure PCTCN2019074826-appb-000015
的每个元素分别与front-load DMRS和additional DMRS相乘,例如,该正交码为(+1,+1)或(+1,-1)。若终端设备被分配的正交码为(+1,+1),则front-loaeded DMRS和additional DMRS都乘以1,即不变。若终端设备被分配的正交码为(+1,-1),则front-loaeded DMRS乘以1,additional DMRS都乘以-1,从而得到front-load DMRS序列和additional DMRS序列。网络设备给终端分配正交码的方式可以有很多种,例如,网络设备可以给终端分配某个DMRS端口号,端口号与上述的正交码相关联;网络设备也可以直接给终端分配该正交码的序号。
由于上述实施例中,进一步将第一DMRS与第二DMRS进行码分复用,因此扩展了导频信号的数量,并且可以支持更多的DMRS端口数量。此外,由于通过正交码将第一DMRS与第二DMRS进行码分复用,因此可以实现不同的DMRS序列对应的导频信号能够相互正交,避免了导频信号之间的干扰,保证了网络设备对用户检测的准确性和信道估计性能。
需要说明的是,上述实施例中各个表格的数值仅仅是示例,不对本发明有任何限制。可以理解的是,表格中的数值还可以调整成其它值,本申请不做限定。
上述主要从方法的角度对本申请实施例提供的方案进行了介绍。为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对导频信号生成装置,或者,导频信号接收装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
如图11所示,为本申请实施例提供的一种导频信号生成装置的结构示意图。图11所示的导频信号生成装置可以用于执行上文提供的任一种导频信号生成方法中相应终端执行的步骤。该导频信号生成装置110可以包括:接收模块111和处理模块112。其中,接收模块111,用于接收网络设备发送的是否将第一解调参考信号DMRS与第二DMRS进行码分复用的第一指示以及用于确定DMRS端口号的第二指示,其中,第一DMRS 所在的符号和第二DMRS所在的符号不相邻。处理模块112,用于根据所述接收模块接收的所述第一指示和所述第二指示确定DMRS端口号;处理模块112,还用于若根据所述第一指示确定将所述第一DMRS与所述第二DMRS进行码分复用,则根据所述DMRS端口号,获取用于生成DMRS序列的参数,所述用于生成DMRS序列的参数包括第一正交码,所述第一正交码中的一个元素用于生成第一DMRS序列,所述第二正交码中的一个元素用于生成第二DMRS序列;处理模块112,还用于根据所述用于生成DMRS序列的参数生成第一DMRS序列和第二DMRS序列;将所述第一DMRS序列和第二DMRS序列映射到相应的时频资源生成导频信号。
本实施例中相关内容的解释可参考上述方法实施例,此处不再赘述。作为一个示例,结合图2所示的导频信号生成装置,上述接收模块111可以对应图2中的通信接口22;处理模块112可以对应图2中的处理器21、25。
如图12所示,为本申请实施例提供的一种导频信号接收装置120的结构示意图。图12所示的导频信号接收装置120可以用于执行上文提供的任一种导频信号生成方法中相应网络设备执行的步骤。该导频信号接收装置120可以包括:发送模块121和接收模块122。其中,发送模块121,用于向终端发送是否将第一解调参考信号DMRS与第二DMRS进行码分复用的第一指示以及用于确定DMRS端口号的第二指示,其中,第一DMRS所在的符号和所述第二DMRS所在的符号不相邻。接收模块122,用于接收终端设备根据第一指示和第二指示生成的导频信号。
本实施例中相关内容的解释可参考上述方法实施例,此处不再赘述。作为一个示例,结合图3所示的导频信号接收装置,上述发送模块121和接收模块122可以对应图3中的通信接口32。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到 多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种导频信号生成方法,其特征在于,包括:
    终端接收网络设备发送的是否将第一解调参考信号DMRS与第二DMRS进行码分复用的第一指示以及用于确定DMRS端口号的第二指示,其中,所述第一DMRS所在的符号和所述第二DMRS所在的符号不相邻;
    所述终端根据所述第一指示和所述第二指示确定DMRS端口号;
    若所述终端根据所述第一指示确定将所述第一DMRS与所述第二DMRS进行码分复用,则根据所述DMRS端口号,获取用于生成DMRS序列的参数,所述用于生成DMRS序列的参数包括第一正交码,所述第一正交码中的一个元素用于生成第一DMRS序列,所述第二正交码中的一个元素用于生成第二DMRS序列;
    所述终端根据所述用于生成DMRS序列的参数生成所述第一DMRS序列和所述第二DMRS序列;将所述第一DMRS序列和第二DMRS序列映射到相应的时频资源生成导频信号。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一DMRS的符号数为2;所述用于生成DMRS序列的参数还包括第二正交码,所述第二正交码中的两个元素均用于生成所述第一DMRS序列,以及所述第二正交码中的两个元素均用于生成所述第二DMRS序列。
  3. 根据权利要求2所述的方法,其特征在于,所述第二正交码包括时域正交码或频域正交码。
  4. 根据权利要求1所述的方法,其特征在于,所述终端根据所述第一指示和所述第二指示确定DMRS端口号包括:
    所述终端根据所述第一指示、所述第二指示以及数据流的数量确定DMRS端口号。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:所述终端接收所述网络设备发送的下行控制信息DCI或者无线资源控制RRC消息,所述DCI包括第一指示,所述RRC消息包括所述第一指示。
  6. 一种导频信号接收方法,其特征在于,包括:
    网络设备向终端发送是否将第一解调参考信号DMRS与第二DMRS进行码分复用的第一指示以及用于确定DMRS端口号的第二指示,其中,所述第一DMRS所在的符号和所述第二DMRS所在的符号不相邻;
    所述网络设备接收所述终端设备根据所述第一指示和所述第二指示生成的导频信号。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:所述网络设备向终端发送下行控制信息DCI或者无线资源控制RRC消息,所述DCI包括第一指示,所述RRC消息包括所述第一指示。
  8. 一种导频信号生成装置,其特征在于,包括:
    接收模块,用于接收网络设备发送的是否将第一解调参考信号DMRS与第二DMRS进行码分复用的第一指示以及用于确定DMRS端口号的第二指示,其中,所述第一DMRS所在的符号和所述第二DMRS所在的符号不相邻;
    处理模块,用于根据所述接收模块接收的所述第一指示和所述第二指示确定DMRS 端口号;
    所述处理模块,还用于若根据所述第一指示确定将所述第一DMRS与所述第二DMRS进行码分复用,则根据所述DMRS端口号,获取用于生成DMRS序列的参数,所述用于生成DMRS序列的参数包括第一正交码,所述第一正交码中的一个元素用于生成第一DMRS序列,所述第二正交码中的一个元素用于生成第二DMRS序列;
    所述处理模块,还用于根据所述用于生成DMRS序列的参数生成第一DMRS序列和第二DMRS序列;将所述第一DMRS序列和第二DMRS序列映射到相应的时频资源生成导频信号。
  9. 根据权利要求8所述的装置,其特征在于,
    所述第一DMRS的符号数为2;所述用于生成DMRS序列的参数还包括第二正交码,所述第二正交码中的两个元素均用于生成所述第一DMRS序列。
  10. 根据权利要求9所述的装置,其特征在于,所述第二正交码包括时域正交码或频域正交码。
  11. 根据权利要求8所述的装置,其特征在于,所述处理模块具体用于根据数据流的数量以及所述接收单元接收的所述第一指示和所述第二指示确定DMRS端口号。
  12. 根据权利要求8-11任一项所述的装置,其特征在于,所述接收模块还用于接收网络设备发送的下行控制信息DCI或者无线资源控制RRC消息,所述DCI包括第一指示,所述RRC消息包括所述第一指示。
  13. 一种导频信号接收装置,其特征在于,包括:
    发送模块,用于向终端发送是否将第一解调参考信号DMRS与第二DMRS进行码分复用的第一指示以及用于确定DMRS端口号的第二指示,其中,所述第一DMRS所在的符号和所述第二DMRS所在的符号不相邻;
    接收模块,用于接收所述终端设备根据所述第一指示和所述第二指示生成的导频信号。
  14. 根据权利要求13所述的装置,其特征在于,所述发送模块具体用于向终端发送下行控制信息DCI或者无线资源控制RRC消息,所述DCI包括第一指示,所述RRC消息包括所述第一指示。
  15. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在计算机上运行时,使得如权利要求1至7任一项所述的方法被执行。
PCT/CN2019/074826 2018-02-12 2019-02-12 一种导频信号生成方法及装置 WO2019154425A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19751532.3A EP3739800A1 (en) 2018-02-12 2019-02-12 Pilot signal generation method and apparatus
US16/990,412 US20200374097A1 (en) 2018-02-12 2020-08-11 Pilot signal generation method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810147401.8 2018-02-12
CN201810147401.8A CN110166194B (zh) 2018-02-12 2018-02-12 一种导频信号生成方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/990,412 Continuation US20200374097A1 (en) 2018-02-12 2020-08-11 Pilot signal generation method and apparatus

Publications (1)

Publication Number Publication Date
WO2019154425A1 true WO2019154425A1 (zh) 2019-08-15

Family

ID=67547865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074826 WO2019154425A1 (zh) 2018-02-12 2019-02-12 一种导频信号生成方法及装置

Country Status (4)

Country Link
US (1) US20200374097A1 (zh)
EP (1) EP3739800A1 (zh)
CN (1) CN110166194B (zh)
WO (1) WO2019154425A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114079555A (zh) * 2020-08-14 2022-02-22 华为技术有限公司 信号传输方法和装置
EP4191928A4 (en) * 2020-08-14 2024-02-14 Huawei Tech Co Ltd SIGNAL TRANSMISSION METHOD AND APPARATUS

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112702149B (zh) * 2019-10-22 2022-06-10 华为技术有限公司 一种配置导频序列的方法及装置
EP4199405A4 (en) * 2020-08-27 2023-10-11 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND APPARATUS
US20230327915A1 (en) * 2020-09-11 2023-10-12 Beijing Xiaomi Mobile Software Co., Ltd. Channel estimation method and apparatus, communication device, and storage medium
US20220141675A1 (en) * 2020-11-05 2022-05-05 Qualcomm Incorporated Reference signal transmissions for multi-beam operation
CN113078970B (zh) * 2021-03-19 2022-06-14 展讯通信(上海)有限公司 隐藏节点的判断方法及装置、存储介质、终端
CN115913483A (zh) * 2021-08-19 2023-04-04 展讯通信(上海)有限公司 Dmrs发送、接收方法及装置、计算机可读存储介质
CN116390019A (zh) * 2021-12-31 2023-07-04 维沃移动通信有限公司 定位方法、装置及通信设备
WO2023161380A1 (en) * 2022-02-23 2023-08-31 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Enhancement of code-division multiplexing design for demodulation reference signals
WO2023186158A1 (zh) * 2022-04-02 2023-10-05 维沃移动通信有限公司 解调参考信号传输方法、装置、终端及网络侧设备
CN114884634A (zh) * 2022-04-29 2022-08-09 华为技术有限公司 一种通信方法、装置及设备
WO2024035428A1 (en) * 2022-08-10 2024-02-15 Apple Inc. Methods and apparatus to support more dmrs ports for cp-ofdm waveform
CN117811886A (zh) * 2022-09-30 2024-04-02 华为技术有限公司 一种信号传输的方法和通信装置
CN117811713A (zh) * 2022-10-01 2024-04-02 华为技术有限公司 一种通信方法、装置及设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170288835A1 (en) * 2014-09-24 2017-10-05 Lg Electronics Inc. Method for transmitting and receiving reference signal in wireless communication system and apparatus therefor
CN107306177A (zh) * 2016-04-22 2017-10-31 华为技术有限公司 传输数据的方法、用户设备和网络侧设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8774736B2 (en) * 2007-02-02 2014-07-08 Lg Electronics Inc. Antenna switching for data transmission in a communication system using a plurality of transmission antennas
CN102142918B (zh) * 2011-03-29 2015-04-08 电信科学技术研究院 一种导频序列的处理方法及设备
WO2014026320A1 (zh) * 2012-08-13 2014-02-20 华为技术有限公司 一种配置导频信号的方法、服务基站和用户设备
CN106559196B (zh) * 2015-09-25 2019-10-22 华为技术有限公司 一种导频分配的方法及装置
CN107040345B (zh) * 2016-02-03 2020-12-18 华为技术有限公司 传输导频信号的方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170288835A1 (en) * 2014-09-24 2017-10-05 Lg Electronics Inc. Method for transmitting and receiving reference signal in wireless communication system and apparatus therefor
CN107306177A (zh) * 2016-04-22 2017-10-31 华为技术有限公司 传输数据的方法、用户设备和网络侧设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ETRI: "Discussion on downlink DMRS design", 3GPP TSG RAN WG1 MEETING #89, RL-1708094, 19 May 2017 (2017-05-19), XP051273290 *
NOKIA: "On details of DL DM-RS for NR physical data channels", 3GPP TSG RAN WGI#88 BIS, RL-1705970, 7 April 2017 (2017-04-07), XP051244079 *
NTT: "Remaining details on DM-RS", 3GPP TSG RAN WG1 MEETING NR AD-HOC#3, R1-1716088, 21 September 2017 (2017-09-21), XP051339546 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114079555A (zh) * 2020-08-14 2022-02-22 华为技术有限公司 信号传输方法和装置
EP4191928A4 (en) * 2020-08-14 2024-02-14 Huawei Tech Co Ltd SIGNAL TRANSMISSION METHOD AND APPARATUS

Also Published As

Publication number Publication date
CN110166194B (zh) 2020-09-08
CN110166194A (zh) 2019-08-23
EP3739800A1 (en) 2020-11-18
US20200374097A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
WO2019154425A1 (zh) 一种导频信号生成方法及装置
CN108631934B (zh) 一种数据传输方法、终端设备及基站系统
US10411842B2 (en) Data transmission method and device
WO2018050094A1 (en) Short pucch in nr networks
US11757688B2 (en) Sequence-based signal processing method and apparatus
US20230141169A1 (en) Sequence-based signal processing method and apparatus
KR20230041054A (ko) 통신 방법 및 장치
WO2019001583A1 (zh) 一种同步方法及装置
CN112968756B (zh) 参考信号配置方法和装置
US20210328842A1 (en) Sequence-based signal processing method and apparatus
WO2020098594A1 (zh) 一种序列的生成及处理方法和装置
JP2020537838A (ja) 無線通信方法、ネットワーク装置及び端末装置
JP7117249B2 (ja) ユーザ端末及び無線通信方法
US20210195568A1 (en) Communication method and apparatus
WO2022205022A1 (zh) 用于传输参考信号的方法和装置
US11382077B2 (en) PUCCH transmission method, terminal and network-side device
WO2022041081A1 (zh) 通信方法及装置
WO2020063930A9 (zh) 一种参考信号的发送、接收方法及装置
WO2018196707A1 (zh) 发送和接收参考信号的方法、网络设备和终端设备
WO2018113045A1 (zh) 一种上行信息传输方法及设备
KR20200063954A (ko) 무선 통신 장치 및 이의 동작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019751532

Country of ref document: EP

Effective date: 20200813