WO2018196707A1 - 发送和接收参考信号的方法、网络设备和终端设备 - Google Patents

发送和接收参考信号的方法、网络设备和终端设备 Download PDF

Info

Publication number
WO2018196707A1
WO2018196707A1 PCT/CN2018/084044 CN2018084044W WO2018196707A1 WO 2018196707 A1 WO2018196707 A1 WO 2018196707A1 CN 2018084044 W CN2018084044 W CN 2018084044W WO 2018196707 A1 WO2018196707 A1 WO 2018196707A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
res
value
resource unit
network device
Prior art date
Application number
PCT/CN2018/084044
Other languages
English (en)
French (fr)
Inventor
武露
刘永
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201880027951.4A priority Critical patent/CN110832801A/zh
Priority to EP18791325.6A priority patent/EP3584983B1/en
Priority to CA3053862A priority patent/CA3053862C/en
Priority to KR1020197026357A priority patent/KR102282752B1/ko
Priority to BR112019017539-3A priority patent/BR112019017539A2/pt
Priority to JP2019551391A priority patent/JP7323452B2/ja
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21203596.8A priority patent/EP4009565B1/en
Publication of WO2018196707A1 publication Critical patent/WO2018196707A1/zh
Priority to US16/525,130 priority patent/US10700834B2/en
Priority to US16/900,516 priority patent/US11329782B2/en
Priority to US17/721,138 priority patent/US11784765B2/en
Priority to US18/453,066 priority patent/US20240056243A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0021Time-frequency-code in which codes are applied as a frequency-domain sequences, e.g. MC-CDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2691Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation involving interference determination or cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present application relates to the field of communications and, more particularly, to methods, network devices, and terminal devices for transmitting and receiving reference signals.
  • the resource configuration of the channel state information reference signal needs to be considered in consideration of the support for high-frequency wireless communication.
  • the high-frequency wireless communication system uses high-frequency spectrum resources, enabling high-speed short-distance transmission and supporting 5G capacity and transmission rate.
  • phase noise is much less sensitive to frequency than time; and, in order to overcome high path loss in high-band, the physical layer needs to use high-gain narrow-beam antennas to improve communication. Coverage of the link, in which the antenna may need to perform frequent beam switching.
  • the communication device to complete the measurement of the channel in a short time to reduce the influence of phase noise and the influence on the beam switching. Therefore, it is considered in the NR to arrange the CSI-RSs in the same symbol (for example, it may be an orthogonal frequency division multiplexing (OFDM) symbol).
  • OFDM orthogonal frequency division multiplexing
  • CSI-RSs of different antenna ports of the same network device can multiplex resources by code division, that is, code division multiplexing (CDM), for example, network.
  • CDM code division multiplexing
  • the device uses different orthogonal cover codes (OCC) to distinguish different antenna ports.
  • OCC orthogonal cover codes
  • the frequency domain CDM can be used to distinguish resources of different antenna ports, for example, the frequency domain CDM2, the frequency domain CDM4, and the like.
  • the OCC codes used may be the same.
  • the two CSI-RSs use different identifiers.
  • the correlation between the two CSI-RSs may still be strong and may cause interference with each other.
  • the present application provides a method, a network device, and a terminal device for transmitting and receiving a reference signal, which can reduce correlation between CSI-RSs and reduce interference generated between each other.
  • a method of transmitting a reference signal comprising:
  • the network device determines a plurality of resource particles RE for carrying the first CSI-RS, where the multiple REs are distributed in multiple resource units,
  • the value of the first CSI-RS carried on the at least two REs is different, and the value of the first CSI-RS carried on the at least two REs is different in each resource unit.
  • the value of the first CSI-RS is loaded on multiple REs in each resource unit by using a first multiplexing code;
  • the network device sends the first CSI-RS to the terminal device by using the multiple REs.
  • the first CSI-RS may be a first pilot sequence that is pre-generated from the network device, or the first CSI-RS is part or all of the sequence elements in the first pilot sequence.
  • each sequence element in the pilot sequence may be referred to as a value of the CSI-RS, and the number of sequence elements in the pilot sequence may be referred to as the sequence length of the pilot sequence.
  • the number of different CSI-RS values per CSI-RS per symbol in each resource unit is called CSI-RS per antenna port in each resource unit. The length of the sequence on the symbol. It can be understood that each CSI-RS value corresponds to one sequence element in the pilot sequence, and different CSI-RS values correspond to different sequence elements in the pilot sequence.
  • the values of CSI-RSs carried on multiple REs in the same resource unit and on the same symbol are the same, which is equivalent to the CSI-RS of each antenna port in one resource unit, one symbol.
  • the symbol length on the top is 1.
  • the CSI-RS of each antenna port has a sequence length of at least 2 on each symbol in each resource unit, which increases the sequence length and reduces the sequence compared to the prior art. The correlation between them. Therefore, when the two network devices use the same time-frequency resource and the same multiplex code to transmit the CSI-RS, the CSI-RS provided by the embodiment of the present invention is used on the same symbol in each resource unit.
  • the sequence length is increased, the correlation between the sequences is reduced, and the interference between the two CSI-RSs is reduced, which is beneficial to channel estimation and is beneficial to improving the quality of the received signal.
  • the method before the determining, by the network device, the multiple REs that are used to carry the first CSI-RS, the method further includes:
  • the network device generates a first pilot sequence, and the value of the first CSI-RS is taken from the first pilot sequence.
  • the first CSI-RS is generated by some or all of the sequence elements in the first pilot sequence.
  • the first pilot sequence may be generated according to the method for generating a pilot sequence in the prior art, or may be generated according to the method provided by the embodiment of the present invention.
  • the network device generates a first pilot sequence according to the first parameter, and then maps some or all of the sequence elements in the first pilot sequence to multiple REs to generate a first CSI-RS.
  • the plurality of REs are distributed in a plurality of resource units. In each resource unit, multiple REs for carrying the first CSI-RS are located on multiple subcarriers of the same symbol, and values of the first CSI-RS carried on at least two REs in each resource unit different.
  • a method of receiving a reference signal including:
  • the terminal device receives, on a plurality of resource units, a signal sent by the network device, where the signal includes the first CSI-RS;
  • a plurality of resource particles RE for carrying the first CSI-RS where the multiple REs are distributed in multiple resource units, where, in each resource unit, A plurality of REs of a CSI-RS are on multiple subcarriers of the same symbol, and values of the first CSI-RSs carried on at least two REs are different, and the value of the first CSI-RS passes the first multiplexing code.
  • the terminal device acquires the first CSI-RS on the multiple REs.
  • the first CSI-RS may be a first pilot sequence that is pre-generated from the network device, or the first CSI-RS is a part or all of the sequence elements in the first pilot sequence.
  • each sequence element in the pilot sequence may be referred to as a value of the CSI-RS, and the number of sequence elements in the pilot sequence may be referred to as the sequence length of the pilot sequence.
  • the number of different CSI-RS values per CSI-RS per symbol in each resource unit is called CSI-RS per antenna port in each resource unit. The length of the sequence on the symbol. It can be understood that each value corresponds to one sequence element in the pilot sequence, and different CSI-RS values correspond to different sequence elements in the pilot sequence.
  • the values of CSI-RSs carried on multiple REs in the same resource unit and on the same symbol are the same, which is equivalent to the CSI-RS of each antenna port in one resource unit, one symbol.
  • the symbol length on the top is 1.
  • the CSI-RS of each antenna port has a sequence length of at least 2 on each symbol in each resource unit, which increases the sequence length and reduces the sequence compared to the prior art. The correlation between them. Therefore, when the two network devices use the same time-frequency resource and the same multiplex code to transmit the CSI-RS, the CSI-RS provided by the embodiment of the present invention is used on the same symbol in each resource unit.
  • the sequence length is increased, the correlation between the sequences is reduced, and the interference between the two CSI-RSs is reduced, which is beneficial to channel estimation and is beneficial to improving the quality of the received signal.
  • a network device comprising various modules for performing the method of transmitting a reference signal in the first aspect or any of the possible implementations of the first aspect.
  • a terminal device comprising various modules for performing the method of receiving a reference signal in any of the possible implementations of the second aspect or the second aspect.
  • a network device including: a transceiver, a processor, and a memory.
  • the processor is configured to control a transceiver transceiver signal for storing a computer program for calling and running the computer program from the memory, such that the network device performs the first aspect or any of the possible implementations of the first aspect The method in .
  • a terminal device including: a transceiver, a processor, and a memory.
  • the processor is configured to control a transceiver transceiver signal for storing a computer program, the processor for calling and running the computer program from the memory, such that the terminal device performs any of the second aspect or the second aspect The method in .
  • a computer program product comprising: computer program code, when the computer program code is executed by a network device, causing the network device to perform the first aspect or the first aspect A method in a possible implementation.
  • a computer program product comprising: computer program code, when the computer program code is executed by a terminal device, causing the terminal device to perform the second aspect or the second aspect A method in a possible implementation.
  • a ninth aspect a computer readable medium storing program code, the program code comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect .
  • a tenth aspect a computer readable medium storing program code, the program code comprising instructions for performing the method of the second aspect or any of the possible implementations of the second aspect .
  • the values of the first CSI-RSs carried on the multiple REs in each resource unit are different from each other.
  • the second CSI-RS is carried on the multiple REs, and the values of the second CSI-RSs carried on the at least two REs are different, and the value of the second CSI-RS is transmitted through the second multiplexing.
  • a code is loaded on the plurality of REs.
  • the value of the CSI-RS may be determined from the pre-generated first pilot sequence, mapped to the time-frequency resource, and then loaded by the multiplexing code to distinguish the antenna port.
  • the multiple CSI-RSs are sent together through time-frequency resources.
  • the plurality of CSI-RSs include a first CSI-RS and a second CSI-RS, where the first CSI-RS and the second CSI-RS correspond to different antenna ports, and may be multiplexed by code division.
  • the first pilot sequence is calculated by the following formula:
  • a is the first parameter, Indicates the maximum number of resource units included in the downlink channel. Indicates the value of the bth CSI-RS on the lth symbol in the nth s time slot.
  • c is a PN sequence, which can be generated by a PN sequence generator (for example, a Gold sequence generator) according to an initialization sequence c init .
  • a PN sequence generator for example, a Gold sequence generator
  • the method has great similarity with the generation formula of the PN sequence defined in the existing Long Term Evolution (LTE) protocol. Therefore, the compatibility with the prior art is good, and the sequence length is increased. The effect of reducing the correlation between pilot sequences.
  • LTE Long Term Evolution
  • the first pilot sequence is calculated by the following formula:
  • a is the first parameter, Indicates the maximum number of resource units included in the downlink channel. Indicates the value of the nth CSI-RS on the mth resource unit on the lth symbol in the nth s time slot.
  • the first pilot sequence is calculated by the following formula:
  • the formula more dimensionally represents the RE mapped by each sequence element.
  • the value of the first parameter a includes at least one of the following:
  • Orthogonal code length used by one CSI-RS port in frequency domain code division multiplexing or
  • the number of REs occupied by a CSI-RS port within one symbol on a resource unit is the number of REs occupied by a CSI-RS port within one symbol on a resource unit.
  • the first parameter a has a value of at least one of ⁇ 2, 4, 8, 12 ⁇ .
  • the first parameter a can be understood as the maximum value of the number of REs that the first CSI-RS can occupy in each resource unit, that is, the first CSI-RS is the same in each resource unit.
  • the number of subcarriers occupied on one symbol is at most a. It should be noted, however, that the number of subcarriers occupied by the first CSI-RS on the same symbol per resource unit does not represent the sequence length of the first CSI-RS in each resource unit.
  • the sequence length of the first CSI-RS is defined according to the number of different sequence elements in each resource unit.
  • the first parameter a is pre-configured.
  • the first parameter a can be statically configured.
  • the first parameter a is determined by the network device and sent to the terminal device.
  • the first parameter a can be semi-static or dynamically configured.
  • the present application can reduce the correlation between sequences by increasing the sequence length of each antenna port on each symbol in each resource unit, thereby reducing interference between pilot signals.
  • FIG. 1 is a schematic diagram of a communication system suitable for a method of transmitting and receiving reference signals in accordance with an embodiment of the present invention.
  • FIG. 2 is another schematic diagram of a communication system suitable for use in a method of transmitting and receiving reference signals in accordance with an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method of transmitting and receiving a reference signal according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a pilot pattern provided by an embodiment of the present invention.
  • FIG. 5 is another schematic diagram of a pilot pattern provided by an embodiment of the present invention.
  • FIG. 6 is still another schematic diagram of a pilot pattern provided by an embodiment of the present invention.
  • FIG. 7 is still another schematic diagram of a pilot pattern provided by an embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of a network device according to an embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 10 is another schematic block diagram of a network device according to an embodiment of the present invention.
  • FIG. 11 is another schematic block diagram of a terminal device according to an embodiment of the present invention.
  • the CSI-RS in the LTE protocol is briefly introduced first.
  • CSI-RS In the advanced Long Term Evolution-Advanced (LTE-A) system, in order to support the multi-antenna technology, a low-density resource distribution CSI-RS is introduced from the Release 10 to replace the original cell reference signal (cell).
  • the -specific reference signal (CRS) ensures that the network device can perform multi-user scheduling according to the CSI reported by the terminal device.
  • the terminal device uses the CSI-RS for channel estimation.
  • the terminal device In other transmission modes before TM9, the terminal device still uses CRS for channel estimation. It can be understood that whether CSI-RS or CRS, or other reference signals used for channel estimation defined in future protocols, the specific process by which the terminal device performs channel estimation according to the received reference signals may be similar. For ease of understanding and description, the embodiments of the present invention are only described in detail by taking CSI-RS as an example.
  • the reference signal can usually adopt a pseudo-noise (PN) sequence.
  • PN pseudo-noise
  • CSI-RS can be generated from a PN sequence.
  • the CSI-RS can be obtained by the PN sequence calculated by the following formula:
  • n' s n s . among them, Representing the mth sequence element on the lth symbol in n s time slots, The form presented is a complex form of the PN sequence obtained by modulation.
  • the symbol may be an OFDM symbol, or may be a symbol for indicating a time unit defined in a future protocol, which is not specifically limited in this embodiment of the present invention.
  • c is a PN sequence that can be generated by a PN sequence generator (eg, a gold sequence generator) based on the initialization sequence c init .
  • the PN sequence includes Sequence elements, each sequence element is a complex signal, and each sequence element can be called a value of CSI-RS. Sequence elements can be called sequence length
  • the network device may map some or all of the generated PN sequences to the RE according to a pre-defined pilot pattern and a mapping relationship between the sequence elements and the REs in the pilot sequence, and send the information to the RE through the channel.
  • Terminal Equipment The terminal device estimates the channel matrix according to the received CSI-RS and the CSI-RS generated by itself, so that the terminal device determines the precoding matrix according to the estimated channel matrix, and feeds back the CSI to the network device.
  • the same network device can distinguish different antenna ports by means of CDM, frequency division multiplexing (FDM), and time division multiplexing (TDM). Antenna port). If FDM or TDM is adopted, the frequency domain resources or time domain resources occupied by CSI-RSs of different antenna ports may be different. If CDM is used, the time-frequency resources occupied by CSI-RSs of different antenna ports may be the same, and different antenna ports are distinguished by multiplexing codes. In LTE, the CDM may include a frequency domain CDM and a time domain CDM. However, in the NR, it is supported to configure the CSI-RS in the same symbol, that is, the frequency domain CDM.
  • the antenna port may also be referred to as a CSI-RS port, or, more specifically, may be understood as a CSI-RS port that is not beamformed and precoded.
  • the CSI-RS is defined by a CSI-RS port, and each CSI-RS corresponds to one antenna port.
  • the CSI-RS as a reference signal for channel measurement is merely exemplary and should not be construed as limiting the embodiments of the present invention. The present application does not exclude the use of other names in existing or future protocols. Instead of CSI-RS to achieve its same function.
  • FIG. 1 is a schematic diagram of a communication system 100A suitable for use in a method of transmitting and receiving reference signals in accordance with an embodiment of the present invention.
  • the communication system 100A includes: a first network device 110, a second network device 120, a first terminal device 130, and a second terminal device 140.
  • the first network device 110 and the second network device 120 may include multiple antennas, which are transmitted using a multi-antenna technology and a terminal device (for example, the first terminal device 130 and/or the second terminal device 140 shown in FIG. 1). data.
  • the first network device 110 is the network device of the first cell
  • the first terminal device 130 is located in the first cell
  • the second network device 120 is the network device of the second cell
  • the second terminal device is located in the second cell.
  • the CSI-RS (for example, referred to as CSI-RS #1) sent by the first network device 110 to the first terminal device 130 and the CSI- sent by the second network device 120 to the second terminal device 140 are fed back to estimate the channel.
  • CSI-RS #1 for example, referred to as CSI-RS #1
  • Different types of RS for example, CSI-RS#2 can be used. To identify different CSI-RSs, that is, the values calculated by equation (1) are different.
  • the first network device 110 and the second network device 120 can transmit data with the terminal device by using multiple antenna technologies
  • the first network device 110 and the second network device 120 can transmit the CSI-RS through multiple antenna ports.
  • Different CSI-RSs can be distinguished between multiple antenna ports of the same network device by means of the above FDM, TDM or CDM.
  • each CSI-RS is in one resource unit (for example, a resource block (RB)
  • the number of REs occupied by a symbol in a resource block group (RBG) is the length of the orthogonal code used by the CDM.
  • the frequency domain CDM2 is represented in a resource unit and on a symbol. Take up 2 REs. According to the formula (1) above, it can be found that when the number of symbols is the same and the r values are the same, the values of the CSI-RSs carried by the two REs are the same. This is equivalent to the sequence length of the CSI-RS in a resource unit and a symbol. Even used by CSI-RS#1 and CSI-RS#2 Different, but other parameters (for example, OCC) are the same, and interference still occurs between CSI-RS#1 and CSI-RS#2.
  • the communication system 100B includes: a first network device 110, a second network device 120, and a first terminal device 130.
  • the first network device 110 and the second network device 120 may include multiple antennas, and the first terminal device 130 transmits data using multiple antenna technologies, and the first network device 110 and the second network device 120 may pass multiple points.
  • the method of coordination multiple point (CoMP) transmission and the first terminal device 130 transmit data.
  • the first network device 110 sends the CSI-RS #1 to the first terminal device 130
  • the second network device 120 sends the CSI-RS #2 to the first terminal device 130
  • the first network device 110 and the second network device 120 may Dynamic point selection (DPS) is performed according to the CSI fed back by the first terminal device 130.
  • the CSI-RS (for example, referred to as CSI-RS #1) sent by the first network device 110 to the first terminal device 130 and the CSI-RS sent by the second network device 120 to the first terminal device 130 (for example, Different between CSI-RS#2) To identify different CSI-RSs.
  • the number of REs occupied by a CSI-RS transmitted by each network device on one symbol in one resource unit is orthogonal to the CDM.
  • the value of the CSI-RS carried by the RE carrying the CSI-RS on the same symbol is the same, that is, the sequence length of the CSI-RS in one resource unit and one symbol is 1. Therefore, even if CSI-RS#1 and CSI-RS#2 are used Different, but other parameters (for example, antenna port, time-frequency resource, OCC) are the same, and interference still occurs between CSI-RS#1 and CSI-RS#2.
  • FIGS. 1 and 2 are simplified diagrams exemplified for ease of understanding, and more network devices and/or terminal devices may be included in the communication system, which are not shown in the drawings.
  • the present application provides a method for transmitting and receiving a reference signal, which can increase the sequence length of a pilot sequence corresponding to each port in one symbol, thereby reducing the correlation between sequences and reducing interference.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • 5G system can also be called a new generation wireless access technology (NR) system.
  • NR new generation wireless access technology
  • the present application describes various embodiments in connection with a network device.
  • the network device may be a Base Transceiver Station (BTS) in Global System for Mobile Communications (GSM) or Code Division Multiple Access (CDMA), or a base station (NodeB, NB) in Wideband Code Division Multiple Access (WCDMA). It may be an evolved base station (evolutional node B, eNB or eNodeB) in Long Term Evolution (LTE), or a relay station, an access point or a Radio Radio Unit (RRU), or an in-vehicle device, a wearable device, and the future.
  • the network side device in the 5G system such as a transmission point (TP), a transmission and reception point (TRP), a base station, a small base station device, and the like, are not specifically limited in this embodiment of the present invention.
  • a terminal device may also be called a user equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user. Agent or user device.
  • UE user equipment
  • an access terminal a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user.
  • Agent or user device may also be called a user equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user. Agent or user device.
  • the terminal device may be a station (station, ST) in a wireless local area network (WLAN), and may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, or a wireless local loop (wireless local Loop, WLL) station, personal digital assistant (PDA) device, handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, in-vehicle device, wearable device, and next-generation communication system,
  • PDA personal digital assistant
  • the terminal device in the 5G network or the terminal device in the public land mobile network (PLMN) network in the future is not limited in this embodiment of the present invention.
  • the numbers “first” and “second” are only used to distinguish different objects, for example, in order to distinguish different pilot sequences, different CSI-RSs, etc., and not to deal with The embodiments of the present invention constitute any limitation.
  • FIG. 3 shows a schematic flow diagram of a method 300 of transmitting and receiving reference signals in accordance with an embodiment of the present invention from the perspective of device interaction.
  • the method 300 shown below can be applied to a communication system that communicates over a wireless air interface, which can include at least two network devices and at least one terminal device.
  • the communication system may be the communication system 100A shown in FIG. 1, or the communication system 100B shown in FIG. 2.
  • the network device may be the first network device 110 or the second network device 120 shown in FIG. 1 or FIG. 2
  • the terminal device may be the first terminal device 130 or the second terminal device 140 shown in FIG. 1, or The first terminal device 130 shown in FIG.
  • the method for transmitting and receiving the reference signal provided by the embodiment of the present invention is described in detail by taking the CSI-RS as an example, but it should be understood that this should not be the embodiment of the present invention. To form any limitation, the method is equally applicable to other reference signals.
  • the downlink reference signal may typically employ a PN sequence, and in LTE, the PN sequence is defined by a Gold sequence.
  • the embodiment of the present invention will be described in detail by taking a PN sequence as an example. However, this should not be construed as limiting the embodiments of the present invention.
  • the present application does not exclude the possibility of using other sequences to generate downlink reference signals in future protocols, for example, a Zadoff-Chu (ZC) sequence or the like.
  • the method for transmitting and receiving the reference signal in the embodiment of the present invention is not limited to the downlink reference signal, and is also applicable to the uplink reference signal.
  • the method 300 includes:
  • the network device generates a first pilot sequence according to the first parameter.
  • the sequence length of the PN sequence used to generate the CSI-RS is not only related to Relatedly, it is also related to the first parameter a provided by an embodiment of the present invention.
  • the network device may generate a first pilot sequence according to the first parameter a.
  • the pilot sequence generated by the network device is recorded as the first pilot sequence
  • the pilot sequence generated by the terminal device involved in the following is recorded as the second pilot sequence.
  • the CSI-RS generated by the network device according to the first pilot sequence is recorded as the first CSI-RS
  • the CSI-RS generated by the terminal device according to the second pilot sequence is recorded as the third CSI-RS.
  • the value of the first parameter a includes at least one of the following:
  • the number of REs on a symbol within a resource unit is determined based on the definition of resource units in existing or future protocols.
  • the resource unit defined in the LTE protocol may be an RB, and the number of REs on one symbol in one RB may be 12.
  • the resource unit may be one RB or RBG in the LTE protocol, multiple RBs or RBGs, or a redefined resource composed of at least two REs.
  • RBG resource block diagram
  • an embodiment of the present invention will be described by taking one resource unit as an RB as an example, and the same or similar cases will be omitted for brevity in the following.
  • the orthogonal code length used by an antenna port in the frequency domain CDM may be determined according to the orthogonal code length of the CDM defined in the existing or future protocol. For example, in the LTE protocol, CDM2 and CDM4 are defined, so the value of a may be any value of ⁇ 2, 4 ⁇ ;
  • the specific value may be determined according to a pilot pattern.
  • the number of REs occupied by one antenna port in one symbol of one RB may be 2 when CDM4.
  • the density of the CSI-RS may be equal to 1RE/port/RB, and may be greater than 1RE/port/RB, and then one antenna port is within one symbol of one RB.
  • the number of occupied REs is equal to the frequency domain CDM value multiplied by the density, but it can be understood that the number of REs occupied by one antenna port in one symbol does not exceed the number of subcarriers of one RB (for example, the number of subcarriers in one RB is 12). ).
  • the value of a can be 2, 4, 8, or 12.
  • the value of the first parameter a may be at least one of ⁇ 2, 4, 8, 12 ⁇ .
  • first parameter a listed above are only exemplary descriptions, or may be possible values provided by the embodiments of the present invention, but this should not be construed as limiting the embodiments of the present invention. Any method of generating a pilot sequence by defining a first parameter a to increase the length of the sequence should fall within the scope of protection of the present application, and the present application does not exclude future protocols and define more of the first parameter a. The possibility of value.
  • the value of the first parameter a may be one or plural. It can be configured statically or semi-statically or dynamically.
  • the first parameter can be configured by at least two methods:
  • the first parameter a is pre-configured. Specifically, the value of the first parameter a may be specified by a protocol, and the parameter may be pre-configured for both the network device and the terminal device to generate a pilot sequence. In this case, the first parameter a can be considered to be statically configured.
  • the protocol may also specify a definition rule of the first parameter a, and the definition rules of the first parameter a are respectively configured in the network device and the terminal device, so that the network device and the terminal device determine the first parameter according to the same definition rule.
  • the protocol may define a mapping relationship between the first parameter and the CDM orthogonal code length. When the length of the CDM orthogonal code is determined, the corresponding first parameter a may be determined according to the mapping relationship. In this case, the first parameter a can be considered to be semi-statically configured.
  • Method 2 The network device determines the first parameter a and sends the first parameter a to the terminal device.
  • the network device may determine the first parameter a according to factors such as the orthogonal code length of the CDM, the CSI-RS density, and the like, and notify the terminal device by signaling.
  • the first parameter a can be semi-statically configured or dynamically configured.
  • the network device sends a radio resource control (RRC) message to the terminal device, where the first parameter a is carried in the RRC message.
  • RRC radio resource control
  • the network device sends a media access control (MAC) control element (CE) to the terminal device, where the MAC-CE carries the first parameter a.
  • MAC media access control
  • CE control element
  • the network device sends a physical downlink control channel (PDCCH) to the terminal device, where the PDCCH carries the first parameter a.
  • the first parameter may be carried in downlink control information (DCI) in the PDCCH.
  • DCI downlink control information
  • the first parameter a may be semi-statically configured or dynamically configured. In this case, the first parameter a may also be configured by the foregoing method.
  • the first parameter a can be carried by the RRC message, and then the first parameter a used in the current subframe is indicated by the DCI. It can be understood that the first parameter a currently used is the multiple first. Any of the parameters a.
  • the network device can generate a first pilot sequence according to the first parameter a.
  • the network device may generate the first pilot sequence by any one of the following methods:
  • the network device can generate a first pilot sequence according to the following formula:
  • sequence length of the first pilot sequence is N, and N is the first parameter a and The function. E.g, Wait, for the sake of brevity, here is no longer listed one by one. It should be understood that the above-listed forms of f() are merely exemplary and should not be construed as limiting the embodiments of the present invention. All the pilot sequence lengths N are determined according to the first parameter a such that the determined sequence length N is greater than Existing pilot sequence length The functions are all within the scope of this application.
  • the first pilot sequence is generated by a PN sequence, and the PN sequence can be obtained by:
  • the length of c is determined according to the sequence length N of the first pilot sequence, for example, may be twice the length N of the pilot sequence.
  • N CP indicates a cyclic prefix identifier.
  • the value in the LTE may be referred to, or may be reconfigured.
  • the process of the network device generating the first pilot sequence according to the above formula (2) is described in detail.
  • the first parameter a is the number of REs on a symbol within an RB.
  • b 0, 1, . . . , 1319.
  • a value of a traversal in the range [0, 1319] can get 1320 sequence elements, ie, Each value of b corresponds to a sequence element, and each sequence element can be understood as a value of CSI-RS.
  • the first parameter a is at least one of 2, 4, 8, or 12.
  • a value of a traversal can get 220 sequence elements, ie, Each value of b corresponds to a sequence element, and each sequence element can be understood as a value of CSI-RS.
  • the formula (2) in the first method has a large similarity with the generation formula of the PN sequence defined in the existing LTE protocol, and therefore, the compatibility with the prior art is good, and at the same time, the effect of increasing the sequence length is achieved. , reducing the correlation between pilot sequences.
  • the network device can generate a first pilot sequence according to the following formula:
  • the sequence length N of the first pilot sequence may be the same as the sequence length defined in the method 1. For brevity, no further details are provided herein.
  • the first pilot sequence is generated by a PN sequence, and the PN sequence can be obtained by:
  • the sequence element in each resource unit is more specifically defined.
  • the process of the network device generating the first pilot sequence according to formula (3) is described in detail.
  • the first parameter a is the number of REs on a symbol within an RB.
  • b 0, 1, . . . , 1319.
  • the value of m is That is, traversing within the range [0, 109]. Due to sequence length
  • the value of n is 0, 1, ..., a-1, that is, the value is traversed in the range of [0, 11]. That is to say, every time m takes a value, n traverses once in the range [0, 11].
  • each value of m corresponds to a resource unit.
  • each value of n corresponds to a sequence element in one RB.
  • the difference between the formula (3) in the second method and the formula (2) in the first method is that the RE mapped by each sequence element is defined more dimensionally.
  • the formulas for generating the first pilot sequence in Method 1 and Method 2 are different, but in fact, in the case where the first parameter is fixed, the sequence elements of the pilot sequence generated by Method 1 and Method 2 are Similarly, the sequence length of the pilot sequence is also the same.
  • the pilot sequence is obtained by different calculation methods.
  • the embodiment of the present invention does not exclude the possibility of generating the first pilot sequence by using other possible formulas, so that the obtained pilot sequence length is larger than the length of the pilot sequence in the prior art.
  • the network device determines a plurality of REs for carrying the first CSI-RS, where the value of the first CSI-RS is taken from the first pilot sequence.
  • the network device may send a CSI-RS to one or more terminal devices through multiple antenna ports for channel measurement.
  • the value of the CSI-RS may be determined from the generated first pilot sequence, mapped to the time-frequency resource, and then loaded by the multiplexing code to distinguish the antenna port, and finally passed.
  • the time-frequency resource sends the multiple CSI-RSs together.
  • the CSI-RS (for example, the first CSI-RS) sent by the network device through the first antenna port is used as an example to describe the specificity of the CSI-RS sent by the network device. The process, but this should not constitute any limitation to the embodiments of the present invention.
  • the -RS may include a CSI-RS of the second antenna port (eg, referred to as a second CSI-RS). It can be understood that the value of the first CSI-RS and the value of the second CSI-RS carried on the same RE are taken from the same sequence element in the first pilot sequence, that is, the first carried on the same RE. The value of the CSI-RS and the value of the second CSI-RS may be the same.
  • the first CSI-RS and the second CSI-RS having the same value may be multiplexed by the same time-frequency resource in a code division manner, and the first CSI-RS and the second CSI-RS may be sent to the same
  • the CSI-RS of a terminal device may also be a CSI-RS that is sent to different terminal devices, which is not specifically limited in this embodiment of the present invention.
  • the embodiment of the present invention will be described in detail by taking the process of transmitting the first CSI-RS by the network device as an example. It can be understood that the specific process for the network device to send the CSI-RS through different antenna ports is the same as the specific process for the network device to send the first CSI-RS.
  • the network device may determine the currently used pilot pattern according to the first parameter of the CSI-RS, and determine, according to the mapping relationship between the sequence element and the RE in the pilot pattern, that the first pilot is used to carry the first pilot.
  • the method for generating the first pilot sequence by the network device may be the method provided by the embodiment of the present invention in S310, and may also refer to the method for generating a pilot sequence in the prior art, and S310 is used as an optional step.
  • the embodiment of the present invention should not be limited to any one of the possible implementations of the present invention.
  • the mapping relationship between the sequence element and the RE may pass the mapping relationship between b and RE in S310, or the mapping relationship between m, n and RE. To reflect. For example, mapping the bth sequence element to one of the resource elements, or mapping the nth sequence element of the mth resource unit to one of the mth resource elements.
  • mapping relationship between the pilot pattern and the sequence element and the RE may be pre-configured, and the mapping relationship between the pilot element and the RE in the prior art may be determined to determine the mapping relationship.
  • the mapping relationship between the pilot pattern and the sequence element and the RE is not particularly limited.
  • multiple REs for carrying the first CSI-RS may be distributed in multiple resource units.
  • multiple REs for carrying the first CSI-RS are on multiple subcarriers of the same symbol; and, among multiple REs in the same resource unit, at least two REs
  • the value of the first CSI-RS is different, and the value of the first CSI-RS may be the first multiplex code (for the purpose of distinguishing, the multiplex code corresponding to the first antenna port is recorded as the first multiplex code ) Loaded on multiple REs within each resource unit.
  • the network device may select at least two different sequence elements from the first pilot sequence generated in S310, and map to the corresponding RE. Therefore, the sequence length of the first CSI-RS on each resource unit and each symbol is greater than or equal to 2.
  • the number of multiple subcarriers in which the multiple REs of the first CSI-RS are in the same symbol in each resource unit is the number of REs occupied by the first CSI-RS in each resource unit.
  • the number of multiple subcarriers in which multiple REs in the resource unit for carrying the first CSI-RS are in the same symbol may be any value in ⁇ 2, 4, 8, 12 ⁇ . That is to say, within each resource unit, the number of REs occupied by the first CSI-RS may be 2, 4, 8, or 12. It should be noted, however, that this does not mean that the sequence length of the first CSI-RS in each resource unit is 2, 4, 8, or 12.
  • the sequence length of the first CSI-RS is defined according to the number of different sequence elements in each resource unit. It should be understood that the multiple REs in each resource unit may be continuous or discontinuous in the frequency domain, which is not specifically limited in this embodiment of the present invention.
  • the values of the first CSI-RSs carried on the multiple REs in each resource unit are different from each other.
  • the value of the first CSI-RS carried by any two of the multiple REs in each resource unit is different.
  • the first CSI-RS occupies s in each resource unit (s ⁇ 2, s
  • the sequence length of the first CSI-RS in each resource unit is s.
  • the first CSI-RS occupies 12 REs in each RB (ie, an example of a resource unit), and the values of the first CSI-RSs carried on the 12 REs are different from each other,
  • the first CSI-RS fills 12 subcarriers within one symbol.
  • the network device takes 12 different values for b respectively (the specific value of b can be determined according to the mapping relationship between the predefined sequence elements and the RE), and 12 different sequences are obtained.
  • the element, or, corresponding to the formula (3) described above, the value of the network device for m can be determined according to the current RB number, and n values are traversed in the range [0, 11] to obtain 12 different values. Sequence element.
  • the network device maps the 12 sequence elements one by one to 12 subcarriers of the same symbol according to a predefined mapping relationship.
  • the first CSI-RS and other CSI-RSs eg, the second CSI-RS
  • the first CSI-RS occupies 2 REs in each RB, the values of the first CSI-RSs carried on the 2 REs are necessarily different, and the first CSI-RS is in one symbol. Occupies 2 subcarriers. It should be noted that the first CSI-RS occupies 2 REs in each RB, and does not mean that the first parameter a of the first pilot sequence has a value of 2, and the first parameter a can take a value of 2. It can take a natural number greater than 2.
  • the network device determines that the number of REs occupied by each CSI-RS corresponding to each antenna port in each RB (ie, an example of a resource unit) may be 2.
  • FIG. 4 and 5 are schematic diagrams showing pilot patterns provided by an embodiment of the present invention.
  • FIG. 4 and FIG. 5 show possible pilot patterns of CSI-RS when the number of antenna ports is 2.
  • the two REs for carrying the first CSI-RS may be distributed on the same symbol, for example, two REs carrying the first CSI-RS shown in the figure are located at symbol #5, and Two REs are located in subcarrier #10 and subcarrier #11.
  • FIG. 4 and FIG. 5 show possible pilot patterns of CSI-RS when the number of antenna ports is 2.
  • the two REs for carrying the first CSI-RS may be distributed on the same symbol, for example, two REs carrying the first CSI-RS shown in the figure are located at symbol #5, and Two REs are located in subcarrier #10 and subcarrier #11.
  • FIG. 4 and FIG. 5 show possible pilot patterns of CSI-RS when the number of antenna ports is 2.
  • the two REs for carrying the first CSI-RS may be distributed on the same symbol, for example, two REs carrying
  • the two REs for carrying the first CSI-RS may be distributed on the same symbol, such as symbol #5 shown in the figure, and the two REs are located in subcarrier #8 and subcarrier # 9; and so on, the two REs for carrying the first CSI-RS may be located on any two subcarriers in the same symbol, such as subcarrier #6 and subcarrier #7, subcarrier #4, and subcarrier #5, etc. Etc., not shown in the figure.
  • the CSI-RSs of the two antenna ports can be distinguished by multiplexing codes, that is, frequency domain CDM is implemented.
  • the values of the first CSI-RS carried by the two REs respectively correspond to different values of b in formula (2), or respectively corresponding to m and n in formula (3). Different values.
  • the network device takes two different values for b (the specific value of b can be determined according to the mapping relationship between the predefined sequence element and the RE), and obtains 2 a different sequence element; or, corresponding to the formula (3) above, the value of the network device for m can be determined according to the current RB number, and the value of n is 0 and 1 respectively, and two different sequence elements are obtained. .
  • the network device maps the two sequence elements to the two subcarriers of the same symbol one by one according to a predefined mapping relationship.
  • the network device takes two different values for b respectively (the specific value of b can be determined according to a mapping relationship between a predefined sequence element and an RE), for example,
  • the value of the sub-carrier number of the occupied RE may be two different sequence elements; or, corresponding to the formula (3) above, the value of the network device for m may be determined according to the current RB number, and Two values are taken in [0, 11].
  • the value of the subcarrier number of the occupied RE can be used to obtain two different sequence elements.
  • the network device maps the two sequence elements to the two subcarriers of the same symbol one by one according to a predefined mapping relationship.
  • the network device takes two different values for b (the specific value of b can be determined according to a mapping relationship between the predefined sequence element and the RE), Obtaining 2 different sequence elements; or, corresponding to the formula (3) above, the value of the network device for m can be determined according to the current RB number, and n is in [0, 3] or [0, 7] Take two values, for example, take two values arbitrarily to get two different sequence elements.
  • the network device maps the two sequence elements to the two subcarriers of the same symbol one by one according to a predefined mapping relationship.
  • the network device determines that the number of REs occupied by each CSI-RS in each RB (ie, an example of a resource unit) may be 2 in CDM2, and may be 2 in CDM4. 4.
  • FIG. 6 and FIG. 7 show still another schematic diagram of a pilot pattern provided by an embodiment of the present invention.
  • FIGS. 6 and 7 show possible pilot patterns of CSI-RS when the number of antenna ports is 4.
  • the four REs for carrying the first CSI-RS may be distributed on the same symbol, for example, four REs carrying the first CSI-RS shown in the figure are located at symbol #5, and the Two REs are located in subcarrier #8 to subcarrier #11.
  • the four REs for carrying the first CSI-RS may be distributed on the same symbol, such as symbol #5 shown in the figure, and the four REs are located in subcarrier #4 to subcarrier.
  • the four REs used to carry the first CSI-RS may be located in subcarrier #0 to subcarrier #3 and the like in the same symbol, which are not shown in the figure.
  • the CSI-RSs of the four antenna ports can be distinguished by multiplexing codes, that is, frequency domain CDM is implemented.
  • the values of the first CSI-RSs carried by at least two of the multiple REs are different. Therefore, when the first CSI-RS takes a value from the first pilot sequence, two different b values (corresponding to formula (2)) or two different sets of (m, n) values (corresponding to In the formula (3)), wherein two sets of different (m, n) values corresponding to the formula (3), for a certain resource unit, the value of m is constant, and n is used for two different value.
  • the specific process of taking two different values from the first pilot sequence for generating the first CSI-RS has been described in detail above with reference to an example in which the number of antenna ports is 2. For brevity, no further details are provided herein.
  • the above-mentioned correspondence between the number of antenna ports and the pilot pattern and the schematic diagram of the pilot pattern shown in the drawings are merely exemplary for convenience of understanding, and should not be construed as limiting the embodiments of the present invention.
  • the number of antenna ports is increased, for example, the number of antenna ports is 8, it is also conceivable to implement frequency division multiplexing by using twice the CDM4 resources or 4 times the CDM2 resources.
  • the pilot pattern is configured, as long as the value of the CSI-RS carried by the at least two REs in the plurality of REs occupied by one of the first CSI-RSs in one resource unit is different, it should fall into the implementation of the present invention. The scope of protection of the example.
  • the network device may send multiple CSI-RSs through multiple antenna ports, and the multiple CSI-RSs may multiplex time-frequency resources by means of frequency division CDM.
  • multiple REs for carrying the first CSI-RS carry a second CSI-RS
  • at least two of the multiple REs for carrying the second CSI-RS The value of the second CSI-RS carried on the RE is different, and the value of the second CSI-RS is passed through the second multiplexing code (for multiplexing and description, the multiplexing code corresponding to the second antenna port is recorded as the second complex Loaded on multiple REs with code).
  • the first CSI-RS and the second CSI-RS occupy the same RE, in the same resource unit, the first CSI-RS is at the ith (j>i ⁇ 0, i is an integer, j represents The number of subcarriers in one resource unit) and the value of the second CSI-RS on the i-th RE are the same, and in this case, they can be distinguished by different multiplexing codes.
  • the multiplexing code may be a CDM code.
  • it can be an OCC code.
  • the network device can distinguish the CSI-RS of different antenna ports by means of CDM. That is, the sequence elements configured on the same time-frequency resource (for example, RE) are distinguished by the CDM code.
  • the values of CSI-RSs configured on the same RE may be the same, but the CDM codes corresponding to different antenna ports may be different.
  • the OCC code can be 2 bits. Then the network device can distinguish the two antenna ports by different OCC codes. For example, corresponding to antenna port #15, the used OCC code may be [1, 1]; corresponding to antenna port (port) #16, the used OCC code may be [1, -1] . Therefore, although the REs occupied by the CSI-RSs of the port #15 and the port #16 are the same, and the values of the CSI-RSs are the same, but the OCC codes are different, the two CSI-RSs can be mutually loaded by loading orthogonal codes. Orthogonal to avoid interference with each other.
  • the network device sends the first CSI-RS to the terminal device by using multiple REs.
  • the network device transmits the first CSI-RS to the terminal device by using multiple REs, and the resource unit is transmitted in a minimum unit. In addition to carrying the first CSI-RS on the same resource unit, Host other data. Therefore, in S340, the terminal device receives a signal transmitted by the network device, where the signal includes the first CSI-RS.
  • the terminal device receives, on a plurality of resource units, a signal sent by the network device, where the signal includes the first CSI-RS;
  • the terminal device may determine a plurality of REs for carrying the first CSI-RS from the network device according to the method described above in connection with S310 and S320.
  • the method 300 further includes:
  • the terminal device receives a configuration parameter sent by the network device, where the configuration parameter is used to determine multiple REs that carry the first CSI-RS.
  • the configuration parameter may be sent to the terminal device, where the first parameter may include, for example, the number of antenna ports, the CSI-RS sending period, The system frame number, the symbol number carrying the CSI-RS, the resource unit (for example, RB) number carrying the first CSI-RS, the CDM value, and the pilot density.
  • the terminal device may determine, according to the foregoing first parameter, a plurality of REs for carrying the first CSI-RS.
  • the terminal device determines a plurality of resource particle REs for carrying the first CSI-RS, and acquires the first CSI-RS from the multiple REs.
  • the terminal device can acquire the first CSI-RS from the signal received in S340 by determining a plurality of REs carrying the first CSI-RS in S350.
  • the first CSI-RS sent by the network device may be x, and the network device sends the first CSI-RS to the terminal device through multiple REs. Therefore, the signal received by the terminal device may be y.
  • the relationship between the vector x of the first CSI-RS transmitted by the network device and the first vector y of the first CSI-RS received by the terminal device may be expressed as follows:
  • H represents the channel matrix and n represents the receiver noise. It can be easily seen that the receiver noise n affects the signal reception.
  • n represents the receiver noise. It can be easily seen that the receiver noise n affects the signal reception.
  • the receiver noise is zero and the signal will be transmitted without error.
  • there are various solutions in the prior art to eliminate the above noise For the sake of brevity, the description of the same or similar cases will be omitted hereinafter.
  • the method 300 further includes:
  • the terminal device generates a third CSI-RS.
  • the CSI-RS generated by the terminal device itself is recorded as a third CSI-RS.
  • the terminal device may first generate a second pilot sequence according to the first parameter, and then according to the mapping relationship between the sequence element and the RE in the pilot pattern, and the first CSI-RS determined in S340.
  • the REs determine the value of the third CSI-RS, thereby obtaining a third CSI-RS.
  • the specific process for the terminal device to generate the third CSI-RS and the specific process for the network device to generate the first pilot sequence according to the first parameter and determine the multiple REs for carrying the first CSI-RS are performed in S310 and S320. Similar, for the sake of brevity, we will not repeat them here.
  • the third device since the first parameter used by the network device and the terminal device is the same, the formula for generating the pilot sequence is also the same, and the mapping relationship between the sequence element and the RE is also the same, and therefore, the third device generates the third parameter.
  • the CSI-RS is also the same as the first CSI-RS generated by the network device, that is, it can be represented as a vector x.
  • the method 300 further includes:
  • the terminal device estimates a channel matrix according to the received first CSI-RS and the generated third CSI-RS.
  • the first CSI-RS received by the terminal device may be y
  • the estimated value of H can be solved.
  • the terminal device can estimate the channel matrix to determine the precoding matrix for data transmission.
  • the values of the CSI-RSs of at least two REs in each resource unit are different, that is, each is added.
  • the sequence length of the CSI-RS on each symbol of the antenna port on each resource unit reduces the correlation between the pilot sequences, reduces the interference between the CSI-RSs, and facilitates more accurate estimation of the channel.
  • the foregoing embodiment only illustrates a specific method for transmitting and receiving a reference signal according to an embodiment of the present invention by taking a PN sequence as an example. However, this should not be construed as limiting the embodiments of the present invention.
  • the present application also does not exclude the possibility of generating pilot sequences by other sequences in future protocols, such as ZC sequences, etc.
  • the method for transmitting and receiving reference signals in the embodiments of the present invention is also applicable to other sequences to increase the sequence length. , reducing the correlation between pilot sequences. For the sake of brevity, the other sequences will not be exemplified herein.
  • the size of the sequence number of each process does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be implemented by the implementation process of the embodiment of the present application. Any restrictions.
  • FIG. 8 is a schematic block diagram of a network device 10 according to an embodiment of the present invention. As shown in FIG. 8, the network device 10 includes a determining module 11 and a transceiver module 12.
  • the determining module 11 is configured to determine a plurality of resource particles RE for carrying the first CSI-RS, where the multiple REs are distributed in multiple resource units.
  • the value of the first CSI-RS carried on the at least two REs is different, and the value of the first CSI-RS carried on the at least two REs is different in each resource unit.
  • the value of the first CSI-RS is loaded on multiple REs in each resource unit by using a first multiplexing code;
  • the transceiver module 12 is configured to send the first CSI-RS to the terminal device by using the multiple REs.
  • the number of multiple subcarriers of the same symbol is at least one of ⁇ 2, 4, 8, 12 ⁇ .
  • the values of the first CSI-RS carried on the multiple REs in each resource unit are different from each other.
  • the second CSI-RS is carried on the multiple REs, and the value of the second CSI-RS carried on the at least two REs is different, and the value of the second CSI-RS is loaded by using the second multiplexing code.
  • the multiple REs are the values of the second CSI-RS carried on the at least two REs.
  • the value of the first CSI-RS is calculated by the following formula:
  • a is the first parameter, Indicates the maximum number of resource units included in the downlink channel. Indicates the value of the bth CSI-RS on the lth symbol in the nth s time slot.
  • the value of the first CSI-RS is calculated by the following formula:
  • a is the first parameter, Indicates the maximum number of resource units included in the downlink channel. Indicates the value of the nth CSI-RS on the mth resource unit on the lth symbol in the nth s time slot.
  • the value of the first parameter a includes at least one of the following:
  • Orthogonal code length used by one CSI-RS port in frequency domain code division multiplexing or
  • the number of REs occupied by a CSI-RS port within one symbol on a resource unit is the number of REs occupied by a CSI-RS port within one symbol on a resource unit.
  • the value of the first parameter a includes at least one of ⁇ 2, 4, 8, 12 ⁇ .
  • the first parameter a is pre-configured.
  • the first parameter a is determined by the network device and sent to the terminal device.
  • network device 10 may correspond to a network device in method 300 of transmitting and receiving reference signals in accordance with an embodiment of the present invention, which may include a network for performing method 300 of transmitting and receiving reference signals in FIG. A module of the method performed by the device.
  • each module in the network device 10 and the other operations and/or functions described above are respectively used to implement the corresponding process of the method 300 for transmitting and receiving the reference signal in FIG. 3, and specifically, the determining module 11 is configured to execute S310 in the method 300.
  • the transceiver module 12 is configured to execute S330 in the method 300, and the specific process of performing the foregoing steps in each module has been described in detail in the method 300. For brevity, no further details are provided herein.
  • FIG. 9 is a schematic block diagram of a terminal device 20 according to an embodiment of the present invention. As shown in FIG. 9, the terminal device 20 includes a transceiver module 21, a determination module 22, and an acquisition module 23.
  • the transceiver module 21 is configured to receive, by using a plurality of resource units, a signal sent by the network device, where the signal includes a first CSI-RS;
  • the determining module 22 is configured to determine a plurality of resource particles RE for carrying the first CSI-RS, where the multiple REs are distributed in multiple resource units, where, in each resource unit: used to carry the first The plurality of REs of the CSI-RS are in multiple subcarriers of the same symbol, and the values of the first CSI-RS carried on the at least two REs are different, and the value of the first CSI-RS is loaded by the first multiplexing code. Multiple REs within each resource unit;
  • the obtaining module 23 is configured to acquire the first CSI-RS on the multiple REs.
  • the number of the multiple subcarriers of the same symbol is at least one of ⁇ 2, 4, 8, 12 ⁇ .
  • the values of the first CSI-RS carried on the multiple REs are different from each other.
  • the value of the first CSI-RS is calculated by the following formula:
  • a is the first parameter, Indicates the maximum number of resource units included in the downlink channel. Indicates the value of the bth CSI-RS on the lth symbol in the nth s time slot.
  • the value of the first CSI-RS is calculated by the following formula:
  • a is the first parameter, Indicates the maximum number of resource units included in the downlink channel. Indicates the value of the nth CSI-RS on the mth resource unit on the lth symbol in the nth s time slot.
  • the value of the first parameter a includes at least one of the following:
  • Orthogonal code length used by one CSI-RS port in frequency domain code division multiplexing or
  • the number of REs occupied by a CSI-RS port within one symbol on a resource unit is the number of REs occupied by a CSI-RS port within one symbol on a resource unit.
  • the first parameter a is predetermined by the network device or the terminal device.
  • the first parameter a is determined by the network device and sent to the terminal device.
  • the terminal device 20 may correspond to a terminal device in the method of transmitting and receiving reference signals 300 according to an embodiment of the present invention, which may include a terminal device for performing the method 300 of transmitting and receiving reference signals in FIG.
  • the module of the method of execution are respectively used to implement the corresponding process of the method 300 for transmitting and receiving the reference signal in FIG. 3, and specifically, the transceiver module 21 is configured to execute S340 in the method 300.
  • the determining module 22 and the obtaining module 23 are configured to execute the S350 in the method 300.
  • the specific process in which each module performs the corresponding steps is described in detail in the method 300. For brevity, no further details are provided herein.
  • FIG. 10 is another schematic block diagram of a network device 400 according to an embodiment of the present invention.
  • the network device 400 includes a processor 410 and a transceiver 420.
  • the network device 400 further includes a memory 430.
  • the processor 410, the transceiver 420 and the memory 430 communicate with each other through an internal connection path for transferring control and/or data signals
  • the memory 430 is for storing a computer program
  • the processor 410 is used for the memory 430.
  • the computer program is called and executed to control the transceiver 420 to send and receive signals.
  • the processor 410 is configured to determine a plurality of resource particles RE for carrying the first CSI-RS, where the plurality of REs are distributed among the plurality of resource units, where In each resource unit, a plurality of REs for carrying the first CSI-RS are on multiple subcarriers of the same symbol, and values of the first CSI-RS carried on at least two REs are different, the first The value of the CSI-RS is loaded on the plurality of REs in each resource unit by the first multiplexing code; the transceiver 420 is configured to send the first CSI-RS to the terminal device by using the multiple REs.
  • the processor 410 and the memory 430 may be combined to form a processing device, and the processor 410 is configured to execute program code stored in the memory 430 to implement the above functions.
  • the memory 430 can also be integrated in the processor 410 or independent of the processor 410.
  • the network device may further include an antenna 440, configured to send downlink data or downlink control signaling output by the transceiver 420 by using a wireless signal.
  • the network device 400 can correspond to a network device in a method 300 of transmitting and receiving reference signals in accordance with an embodiment of the present invention, which can include a method 300 for performing the transmitting and receiving of reference signals in FIG.
  • the unit of the method performed by the network device Moreover, each unit in the network device 30 and the other operations and/or functions described above are respectively configured to implement a corresponding process of the method 300 of transmitting and receiving a reference signal in FIG.
  • the memory 430 is configured to store program code for processing
  • the processor 410 executes S310 and S320 in the method 300, and controls the transceiver 420 to execute S330 in the method 300 through the antenna 440.
  • the specific process in which each module performs the above-mentioned corresponding steps has been described in detail in the method 300. For the sake of brevity, we will not repeat them here.
  • FIG. 11 is another schematic block diagram of a terminal device 500 according to an embodiment of the present invention.
  • the terminal device 500 includes a processor 501 and a transceiver 502.
  • the terminal device 500 further includes a memory 503.
  • the processor 501, the transceiver 502 and the memory 503 communicate with each other through an internal connection path for transferring control and/or data signals
  • the memory 503 is for storing a computer program
  • the processor 501 is used for the memory 503.
  • the computer program is called and executed to control the transceiver 502 to send and receive signals.
  • the processor 501 is configured to determine a plurality of resource particles RE for carrying the first CSI-RS from the network device, the plurality of REs being distributed among the plurality of resources.
  • the multiple REs used to carry the first CSI-RS are on multiple subcarriers of the same symbol, and the values of the first CSI-RS carried on the at least two REs are different.
  • the value of the first CSI-RS is loaded on multiple REs in each resource unit by using a first multiplexing code.
  • the transceiver 502 is configured to receive a signal sent by the network device, where the signal includes the first CSI-
  • the processor 501 is further configured to acquire the first CSI-RS on the multiple REs.
  • the above processor 501 and memory 503 can synthesize a processing device, and the processor 501 is configured to execute the program code stored in the memory 503 to implement the above functions.
  • the memory 503 can also be integrated in the processor 501 or independent of the processor 501.
  • the terminal device 500 may further include an antenna 504, configured to send uplink data or uplink control signaling output by the transceiver 502 by using a wireless signal.
  • the terminal device 500 may correspond to a terminal device in the method 300 of transmitting and receiving a reference signal according to an embodiment of the present invention, and the terminal device 500 may include a method 300 for performing the transmitting and receiving of the reference signal in FIG. A module of the method performed by the terminal device.
  • each module in the terminal device 500 and the other operations and/or functions described above are respectively configured to implement a corresponding process of the method 300 for transmitting and receiving reference signals in FIG. 3, specifically, the memory 503 is configured to store program codes for processing.
  • the transceiver 502 controls the transceiver 502 to perform S340 in the method 300 through the antenna 504, and executes S350 in the method 300.
  • the specific process in which each module performs the above-mentioned corresponding steps has been described in detail in the method 300. Concise, no longer repeat here.
  • the processor 501 can be used to perform the actions implemented by the terminal in the foregoing method embodiments, and the transceiver 502 can be used to perform the actions of the terminal to transmit or transmit to the network device in the foregoing method embodiments.
  • the transceiver 502 can be used to perform the actions of the terminal to transmit or transmit to the network device in the foregoing method embodiments.
  • the above processor 501 and memory 503 can be integrated into one processing device, and the processor 501 is configured to execute the program code stored in the memory 503 to implement the above functions.
  • the memory 503 can also be integrated in the processor 501.
  • the terminal device 500 described above may also include a power source 505 for providing power to various devices or circuits in the terminal.
  • the terminal device 500 may further include one or more of an input unit 506, a display unit 507, an audio circuit 508, a camera 509, a sensor 510, and the like, the audio circuit.
  • an input unit 506 a display unit 507
  • an audio circuit 508 a camera 509
  • a sensor 510 a sensor
  • the terminal device 500 may further include one or more of an input unit 506, a display unit 507, an audio circuit 508, a camera 509, a sensor 510, and the like, the audio circuit.
  • a speaker 5082, a microphone 5084, and the like can also be included.
  • the processor may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration.
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the memory in embodiments of the invention may be a volatile memory or a non-volatile memory, or may include both volatile and nonvolatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic randomness synchronous dynamic randomness.
  • Synchronous DRAM SDRAM
  • DDR SDRAM double data rate synchronous DRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Take memory
  • DR RAM direct memory bus random access memory
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded or executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that contains one or more sets of available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a digital versatile disc (DVD)), or a semiconductor medium.
  • the semiconductor medium can be a solid state hard drive.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a removable hard disk, a read only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种发送和接收参考信号的方法、网络设备和终端设备,能够增加导频序列长度,降低导频序列之间的相关性。该方法包括:网络设备确定用于承载第一CSI-RS的多个资源粒子RE,该多个RE分布在多个资源单元内,其中,在每个资源单元内:用于承载该第一CSI-RS的多个RE处于同一符号的多个子载波上,至少两个RE上承载的该第一CSI-RS的值不同,该第一CSI-RS的值通过第一复用码加载在该每个资源单元内的多个RE上;该网络设备通过该多个RE向终端设备发送该第一CSI-RS。

Description

发送和接收参考信号的方法、网络设备和终端设备
本申请要求于2017年4月28日提交中国专利局、申请号为201710295299.1、发明名称为“发送和接收参考信号的方法、网络设备和终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及发送和接收参考信号的方法、网络设备和终端设备。
背景技术
在新一代无线接入技术(new radio access technology,NR)系统中,因考虑到对高频无线通信的支持,信道状态信息参考信号(channel state information reference signal,CSI-RS)的资源配置需要考虑相位噪声的影响和模拟波束的切换。高频无线通信系统采用高频段的频谱资源,能够实现高速短距离传输,支持5G容量和传输速率等需求。但是,在高频无线通信系统中,相位噪声对频率的敏感程度远低于对时间的敏感程度;并且,为了克服高频段的高路损,物理层需要采用高增益的窄波束天线来提高通信链路的覆盖,在这个过程中,天线可能需要频繁地进行波束切换。上述各种因素要求通信设备能够在短时间内完成信道的测量,以减少相位噪声的影响,以及对波束切换的影响。因此,在NR中考虑将CSI-RS配置于同一个符号(例如,可以为正交频分复用(orthogonal frequency division multiplexing,OFDM)符号)内。
另一方面,随着多天线技术的发展,同一个网络设备不同天线端口的CSI-RS可以通过码分的方式复用资源,即,码分复用(code division multiplexing,CDM),例如,网络设备采用不同的正交覆盖码(orthogonal cover code,OCC)来区分不同的天线端口。在NR中,若要保证每个天线端口的CSI-RS配置于同一个符号上,就可以采用频域CDM的方式来区分不同天线端口的资源,例如,频域CDM2、频域CDM4等。然而,当多个网络设备使用相同的天线端口、相同的时频资源发送CSI-RS时,所使用的OCC码就有可能是相同的。这种情况下,这两个CSI-RS虽然使用了不同的标识
Figure PCTCN2018084044-appb-000001
但这两个CSI-RS之间的相关性仍有可能会比较强,相互间可能会产生干扰。
发明内容
本申请提供一种发送和接收参考信号的方法、网络设备和终端设备,能够降低CSI-RS之间的相关性,降低相互间产生的干扰。
第一方面,提供了一种发送参考信号的方法,包括:
网络设备确定用于承载第一CSI-RS的多个资源粒子RE,所述多个RE分布在多个资源单元内,
其中,在每个资源单元内:用于承载所述第一CSI-RS的多个RE处于同一符号的多个子载波上,至少两个RE上承载的所述第一CSI-RS的值不同,所述第一CSI-RS的值通过第一复用码加载在所述每个资源单元内的多个RE上;
所述网络设备通过所述多个RE向终端设备发送所述第一CSI-RS。
需要说明的是,该第一CSI-RS可以是取自网络设备预先生成的第一导频序列,或者说,该第一CSI-RS是第一导频序列中的部分或全部序列元素。在本发明实施例中,将导频序列中的每个序列元素可以称为CSI-RS的一个值,导频序列中的序列元素的数量可以称为该导频序列的序列长度。与之对应地,每个天线端口的CSI-RS在每个资源单元内每个符号上的不同的CSI-RS值的数量称为每个天线端口的CSI-RS在每个资源单元内每个符号上的序列长度。可以理解,每个CSI-RS值对应导频序列中的一个序列元素,不同的CSI-RS值对应导频序列中不同的序列元素。在现有技术中,同一个资源单元内、同一个符号上的多个RE上承载的CSI-RS的值相同,这就相当于每个天线端口的CSI-RS在一个资源单元内、一个符号上的符号长度为1。而在本发明实施例中,每个天线端口的CSI-RS在每个资源单元内每个符号上的序列长度至少为2,相比于现有技术而言,增加了序列长度,降低了序列之间的相关性。因此,当两个网络设备在使用相同的时频资源、相同的复用码发送CSI-RS时,由于采用了本发明实施例所提供的CSI-RS,在每个资源单元内同一符号上的序列长度得以增加,降低了序列之间的相关性,从而减小了两个CSI-RS之间的干扰,有利于信道估计,有利于提高接收信号质量。
可选地,在所述网络设备确定用于承载第一CSI-RS的多个RE之前,所述方法还包括:
所述网络设备生成第一导频序列,所述第一CSI-RS的值取自所述第一导频序列。
也就是说,第一CSI-RS由第一导频序列中的部分或全部序列元素生成。该第一导频序列可以根据现有技术中的导频序列的生成方法生成,也可以按照本发明实施例提供的方法生成。
换句话说,该网络设备根据第一参数生成第一导频序列,然后将该第一导频序列中的部分或全部序列元素映射到多个RE上,以生成第一CSI-RS。其中,该多个RE分布于多个资源单元内。在每个资源单元中,用于承载该第一CSI-RS的多个RE位于同一符号的多个子载波上,且每个资源单元中至少有两个RE上承载的第一CSI-RS的值不同。
第二方面,提供了一种接收参考信号的方法,包括:
终端设备在多个资源单元上接收网络设备发送的信号,所述信号中包括所述第一CSI-RS;
所述终端设备确定用于承载所述第一CSI-RS的多个资源粒子RE,所述多个RE分布在多个资源单元内,其中,在每个资源单元内:用于承载所述第一CSI-RS的多个RE处于同一符号的多个子载波上,至少两个RE上承载的所述第一CSI-RS的值不同,所述第一CSI-RS的值通过第一复用码加载在所述每个资源单元内的多个RE上;
所述终端设备在所述多个RE上获取所述第一CSI-RS。
该第一CSI-RS可以是取自网络设备预先生成的第一导频序列,或者说,该第一CSI-RS是第一导频序列中的部分或全部序列元素。在本发明实施例中,将导频序列中的每个序列元素可以称为CSI-RS的一个值,导频序列中的序列元素的数量可以称为该导频序列的序 列长度。与之对应地,每个天线端口的CSI-RS在每个资源单元内每个符号上的不同的CSI-RS值的数量称为每个天线端口的CSI-RS在每个资源单元内每个符号上的序列长度。可以理解,每个值对应导频序列中的一个序列元素,不同的CSI-RS值对应导频序列中不同的序列元素。在现有技术中,同一个资源单元内、同一个符号上的多个RE上承载的CSI-RS的值相同,这就相当于每个天线端口的CSI-RS在一个资源单元内、一个符号上的符号长度为1。而在本发明实施例中,每个天线端口的CSI-RS在每个资源单元内每个符号上的序列长度至少为2,相比于现有技术而言,增加了序列长度,降低了序列之间的相关性。因此,当两个网络设备在使用相同的时频资源、相同的复用码发送CSI-RS时,由于采用了本发明实施例所提供的CSI-RS,在每个资源单元内同一符号上的序列长度得以增加,降低了序列之间的相关性,从而减小了两个CSI-RS之间的干扰,有利于信道估计,有利于提高接收信号质量。
第三方面,提供了一种网络设备,所述网络设备包括用于执行第一方面或第一方面任一种可能实现方式中的发送参考信号的方法的各个模块。
第四方面,提供了一种终端设备,所述终端设备包括用于执行第二方面或第二方面任一种可能实现方式中的接收参考信号的方法的各个模块。
第五方面,提供了一种网络设备,包括:收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该网络设备执行第一方面或第一方面任一种可能实现方式中的方法。
第六方面,提供了一种终端设备,包括:收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该终端设备执行第二方面或第二方面任一种可能实现方式中的方法。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被网络设备运行时,使得所述网络设备执行上述第一方面或第一方面任一种可能实现方式中的方法。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被终端设备运行时,使得所述终端设备执行上述第二方面或第二方面任一种可能实现方式中的方法。
第九方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,所述程序代码包括用于执行第一方面或第一方面任一种可能实现方式中的方法的指令。
第十方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,所述程序代码包括用于执行第二方面或第二方面任一种可能实现方式中的方法的指令。
可选地,所述每个资源单元内的多个RE上承载的所述第一CSI-RS的值彼此各不相同。可选地,所述多个RE上承载有第二CSI-RS,至少两个RE上承载的所述第二CSI-RS的值不同,所述第二CSI-RS的值通过第二复用码加载在所述多个RE上。
也就是说,网络设备在发送多个CSI-RS时,可以从预先生成的第一导频序列中确定CSI-RS的值,映射到时频资源上,然后通过复用码加载以区分天线端口,最后通过时频资源将该多个CSI-RS一起发送出去。例如,该多个CSI-RS包括第一CSI-RS和第二CSI-RS,该第一CSI-RS和第二CSI-RS对应不同的天线端口,并且可以通过码分的方式复用相同的时频资源
可选地,所述第一导频序列由如下公式计算获得:
Figure PCTCN2018084044-appb-000002
其中,
Figure PCTCN2018084044-appb-000003
a为第一参数,
Figure PCTCN2018084044-appb-000004
表示下行信道所包含的资源单元的最大数量,
Figure PCTCN2018084044-appb-000005
表示第n s个时隙中第l个符号上的第b个CSI-RS的值。
Figure PCTCN2018084044-appb-000006
其中,c为PN序列,可以由PN序列生成器(例如,Gold序列生成器)根据初始化序列c init生成。
该方法与现有的长期演进(Long Term Evolution,LTE)协议中定义的PN序列的生成公式具有较大的相似性,因此,对现有技术的兼容性较好,同时又达到了增加序列长度的效果,降低了导频序列之间的相关性。
可选地,所述第一导频序列由如下公式计算获得:
Figure PCTCN2018084044-appb-000007
其中,a为第一参数,
Figure PCTCN2018084044-appb-000008
表示下行信道所包含的资源单元的最大数量,
Figure PCTCN2018084044-appb-000009
表示第n s个时隙中第l个符号上第m个资源单元上的第n个CSI-RS的值。
例如,所述第一导频序列由如下公式计算获得:
Figure PCTCN2018084044-appb-000010
与上文中的公式相比,该公式更多维度地表示了每个序列元素所映射的RE。
可选地,所述第一参数a的取值包括以下至少一种:
一个资源单元内的一个符号上的RE数目;
频域码分复用时一个CSI-RS端口使用的正交码长度;或者,
一个CSI-RS端口在一个资源单元上的一个符号内占用的RE数目。
可选地,所述第一参数a的取值为{2,4,8,12}中的至少一个。
在本发明实施例中,第一参数a可以理解为该第一CSI-RS在每个资源单元内能够占用的RE数的最大值,也就是说,第一CSI-RS在每个资源单元同一个符号上占用的子载波的数量最大为a。但应注意,第一CSI-RS在每个资源单元同一个符号上占用的子载波的数量并不代表该第一CSI-RS在每个资源单元的序列长度。该第一CSI-RS的序列长度要根据每个资源单元内不同的序列元素的数量来定义。
可选地,所述第一参数a是预先配置的。
即,该第一参数a可以是静态配置的。
可选地,所述第一参数a由所述网络设备确定后发送至所述终端设备。
即,该第一参数a可以是半静态或动态配置的。
本申请可以通过增加每个天线端口在每个资源单元内每个符号上的序列长度,以降低序列之间的相关性,从而减小导频信号之间的干扰。
附图说明
图1是适用于本发明实施例的发送和接收参考信号的方法的通信系统的示意图。
图2是适用于本发明实施例的发送和接收参考信号的方法的通信系统的另一示意图。
图3是根据本发明实施例的发送和接收参考信号的方法的示意性流程图。
图4是本发明实施例提供的导频图样的示意图。
图5是本发明实施例提供的导频图样的另一示意图。
图6是本发明实施例提供的导频图样的又一示意图。
图7是本发明实施例提供的导频图样的再一示意图。
图8是本发明实施例提供的网络设备的示意性框图。
图9是本发明实施例提供的终端设备的示意性框图。
图10是本发明实施例提供的网络设备的另一示意性框图。
图11是本发明实施例提供的终端设备的另一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为便于理解本发明实施例,首先简单介绍LTE协议中的CSI-RS。
在先进的长期演进(Long Term Evolution-Advanced,LTE-A)系统中,为了支持多天线技术,从版本(Release)10引入了低密度资源分布CSI-RS来代替原有的小区参考信号(cell-specific reference signal,CRS),从而保证网络设备能够根据终端设备上报的CSI进行多用户调度。
在LTE-A的传输模式(transmission mode,TM)9中,终端设备使用CSI-RS做信道估计。而在TM9之前的其他传输模式中,终端设备仍然使用CRS做信道估计。可以理解,不论是CSI-RS还是CRS,甚至是未来协议中定义的其他用于做信道估计的参考信号,终端设备根据接收到的参考信号做信道估计的具体过程可以是相似的。为便于理解和说明,本发明实施例仅以CSI-RS为例来进行详细说明。
另一方面,在下行参考信号中,参考信号通常可以采用伪随机(pseudo-noise,PN)序列。在LTE中,CSI-RS可以根据PN序列生成。具体地,CSI-RS可以通过以下公式计算得到的PN序列获得:
Figure PCTCN2018084044-appb-000011
Figure PCTCN2018084044-appb-000012
当CSI-RS用作发现参考信号(discovery reference signal,DRS)一部分时,
Figure PCTCN2018084044-appb-000013
其他情况下,n′ s=n s。其中,
Figure PCTCN2018084044-appb-000014
表示n s个时隙中第l个符号上的第m个序列元素,
Figure PCTCN2018084044-appb-000015
所呈现的形式是PN序列通过调制得到的复数形式。可选地,该符号可以为OFDM符号,或者也可以为在未来协议中定义的用于表示时间单元的符号,本发明实施例对此并未特别限定。
Figure PCTCN2018084044-appb-000016
表示下行信道所包含的RB的最大数量。c为PN序列,可以由PN序列生成器(例如,金(Gold)序列生成器)根据初始化序列c init生成。
Figure PCTCN2018084044-appb-000017
为CSI-RS的标识,可以为小区标识
Figure PCTCN2018084044-appb-000018
也可以为高层配置的标识。N CP为循环后缀标识,对应普通CP(normal CP),N CP=1;对于扩展CP(extended CP),N CP=0。
通过上述公式可以看到,当m在
Figure PCTCN2018084044-appb-000019
内遍历取值时,可以得到PN序列。该PN序列包括
Figure PCTCN2018084044-appb-000020
个序列元素,每个序列元素是一个复数信号,每个序列元素可以称为CSI-RS的一个值,
Figure PCTCN2018084044-appb-000021
个序列元素可以称序列长度为
Figure PCTCN2018084044-appb-000022
网络设备可以根据预先定义的导频图样(pattern)、以及导频序列中的序列元素与RE的映射关系,将生成的PN序列中的部分或全部元素一一映射到RE上,通过信道发送给终端设备。终端设备根据接收到的CSI-RS和自身生成的CSI-RS估计信道矩阵,以便于该终端设备根据该估计出的信道矩阵确定预编码矩阵,并向该网络设备反馈CSI。
在LTE中,随着多天线技术的发展,同一网络设备可通过CDM、频分复用(frequency division multiplexing,FDM)、时分复用(time division multiplexing,TDM)等方式来区分不同的天线端口(antenna port)。若采用FDM或者TDM,则不同天线端口的CSI-RS所占用的频域资源或者时域资源可以是不同的。若采用CDM,则不同天线端口的CSI-RS所占用的时频资源可以是相同的,而通过复用码来区分不同的天线端口。在LTE中,CDM可以包括频域CDM和时域CDM。然而在NR中,支持将CSI-RS配置于同一个符号内,也就是频域CDM。
需要说明的是,天线端口,也可以称为CSI-RS端口,或者,更具体地说,可以理解为未经过波束赋形(beamforming)预编码的CSI-RS端口。CSI-RS是由CSI-RS端口定义的,每个CSI-RS对应一个天线端口。应理解,CSI-RS作为一种用于信道测量的参考信号,仅为示例性说明,不应对本发明实施例构成任何限定,本申请并不排除在现有或未来的协议中采用其他的名称代替CSI-RS以实现其相同功能的可能。
下面结合图1和图2介绍本发明实施例适用的场景。图1是适用于本发明实施例的发送和接收参考信号的方法的通信系统100A的示意图。如图1所示,该通信系统100A包括:第一网络设备110、第二网络设备120、第一终端设备130和第二终端设备140。其中,第一网络设备110和第二网络设备120可包括多个天线,使用多天线技术与终端设备(例如,图1中示出的第一终端设备130和/或第二终端设备140)传输数据。
假设,第一网络设备110为第一小区的网络设备,第一终端设备130位于第一小区中;第二网络设备120为第二小区的网络设备,第二终端设备位于第二小区中。若第一网络设备110和第二网络设备120使用相同的端口、相同的时频资源(例如,RE)分别向对应的第一终端设备130和第二终端设备140发送CSI-RS,以获得CSI反馈来估计信道,则该第一网络设备110向第一终端设备130发送的CSI-RS(例如,记作CSI-RS#1)和第二网络设备120向第二终端设备140发送的CSI-RS(例如,记作CSI-RS#2)之间可以采用不同的
Figure PCTCN2018084044-appb-000023
来标识不同的CSI-RS,也就是通过公式(1)中计算得到的值不同。
由于该第一网络设备110和第二网络设备120可以采用多天线技术与终端设备传输数据,因此,该第一网络设备110和第二网络设备120可以通过多个天线端口发送CSI-RS。同一网络设备的多个天线端口之间可以通过上述FDM、TDM或者CDM的方式区分不同的CSI-RS。
若该第一网络设备110和第二网络设备120分别采用频域CDM(例如,可以为频域CDM2)的方式,则每个CSI-RS在一个资源单元(例如,资源块(resource block,RB),资源块组(resource block group,RBG))内、一个符号上占用的RE数即为CDM所使用的正交码的长度,例如,频域CDM2则表示在一个资源单元内、一个符号上占用2个RE。根据上文中的公式(1)可以发现,当符号数l相同时,r值相同,则该2个RE承载的CSI-RS的值相同。这就相当于CSI-RS在一个资源单元内、一个符号上的序列长度为1。即便CSI-RS#1和CSI-RS#2使用的
Figure PCTCN2018084044-appb-000024
不同,但其他参数(例如,OCC)都相同,CSI-RS#1和CSI-RS#2之间仍然会产生干扰。
图2是适用于本发明实施例的发送和接收参考信号的方法的通信系统100B的示意图。如图2所示,该通信系统100B包括:第一网络设备110、第二网络设备120和第一终端设备130。其中,第一网络设备110和第二网络设备120可包括多个天线,使用多天线技术与第一终端设备130传输数据,并且,该第一网络设备110和第二网络设备120可以通过多点协作(coordination multiple point,CoMP)传输的方法与第一终端设备130传输数据。
假设,第一网络设备110向第一终端设备130发送CSI-RS#1,第二网络设备120向第一终端设备130发送CSI-RS#2,第一网络设备110和第二网络设备120可以根据第一终端设备130反馈的CSI进行动态点选择(dynamic point selection,DPS)。该第一网络设备110向第一终端设备130发送的CSI-RS(例如,记作CSI-RS#1)和第二网络设备120向第一终端设备130发送的CSI-RS(例如,记作CSI-RS#2)之间可以采用不同的
Figure PCTCN2018084044-appb-000025
来标识不同的CSI-RS。
若第一网络设备110和第二网络设备120均采用频域CDM的方式,则每个网络设备发送的CSI-RS在一个资源单元内一个符号上占用的RE数即为CDM所使用的正交码的长度。而同一个符号上的承载CSI-RS的RE所承载的CSI-RS的值都相同,也就是CSI-RS在一个资源单元内、一个符号上的序列长度为1。因此,即便CSI-RS#1和CSI-RS#2使用的
Figure PCTCN2018084044-appb-000026
不同,但其他参数(例如,天线端口、时频资源、OCC)都相同,CSI-RS#1和CSI-RS#2之间仍然会产生干扰。
应理解,图1和图2仅为便于理解而示例的简化示意图,该通信系统中还可以包括更多的网络设备和/或终端设备,图中未予以画出。
通过上文中的描述可知,当两个CSI-RS之间产生干扰时,就有可能导致对信道矩阵的估计不准确,从而影响CSI反馈的准确性,最终可能影响预编码矩阵的确定,从而影响数据接收的质量。
然而,通过仿真实验或相关性计算发现,当序列长度为1时,序列之间的相关性较强;序列越长,序列之间的相关性越低。因此,本申请提供一种发送和接收参考信号的方法,能够增加在一个符号内每个端口对应的导频序列的序列长度,从而降低序列之间的相关性,减小干扰。
下面结合附图详细说明本发明实施例。
应理解,本申请的技术方案可以应用于各种通信系统,例如:全球移动通信(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、 通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(LTE)系统、先进的长期演进(LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)或下一代通信系统(例如,第五代通信(fifth-generation,5G)系统)等。其中,5G系统也可以称为新一代无线接入技术(NR)系统。
本申请结合网络设备描述了各个实施例。网络设备可以是全球移动通信(GSM)或码分多址(CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(WCDMA)中的基站(NodeB,NB),还可以是长期演进(LTE)中的演进型基站(evolutional node B,eNB或eNodeB),或者中继站、接入点或射频拉远单元(Remote Radio Unit,RRU),或者车载设备、可穿戴设备以及未来5G系统中的网络侧设备,如传输点(transmission point,TP)、发送接收点(transmission reception point,TRP)、基站、小基站设备等,本发明实施例对此并未特别限定。
此外,本申请结合终端设备描述了各个实施例。终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是无线局域网(wireless local area networks,WLAN)中的站点(station,ST),可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,5G网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等,本发明实施例对此并未特别限定。
还应理解,在本发明实施例中,编号“第一”、“第二”仅为用于区分不同的对象,例如,为了区分不同的导频序列、不同的CSI-RS等,而不应对本发明实施例构成任何限定。
图3从设备交互的角度示出了根据本发明实施例的发送和接收参考信号的方法300的示意性流程图。下文示出的方法300可以应用于通过无线空口进行通信的通信系统,该通信系统可以包括至少两个网络设备和至少一个终端设备。例如,该通信系统可以为图1中所示的通信系统100A,或者图2中所示的通信系统100B。该网络设备可以为图1或图2中所示的第一网络设备110或者第二网络设备120,该终端设备可以为图1中所示的第一终端设备130或第二终端设备140,或者图2中所示的第一终端设备130。
需要说明的是,在本发明实施例中,不失一般性,以CSI-RS为例详细说明本发明实施例提供的发送和接收参考信号的方法,但应理解,这不应对本发明实施例构成任何限定,该方法同样适用于其他参考信号。
应理解,在现有的协议(例如,LTE协议)中,下行参考信号通常可以采用PN序列,并且在LTE中,该PN序列是由Gold序列定义的。本文仅为便于理解和说明,以PN序列为例详细说明本发明实施例。但这并不应对本发明实施例构成任何限定,本申请并不排除在未来的协议中采用其他序列来生成下行参考信号的可能,例如,佐道夫-楚(Zadoff-Chu,ZC)序列等。并且,本发明实施例的发送和接收参考信号的方法也不限于下行参考信号,对于上行参考信号也同样适用。
如图3所示,该方法300包括:
S310,网络设备根据第一参数,生成第一导频序列。
在本发明实施例中,用于生成CSI-RS的PN序列的序列长度不仅与
Figure PCTCN2018084044-appb-000027
相关,还与本发明实施例一种提供的第一参数a相关。网络设备可以根据第一参数a生成第一导频序列。这里,为便于区分和说明,将网络设备生成的导频序列记作第一导频序列,后文中涉及的终端设备生成的导频序列记作第二导频序列。与之相应地,将网络设备根据第一导频序列生成的CSI-RS记作第一CSI-RS,将终端设备根据第二导频序列生成的CSI-RS记作第三CSI-RS。
可选地,该第一参数a的取值包括以下至少一种:
A、一个资源单元内的一个符号上的RE数目。其具体数目可以根据现有或未来协议中对资源单元的定义来确定。例如,LTE协议中定义的资源单元可以为RB,一个RB内一个符号上的RE数目可以为12。
在本发明实施例中,资源单元可以LTE协议中的一个RB或RBG,多个RB或RBG,或者重新定义的由至少两个RE组成的资源。为便于理解和说明,以一个资源单元为一个RB为例来说明本发明实施例,后文中为了简洁,省略对相同或相似情况的情况。
B、频域CDM时一个天线端口使用的正交码长度。具体数值可以根据现有或未来协议中定义的CDM的正交码长度来确定,例如,在LTE协议中,定义有CDM2、CDM4,故a的取值可以为{2,4}的任意值;
C、一个天线端口在一个符号内占用的RE数目。具体数值可以根据到导频图样(pattern)确定,例如,在LTE协议中,当CDM4时一个天线端口在一个RB的一个符号内占用的RE数目可以为2。在NR中,假设资源单元为RB,则CSI-RS的密度不仅可以和LTE一样,等于1RE/port/RB,还有可能大于1RE/port/RB,那么一个天线端口在一个RB的一个符号内占用的RE数目就等于频域CDM数值乘以密度,但可以理解,一个天线端口在一个符号内占用的RE数目不会超出一个RB的子载波数目(,例如,一个RB中的子载波数目12)。a的取值可以为2、4、8或12。
综上,第一参数a的取值可以{2,4,8,12}中的至少一个。
应理解,上述列举的第一参数a的具体取值仅为示例性说明,或者说是本发明实施例提供的可能的取值,但这并不应对本发明实施例构成任何限定。任何通过定义第一参数a生成导频序列以增加序列长度的方法均应落入本申请的保护范围内,本申请也并不排除在未来的协议中并对该第一参数a定义更多的取值的可能。
并且,该第一参数a的取值可以为一个,也可以为多个。可以静态配置,也可以半静态或动态配置。
具体来说,当第一参数a的取值为一个时,第一参数至少可以通过以下两种方法来配置:
方法一:第一参数a为预先配置的。具体地,该第一参数a的取值可以由协议规定,分别对网络设备和终端设备都预先配置好该参数便可以用于生成导频序列。在这种情况下,该第一参数a可以认为是静态配置的。
或者,协议也可以规定第一参数a的定义规则,将该第一参数a的定义规则分别配置于网络设备和终端设备中,以便于网络设备和终端设备根据相同的定义规则确定第一参数。例如,协议可以定义第一参数与CDM正交码长度的映射关系,在CDM正交码长度 确定的情况下,便可以根据上述映射关系,确定对应的第一参数a。在这种情况下,该第一参数a可以认为是半静态配置的。
方法二:网络设备确定第一参数a,并向终端设备发送第一参数a。
具体地,网络设备可以根据CDM的正交码长度、CSI-RS密度等因素确定第一参数a,并通过信令通知给终端设备。在这种情况下,该第一参数a可以是半静态配置或者是动态配置的。
可选地,网络设备向终端设备发送无线资源控制(radio resource control,RRC)消息,该RRC消息中承载该第一参数a。
可选地,网络设备向终端设备发送媒体接入控制(media access control,MAC)控制信元(control element,CE),该MAC-CE中携带该第一参数a。
可选地,网络设备向终端设备发送物理下行控制信道(physical downlink control channel,PDCCH),该PDCCH中携带该第一参数a。具体地,该第一参数可以携带在PDCCH中的下行控制信息(downlink control information,DCI)中。
应理解,上述列举的用于发送第一参数的信令仅为示例性说明,而不应对本发明实施例构成任何限定,本发明实施例也不应限于此。任何能够携带该第一参数的信令都应落入本申请的保护范围内。
当第一参数a的取值为多个时,第一参数a可以是半静态配置或者动态配置的,这种情况下,第一参数a也可以通过上述方法来配置。
具体来说,可以通过RRC消息携带多个第一参数a,然后通过DCI指示当前子帧内所使用的第一参数a,可以理解的是,当前使用的第一参数a为上述多个第一参数a中的任意一个。
在确定了第一参数a之后,网络设备便可以根据该第一参数a生成第一导频序列。
具体地,网络设备可以通过以下任意一种方法生成第一导频序列:
方法一:
该网络设备可以根据以下公式,生成第一导频序列:
Figure PCTCN2018084044-appb-000028
其中,
Figure PCTCN2018084044-appb-000029
Figure PCTCN2018084044-appb-000030
表示第n s个时隙中第l个符号上的第b个CSI-RS的值,该值可以为b的函数g(b)。
可以看到,该第一导频序列的序列长度为N,N为第一参数a和
Figure PCTCN2018084044-appb-000031
的函数。例如,
Figure PCTCN2018084044-appb-000032
等等,为了简洁,这里不再一一列举。应理解,以上列举的f()的形式仅为示例性说明,而不应对本发明实施例构成任何限定,所有根据第一参数a确定导频序列长度N,以使得确定得到的序列长度N大于现有的导频序列长度
Figure PCTCN2018084044-appb-000033
的函数均应落入本申请的保护范围内。
为便于理解,这里结合LTE协议中定义的
Figure PCTCN2018084044-appb-000034
说明生成第一导频序列的具体过程。在本发明实施例中,该第一导频序列由PN序列生成,该PN序列可以通过下式获得:
Figure PCTCN2018084044-appb-000035
式中,对c、b、N的定义在上文中已经介绍,这里不再赘述。在本发明实施例中,c的长度根据所述第一导频序列的序列长度N确定,例如,可以为该导频序列长度N的两倍。
Figure PCTCN2018084044-appb-000036
表示导频序列标识,在本发明实施例中,
Figure PCTCN2018084044-appb-000037
可以参考LTE中的取值,也可以重新配置。N CP表示循环前缀标识,在本发明实施例中,可以参考在LTE中的取值,也可以重新配置。
以下,为便于理解和说明,以
Figure PCTCN2018084044-appb-000038
为例,结合上文中列举的第一参数a的取值,详细说明网络设备根据上述公式(2)生成第一导频序列的过程。其中,
Figure PCTCN2018084044-appb-000039
可以为下行带宽中所包含的资源单元的最大数量,例如,
Figure PCTCN2018084044-appb-000040
可以为现有LTE协议中下行带宽所包含的RB的最大数量,
Figure PCTCN2018084044-appb-000041
假设,第一参数a为一个RB内一个符号上的RE数目。在LTE中,一个RB内一个符号上的RE数,即,a=12,则第一导频序列的序列长度N=1320,则b=0,1,…,1319。在[0,1319]范围内对a遍历取值可以得到1320个序列元素,即,
Figure PCTCN2018084044-appb-000042
b的每个取值对应了一个序列元素,每个序列元素可以理解为CSI-RS的一个值。
例如,b=0时,
Figure PCTCN2018084044-appb-000043
b=1时,
Figure PCTCN2018084044-appb-000044
以此类推,可以得到220个序列元素,为了简洁,这里不再一一列举。
假设,第一参数a为2、4、8或12中的至少一个,以a=2为例,则第一导频序列的序列长度N=220,则b=0,1,…,219。在[0,219]范围内对a遍历取值可以得到220个序列元素,即,
Figure PCTCN2018084044-appb-000045
b的每个取值对应了一个序列元素,每个序列元素可以理解为CSI-RS的一个值。
假设,第一参数a为频域CDM时一个天线端口使用的正交码长度。由于考虑到NR中将CSI-RS配置于同一个符号上,则采用的CDM为频域CDM。在LTE中,定义有CDM2、CDM4,以a=4为例,则第一导频序列的序列长度N=440,则b=0,1,…,439。在[0,439]范围内对a遍历取值可以得到440个序列元素,即,
Figure PCTCN2018084044-appb-000046
b的每个取值对应了一个序列元素,每个序列元素可以理解为CSI-RS的一个值。
方法一中的公式(2)与现有的LTE协议中定义的PN序列的生成公式具有较大的相似性,因此,对现有技术的兼容性较好,同时又达到了增加序列长度的效果,降低了导频序列之间的相关性。
方法二:
该网络设备可以根据以下公式,生成第一导频序列:
Figure PCTCN2018084044-appb-000047
其中,
Figure PCTCN2018084044-appb-000048
Figure PCTCN2018084044-appb-000049
表示第n s个时隙中第l个符号上的第m个资源单元上的第n个CSI-RS的值,该值可以为m,n的函数h(m,n)。该第一导频序列的序列长度N可以与方法一中定义的序列长度相同,为了简洁,这里不再赘述。
为便于理解,这里结合LTE协议中定义的
Figure PCTCN2018084044-appb-000050
说明生成第一导频序列的具体过程。在本发明实施例中,该第一导频序列由PN序列生成,该PN序列可以通过下式获得:
Figure PCTCN2018084044-appb-000051
式中,对c、m、n、N的定义在上文中已经介绍,这里不再赘述。
在方法二中,由于在PN序列的生成公式(即,公式(3))中代入了资源单元的编号m,因此更具体地限定了每个资源单元中的序列元素。
以下,为便于理解,仍以
Figure PCTCN2018084044-appb-000052
为例,结合上文中列举的第一参数a的取值,详细说明网络设备根据公式(3)生成第一导频序列的过程。其中,
Figure PCTCN2018084044-appb-000053
可以为下行带宽中所包含的资源单元的最大数量,例如,
Figure PCTCN2018084044-appb-000054
可以为现有LTE协议中下行带宽所包含的RB的最大数量,
Figure PCTCN2018084044-appb-000055
假设,第一参数a为一个RB内一个符号上的RE数目。在LTE中,一个RB内一个符号上的RE数,即,a=12,则第一导频序列的序列长度N=1320,则b=0,1,…,1319。m的取值为
Figure PCTCN2018084044-appb-000056
即,在[0,109]范围内遍历。由于序列长度
Figure PCTCN2018084044-appb-000057
则n的取值为0,1,…,a-1,即,在[0,11]范围内遍历取值。也就是说,在m每取一个值,n在[0,11]范围内遍历一遍。
例如,m=0时,n=0,1,…,11,
Figure PCTCN2018084044-appb-000058
Figure PCTCN2018084044-appb-000059
以此类推,可以得到m=0时的12个序列元素,为了简洁,这里不再一一列举。此后,分别在m=1,2,…,109,在[0,11]范围内对n遍历取值,可以12个序列元素。在第一参数a的取值不同的时候,网络设备仍然可以按照上述方法生成对应的序列元素。为了简洁,这里不再一一举例说明。
换句话说,m的每个取值对应了一个资源单元,在m的取值一定的情况下,n的每个取值对应了一个RB中的一个序列元素。方法二中的公式(3)与方法一中公式(2)的区别在于,更多维度地限定了每个序列元素所映射的RE。
需要说明的是,方法一和方法二的生成第一导频序列的公式虽然不同,但事实上,在第一参数一定的情况下,通过方法一和方法二生成的导频序列的序列元素是相同的,导频 序列的序列长度也是相同的,方法一和方法二只是通过不同的计算方法来获得了导频序列。同时,本发明实施例也不排除通过使用其他可能的公式生成第一导频序列,以使得得到的导频序列长度大于现有技术中的导频序列长度的可能。
S320,该网络设备确定用于承载第一CSI-RS的多个RE,该第一CSI-RS的值取自第一导频序列。
需要说明的是,网络设备可以通过多个天线端口向一个或多个终端设备发送CSI-RS,以进行信道测量。网络设备在发送该多个CSI-RS时,可以从上述生成的第一导频序列中确定CSI-RS的值,映射到时频资源上,然后通过复用码加载以区分天线端口,最后通过时频资源将该多个CSI-RS一起发送出去。在本发明实施例中,为了便于区分和说明,以网络设备通过第一天线端口发送的CSI-RS(例如,记作第一CSI-RS)为例详细说明了网络设备发送CSI-RS的具体过程,但这不应对本发明实施例构成任何限定。但这并不代表该第一CSI-RS所处的多个RE仅用于发送第一CSI-RS,用于承载该第一CSI-RS的多个RE上同时也可以承载其他天线端口的CSI-RS,例如可以包括第二天线端口的CSI-RS(例如,记作第二CSI-RS)。可以理解,同一个RE上承载的第一CSI-RS的值和第二CSI-RS的值取自第一导频序列中的同一个序列元素,也就是说,同一个RE上承载的第一CSI-RS的值和第二CSI-RS的值可以是相同的。具有相同的取值的第一CSI-RS和第二CSI-RS可以通过码分的方式复用相同的时频资源,并且,该第一CSI-RS和第二CSI-RS可以为发给同一个终端设备的CSI-RS,也可以为发送给不同终端设备的CSI-RS,本发明实施例对此并未特别限定。
这里,不失一般性,以该网络设备发送第一CSI-RS的过程为例来详细说明本发明实施例。可以理解,网络设备通过不同的天线端口发送CSI-RS的具体过程与该网络设备发送第一CSI-RS的具体过程相同。
该网络设备在S310中生成第一导频序列之后,可以根据CSI-RS第一参数确定当前使用的导频图样,并根据序列元素和导频图样中RE的映射关系,确定用于承载第一CSI-RS的多个RE,并将该第一导频序列中的部分或全部序列元素(也就是该第一CSI-RS的多个值)映射到该多个RE上。
需要说明的是,网络设备生成第一导频序列的方法可以为上文中S310中本发明实施例提供的方法,也可以参考现有技术中生成导频序列的方法,S310作为一个可选的步骤,或者说,用于生成第一导频序列的一种可能的实现方式,不应对本发明实施例构成任何限定,本发明实施例也不应限于此。
在本发明实施例中,若第一导频序列是通过S310步骤得到的,则序列元素与RE的映射关系可以通过S310中的b与RE的映射关系,或者,m、n与RE的映射关系来体现。例如,将第b个序列元素映射到资源单元中的某一个RE上,或者,将第m个资源单元中的第n个序列元素映射到第m个资源单元中的某一个RE上。
需要说明的是,导频图样以及序列元素与RE的映射关系可以是预先配置好的,并且也可以参考现有技术中的导频元素与RE的映射规则来确定该映射关系,本发明实施例对于导频图样以及序列元素与RE的映射关系并未特别限定。
在本发明实施例中,用于承载该第一CSI-RS的多个RE可以分布于多个资源单元内。其中,在每个资源单元内,用于承载该第一CSI-RS的多个RE处于同一符号的多个子载 波上;并且,在同一个资源单元中的多个RE中,至少有两个RE上承载的第一CSI-RS的值不同,该第一CSI-RS的值可以通过第一复用码(为便于区分,将与第一天线端口对应的复用码记作第一复用码)加载在每个资源单元内的多个RE上。
换句话说,对于每个资源单元,该网络设备可以从在S310中生成的第一导频序列中选择至少两个不同的序列元素,映射到相应的RE上。因此,该第一CSI-RS在每个资源单元上、每个符号上的序列长度大于或等于2。
其中,上述每个资源单元内用于承载该第一CSI-RS的多个RE处于同一符号的多个子载波的数量也就是第一CSI-RS在每个资源单元内占用的RE数量。可选地,每个资源单元内用于承载该第一CSI-RS的多个RE处于同一符号的多个子载波的数量可以为{2,4,8,12}中的任意值。也就是说,在每个资源单元内,第一CSI-RS占用的RE数量可以为2、4、8或12。但应注意,这并不代表该第一CSI-RS在每个资源单元的序列长度为2、4、8或12。第一CSI-RS的序列长度要根据每个资源单元内不同的序列元素的数量来定义。应理解,每个资源单元内的多个RE在频域上可以连续或者非连续,本发明实施例对此并未特别限定。
可选地,每个资源单元内的多个RE上承载的第一CSI-RS的值彼此各不相同。
也就是说,每个资源单元内的多个RE中任意两个RE所承载的第一CSI-RS的值是不同的。
换句话说,若每个资源单元内的多个RE上承载的第一CSI-RS的值彼此各不相同,该第一CSI-RS在每个资源单元内占用了s(s≥2,s为自然数)个RE,则该第一CSI-RS在每个资源单元内的序列长度就为s。
举例来说,该第一CSI-RS在每个RB(即,资源单元的一例)内占用了12个RE,且该12个RE上承载的第一CSI-RS的值彼此各不相同,那么该第一CSI-RS在一个符号内占满了12个子载波。对应于上文中描述的公式(2),网络设备对b分别取了12个不同的值(b的具体取值可以根据预先定义的序列元素和RE的映射关系确定),得到12个不同的序列元素,或者,对应于上文中描述的公式(3),网络设备对m的取值可以根据当前的RB的编号确定,对n在[0,11]范围内遍历取值,得到12个不同的序列元素。网络设备将该12个序列元素按照预先定义的映射关系一一映射到同一个符号的12个子载波上。在这种情况下,该第一CSI-RS和其他CSI-RS(例如,第二CSI-RS)可以通过6组长度为2的OCC码来实现码分复用。
又例如,该第一CSI-RS在每个RB内占用2个RE,则该2个RE上承载的第一CSI-RS的值必然是不同的,那么该第一CSI-RS在一个符号内占用2个子载波。应注意,该第一CSI-RS在每个RB内占用2个RE,并不代表第一导频序列的第一参数a的取值为2,该第一参数a可以取值为2,也可以取值为大于2的自然数。
为便于理解本发明实施例,下面结合附图详细说明不同天线端口数与导频图样的对应关系。
假设天线端口数为2,则该网络设备确定每个天线端口对应的CSI-RS在每个RB(即,资源单元的一例)内占用的RE数可以为2。
图4和图5示出了本发明实施例提供的导频图样的示意图。具体地,图4和图5示出了天线端口数为2时的CSI-RS的可能的导频图样。如图4所示,该2个用于承载第一 CSI-RS的RE可以分布于同一个符号上,例如图中示出的2个承载第一CSI-RS的RE位于符号#5,并且该2个RE位于子载波#10和子载波#11。如图5所示,该2个用于承载第一CSI-RS的RE可以分布于同一个符号上,例如图中示出的符号#5,并且该2个RE位于子载波#8和子载波#9;以此类推,该2个用于承载第一CSI-RS的RE可以位于同一符号中的任意两个子载波上,例如子载波#6和子载波#7、子载波#4和子载波#5等等,图中未予以示出。并且,该两个天线端口的CSI-RS可以通过复用码来区分,即实现了频域CDM。
再看第一导频序列,该2个RE所承载的第一CSI-RS的值分别对应于公式(2)中b的不同取值,或者,分别对应于公式(3)中m、n的不同取值。
若a=2,对应于上文中的公式(2),网络设备对b分别取了2个不同的值(b的具体取值可以根据预先定义的序列元素和RE的映射关系确定),得到2个不同的序列元素;或者,对应上文中的公式(3),网络设备对m的取值可以根据当前的RB的编号确定,对n在分别取值0和1,得到2个不同的序列元素。网络设备分别将该2个序列元素按照预先定义的映射关系一一映射到同一个符号的2个子载波上。
若a=12,对应于上文中的公式(2),网络设备对b分别取了2个不同的值(b的具体取值可以根据预先定义的序列元素和RE的映射关系确定),例如,可以根据所占用的RE的子载波编号取值,得到2个不同的序列元素;或者,对应上文中的公式(3),网络设备对m的取值可以根据当前的RB的编号确定,对n在[0,11]中取2个值,例如可以根据所占用的RE的子载波编号取值,得到2个不同的序列元素。网络设备分别将该2个序列元素按照预先定义的映射关系一一映射到同一个符号的2个子载波上。
若a=4或8,对应于上文中的公式(2),网络设备对b分别取了2个不同的值(b的具体取值可以根据预先定义的序列元素和RE的映射关系确定),得到2个不同的序列元素;或者,对应上文中的公式(3),网络设备对m的取值可以根据当前的RB的编号确定,对n在[0,3]或[0,7]中取2个值,例如,任意取2个值,得到2个不同的序列元素。网络设备分别将该2个序列元素按照预先定义的映射关系一一映射到同一个符号的2个子载波上。
假设天线端口数为4,则该网络设备确定每个天线端口对应的CSI-RS在每个RB(即,资源单元的一例)内占用的RE数在CDM2时可以为2,在CDM4时可以为4。
图6和图7示出了本发明实施例提供的导频图样的又一示意图。具体地,图6和图7示出了天线端口数为4时的CSI-RS的可能的导频图样。如图6所示,该4个用于承载第一CSI-RS的RE可以分布于同一个符号上,例如图中示出的4个承载第一CSI-RS的RE位于符号#5,并且该2个RE位于子载波#8至子载波#11。如图7所示,该4个用于承载第一CSI-RS的RE可以分布于同一个符号上,例如图中示出的符号#5,并且该4个RE位于子载波#4至子载波#7;以此类推,该4个用于承载第一CSI-RS的RE可以位于同一符号中的子载波#0至子载波#3等等,图中未予以示出。并且,该4个天线端口的CSI-RS可以通过复用码来区分,即实现了频域CDM。
当每个资源单元内用于承载第一CSI-RS的RE数大于2时,该多个RE中至少有两个RE承载的第一CSI-RS的值不同。因此,该第一CSI-RS从第一导频序列中取值时,可以取用两个不同的b值(对应于公式(2)),或者两组不同的(m,n)值(对应于公式(3)),其中,对应于公式(3)的两组不同的(m,n)值中,对于一个确定的资源单元而言,m 值取值一定,n取用两个不同的值。从第一导频序列中取用两个不同的值用于生成第一CSI-RS的具体过程在上文中已经结合天线端口数为2的示例详细说明,为了简洁,这里不再赘述。
应理解,上述列举的天线端口数与导频图样的对应关系以及附图中示出的导频图样的示意图仅为便于理解而给出的示例性说明,不应对本发明实施例构成任何限定。当天线端口数增加时,例如,天线端口数为8,还可以考虑使用2倍的CDM4资源或者4倍的CDM2资源来实现频分复用。不论导频图样如何配置,只要第一CSI-RS在一个资源单元内一个符号上占用的多个RE中,至少有两个RE所承载的CSI-RS的值不同,均应落入本发明实施例的保护范围内。
上文中已经说明,该网络设备可以通过多个天线端口发送多个CSI-RS,该多个CSI-RS可以通过频分CDM的方式来复用时频资源。
可选地,在每个资源单元内,用于承载该第一CSI-RS的多个RE上承载有第二CSI-RS,用于承载第二CSI-RS的多个RE中至少有两个RE上承载的第二CSI-RS的值不同,该第二CSI-RS的值通过第二复用码(为便于区分和说明,将与第二天线端口对应的复用码记作第二复用码)加载在多个RE上。
事实上,当该第一CSI-RS和第二CSI-RS占用相同的RE时,同一个资源单元内,该第一CSI-RS在第i(j>i≥0,i为整数,j表示在一个资源单元内的子载波数量)个RE上的值和第二CSI-RS在第i个RE上的值是相同的,此时,可以通过不同的复用码来区分。
可选地,该复用码可以为CDM码。例如,可以为OCC码。
由于网络设备可以通过CDM的方式来区分不同天线端口的CSI-RS。也就是将配置在相同的时频资源(例如,RE)上的序列元素通过CDM码来区分。其中,配置在同一RE上的CSI-RS的值可以是相同的,但对应于不同的天线端口的CDM码可以是不同的。
以两个天线端口为例,OCC码可以为2个比特。则该网络设备可以通过不同的OCC码来区分该两个天线端口。举例来说,对应于天线端口(port)#15,所使用的OCC码可以为[1,1];对应于天线端口(port)#16,所使用的OCC码可以为[1,-1]。因此,尽管该port#15和port#16的CSI-RS所占用的RE相同,CSI-RS的值相同,但OCC码不同,故可以通过加载正交码的方式使该两个CSI-RS相互正交,从而相互间避免干扰。
S330,该网络设备通过多个RE向终端设备发送该第一CSI-RS。
事实上,该网络设备在通过多个RE向该终端设备发送第一CSI-RS时,是以资源单元为最小单位来传输的,在同一资源单元上除了承载有第一CSI-RS,还可能承载其他数据。因此,在S340中,终端设备接收网络设备发送的信号,该信号中包括第一CSI-RS。
另一方面,当两个网络设备在使用相同的时频资源、相同的复用码发送CSI-RS时,由于CSI-RS在每个资源单元内的序列长度得以增加,由1增加到至少为2,因此降低了序列之间的相关性,减小了两个CSI-RS之间的干扰。
S340,终端设备在多个资源单元上接收网络设备发送的信号,所述信号中包括所述第一CSI-RS;
该终端设备可以根据上文中结合S310和S320所描述的方法确定用于承载来自网络设备的第一CSI-RS的多个RE。
可选地,该方法300还包括:
该终端设备接收网络设备发送的配置参数,该配置参数用于确定承载第一CSI-RS的多个RE。
具体地,网络设备在向终端设备发送对该第一CSI-RS时,可以向该终端设备发送配置参数(configuration parameters),该第一参数可以包括:例如天线端口数、CSI-RS发送周期、系统帧号、承载CSI-RS的符号编号、承载该第一CSI-RS的资源单元(例如,RB)编号、CDM数值以及导频密度等。该终端设备可以根据上述第一参数确定用于承载该第一CSI-RS的多个RE。
S350,该终端设备确定用于承载所述第一CSI-RS的多个资源粒子RE,并从该多个RE上获取该第一CSI-RS。
终端设备通过在S350中确定了承载第一CSI-RS的多个RE,便可以从在S340中接收到的信号中获取第一CSI-RS。
本领域的技术人员可以理解,网络设备发送的第一CSI-RS可能为x,该网络设备通过多个RE将第一CSI-RS经信道发送给终端设备。因此终端设备接收到的信号可能为y。网络设备发送的第一CSI-RS的向量x和终端设备接收到的第一将第一CSI-RS的向量y的关系可以表示如下:
y=Hx+n
其中,H表示信道矩阵,n表示接收机噪声。可以很容易看到,接收机噪声n会对信号接收造成影响,在本发明实施例中,为了便于说明,假设接收机噪声为零,信号将无误传输。事实上,现有技术已经存在多种方案可供消除上述噪声。为了简洁,后文中省略对相同或相似情况的说明。
可选地,该方法300还包括:
终端设备生成第三CSI-RS。
在本发明实施例中,为了便于区分和说明,将该终端设备自身生成的CSI-RS记作第三CSI-RS。
应理解,终端设备可以首先根据第一参数生成第二导频序列,然后根据上文中所述的序列元素与导频图样中RE的映射关系,以及在S340中确定的第一CSI-RS的多个RE,确定第三CSI-RS的值,从而得到第三CSI-RS。应理解,该终端设备生成第三CSI-RS的具体过程与S310、S320中网络设备根据第一参数生成第一导频序列、以及确定用于承载第一CSI-RS的多个RE的具体过程相似,为了简洁,这里不再赘述。
并且,由于网络设备和终端设备所使用的第一参数是相同的,用于生成该导频序列的公式也是相同的,序列元素与RE的映射关系也是相同的,因此,终端设备生成的第三CSI-RS与网络设备生成的第一CSI-RS也是相同的,即可以表示为向量x。
可选地,该方法300还包括:
该终端设备根据接收到的第一CSI-RS和生成的第三CSI-RS,估计信道矩阵。
通过在S350中的描述可知,该终端设备接收到的第一CSI-RS可以为y,该终端设备根据第一参数生成的第三CSI-RS可以为x,因此,根据y=Hx+n便可以求解出H的估计值。
通过上述步骤,该终端设备可以估计出信道矩阵,以便于确定预编码矩阵,用于进行数据传输。
因此,本发明实施例中,用于承载每个天线端口的CSI-RS的多个RE中,每个资源单元内至少有两个RE的CSI-RS的值是不同的,即增加了每个天线端口在每个资源单元上每个符号上的CSI-RS的序列长度,降低了导频序列之间的相关性,减小了CSI-RS之间的干扰,有利于更加准确地估计信道。
应理解,上述实施例仅以PN序列为例说明了本发明实施例的发送和接收参考信号的具体方法。但这不应对本发明实施例构成任何限定。本申请也并不排除在未来的协议中通过其他的序列来生成导频序列的可能,例如ZC序列等,本发明实施例的发送和接收参考信号的方法同样适用于其他序列,以增加序列长度,降低导频序列之间的相关性。为了简洁,这里不再针对其他序列一一举例说明。
还应理解,在上述实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图3至图7详细说明了本发明实施例的发送和接收参考信号的方法。以下,结合图8至图11详细说明本发明实施例的网络设备和终端设备。
图8是本发明实施例提供的网络设备10的示意性框图。如图8所示,该网络设备10包括:确定模块11和收发模块12。
其中,该确定模块11用于确定用于承载第一CSI-RS的多个资源粒子RE,所述多个RE分布在多个资源单元内。其中,在每个资源单元内:用于承载所述第一CSI-RS的多个RE处于同一符号的多个子载波上,至少两个RE上承载的所述第一CSI-RS的值不同,所述第一CSI-RS的值通过第一复用码加载在所述每个资源单元内的多个RE上;
该收发模块12用于通过所述多个RE向终端设备发送所述第一CSI-RS。
可选地,在每个资源单元内,同一符号的多个子载波的数量为{2,4,8,12}中的至少一个。
可选地,该每个资源单元内的多个RE上承载的该第一CSI-RS的值彼此各不相同。
可选地,该多个RE上承载有第二CSI-RS,至少两个RE上承载的该第二CSI-RS的值不同,该第二CSI-RS的值通过第二复用码加载在该多个RE上。
可选地,该第一CSI-RS的值由如下公式计算获得:
Figure PCTCN2018084044-appb-000060
其中,
Figure PCTCN2018084044-appb-000061
a为第一参数,
Figure PCTCN2018084044-appb-000062
表示下行信道所包含的资源单元的最大数量,
Figure PCTCN2018084044-appb-000063
表示第n s个时隙中第l个符号上的第b个CSI-RS的值。
可选地,该第一CSI-RS的值由如下公式计算获得:
Figure PCTCN2018084044-appb-000064
其中,a为第一参数,
Figure PCTCN2018084044-appb-000065
表示下行信道所包含的资源单元的最大数量,
Figure PCTCN2018084044-appb-000066
表示第n s个时隙中第l个符号上第m个资源单元上的第n个CSI-RS的值。
可选地,该第一参数a的取值包括以下至少一种:
一个资源单元内的一个符号上的RE数目;
频域码分复用时一个CSI-RS端口使用的正交码长度;或者,
一个CSI-RS端口在一个资源单元上的一个符号内占用的RE数目。
可选地,该第一参数a的取值包括{2,4,8,12}中的至少一个。
可选地,该第一参数a为预先配置的。
可选地,该第一参数a由该网络设备确定后发送至该终端设备。
应理解,网络设备10可以对应于根据本发明实施例的发送和接收参考信号的方法300中的网络设备,该网络设备10可以包括用于执行图3中发送和接收参考信号的方法300的网络设备执行的方法的模块。并且,该网络设备10中的各模块和上述其他操作和/或功能分别为了实现图3中发送和接收参考信号的方法300的相应流程,具体地,确定模块11用于执行方法300中的S310和S320,收发模块12用于执行方法300中的S330,各模块执行上述相应步骤的具体过程在方法300中已经详细说明,为了简洁,在此不再赘述。
图9是本发明实施例提供的终端设备20的示意性框图。如图9所示,该终端设备20包括:收发模块21、确定模块22和获取模块23。
其中,该收发模块21用于在多个资源单元上接收该网络设备发送的信号,该信号中包括第一CSI-RS;
该确定模块22用于确定用于承载该第一CSI-RS的多个资源粒子RE,该多个RE分布在多个资源单元内,其中,在每个资源单元内:用于承载该第一CSI-RS的多个RE处于同一符号的多个子载波上,至少两个RE上承载的该第一CSI-RS的值不同,该第一CSI-RS的值通过第一复用码加载在该每个资源单元内的多个RE上;
该获取模块23用于在该多个RE上获取该第一CSI-RS。
可选地,在每个资源单元内,该同一符号的多个子载波的数量为{2,4,8,12}中的至少一个。
可选地,该多个RE上承载的该第一CSI-RS的值彼此各不相同。可选地,该第一CSI-RS的值由如下公式计算获得:
Figure PCTCN2018084044-appb-000067
其中,
Figure PCTCN2018084044-appb-000068
a为第一参数,
Figure PCTCN2018084044-appb-000069
表示下行信道所包含的资源单元的最大数量,
Figure PCTCN2018084044-appb-000070
表示第n s个时隙中第l个符号上的第b个CSI-RS的值。
可选地,该第一CSI-RS的值由如下公式计算获得:
Figure PCTCN2018084044-appb-000071
其中,a为第一参数,
Figure PCTCN2018084044-appb-000072
表示下行信道所包含的资源单元的最大数量,
Figure PCTCN2018084044-appb-000073
表示第n s个时隙中第l个符号上第m个资源单元上的第n个CSI-RS的值。
可选地,该第一参数a的取值包括以下至少一种:
一个资源单元内的一个符号上的RE数目;
频域码分复用时一个CSI-RS端口使用的正交码长度;或者,
一个CSI-RS端口在一个资源单元上的一个符号内占用的RE数目。
可选地,该第一参数a由该网络设备或该终端设备预先确定。
可选地,该第一参数a由该网络设备确定后发送至该终端设备。
应理解,终端设备20可以对应于根据本发明实施例的发送和接收参考信号方法300中的终端设备,该终端设备20可以包括用于执行图3中发送和接收参考信号的方法300 的终端设备执行的方法的模块。并且,该终端设备20中的各模块和上述其他操作和/或功能分别为了实现图3中发送和接收参考信号的方法300的相应流程,具体地,收发模块21用于执行方法300中的S340,确定模块22和获取模块23用于执行方法300中的S350,各模块执行上述相应步骤的具体过程在方法300中已经详细说明,为了简洁,在此不再赘述。
图10是本发明实施例提供的网络设备400的另一示意性框图。如图10所示,该网络设备400包括处理器410和收发器420,可选的,该网络设备400还包括存储器430。其中,其中,处理器410、收发器420和存储器430之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器430用于存储计算机程序,该处理器410用于从该存储器430中调用并运行该计算机程序,以控制该收发器420收发信号。当存储器430中存储的程序指令被处理器410执行时,该处理器410用于确定用于承载第一CSI-RS的多个资源粒子RE,该多个RE分布在多个资源单元内,其中,在每个资源单元内:用于承载该第一CSI-RS的多个RE处于同一符号的多个子载波上,至少两个RE上承载的该第一CSI-RS的值不同,该第一CSI-RS的值通过第一复用码加载在每个资源单元内的多个RE上;该收发器420用于通过该多个RE向终端设备发送所述第一CSI-RS。
上述处理器410和存储器430可以合成一个处理装置,处理器410用于执行存储器430中存储的程序代码来实现上述功能。具体实现时,该存储器430也可以集成在处理器410中,或者独立于处理器410。
上述网络设备还可以包括天线440,用于将收发器420输出的下行数据或下行控制信令通过无线信号发送出去。具体地,该网络设备400可对应于根据本发明实施例的发送和接收参考信号的方法300中的网络设备,该网络设备400可以包括用于执行图3中发送和接收参考信号的方法300的网络设备执行的方法的单元。并且,该网络设备30中的各单元和上述其他操作和/或功能分别为了实现图3中发送和接收参考信号的方法300的相应流程,具体地,该存储器430用于存储程序代码,使得处理器410在执行该程序代码时,执行方法300中的S310和S320,并控制该收发器420通过天线440执行方法300中的S330,各模块执行上述相应步骤的具体过程在方法300中已经详细说明,为了简洁,在此不再赘述。
图11是本发明实施例提供的终端设备500的另一示意性框图。如图11所示,该终端设备500包括处理器501和收发器502,可选地,该终端设备500还包括存储器503。其中,其中,处理器501、收发器502和存储器503之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器503用于存储计算机程序,该处理器501用于从该存储器503中调用并运行该计算机程序,以控制该收发器502收发信号。
当存储器503中存储的程序指令被处理器501执行时,该处理器501用于确定用于承载来自网络设备的第一CSI-RS的多个资源粒子RE,该多个RE分布在多个资源单元内,其中,在每个资源单元内:用于承载该第一CSI-RS的多个RE处于同一符号的多个子载波上,至少两个RE上承载的该第一CSI-RS的值不同,该第一CSI-RS的值通过第一复用码加载在每个资源单元内的多个RE上;该收发器502用于接收网络设备发送的信号,该信号中包括该第一CSI-RS;该处理器501还用于在该多个RE上获取该第一CSI-RS。
上述处理器501和存储器503可以合成一个处理装置,处理器501用于执行存储器 503中存储的程序代码来实现上述功能。具体实现时,该存储器503也可以集成在处理器501中,或者独立于处理器501。上述终端设备500还可以包括天线504,用于将收发器502输出的上行数据或上行控制信令通过无线信号发送出去。
具体地,该终端设备500可对应于根据本发明实施例的发送和接收参考信号的方法300中的终端设备,该终端设备500可以包括用于执行图3中发送和接收参考信号的方法300的终端设备执行的方法的模块。并且,该终端设备500中的各模块和上述其他操作和/或功能分别为了实现图3中发送和接收参考信号的方法300的相应流程,具体地,该存储器503用于存储程序代码,使得处理器501在执行该程序代码时,控制该收发器502通过天线504执行方法300中的S340,并执行方法300中的S350,各模块执行上述相应步骤的具体过程在方法300中已经详细说明,为了简洁,在此不再赘述。
上述处理器501可以用于执行前面方法实施例中描述的由终端内部实现的动作,而收发器502可以用于执行前面方法实施例中描述的终端向网络设备传输或者发送的动作。具体请见前面方法实施例中的描述,此处不再赘述。
上述处理器501和存储器503可以集成为一个处理装置,处理器501用于执行存储器503中存储的程序代码来实现上述功能。具体实现时,该存储器503也可以集成在处理器501中。
上述终端设备500还可以包括电源505,用于给终端中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备500还可以包括输入单元506,显示单元507,音频电路508,摄像头509和传感器510等中的一个或多个,所述音频电路还可以包括扬声器5082,麦克风5084等。
应理解,本发明实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
还应理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机 程序产品包括一个或多个计算机指令。在计算机上加载或执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM)、随机存取存储器(RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟 悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种发送参考信号的方法,其特征在于,包括:
    网络设备确定用于承载第一CSI-RS的多个资源粒子RE,所述多个RE分布在多个资源单元内,
    其中,在每个资源单元内:用于承载所述第一CSI-RS的多个RE处于同一符号的多个子载波上,至少两个RE上承载的所述第一CSI-RS的值不同,所述第一CSI-RS的值通过第一复用码加载在每个资源单元内的多个RE上;
    所述网络设备通过所述多个RE向终端设备发送所述第一CSI-RS。
  2. 如权利要求1所述的方法,其特征在于,所述每个资源单元内的多个RE上承载的所述第一CSI-RS的值彼此各不相同。
  3. 如权利要求1或2所述的方法,其特征在于,所述每个资源单元内的多个RE上承载有第二CSI-RS,至少两个RE上承载的所述第二CSI-RS的值不同,所述第二CSI-RS的值通过第二复用码加载在所述每个资源单元内的多个RE上。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述第一CSI-RS的值取自第一导频序列,所述第一导频序列与第一参数a相关,所述第一参数a的取值包括以下至少一种:
    一个资源单元内的一个符号上的RE数目;
    频域码分复用时一个CSI-RS端口使用的正交码长度;或者,
    一个CSI-RS端口在一个资源单元上的一个符号内占用的RE数目。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述第一CSI-RS的值取自第一导频序列,所述第一导频序列与第一参数a相关,所述第一参数a的取值包括{2,4,8,12}中的至少一个。
  6. 一种接收参考信号的方法,其特征在于,包括:
    终端设备在多个资源单元上接收网络设备发送的信号,所述信号中包括所述第一CSI-RS;
    所述终端设备确定用于承载所述第一CSI-RS的多个资源粒子RE,所述多个RE分布在多个资源单元内,其中,在每个资源单元内:用于承载所述第一CSI-RS的多个RE处于同一符号的多个子载波上,至少两个RE上承载的所述第一CSI-RS的值不同,所述第一CSI-RS的值通过第一复用码加载在每个资源单元内的多个RE上;
    所述终端设备在所述多个RE上获取所述第一CSI-RS。
  7. 如权利要求6所述的方法,其特征在于,所述每个资源单元内的多个RE上承载的所述第一CSI-RS的值彼此各不相同。
  8. 如权利要求6或7所述的方法,其特征在于,所述每个资源单元内的多个RE上承载有第二CSI-RS,至少两个RE上承载的所述第二CSI-RS的值不同,所述第二CSI-RS的值通过第二复用码加载在所述每个资源单元内的多个RE上。
  9. 如权利要求6至8中任一项所述的方法,其特征在于,所述第一CSI-RS的值取自第一导频序列,所述第一导频序列与第一参数a相关,所述第一参数a的取值包括以下至 少一种:
    一个资源单元内的一个符号上的RE数目;
    频域码分复用时一个CSI-RS端口使用的正交码长度;或者,
    一个CSI-RS端口在一个资源单元上的一个符号内占用的RE数目。
  10. 如权利要求6至9中任一项所述的方法,其特征在于,所述第一CSI-RS的值取自第一导频序列,所述第一导频序列与第一参数a相关,所述第一参数a的取值包括{2,4,8,12}中的至少一个。
  11. 一种网络设备,其特征在于,包括:
    处理器,用于确定用于承载第一CSI-RS的多个资源粒子RE,所述多个RE分布在多个资源单元内,其中,在每个资源单元内:用于承载所述第一CSI-RS的多个RE处于同一符号的多个子载波上,至少两个RE上承载的所述第一CSI-RS的值不同,所述第一CSI-RS的值通过第一复用码加载在每个资源单元内的多个RE上;
    收发器,用于通过所述多个RE向终端设备发送所述第一CSI-RS。
  12. 如权利要求11所述的网络设备,其特征在于,所述每个资源单元内的多个RE上承载的所述第一CSI-RS的值彼此各不相同。
  13. 如权利要求11或12所述的网络设备,其特征在于,所述每个资源单元内的多个RE上承载有第二CSI-RS,至少两个RE上承载的所述第二CSI-RS的值不同,所述第二CSI-RS的值通过第二复用码加载在所述每个资源单元内的多个RE上。
  14. 如权利要求11至13中任一项所述的网络设备,其特征在于,所述第一CSI-RS的值取自第一导频序列,所述第一导频序列与第一参数a相关,所述第一参数a的取值包括以下至少一种:
    一个资源单元内的一个符号上的RE数目;
    频域码分复用时一个CSI-RS端口使用的正交码长度;或者,
    一个CSI-RS端口在一个资源单元上的一个符号内占用的RE数目。
  15. 如权利要求11至14中任一项所述的网络设备,其特征在于,所述第一CSI-RS的值取自第一导频序列,所述第一导频序列与第一参数a相关,所述第一参数a的取值包括{2,4,8,12}中的至少一个。
  16. 一种终端设备,其特征在于,包括:
    收发器,用于在多个资源单元上接收网络设备发送的信号,所述信号中包括所述第一CSI-RS;
    处理器,用于确定用于承载所述第一CSI-RS的多个资源粒子RE,所述多个RE分布在多个资源单元内,其中,在每个资源单元内:用于承载所述第一CSI-RS的多个RE处于同一符号的多个子载波上,至少两个RE上承载的所述第一CSI-RS的值不同,所述第一CSI-RS的值通过第一复用码加载在每个资源单元内的多个RE上;
    所述处理器还用于在所述确定的多个RE上获取所述第一CSI-RS。
  17. 如权利要求16所述的终端设备,其特征在于,所述每个资源单元内的多个RE上承载的所述第一CSI-RS的值彼此各不相同。
  18. 根据权利要求16或17所述的终端设备,其特征在于,所述每个资源单元内的多个RE上还承载有第二CSI-RS,至少两个RE上承载的所述第二CSI-RS的值不同,所述 第二CSI-RS的值通过第二复用码加载在所述每个资源单元内的多个RE上。
  19. 如权利要求16至18中任一项所述的终端设备,其特征在于,所述第一CSI-RS的值取自第一导频序列,所述第一导频序列与第一参数a相关,所述第一参数a的取值包括以下至少一种:
    一个资源单元内的一个符号上的RE数目;
    频域码分复用时一个CSI-RS端口使用的正交码长度;或者,
    一个CSI-RS端口在一个资源单元上的一个符号内占用的RE数目。
  20. 如权利要求16至19中任一项所述的终端设备,其特征在于,所述第一CSI-RS的值取自第一导频序列,所述第一导频序列与第一参数a相关,所述第一参数a的取值包括{2,4,8,12}中的至少一个。
PCT/CN2018/084044 2017-04-28 2018-04-23 发送和接收参考信号的方法、网络设备和终端设备 WO2018196707A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP18791325.6A EP3584983B1 (en) 2017-04-28 2018-04-23 Method for transmitting and receiving reference signal, network device and terminal device
CA3053862A CA3053862C (en) 2017-04-28 2018-04-23 Reference signal sending method, reference signal receiving method, network device, and terminal device
KR1020197026357A KR102282752B1 (ko) 2017-04-28 2018-04-23 참조 신호 송신 방법, 참소 신호 수신 방법, 네트워크 장치, 및 단말기 장치
BR112019017539-3A BR112019017539A2 (pt) 2017-04-28 2018-04-23 Método de envio de sinal de referência, método de recebimento de sinal de referência, dispositivo de rede, e dispositivo terminal
JP2019551391A JP7323452B2 (ja) 2017-04-28 2018-04-23 基準信号送信方法、基準信号受信方法、ネットワークデバイス、および端末デバイス
CN201880027951.4A CN110832801A (zh) 2017-04-28 2018-04-23 发送和接收参考信号的方法、网络设备和终端设备
EP21203596.8A EP4009565B1 (en) 2017-04-28 2018-04-23 Reference signal sending method, reference signal receiving method, network device, and terminal device
US16/525,130 US10700834B2 (en) 2017-04-28 2019-07-29 Reference signal sending method, reference signal receiving method, network device, and terminal device
US16/900,516 US11329782B2 (en) 2017-04-28 2020-06-12 Reference signal sending method, reference signal receiving method, network device, and terminal device
US17/721,138 US11784765B2 (en) 2017-04-28 2022-04-14 Reference signal sending method, reference signal receiving method, network device, and terminal device
US18/453,066 US20240056243A1 (en) 2017-04-28 2023-08-21 Reference signal sending method, reference signal receiving method, network device, and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710295299.1A CN108809556B (zh) 2017-04-28 2017-04-28 发送和接收参考信号的方法、网络设备和终端设备
CN201710295299.1 2017-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/525,130 Continuation US10700834B2 (en) 2017-04-28 2019-07-29 Reference signal sending method, reference signal receiving method, network device, and terminal device

Publications (1)

Publication Number Publication Date
WO2018196707A1 true WO2018196707A1 (zh) 2018-11-01

Family

ID=63918879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084044 WO2018196707A1 (zh) 2017-04-28 2018-04-23 发送和接收参考信号的方法、网络设备和终端设备

Country Status (8)

Country Link
US (4) US10700834B2 (zh)
EP (2) EP4009565B1 (zh)
JP (1) JP7323452B2 (zh)
KR (1) KR102282752B1 (zh)
CN (4) CN108809556B (zh)
BR (1) BR112019017539A2 (zh)
CA (1) CA3053862C (zh)
WO (1) WO2018196707A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102687421A (zh) * 2009-09-27 2012-09-19 Lg电子株式会社 用于在无线通信系统中传输参考信号的方法和设备
CN104735691A (zh) * 2013-12-20 2015-06-24 北京三星通信技术研究有限公司 信道状态信息汇报的方法及装置
WO2016126063A1 (ko) * 2015-02-06 2016-08-11 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 보고 방법 및 이를 위한 장치

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100138261A (ko) * 2009-06-24 2010-12-31 주식회사 팬택 무선통신 시스템에서 참조신호의 할당방법 및 그 장치, 그 장치를 이용한 송수신장치
CN101964706B (zh) * 2009-07-24 2015-05-20 中兴通讯股份有限公司 基于混合复用的导频复用方式确定方法与装置
JP5649651B2 (ja) * 2009-08-14 2015-01-07 エルジー エレクトロニクス インコーポレイティド 多重アンテナを支援する無線通信システムにおいてダウンリンク参照信号を伝送する方法及び装置
CN105553602B (zh) * 2009-09-07 2018-03-13 Lg电子株式会社 在无线通信系统中发送/接收参考信号的方法和装置
KR101740221B1 (ko) * 2010-01-18 2017-05-29 주식회사 골드피크이노베이션즈 채널상태정보-기준신호 할당 방법 및 장치
US8305987B2 (en) * 2010-02-12 2012-11-06 Research In Motion Limited Reference signal for a coordinated multi-point network implementation
CN102195741A (zh) * 2010-03-10 2011-09-21 华为技术有限公司 信道状态信息参考信号的传输方法和装置
CA2784274C (en) * 2010-03-17 2016-02-16 Lg Electronics Inc. Method and apparatus for providing channel state information-reference signal (csi-rs) configuration information in a wireless communication system supporting multiple antennas
CN102792725B (zh) * 2010-06-18 2015-04-22 上海贝尔股份有限公司 用于下行信道质量监测的方法以及装置
CN101924610B (zh) * 2010-08-02 2012-12-26 西安电子科技大学 Lte-a系统中信道状态信息参考信号csi-rs的设计与分配方法
KR101852637B1 (ko) * 2010-08-16 2018-04-26 지티이 (유에스에이) 인크. Lte-어드밴스 시스템들에서의 csi-rs 자원 할당을 위한 방법들 및 시스템들
CN102437987B (zh) * 2010-09-29 2015-09-16 中兴通讯股份有限公司 信道状态信息参考信号序列的生成和映射方法及装置
CN102891710B (zh) * 2011-07-20 2015-12-02 华为技术有限公司 一种获取信道状态信息的方法及装置
US9107213B2 (en) * 2011-11-09 2015-08-11 Samsung Electronics Co., Ltd. Reference signal for time and/or frequency tracking in a wireless network
CN103999375B (zh) * 2011-12-16 2017-03-08 Lg电子株式会社 针对多小区系统中的物理信道进行资源映射的方法和装置
JP6065330B2 (ja) * 2011-12-20 2017-01-25 マーベル ワールド トレード リミテッド 協調マルチポイント送信の参照信号設計
CN103259583B (zh) 2012-02-20 2016-12-07 华为技术有限公司 传输数据的方法、用户设备和基站
US9161241B2 (en) * 2012-03-30 2015-10-13 Nokia Solutions And Networks Oy Reference signal design and signaling for per-user elevation MIMO
CN103856310B (zh) * 2012-12-06 2016-12-21 电信科学技术研究院 信道状态信息参考信号的传输方法和设备
CN103944685B (zh) * 2013-01-18 2017-10-10 华为技术有限公司 扩展参考信号的方法、设备和通信系统
CN105356978B (zh) * 2014-08-21 2019-06-07 电信科学技术研究院 一种传输csi-rs的方法和设备
CN105812106B (zh) * 2014-12-31 2019-05-24 华为技术有限公司 传输上行数据的方法和装置
US9900198B2 (en) * 2015-02-20 2018-02-20 Samsung Electronics Co., Ltd. Channel-state-information reference signals for advanced wireless systems
CN106559162B (zh) * 2015-09-24 2020-03-06 索尼公司 用于无线通信的基站侧和用户设备侧的装置及方法
EP3382903B1 (en) * 2015-11-23 2020-12-30 LG Electronics Inc. -1- Method for transmitting and receiving channel state information in wireless communication system, and apparatus therefor
CN105892614A (zh) * 2015-12-18 2016-08-24 乐视移动智能信息技术(北京)有限公司 一种智能终端的功耗管控方法及系统
WO2017116141A1 (ko) * 2015-12-29 2017-07-06 엘지전자(주) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
US10396877B2 (en) * 2015-12-31 2019-08-27 Lg Electronics Inc. Method for reporting CSI in wireless communication system and apparatus therefor
US10701580B2 (en) * 2017-03-23 2020-06-30 Samsung Electronics Co., Ltd. Method of allocating CSI-RS for beam management

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102687421A (zh) * 2009-09-27 2012-09-19 Lg电子株式会社 用于在无线通信系统中传输参考信号的方法和设备
CN104735691A (zh) * 2013-12-20 2015-06-24 北京三星通信技术研究有限公司 信道状态信息汇报的方法及装置
WO2016126063A1 (ko) * 2015-02-06 2016-08-11 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 보고 방법 및 이를 위한 장치

Also Published As

Publication number Publication date
CN109510683A (zh) 2019-03-22
US20190349165A1 (en) 2019-11-14
JP2020516113A (ja) 2020-05-28
US20240056243A1 (en) 2024-02-15
EP3584983A1 (en) 2019-12-25
BR112019017539A2 (pt) 2020-03-31
EP4009565B1 (en) 2023-09-06
EP3584983A4 (en) 2020-04-15
KR20190112137A (ko) 2019-10-02
US20200313821A1 (en) 2020-10-01
KR102282752B1 (ko) 2021-07-27
US11784765B2 (en) 2023-10-10
CN109510683B (zh) 2020-02-14
CA3053862C (en) 2022-01-18
CN109547185A (zh) 2019-03-29
CN110832801A (zh) 2020-02-21
CN108809556A (zh) 2018-11-13
CN109547185B (zh) 2020-03-20
JP7323452B2 (ja) 2023-08-08
US20220329378A1 (en) 2022-10-13
EP3584983B1 (en) 2022-05-11
US11329782B2 (en) 2022-05-10
CN108809556B (zh) 2023-11-17
US10700834B2 (en) 2020-06-30
CA3053862A1 (en) 2018-11-01
EP4009565A1 (en) 2022-06-08

Similar Documents

Publication Publication Date Title
CN110291762B (zh) 减少无线通信系统中的干扰的系统和方法
CN110447212B (zh) 用于下一代无线通信系统的参考信号的方法及装置
WO2019137057A1 (zh) 资源指示方法、终端设备和网络设备
WO2019029328A1 (zh) 参考信号的配置方法及装置
WO2018171491A1 (zh) 无线通信的方法、网络设备和终端设备
US11102783B2 (en) System and method for supporting beamformed sounding reference signals
WO2018137397A1 (zh) 一种配置信息的方法、装置及系统
US11671197B2 (en) Configuration method for channel state information measurement and related device
WO2017132806A1 (zh) 配置导频信号的方法及第一设备
WO2017008235A1 (en) Method and apparatus for downlink transmission power configuration and signal detection
WO2018127138A1 (zh) 一种参考信号配置的方法、基站、用户设备和系统
WO2022161398A1 (zh) 一种相位噪声补偿方法、终端设备及网络设备
CN114902774A (zh) 一种确定参考信号的方法及装置
EP3874870A1 (en) Demodulation reference signal sequence generation method and appratus
WO2022205022A1 (zh) 用于传输参考信号的方法和装置
WO2018196707A1 (zh) 发送和接收参考信号的方法、网络设备和终端设备
WO2019170089A1 (zh) 信息传输的方法、装置和通信节点
WO2019095863A1 (zh) Pucch传输方法、终端及网络侧设备
CN111741482B (zh) 一种确定和获得下行干扰的方法、终端设备及网络设备
US10701697B2 (en) Technique for scrambling reference signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791325

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 3053862

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019017539

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197026357

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019551391

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018791325

Country of ref document: EP

Effective date: 20190918

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112019017539

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190822