WO2018082610A1 - 确定方法、接入、发送、处理方法及装置、基站及终端 - Google Patents

确定方法、接入、发送、处理方法及装置、基站及终端 Download PDF

Info

Publication number
WO2018082610A1
WO2018082610A1 PCT/CN2017/109117 CN2017109117W WO2018082610A1 WO 2018082610 A1 WO2018082610 A1 WO 2018082610A1 CN 2017109117 W CN2017109117 W CN 2017109117W WO 2018082610 A1 WO2018082610 A1 WO 2018082610A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
signal
receiving
format
base station
Prior art date
Application number
PCT/CN2017/109117
Other languages
English (en)
French (fr)
Inventor
郝鹏
张峻峰
斯韦德曼⋅帕特里克
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP17866437.1A priority Critical patent/EP3537831A4/en
Publication of WO2018082610A1 publication Critical patent/WO2018082610A1/zh
Priority to US16/401,492 priority patent/US10993267B2/en
Priority to US17/229,431 priority patent/US11844112B2/en
Priority to US18/513,802 priority patent/US20240098802A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access

Definitions

  • the present disclosure relates to the field of wireless communications, and in particular, to a method, an apparatus, a device, a base station, and a terminal for determining, accessing, transmitting, and receiving.
  • the new generation of mobile communication systems will be systematically networked on the carrier frequencies higher than those used in the second-generation 2G, third-generation 3G, and fourth-generation 4G systems.
  • the industry-wide consensus and the frequency bands recognized by international organizations are mainly 3GHz to 6GHz, 6GHz to 100GHz, compared to the networking frequency of early communication systems, these bands are relatively high, and the loss is greater in propagation.
  • the coverage radius is relatively smaller under the same power, which also determines the next generation mobile communication system group.
  • beamforming techniques can be used to increase the coverage radius. Among them, the initial access has higher requirements for coverage, and the coverage requirement is higher than the service coverage requirement, so the beamforming technology is adopted.
  • Embodiments of the present disclosure provide a method, an apparatus, a device, a base station, and a terminal for determining, accessing, transmitting, and processing.
  • An embodiment of the present disclosure provides a method for determining an uplink receiving beam, which is applied to a base station, and includes:
  • the N is an integer not less than 2;
  • An embodiment of the present disclosure provides a random access method, which is applied to a terminal, and includes:
  • An embodiment of the present disclosure provides a random access method, which is applied to a terminal, and includes:
  • An embodiment of the present disclosure provides a method for determining an uplink receiving beam, which is applied to a base station, and includes:
  • An embodiment of the present disclosure provides a method for determining an uplink receiving beam, including:
  • An embodiment of the present disclosure provides a method for determining an uplink receiving beam, including:
  • An embodiment of the present disclosure provides an apparatus for determining an uplink receiving beam, which is applied to a base station, and includes:
  • the first receiving unit is configured to receive, by using the N receiving configurations, a random access signal sent by the terminal; the N is an integer not less than 2;
  • the first acquiring unit is configured to separately acquire receiving status information corresponding to the N receiving configurations
  • the first determining unit is configured to determine a receiving configuration of the uplink receiving beam according to the receiving status information.
  • An embodiment of the present disclosure provides a random access device, which is applied to a terminal, and includes:
  • a third determining unit configured to determine a signal format
  • a first forming unit configured to form a random access signal based on the signal format
  • the second sending unit is configured to send the random access signal to the base station.
  • An embodiment of the present disclosure provides a random access device, which is applied to a terminal, and includes:
  • a fourth determining unit configured to determine a signal format
  • a second forming unit configured to form a random access signal according to the signal format
  • a third sending unit configured to send at least part of the random access signal by using the S sending configurations, where the S is an integer greater than or equal to 1.
  • An embodiment of the present disclosure provides an apparatus for determining an uplink receiving beam, which is applied to a base station, and includes:
  • a fourth receiving unit configured to receive, respectively, a random access signal sent by the terminal by using multiple sending configurations; wherein, the one sending configuration sends at least part of the random access signal;
  • the fourth determining unit is configured to determine, according to the receiving status information of the random access signal sent by the different configuration, the receiving configuration of the uplink beam.
  • An embodiment of the present disclosure provides an apparatus for determining an uplink receiving beam, including:
  • a fifth sending unit configured to send the specified downlink signal multiple times by using multiple sending configurations
  • a fifth receiving unit configured to receive a random access signal sent by the terminal
  • a fifth determining unit configured to determine, according to the receiving parameter of the random access signal, that the terminal sends Sending a receiving configuration of the specified downlink signal corresponding to the access signal
  • the sixth determining unit is configured to determine, according to the receiving configuration of the specified downlink signal corresponding to the access signal, the receiving configuration of the uplink receiving beam.
  • An embodiment of the present disclosure provides an apparatus for determining an uplink receiving beam, which is applied to a terminal, and includes:
  • a sixth receiving unit configured to receive a specified downlink signal sent by the base station by using different sending configurations
  • a selecting unit configured to select a random access resource according to the receiving status information of each of the specified downlink signals
  • a sixth sending unit configured to send a random access signal by using the random access resource.
  • An embodiment of the present disclosure provides a base station, including:
  • a first receiving antenna configured to receive a random access signal sent by the terminal by using N receiving configurations; the N is an integer not less than 2;
  • the first processor is configured to separately acquire the receiving status information corresponding to the N receiving configurations, and determine the receiving configuration of the uplink receiving beam according to the receiving status information.
  • An embodiment of the present disclosure provides a terminal, including:
  • a second processor configured to determine a signal format and form a random access signal based on the signal format
  • the first transmit antenna is configured to send the random access signal to the base station.
  • An embodiment of the present disclosure provides a terminal, including:
  • a third processor configured to determine a signal format and form a random access signal according to the signal format
  • a second transmit antenna configured to transmit at least a portion of the random access signal using the S transmit configurations; wherein the S is an integer greater than or equal to one.
  • An embodiment of the present disclosure provides a base station, including:
  • a fourth receiving antenna configured to respectively receive a random transmission sent by the terminal by using multiple sending configurations An access signal, wherein one of the transmission configurations transmits at least a portion of the random access signal;
  • the fourth processor is configured to determine, according to the receiving status information of the random access signal sent by the different configurations, the receiving configuration of the uplink beam.
  • An embodiment of the present disclosure provides a base station, including:
  • the fourth transmitting antenna is configured to send the specified downlink signal multiple times by using multiple sending configurations
  • a fifth receiving antenna configured to receive a random access signal sent by the terminal
  • the fifth processor is configured to: according to the receiving parameter of the random access signal, determine, by the terminal, a receiving configuration of the specified downlink signal corresponding to the access signal; and send, according to the terminal, the corresponding location of the access signal
  • the receiving configuration of the downlink signal is specified, and the receiving configuration of the uplink receiving beam is determined.
  • An embodiment of the present disclosure provides a base station, including:
  • a sixth receiving antenna configured to receive a specified downlink signal sent by the base station by using different sending configurations
  • a sixth processor configured to select a random access resource according to the received status information of each of the specified downlink signals
  • a fifth transmitting antenna configured to send a random access signal by using the random access resource.
  • An embodiment of the present disclosure provides a signaling notification method, including:
  • the base station sends the indication information of the random access signal to the terminal;
  • the indication information includes at least one of a preamble format, a repetition number of the preamble format, and a repetition type of the preamble format.
  • An embodiment of the present disclosure provides a signaling receiving method, including:
  • the indication information includes at least one of a preamble format, a repetition number of the preamble format, and a repetition type of the preamble format.
  • An embodiment of the present disclosure provides a base station, including:
  • the seventh sending unit is configured to send, by the base station, indication information of the random access signal to the terminal;
  • the indication information includes at least one of a preamble format, a repetition number of the preamble format, and a repetition type of the preamble format.
  • An embodiment of the present disclosure provides a terminal, including:
  • a seventh receiving unit configured to receive indication information of the random access signal from the base station
  • Embodiments of the present disclosure provide a computer readable storage medium having stored thereon computer executable instructions that, when executed by a processor, implement any of the methods described above.
  • the indication information includes at least one of a preamble format, a repetition number of the preamble format, and a repetition type of the preamble format.
  • Embodiments of the present disclosure provide a method and apparatus for determining an uplink receive beam, a random access method and apparatus, a base station, and a terminal.
  • the base station can receive a random access signal by using multiple receiving configurations, thereby obtaining multiple receiving status information, and then selecting a receiving configuration of the downlink receiving beam according to the receiving status information, so that the terminal does not send multiple random accesses.
  • the signal reduces the power consumption of the random access signal transmitted by the terminal, and reduces the communication resources occupied by the multiple random access signals.
  • the terminal simultaneously sends a random access signal by using multiple sending parameters, and the base station naturally receives the random access signal sent by each sending parameter, so that the terminal can also determine according to the receiving status information of the random access signal.
  • the terminal first receives the specified downlink signal, and selects a corresponding random access resource to send to the base station according to the received status information of the specified downlink signal, and the base station can obtain the random access signal according to the receiving time of the random access signal and the random access signal.
  • the corresponding relationship between the access resource and the transmission resource of the specified downlink signal determines the receiving configuration of the uplink receiving beam, so that the terminal only needs to send a random access signal.
  • the number of random access signals transmitted by the terminal is reduced, which reduces the signaling overhead of the random access signal, reduces the power consumption of the terminal, and reduces the occupation of communication resources.
  • FIG. 1 is a schematic flowchart of a method for determining a first uplink receiving beam according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart diagram of a first random access method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a second random access method according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of a method for determining a second uplink receiving beam according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of a method for determining a third uplink receiving beam according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of a third random access method according to an embodiment of the present disclosure.
  • FIG. 7, FIG. 10, FIG. 11 and FIG. 12 are schematic diagrams showing the structure of an apparatus for determining an uplink receiving beam according to an embodiment of the present disclosure
  • FIG. 8 and FIG. 9 are schematic structural diagrams of a random access apparatus according to an embodiment of the present disclosure.
  • FIG. 13 to FIG. 14 are schematic diagrams showing signal formats of a random access signal according to an embodiment of the present disclosure
  • FIG. 15 to FIG. 17 are schematic diagrams of association between a transmission resource of a downlink signal and a random access resource according to an embodiment of the present disclosure.
  • the optimal downlink beam selected by the terminal is not necessarily the optimal uplink beam received by the base station.
  • the terminal sends multiple random access signals to facilitate the base station to receive the received quality of the random access signal multiple times to determine the receive beam. In this case, the terminal transmits multiple times, the number of times the terminal transmits is large, the power consumption is large, and the process of selecting a beam by the base station is relatively cumbersome.
  • this embodiment provides a method for determining an uplink receiving beam, which is applied to a base station, and includes:
  • Step S110 Receive, by using N receiving configurations, a random access signal sent by the terminal; the N is an integer not less than 2;
  • Step S120 Acquire, respectively, receiving status information corresponding to the N receiving configurations.
  • Step S130 Determine, according to the reception status information, a receiving configuration of an uplink receiving beam.
  • the method for determining an uplink receiving beam is a method applied to a base station.
  • the terminal can also be called a User Equipment (UE).
  • UE User Equipment
  • the UE When the UE performs random access, it sends a random access signal to the base station.
  • the base station performs the determination of the receiving configuration of the uplink receiving beam that receives data from the UE by using the random access of the UE.
  • the receiving configuration herein may include at least one of a configuration parameter of a beam of an uplink receiving beam, a beam frequency, and a polarization direction.
  • the base station in order to select an optimal beam or a better beam for receiving data transmitted by the UE, uses N receiving configurations, where any two of the N receiving configurations are at least partially different, so that the base station obtains the UE to send.
  • Multiple reception status information of a random access signal may include parameters such as received signal strength or received signal quality that indicate whether the reception condition is good or bad.
  • a receiving configuration for receiving uplink data transmitted by the UE is selected according to the receiving status information.
  • the determined receiving configuration may be used to receive uplink service data sent by the UE.
  • the step S130 may include: selecting a receiving configuration that corresponds to the strongest received signal strength, and the receiving configuration of the uplink receiving beam may include: selecting a corresponding receiving configuration that is greater than a preset lightness as a subsequent uplink.
  • Receive configuration of the receive beam For example, the receiving configuration A receives the configuration B, receives a random access signal sent by the UE, and obtains the signal receiving strength A and the received signal strength B respectively; if the receiving strength A is greater than the received signal strength B, the receiving is selectable in step S130. Configure A as the uplink service data of the UE to receive the UE subsequently. Wait for the receiving configuration of the uplink data.
  • the base station operates in this manner, and the UE only needs to send a random access signal, which can assist the base station to complete the determination of the receiving configuration of the uplink receiving beam, reduce the number of times the UE sends the random access signal, and reduce the communication used by the random access signal. Resources reduce the power consumption of the UE.
  • step S110 There are various implementations of the step S110, and at least two implementations are provided below:
  • the step S110 may include:
  • the base station dynamically adjusts at least one of the receiving configurations in the process of receiving a random access signal until there are N receiving configurations for receiving a random access signal sent by the UE. For example, when the base station receives the random access signal with a receiving configuration, the base station dynamically adjusts the receiving configuration of the random access signal N-1 times.
  • different receiving configurations are received in the time dimension in a time division multiplexing or polling manner, and the random access signals may be received in turn.
  • step S110 can include:
  • the N receiving configurations are used to simultaneously receive a random access signal sent by the terminal.
  • the N receiving configurations are used to receive the random access signal at the same time, so that the base station obtains multiple receiving status information, and then selects the matching condition by comparing the mutual comparison of the receiving status information or the preset threshold.
  • the receiving configuration is the receiving configuration of the uplink receiving beam that is determined in step S130.
  • the method further includes:
  • Predetermining a first extended signal format of the random access signal Predetermining a first extended signal format of the random access signal; wherein the first extended signal
  • the format includes a first cyclic prefix and N first preambles;
  • the first extended signal format may be a signal format of a random access signal.
  • a cyclic prefix and N preambles are included.
  • the cyclic prefix in the first extended signal format is a first cyclic prefix
  • the preamble in the first extended signal format may be referred to as a first preamble.
  • the signal format of the existing random access signal may be referred to as a basic signal format, or the signal format of a random access signal including a cyclic prefix and a preamble may also be referred to as a basic signal format.
  • the cyclic prefix in the underlying signal format is called the underlying cyclic prefix.
  • the basic signal format is also not limited to the random access signal format.
  • a conventional OFDM symbol may also be referred to as a basic signal format
  • a cyclic prefix of an OFDM symbol may also be referred to as a basic cyclic prefix.
  • the length of the first cyclic prefix is equal to the length of the underlying cyclic prefix in the underlying signal format.
  • the length of the first cyclic prefix and the length of the base cyclic prefix are within a preset range.
  • the preset range here can be 20%, 10%.
  • the length of the first cyclic prefix is 20% longer than the length of the base cyclic prefix.
  • the length of the first cyclic prefix is greater than or equal to M times the length of the base cyclic prefix, and the M is a positive integer.
  • the M may be equal to the N.
  • the length of the first preamble may be equal to or slightly smaller or slightly larger than the length of the base preamble of the base signal format.
  • the length of the first preamble is 0.8 times the length of the base preamble.
  • any two of the first preambles may be the same or different.
  • the base station sends a first extended signal format to the UE, which is equivalent to instructing the UE to use the first extended signal format to send the random access signal.
  • the base station The signal format of the random access signal may not be sent to the UE, and the UE may construct a random access signal according to the signal format stored by the UE; for example, transmitting the random access signal or the like by using the basic signal format.
  • the UE may also send the random access signal in a signal format defined by a communication protocol.
  • the step S110 may further include:
  • the random access signal is received in segments by using the N receiving configurations.
  • the UE may transmit in segments. At this time, the base station receives the segment in step S110, for example, receives one random access signal twice.
  • the method also includes transmitting a segmentation indication to the terminal;
  • the step S110 may include:
  • the segment When the length of the random access signal is greater than the first preset length, the segment receives a random access signal transmitted based on the segmentation indication.
  • the base station When the UE is segmentally transmitted, it is divided into several segments, which can be instructed by the base station in advance. Therefore, in this embodiment, the base station further sends a segmentation indication to the terminal, and the base station receives, in step S110, a random access signal that is sent by the UE according to the segmentation indication segment.
  • the segmentation indication may be used to indicate segmentation transmission, and may also be used to indicate the number of segments of the segment, and may also be used to indicate a segmentation interval, that is, a time interval or a frequency interval between two segment transmissions, etc., to facilitate the The base station receives the configuration by itself in advance according to the segmentation indication.
  • the UE may also dynamically determine whether to perform segment transmission.
  • the base station may determine whether the reception is complete according to the length of the received random access signal, and if not received, It can be considered to be received in segments.
  • this embodiment provides a random access method, which is applied to a terminal, and includes:
  • Step S210 determining a signal format
  • Step S220 Form a random access signal based on the signal format
  • Step S230 Send the random access signal to the base station.
  • the terminal first determines a signal format, and then forms a random access signal according to the signal format, and sends the signal to the base station.
  • one of the random access signal formats is used by the base station to receive by using N receiving configurations, and the receiving configuration of the uplink receiving beam is selected based on the receiving status information of the N receiving configurations.
  • the UE only needs to send one random access signal to the base station, and assists the base station to complete the selection of the receiving configuration of the uplink receiving beam.
  • the number of random access signals sent by the UE is small, which reduces the work of the UE. Consumption, reducing the occupation of communication resources.
  • the step S210 may include: receiving a first extended signal format from the base station; wherein the first extended signal format includes a first cyclic prefix and N first preambles; Is an integer not less than 2.
  • the length of the first cyclic prefix is equal to the length of the basic cyclic prefix in the basic signal format; or the length of the first cyclic prefix and the length of the basic cyclic prefix are within a preset range;
  • the length of the first cyclic prefix is greater than M or equal to M times the length of the base cyclic prefix, and the M is a positive integer.
  • the length of the first preamble may be equal to or equal to the length of the base preamble.
  • the method further includes: transmitting the random access signal in segments when the length of the random access signal is greater than a first preset length.
  • the random access signal is formed based on the first extended signal format, it may be that the length of the random access signal is too large, for example, greater than the first preset length, where The first preset length may be the resource length of a random access resource. In this case, it may happen that one random access resource cannot completely transmit one random access signal, and in this embodiment, segmentation transmission is performed. For example, transmitting one of the random numbers using multiple random access resources Access signal.
  • the segmentally transmitting the random access signal includes: determining a segment segment number; and segmentally transmitting the random connection according to the segment segment number Into the signal.
  • the number of segment segments is first determined, for example, whether it is divided into 2 segments, 3 segments, or more segments.
  • segment the segments There are several ways to segment the segments, and several exemplary ways are provided below:
  • the first type: the determining the number of segment segments includes: receiving a segmentation indication sent by the base station; and determining a segment segment number according to the segmentation indication. In this embodiment, segmentation is performed directly according to the segmentation indication of the base station.
  • the second method determining the number of segment segments, further comprising: determining the number of segment segments according to a signal length of the random access signal and a resource length of a single random access resource.
  • the UE segments the data according to the signal length of the random access signal and the resource length of the single random access resource. And selecting a sum of resource lengths of the plurality of random access resources for transmitting one of the random access signals, not less than a signal length of one of the random access signals, to ensure complete transmission of one of the random access signals.
  • this embodiment provides a random access method, which is applied to a terminal, and includes:
  • Step S310 determining a signal format
  • Step S320 Form a random access signal according to the signal format
  • Step S330 Send at least part of the random access signal by using S sending configurations, where S is an integer greater than or equal to 1.
  • the terminal when it sends a random access signal, it uses the S transmission configuration to transmit.
  • Each of the transmission configurations is configured to transmit all or part of one of the random access signals.
  • the different antennas corresponding to the multiple receiving configurations of the base station will receive the random access signal, so that the base station will obtain multiple receiving status information, for example, multiple connections.
  • Receiving strength and/or multiple reception qualities so that the base station facilitates receiving, by the receiving of a random access signal, the receiving configuration for receiving the uplink data sent by the UE according to the receiving status information.
  • the transmission configuration here may also be an antenna parameter of a transmitting antenna such as a transmission frequency and a transmission direction mutual polarization direction.
  • the step S310 may include:
  • the base station And receiving, by the base station, a second extended signal format of the random access signal, where the second extended signal format includes: P1 second cyclic prefixes and P2 second preambles;
  • the P2 is equal to or greater than the P1; at least one of the second cyclic prefix and one of the second preamble is sent in one of the sending configurations.
  • the UE receives a second extended signal format from the base station, where the second extended signal format may be relative to the foregoing basic signal format.
  • P1 second cyclic prefixes and P2 second preambles are included.
  • P2 is greater than or equal to P1.
  • the second cyclic prefix and the second preamble are spaced apart in the second extended signal format.
  • any two of the second cyclic prefixes are not adjacently distributed, that is, at least one or more of the second preambles are separated between any two of the second cyclic prefixes.
  • the random access signal sent by the UE is formed based on the second extended signal format, and may be formed based on the basic signal format or the other extended signal format and other signal formats. .
  • a random access resource may not be able to completely transmit one of the random access signals.
  • the step 330 may further include: When the length of the random access signal is greater than the first preset length, the random access signal is transmitted in segments.
  • the segmentally transmitting the random access signal includes:
  • how to perform segment transmission may also include multiple modes:
  • the determining the number of segment segments includes:
  • the number of segment segments is determined according to the segmentation indication.
  • the related description of the segmentation indication here can be referred to the corresponding part of the foregoing embodiment, and is not repeated here.
  • the determining the number of segment segments further includes:
  • this embodiment provides a method for determining an uplink receiving beam, which is applied to a base station, and includes:
  • Step S410 Receive a random access signal sent by the terminal by using multiple sending configurations, where one of the sending configurations sends at least part of the random access signal;
  • Step S420 Determine the receiving configuration of the uplink beam according to the receiving status information of the random access signal sent by the different configuration.
  • the base station receives a random access signal sent by the UE, and obtains a plurality of received signal strengths or qualities, and selects a receiving configuration of the receiving antenna with the highest signal strength or the best receiving quality as the receiving configuration of the uplink receiving beam.
  • the determination of the receiving configuration of the uplink receiving beam is completed by receiving a random access signal.
  • the method further includes:
  • the second extended signal format includes P1 second cyclic prefixes and P2 second preambles; wherein the P2 is equal to or greater than P1; one of the sending configurations is configured to send at least one of the second cyclic prefix and one of the second preambles. And any two of the second cyclic prefixes are not adjacently arranged in the second extended format.
  • the definition of the second extended signal format herein can be found in the corresponding embodiment described above.
  • the second extended signal format further includes a guard interval. The guard interval is located after all of the second cyclic prefix and the second preamble.
  • this embodiment provides a method for determining an uplink receiving beam, including:
  • Step S510 Send the specified downlink signal multiple times by using multiple sending configurations.
  • Step S520 Receive a random access signal sent by the terminal.
  • Step S530 Determine, according to the receiving parameter of the random access signal, a receiving configuration that the terminal sends the specified downlink signal corresponding to the access signal;
  • Step S540 Determine, according to the receiving configuration of the specified downlink signal corresponding to the access signal, the receiving configuration of the uplink receiving beam.
  • the designated downlink signal herein may include a signal of a synchronization signal or a time or frequency position of a portion of the broadcast channel.
  • the synchronization signal may include a primary synchronization signal, a secondary synchronization signal, and the like.
  • the base station first transmits the specified downlink signal, the receiving terminal sends a random access signal based on the received status information of the specified downlink signal, and determines the downlink signal receiving according to the receiving time of the random access signal. Configuration. If the signal quality of the received random access signal is good, the terminal selects a random access resource corresponding to the transmitted video resource of the designated downlink signal, and sends the random access signal.
  • the receiving parameter in step S530 may include information such as a receiving time of the random access signal or a corresponding frequency band of a random access resource of the random access signal, or a number of a random access resource that sends the random access signal.
  • Each of the specified downlink signal transmission resources is associated with at least one random access resource, and the association relationship may be a time association relationship or a frequency association relationship.
  • the time association relationship may be expressed in a preset range corresponding to two resources, where the frequency domain association relationship may be expressed by a difference between a frequency band used by two resources or a predetermined difference.
  • the base station can notify the terminal in advance.
  • the step S540 in the embodiment may be used as the end configuration of the uplink receiving beam according to the receiving configuration of the specified downlink signal, thereby completing the determining of the receiving configuration of the uplink receiving beam, so as to subsequently receive the uplink service data or uplink of the UE. Request information, etc.
  • the step S540 may include determining, according to the receiving configuration, at least one of a beam frequency, a receiving angle, and a polarization direction of the uplink receiving beam.
  • the method further includes transmitting a resource start location of the random access resource to the terminal.
  • the location of the resource start location of the random access resource is sent to the terminal, which is equivalent to indicating at which positions the terminal selects the start position of the resource selected based on the specified downlink signal. In this way, the base station does not need to indicate the location of each random access resource to the terminal one by one.
  • the embodiment provides a method for determining an uplink receiving beam, including:
  • Step S610 Receive a specified downlink signal sent by the base station by using different sending configurations.
  • Step S620 Select a random access resource according to the receiving status information of each specified downlink signal.
  • Step S630 Send a random access signal by using the random access resource.
  • the terminal receives the designated downlink signal sent by the base station by using different sending configurations, where the sending configuration may be a sending direction, a planning direction, and the like.
  • the designated downlink signal here may be the aforementioned synchronization signal or the like.
  • a random access resource is determined according to the received status information of each specified downlink signal, and the random access signal is transmitted by using the selected random access resource.
  • the base station can determine, according to the correlation of the resources, which receiving downlink signal is received or the receiving quality is better, and then determine the correlation between the sending configuration of the specified downlink signal and the receiving configuration of the uplink receiving beam, thereby determining The receiving configuration of the uplink receiving beam. This can avoid the end
  • the terminal sends multiple random access signals.
  • the designated downlink signal is also a signal having other functions such as a synchronization signal, thereby reducing the occupation of communication resources and the power consumption of the terminal.
  • the receiving time of the random access signal is used by the base station to select a receiving configuration of an uplink receiving beam.
  • the receiving configuration of the uplink receiving beam For how to determine the receiving configuration of the uplink receiving beam, refer to the corresponding part of the foregoing embodiment.
  • the step S620 may include: when the received strength of the specified downlink signal sent in a sending configuration meets a preset condition, selecting a random access resource that is closest to the receiving time of the specified downlink signal. Transmitting the random access signal.
  • the random access resource and the transmission resource that sends the specified downlink signal are respectively sorted or numbered. For example, if the receiving quality of the specified downlink signal sent by the terminal to the third sending resource is the best or the receiving strength is the largest, or is greater than the preset threshold, the terminal selects the third random access resource to send the random access signal.
  • the "correspondence" herein may be the same order or the same number or corresponding.
  • the step S620 may include: selecting a random access resource to send the random access signal; wherein, a time difference between the time corresponding to the random access resource and a receiving time of the terminal receiving the specified downlink signal , for the preset time interval.
  • the base station when the base station receives the association between the receiving time of the random access signal and the sending time of the specified downlink signal, the base station can determine the random access signal currently sent by the terminal, based on which specified downlink signal is sent, Simplify the operation of the base station.
  • the embodiment provides an apparatus for determining an uplink receiving beam, which is applied to a base station, and includes:
  • the first receiving unit 110 is configured to utilize one of the N receiving configurations, and the receiving terminal sends a The machine accesses the signal;
  • the N is an integer not less than 2;
  • the first obtaining unit 120 is configured to separately acquire receiving status information corresponding to the N receiving configurations.
  • the first determining unit 130 is configured to determine a receiving configuration of the uplink receiving beam according to the receiving status information.
  • the determining device in this embodiment may be an information processing structure applied to a base station.
  • the first receiving unit 110 may correspond to an air interface of the base station, and can receive the random access signal from the terminal.
  • the first obtaining unit 120 and the first determining unit 130 may correspond to a processor or a processing circuit in the base station.
  • the processor can include a central processing unit, a microprocessor, an application processor, a digital signal processor or a programmable array, and the like.
  • the processing circuit can include an application specific integrated circuit.
  • the processor or processing circuit can implement the functions of the first obtaining unit 120 and the first determining unit by executing predetermined instructions.
  • the first receiving unit 110 is configured to receive the random access signal by using one or a plurality of the receiving configurations during a transmission process of receiving a random access signal of the terminal, And adjusting the receiving configuration at least once until receiving the random access signal by using the N receiving configurations.
  • the first receiving unit 110 is configured to simultaneously receive N random access signals sent by the terminal by using the N receiving configurations.
  • the device further includes:
  • a second determining unit configured to predetermine a first extended signal format of the random access signal, where the first extended signal format includes a first cyclic prefix and N first preambles;
  • the first sending unit is configured to send the signal format to the terminal, where the signal format is used to instruct the terminal to send the random access signal.
  • the hardware structure of the second determining unit herein may be similar to the first determining unit.
  • the first sending unit may correspond to an antenna of the base station, and may be used to send information to the terminal.
  • the length of the first cyclic prefix is equal to the length of the basic cyclic prefix in the basic signal format; or the length of the first cyclic prefix is different from the length of the basic cyclic prefix.
  • the length of the first cyclic prefix is greater than or equal to M times the length of the base cyclic prefix, and the M is a positive integer.
  • the first receiving unit 110 is configured to receive the random access signal by using the N receiving configurations when the length of the random access signal is greater than a first preset length.
  • the device further includes: a first sending unit, configured to send a segmentation indication to the terminal; the first receiving unit 110 is configured to: when a length of the random access signal is greater than a first preset length, The segment receives a random access signal transmitted based on the segmentation indication. In segmented reception, each segment of the random access signal may be received by one or more receive configurations.
  • a first sending unit configured to send a segmentation indication to the terminal
  • the first receiving unit 110 is configured to: when a length of the random access signal is greater than a first preset length, The segment receives a random access signal transmitted based on the segmentation indication.
  • each segment of the random access signal may be received by one or more receive configurations.
  • the embodiment provides a random access device, which is applied to a terminal, and includes:
  • the third determining unit 210 is configured to determine a signal format
  • the first forming unit 220 is configured to form a random access signal based on the signal format
  • the second sending unit 230 is configured to send the random access signal to the base station.
  • the random access device is applied to an information processing structure in the terminal.
  • the third determining unit 210 and the first forming unit 220 may correspond to a processor or a processing circuit.
  • the second sending unit 230 may correspond to a transmitting antenna of the terminal, and may be used to send a random access signal.
  • one of the random access signal formats is used by the base station to receive using N receiving configurations, and select a receiving configuration of the uplink receiving beam based on the received status information of the N receiving configurations.
  • the third determining unit 210 is configured to receive a first extended signal format from the base station; wherein the first extended signal format includes a first cyclic prefix and N first preambles.
  • the length of the first cyclic prefix is equal to the length of the base cyclic prefix in the base signal format; or the length of the first cyclic prefix is different from the length of the base cyclic prefix. Within a preset range; or, the length of the first cyclic prefix is greater than or equal to M times the length of the base cyclic prefix, and the M is a positive integer.
  • the second sending unit 230 is configured to transmit the random access signal in segments when the length of the random access signal is greater than a first preset length.
  • the second transmitting unit 230 is configured to determine a segment segment number; the segmentation transmission of the random access signal according to the segment segment number.
  • the device further includes:
  • a second receiving unit configured to receive a segmentation indication sent by the base station
  • the second sending unit is configured to determine the number of segment segments according to the segmentation indication.
  • the second receiving unit may be configured to receive a segmentation indication sent by the base station, corresponding to the receiving antenna.
  • the second sending unit 230 is configured to determine the number of segment segments according to a signal length of the random access signal and a resource length of a single random access resource.
  • the embodiment provides a random access device, which is applied to a terminal, and includes:
  • the fourth determining unit 310 is configured to determine a signal format.
  • the second forming unit 320 is configured to form a random access signal according to the signal format
  • the third sending unit 330 is configured to send at least part of the random access signal by using the S sending configurations, where the S is an integer greater than or equal to 1.
  • the fourth determining unit 310 and the second forming unit 320 may correspond to a processor or a processing circuit.
  • the third transmitting unit 330 corresponds to a transmitting antenna or the like in the terminal.
  • the fourth determining unit 310 is configured to receive, in advance, a second extended signal format of the random access signal from a base station, where the second extended signal format includes: P1 second cyclic prefixes, P2 second preambles; the P2 is equal to or greater than the P1; Transmitting at least one of the second cyclic prefix and one of the second preambles; wherein, both P1 and P2 are positive integers.
  • the third sending unit 330 is configured to transmit the random access signal in segments when the length of the random access signal is greater than the first preset length.
  • the third sending unit 330 is configured to determine the number of segment segments; and segmentally transmit the random access signal according to the segment segment number.
  • the apparatus further includes: a third receiving unit configured to receive the segmentation indication sent by the base station; the third sending unit 330 is configured to determine the number of segment segments according to the segmentation indication.
  • the third transmitting unit 330 may correspond to a transmitting antenna.
  • the third sending unit 330 is configured to determine the number of segment segments according to the length of the random access signal and the data length corresponding to a single random access resource.
  • the embodiment provides an apparatus for determining an uplink receiving beam, which is applied to a base station, and includes:
  • the fourth receiving unit 410 is configured to receive, respectively, a random access signal sent by the terminal by using multiple sending configurations, where one of the sending configurations sends at least part of the random access signal;
  • the fourth determining unit 420 is configured to determine, according to the receiving status information of the random access signal sent by the different configuration, the receiving configuration of the uplink beam.
  • the fourth receiving unit 410 may correspond to a receiving antenna.
  • the fourth determining unit 420 may correspond to a processor or a processing circuit.
  • the apparatus further includes: a fourth sending unit 430 configured to send a second extended signal format of the random access signal, where the second extended signal format includes P1 second cyclic prefixes, P2 And a second preamble; wherein the P2 is equal to or greater than the P1; wherein, the one of the sending configurations is configured to send at least one of the second cyclic prefix and one of the second preambles.
  • the fourth transmitting unit corresponds to a transmitting antenna. Both P1 and P2 are positive integers.
  • the embodiment provides a determining apparatus for an uplink receiving beam, which is applied to a base.
  • the station including:
  • the fifth sending unit 510 is configured to send the specified downlink signal multiple times by using multiple sending configurations
  • the fifth receiving unit 520 is configured to receive a random access signal sent by the terminal;
  • the fifth determining unit 530 is configured to determine, according to the receiving parameter of the random access signal, a receiving configuration that the terminal sends the specified downlink signal corresponding to the access signal;
  • the sixth determining unit 540 is configured to determine, according to the receiving configuration that the terminal sends the specified downlink signal corresponding to the access signal, the receiving configuration of the uplink receiving beam.
  • the apparatus provided in this embodiment is applied to a base station, for example, an evolved base station eNB.
  • the fifth sending unit 510 and the fifth receiving unit 520 both correspond to the communication interface, and are capable of performing information interaction with the terminal.
  • Both the fifth determining unit 530 and the sixth determining unit 540 may correspond to a processor or a processing circuit.
  • the fifth determining unit 530 is configured to determine at least one of a beam frequency, a receiving angle, and a polarization direction of the uplink receiving beam according to the receiving configuration.
  • the fifth sending unit 530 is further configured to send a resource starting location of the random access resource to the terminal.
  • the embodiment provides an apparatus for determining an uplink receiving beam, which is applied to a terminal, and includes:
  • the sixth receiving unit 610 is configured to receive the specified downlink signal that is sent by the base station by using different sending configurations.
  • the selecting unit 620 is configured to select a random access resource according to the receiving status information of each specified downlink signal
  • the sixth sending unit 630 is configured to send a random access signal by using the random access resource.
  • the sixth receiving unit 610 and the sixth transmitting unit 630 correspond to transceiver antennas in the terminal.
  • the selection unit 620 corresponds to a processor or processing circuit.
  • the reception time of the random access signal is used by the base station to determine a reception configuration of an uplink receive beam.
  • the selecting unit 620 is configured to select a random access resource that is closest to the receiving time of the specified downlink signal when the receiving strength of the specified downlink signal sent in a sending configuration meets a preset condition. Transmitting the random access signal; or, when the receiving strength of the specified downlink signal sent in a sending configuration meets a preset condition, selecting and following the order or number of the downlink signal whose receiving strength meets the preset condition Random access resources corresponding to the order or number.
  • the selecting unit 620 is configured to select a random access resource to send the random access signal; wherein, the time corresponding to the random access resource and the time difference between the receiving time of the terminal receiving the specified downlink signal , for the preset time interval.
  • the embodiment further provides a base station, including:
  • a first receiving antenna configured to receive a random access signal sent by the terminal by using N receiving configurations; the N is an integer not less than 2;
  • the first processor is configured to separately acquire the receiving status information corresponding to the N receiving configurations, and determine the receiving configuration of the uplink receiving beam according to the receiving status information.
  • the first receiving antenna may be any receiving antenna in the base station.
  • the first processor can be various types of processors, such as a central processing unit CPU, a microprocessor MCU, a digital signal processor DSP, an application processor AP, or a programmable array PLC.
  • the first receiving antenna is configured to receive the random access signal by using one or multiple of the receiving configurations during a transmission process of receiving a random access signal of the terminal, and adjusting the random access signal at least once The configuration is received until the random access signal is received using the N receive configurations.
  • the first receiving antenna is configured to simultaneously utilize N receiving configurations to simultaneously receive a random access signal sent by the terminal.
  • the embodiment further provides a terminal, including:
  • a second processor configured to determine a signal format and form a random access signal based on the signal format
  • the first transmit antenna is configured to send the random access signal to the base station.
  • the first processor may be a CPU, an MCU, a DSP, an AP, or a PLC.
  • the first transmit antenna may be various transmit antennas that transmit wireless signals.
  • the terminal further includes:
  • the second receiving antenna is configured to receive the first extended signal format from the base station, where the first extended signal format includes a first cyclic prefix and N first preambles.
  • This embodiment provides another terminal, including:
  • a third processor configured to determine a signal format and form a random access signal according to the signal format
  • a second transmit antenna configured to transmit at least a portion of the random access signal using the S transmit configurations; wherein the S is an integer greater than or equal to one.
  • the third processor may be a CPU, an MCU, a DSP, an AP, or a PLC.
  • the second transmit antenna can be various types of transmit antennas.
  • the terminal further includes: a third receiving antenna, configured to receive a second extended signal format of the random access signal from the base station in advance, where the second extended signal format includes: P1 a second cyclic prefix, P2 second preambles; the P2 is equal to or greater than the P1; at least one of the second cyclic prefix and one of the second preambles are sent in one of the sending configurations; Both P1 and P2 are integers not less than one.
  • the embodiment of the present disclosure further provides another base station, including:
  • the fourth receiving antenna is configured to receive, respectively, a random access signal sent by the terminal by using multiple sending configurations, where one of the sending configurations sends at least part of the random access signal;
  • a fourth processor configured to receive a random access signal according to different configurations Information, determining the receiving configuration of the uplink beam.
  • the fourth receiving antenna may be various antennas for receiving signals transmitted by the terminal, for example, a multiple input multiple output (MIMO) antenna.
  • the fourth processor may be a CPU, an MCU, a DSP, an AP, or a PLC.
  • the base station further includes: a third transmit antenna configured to send a second extended signal format of the random access signal, where the second extended signal format includes P1 second cyclic prefixes, P2 And a second preamble; wherein the P2 is equal to or greater than the P1; wherein, the one of the sending configurations is configured to send at least one of the second cyclic prefix and one of the second preambles.
  • a third transmit antenna configured to send a second extended signal format of the random access signal, where the second extended signal format includes P1 second cyclic prefixes, P2 And a second preamble; wherein the P2 is equal to or greater than the P1; wherein, the one of the sending configurations is configured to send at least one of the second cyclic prefix and one of the second preambles.
  • This embodiment provides a base station, including:
  • the fourth transmitting antenna is configured to send the specified downlink signal multiple times by using multiple sending configurations
  • a fifth receiving antenna configured to receive a random access signal sent by the terminal
  • the fifth processor is configured to: according to the receiving parameter of the random access signal, determine, by the terminal, a receiving configuration of the specified downlink signal corresponding to the access signal; and send, according to the terminal, the corresponding location of the access signal
  • the receiving configuration of the downlink signal is specified, and the receiving configuration of the uplink receiving beam is determined.
  • the fifth processor may be a CPU, an MCU, a DSP, an AP, or a PLC, etc.; the fourth transmitting antenna is a transmitting antenna that can send a signal to the terminal.
  • the fifth receiving antenna may be an antenna that receives a signal transmitted by the terminal.
  • the fourth transmit antenna is configured to transmit a resource start location of a random access resource to the terminal.
  • This embodiment further provides another base station, including:
  • a sixth receiving antenna configured to receive a specified downlink signal sent by the base station by using different sending configurations
  • a sixth processor configured to select a random access resource according to the received status information of each specified downlink signal
  • a fifth transmitting antenna configured to send a random access signal by using the random access resource.
  • the sixth processor may be a CPU, an MCU, a DSP, an AP, or a PLC.
  • the sixth receiving antenna and the fifth transmitting antenna correspond to a transmitting and receiving antenna.
  • the sixth processor is configured to select a random connection closest to the receiving time of the specified downlink signal when the received strength of the specified downlink signal sent in one transmission configuration satisfies a preset condition.
  • the inbound resource sends the random access signal; or, when the receiving strength of the specified downlink signal sent in a sending configuration meets a preset condition, according to the order or number of the downlink signal whose receiving strength meets the preset condition, the selection and the The random access resource corresponding to the order or number.
  • An embodiment of the present disclosure provides a signaling notification method, including:
  • the base station sends the indication information of the random access signal to the terminal;
  • the indication information includes at least one of a preamble format, a repetition number of the preamble format, and a repetition type of the preamble format.
  • the preamble format may be a signal format of the random access signal, and is equivalent to the foregoing first type of extended signal format and the second type of extended signal format or basic signal format.
  • the preamble format is used to indicate a cyclic prefix length, a preamble sequence repetition number, and a preamble sequence length.
  • the repetition type includes at least one of a cyclic prefix CP repetition and a cyclic prefix CP repetition.
  • the sending, by the base station, the indication information of the random access signal to the terminal includes:
  • the indication information is transmitted by broadcast.
  • the indication information is further used to indicate that there is no random access resource interval between the two repetitions of the preamble format.
  • the indication information is further used to indicate that the terminal is in a random access resource. Transmitting a random access signal corresponding to the preamble format, where a sending location of the random access resource is determined according to a downlink synchronization block index.
  • the indication information is further used to indicate that when the terminal does not have a CP repetition, the random access signal generated by repeating the preamble format is sent on all random access resources.
  • the indication information is further used to indicate that when the terminal repeats with a CP, a random access signal generated by repeating the preamble format is sent on multiple random access resources.
  • the sending, by the base station, the indication information of the random access signal to the terminal includes:
  • the information field that sends the repetition number is used to indicate that the related information is repeated; wherein the repeated related information includes a resource location that indicates that a random access signal that repeats the preamble format is sent.
  • the embodiment of the present disclosure further provides a signaling receiving method, including:
  • the indication information includes at least one of a preamble format, a repetition number of the preamble format, and a repetition type of the preamble format.
  • the preamble format is used to indicate a cyclic prefix length, a preamble sequence repetition number, and a preamble sequence length.
  • the repetition type includes at least one of a cyclic prefix CP repetition and a cyclic prefix CP repetition.
  • the receiving, by the base station, the indication information of the random access signal includes:
  • the indication information is received from the broadcast.
  • the indication information is further used to indicate that there is no random access resource interval between the two repetitions of the preamble format with and without CP repetition.
  • the method further includes:
  • the method further includes:
  • the random access signal generated by the repeated preamble format is transmitted on all random access resources.
  • the method further includes:
  • the random access signal generated by the preamble format is repeated on a plurality of random access resources.
  • the method further includes:
  • the information field that sends the repetition number is used to indicate that the related information is repeated; wherein the repeated related information includes a resource location indicating that the random access signal that repeats the preamble format is sent.
  • An embodiment of the present disclosure provides a base station, including:
  • the seventh sending unit is configured to send, by the base station, indication information of the random access signal to the terminal;
  • the indication information includes at least one of a preamble format, a repetition number of the preamble format, and a repetition type of the preamble format.
  • the transmitting unit corresponds to a transmitting antenna
  • the base station may further include a processor that can be used to form knowledge information.
  • the preamble format is used to indicate a cyclic prefix length, a preamble sequence repetition number, and a preamble sequence length.
  • the base station can be used to perform the aforementioned signaling method.
  • This embodiment provides a terminal, including:
  • a seventh sending unit configured to receive indication information of the random access signal from the base station
  • the indication information includes at least one of the following: a preamble format, and the preamble format is repeated The number and the repetition type of the preamble format.
  • the seventh receiving unit corresponding to the receiving antenna in the terminal, may be configured to perform an operation in the signaling receiving method.
  • the preamble format is used to indicate a cyclic prefix length, a preamble sequence repetition number, and a preamble sequence length.
  • This example provides a method for receiving a random access signal, including:
  • the base station determines and notifies the terminal of the random access signal format;
  • the signal format herein may be the foregoing first extended signal format or the second signal extended format;
  • the received random access signal is formed by repeating and continuously combining a plurality of preambles, and the preamble repetition may be a repetition without carrying a cyclic prefix preamble or a repetition of a preamble carrying a cyclic prefix.
  • the preamble repetitions may be the same preamble sequence repetition or a different preamble sequence repetition.
  • the length of the cyclic prefix of the aforementioned extended signal may be equivalent to the cyclic prefix length of the basic signal format, or the cyclic prefix length of the underlying signal format is twice or more.
  • the base station may notify, by signaling, that the random access resource of the random access signal has an association relationship with the transmission resource of the downlink signal, and the association relationship is represented by time correlation or frequency domain association in the time dimension; For example, the time difference between two resources is within a preset time, and the frequency difference is within a preset frequency range.
  • a resource starting point after combining a plurality of consecutive random access signals received by a base station The transmission resource of the plurality of downlink signals may be associated with each other; the resources of the plurality of consecutive random access signals are combined by a plurality of consecutive random access signals, and the relative order between the transmission resources of the plurality of downlink signals It is determined together with the format of the random access signal.
  • the downlink signal here may be the aforementioned specified downlink signal.
  • the random access resources that send the random access signals may be continuous or non-contiguous.
  • the base station receives the random access signals in segments on the discontinuous random access resources, and the lengths of the random access signals of each segment are not necessarily equal.
  • the number of segments is notified by the base station to the terminal; or the base station notifies the terminal that a certain random access signal is delayed to be transmitted to the next available random resource; or the base station notifies the terminal that a certain random access signal resource is punctured; or the terminal knows that a certain resource is Other service occupations result in random access signal segmentation.
  • This example also provides a random access method, including:
  • the terminal receives the random access signal format indicated by the base station, and transmits the random access signal according to the corresponding format;
  • the signal format herein may be the foregoing extended signal format, for example, the first extended signal format or the second extended signal format.
  • the random access signal is formed by repeating and continuously combining a plurality of preambles, and the preamble repetition may be a repetition that does not carry a cyclic prefix preamble, or a repetition of a preamble carrying a cyclic prefix;
  • the random access signal format may further include at least one of the following parameters: a length of a cyclic prefix, a number of repetitions of a preamble, and a length of a combination of a preamble after repetition.
  • the preamble repetitions may be the same preamble sequence repetition or a different preamble sequence repetition.
  • the length of the cyclic prefix of the extended signal format is equivalent to the cyclic prefix length of the preamble base signal format, or is twice or more the cyclic prefix length of the preamble base signal format. long.
  • the uplink resource of the random access signal is associated with the transmission resource of the downlink signal, and the association relationship is a relative time or relative frequency deviation determined or predefined by the predefined.
  • the resource starting point of the combination of the plurality of consecutive random access signals is associated with the plurality of downlink channels or signals; the resources of the plurality of consecutive random access signals may be the starting point of the resources after the combination of the plurality of consecutive random access signals.
  • the relative order between the plurality of downlink channels or signals and the format of the random access signal are determined together.
  • the resources used for random access signal transmission may be continuous or non-contiguous.
  • the random access signal is transmitted in segments, and the length of the random access signals in each segment is not necessarily equal.
  • the preamble in the segmented random access signal needs to have a cyclic prefix.
  • the terminal receives the base station to notify the number of segments; or the terminal receives the signaling that the base station notifies that the random access signal is delayed to the next available random resource; or the terminal receives the random access resource that the base station notifies that the random access signal is hit.
  • the signaling of the hole; or the terminal knows that a certain segment of resources is occupied by other services, resulting in segmentation of the random access signal.
  • the signal format of the random access signal in five formats is provided.
  • the format 0 is the basic signal format. Without any preamble repetition, the cyclic prefix CP is also used for regular coverage.
  • the GT in Fig. 13 represents the guard interval, which is an abbreviation of Guard Time.
  • the other four formats are extended signal formats, and the preamble of the basic format is repeated multiple times, and the repeated preambles are the same.
  • the difference is that the length of the cyclic prefix of Format 1 and Format 2 is equivalent to the length of the cyclic prefix of the underlying format, which can be understood to be equal or not significantly different in magnitude, such as a difference value of less than 20%. This means that formats 1 and 2 are equivalent to the base format 0 in the coverage distance.
  • the repeated preamble is only used to adapt the number of receiving beams of the base station, such as repeating 2 times, representing the opportunity to provide the base station with two beam receptions. Repeat 3 times to represent the opportunity for the base station to receive three beams.
  • Formats 1a and 2a have both repetitions of the preamble.
  • the preamble sequence and the cyclic prefix provide a guarantee that the long preamble formed by the repetition of multiple preambles can provide an accumulation of energy to satisfy a further coverage distance.
  • the signal format design of the random access signal is not limited to the five types provided in FIG. 13, and the corresponding design criteria are summarized: the preamble of the basic format is repeatedly repeated without a cyclic prefix, and the repeated preambles are the same; Adding cyclic prefixes of different lengths to the repeated long preambles, wherein the cyclic prefix of one format is equivalent to the length of the cyclic prefix of the basic format; the cyclic prefix of one format is longer than the length of the cyclic prefix of the basic format. Or longer and most likely an integer multiple.
  • the setting of the number of repetitions of the preamble in the signal format of the random access signal may depend on the number of times the base station receives the beam in time division.
  • the base station has 8 receive beams for initial access. These 8 beams are analog beams and can be rotated in time division, so the number of time-division receive beams is 8. If 8 beams are mixed beams and 4 digital beams can be received at the same time, the number of time-sharing beams is 2. This capability will be implicitly notified to the terminal by the choice of the random access preamble format.
  • the extended signal format in this example may be equivalent to the first extended signal format in the foregoing example.
  • This example provides another random access method, the general operation is similar to that in Example 3, but the biggest difference is that the preamble repetition is a repetition carrying the cyclic prefix together.
  • This repetition mode can be applied to the design requirements of the terminal to switch the transmit beam or different preambles for different terminals.
  • the signal format 0 is the basic signal format
  • the format 1 is the two different preambles of the extended signal format for different transmit beams of the same terminal, so the preamble is still determined to cover the coverage distance.
  • the length that is, the coverage distance is equivalent to the base format
  • the length of the cyclic prefix is also equivalent to the base format.
  • the format 1a is also an extended signal format.
  • the preamble includes the preamble 1 and the preamble 2
  • the preamble in the format 1 is the preamble 1
  • the format 1a is different from the two preambles. Except for the preamble sequence, the rest are the same as format 1, and different preambles can be applied to different terminals.
  • Both the format 2 and the format 2a are the same as the format 1 and the format 1a in which the outer loop repetition of the extended signal format is delimited by the cyclic prefix, and the inner loop preamble in the same cyclic prefix is repeated, and the purpose is similar to the third example, that is, It can be applied to more distant coverage scenarios, and can also be used to provide more opportunities for the base station to receive beams.
  • Format 2 and format 2a can be considered as examples 1 and there are no cyclic prefix repetitions and hybrids in this example.
  • the difference between the format 2 and 2a is that the long preamble of the outer loop of the format 2a is different and can be used for different terminals. All preambles in format 2 are preamble 1; preambles included in format 2a include preamble 1 and preamble 2.
  • the guard interval GT at the end of each signal format is not defined, but the role of the GT cannot be ignored.
  • the GT is used to protect the normal orthogonal frequency division (OFDM) symbols from random access after interference.
  • OFDM orthogonal frequency division
  • the function of the GT can be replaced by a cyclic prefix, so there is no GT between the multiple repeating preambles.
  • the format design of the preamble in the embodiment is not limited to the five types provided in FIG. 14, and the corresponding design criteria are summarized: the preamble of the basic format is repeatedly repeated with a cyclic prefix, and the repeated preambles may be the same or It is different. It is also possible to perform multiple repetitions with a cyclic prefix for long preambles that have been subjected to cyclic prefix repetition.
  • the extended signal format provided by this example may be the second extended signal format in the foregoing example.
  • the determination of the uplink resource selected by the random access signal is a very important issue.
  • different random access preamble formats are provided. Since the corresponding formats occupy different time lengths, the random access preamble format affects the selection and determination of uplink resources.
  • the present example provides a method for determining an uplink resource selected by a random access signal, which may be based on a relevant downlink signal used in an initial access process, such as a synchronization signal, a time and a frequency position of a broadcast channel, and a setting.
  • the relative deviation of the uplink or the relative deviation of the signaling is used to determine the uplink resource of the uplink random access signal.
  • the advantage of determining the uplink random access signal resource by uniqueness is that the base station can identify the optimized base station downlink signal selected by the terminal, such as an optimal downlink synchronization signal, from the location of the uplink random access signal. If the base station has channel reciprocity, the base station can not only identify the optimized downlink transmission signal of the base station from the location of the uplink random access signal, but also determine the optimized uplink reception signal of the base station.
  • the TRP is a base station wireless transmission node
  • SS1 and SS2 are two different synchronization signals
  • SS1 and SS2 have a sequence.
  • the random access resources determined by UE1 and UE3 are related to SS1, and are mapped by the location of SS1.
  • the relative time difference between UE1 and UE3 and SS1 is ⁇ t1
  • the relative frequency difference from SS1 is ⁇ f1 and ⁇ f3.
  • the random access resources determined by UE2 and UE4 are related to SS2, and are mapped by the location of SS2.
  • the relative time difference between UE2 and UE4 and SS2 is ⁇ t2, and the relative frequency difference from SS1 is ⁇ f1 and ⁇ f3.
  • the resources occupied by different random access preambles are continuous, the resources may be continuous physical resources or logical resources in the time domain or the frequency domain. As shown in FIG. 3, the resources used by UE1 and UE3, UE2, and UE4 are consecutive in time domain, and the relative positions of resources occupied by different random access preambles may be determined by mapping the sequence of downlink channels or signals. The UE only needs to know the starting position of the random access resources, and the relative order in the random access resources can be through their respective correspondences with the synchronization signal SS. The relative order of the step signals SS1, SS2 is mapped one by one, and the random access signal resources of each UE can be uniquely confirmed by combining the format of the random access signal. This way of implicitly determining resources by relative order can effectively save the signaling indicated by the base station to the terminal.
  • the uplink resource selected by the random access signal is associated with the downlink resource of the downlink signal, and the association relationship is a relative time or frequency deviation notified by predefined and signaling.
  • the resource starting points combined by the multiple consecutive random access signals are associated with multiple downlink channels or signals.
  • the respective resources of the plurality of consecutive random access signals may be determined by a combination of a plurality of consecutive random access signals combined resource starting points, a plurality of downlink channels or signals, and a random access signal format.
  • the resource consumption of the random access is much larger than the resource consumption of the downlink synchronization signal.
  • LTE Long Term Evolution
  • the resource occupied by the random access signal is not less than 14 symbols.
  • the resources occupied by the random access signal may exceed the random access slot or The length of the sub-frame.
  • TDD mode time division multiplexing
  • the random access signal may be long in length, it will interrupt other ends for a long time.
  • the uplink resource when the service data is sent must reduce the interruption time of the normal service data of other terminals.
  • Figure 4 shows an example of discontinuous transmission.
  • Figure 15 is derived from the transmission of the continuous random access signal transmission of Figure 14 over discrete resources.
  • FIG. 15 is a segmentation of successive resources in FIG.
  • the segmentation may perform an explicit segmentation indication on the signaling, and the base station indicates the terminal to perform reasonable segmentation according to the resource condition, and the segmentation indication may be the number of segments of the resource segment or the length of the preamble in each segment. This means that the length of the preamble that may be allowed between different segments is also different.
  • the guard time GT can be formed after the preamble. If the repeated preamble does not have a cyclic prefix before segmentation, a cyclic prefix may also be added. As shown in FIG. 16, the preamble multi-segment preamble belongs to the same terminal, and there is no cyclic prefix. After segmentation, a cyclic prefix may be added to the preamble. .
  • Another exemplary method is to puncturing successive random access resources to generate non-contiguous random access transmissions.
  • the downlink resources in the time slot can be regarded as being punctured by the uplink resources.
  • the random access signal of the original punching position is delayed to the next available random access resource, for example, as shown in FIG. 17: the position of the second preamble is punctured, and the corresponding transmission delay Go to the next available preamble resource, or this part of the punctured resource is ignored and not used.
  • the first preamble naturally forms a GT, and the second preamble can increase the cyclic prefix.
  • the purpose of puncturing can be achieved by notifying the terminal to delay the signaling of the random access signal transmission. A very important reason for puncturing is that the corresponding random access resources are preempted by the more important priority services.
  • the embodiment of the present disclosure further provides a computer storage medium storing executable instructions, and the computer or the processor can implement the foregoing method for determining the receiving configuration of the uplink beam and the uplink random connection by executing the executable instruction. At least one of the request methods.
  • the computer storage medium can be a non-transitory storage medium.
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .
  • Embodiments of the present disclosure provide a method and apparatus for determining an uplink receive beam, a random access method and apparatus, a base station, and a terminal.
  • the base station can receive a random access signal by using multiple receiving configurations, thereby obtaining multiple receiving status information, and then selecting a receiving configuration of the downlink receiving beam according to the receiving status information, so that the terminal does not send multiple random accesses.
  • the signal reduces the power consumption of the random access signal transmitted by the terminal, and reduces the communication resources occupied by the multiple random access signals.
  • the terminal simultaneously sends a random access signal by using multiple sending parameters, and the base station naturally receives the random access signal sent by each sending parameter, so that the terminal can also determine according to the receiving status information of the random access signal.
  • the terminal first receives the specified downlink signal, and selects a corresponding random access resource to send to the base station according to the received status information of the specified downlink signal, and the base station can obtain the random access signal according to the receiving time of the random access signal and the random access signal.
  • the corresponding relationship between the access resource and the transmission resource of the specified downlink signal determines the receiving configuration of the uplink receiving beam, so that the terminal only needs to send a random access signal.
  • the number of random access signals transmitted by the terminal is reduced, which reduces the signaling overhead of the random access signal, reduces the power consumption of the terminal, and reduces the occupation of communication resources.
  • the present disclosure therefore has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种确定、接入、发送、处理方法及装置、基站及终端,应用于基站中的所述上行接收波束的确定方法,包括:利用N个接收配置,接收终端发送的一个随机接入信号;所述N为不小于2的整数;分别获取N个所述接收配置对应的接收状况信息;根据所述接收状况信息,确定上行接收波束的接收配置。

Description

确定方法、接入、发送、处理方法及装置、基站及终端 技术领域
本公开涉及无线通信领域,尤其涉及一种确定、接入、发送、接收方法及装置、基站及终端。
背景技术
新一代移动通信系统将会在比第二代2G、第三代3G、第四代4G系统所用频率更高的载波频率上进行系统组网,目前得到业界广泛共识和国际组织认定的频段主要是3GHz至6GHz,6GHz至100GHz,相对于早期通信系统的组网频率,这些频段比较高,在传播上损耗更大,同样的功率下覆盖半径相对更小,这也决定了新一代移动通信系统组网中,可以采用波束赋型技术用于提高覆盖半径。其中初始接入中对覆盖的要求更高,覆盖范围要求高于业务覆盖要求,所以采用了波束赋型技术。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供一种确定、接入、发送、处理方法及装置、基站及终端。
本公开的方案是这样实现的:
本公开实施例提供一种上行接收波束的确定方法,应用于基站中,包括:
利用N个接收配置,接收终端发送的一个随机接入信号;所述N为不小于2的整数;
分别获取N个所述接收配置对应的接收状况信息;
根据所述接收状况信息,确定上行接收波束的接收配置。
本公开实施例提供一种随机接入方法,应用于终端中,包括:
确定信号格式;
基于所述信号格式,形成随机接入信号;
向基站发送所述随机接入信号。
本公开实施例提供一种随机接入方法,应用于终端中,包括:
确定信号格式;
根据所述信号格式形成一个随机接入信号;
利用S个发送配置发送至少部分所述随机接入信号;其中,所述S为大于等于1的整数。
本公开实施例提供一种上行接收波束的确定方法,应用于基站中,包括:
分别接收终端利用多个发送配置发送的一个随机接入信号;其中,一个所述发送配置发送至少部分所述随机接入信号;
根据不同所述配置发送的随机接入信号的接收状况信息,确定上行接波束的接收配置。
本公开实施例提供一种上行接收波束的确定方法,包括:
利用多个发送配置发送多次指定下行信号;
接收终端发送的随机接入信号;
根据所述随机接入信号的接收参数,确定终端发送所述接入信号对应的所述指定下行信号的接收配置;
根据所述终端发送所述接入信号对应的所述指定下行信号的接收配置,确定上行接收波束的接收配置。
本公开实施例提供一种上行接收波束的确定方法,包括:
接收基站利用不同发送配置发送的指定下行信号;
根据每个所述指定下行信号的接收状况信息,选择随机接入资源;
利用所述随机接入资源发送随机接入信号。
本公开实施例提供一种上行接收波束的确定装置,应用于基站中,包括:
第一接收单元,配置为利用N个接收配置,接收终端发送的一个随机接入信号;所述N为不小于2的整数;
第一获取单元,配置为分别获取N个所述接收配置对应的接收状况信息;
第一确定单元,配置为根据所述接收状况信息,确定上行接收波束的接收配置。
本公开实施例提供一种随机接入装置,应用于终端中,包括:
第三确定单元,配置为确定信号格式;
第一形成单元,配置为基于所述信号格式,形成随机接入信号;
第二发送单元,配置为向基站发送所述随机接入信号。
本公开实施例提供一种随机接入装置,应用于终端中,包括:
第四确定单元,配置为确定信号格式;
第二形成单元,配置为根据所述信号格式形成一个随机接入信号;
第三发送单元,配置为利用S个发送配置发送至少部分所述随机接入信号;其中,所述S为大于等于1的整数。
本公开实施例提供一种上行接收波束的确定装置,应用于基站中,包括:
第四接收单元,配置为分别接收终端利用多个发送配置发送的一个随机接入信号;其中,一个所述发送配置发送至少部分所述随机接入信号;
第四确定单元,配置为根据不同所述配置发送的随机接入信号的接收状况信息,确定上行接波束的接收配置。
本公开实施例提供一种上行接收波束的确定装置,包括:
第五发送单元,配置为利用多个发送配置发送多次指定下行信号;
第五接收单元,配置为接收终端发送的随机接入信号;
第五确定单元,配置为根据所述随机接入信号的接收参数,确定终端发 送所述接入信号对应的所述指定下行信号的接收配置;
第六确定单元,配置为根据所述终端发送所述接入信号对应的所述指定下行信号的接收配置,确定上行接收波束的接收配置。
本公开实施例提供一种上行接收波束的确定装置,应用于终端中,包括:
第六接收单元,配置为接收基站利用不同发送配置发送的指定下行信号;
选择单元,配置为根据每个所述指定下行信号的接收状况信息,选择随机接入资源;
第六发送单元,配置为利用所述随机接入资源发送随机接入信号。
本公开实施例提供一种基站,包括:
第一接收天线,配置为利用N个接收配置,接收终端发送的一个随机接入信号;所述N为不小于2的整数;
第一处理器,配置为分别获取N个所述接收配置对应的接收状况信息;根据所述接收状况信息,确定上行接收波束的接收配置。
本公开实施例提供一种终端,包括:
第二处理器,配置为确定信号格式,及基于所述信号格式,形成随机接入信号;
第一发送天线,配置为向基站发送所述随机接入信号。
本公开实施例提供一种终端,包括:
第三处理器,配置为确定信号格式,及根据所述信号格式形成一个随机接入信号;
第二发送天线,配置为利用S个发送配置发送至少部分所述随机接入信号;其中,所述S为大于等于1的整数。
本公开实施例提供一种基站,包括:
第四接收天线,配置为分别接收终端利用多个发送配置发送的一个随机 接入信号;其中,一个所述发送配置发送至少部分所述随机接入信号;
第四处理器,配置为根据不同所述配置发送的随机接入信号的接收状况信息,确定上行接波束的接收配置。
本公开实施例提供一种基站,包括:
第四发送天线,配置为利用多个发送配置发送多次指定下行信号;
第五接收天线,配置为接收终端发送的随机接入信号;
第五处理器,配置为根据所述随机接入信号的接收参数,确定终端发送所述接入信号对应的所述指定下行信号的接收配置;根据所述终端发送所述接入信号对应的所述指定下行信号的接收配置,确定上行接收波束的接收配置。
本公开实施例提供一种基站,包括:
第六接收天线,配置为接收基站利用不同发送配置发送的指定下行信号;
第六处理器,配置为根据每个所述指定下行信号的接收状况信息,选择随机接入资源;
第五发送天线,配置为利用所述随机接入资源发送随机接入信号。
本公开实施例提供一种信令通知方法,包括:
基站向终端发送随机接入信号的指示信息;
所述指示信息包括如下至少之一:前导格式,所述前导格式的重复次数及所述前导格式的重复类型。
本公开实施例提供一种信令接收方法,包括:
从基站接收随机接入信号的指示信息;
所述指示信息包括如下至少之一:前导格式,所述前导格式的重复次数及所述前导格式的重复类型。
本公开实施例提供一种基站,包括:
第七发送单元,配置为基站向终端发送随机接入信号的指示信息;
所述指示信息包括如下至少之一:前导格式,所述前导格式的重复次数及所述前导格式的重复类型。
本公开实施例提供一种终端,包括:
第七接收单元,配置为从基站接收随机接入信号的指示信息;
本公开实施例提供一种计算机可读存储介质,其上存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现任一以上描述的方法。
所述指示信息包括如下至少之一:前导格式,所述前导格式的重复次数及所述前导格式的重复类型。本公开实施例提供了上行接收波束的确定方法及装置、随机接入方法及装置、基站及终端。第一方面,基站可以利用多个接收配置接收一个随机接入信号,从而获得多个接收状况信息,再根据接收状况信息,选择下行接收波束的接收配置,这样终端就不发送多个随机接入信号,减少了终端发送随机接入信号的功耗,降低了多次随机接入信号占用的通信资源。第二方面,终端同时利用多个发送参数发送一个随机接入信号,基站自然会接收到每一个发送参数发送的随机接入信号,这样也可以根据一次随机接入信号的接收状况信息,确定出下行接收波束的接收配置。第三方面,终端首先接收指定下行信号,根据指定下行信号的接收状况信息,选择对应的随机接入资源发送给基站,基站就可以根据随机接入信号的接收时间,及随机接入信号的随机接入资源与指定下行信号的发送资源的对应关系,确定出上行接收波束的接收配置,这样终端同样仅需发送一个随机接入信号。总之,终端发送的随机接入信号的个数减少,减少了随机接入信号的信令开销、降低了终端的功耗、减少了通信资源的占用。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
图1为本公开实施例提供的第一种上行接收波束的确定方法的流程示意图;
图2为本公开实施例提供的第一种随机接入方法的流程示意图;
图3为本公开实施例提供的第二种随机接入方法的流程示意图;
图4为本公开实施例提供的第二种上行接收波束的确定方法的流程示意;
图5为本公开实施例提供的第三种上行接收波束的确定方法的流程示意;
图6为本公开实施例提供的第三种随机接入方法的流程示意图;
图7、图10、图11及图12为本公开实施例提供的上行接收波束的确定装置的结构示意图;
图8及图9为本公开实施例提供的随机接入装置的结构示意图;
图13至图14为本公开实施例提供的随机接入信号的信号格式的示意图;
图15至图17为本公开实施例提供的下行信号的发送资源与随机接入资源的关联示意图。
具体实施方式
由于波束较窄,为使波束准确聚焦于通信的设备上,要进行波束训练以选择最优或次最优的波束。在接入过程中发生的场景是这样的:由于基站发射和接收信道的互易性不存在,终端选择的最优下行波束,未必是基站接收的最优上行波束。此时,终端发送多次随机接入信号,方便基站多次接收随机接入信号的接收质量,以确定接收波束。这样的话,终端多次发送,终端发送的次数多,功耗大,且基站选择波束的过程也相对繁琐。
以下结合说明书附图及示例性实施例对本公开的方案做详细阐述。
如图1所示,本实施例提供一种上行接收波束的确定方法,应用于基站中,包括:
步骤S110:利用N个接收配置,接收终端发送的一个随机接入信号;所述N为不小于2的整数;
步骤S120:分别获取N个所述接收配置对应的接收状况信息;
步骤S130:根据所述接收状况信息,确定上行接收波束的接收配置。
本实施例所述的上行接收波束的确定方法为应用于基站中的方法。终端又可称之为用户设备(User Equipment,UE)。UE在进行随机接入时,会向基站发送随机接入信号。在本实施例中,所述基站会利用UE的随机接入进行后续从该UE接收数据的上行接收波束的接收配置的确定。这里的接收配置可包括上行接收波束的方向角、波束频率以及极化方向等波束的配置参数的至少其中之一。
在本实施例中为了选择出接收UE发送的数据的最优波束或较优波束,基站会利用N个接收配置,这里N个接收配置中的任意两个至少部分不同,从而基站会获得UE发送的一个随机接入信号的多个接收状况信息。这里的接收状况信息可包括接收信号强度或接收信号质量等标识接收情况好坏的参数。
在步骤S130中,将根据接收状况信息,选择出用于接收后续该UE发送的上行数据的接收配置。例如,该确定出的接收配置,可用于接收该UE发送的上行业务数据。在步骤S130中可包括:选择接收信号强度最强对应的接收配置,作为所述上行接收波束的接收配置,在可包括:选择接收信号强度大于预设轻度的对应的接收配置,作为后续上行接收波束的接收配置。例如,接收配置A接收配置B,接收了UE发送的一个随机接入信号,分别得到信号接收强度A和接收信号强度B;若接收强度A大于接收信号强度B,则在步骤S130中可选择接收配置A作为基站后续接收UE的上行业务数据 等上行数据的接收配置。
基站如此操作,UE仅需发送一个随机接入信号,就可以协助基站完成上行接收波束的接收配置的确定,减少了UE发送随机接入信号的次数,减少了发送随机接入信号所占用的通信资源,降低了UE的功耗。
所述步骤S110的可实现方式有多种,以下提供至少两种可实现方式:
可实现方式一:
所述步骤S110可包括:
在接收所述终端的一个随机接入信号的发送过程中,利用一个或同时利用多个所述接收配置接收所述随机接入信号,并至少调整1次所述接收配置,直至利用N个所述接收配置,接收所述随机接入信号。
在本实施例中,基站在接收一个随机接入信号的过程中,会动态的至少调整一个所述接收配置,直到有N个接收配置用于接收UE本次发送的一个随机接入信号。例如,当基站用一个接收配置接收所述随机接入信号时,则所述基站动态调整N-1次接收该随机接入信号的接收配置。在本实施例中,不同的接收配置在时间维度上,采用时分复用或轮询的方式,可轮流接收所述随机接入信号。
可实现方式二:所述步骤S110可包括:
同时利用N个所述接收配置,分别同时接收终端发送的一个随机接入信号。
同时利用N个接收配置,同时接收所述随机接入信号,这样的话,所述基站会获得多个接收状况信息,再通过接收状况信息的相互比较或预设阈值的比较,选择出符合选择条件的接收配置,作为步骤S130中决策出的所述上行接收波束的接收配置。
在执行所述步骤S110之前,所述方法还包括:
预先确定随机接入信号的第一拓展信号格式;其中,所述第一拓展信号 格式包括一个第一循环前缀、N个第一前导码;
将所述信号格式发送给所述终端;其中,所述信号格式用于指示终端发送所述随机接入信号。
所述第一拓展信号格式可为随机接入信号的一种信号格式。在本实施例提供给的第一拓展信号格式中,包括一个循环前缀和N个前导码。在本实施例中所述第一拓展信号格式中的循环前缀为第一循环前缀,所述第一拓展信号格式中的前导码可称之为第一前导码。现有的随机接入信号的信号格式可称之为基础信号格式,或者包括一个循环前缀和一个前导码的随机接入信号的信号格式也可以称为基础信号格式。基础信号格式中的循环前缀称为基础循环前缀。基础信号格式也不限于随机接入信号格式,常规的OFDM符号也可以称为基础信号格式,OFDM符号的循环前缀也可以称为基础循环前缀。
在实施例中,所述第一循环前缀的长度与基础信号格式中的基础循环前缀的长度相等。
在一些实施中,所述第一循环前缀的长度与所述基础循环前缀的长度的相差长度在预设范围内。这里预设范围可为20%、10%。例如,所述第一循环前缀的长度比基础循环前缀的长度长20%等。
在另一些实施例中,所述第一循环前缀的长度大于或等于M倍所述基础循环前缀的长度,所述M为正整数。在本实施例中所述M可等于所述N。
所述第一前导码的长度可与所述基础信号格式的基础前导码的长度相等或略小或略大。例如,所述第一前导码的长度是0.8倍的所述基础前导码的长度。
在本实施例中任意两个所述第一前导码可相同或不相同。
在本实施例中所述基站向UE发送第一拓展信号格式,相当于指示UE利用了所述第一拓展信号格式发送所述随机接入信号。在实现时,所述基站 也可以不向所述UE发送随机接入信号的信号格式,UE可以根据自身存储的信号格式,构建随机接入信号;例如,利用所述基础信号格式发送所述随机接入信号等。当然,所述UE也可以用通信协议定义的信号格式发送所述随机接入信号。
在一些实施例中,所述步骤S110还可包括:
当所述随机接入信号的长度大于第一预设长度时,利用N个所述接收配置,分段接收所述随机接入信号。
若UE发送的一个所述随机接入信号的长度较长,一个随机接入资源的资源长度不够时,所述UE将可能分段传输。此时,所述基站在步骤S110中将分段接收,例如,分两次接收一个所述随机接入信号。
所述方法还包括:向所述终端发送分段指示;
所述步骤S110可包括:
当所述随机接入信号的长度大于第一预设长度时,分段接收基于所述分段指示发送的随机接入信号。
在UE分段传输时,是分为几段,可以由基站预先指示。故在本实施例中所述基站还会向终端发送分段指示,在步骤S110中基站接收的是UE根据分段指示分段发送的随机接入信号。这样,由于分段指示是基站发送的,基站自然也知道要分为几次进行接收。所述分段指示可用于指示进行分段传输,还可用于指示分段的段数,还可以用于指示分段间隔,即两次分段传输之间的时间间隔或频率间隔等,方便所述基站根据分段指示,自行预先选择号接收配置进行接收。
当然,在实现时,所述UE也可以自行动态确定是否进行分段传输,基站在接收的过程中,可根据接收的随机接入信号的长度,确定出是否接收完整,若未接收完整,则可以认为要分段接收。
如图2所示,本实施例提供一种随机接入方法,应用于终端中,包括:
步骤S210:确定信号格式;
步骤S220:基于所述信号格式,形成随机接入信号;
步骤S230:向基站发送所述随机接入信号。
在本实施例中所述终端首先确定信号格式,再根据信号格式形成随机接入信号,并向基站发送。在本实施例中,一个所述随机接入信号格式用于所述基站利用N个接收配置进行接收,并基于N个所述接收配置的接收状况信息,选择上行接收波束的接收配置。这样的话,所述UE仅需向基站发送一个所述随机接入信号,就协助基站完成了上行接收波束的接收配置的选择,UE发送的随机接入信号的个数少,减少了UE的功耗,减少了通信资源的占用。
在一些实施例中,所述步骤S210可包括:从所述基站接收第一拓展信号格式;其中,所述第一拓展信号格式包括一个第一循环前缀及N个第一前导码;所述N为不小于2的整数。例如,所述第一循环前缀的长度与基础信号格式中的基础循环前缀的长度相等;或,所述第一循环前缀的长度与所述基础循环前缀的长度的相差长度在预设范围内;或,所述第一循环前缀的长度,大于M或等于M倍所述基础循环前缀的长度,所述M为正整数。所述第一前导码的长度可以与所述基础前导码的长度相等或相当。
在一些实施例中,所述方法还包括:当所述随机接入信号的长度大于第一预设长度时,分段传输所述随机接入信号。
在本实施例中,若所述随机接入信号是基于所述第一拓展信号格式形成的,则有可能出现所述随机接入信号的长度过大,例如,大于第一预设长度,这里的第一预设长度可为一个随机接入资源的资源长度。这样的话,就可能出现,一个随机接入资源无法完整的传输一个所述随机接入信号,在本实施例中,则会进行分段传输。例如,利用多个随机接入资源传输一个所述随机 接入信号。
所述当所述随机接入信号的长度大于第一预设长度时,分段传输所述随机接入信号,包括:确定分段段数;根据所述分段段数,分段传输所述随机接入信号。
在本实施例中首先确定分段段数,例如,是分为2段、3段还是更多段。所述分段的方式有多种,以下提供几种示例性的方式:
第一种:所述确定分段段数,包括:接收所述基站发送的分段指示;根据所述分段指示,确定分段段数。在本实施例中直接根据基站的分段指示,进行分段。
第二种:所述确定分段段数,还包括:根据所述随机接入信号的信号长度,和单个随机接入资源的资源长度,确定所述分段段数。在本实施例中由UE自行根据随机接入信号的信号长度和单个随机接入资源的资源长度,来分段。选择用于传输一个所述随机接入信号的多个随机接入资源的资源长度之和,不小于一个所述随机接入信号的信号长度,以确保一个所述随机接入信号的完整传输。
如图3所示,本实施例提供一种随机接入方法,应用于终端中,包括:
步骤S310:确定信号格式;
步骤S320:根据所述信号格式形成一个随机接入信号;
步骤S330:利用S个发送配置发送至少部分所述随机接入信号;其中,所述S为大于等于1的整数。
在本实施例中,所述终端在发送一个随机接入信号时,会利用S个发送配置进行发送。每一个所述发送配置用于发送一个所述随机接入信号中的全部或部分。这样的话,基站的多个接收配置对应的不同天线,均会接收到所述随机接入信号,这样的话,基站将获得多个接收状况信息,例如,多个接 收强度和/或多个接收质量,从而根据所述接收状况信息,方便所述基站通过一个随机接入信号的接收,选择出用于接收UE发送上行数据的接收配置。这里的接收配置可以参见前述实施例中的接收频率、接收方向及极化方向的至少其中之一。这里的发送配置也可以为发送频率、发送方向互极化方向等发送天线的天线参数。
在一些实施例中,所述步骤S310可包括:
预先从基站接收所述随机接入信号的第二拓展信号格式,其中,所述第二拓展信号格式包括:P1个第二循环前缀、P2个第二前导码;
所述P2等于或大于所述P1;一个所述发送配置下至少发送一个所述第二循环前缀和一个所述第二前导码。
在本实施例中所述UE会从基站接收第二拓展信号格式,这里的第二拓展信号格式可为相对于前述的基础信号格式而言的。在本实施例中包括P1个第二循环前缀和P2个第二前导码。P2大于或等于P1。当所述P2等于P1时,所述第二循环前缀和所述第二前导码,在所述第二拓展信号格式中间隔分布。当所述P2大于所述P1,任意两个所述第二循环前缀不相邻分布,即任意两个所述第二循环前缀之间至少间隔一个或更多的所述第二前导码。
在本实施例中UE发送的随机接入信号是基于第二拓展信号格式形成的,在实现时,也可以是基于所述基础信号格式,或所述第一拓展信号格式等其他信号格式形成的。
在一些实施例中,若采用第二拓展格式,则可能出现一个随机接入资源无法完整传输一个所述随机接入信号的现象,故在本实施例中所述步骤330还可包括:当所述随机接入信号的长度大于第一预设长度时,分段传输所述随机接入信号。
所述当所述随机接入信号的长度大于第一预设长度时,分段传输所述随机接入信号,包括:
确定分段段数;
根据所述分段段数,分段传输所述随机接入信号。
同样的在本实施例中,如何进行分段传输,也可包括多种方式:
方式一:
所述确定分段段数,包括:
接收基站发送的分段指示;
根据所述分段指示,确定分段段数。这里分段指示的相关描述可以参见前述实施例的对应部分,此处就不重复了。
方式二:
所述确定分段段数,还包括:
根据所述随机接入信号的长度,和单个随机接入资源对应的数据长度,确定所述分段段数。
如图4所示,本实施例提供一种上行接收波束的确定方法,应用于基站中,包括:
步骤S410:分别接收终端利用多个发送配置发送的一个随机接入信号;其中,一个所述发送配置发送至少部分所述随机接入信号;
步骤S420:根据不同所述配置发送的随机接入信号的接收状况信息,确定上行接波束的接收配置。
这样的话,基站接收UE发送的一个随机接入信号,会得到多个接收信号强度或质量,选择信号强度最大或接收质量最好的接收天线的接收配置,作为所述上行接收波束的接收配置。这样的话,通过一个随机接入信号的接收,就完成了上行接收波束的接收配置的确定。
在一些实施例中,所述方法还包括:
发送随机接入信号的第二拓展信号格式,其中,所述第二拓展信号格式包括P1个第二循环前缀、P2个第二前导码;其中,所述P2等于或大于所 述P1;一个所述发送配置至少用于发送至少一个所述第二循环前缀和一个所述第二前导码。且任意两个所述第二循环前缀在所述第二拓展格式中不相邻设置。这里的第二拓展信号格式的定义可以参见前述对应的实施例。在实现时,所述第二拓展信号格式还包括一个保护间隔。所述保护间隔位于所有第二循环前缀和第二前导码之后。
如图5所示,本实施例提供一种上行接收波束的确定方法,包括:
步骤S510:利用多个发送配置发送多次指定下行信号;
步骤S520:接收终端发送的随机接入信号;
步骤S530:根据所述随机接入信号的接收参数,确定终端发送所述接入信号对应的所述指定下行信号的接收配置;
步骤S540:根据所述终端发送所述接入信号对应的所述指定下行信号的接收配置,确定上行接收波束的接收配置。
这里的指定下行信号可包括同步信号或部分广播信道的时间或频率位置的信号。所述同步信号可包括主同步信号和辅同步信号等。
在本实施例中基站首先发送多次指定下行信号,接收终端基于所述指定下行信号的接收状况信息,发送的随机接入信号;根据所述随机接入信号的接收时间,确定下行信号的接收配置。终端若接收到一个随机接入信号的信号质量好,则会选择与该次指定下行信号的发送视频资源对应的随机接入资源,发送所述随机接入信号。
步骤S530中的接收参数,可包括所述随机接入信号的接收时间或随机接入信号的随机接入资源对应频段,或发送所述随机接入信号的随机接入资源的编号等信息。每一个所述指定下行信号的发送资源与至少一个随机接入资源建立有关联关系,这种关联关系可为时间关联关系或频率关联关系。例如,所述时间关联关系可表现在两个资源对应的时间在预设范围内,所述频域关联关系,可表现在两个资源使用的频段相差预定值或相差在预定范围 内。故步骤S530中可基于所述接收参数及所述关联关系,确定出终端是基于哪个指定下行信号发送的随机接入信号。这种关联关系,所述基站可以预先通知终端。
故在本实施例中的步骤S540可以根据指定下行信号的接收配置,作为上行接收波束的结束配置,从而完成所述上行接收波束的接收配置的确定,以便后续接收该UE的上行业务数据或上行请求信息等。
在一些实施例中,所述步骤S540可包括:根据所述接收配置,确定所述上行接收波束的波束频率、接收角度和极化方向中的至少之一。
在有些实施例中,所述方法还包括:向所述终端发送随机接入资源的资源起始位置。
通过向所述终端发送随机接入资源的资源起始位置,相当于指示了终端在哪些位置上选择基于所述指定下行信号选择的资源的开始位置。这样基站就不用逐一向终端指示每一个随机接入资源的位置。
如图6所述,本实施例提供一种上行接收波束的确定方法,包括:
步骤S610:接收基站利用不同发送配置发送的指定下行信号;
步骤S620:根据各所述指定下行信号的接收状况信息,选择随机接入资源;
步骤S630:利用所述随机接入资源发送随机接入信号。
在本实施例中,所述终端会接收到基站利用不同发送配置发送的指定下行信号,这里的发送配置可为发送方向及计划方向等。这里的指定下行信号可为前述的同步信号等。在步骤S620会根据各个指定下行信号的接收状况信息,确定随机接入资源,利用选择的随机接入资源发送随机接入信号。这样基站就可以根据资源的相关性,确定终端对哪一个指定下行信号的接收强度或接收质量较好,再根据指定下行信号的发送配置和上行接收波束的接收配置之间的关联性,从而确定出上行接收波束的接收配置。这样可以避免终 端发送多次随机接入信号。而所述指定下行信号也为同步信号等有其他功能的信号,从而减少了通信资源的占用和终端的功耗。
在实现时,所述随机接入信号的接收时间用于所述基站选择上行接收波束的接收配置。如何确定上行接收波束的接收配置,可参见前述实施例的对应部分。
在一些实施例中,所述步骤S620可包括:当一个发送配置下发送的所述指定下行信号的接收强度满足预设条件时,选择与所述指定下行信号的接收时间最近的随机接入资源发送所述随机接入信号。
或者,当一个发送配置下发送的所述指定下行信号的接收强度满足预设条件时,根据接收强度满足预设条件的下行信号的次序或编号,选择与所述次序或编号对应的随机接入资源。
例如,分别对随机接入资源和发送所述指定下行信号的发送资源进行了排序或编号。例如,终端对第3个发送资源发送的指定下行信号的接收质量最好或接收强度最大,或大于预设阈值,则终端选择第3个随机接入资源发送所述随机接入信号。在本实施例中,这里的“对应”可为次序相同或编号相同或相对应。
在一些实施例中,所述步骤S620可包括:选择随机接入资源发送所述随机接入信号;其中,所述随机接入资源对应的时间与终端接收所述指定下行信号的接收时间的时间差,为预设时间间隔。这样的话,基站在接收到随机接入信号的接收时间,和指定下行信号的发送时间结合关联关系,则可以确定出终端当前发送的随机接入信号,是基于哪一个指定下行信号发送的,以简化基站的操作。
如图7所述,本实施例提供一种上行接收波束的确定装置,应用于基站中,包括:
第一接收单元110,配置为利用N个接收配置,接收终端发送的一个随 机接入信号;所述N为不小于2的整数;
第一获取单元120,配置为分别获取N个所述接收配置对应的接收状况信息;
第一确定单元130,配置为根据所述接收状况信息,确定上行接收波束的接收配置。
本实施例中所述确定装置可为应用于基站中的信息处理结构。所述第一接收单元110可对应于基站的空口,能够从终端接收所述随机接入信号。
所述第一获取单元120及所述第一确定单元130可对应于所述基站中的处理器或处理电路。所述处理器可包括中央处理器、微处理器、应用处理器、数字信号处理器或可编程阵列等。所述处理电路可包括专用集成电路。
所述处理器或处理电路可通过执行预定指令,实现上述第一获取单元120和所述第一确定单元的功能。
在一些实施例中,所述第一接收单元110配置为在接收所述终端的一个随机接入信号的发送过程中,利用一个或同时利用多个所述接收配置接收所述随机接入信号,并至少调整1次所述接收配置,直至利用N个所述接收配置,接收所述随机接入信号。
在另一些实施例中,所述第一接收单元110配置为同时利用N个所述接收配置,分别同时接收终端发送的一个随机接入信号。
此外,所述装置还包括:
第二确定单元,配置为预先确定随机接入信号的第一拓展信号格式;其中,所述第一拓展信号格式包括一个第一循环前缀、N个第一前导码;
第一发送单元,配置为将所述信号格式发送给所述终端;其中,所述信号格式用于指示终端发送所述随机接入信号。
这里的第二确定单元的硬件结构,可与所述第一确定单元类似。所述第一发送单元可对应于所述基站的天线,可用于向终端发送信息。
在本实施例中,所述第一循环前缀的长度与基础信号格式中的基础循环前缀的长度相等;或,所述第一循环前缀的长度与所述基础循环前缀的长度的相差长度在预设范围内;或,所述第一循环前缀的长度,大于或等于M倍所述基础循环前缀的长度,所述M为正整数。
在一些实施例中,所述第一接收单元110配置为当所述随机接入信号的长度大于第一预设长度时,利用N个所述接收配置,分段接收所述随机接入信号。
例如,所述装置还包括:第一发送单元,配置为向所述终端发送分段指示;所述第一接收单元110配置为当所述随机接入信号的长度大于第一预设长度时,分段接收基于所述分段指示发送的随机接入信号。分段接收中,每一段随机接入信号可以由一个或多个接收配置来接收。
如图8所示,本实施例提供一种随机接入装置,应用于终端中,包括:
第三确定单元210,配置为确定信号格式;
第一形成单元220,配置为基于所述信号格式,形成随机接入信号;
第二发送单元230,配置为向基站发送所述随机接入信号。
在本实施例中所述随机接入装置,为应用于终端中的信息处理结构。第三确定单元210、第一形成单元220可对应于处理器或处理电路。
所述第二发送单元230可对应于终端的发送天线,可用于发送随机接入信号。
在一些实施例中,一个所述随机接入信号格式用于所述基站利用N个接收配置进行接收,并基于N个所述接收配置的接收状况信息,选择上行接收波束的接收配置。
在有些实施例中,所述第三确定单元210配置为从所述基站接收第一拓展信号格式;其中,所述第一拓展信号格式包括一个第一循环前缀及N个第一前导码。
在示例性实施例中,所述第一循环前缀的长度与基础信号格式中的基础循环前缀的长度相等;或,所述第一循环前缀的长度与所述基础循环前缀的长度的相差长度在预设范围内;或,所述第一循环前缀的长度,大于或等于M倍所述基础循环前缀的长度,所述M为正整数。
在有些实施例中,所述第二发送单元230配置为当所述随机接入信号的长度大于第一预设长度时,分段传输所述随机接入信号。
在某些实施例中,所述第二发送单元230配置为确定分段段数;根据所述分段段数,分段传输所述随机接入信号。
此外,所述装置还包括:
第二接收单元,配置为接收所述基站发送的分段指示;
所述第二发送单元配置为根据所述分段指示,确定分段段数。
所述第二接收单元,可对应于接收天线,配置为接收基站发送的分段指示。
在有些实施例中,所述第二发送单元230配置为根据所述随机接入信号的信号长度,和单个随机接入资源的资源长度,确定所述分段段数。
如图9所示,本实施例提供一种随机接入装置,应用于终端中,包括:
第四确定单元310,配置为确定信号格式;
第二形成单元320,配置为根据所述信号格式形成一个随机接入信号;
第三发送单元330,配置为利用S个发送配置发送至少部分所述随机接入信号;其中,所述S为大于等于1的整数。
所述第四确定单元310及所述第二形成单元320,可对应于处理器或处理电路。所述第三发送单元330对应于终端内的发送天线等。
在一些实施例中,所述第四确定单元310配置为预先从基站接收所述随机接入信号的第二拓展信号格式,其中,所述第二拓展信号格式包括:P1个第二循环前缀、P2个第二前导码;所述P2等于或大于所述P1;一个所述 发送配置下至少发送一个所述第二循环前缀和一个所述第二前导码;其中,所述P1和P2均为正整数。
在还有一些实施例中,所述第三发送单元330配置为当所述随机接入信号的长度大于第一预设长度时,分段传输所述随机接入信号。
此外,所述第三发送单元330配置为确定分段段数;根据所述分段段数,分段传输所述随机接入信号。
例如,所述装置还包括:第三接收单元,配置为接收基站发送的分段指示;所述第三发送单元330配置为根据所述分段指示,确定分段段数。所述第三发送单元330可对应于发送天线。
例如,所述第三发送单元330配置为根据所述随机接入信号的长度,和单个随机接入资源对应的数据长度,确定所述分段段数。
如图10所示,本实施例提供一种上行接收波束的确定装置,应用于基站中,包括:
第四接收单元410,配置为分别接收终端利用多个发送配置发送的一个随机接入信号;其中,一个所述发送配置发送至少部分所述随机接入信号;
第四确定单元420,配置为根据不同所述配置发送的随机接入信号的接收状况信息,确定上行接波束的接收配置。
第四接收单元410可对应于接收天线。所述第四确定单元420可对应于处理器或处理电路。
在有些实施例中,所述装置还包括:第四发送单元430,配置为发送随机接入信号的第二拓展信号格式,其中,所述第二拓展信号格式包括P1个第二循环前缀、P2个第二前导码;其中,所述P2等于或大于所述P1;其中,一个所述发送配置至少用于发送至少一个所述第二循环前缀和一个所述第二前导码。所述第四发送单元,对应于发送天线。所述P1和P2均为正整数。
如图11所示,本实施例提供一种上行接收波束的确定装置,应用于基 站中,包括:
第五发送单元510,配置为利用多个发送配置发送多次指定下行信号;
第五接收单元520,配置为接收终端发送的随机接入信号;
第五确定单元530,配置为根据所述随机接入信号的接收参数,确定终端发送所述接入信号对应的所述指定下行信号的接收配置;
第六确定单元540,配置为根据所述终端发送所述接入信号对应的所述指定下行信号的接收配置,确定上行接收波束的接收配置。
本实施例提供的装置应用于基站中,例如,演进型基站eNB。所述第五发送单元510和第五接收单元520都对应于通信接口,均能够和终端进行信息交互。
所述第五确定单元530和第六确定单元540都可对应于处理器或处理电路。
在有些实施例中,所述第五确定单元530配置为根据所述接收配置,确定所述上行接收波束的波束频率、接收角度和极化方向中的至少之一。
所述第五发送单元530还配置为向所述终端发送随机接入资源的资源起始位置。
如图12所示,本实施例提供一种上行接收波束的确定装置,应用于终端中,包括:
第六接收单元610,配置为接收基站利用不同发送配置发送的指定下行信号;
选择单元620,配置为根据各所述指定下行信号的接收状况信息,选择随机接入资源;
第六发送单元630,配置为利用所述随机接入资源发送随机接入信号。
所述第六接收单元610和第六发送单元630对应于终端中的收发天线。所述选择单元620对应于处理器或处理电路。
在一些实施例中,所述随机接入信号的接收时间用于所述基站确定上行接收波束的接收配置。
在有些实施例中,所述选择单元620配置为当一个发送配置下发送的所述指定下行信号的接收强度满足预设条件时,选择与所述指定下行信号的接收时间最近的随机接入资源发送所述随机接入信号;或者,当一个发送配置下发送的所述指定下行信号的接收强度满足预设条件时,根据接收强度满足预设条件的下行信号的次序或编号,选择与所述次序或编号对应的随机接入资源。
在一些实施例中,所述选择单元620配置为选择随机接入资源发送所述随机接入信号;其中,所述随机接入资源对应的时间与终端接收所述指定下行信号的接收时间的时间差,为预设时间间隔。
本实施例还提供一种基站,包括:
第一接收天线,配置为利用N个接收配置,接收终端发送的一个随机接入信号;所述N为不小于2的整数;
第一处理器,配置为分别获取N个所述接收配置对应的接收状况信息;根据所述接收状况信息,确定上行接收波束的接收配置。
所述第一接收天线可为基站中的任意接收天线。所述第一处理器可为各种类型的处理器,例如,中央处理器CPU、微处理器MCU、数字信号处理器DSP、应用处理器AP或可编程阵列PLC等。
所述第一接收天线配置为在接收所述终端的一个随机接入信号的发送过程中,利用一个或同时利用多个所述接收配置接收所述随机接入信号,并至少调整1次所述接收配置,直至利用N个所述接收配置,接收所述随机接入信号。
在另一些实施例中,所述第一接收天线用于同时利用N个所述接收配置,分别同时接收终端发送的一个随机接入信号。
本实施例还提供一种终端,包括:
第二处理器,配置为确定信号格式,及基于所述信号格式,形成随机接入信号;
第一发送天线,配置为向基站发送所述随机接入信号。
所述第一处理器可为CPU、MCU、DSP、AP或PLC等。所述第一发送天线可为发送无线信号的各种发送天线。
所述终端还包括:
第二接收天线,配置为从所述基站接收第一拓展信号格式;其中,所述第一拓展信号格式包括一个第一循环前缀及N个第一前导码。
本实施例提供另一种终端,包括:
第三处理器,配置为确定信号格式,及根据所述信号格式形成一个随机接入信号;
第二发送天线,配置为利用S个发送配置发送至少部分所述随机接入信号;其中,所述S为大于等于1的整数。
所述第三处理器可为CPU、MCU、DSP、AP或PLC等。所述第二发送天线可为各种类型的发送天线。
在示例性实施例中,所述终端还包括:第三接收天线,配置为预先从基站接收所述随机接入信号的第二拓展信号格式,其中,所述第二拓展信号格式包括:P1个第二循环前缀、P2个第二前导码;所述P2等于或大于所述P1;一个所述发送配置下至少发送一个所述第二循环前缀和一个所述第二前导码;其中,所述P1和所述P2均为不小于1的整数。
本公开实施例还提供另一种基站,包括:
第四接收天线,配置为分别接收终端利用多个发送配置发送的一个随机接入信号;其中,一个所述发送配置发送至少部分所述随机接入信号;
第四处理器,配置为根据不同所述配置发送的随机接入信号的接收状况 信息,确定上行接波束的接收配置。
第四接收天线,可为接收终端发送的信号的各种天线,例如,多输入多谁出(MIMO)天线。所述第四处理器可为CPU、MCU、DSP、AP或PLC等。
在示例性实施例中,所述基站还包括:第三发送天线,配置为发送随机接入信号的第二拓展信号格式,其中,所述第二拓展信号格式包括P1个第二循环前缀、P2个第二前导码;其中,所述P2等于或大于所述P1;其中,一个所述发送配置至少用于发送至少一个所述第二循环前缀和一个所述第二前导码。
本实施例提供一种基站,包括:
第四发送天线,配置为利用多个发送配置发送多次指定下行信号;
第五接收天线,配置为接收终端发送的随机接入信号;
第五处理器,配置为根据所述随机接入信号的接收参数,确定终端发送所述接入信号对应的所述指定下行信号的接收配置;根据所述终端发送所述接入信号对应的所述指定下行信号的接收配置,确定上行接收波束的接收配置。
所述第五处理器可为CPU、MCU、DSP、AP或PLC等;所述第四发送天线为可向终端发送信号的发送天线。所述第五接收天线可为接收终端发送的信号的天线。在示例性实施例中,所述第四发送天线配置为向所述终端发送随机接入资源的资源起始位置。
本实施例还提供另一种基站,包括:
第六接收天线,配置为接收基站利用不同发送配置发送的指定下行信号;
第六处理器,配置为根据各所述指定下行信号的接收状况信息,选择随机接入资源;
第五发送天线,配置为利用所述随机接入资源发送随机接入信号。
所述第六处理器可为CPU、MCU、DSP、AP或PLC等。所述第六接收天线和第五发送天线,对应于收发天线。
在示例性实施例中,所述第六处理器配置为当一个发送配置下发送的所述指定下行信号的接收强度满足预设条件时,选择与所述指定下行信号的接收时间最近的随机接入资源发送所述随机接入信号;或者,当一个发送配置下发送的所述指定下行信号的接收强度满足预设条件时,根据接收强度满足预设条件的下行信号的次序或编号,选择与所述次序或编号对应的随机接入资源。
本公开实施例提供一种信令通知方法,包括:
基站向终端发送随机接入信号的指示信息;
所述指示信息包括如下至少之一:前导格式,所述前导格式的重复次数及所述前导格式的重复类型。
所述前导格式可为所述随机接入信号的信号格式,相当于前述的第一类拓展信号格式和第二类拓展信号格式或基础信号格式。
在示例性实施例中,所述前导格式用于指示循环前缀长度,前导序列重复次数,前导序列长度。
在示例性实施例中,所述重复类型包括:带循环前缀CP重复及不带循环前缀CP重复的至少之一。
在示例性实施例中,所述基站向终端发送随机接入信号的指示信息,包括:
利用广播发送所述指示信息。
在示例性实施例中,所述指示信息还用于指示两次所述前导格式重复之间无随机接入资源间隔。
在示例性实施例中,所述指示信息还用于指示终端在一个随机接入资源 发送重复的所述前导格式对应的随机接入信号,其中,所述随机接入资源的发送位置根据下行同步块索引确定。
在示例性实施例中,所述指示信息还用于指示终端不带CP重复时,在所有随机接入资源上发送重复所前导格式产生的随机接入信号。
在示例性实施例中,所述指示信息还用于指示所述终端带CP重复时,多个随机接入资源上发送重复所述前导格式产生的随机接入信号。
在示例性实施例中,所述基站向终端发送随机接入信号的指示信息,包括:
所述基站向所述终端发送多次所述指示信息;
其中,在部分所述指示信息中利用发送所述重复次数的信息域,指示重复相关信息;其中,所述重复相关信息包括指示发送重复所述前导格式的随机接入信号的资源位置。
本公开实施例还提供一种信令接收方法,包括:
从基站接收随机接入信号的指示信息;
所述指示信息包括如下至少之一:前导格式,所述前导格式的重复次数及所述前导格式的重复类型。
在示例性实施例中,所述前导格式用于指示循环前缀长度,前导序列重复次数,前导序列长度。
在示例性实施例中,所述重复类型包括:带循环前缀CP重复及不带循环前缀CP重复的至少之一。
在示例性实施例中,所述从基站接收随机接入信号的指示信息,包括:
从广播中接收所述指示信息。
在示例性实施例中,所述指示信息还用于指示所述带CP重复和不带CP重复的两次所述前导格式重复之间无随机接入资源间隔。
在示例性实施例中,所述方法还包括:
当带CP重复时,根据下行同步块索引确定一个随机接入资源;
利用所述随机接入资源,发送重复所述前导格式产生的随机接入信号。
在示例性实施例中,所述方法还包括:
当不带CP重复时,在所有随机接入资源上发送重复所前导格式产生的随机接入信号。
在示例性实施例中,所述方法还包括:
当带CP重复时,在多个随机接入资源上发送重复所述前导格式产生的随机接入信号。
在示例性实施例中,所述方法还包括:
接收多次所述指示信息;
在部分所述指示信息中的利用发送所述重复次数的信息域,指示重复相关信息;其中,所述重复相关信息包括指示发送重复所述前导格式的随机接入信号的资源位置。
本公开实施例提供一种基站,包括:
第七发送单元,配置为基站向终端发送随机接入信号的指示信息;
所述指示信息包括如下至少之一:前导格式,所述前导格式的重复次数及所述前导格式的重复类型。
发送单元对应于发送天线,所述基站还可包括处理器,可用于形成知识信息。
在示例性实施例中,所述前导格式用于指示循环前缀长度,前导序列重复次数,前导序列长度。
总之,所述基站可用于执行前述的信令发送方法。
本实施例提供一种终端,包括:
第七发送单元,配置为从基站接收随机接入信号的指示信息;
所述指示信息包括如下至少之一:前导格式,所述前导格式的重复次 数及所述前导格式的重复类型。
所述第七接收单元,对应于终端内的接收天线,可配置为执行所述信令接收方法中的操作。
在示例性实施例中,所述前导格式用于指示循环前缀长度,前导序列重复次数,前导序列长度。
以下结合上述实施例提供几个示例:
示例一:
本示例提供一种随机接入信号的接收方法,包括:
基站决定并通知终端随机接入的信号格式;这里的信号格式可为前述的第一拓展信号格式或第二信号拓展格式;
基站接收终端遵循相应格式传输的随机接入信号;
所述接收的随机接入信号由多个前导码重复并连续组合形成,前导码重复可以是没有携带循环前缀前导码的重复,或者是携带循环前缀的前导码的重复。
在示例中,所述的前导码重复可以是相同的前导码序列重复,或者是不同的前导码序列重复。
在示例中,前述拓展信号的循环前缀的长度可以与基本信号格式的循环前缀长度相当,或者是基础信号格式的循环前缀长度2倍相当或更长。
在示例中,基站可以通过信令通知随机接入信号的随机接入资源的与下行信号的发送资源具有关联关系,这种关联关系体现在时间维度上的时间关联性或频域的关联性;例如,两个资源的时间相差在预设时间内,频率相差在预设频率范围内。
在示例中,基站接收的多个连续的随机接入信号组合后的资源起点 与多个下行信号的发送资源可以存在关联关系;多个连续的随机接入信号的资源由多个连续的随机接入信号组合后的资源起点,多个下行信号的发送资源之间的相对顺序和随机接入信号的格式共同确定。这里的下行信号可为前述的指定下行信号。
发送随机接入信号的随机接入资源可以是连续的也可以非连续的。
基站在非连续随机接入资源上分段接收随机接入信号,每段的随机接入信号长度不一定相等。
分段数量由基站通知终端;或者基站通知终端某段随机接入信号延迟到下一个可用随机资源上传输;或者基站通知终端某段随机接入信号资源被打孔;或者终端知晓某段资源被其他业务占用导致随机接入信号分段。
示例二
本示例还提供一种随机接入方法,包括:
终端接收基站指示的随机接入的信号格式,并遵循相应格式传输随机接入信号;这里的信号格式可为前述拓展信号格式,例如,第一拓展信号格式或第二拓展信号格式。
所述随机接入信号由多个前导码重复并连续组合形成,前导码重复可以是没有携带循环前缀前导码的重复,或者是携带循环前缀的前导码的重复;
所述随机接入信号格式中至少还可包括以下参数之一:循环前缀的长度、前导码重复次数、前导码重复后组合的长度。
所述的前导码重复可以是相同的前导码序列重复,或者是不同的前导码序列重复。
拓展信号格式的循环前缀的长度与前导码基础信号格式的循环前缀长度相当,或者是前导码基础信号格式的循环前缀长度的2倍相当或更 长。
随机接入信号上行资源的与下行信号的发送资源有关联关系,关联关系是通过预定义确定或信令通知的相对时间或相对频率偏差。
多个连续的随机接入信号组合后的资源起点与多个下行信道或信号存在关联关系;多个连续的随机接入信号的资源可以通过多个连续的随机接入信号组合后的资源起点,多个下行信道或信号之间的相对顺序和随机接入信号的格式共同确定。
随机接入信号传输所使用的资源可以是连续的也可以非连续的。
在非连续资源上,随机接入信号分段传输,每段的随机接入信号长度不一定相等,分段后的随机接入信号中前导码需具备循环前缀。
终端接收基站通知分段数量;或者终端接收基站通知某段随机接入信号延迟到下一个可用随机资源上传输的信令;或者终端接收基站通知某段随机接入信号的随机接入资源被打孔的信令;或者终端知晓某段资源被其他业务占用导致随机接入信号分段。
示例三:
如图13为例,提供了5种格式的随机接入信号的信号格式,格式0是基础信号格式,没有任何的前导码重复,循环前缀CP也是用于常规覆盖。图13中的GT表示保护间隔,为Guard Time的缩写。而其余4种格式为拓展信号格式,都对基础格式的前导码进行了多次重复,重复的前导码是相同的。区别在于格式1和格式2的循环前缀的长度和基础格式的循环前缀的长度相当,相当可以理解为相等或者在量级上没有明显差异,比如差异值小于20%。这意味着格式1和2在覆盖距离上和基础格式0是相当的,重复的前导码只用于适配基站接收波束的数量,如重复2次,代表可以给基站提供两次波束接收的机会;重复3次,代表可以给基站提供三次波束接收的机会。格式1a和2a既有前导码的重复, 也有相对于基础格式的明显加长的循环前缀,这代表这种格式既可能用于提供给基站多次波束接收的机会,也可以用于更大距离的覆盖,更大距离的覆盖可以通过更长的前导码序列和循环前缀来提供保证,多个前导码的重复形成的长前导码可以提供能量的累加以满足更远的覆盖距离。随机接入信号的信号格式设计不限于图13中提供的5种,相应的设计准则归纳来说:对基础格式的前导码进行不带循环前缀的多次重复,重复的前导码是相同的;对重复后的长前导码添加不同长度的循环前缀,其中某一种格式的循环前缀和基础格式的循环前缀的长度相当;某一种格式的循环前缀的长度超过基础格式循环前缀的长度1倍或更长且很大可能是整数倍。
针对随机接入信号的信号格式中的前导码重复次数的设定,可以依赖于基站分时接收波束的次数。比如,基站有8个接收波束用于初始接入,这8个波束都是模拟波束,可以分时轮转,所以分时接收波束的次数就是8。若8个波束为混合波束,同一个时刻可以接收4个数字波束,则分时接收波束的次数就是2。这个能力将通过随机接入前导格式的选择隐含通知给终端。
本示例中的拓展信号格式可相当于前述示例中的第一拓展信号格式。
示例四:
本示例提供另外一种随机接入方法,大体操作与示例三中类似,但最大的区别在于前导码重复是携带循环前缀一起的重复。这种重复方式可以适用于终端切换了发射波束或者不同的前导码针对不同的终端的设计需求。
如图14所示的例子:信号格式0是基础信号格式,格式1为拓展信号格式的两个前导码分别用于同一个终端的不同的发射波束,所以实际上决定覆盖距离的仍然是前导码的长度,也就是说覆盖距离和基础格式相当,同样循环前缀的长度也和基础格式相当。格式1a也为拓展信号格式,在格式1a中前导码包括前导码1和前导码2,而格式1中的前导码均为前导码1,故格式1a除了在前后两个前导码上使用了不同的前导码序列外,其余都和格式1相同,使用不同的前导码可以适用于不同的终端。格式2和格式2a均为拓展信号格式以循环前缀进行分界的外环重复的基本目的和格式1及格式1a相同,而同一个循环前缀内的内环前导码重复,目的类似于示例三,即可适用于更远覆盖场景,也可以用于提供给基站更多的接收波束的机会,格式2和格式2a可以认为是示例一和本示例中不带循环前缀重复和混合体。格式2和2a之间的区别在于格式2a外环重复的长前导码不同,可以用于不同的终端。在格式2中所有前导码均为前导码1;格式2a包括的前导码包括前导码1和前导码2。
每一种信号格式末尾的保护间隔GT是不做定义的,但GT的作用不能忽略,GT是用来保护随机接入后正常正交频分(OFDM)符号免受干扰的。GT的功能可以被循环前缀替代,所以多次重复的前导码之间没有GT。
实施例中前导码的格式设计不限于图14中提供的5种,相应的设计准则归纳来说:对基础格式的前导码进行带循环前缀的多次重复,重复的前导码可以是相同也可以是不同的。还可以对已经进行了不带循环前缀重复的长前导码进行带循环前缀的多次重复。
本示例提供的拓展信号格式,可为前述示例中第二拓展信号格式。
示例五:
在随机接入过程中,随机接入信号所选择的上行资源的确定是一个非常重要的问题。如示例三和示例四中提供了不同的随机接入前导格式,由于相应的格式占用不同的时间长度,所以随机接入前导格式会影响到上行资源的选择和确定。
本示例提供一种确定随机接入信号所选择的上行资源的方法,可以依托于初始接入过程中使用到的相关下行信号,如基于同步信号、广播信道的时间、频率位置,通过一个设定的相对偏差或者信令通知的相对偏差来确定上行随机接入信号的上行资源。通过唯一性确定上行随机接入信号资源的好处在于,基站可以从上行随机接入信号的位置识别出终端选择的优化的基站下行信号,比如最优的下行同步信号等。若基站存在信道互易性,则基站不仅可以从上行随机接入信号的位置识别出基站的优化的下行发射信号,还能确定基站的优化的上行接收信号。
如图15所示:TRP是基站无线传输节点,SS1和SS2是两个不同的同步信号,SS1和SS2有先后顺序。UE1和UE3所确定的随机接入资源和SS1相关,由SS1的位置映射而来,UE1和UE3与SS1的相对时间差为Δt1,与SS1的相对频率差为Δf1和Δf3。UE2和UE4所确定的随机接入资源和SS2相关,由SS2的位置映射而来,UE2和UE4与SS2的相对时间差为Δt2,与SS1的相对频率差为Δf1和Δf3。
如果不同的随机接入前导码占用的资源是连续的,所说的资源连续可以是实际物理资源或者逻辑资源在时域或者频域上是连续的。仍然如图3所示,UE1和UE3、UE2和UE4所使用的资源是时域上连续的,那么可以通过映射下行信道或信号的先后顺序来决定不同随机接入前导码占用资源的相对位置。UE只要知道随机接入资源的起点位置,而在随机接入资源中的相对顺序可以通过他们各自与同步信号SS对应关系,同 步信号SS1、SS2的相对顺序来一一映射,并结合随机接入信号的格式就可以唯一确认各个UE的随机接入信号资源。这种通过相对顺序隐含确定资源的方式可以有效节省基站给终端指示的信令。
归纳来说,随机接入信号所选择的上行资源的与下行信号的下行资源有关联关系,关联关系是通过预定义和信令通知的相对时间或频率偏差。当存在多个连续的随机接入信号的情况下,多个连续的随机接入信号组合后的资源起点与多个下行信道或信号存在关联关系。多个连续的随机接入信号的各自的资源可以通过多个连续的随机接入信号组合后的资源起点,多个下行信道或信号之间的相对顺序和随机接入信号的格式共同确定。
示例六
由于基站和终端在最大发射功率上的差异,所以为达到下行同步和上行随机接入相当的覆盖范围,随机接入的资源开销特别是随机接入占用的时长远远大于下行同步信号的资源开销,比如在长期演进(LTE)系统中,5ms中只有一个主同步信号符号,其对于的随机接入信号所占用的资源不小于14个符号。这样在新一代移动通信系统中,由于子帧和时隙长度相对于LTE更短,当要满足一些更大距离的覆盖时,随机接入信号占用的资源有可能会超出随机接入时隙或子帧的长度。
新一代移动通信系统中更倾向于使用时分复用TDD模式,在一个时隙或子帧内既有下行也有上行,传输时隙可能有7个或者14个符号,由于业务的不对称性,能够用于上行传输符号数量可能是比较少的,连续的上行传输符号也可能不能完全容纳随机接入信号。
由于随机接入信号可能长度比较长,这样就会较长时间中断其他终 端在发送业务数据时的上行资源,要减少其他终端的正常业务数据的中断时间。
以上多个原因都要随机接入信号支持非连续传输。图4给出了一种非连续传输的例子。图15来源于将图14的连续随机接入信号传输分割后在不连续的资源上进行传输。
示例性地,图15就是将图14中连续的资源分段形成。分段在信令上可以进行明确的分段指示,基站根据资源情况,以指示终端进行合理的分段,分段指示可以是资源分段的段数或者每段内的前导码的长度,这也意味着不同段之间可能允许的前导码的长度也是不同的。分段之后,为保护前导码之后的正常符号,可以在前导码后形成保护时间GT。分段之前如果重复的前导码没有循环前缀,也可以添加循环前缀,如图16所示,分段前多段前导码属于同一个终端,且没有循环前缀,分段后可以为前导码添加循环前缀。
另外一种示例性的方法是对连续的随机接入资源进行打孔以生成非连续的随机接入传输。对TDD模式来说,时隙内的下行资源可以视为被打孔掉上行资源。打孔后,原打孔位置的随机接入信号延迟到后面的比如下一个可用随机接入资源进行传输,如图17所示:第二个前导码的位置被打孔,其相应的传输延迟到下一个可用前导码资源,或者这部分打孔资源被忽略不在利用。打孔后对第一个前导码自然形成了GT,第二个前导码可以增加循环前缀。可以通过通知终端延迟随机接入信号传输的信令来实现打孔的目的。打孔的一个非常重要的原因是相应的随机接入资源被优先级更重要的业务抢占。
本公开实施例还提供一种计算机存储介质,存储有可执行指令,计算机或处理器通过执行所述可执行指令,可实现前述所述的上行波束的接收配置的确定方法和所述上行随机接入请求方法中的至少之一。所述计算机存储介质可为非瞬间存储介质。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上所述,仅为本公开示例性实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。
工业实用性
本公开实施例提供了上行接收波束的确定方法及装置、随机接入方法及装置、基站及终端。第一方面,基站可以利用多个接收配置接收一个随机接入信号,从而获得多个接收状况信息,再根据接收状况信息,选择下行接收波束的接收配置,这样终端就不发送多个随机接入信号,减少了终端发送随机接入信号的功耗,降低了多次随机接入信号占用的通信资源。第二方面,终端同时利用多个发送参数发送一个随机接入信号,基站自然会接收到每一个发送参数发送的随机接入信号,这样也可以根据一次随机接入信号的接收状况信息,确定出下行接收波束的接收配置。第三方面,终端首先接收指定下行信号,根据指定下行信号的接收状况信息,选择对应的随机接入资源发送给基站,基站就可以根据随机接入信号的接收时间,及随机接入信号的随机接入资源与指定下行信号的发送资源的对应关系,确定出上行接收波束的接收配置,这样终端同样仅需发送一个随机接入信号。总之,终端发送的随机接入信号的个数减少,减少了随机接入信号的信令开销、降低了终端的功耗、减少了通信资源的占用。因此本公开具有工业实用性。

Claims (53)

  1. 一种随机接入方法,应用于终端中,包括:
    确定信号格式(S210);
    基于所述信号格式,形成随机接入信号(S220);
    向基站发送所述随机接入信号(S230);
    其中,所述确定信号格式(S210),包括:
    从所述基站接收第一拓展信号格式指示;其中,所述第一拓展信号格式包括一个第一循环前缀及N个第一前导码;
    所述第一循环前缀的长度,包括:
    所述第一循环前缀的长度与基础信号格式中的基础循环前缀的长度相等;或所述第一循环前缀的长度等于M倍所述基础循环前缀的长度,所述M为正整数。
  2. 根据权利要求1任一项所述的方法,其中,
    所述向基站发送所述随机接入信号(S230),包括:
    当所述随机接入信号的长度大于第一预设长度时,分段传输所述随机接入信号。
  3. 根据权利要求2所述的方法,其中,
    所述当所述随机接入信号的长度大于第一预设长度时,分段传输所述随机接入信号,包括:
    确定分段段数;
    根据所述分段段数,分段传输所述随机接入信号。
  4. 根据权利要求3所述的方法,其中,
    所述确定分段段数,包括:
    接收所述基站发送的分段指示;
    根据所述分段指示,确定分段段数。
  5. 根据权利要求3所述的方法,其中,
    所述确定分段段数,还包括:
    根据所述随机接入信号的信号长度,和单个随机接入资源的资源长度,确定所述分段段数。
  6. 一种随机接入方法,应用于终端中,包括:
    确定信号格式(S310);
    根据所述信号格式形成一个随机接入信号(S320);
    利用S个发送配置发送至少部分所述随机接入信号;其中,所述S为大于等于1的整数(S330)。
  7. 根据权利要求6所述的方法,其中,
    所述确定信号格式(S310),包括:
    预先从基站接收所述随机接入信号的第二拓展信号格式指示,其中,所述第二拓展信号格式包括:P1个第二循环前缀、P2个第二前导码;
    所述P2等于或大于所述P1;一个所述发送配置下至少发送一个所述第二循环前缀和一个所述第二前导码;其中,所述P1和所述P2均为不小于1的整数。
  8. 根据权利要求6或7所述的方法,其中,
    所述利用S个发送配置发送至少部分所述随机接入信号(S330),包括:
    当所述随机接入信号的长度大于第一预设长度时,分段传输所述随机接入信号。
  9. 根据权利要求8所述的方法,其中,
    所述当所述随机接入信号的长度大于第一预设长度时,分段传输所述随机接入信号,包括:
    确定分段段数;
    根据所述分段段数,分段传输所述随机接入信号。
  10. 根据权利要求9所述的方法,其中,
    所述确定分段段数,包括:
    接收基站发送的分段指示;
    根据所述分段指示,确定分段段数。
  11. 根据权利要求9所述的方法,其中,
    所述确定分段段数,还包括:
    根据所述随机接入信号的长度,和单个随机接入资源对应的数据长度,确定所述分段段数。
  12. 一种随机接入方法,应用于基站中,包括:
    确定信号格式,并配置给终端;
    接收终端基于所述信号格式形成的随机接入信号;
    所述确定信号格式,包括:
    第一拓展信号格式;其中,所述第一拓展信号格式包括一个第一循环前缀及N个第一前导码;
    所述第一循环前缀的长度,包括:
    所述第一循环前缀的长度与基础信号格式中的基础循环前缀的长度相等;
    所述第一循环前缀的长度,等于M倍所述基础循环前缀的长度,所述M为正整数。
  13. 一种上行接收信号的接收配置的确定方法,应用于基站中,包括:
    利用N个接收配置,接收终端发送的一个随机接入信号;所述N为不小于2的整数(S110);
    分别获取N个所述接收配置对应的接收状况信息(S120);
    根据所述接收状况信息,确定上行接收信号的接收配置(S130)。
  14. 一种上行接收信号的接收配置确定方法,包括:
    接收基站利用不同发送配置发送的指定下行信号(S610);
    根据每个所述指定下行信号的接收状况信息,选择随机接入资源(S620);
    利用所述随机接入资源发送随机接入信号(S630)。
  15. 根据权利要求14所述的方法,其中,所述随机接入信号的接收时间用于所述基站确定上行接收信号的接收配置。
  16. 根据权利要求14所述的方法,其中,
    所述根据每个所述指定下行信号的接收状况信息,选择随机接入资源(S620),包括:
    当一个发送配置下发送的所述指定下行信号的接收强度满足预设条件时,选择与所述指定下行信号的接收时间最近的随机接入资源发送所述随机接入信号;
    或者,
    当一个发送配置下发送的所述指定下行信号的接收强度满足预设条件时,根据接收强度满足预设条件的下行信号的次序或编号,选择与所述次序或编号对应的随机接入资源。
  17. 一种随机接入装置,应用于终端中,包括:
    第三确定单元(S210),配置为确定信号格式;
    第一形成单元(220),配置为基于所述信号格式,形成随机接入信号;
    第二发送单元(230),配置为向基站发送所述随机接入信号;
    其中,
    所述确定信号格式,包括:
    从所述基站接收第一拓展信号格式指示;其中,所述第一拓展信号格式 包括一个第一循环前缀及N个第一前导码;
    所述第一循环前缀的长度,包括:
    所述第一循环前缀的长度与基础信号格式中的基础循环前缀的长度相等;或所述第一循环前缀的长度等于M倍所述基础循环前缀的长度,所述M为正整数。
  18. 一种随机接入装置,应用于终端中,包括:
    第四确定单元(310),配置为确定信号格式;
    第二形成单元(320),配置为根据所述信号格式形成一个随机接入信号;
    第三发送单元(330),配置为利用S个发送配置发送至少部分所述随机接入信号;其中,所述S为大于等于1的整数。
  19. 一种随机接入装置,应用于基站中,包括:
    第二确定单元,配置为确定信号格式,并配置给终端;
    信号接收单元,配置为接收终端基于所述信号格式形成的随机接入信号;
    所述确定信号格式,包括:第一拓展信号格式;其中,所述第一拓展信号格式包括一个第一循环前缀及N个第一前导码;
    所述第一循环前缀的长度,包括:
    所述第一循环前缀的长度与基础信号格式中的基础循环前缀的长度相等;或所述第一循环前缀的长度等于M倍所述基础循环前缀的长度,所述M为正整数。
  20. 一种上行接收信号的接收配置的确定装置,应用于基站中,包括:
    第一接收单元(110),配置为利用N个接收配置,接收终端发送的一个随机接入信号;所述N为不小于2的整数;
    第一获取单元(120),配置为分别获取N个所述接收配置对应的接收 状况信息;
    第一确定单元(130),配置为根据所述接收状况信息,确定上行接收信号的接收配置。
  21. 一种上行接收信号的确定装置,应用于终端中,包括:
    第六接收单元(610),配置为接收基站利用不同发送配置发送的指定下行信号;
    选择单元(620),配置为根据每个所述指定下行信号的接收状况信息,选择随机接入资源;
    第六发送单元(630),配置为利用所述随机接入资源发送随机接入信号。
  22. 一种终端,包括:
    第二处理器,配置为确定信号格式,及基于所述信号格式,形成随机接入信号;
    第一发送天线,配置为向基站发送所述随机接入信号;
    第二接收天线,配置为从所述基站接收第一拓展信号格式指示;其中,所述第一拓展信号格式包括一个第一循环前缀及N个第一前导码。
  23. 一种终端,包括:
    第三处理器,配置为确定信号格式,及根据所述信号格式形成一个随机接入信号;
    第二发送天线,配置为利用S个发送配置发送至少部分所述随机接入信号;其中,所述S为大于等于1的整数。
  24. 一种基站,包括:
    信号格式处理器,配置为确定信号格式,并配置给终端;
    信号接收天线,配置为接收终端基于所述信号格式形成的随机接入信 号;
    所述确定信号格式,包括:第一拓展信号格式;其中,所述第一拓展信号格式包括一个第一循环前缀及N个第一前导码;
    所述第一循环前缀的长度,包括:
    所述第一循环前缀的长度与基础信号格式中的基础循环前缀的长度相等;或所述第一循环前缀的长度等于M倍所述基础循环前缀的长度,所述M为正整数。
  25. 一种基站,包括:
    第一接收天线,配置为利用N个接收配置,接收终端发送的一个随机接入信号;所述N为不小于2的整数;
    第一处理器,配置为分别获取N个所述接收配置对应的接收状况信息;根据所述接收状况信息,确定上行接收信号的接收配置。
  26. 一种基站,包括:
    第六接收天线,配置为接收基站利用不同发送配置发送的指定下行信号;
    第六处理器,配置为根据每个所述指定下行信号的接收状况信息,选择随机接入资源;
    第五发送天线,配置为利用所述随机接入资源发送随机接入信号。
  27. 一种信令通知方法,包括:
    基站向终端发送随机接入信号的指示信息;
    所述指示信息包括如下至少之一:前导格式,所述前导格式的重复次数及所述前导格式的重复类型。
  28. 根据权利要求27所述的方法,其中,所述前导格式用于指示循环前缀长度,前导序列重复次数,前导序列长度。
  29. 根据权利要求27所述的方法,其中,所述重复类型包括:带循环前缀CP重复及不带循环前缀CP重复的至少之一。
  30. 根据权利要求27所述的方法,其中,所述基站向终端发送随机接入信号的指示信息,包括:
    利用广播发送所述指示信息。
  31. 根据权利要求29所述的方法,其中,
    所述指示信息还用于指示所述的两次前导格式重复之间无随机接入资源间隔。
  32. 根据权利要求29所述的方法,其中,
    所述指示信息还用于指示终端在一个随机接入资源发送重复的所述前导格式对应的随机接入信号,其中,所述随机接入资源的发送位置根据下行同步块索引确定。
  33. 根据权利要求28所述的方法,其中,
    所述指示信息还用于指示终端不带CP重复时,在所有随机接入资源上发送重复所述前导格式产生的随机接入信号。
  34. 根据权利要求28所述的方法,其中,
    所述指示信息还用于指示所述终端带CP重复时,多个随机接入资源上发送重复所述前导格式产生的随机接入信号。
  35. 根据权利要求32或34所述的方法,其中,
    所述基站向终端发送随机接入信号的指示信息,包括:
    所述基站向所述终端发送多次所述指示信息;
    其中,在部分所述指示信息中利用发送所述重复次数的信息域,指示重复相关信息;其中,所述重复相关信息包括指示发送重复所述前导格式的随机接入信号的资源位置。
  36. 一种信令处理方法,包括:
    从基站接收随机接入信号的指示信息;
    所述指示信息包括如下至少之一:前导格式,所述前导格式的重复次数及所述前导格式的重复类型。
  37. 根据权利要求36所述的方法,其中,所述前导格式用于指示循环前缀长度,前导序列重复次数,前导序列长度。
  38. 根据权利要求36所述的方法,其中,所述重复类型包括:带循环前缀CP重复及不带循环前缀CP重复的至少之一。
  39. 根据权利要求36所述的方法,其中,
    所述从基站接收随机接入信号的指示信息,包括:
    从广播中接收所述指示信息。
  40. 根据权利要求37所述的方法,其中,所述指示信息还用于指示所述两次前导格式重复之间无随机接入资源间隔。
  41. 根据权利要求37所述的方法,其中,
    所述方法还包括:
    当带CP重复时,根据下行同步块索引确定一个随机接入资源;
    利用所述随机接入资源,发送重复所述前导格式产生的随机接入信号。
  42. 根据权利要求37所述的方法,其中,
    所述方法还包括:
    当不带CP重复时,在所有随机接入资源上发送重复所前导格式产生的随机接入信号。
  43. 根据权利要求37所述的方法,其中,
    所述方法还包括:
    当带CP重复时,在多个随机接入资源上发送重复所述前导格式产生的 随机接入信号。
  44. 根据权利要求41或43所述的信令通知方法,其中,
    所述方法还包括:
    接收多次所述指示信息;
    在部分所述指示信息中的利用发送所述重复次数的信息域,指示重复相关信息;其中,所述重复相关信息包括指示发送重复所述前导格式的随机接入信号的资源位置。
  45. 一种基站,包括:
    第七发送单元,配置为基站向终端发送随机接入信号的指示信息;
    所述指示信息包括如下至少之一:前导格式,所述前导格式的重复次数及所述前导格式的重复类型。
  46. 一种终端,包括:
    第七接收单元,配置为从基站接收随机接入信号的指示信息;
    所述指示信息包括如下至少之一:前导格式,所述前导格式的重复次数及所述前导格式的重复类型。
  47. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现权利要求1-5中任一项所述的随机接入方法。
  48. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现权利要求6-11中任一项所述的随机接入方法。
  49. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现权利要求12中所述的随机接入方法。
  50. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机 可执行指令被处理器执行时实现权利要求13所述的上行接收信号的接收配置的确定方法。
  51. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现权利要求14-16中任一项所述的上行接收信号的接收配置确定方法。
  52. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现权利要求27-35中任一项所述的信令通知方法。
  53. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现权利要求36-44中任一项所述的信令处理方法。
PCT/CN2017/109117 2016-11-04 2017-11-02 确定方法、接入、发送、处理方法及装置、基站及终端 WO2018082610A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17866437.1A EP3537831A4 (en) 2016-11-04 2017-11-02 METHOD AND DEVICE FOR DETERMINING, ACCESSING, TRANSMITTING, PROCESSING, A BASE STATION AND A TERMINAL
US16/401,492 US10993267B2 (en) 2016-11-04 2019-05-02 Determination method, access, transmission, processing method and device, base station and terminal
US17/229,431 US11844112B2 (en) 2016-11-04 2021-04-13 Determination method, access, transmission, processing method and device, base station and terminal
US18/513,802 US20240098802A1 (en) 2016-11-04 2023-11-20 Determination method, access, transmission, processing method and device, base station and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610982012.8 2016-11-04
CN201610982012.8A CN108024361B (zh) 2016-11-04 2016-11-04 确定方法、接入、发送、处理方法及装置、基站及终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/401,492 Continuation US10993267B2 (en) 2016-11-04 2019-05-02 Determination method, access, transmission, processing method and device, base station and terminal

Publications (1)

Publication Number Publication Date
WO2018082610A1 true WO2018082610A1 (zh) 2018-05-11

Family

ID=62075760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109117 WO2018082610A1 (zh) 2016-11-04 2017-11-02 确定方法、接入、发送、处理方法及装置、基站及终端

Country Status (4)

Country Link
US (3) US10993267B2 (zh)
EP (1) EP3537831A4 (zh)
CN (2) CN117062227A (zh)
WO (1) WO2018082610A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112567871A (zh) * 2018-08-13 2021-03-26 上海诺基亚贝尔股份有限公司 随机接入前导码传输

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020164026A1 (zh) * 2019-02-13 2020-08-20 Oppo广东移动通信有限公司 随机接入的方法、终端设备和网络设备
JP7022731B2 (ja) * 2019-11-12 2022-02-18 Kddi株式会社 多数のアンテナを選択的に使用する制御装置、制御方法、及びプログラム。
CN114698139A (zh) * 2020-12-31 2022-07-01 展讯通信(上海)有限公司 数据传输方法、装置和设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286753A (zh) * 2007-04-11 2008-10-15 中兴通讯股份有限公司 一种宽带无线通信系统的前导码发送接收方法
CN101911541A (zh) * 2008-01-01 2010-12-08 Lg电子株式会社 使用新的测距结构的测距方法
CN101005308B (zh) * 2006-01-17 2012-08-29 上海原动力通信科技有限公司 宽带时分双工移动通信系统的物理层随机接入方法
WO2015144256A1 (en) * 2014-03-25 2015-10-01 Telefonaktiebolaget L M Ericsson (Publ) Transmission and reception of a random access preamble signal
US20150365975A1 (en) * 2014-06-11 2015-12-17 Telefonaktiebolaget L M Ericsson (Publ) Processing of Random Access Preamble Sequences

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100582906B1 (ko) * 2003-12-27 2006-05-23 한국전자통신연구원 무선 랜 시스템을 위한 프리앰블 구성 방법 및 프레임동기 검출 방법
CN101083647B (zh) * 2006-05-30 2010-12-29 中兴通讯股份有限公司 一种多输入多输出正交频分复用系统中实现同步的方法
WO2007147808A1 (en) * 2006-06-21 2007-12-27 Nokia Siemens Networks Gmbh & Co. Kg Method for maintaining synchronisation in a radio communications system
CA2660720C (en) * 2006-08-29 2015-11-24 Telefonaktiebolaget L M Ericsson (Publ) Detection of access bursts in a random access channel
KR100937423B1 (ko) * 2006-09-26 2010-01-18 엘지전자 주식회사 반복형 시퀀스 생성 방법 및 이를 이용한 신호 송신 방법
EP2092660B1 (en) * 2006-10-25 2012-08-08 LG Electronics Inc. Method for adjusting rach transmission against frequency offset
CN102665225A (zh) * 2007-03-20 2012-09-12 朗讯科技公司 无线通信系统中用于范围扩展的可配置随机接入信道结构
US8000306B2 (en) * 2007-04-27 2011-08-16 Alcatel Lucent Random access channel message format for an extended range wireless communication system
US8064546B2 (en) * 2007-06-14 2011-11-22 Texas Instruments Incorporated Random access preamble detection for long term evolution wireless networks
KR101430462B1 (ko) * 2007-08-09 2014-08-19 엘지전자 주식회사 Rach 프리엠블 구성방법 및 전송방법
CN101431803A (zh) * 2007-11-09 2009-05-13 大唐移动通信设备有限公司 Tdd系统随机接入方法及装置
PL2071796T3 (pl) * 2007-12-12 2010-09-30 Lg Electronics Inc Urządzenie do transmitowania i odbierania sygnału oraz sposób transmitowania i odbierania sygnału
CN101217808B (zh) * 2008-01-17 2013-01-16 中兴通讯股份有限公司 无线通信系统中随机接入信号的发送方法
WO2009105003A1 (en) * 2008-02-21 2009-08-27 Telefonaktiebolaget Lm Ericsson (Publ) Adjustment of radio detection level for request signals based observed false detection
US9800382B2 (en) * 2008-12-05 2017-10-24 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement in a communication network system
CN101888360A (zh) * 2009-05-15 2010-11-17 中兴通讯股份有限公司 一种随机接入信号的发射方法和装置及相关系统
CN101944929B (zh) * 2009-07-06 2013-08-07 中兴通讯股份有限公司 基于随机接入过程的检测方法和检测装置
US8644277B2 (en) * 2009-08-06 2014-02-04 Qualcomm Incorporated Dynamic selection of random access channel configurations
US8897241B2 (en) * 2009-10-14 2014-11-25 Lg Electronics Inc. Radio resource allocation
US8923218B2 (en) * 2009-11-02 2014-12-30 Qualcomm Incorporated Apparatus and method for random access signaling in a wireless communication system
KR20130079302A (ko) * 2010-04-23 2013-07-10 엘지전자 주식회사 무선 통신 시스템에서 직접 통신 방법 및 장치
WO2011136508A2 (en) * 2010-04-27 2011-11-03 Ajou University Industry-Academic Cooperation Foundation Random access method and apparatus in wireless communication system
CN102036271B (zh) * 2010-12-24 2015-08-19 华为技术有限公司 小区随机接入检测方法及装置
KR101966724B1 (ko) * 2011-09-15 2019-04-08 삼성전자주식회사 빔 포밍 기반의 무선통신시스템에서 빔을 선택하기 위한 장치 및 방법
EP2826288B1 (en) * 2012-03-16 2018-12-05 Interdigital Patent Holdings, Inc. Random access procedures in wireless systems
US9380582B2 (en) * 2012-04-16 2016-06-28 Samsung Electronics Co., Ltd. Methods and apparatus for flexible beam communications in random access in system with large number of antennas
CN103582152B (zh) * 2012-07-23 2018-01-26 中兴通讯股份有限公司 随机接入子帧格式的获得方法及接收机
CN103582151A (zh) * 2012-07-23 2014-02-12 中兴通讯股份有限公司 随机接入方法及接收机
CN103857057B (zh) * 2012-12-06 2018-10-12 上海诺基亚贝尔股份有限公司 基于lte-tdd模式发送随机接入前导序列的方法和设备
CN103945557B (zh) * 2013-01-18 2019-09-17 中兴通讯股份有限公司 随机接入序列的发送方法及装置、接收方法及装置
US9756657B2 (en) * 2013-07-22 2017-09-05 Texas Instruments Incorporated Wireless network signal to interference plus noise ratio estimation for a random access channel
CN105474725B (zh) * 2014-07-25 2019-03-26 华为技术有限公司 一种传输随机接入前导的方法和设备
US10104645B2 (en) * 2014-10-09 2018-10-16 Qualcomm Incorporated Random access method of devices with different path loss
JP2018085545A (ja) * 2015-03-25 2018-05-31 シャープ株式会社 端末装置、基地局装置、通信システム、通信方法および集積回路
EP3264829B1 (en) * 2015-03-28 2020-05-06 Huawei Technologies Co. Ltd. Wireless access method and apparatus
US11528719B2 (en) * 2015-06-01 2022-12-13 Apple Inc. Latency reduction techniques for radio access networks
CN113747603A (zh) * 2015-07-27 2021-12-03 瑞典爱立信有限公司 Nb lte prach设计
EP3319391B1 (en) * 2015-12-08 2019-09-04 Huawei Technologies Co., Ltd. Data transmission method, base station, and terminal device
US10680871B2 (en) * 2016-02-05 2020-06-09 Huawei Technologies Co., Ltd. Uplink subcarrier spacing indication method, base station, and terminal
US20170265230A1 (en) * 2016-03-14 2017-09-14 Futurewei Technologies, Inc. System and Method for Random Access Backoffs
KR102175608B1 (ko) * 2016-04-20 2020-11-06 콘비다 와이어리스, 엘엘씨 구성가능한 기준 신호들
US10820355B2 (en) * 2017-03-24 2020-10-27 Electronics And Telecommunications Research Institute Method and apparatus for random access in mobile communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005308B (zh) * 2006-01-17 2012-08-29 上海原动力通信科技有限公司 宽带时分双工移动通信系统的物理层随机接入方法
CN101286753A (zh) * 2007-04-11 2008-10-15 中兴通讯股份有限公司 一种宽带无线通信系统的前导码发送接收方法
CN101911541A (zh) * 2008-01-01 2010-12-08 Lg电子株式会社 使用新的测距结构的测距方法
WO2015144256A1 (en) * 2014-03-25 2015-10-01 Telefonaktiebolaget L M Ericsson (Publ) Transmission and reception of a random access preamble signal
US20150365975A1 (en) * 2014-06-11 2015-12-17 Telefonaktiebolaget L M Ericsson (Publ) Processing of Random Access Preamble Sequences

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112567871A (zh) * 2018-08-13 2021-03-26 上海诺基亚贝尔股份有限公司 随机接入前导码传输
CN112567871B (zh) * 2018-08-13 2024-06-11 上海诺基亚贝尔股份有限公司 随机接入前导码传输

Also Published As

Publication number Publication date
EP3537831A1 (en) 2019-09-11
US20210235507A1 (en) 2021-07-29
US11844112B2 (en) 2023-12-12
CN117062227A (zh) 2023-11-14
US10993267B2 (en) 2021-04-27
EP3537831A4 (en) 2020-05-27
CN108024361A (zh) 2018-05-11
US20240098802A1 (en) 2024-03-21
CN108024361B (zh) 2023-09-12
US20190386725A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
US11212846B2 (en) Mechanisms for enhanced transmission and reception of physical random access channel
KR102361790B1 (ko) NR 비면허 스펙트럼의 광대역 동작을 위한 LBT(Listen Before Talk)
US10375582B2 (en) Uplink channel access, reservation and data transmission for licensed assist access long term evolution (LAA-LTE)
US10887146B2 (en) Determining a location of a frequency-domain resource block
CN108419301B (zh) 用于随机接入竞争的高效wi-fi(hew)台站和接入点(ap)以及方法
JP2022095933A (ja) ランダムアクセス方法及び装置
US10993267B2 (en) Determination method, access, transmission, processing method and device, base station and terminal
CA2987805C (en) Communication method, base station, and user equipment
US11363637B2 (en) Method and device for providing indication of physical resource used for random access, and storage medium
WO2019149088A1 (zh) 一种随机接入方法及装置
CN107404365B (zh) 发送和接收控制信息的方法及装置
EP3506544A1 (en) Method and apparatus for transmitting downlink control signal
TW201735685A (zh) 用於發送上行控制信息的方法、終端和基站
JP6918929B2 (ja) 信号伝送方法及び装置
WO2021016967A1 (zh) 随机接入方法、接收方法、装置、设备及介质
JP2021533611A (ja) 無線通信方法及びデバイス
CN109478914A (zh) 信号发送的方法、终端设备和网络设备
US11758581B2 (en) Clear channel listening method and apparatus, and device
JP2022553121A (ja) Pdcch検出方法、pdcch送信方法及びデバイス
WO2018127070A1 (zh) 随机接入信号的发送和接收方法、网络设备和用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017866437

Country of ref document: EP

Effective date: 20190604