WO2018127070A1 - 随机接入信号的发送和接收方法、网络设备和用户设备 - Google Patents

随机接入信号的发送和接收方法、网络设备和用户设备 Download PDF

Info

Publication number
WO2018127070A1
WO2018127070A1 PCT/CN2018/071279 CN2018071279W WO2018127070A1 WO 2018127070 A1 WO2018127070 A1 WO 2018127070A1 CN 2018071279 W CN2018071279 W CN 2018071279W WO 2018127070 A1 WO2018127070 A1 WO 2018127070A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
resource
random access
sequence
network device
Prior art date
Application number
PCT/CN2018/071279
Other languages
English (en)
French (fr)
Inventor
颜矛
陈磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018127070A1 publication Critical patent/WO2018127070A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method for transmitting and receiving random access signals, a network device, and a user equipment.
  • random access assumes a critical step in establishing an uplink communication connection between a UE (User Equipment) and a base station.
  • UE User Equipment
  • downlink synchronization is first obtained.
  • the UE acquires system information, such as bandwidth, frame structure parameters, system frame number, and random access channel (RACH) information through the downlink common channel.
  • RACH random access channel
  • the base station notifies the UE of the RACH information through SIB2 (System Information Block 2).
  • SIB2 System Information Block 2
  • the UE sends a preamble signal to the base station by using a random access channel, where the preamble signal includes a sequence for distinguishing different UEs.
  • the base station detects the sequence, identifies the UE, and completes uplink synchronization of the UE with the base station.
  • the structure of a random access preamble (Preamble) transmitted through the RACH in the existing LTE is as shown in FIG. 1 , and includes a CP (Cyclic Prefix), a sequence, and a GT (Guard Time).
  • the existing LTE standard defines five formats for Preamble. The main parameters of each format are shown in Table 1.
  • the random access preamble occupation time is too long, and the number of sequences that can be used for the random access preamble is limited, so that multiple UEs are simultaneously used to simultaneously access the same sequence for random access. , resulting in a higher probability of collision.
  • the present application provides a method for transmitting and receiving a random access signal, and the user equipment and the network device can reduce the probability of collision when multiple UEs simultaneously access randomly.
  • the application provides a method for randomly accessing a signal, including:
  • the user equipment UE determines a resource pattern corresponding to the random access preamble in the random access signal, where the resource pattern specifies resources occupied by the random access preamble, where the resources include frequency resources, time resources, and sequence resources. At least one;
  • the UE sends the random access signal to the network device.
  • the application further provides a user equipment, including:
  • a processor configured to determine a resource pattern corresponding to a random access preamble in the random access signal, where the resource pattern specifies a resource occupied by the random access preamble, where the resource includes a frequency resource and a time resource. And at least one of the sequence resources; and is further configured to generate a random access signal according to the resource pattern;
  • a transceiver configured to send the random access signal to a network device.
  • the application further provides a method for receiving a random access signal, including:
  • the network device receives the random access signal
  • the network device detects the received random access signal to obtain a resource pattern corresponding to the random access signal, where the resource pattern indicates a resource location where the random access preamble is detected. ;
  • the resource includes at least one of a frequency resource, a time resource, and a sequence resource.
  • the application further provides a network device, including:
  • a transceiver for receiving a random access signal
  • a processor configured to detect the received random access signal, to obtain a resource pattern corresponding to the random access signal, where the resource pattern indicates a resource when the random access preamble is detected
  • a location device configured to determine, according to the detected resource pattern and the pre-saved resource pattern, a user equipment that sends the random access signal, where the pre-saved resource pattern specifies a resource occupied by a random access preamble
  • the resource includes at least one of a frequency resource, a time resource, and a sequence resource.
  • the preamble in the random access signal generated by the technical solution provided by the embodiment of the present invention has a specific resource pattern, and different UEs may generate preambles with different resource patterns. Therefore, the network device may be caused by the network device according to the random access process.
  • the resource pattern in the random access signal is used to identify the UE.
  • the resource pattern in the implementation of the present invention specifies the resource occupancy of the random access preamble in at least one dimension of the three-dimensional resource (frequency resource, time resource, and sequence resource), for a specific preamble, There are multiple choices of resource locations that can be occupied on each dimension of resources. By combining resource locations in different dimensions, there can be many resource patterns, and each resource pattern can be used to generate a random access preamble. Therefore, in the embodiment of the present invention, when a random access preamble is generated, there are many options, which reduces the probability of collision when multiple UEs in the same cell simultaneously perform random access.
  • FIG. 1 is a schematic diagram of a format of an LTE preamble in the prior art
  • FIG. 2 is a structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of a method for transmitting a random access signal according to an embodiment of the invention
  • FIG. 4A is a schematic structural diagram of a RACH according to an embodiment of the invention.
  • 4B is another schematic structural diagram of a RACH according to an embodiment of the invention.
  • FIG. 5 is a schematic structural view of a sub-leader according to an embodiment of the invention.
  • FIG. 6 is a schematic structural diagram of a random access preamble according to an embodiment of the invention.
  • FIG. 7A is a schematic diagram of a time hopping pattern of a single sub-band preamble according to an embodiment of the invention.
  • FIG. 7B is a schematic diagram of a skip sequence pattern of a single subband preamble according to an embodiment of the invention.
  • 7C is a schematic diagram of a time-sequence pattern of a single sub-band preamble according to an embodiment of the invention.
  • FIG. 8A is a schematic diagram of a frequency hopping pattern of a multi-subband preamble according to an embodiment of the invention.
  • FIG. 8B is a schematic diagram of a skip sequence pattern of a multi-subband preamble according to an embodiment of the invention.
  • 8C is a schematic diagram of a frequency hopping-sequence pattern of a multi-subband preamble according to an embodiment of the invention.
  • 8D is a schematic diagram of a time-frequency pattern of a multi-subband preamble according to an embodiment of the invention.
  • 8E is a schematic diagram of a time-frequency-sequence pattern of a multi-subband preamble according to an embodiment of the invention.
  • 9A is a schematic diagram of a structure of a preamble according to an embodiment of the invention.
  • 9B is another schematic structural view of a preamble according to an embodiment of the invention.
  • FIG. 10A is a signaling flowchart of establishing an uplink communication connection according to an embodiment of the present invention.
  • FIG. 10B is a signaling flowchart of a random access procedure according to an embodiment of the invention.
  • FIG. 10C is another signaling flowchart of a random access procedure according to an embodiment of the invention.
  • FIG. 10D is still another signaling flowchart of a random access procedure according to an embodiment of the invention.
  • FIG. 10E is still another signaling flowchart of a random access procedure according to an embodiment of the invention.
  • FIG. 11 is a schematic diagram showing the structure of a RACH of a single sub-band according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing the structure of an RACH received by a network device according to an embodiment of the present invention.
  • FIG. 13A is a schematic diagram of a jitter pattern of a single subband preamble based on a single subband RACH resource according to an embodiment of the invention.
  • FIG. 13B is a schematic diagram of another jitter pattern of a single subband preamble based on a single subband RACH resource according to an embodiment of the invention.
  • 13C is a schematic diagram of still another jitter pattern of a single subband preamble based on a single subband RACH resource according to an embodiment of the invention.
  • FIG. 14A is a schematic diagram of a jitter pattern of a single subband preamble of a receiving beam scanning structure of a network device according to an embodiment of the present invention.
  • FIG. 14B is a schematic diagram of another jitter pattern of a single subband preamble of a receiving beam scanning structure based on a network device according to an embodiment of the present invention.
  • 14C is a schematic diagram of still another jitter pattern of a single subband preamble of a receiving beam scanning structure of a network device according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram showing the structure of a multi-subband RACH according to an embodiment of the present invention.
  • 16 is a schematic diagram of a structure of a multi-subband RACH received by a network device according to an embodiment of the present invention
  • FIG. 17A is a schematic diagram of a jitter pattern of a multi-subband preamble based on multi-subband RACH resources according to an embodiment of the invention.
  • FIG. 17B is a schematic diagram of another hopping pattern of a multi-subband preamble based on multi-subband RACH resources according to an embodiment of the invention.
  • 17C is a schematic diagram of still another jitter pattern of a multi-subband preamble based on multi-subband RACH resources according to an embodiment of the invention.
  • FIG. 18A is a schematic diagram of a jitter pattern of a multi-subband preamble based on a received beam scanning structure of a network device according to an embodiment of the present invention
  • FIG. 18B is a schematic diagram of another hopping pattern of a multi-subband preamble of a receiving beam scanning structure of a network device according to an embodiment of the present invention.
  • FIG. 18C is a schematic diagram of still another hopping pattern of a multi-subband preamble of a receiving beam scanning structure of a network device according to an embodiment of the present invention.
  • FIG. 19 is a schematic flowchart of a method for receiving a random access signal according to an embodiment of the invention.
  • FIG. 20 is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • FIG. 21 is a schematic structural diagram of a network device according to an embodiment of the invention.
  • the technical solution of the embodiment of the present invention described below is applied to a communication system.
  • the communication system can include one or more network devices, and one or more User Equipments (UEs) in communication with each of the network devices.
  • UEs User Equipments
  • 2 is an example of the communication system, and the communication system shown in FIG. 2 includes a network device and a plurality of UEs in communication therewith.
  • the network device may be any device capable of controlling direct access by the UE to the communication network, such as a base station, a relay station, or an access point, in direct communication with the UE.
  • the base station may be a BTS (Base Transceiver Station) or a WCDMA (Wideband Code Division Multiple Access) in a GSM (Global System for Mobile communication) network or a CDMA (Code Division Multiple Access) network.
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System for Mobile communication
  • CDMA Code Division Multiple Access
  • NB Wideband Code Division Multiple Access
  • eNB or eNodeB evolved NodeB
  • LTE Long Term Evolution
  • 5G next generation
  • the UE may be an access terminal, a subscriber unit, a subscriber station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device.
  • the access terminal may be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, a PDA (Personal Digital Assistant), a laptop, A tablet, a handheld device or computing device with wireless communication capabilities, an in-vehicle terminal, a wearable device, and a terminal device in a next-generation (eg, 5G) wireless communication network, and the like.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the embodiment of the invention provides a method for transmitting a random access signal. As shown in FIG. 3, the method includes:
  • Step S100 The UE determines a resource pattern corresponding to a random access preamble in the random access signal, where the resource pattern specifies resources occupied by the random access preamble, where the resource includes a frequency resource, a time resource, and a sequence resource. At least one of them;
  • Step S200 The UE generates a random access preamble according to the resource pattern.
  • Step S300 The UE sends the random access preamble to the network device.
  • the preamble in the random access signal generated by the technical solution provided by the embodiment of the present invention has a specific resource pattern, and different UEs may generate preambles with different resource patterns. Therefore, the network device may be caused to be random according to the random access process.
  • the resource pattern in the access signal is used to identify the UE.
  • the resource pattern in the implementation of the present invention specifies the resource occupancy of the random access preamble in at least one dimension of the three-dimensional resource (frequency resource, time resource, and sequence resource), for a specific preamble, There are multiple choices of resource locations that can be occupied on each dimension of resources. By combining resource locations in different dimensions, there can be many resource patterns, and each resource pattern can be used to generate a random access preamble. Therefore, in the embodiment of the present invention, when a random access preamble is generated, there are many options, which reduces the probability of collision when multiple UEs in the same cell simultaneously perform random access.
  • the resource pattern in step S100 may specify the resources occupied by each symbol included in the preamble.
  • the resources occupied by each symbol include the carrier, the transmission time, and the value of the sequence contained in the preamble on the symbol.
  • the preamble consists of a sub-prede, and correspondingly, the resource pattern in step S100 specifies the resources used by each sub-prede.
  • the preamble may also be considered to be its own sub-leader.
  • the resource pattern in step S100 is specifically a jitter pattern, which is a time hopping pattern, a frequency hopping pattern, a hopping sequence pattern, a time hopping frequency pattern, a time hopping sequence pattern, and a frequency hopping sequence. Any of a pattern and a time-frequency-sequence pattern.
  • the time hopping pattern is used to specify the location of the time resource occupied by each preamble or subpredemble in the time resource used to transmit a random access signal, and all the preambles or subleaders occupied in the dimension of the time resource Time resources exhibit the characteristics of Time Hopping.
  • the frequency hopping pattern is used to specify the location of the frequency resource occupied by each preamble or subpredemble in the frequency resource used to transmit a random access signal, and the frequency occupied by all preambles or subleaders in the dimension of the frequency resource. Resources exhibit the characteristics of frequency hopping (Frequency Hopping).
  • the hopping sequence pattern specifies a sequence used by a preamble or a sub-predee located at each frequency resource location or at each time resource location, and the sequence employed by all preambles or sub-preambles in the dimension of the sequence resource exhibits a sequence hopping sequence.
  • the time-frequency pattern is used to specify the location of the time frequency occupied by each preamble or sub-preamble and the location of the occupied frequency resource.
  • Each preamble or sub-leader has the characteristics of time hopping in the dimension of the time resource and/ Or it has the characteristics of a hopping sequence in the dimension of the frequency resource.
  • the time-sequence pattern is used to specify the location and sequence of time resources occupied by each preamble or sub-prede.
  • each preamble or sub-preamble has the characteristics of time hopping in the dimension of the time resource and/or the hopping sequence in the dimension of the sequence resource.
  • the frequency hopping-sequence pattern is used to specify the location of the frequency resource occupied by each preamble or sub-preamble and the sequence used.
  • each preamble or sub-preamble has the characteristics of frequency hopping in the dimension of the frequency resource and/or the hopping sequence in the dimension of the sequence resource.
  • the time-frequency-sequence pattern is used to specify the location of the time resource occupied by each preamble or sub-preamble, the location of the occupied frequency resource, and the sequence used.
  • each preamble or sub-preamble has the characteristics of time hopping in the dimension of the time resource, and/or the frequency hopping feature in the dimension on the frequency resource, and/or the dimension in the sequence resource. It has the characteristics of a jump sequence.
  • the time resource used for sending a random access signal may be a time length of a RACH, or may be a time resource occupied by the network device during receiving beam scanning; and used to send a random access.
  • the frequency resource of the signal may be a frequency resource corresponding to one RACH, or may be a frequency resource occupied by the network device when performing receiving beam scanning.
  • step S100 may specifically include: selecting the resource pattern from a set of patterns including the resource pattern, wherein the pattern set includes at least two resource patterns, and the at least two resource patterns are Any two resource patterns are different from each other.
  • the pattern set may be pre-stored in the UE or notified to the UE by the network device.
  • the two resource patterns are different, and may refer to the type of the resource pattern (for example, a time hopping pattern, a frequency hopping pattern), and may also refer to different resources occupied by the respective preamble or subleader in the same type.
  • the resulting pattern is different, for example, the sub-band is transmitted on the sub-band 1, the sub-band 3, and the sub-band 4 specified in the hopping pattern 1, and the hopping pattern 2 specifies that the sub-preamble is transmitted on the sub-band 1, the sub-band 2, and the sub-band 4.
  • the UE further acquires receive beam scan information of the network device, where the receive beam scan information includes a receive beam to be scanned and a scan time of each receive beam.
  • step S100 may further include: determining the resource pattern according to the received beam scan information, wherein the determined resource pattern is such that the network device is at least one of each of the receive beams At least one sub-preamble can be received within the scan duration.
  • the step S100 may specifically include: determining the resource pattern according to the transmit beam scan information of the UE, where the determined resource pattern is such that at least one scan of the UE in each of the transmit beams is performed. A sub-preamble is transmitted in the duration, and the transmit beam scan information of the UE includes a transmit beam to be scanned and a scan time of each transmit beam.
  • step S300 may specifically include: sending the random access signal according to a scan time of a transmit beam of the UE.
  • the UE may also acquire structural information of the RACH for transmitting the random access signal.
  • the step S100 may specifically include: determining the resource pattern according to the structural information of the RACH, where the resource pattern is specifically used to specify a resource occupied by the preamble in the RACH.
  • step S100 may specifically include: determining, by the UE, the resource pattern according to a distance and/or a channel condition between the UE and the network device.
  • the UE may be configured according to the received beam scanning information of the network device, the transmit beam scan information of the UE, the structural information of the RACH, the distance between the UE and the network device, and between the UE and the network device. At least two of the channel conditions are used to determine the resource pattern.
  • FIG. 4A shows a structure of a possible RACH.
  • the RACH in the figure includes F subbands, and the bandwidth of each subband may be the same, and the length of time for transmitting a preamble on different subbands may be the same.
  • the number of preambles on different sub-bands may be the same, and the lengths of time for transmitting the respective preambles on the same sub-band may be the same or different, and the number of sub-preambles K ij included in different preambles may be the same or different.
  • FIG. 4B shows the structure of another possible RACH.
  • the RACH in the figure also includes F subbands, but the width of each subband may be different, and the length of time for transmitting a preamble on different subbands may be different.
  • the length of time for transmitting each preamble on one subband may be the same or different, and the number of sub preambles K ij included in different preambles may be the same or different.
  • the subbands of any two subbands have the same width, but the lengths of time for transmitting one preamble on the two subbands are different; or the subbands of any two subbands
  • the strip widths are not the same, but the length of time used to send a preamble on the two subbands is the same.
  • the random access signal includes multiple preambles.
  • the resource pattern determined in step S100 specifies that all the preambles specify the occupied resources. For example, each preamble is assigned a subband to be used, a transmission time, and at least one of the sequences employed by the preamble.
  • the sub-leader may include only sequences, such as structure 8 as shown in FIG.
  • the sub-leader may include at least one of GT1, GT2, and CP in addition to the sequence.
  • GT1 and GT2 are protection times and do not transmit data. They can be used for beam switching or to protect subsequent communications.
  • CP is a Cyclic Prefix.
  • the sequence may be any sequence with good autocorrelation and cross-correlation, such as Zadoff-Chu sequence, m sequence, and the like.
  • the time lengths of GT1, CP, sequence, and GT2 may be network device designations, or the UE may decide based on signaling from the network device, or the UE may determine itself.
  • the RACH may be represented by F subbands in the frequency domain, one or more preambles and/or subleades on each subband, and a sequence set forming a subleader.
  • the waveform parameters eg, subcarrier spacing, CP length, guard interval
  • the sequence of the preamble eg, containing sub-preambles, or no sub-leaves, sub-preambles may be specified by the network device or determined by the UE.
  • Figure 6 shows seven possible structures for the leader of a single subband: leader 1, leader 2, leader 3, leader 4, leader 5, leader 6 and leader 7.
  • the preamble 2 includes a CP, a GT2, and a K2 sequence, where the CP is at the start of the preamble 2 and the GT2 is at the end of the preamble 2.
  • the preamble 2 can be considered to consist of a sub-leader having the structure 6, the structure 7, and the structure 8 shown in FIG.
  • the preamble 3 includes a CP located before each sequence, GT2 located after the last sequence, and K3 sequences, which can be considered to be composed of sub-leaves having the structure 6 and the structure 2 shown in FIG.
  • the preamble 4 includes K4 sequences, and a CP located before each sequence, which can be considered to consist of a sub-leader having the structure 6 shown in FIG.
  • the preamble 5 comprises a sequence of K5 sequences, a CP preceding each sequence, and a GT2 located after each sequence, which can be considered to consist of a sub-leader having the structure 2 shown in FIG.
  • the preamble 6 includes GT1 and CP before the first sequence, CP before the last sequence, GT2 after the last sequence, and K6 sequences, which can be considered to have the structure shown in FIG. 2 and the sub-preamble of structure 3.
  • the preamble 7 includes GT1 and CP before the first sequence, GT2 after the first sequence, CP before the last sequence, GT2 after the last sequence, and K7 sequences, the leader 7 can be seen
  • the formation is composed of a sub-leader having the structure 1 and the structure 2 shown in FIG.
  • the sequence in each preamble, as described above, can be selected based on the time-sequence pattern.
  • the number of sequences and the length of the sequences may be completely different, may be partially the same, or may be identical.
  • each sequence may be completely different, partially identical, or identical.
  • FIG. 7A illustrates a time hopping pattern corresponding to a preamble of a random access signal of a single subband in which at least one time resource (eg, time t2) available for transmitting a subleader is not used for transmission. Any sub-leader.
  • the dashed box in the drawing indicates that its location is not used to transmit any preamble or subleader.
  • the preamble of the random access signal generated according to the time hopping pattern shown in FIG. 7A includes 7 sub-leades, respectively occupying sub-leaves of all times except time t2 (times t1, t3, t4, t5, t6, t7, t8). The sequence used by each sub-preamble is the same.
  • the sequences employed by each sub-preamble may be partially identical or completely different.
  • the location of the time resources occupied by each of the preambles in the preamble forms a unique resource pattern that can be used to identify a particular preamble or UE.
  • the time resource occupied by another preamble sub-predee is exactly the same as in FIG. 7A, as long as the sequence used by the sub-preamble is different, it can identify a specific preamble or UE.
  • the UE may send an uplink random access signal including a preamble having the resource pattern shown in FIG. 7A, and identify the UE by using the resource structure described in FIG. 7A. If the number of times in which the sub-preamble is not transmitted in FIG. 7A is changed or the number of transmission times of any sub-preamble is not transmitted, another preamble is obtained.
  • FIG. 7B illustrates another resource pattern corresponding to the preamble of the random access signal of the single subband: a hopping sequence pattern.
  • the sequence used by each sub-predeter is a sequence selected from the sequence set corresponding to the location of the time resource occupied by the sub-prede.
  • the sequences taken at each time may be identical, partially identical, or completely different.
  • FIG. 7C illustrates another resource pattern corresponding to the preamble of the random access signal of the single subband: a time hopping-sequence pattern.
  • a time hopping-sequence pattern In the pattern, no sub-preamble is transmitted in at least one time resource available for transmitting the sub-prede, and the sequence carried by the sub-predeers on other time resources is selected from the sequence set according to the location of the sub-prede.
  • Figure 8A illustrates another resource pattern used by the preamble of the multi-subband random access signal: a frequency hopping pattern.
  • this pattern no sub-leads are transmitted on at least one sub-band, for example, sub-band f2 shown in Fig. 8A.
  • the sub-leaves on all other sub-bands in the structure occupy the same time resource, and the sequences used in each sub-predee are the same.
  • the sequence employed by each of the subleads in a particular preamble is associated with the hopping pattern of the preamble, and may be partially identical or completely different.
  • Figure 8B illustrates another resource pattern used by the preamble of the multi-subband random access signal: a hop sequence pattern.
  • each sub-band has a sub-predemble, and the sequences used by the sub-predes on each sub-band are selected from the sequence set according to the frequency band in which they are located, and these sequences are specified by the leading hopping sequence pattern.
  • Figure 8C illustrates yet another resource pattern used by the preamble of the multi-subband random access signal: a frequency hopping-sequence pattern.
  • a frequency hopping-sequence pattern In the pattern, at least one subband (e.g., subband f2) is not used to transmit any subleaders, and other subbands are used to transmit subleades, and the sequence used by each subleader is related to its corresponding subband, for example, The child preamble using sequence k can only be sent on subband fk.
  • Figure 8D illustrates yet another resource pattern used by the preamble of the multi-subband random access signal: a time-hopping-frequency pattern.
  • a time-hopping-frequency pattern there is at least one time resource available on the at least one subband that is available to transmit the subleader without transmitting any subleaders (e.g., transmission time t2 of subband f1).
  • the sequence used by each sub-preamble is the same. In other embodiments, the sequences employed by each sub-preamble may be different.
  • Each sub-preamble (or a sequence it employs) is associated with a hop-frequency pattern containing a preamble of the sub-preamble, and the hop-frequency patterns corresponding to different sub-preambles may be identical, partially identical, or completely different. .
  • Figure 8E illustrates yet another resource pattern used by the preamble of the multi-subband random access signal: a time-frequency-sequence pattern.
  • at least one sub-preamble e.g., time t2 of subband f1
  • time t2 of subband f1 is not transmitted on at least one subband with at least one time resource available for transmitting the subleader, and the sequence used by each subleader and its sub It is related to the location where the location and time resources are located.
  • the preamble of the multi-subband access signal may also have different waveform parameters. As shown in FIG. 9A, when the preambles on different subbands have the same subband bandwidth and the same preamble time length, the intervals of subcarriers in different subbands are different, and the length of each subpreamble is multiplied by the subcarrier spacing. Less. As shown in FIG. 9B, the preambles on different subbands have the same preamble length and the same preamble time length, and the subband width is multiplied as the subcarrier spacing is multiplied.
  • FIG. 10A illustrates a process in which a UE establishes uplink communication with a network device (specifically, a network device), where the process includes:
  • the network device sends downlink system information.
  • the downlink system information may include any one or more of the following information: the structure of the RACH, the time position and length of the RACH, the frequency location and the number of carriers where the RACH is located, and the number of preamble/subleaders included in the RACH.
  • the set information of the jitter pattern (for example, the number of the set), the ID of each receive beam of the network device in the RACH for receiving the random access signal transmitted through the RACH, and the scan time, the scan frequency, the preamble format, the beam of the network device Consistency information, timing advances, etc.
  • the downlink system information may include an index of the above information.
  • the beam consistency information refers to whether the transmit beam and the receive beam of the same object correspond, that is, as long as the transmit beam of a specific object is known, the receive beam can be derived, and vice versa.
  • Step S402 the UE performs downlink synchronization with the network device.
  • the UE may acquire information such as time resources and frequency resources of the RACH.
  • the UE may also acquire an ID of an optimal receiving beam of the UE in downlink communication and an ID of an optimal transmitting beam of the network device.
  • the UE selects a hopping pattern from the set of hopping patterns specified by the network device according to the existing information, and then generates a random access signal according to the hopping pattern.
  • the UE may send a random access signal by using the method provided in the embodiment shown in FIG.
  • Step S403 the UE and the network device respectively perform transmission and reception of the random access signal.
  • Step S404 The network device sends a random access response, and after receiving the random access response, the UE sends uplink information, which may include the UE identity information, and the network device sends the downlink information for the UE to perform collision detection, and finally completes the random access process.
  • step S405 an uplink communication connection is established.
  • step S402 there is a one-to-one correspondence between the selected jitter pattern and the transmit beam ID of the network device, that is, the specific jitter pattern may identify the transmit beam ID of the network device.
  • the network device may further obtain a network device transmission beam ID according to the jitter pattern.
  • the generated random access signal includes transmission beam information of the network device.
  • the network device can also detect the transmit beam information of the network device.
  • the network device detects the received signal, detects the jitter pattern, and obtains the ID of the optimal receiving beam of the network device that receives the preamble corresponding to the jitter pattern.
  • the network device may also send information to the UE.
  • the network device may also notify the UE of the detected jitter pattern, and the UE learns the best uplink transmission beam information of the UE according to the network device detection result.
  • the UE is notified of the ID of the best receiving beam of the network device in step S403.
  • the network device allocates uplink communication resources to the UE, and resolves random access conflicts of multiple UEs, and the like.
  • FIG. 10B shows a signaling flow of random access, the signaling flow includes:
  • Step S406 the network device sends downlink system information.
  • the downlink system information may include set information of the network device for receiving the received beam information and the jitter pattern of the random access signal transmitted on the RACH.
  • the downlink system information may also include a structure that the RACH presents when the network device performs the receive beam scanning.
  • Step S407 the UE selects a jitter pattern according to the received beam information of the network device for receiving the random access signal and the transmit beam information of the UE for transmitting the random access signal, and generates a random access signal according to the selected jitter pattern, and The random access signal is sent to the network device.
  • the UE may send a random access signal by using the method provided in the embodiment shown in FIG.
  • Step S408 The network device detects a jitter pattern of the received random access signal, and allocates, according to the detected jitter pattern, a communication resource for uplink communication for the UE that sends the random access signal.
  • the signaling flow shown in FIG. 10B can be applied to, but not limited to, random access in the following scenarios: beam scanning is required in the uplink access process, but the receiving beam of the network device and the sending of the UE that need to be scanned have been clarified. Random access in the case of beam pairs formed by beams; random access in the case where beam scanning is not required for both the transmitting beam of the UE and the receiving beam of the network device.
  • FIG. 10C illustrates another signaling flow of random access, the process including:
  • Step S409 the network device sends downlink system information.
  • the downlink system information may include set information of the network device for receiving the received beam information and the jitter pattern of the random access signal transmitted on the RACH.
  • the downlink system information may also include a structure that the RACH presents when the network device performs the receive beam scanning.
  • Step S410 The UE selects a transmit beam that needs to be used for sending a random access signal, and selects a jitter pattern according to the selected transmit beam and the receive beam information of the network device for receiving the random access signal transmitted on the RACH, according to the selected The jitter pattern generates a random access signal and transmits the random access signal to the network device.
  • one or two or more of the hopping patterns may be selected, which is not limited in the embodiment of the present invention.
  • the UE may send a random access signal by using the method provided in the embodiment shown in FIG.
  • Step S411 the network device determines an optimal receiving beam of the network device according to the detected jitter pattern, and allocates an uplink resource to the UE.
  • the signaling procedure described in FIG. 10C is applicable to random access in the case where the UE is known to transmit the best transmit beam of the random access signal.
  • FIG. 10D illustrates yet another signaling flow of random access, the process including:
  • Step S412 the network device sends downlink system information.
  • the downlink system information may include set information of the network device for receiving the received beam information and the jitter pattern of the random access signal transmitted on the RACH.
  • the downlink system information may also include a structure that the RACH presents when the network device performs the receive beam scanning.
  • Step S413 the UE learns the receiving beam of the network device for receiving the random access signal according to the downlink system information, and selects a jitter pattern according to the receiving beam of the network device for receiving the random access signal transmitted on the RACH, according to the selected The jitter pattern generates a random access signal and transmits the random access signal to the network device.
  • one or two or more of the hopping patterns may be selected, which is not limited in the embodiment of the present invention.
  • the UE may send a random access signal by using the method provided in the embodiment shown in FIG.
  • Step S414 The network device determines an optimal transmit beam of the UE according to the detected jitter pattern, and allocates an uplink resource to the UE.
  • the signaling flow shown in Figure 10D can be applied to random access where the UE knows the best receive beam for the network device.
  • FIG. 10E illustrates yet another signaling flow of random access, the process including:
  • Step S415 the network device sends downlink system information.
  • the downlink system information may include set information of the network device for receiving the received beam information and the jitter pattern of the random access signal transmitted on the RACH.
  • the downlink system information may also include a structure that the RACH presents when the network device performs the receive beam scanning.
  • Step S416 the UE learns, according to the downlink system information, the receiving beam of the network device for receiving the random access signal transmitted on the RACH, according to the receiving beam selection jitter of the network device for receiving the random access signal transmitted on the RACH. a pattern, generating a random access signal according to the selected jitter pattern, and transmitting the random access signal to the network device.
  • the UE may send a random access signal by using the method provided in the embodiment shown in FIG.
  • Step S417 the network device determines an optimal receiving beam of the network device and an optimal transmitting beam of the UE according to the detected jitter pattern, and allocates an uplink resource.
  • the signaling procedure shown in FIG. 10E can be applied to random access in the case where the UE does not know the transmit beam for transmitting the random access signal and the receive beam of the network device.
  • the resources used for one RACH include resources of three dimensions: time, frequency, and sequence. Based on these resources, the jitter pattern can be divided into a plurality of combinations that do not intersect each other.
  • the network device Before the UE sends the random access signal, the network device notifies the UE of the set split information of the jitter pattern and/or the combination of the jitter patterns selectable by the UE.
  • the notification mode may be directly indicated by signaling, or may be implicitly specified by a special downlink signal design (for example, a method similar to identifying different frame structures in LTE may be adopted).
  • the jitter pattern is divided, it can be performed according to the requirements of the UE for the RACH. For example, whether beam scanning is required according to the distance between the UE and the network device.
  • Fig. 11 shows an example of the structure of a single sub-band RACH.
  • the RACH has only one subband, the frequency band width of the subband is 72 subcarriers, and the subcarrier spacing is 60 KHz; the UE transmits 4 preambles in the duration of the RACH, and the duration of each preamble is equal to two sub-bands.
  • the length of the lead may be continuous in time or discontinuous, but not overlapping each other.
  • the structure of the RACH presented by the network device when receiving the receive beam scan is as shown in FIG.
  • the network device scans on two receive beams and receives two preambles on each receive beam.
  • the UE when generating a signal having the structure shown in FIG. 11, the UE may select any one of the jitter patterns shown in FIGS. 13A, 13B, and 13C for generating and transmitting a preamble.
  • the jitter patterns 1 to 3 shown in Fig. 13A can be used to transmit a preamble in only one reception beam, and the jitter patterns 4 to 10 shown in Figs. 13B and 13C can be used to transmit a preamble in a plurality of reception beams.
  • FIG. 13A may be applied to a scenario in which an optimal transmit beam of a UE and an optimal receive beam of a network device have been determined, and the UE may generate a preamble using the pattern shown in the figure to transmit a scheduling request, a handover request, and the like. Since no beam scanning is required, the pattern of the structure shown in Figure 13A specifies fewer sub-leades, which can take up less overhead.
  • the UE 13B and 13C may be applied to scenarios where the best transmit beam of the UE and/or the receive beam of the network device are not determined, and the UE may generate a preamble using the pattern shown in the figure to support beam scanning during the random access procedure. For example, when the UE performs the first uplink synchronization UE or the link failure between the UE and the network device, the UE and the network device need to perform beam scanning to determine the optimal transmission of the UE. The best receive beam of the beam and the network device, at which point any one of the patterns shown in FIG. 13B and FIG. 13C can be used to generate a preamble, which can be used to determine the optimal transmit beam of the UE and the network device. The best receive beam.
  • the scanning of the transmitting beam and/or the receiving beam of the UE is completed at the same time in the process of random access, and the UE needs to ensure the scanning time of each beam when selecting the jitter pattern.
  • the jitter pattern 1 and the jitter pattern 4 are often applied to UEs with good wireless link conditions (such as near network devices), and the jitter pattern 2 and the jitter pattern 5 are often applied to the wireless chain.
  • UEs with general road conditions such as moderate distance from network equipment
  • jitter pattern 3 and jitter pattern 6 are often suitable for users with poor wireless link conditions (such as far from network equipment) or users who failed previous random access.
  • the jitter pattern 2 and the jitter pattern 3 of Figure 13A may also be used to support transmit beam scanning of the UE.
  • sequence 2 is transmitted along the direction of the first transmit beam of the UE at time t1;
  • sequence 3 is transmitted along the second transmit beam direction of the UE at time t2.
  • the sequence 4 and the sequence 5 are transmitted along the first transmission beam direction of the UE at times t1 to t2; and the sequence 6 is transmitted along the second transmission beam direction of the UE at time t5 to t6.
  • sequence 7 If the network device has determined the best receive beam, the network device receives the signal in the direction of the best receive beam.
  • the network device receives the signal according to the beam scan structure shown in FIG. 13A.
  • the structure of the subleader is as shown in FIG. 5.
  • the CP is actually a sequence
  • the GT is a guard time for not transmitting data. Therefore, the subleader may actually be regarded as a sequence.
  • the sequences appearing in Figures 13A to 18C are all referred to as subleaders.
  • the jitter pattern 5 and the jitter pattern 6 in Figure 13B may also be used to support transmit beam scanning of the UE.
  • the sequence 10 and the sequence 12 are transmitted along the direction of the first transmission beam of the UE at times t1 and t3; the sequence is transmitted along the direction of the second transmission beam of the UE at times t2 and t4 11 and sequence 13.
  • the sequence 14-17 is transmitted along the direction of the first transmission beam of the UE at times t1 to t4; the sequence is transmitted along the direction of the second transmission beam of the UE at times t5 to t8. 18-21.
  • the sequences 14, 16, 18, and 19 are transmitted along the first transmit beam direction of the UE at times t1, t3, t5, t7; at times t2, t4, t6, t8
  • the sequence, 15, 17, 19, and 21 of the second transmit beam direction of the UE are transmitted.
  • one UE may generate two preambles using two jitter patterns for random access.
  • the preamble generated according to the jitter pattern 7 may be transmitted on the first transmit beam
  • the preamble generated according to the jitter pattern 8 may be transmitted in the second transmit beam.
  • the preamble generated according to the jitter pattern 9 may be transmitted on the first transmit beam
  • the preamble generated according to the jitter pattern 10 may be transmitted in the second transmit beam.
  • the UE may transmit the preamble generated according to the jitter pattern 7 and the preamble generated according to the jitter pattern 8 on the same transmit beam, which may enhance the probability that the network device successfully detects the preamble transmitted by the UE.
  • the jitter pattern used by each UE may be specified by the network device, or may be pre-agreed by the UE and the network device, or may be selected by the UE according to a certain rule within a range specified by the network device (for example, Choose randomly, or according to the received signal energy).
  • the network device knows the information of all possible jitter patterns of the UE.
  • the structure of the signal received by the network device is as shown in FIG.
  • the four preambles received are located in two beams.
  • the network device detects each of the received preamble signals in each beam and detects the sequence therein.
  • sequence 3 is detected
  • sequence 6 is detected
  • sequence 7 is detected
  • sequences 2 to 3 or sequences 4 to 7 can be combined. According to the above detection result, the network device can determine that three UEs have transmitted the preamble according to the jitter pattern shown in FIG. 13A.
  • the network device detects sequence 2 in the received signal in time t1, and obtains signal y2; detects sequence 3 in the received signal in time t2, and obtains signal y3;
  • each of the hopping patterns in the embodiment of the present invention specifies at least one feature sequence for the child preamble, and the feature sequence only appears in a specific hopping pattern and does not appear in other hopping patterns, therefore, As long as the network device detects the feature sequence, it can be considered that the UE transmits the preamble by using the unique hopping pattern identified by the feature sequence.
  • sequence 1 is a feature sequence of the jitter pattern 1
  • sequence 2 and sequence 3 are feature sequences of the jitter pattern 2
  • sequence 6 and sequence 7 are feature sequences of the jitter pattern 3.
  • the network device knows a jitter pattern that may be adopted when each UE transmits. Therefore, when the network device receives the detection:
  • sequence 1 When sequence 1 is detected at the position t1, it is determined that the UE adopts the jitter pattern 1 when transmitting the preamble signal.
  • sequence 2 is detected at the position t1 and sequence 3 is detected at the position t2, it is considered that the UE uses the jitter pattern 2 to transmit the preamble signal;
  • Sequence 4 and Sequence 5 are detected at positions t1 and t2, respectively, and sequences 6 and 7 are detected at positions t5 and t6, respectively, and it is considered that the UE uses the jitter pattern 3 to transmit the preamble signal.
  • a sequence detection result that may occur when the network device detects the received preamble signal is:
  • sequence 13 is detected, sequence 17;
  • sequences 12 to 13, or sequences 16 to 17, and sequences 20 to 21 can be combined. According to the above detection result, and the network device according to the pattern shown in FIG. 13B, the network device can determine that three UEs have transmitted the preamble signal. Since the above-mentioned detected sequences are all sequences located at times t3, t4, t7, and t8, sequences are detected at other times, and as can be seen from FIG. 11, times t3, t4, t7, and t8 correspond to The scanning time of the receiving beam 2 of the network device, according to the above detection result, can be known that the optimal receiving beam of the network device is the receiving beam 2.
  • a sequence detection result that may occur when the network device detects the received preamble signal is:
  • sequence 23 is detected
  • sequence 26 and sequence 28 can be combined.
  • the network device can determine that two UEs transmit the preamble, and the best transmit beam of the UE transmitting the sequence 23 is the best for the transmit beam 1 and the network device.
  • the receive beam is 2; the best transmit beam for the UE transmitting sequence 26 and sequence 28 is 1, and the best receive beam for the network device is receive beam 2.
  • Figures 14A, 14B, and 14C illustrate additional examples of bounce patterns associated with receive beams of a network device.
  • these jitter patterns may be related to the structure exhibited by the RACH when the network device performs receive beam scanning.
  • the UE acquires scan information of the receive beam of the network device, and then selects a jitter pattern.
  • the signals received by the same beam in each scanning time correspond to the same type of jitter pattern, and the signals received by different receiving beams may correspond to the same jitter pattern.
  • the jitter patterns 1 to 3 are used to transmit the preamble only in the scan time corresponding to one reception beam of the network device; as shown in FIGS. 14B and 14C, the jitter patterns 4 to 15 are used in the network device.
  • the preamble is transmitted within a scan time corresponding to multiple receive beams.
  • the jitter pattern shown in FIG. 14A can be applied to a scenario of a UE that has determined to transmit and receive beams.
  • the UE can generate a preamble by using the pattern shown in the figure, and is used to send a scheduling request, a handover request, and the like.
  • the UE 14B and 14C may be applied to a scenario in which the optimal transmit beam of the UE or the receive beam of the network device is not determined, and the UE may generate a preamble using the pattern shown in the figure to support beam scanning during the random access procedure. For example, when the UE performs the first uplink synchronization UE or the link failure between the UE and the network device, the UE and the network device need to perform beam scanning to determine the optimal transmission of the UE. The best receive beam of the beam and the network device, at which point any one of the patterns shown in FIG. 14B and FIG. 14C can be used to generate a preamble, which can be used to determine the optimal transmit beam of the UE and the network device. The best receive beam.
  • the jitter pattern 1, the jitter pattern 4, and the jitter pattern 5 are often applied to users with good wireless link conditions (such as near network devices), jitter patterns 2, and jitter patterns 6
  • the jitter pattern 7 is often applied to users with normal wireless link conditions (such as moderate distance to network devices)
  • the jitter pattern 3, the jitter pattern 8, and the jitter pattern 9 are often suitable for poor wireless link conditions (eg, far from the network device). ), or the user who failed the previous random access.
  • the jitter pattern 2 and the jitter pattern 3 shown in Figure 14A can also be used to support transmit beam scanning of the UE.
  • sequence 2 is transmitted along the first transmit beam direction at time t1;
  • sequence 3 is transmitted along the second transmit beam direction at time t2.
  • sequence 4 and sequence 5 are transmitted along the first transmission beam direction at times t1 to t2;
  • sequence 6 and sequence 7 are transmitted along the second transmission beam direction at times t5 to t6.
  • the jitter pattern 6-9 shown in Figure 14B can also be used to support transmit beam scanning of the UE.
  • the jitter patterns 6 and 7 of UE 5 transmit sequence 10 and sequence 12 along the first transmit beam direction at times t1 and t3; sequence 11 and sequence 13 are transmitted along the second transmit beam direction at times t2 and t4.
  • the jitter patterns 8 and 9 of the UE 6 transmit the sequence 14-17 along the first transmission beam direction at times t1 to t4; the sequence 18-21 is transmitted along the second transmission beam direction at times t5 to t6.
  • the sequences 14, 16, 18, and 29 are transmitted along the first transmission beam direction at times t1, t3, t5, t7; at time t2, t4, t6, t8 along the first
  • the two transmit beam directions transmit sequences 15, 17, 19 and 21.
  • one UE may generate two preambles using two jitter patterns for random access.
  • the UE 7 may transmit a preamble generated according to the jitter patterns 8 and 10 on the first transmission beam, and may transmit a preamble generated according to the jitter patterns 9 and 11 in the second transmission beam.
  • the UE 8 may transmit a preamble generated according to the jitter patterns 12 and 14 on the first transmission beam, and may transmit a preamble generated according to the jitter patterns 13 and 15 in the second transmission beam.
  • the UE may transmit the preamble generated according to the jitter pattern 8-11 and the preamble generated according to the jitter pattern 8 on the same transmit beam, and the transmission manner may enhance the probability that the network device successfully detects the preamble transmitted by the UE.
  • the receiving beam of the network device needs to be scanned, when the signal of the structure shown in FIG. 11 is generated by using any one of the jitter patterns shown in FIG. 14A, FIG. 14B and FIG. 14C, the structure of the signal received by the network device is as shown in FIG. As shown at 12, the four preambles received are located in the signals received in the two beam directions. The network device detects each received preamble in each beam direction and detects the sequence therein.
  • the three UEs shown in FIG. 14A both transmit preambles, and a sequence detection result that may occur when the network device detects the received preamble is:
  • sequence 3 is detected
  • sequence 6 is detected
  • sequence 7 is detected
  • sequences 2 to 3 or sequences 4 to 7 can be combined. According to the above detection result and the jitter pattern shown in FIG. 14A, the network device can determine that three UEs have transmitted the preamble.
  • a sequence detection result that may occur when the network device detects the received preamble signal is:
  • sequence 13 is detected, sequence 17;
  • sequence 21 is detected.
  • sequences 12 to 13, or sequences 16 to 17, and sequences 20 to 21 can be combined. According to the above detection result, the network device can determine that three UEs have transmitted the preamble according to the jitter pattern shown in FIG. 14B, and the optimal reception beam is 2.
  • two UEs simultaneously transmit preambles, and the preambles generated according to different jitter patterns are respectively transmitted in different transmission beam directions (jitter pattern 8, jitter pattern 10, jitter pattern 12, and jitter pattern 14 corresponding to transmission beam 1)
  • the jitter pattern 9, the jitter pattern 11, the jitter pattern 13, the jitter pattern 15 corresponds to the transmission beam 2)
  • a sequence detection result that may occur when the network device detects the received preamble signal is:
  • sequence 23 is detected
  • sequence 26 and sequence 28 can be combined.
  • the network device can determine that two UEs transmit the preamble, and the optimal transmit beam of the UE transmitting sequence 23 is 1.
  • the optimal receive beam is 2; the transmission sequence The best transmit beam for the UE of 26 and sequence 28 is 1, and the best receive beam is 2.
  • Fig. 15 shows an example of the structure of a multi-subband RACH.
  • the RACH has two subbands, each of which has a frequency domain width of 72 subcarriers, and a subcarrier spacing of 60 kHz; the UE transmits four preambles within the duration of the RACH, and the four preambles distribute two subbands.
  • Each of the preambles may be continuous in time or discontinuous, but not overlapping each other.
  • the structure of the signal received by the network device when performing the receive beam scanning is as shown in FIG. 16.
  • the network device scans on two receive beams and receives preambles on the two subbands within one scan time of each receive beam.
  • the UE selects a jitter pattern according to the received downlink indication information. For example, as shown in FIG. 17A, the jitter patterns 1 to 2 are used to transmit a preamble only in one receive beam direction; as shown in FIG. 17B, the jitter patterns 3 to 4 are used to transmit a preamble in a plurality of receive beams; as shown in FIG. 17C, The jitter patterns 5-6 are used to transmit preambles within multiple transmit beams and receive beams.
  • FIG. 17A may be applied to an optimal receive beam scenario in which the UE has determined the best transmit beam, the network device, and the UE may use the pattern generated in the figure to generate a preamble for transmitting a scheduling request, a handover request, and the like.
  • 17B and 17C may be applied to a scenario in which the optimal transmit beam of the UE and/or the best receive beam of the network device is not determined, and the UE may generate a preamble using the pattern shown in the figure to support the beam during the random access procedure. scanning. For example, when the UE performs the first uplink synchronization UE or the link failure between the UE and the network device, the UE and the network device need to perform beam scanning to determine the optimal transmission of the UE.
  • the optimal receive beam of the beam and the network device, at which point any one of the patterns shown in Figures 17B and 17C can be used to generate the preamble, which can be used to determine the best transmit beam of the UE and the network device. Good receiving beam.
  • the jitter pattern 2 shown in Figure 17A can also be used to support transmit beam scanning of the UE.
  • sequence 2 is transmitted along the first transmit beam direction at time t1; sequence 3 is transmitted along the second transmit beam direction at time t2.
  • the jitter pattern 3 and the jitter pattern 4 shown in Figure 17B can also be used to support transmit beam scanning of the UE.
  • sequence 4 and sequence 6 are transmitted along the first transmit beam direction at times t1 and t3; sequence 5 and sequence 7 are transmitted along the second transmit beam direction at times t2 and t4.
  • the two hopping patterns shown in Figure 17C may be employed by one UE to generate a preamble for random access.
  • the preamble generated according to the jitter pattern 5 is transmitted in the transmission beam direction 1
  • the preamble generated according to the jitter pattern 6 is transmitted in the transmission beam direction
  • the preamble generated according to the jitter pattern 5 and the jitter pattern 6 is transmitted in the same transmission beam direction. .
  • the two preambles and four sub-preamble signals received by the network device are respectively located.
  • two sub-leaves (or preambles) are received.
  • each received preamble is detected and the sequence therein is detected.
  • the two UEs in FIG. 17A respectively transmit a preamble according to the illustrated jitter pattern, and a sequence detection result that may occur when the network device detects the received preamble is:
  • sequence 1 and sequence 2 are respectively detected;
  • sequence 3 is detected
  • sequence 2 and sequence 3 can be combined. According to the above detection result and the jitter pattern shown in FIG. 17A, the network device can determine that two UEs have transmitted the preamble, and the optimal reception beam is 1.
  • a sequence detection result that may occur when the network device detects the received preamble signal is:
  • sequence 4 is detected
  • sequence 5 is detected
  • sequence 14 is detected
  • sequence 11 In the preamble received at t4, sequence 11, sequence 15, is detected.
  • sequences 4 to 5, or sequences 10 to 11 and sequences 14 to 15 can be combined.
  • the network device can determine that three UEs have transmitted the preamble, and the optimal receiving beams of the sequences 4 to 5 are the receiving beam 1, respectively, the sequence 10 to 11, the sequence 14 The best receive beam of -15 is the receive beam 2.
  • one UE transmits a preamble according to the illustrated jitter pattern, and the preambles generated according to the two hopping patterns are respectively transmitted in different transmission beam directions (the hopping pattern 5 corresponds to the transmission beam 1, and the hopping pattern 6 corresponds to the transmission beam). 2)
  • a sequence detection result that may occur when the network device detects the received preamble signal is:
  • sequence 20 and sequence 22 can be combined. According to the above detection result and the jitter pattern shown in FIG. 17B, the network device can determine that one UE has transmitted the preamble, and the optimal transmit beam of the UE of sequence 20 and sequence 22 is 2, and the optimal receive beam is 1.
  • Figures 18A, 18B, and 18C show additional examples of jitter patterns associated with the receive beam of a network device.
  • these jitter patterns may be related to the structure exhibited by the RACH when the network device performs receive beam scanning.
  • the UE selects a jitter pattern according to the received downlink indication information.
  • the jitter patterns 1 to 2 are used to transmit the preamble in only one reception beam; as shown in FIG. 18B, the jitter patterns 3 to 4 are used to transmit the preamble in a plurality of reception beams; as shown in FIG. 18C, The jitter patterns 5-6 are used to transmit preambles within multiple transmit beams and receive beams.
  • FIG. 18A can be applied to a scenario of a UE that has determined a transmit beam and a receive beam, and the UE can generate a preamble by using the pattern shown in the figure to send a scheduling request, a handover request, and the like.
  • 18B and 18C may be applied to scenarios where the best transmit beam of the UE and/or the receive beam of the network device are not determined, and the UE may generate a preamble using the pattern shown in the figure to support beam scanning during the random access procedure. For example, when the UE performs the first uplink synchronization UE or the link failure between the UE and the network device, the UE and the network device need to perform beam scanning to determine the optimal transmission of the UE. The optimal receive beam of the beam and the network device, at which point any one of the patterns shown in Figures 18B and 18C can be used to generate the preamble, which can be used to determine the best transmit beam of the UE and the network device. Good receiving beam.
  • the jitter pattern 2 shown in Figure 18A can also be used to support transmit beam scanning of the UE.
  • the sequence 2 is transmitted along the first transmission beam direction at time t1; the sequence 3 is transmitted along the second transmission beam direction at time t2.
  • the jitter pattern 3 and the jitter pattern 4 shown in Figure 18B can also be used to support transmit beam scanning of the UE.
  • sequence 4 and sequence 6 are transmitted along the first transmit beam direction at times t1 and t3; sequence 5 and sequence 7 are transmitted along the second transmit beam direction at times t2 and t4.
  • one UE generates a preamble for random access based on the two hopping patterns shown in Figure 18C. For example, transmitting a preamble signal generated according to the jitter patterns 7 and 8 in the transmission beam direction 1, transmitting a preamble signal generated according to the jitter patterns 9 and 10 in the transmission beam direction 2, or transmitting the same transmission beam direction according to the jitter pattern 7-10. The generated preamble.
  • the two preambles received by the network device and the four sub-leades are respectively located in two. Receive signals are received in the direction of the beam. In each receive beam direction, there are 2 received sub-leaves. Within each beam, each sub-preamble received is detected and the sequence therein is detected.
  • the two UEs of FIG. 18A respectively transmit a preamble signal according to the illustrated jitter pattern, and a sequence detection result that may occur when the network device detects the received preamble signal is:
  • sequence 1 and sequence 2 are respectively detected;
  • sequence 3 is detected
  • sequence 2 and sequence 3 can be combined. Based on the above detection result and the jitter pattern shown in FIG. 18A, the network device can determine that two UEs have transmitted the preamble, and the optimal reception beam is 1.
  • a sequence detection result that may occur when the network device detects the received preamble is:
  • sequence 4 is detected
  • sequence 5 is detected
  • sequence 14 is detected
  • sequence 11 In the preamble received at t4, sequence 11, sequence 15, is detected.
  • sequences 4 to 5, or sequences 10 to 11 and sequences 14 to 15 can be combined.
  • the network device determines that three UEs have transmitted the preamble, and the optimal receiving beams of the sequences 4 to 5 are the receiving beam 1, the sequence 10 to 11, and the sequences 14 to 15, respectively.
  • the best receive beam is receive beam 2.
  • one UE transmits a preamble according to the illustrated jitter pattern, and two beating patterns are transmitted by the same UE in different transmit beam directions respectively (the jitter pattern 7 and the jitter pattern 8 correspond to the transmit beam 1 and beat) Pattern 9 and jitter pattern 10 correspond to transmit beam 2), and a possible sequence detection result is:
  • Sequence 20 and sequence 22 can be combined for detection in the above sequence detection.
  • the network device can determine that one UE transmits the preamble, and the optimal transmit beam of the UE of sequence 20 and sequence 22 is 2.
  • the optimal receive beam of the network device it's 1.
  • the embodiment of the present invention provides a method for receiving a random access signal, as shown in FIG. 19, including:
  • Step S500 the network device receives the random access signal
  • Step S600 detecting the received random access signal, and obtaining a resource pattern corresponding to the random access signal, where the resource pattern describes a resource location where the preamble is detected;
  • Step S700 Determine, according to the detected resource pattern and the pre-saved resource pattern, a user equipment that sends the random access signal, where the pre-saved resource pattern describes a location where the resource occupied by the preamble is located.
  • the network device may further determine an optimal receive beam of the network device according to the detected resource pattern.
  • the network device may further determine an optimal transmit beam of the UE that sends the random access signal according to the detected resource pattern.
  • the network device may further send the set information of the resource pattern usable to generate the random access signal to the UE.
  • the embodiment of the present invention further provides a user equipment, which is used to perform the method for sending a random access signal provided by the embodiment of the present invention.
  • the user equipment includes:
  • the processor 10 is configured to determine a resource pattern corresponding to a random access preamble in the random access signal, where the resource pattern specifies a resource occupied by the random access preamble, where the resource includes a frequency resource and a time. At least one of a resource and a sequence resource; and is further configured to generate a random access signal according to the resource pattern;
  • the transceiver 20 is configured to send the random access signal to a network device.
  • the resource pattern determined by the processor 10 specifically specifies resources used by each of the random access preambles.
  • the resource pattern determined by the processor 10 is specifically a hopping pattern, which is a time hopping pattern, a frequency hopping pattern, a hopping sequence pattern, a time hopping-frequency pattern, a time-hopping sequence pattern, Any of a frequency hopping-sequence pattern and a time-frequency-sequence pattern.
  • the processor 10 is specifically configured to select the resource pattern from a set of patterns including the resource pattern, wherein the pattern set includes at least two resource patterns, and the at least two Any two resource patterns in the resource pattern are different from each other.
  • the processor 10 is further configured to acquire receive beam scan information of the network device, where the receive beam scan information includes a number of receive beams to be scanned and a scan time of each receive beam;
  • the processor is specifically configured to further determine the resource pattern according to the received beam scan information, wherein the determined resource pattern is such that the network device is within at least one scan duration of each receive beam Can receive at least one sub-prede.
  • the processor 10 is specifically configured to: further determine the resource pattern according to the transmit beam scan information of the user equipment, where the determined resource pattern is caused by the user equipment A sub-preamble is sent in the at least one scanning duration of each of the transmit beams.
  • the transceiver 20 is configured to send the random access signal according to a scan time structure of a transmit beam of the user equipment.
  • the processor 10 is further configured to acquire structural information of a random access channel RACH for transmitting the random access signal; correspondingly, the processor 10 is specifically configured to further according to the RACH.
  • the resource information is used to determine the resource pattern, wherein the resource pattern is specifically used to specify a resource occupied by the preamble in the RACH.
  • the processor 10 is further configured to acquire a distance and/or a channel condition between the processor and the network device; correspondingly, the processor 10 is specifically configured to further according to the UE according to the UE The distance between the network devices and/or channel conditions determines the resource pattern.
  • the embodiment of the present invention further provides a network device, which can be used to perform the method provided in the embodiment shown in FIG. As shown in FIG. 21, the network device includes:
  • the transceiver 30 is configured to receive a random access signal
  • the processor 40 is configured to detect the received random access signal to obtain a resource pattern corresponding to the random access signal, where the resource pattern describes a resource location where the preamble is detected;
  • the user equipment for transmitting the random access signal is further determined according to the detected resource pattern and the pre-saved resource pattern, wherein the pre-saved resource pattern describes a location where the resource occupied by the preamble is located.
  • the processor 40 is further configured to determine an optimal receive beam of the network device according to the detected resource pattern.
  • the processor 40 determines an optimal transmit beam of the UE transmitting the random access signal according to the detected resource pattern.
  • the transceiver 30 is further configured to send, to the UE, set information of a resource pattern that can be used to generate the random access signal.
  • processor 10 and the processor 40 may be general-purpose processors, such as but not limited to, a central processing unit (CPU), or may be a dedicated processor such as, but not limited to, a digital signal.
  • a processor Digital Signal Processor, DSP
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • processor 10 can also be a combination of multiple processors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种发送随机接入信号的方法和用户设备,其中,该方法包括:用于设备UE确定随机接入信号中的随机接入前导所对应的资源图案,该资源图案指定了随机接入前导所占用的资源,该资源包括用于频率资源、时间资源和序列资源中的至少一个;UE根据该资源图案,生成随机接入信号;UE将随机接入信号发送给网络设备。UE在生成随机接入前导时可有非常多的选择,因此,降低了同一小区内不同UE在随机接入时发生碰撞的概率。

Description

随机接入信号的发送和接收方法、网络设备和用户设备
本申请要求于2017年01月05日提交中国专利局、申请号为201710008579.X“随机接入信号的发送和接收方法、网络设备和用户设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信领域,尤其涉及随机接入信号的发送和接收方法、网络设备和用户设备。
背景技术
在无线蜂窝通信系统中,随机接入承担着UE(User Equipement,用户设备)与基站之间建立上行通信连接的关键一步。在UE与基站建立上行通信连接过程中,首先取得下行同步。UE通过下行公共信道获取系统信息,例如带宽,帧结构参数,系统帧编号,随机接入信道(RACH,Random Access Channel)信息。在LTE(Long Term Evolution,长期演进)网络中,基站通过SIB2(System Information Block 2,系统信息块2)将RACH信息通知给UE。然后,UE借助随机接入信道,向基站发送前导信号,前导信号中包含有用于区分不同UE的序列。最后,基站检测序列,识别UE并且完成UE与基站的上行同步。
现有LTE中通过RACH传输的随机接入前导(Preamble)的结构如图1所示,其包括CP(Cyclic Prefix,循环前缀)、序列和GT(Guard Time,保护时间)。现有的LTE标准为Preamble定义了五种格式,各个格式的主要参数如表1所示。
表1 LTE前导格式及其主要参数表
Figure PCTCN2018071279-appb-000001
从上面可以看出,在现有LTE标准中随机接入前导占用时间太长,而且可用于随机接入前导的序列的数量有限,故容易出现多个UE同时使用相同序列进行随机接入的情况,导致比较高的冲突概率。
发明内容
有鉴于此,本申请提供了发送和接收随机接入信号的方法,用户设备和网络设备,可以降低多个UE同时随机接入时发生冲突的概率。
一方面,本申请提供了一种随机接入信号的方法,包括:
用户设备UE确定随机接入信号中的随机接入前导所对应的资源图案,所述资源图案指定了所 述随机接入前导所占用的资源,所述资源包括频率资源、时间资源和序列资源中的至少一个;
UE根据所述资源图案,生成随机接入信号;
UE将所述随机接入信号发送给网络设备。
另一方面,本申请还提供了一种用户设备,包括:
处理器,用于确定随机接入信号中的随机接入前导所对应的资源图案,所述资源图案指定了所述随机接入前导所占用的资源,所述资源包括用于频率资源、时间资源和序列资源中的至少一个;还用于根据所述资源图案,生成随机接入信号;
收发器,用于将所述随机接入信号发送给网络设备。
再一方面,本申请还提供了一种接收随机接入信号的的方法,包括:
网络设备接收随机接入信号;
所述网络设备对接收到的所述随机接入信号进行检测,得到所述随机接入信号所对应的资源图案,其中所述资源图案指示了随机接入前导被检测到时所处的资源位置;
所述网络设备根据检测得到的所述资源图案和预先保存的资源图案,确定发送所述随机接入信号的用户设备,其中,预先保存的资源图案指定了一个随机接入前导所占用的资源,所述资源包括用于频率资源、时间资源和序列资源中的至少一个。
又一方面,本申请还提供了一种网络设备,包括:
收发器,用于接收随机接入信号;
处理器,用于对接收到的所述随机接入信号进行检测,得到所述随机接入信号所对应的资源图案,其中所述资源图案指示了随机接入前导被检测到时所处的资源位置;还用于根据检测得到的所述资源图案和预先保存的资源图案,确定发送所述随机接入信号的用户设备,其中,预先保存的资源图案指定了一个随机接入前导所占用的资源,所述资源包括用于频率资源、时间资源和序列资源中的至少一个。
本发明实施例所提供的技术方案所生成的随机接入信号中的前导具有特定的资源图案,不同的UE可以生成具有不同资源图案的前导,因此,在随机接入过程中可以使得网络设备根据随机接入信号中所具有的资源图案来识别UE。另外,又由于本发明实施中的资源图案指定了随机接入前导在三维资源(频率资源、时间资源和序列资源)中的至少一个维度上的资源占用情况,对于一个具体的前导而言,在每一维资源上可占用的资源位置有均有多种选择,将不同维度上的资源位置进行组合就可以有非常多的资源图案,每一种资源图案均可用来生成一个随机接入前导,故本发明实施例中在生成随机接入前导时就有非常多的选择,降低了同一个小区内多个UE同时进行随机接入时发生冲突的概率。
附图说明
图1为现有技术中LTE前导的格式的示意图;
图2为依据本发明一实施例的通信系统的结构图;
图3为依据本发明一实施例的发送随机接入信号的方法的流程示意图;
图4A为依据本发明一实施例的RACH的一种结构示意图;
图4B为依据本发明一实施例的RACH的另一种结构示意图;
图5为依据本发明一实施例的子前导的结构示意图;
图6为依据本发明一实施例的随机接入前导的结构示意图;
图7A为依据本发明一实施例的单子带前导的跳时图案的示意图;
图7B为依据本发明一实施例的单子带前导的跳序列图案的示意图;
图7C为依据本发明一实施例的单子带前导的跳时-序列图案的示意图;
图8A为依据本发明一实施例的多子带前导的跳频图案的示意图;
图8B为依据本发明一实施例的多子带前导的跳序列图案的示意图;
图8C为依据本发明一实施例的多子带前导的跳频-序列图案的示意图;
图8D为依据本发明一实施例的多子带前导的跳时-频图案的示意图;
图8E为依据本发明一实施例的多子带前导的跳时-频-序列图案的示意图;
图9A为依据本发明一实施例的前导的结构的示意图;
图9B为依据本发明一实施例的前导的又一结构示意图;
图10A为依据本发明一实施例的上行通信建立连接的信令流程图;
图10B为依据本发明一实施例的随机接入过程的一种信令流程图;
图10C为依据本发明一实施例的随机接入过程的另一种信令流程图;
图10D为依据本发明一实施例的随机接入过程的再一种信令流程图;
图10E为依据本发明一实施例的随机接入过程的又一种信令流程图;
图11为依据本发明一实施例的单子带的RACH的结构的示意图;
图12为依据本发明一实施例的网络设备接收到的RACH的结构的示意图;
图13A为依据本发明一实施例提供的基于单子带RACH资源的单子带前导的一种跳动图案的示意图;
图13B为依据本发明一实施例提供的基于单子带RACH资源的单子带前导的另一种跳动图案的示意图;
图13C为依据本发明一实施例提供的基于单子带RACH资源的单子带前导的再一种跳动图案的示意图;
图14A为依据本发明一实施例提供的基于网络设备的接收波束扫描结构的单子带前导的一种跳动图案的示意图;
图14B为依据本发明一实施例提供的基于网络设备的接收波束扫描结构的单子带前导的另一种跳动图案的示意图;
图14C为依据本发明一实施例提供的基于网络设备的接收波束扫描结构的单子带前导的再一种跳动图案的示意图;
图15为依据本发明一实施例的多子带RACH的结构的示意图;
图16为依据本发明一实施例的网络设备接收到的多子带RACH的结构的示意图;
图17A为依据本发明一实施例提供的基于多子带RACH资源的多子带前导的一种跳动图案的示意图;
图17B为依据本发明一实施例提供的基于多子带RACH资源的多子带前导的另一种跳动图案的示意图;
图17C为依据本发明一实施例提供的基于多子带RACH资源的多子带前导的再一种跳动图案的示意图;
图18A为依据本发明一实施例提供的基于网络设备的接收波束扫描结构的多子带前导的一种跳动图案的示意图;
图18B为依据本发明一实施例提供的基于网络设备的接收波束扫描结构的多子带前导的另一种跳动图案的示意图;
图18C为依据本发明一实施例提供的基于网络设备的接收波束扫描结构的多子带前导的再一种跳动图案的示意图;
图19为依据本发明一实施例提供的接收随机接入信号的方法的流程示意图;
图20为依据本发明一实施例的UE的结构示意图;
图21为依据本发明一实施例的网络设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例的技术方案进行描述。
下文所描述的本发明实施例的技术方案应用于通信系统。该通信系统可以包括一个或者多个网络设备,和与每个网络设备通信的一个或者多个用户设备(User Equipment,UE)。图2是该通信系统的一个例子,图2所示的通信系统包括一个网络设备和与其通信的多个UE。
网络设备可以是能和UE直接通信的用于控制控制UE接入通信网络的任何设备,例如,基站、中继站或接入点。基站可以是GSM(Global System for Mobile communication,全球移动通讯)网络或CDMA(Code Division Multiple Access,码分多址)网络中的BTS(Base Transceiver Station,基站收发台)、WCDMA(Wideband Code Division Multiple Access,宽带码分多址)网络中的NB(NodeB)、LTE(Long Term Evolution,长期演进)中的eNB或eNodeB(evolved NodeB)、或者下一代(例如5G)无线通信网络中的基站设备等。
UE可以是接入终端、用户单元、用户站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。接入终端可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字助理)、笔记本电脑、平板电脑、具有无线通信功能的手持设备或计算设备、车载终端、可穿戴设备以及下一代(例如5G)无线通信网络中的终端设备等。
本发明实施例提供了一种发送随机接入信号的方法,如图3所示,该方法包括:
步骤S100,UE确定随机接入信号中的随机接入前导所对应的资源图案,所述资源图案指定了所述随机接入前导所占用的资源,所述资源包括频率资源、时间资源和序列资源中的至少一个;
步骤S200,UE根据所述资源图案,生成随机接入前导;
步骤S300,UE将所述随机接入前导发送给网络设备。
本发明实施例提供的技术方案所生成的随机接入信号中的前导具有特定的资源图案,不同的UE可以生成具有不同资源图案的前导,因此,在随机接入过程中可以使得网络设备根据随机接入信号中所具有的资源图案来识别UE。另外,又由于本发明实施中的资源图案指定了随机接入前导在三维资源(频率资源、时间资源和序列资源)中的至少一个维度上的资源占用情况,对于一个具体的前导而言,在每一维资源上可占用的资源位置有均有多种选择,将不同维度上的资源位置进行组合就可以有非常多的资源图案,每一种资源图案均可用来生成一个随机接入前导,故本发明实施例中在生成随机接入前导时就有非常多的选择,降低了同一个小区内多个UE同时进行随机接入时发生冲突的概率。
为描述的方便,在后文中“随机接入前导”都被简称为“前导”。
在一实施例中,步骤S100中的资源图案可以指定前导所包含的每个符号所占用的资源。每个 符号占用的资源包括载波、发送时间和前导所包含的序列在该符号上的取值。
在一实施例中,前导由子前导构成,相应地,步骤S100中的资源图案具体指定了每个子前导所使用的资源。在本发明实施例中,前导也可以被认为是其自身的子前导。
在一实施例中,步骤S100中的资源图案具体是跳动图案,所述跳动图案是跳时图案、跳频图案、跳序列图案,跳时-频图案,跳时-序列图案,跳频-序列图案和跳时-频-序列图案中的任意一种。
跳时图案用于指定在用于发送一个随机接入信号的时间资源内,每个前导或者子前导所占用的时间资源所在的位置,且在时间资源的维度上所有前导或者子前导所占用的时间资源呈现出跳时(Time Hopping)的特点。跳频图案用于指定在用于发送一个随机接入信号的频率资源中,每个前导或者子前导所占用的频率资源所在的位置,在频率资源的维度上所有前导或者子前导所占用的频率资源呈现出跳频(Frequency Hopping)的特点。跳序列图案指定位于各个频率资源位置上或者各个时间资源位置上的前导或者子前导所使用的序列,在序列资源的维度上所有前导或者子前导所采用的序列呈现出跳序列(Sequence Hopping)的特点。跳时-频图案用于指定每个前导或者子前导所占用的时间频率所在的位置和所占用的频率资源所在的位置,各个前导或者子前导在时间资源的维度上具有跳时的特点和/或者在频率资源的维度上具有跳序列的特点。跳时-序列图案用于指定每个前导或者子前导所占用的时间资源所在的位置和所采用的序列。在跳时-序列图案中,各个前导或者子前导在时间资源的维度上具有跳时的特点和/或者在序列资源的维度上具有跳序列的特点。跳频-序列图案用于指定每个前导或者子前导所占用的频率资源所在的位置和所采用的序列。在跳频-序列图案中,各个前导或者子前导在频率资源的维度上具有跳频的特点和/或在序列资源的维度上具有跳序列的特点。跳时-频-序列图案用于指定每个前导或者子前导所占用的时间资源所在的位置,所占用的频率资源所在的位置,和所采用的序列。在跳时-频-序列图案中,各个前导或者子前导在时间资源的维度上具有跳时的特点,和/或频率资源上的维度上具有跳频的特点,和/或在序列资源的维度上具有跳序列的特点。
在本发明实施例中,用于发送一个随机接入信号的时间资源具体可以是一个RACH的时间长度,也可以是网络设备在进行接收波束扫描时占用的时间资源;用于发送一个随机接入信号的频率资源具体可以是一个RACH所对应的频率资源,也可以是网络设备在进行接收波束扫描时占用的频率资源。
在一实施中,步骤S100具体可以包括:从包含所述资源图案的图案集合中选出所述资源图案,其中,所述图案集合包括至少两个资源图案,且所述至少两个资源图案中任意两个资源图案互不相同。在本实施例中,图案集合可以是预先保存在UE中,或者是网络设备通知给UE的。在本实施例中,两个资源图案不同,既可以指资源图案的类型(例如,跳时图案、跳频图案),还可以指同一个类型中由于各个前导或者子前导所占用的资源不同所导致的图案不同,例如,跳频图案1中指定在子带1、子带3和子带4上发送子前导,跳频图案2指定在子带1、子带2和子带4上发送子前导。
在一实施中,UE进一步获取所述网络设备的接收波束扫描信息,所述接收波束扫描信息包括需要扫描的接收波束和每个接收波束的扫描时间。相应地,步骤S100具体还可以包括:根据所述接收波束扫描信息,确定所述资源图案,其中,所述确定出的所述资源图案使得所述网络设备在所述每个接收波束的至少一个扫描时长内能接收到至少一个子前导。
在一实施中,步骤S100具体可以包括:根据UE的发送波束扫描信息,确定所述资源图案,其中,所述确定出的所述资源图案使得在UE在所述每个发送波束的至少一个扫描时长内发送有一个子前导,所述UE的发送波束扫描信息包括需要扫描的发送波束和每个发送波束的扫描时间。相应 地,步骤S300具体可以包括:根据所述UE的发送波束的扫描时间发送所述随机接入信号。
在一实施例中,UE还可以获取用于发送所述随机接入信号的RACH的结构信息。相应地,步骤S100具体可以包括:根据所述RACH的结构信息,确定所述资源图案,其中,所述资源图案具体用于指定所述前导在所述RACH中所占用的资源。
在一实施例中,UE还可以获取其与所述网络设备之间的距离和/或信道条件。相应地,步骤S100具体可以包括:所述UE根据其与所述网络设备之间的距离和/或信道条件,确定所述资源图案。
在其它的实施例中,UE可以根据网络设备的接收波束扫描信息、UE的发送波束扫描信息、RACH的结构信息、UE与所述网络设备之间的距离、和UE与所述网络设备之间的信道条件中的至少两种,来确定所述资源图案。
图4A示出了一种可能的RACH的结构,该图中的RACH包含F个子带,各个子带的带宽可以相同,不同子带上用于发送一个前导的时间长度也可以相同。在一个RACH的时间长度内,一个随机接入信号包括F个子带上的所有前导,子带i(i=1,2,…F)上有Ni个前导,子带i上第j个前导包含K ij个子前导(j=1,2,…Ni)。不同子带上的前导的数目Ni可以相同,同一个子带上用于发送各个前导的时间长度可以相同也可以不相同,不同前导所包含的子前导的数目K ij可以相同也可以不同。
图4B示出了另一种可能的RACH的结构,该图中的RACH也包含F个子带,但是各个子带的宽度可以不同,不同子带上用于发送一个前导的时间长度可以不同。在一个RACH的时间长度内,一个随机接入信号包括F个子带上的所有前导,子带i上有N i个前导,子带i上第j个前导包含K ij个子前导(j=1,2,…Ni)。不同子带上的前导的数目N i可以不同,一个子带上用于发送各个前导的时间长度可以相同也可以不同,不同前导所包含的子前导的数目K ij可以相同也可以不同。在另一实施例中,在图4B所示RACH的结构中,任意两个子带的子带宽度相同,但是两个子带上用于发送一个前导的时间长度不同;或者是任意两个子带的子带宽度不相同、但是两个子带上用于发送一个前导的时间长度相同。
如图4A和图4B所示,随机接入信号包含多个前导,此时,步骤S100中确定的资源图案具体为所有的前导指定了所占用的资源。例如,为每个前导指定所使用的子带,发送时间,该前导所采用的序列中的至少一个。
在图4A和4B中,子带i上第j个前导包含K ij个子前导(j=1,2,…Ni),子前导的具体结构如图5所示。在一个实施例中子前导可以只包括序列,如图5所示的结构8。在另外的实施例中,除了包括序列外,子前导还可以包括GT1、GT2和CP中的至少一个。GT1、GT2为保护时间,不传送数据,可用于波束切换或者保护后续通信。CP为循环前缀(Cyclic Prefix)。序列可以是具有良好自相关和互相关的任意序列,例如Zadoff-Chu序列,m序列等。GT1、CP、序列、以及GT2的时间长度可以是网络设备指定,或者UE根据来自网络设备的信令决定,或者UE自我决定。RACH可以由频域上的F个子带、各个子带上的一个或者多个前导和/或子前导、以及形成子前导的序列集共同来表示。
位于各个子带、时间上的前导或者子前导,使用的波形参数(例如,子载波间隔、CP长度、保护间隔)可以完全不相同,也可以部分相同,也可以完全相同。前导的结构(例如,包含子前导、或者不包含子前导)、子前导的序列可以由网络设备指定,或者由UE决定。
图6示出了单子带的前导的七种可能的结构:前导1、前导2、前导3、前导4、前导5、前导6和前导7。在本实施例,前导1中仅有一个子前导,也就是其自身。前导2包括一个CP、一个GT2和K2个序列,其中CP位于前导2的起始位置,GT2位于前导2的终止位置。前导2可以被认为是由具有图5所示的结构6、结构7和结构8的子前导构成。前导3包括位于每个序列之前的CP,位于最后一个序 列之后的GT2,和K3个序列,其可以被认为是由具有图5所示的结构6和结构2的子前导构成。前导4包括K4个序列,以及位于每个序列之前的CP,该前导4可以被认为是由具有图5所示结构6的子前导构成。前导5包括位于K5个序列,位于每个序列之前的CP,和位于每个序列之后的GT2构成,该前导5可以被认为是由具有图5所示的结构2的子前导构成。前导6包括位于第一个序列之前的GT1和CP,位于最后一个序列之前的CP,位于最后一个序列之后的GT2,和K6个序列,该前导6可以被认为是由具有图5所示的结构2和结构3的子前导组成。前导7包括位于第一个序列之前的GT1和CP,位于第一个序列之后的GT2,位于最后一个序列之前的CP、位于最后一个序列之后的GT2,和K7个序列,该前导7可以被看成是由具有图5所示的结构1和结构2的子前导构成。每个前导中的序列,如前文所描述的,可以根据跳时-序列图案来选取。在不同的前导结构实例中,序列个数、序列长度可以完全不相同,也可以部分相同,也可以完全相同。在同一个前导结构中,各个序列可以完全不相同,也可以部分相同,也可以完全相同。
图7A示出了单子带的随机接入信号的前导所对应的一种跳时图案,在该图案中,至少有一个可用于发送子前导的时间资源(例如,时间t2)未被用来发送任何子前导。在本发明实施中,附图中虚线框表示其所在位置未被用来发送任何前导或者子前导。根据图7A所示的跳时图案生成的随机接入信号的前导包括7个子前导,分别占用了除时间t2以外所有时间(时间t1,t3,t4,t5,t6,t7,t8)的子前导,各个子前导所采用的序列相同。在其它的实施中,各个子前导所采用的序列可以部分相同,也可以完全不同。前导中各个子前导所占用的时间资源的位置形成了一个独特的资源图案,可以被用来标识一个特定的前导或者UE。在其它的实施例中,即使有另外一个前导的子前导所占用的时间资源和图7A中的完全一样,但是,只要子前导所采用的序列不同,也能起到标识一个特定的前导或者UE的作用。UE在进行随机接入时,可以发送包含具有图7A所示资源图案的前导的上行随机接入信号,利用图7A所述的资源结构标识UE。如果改变图7A中不发送任何子前导的时间所在的位置或者不发送任何子前导的发送时间的数量,就得到了另一个前导。
图7B示出了单子带的随机接入信号的前导所对应的另一种资源图案:跳序列图案。在该图案中,在每个时间资源内均有一个子前导,每个子前导所采用的序列是从序列集中选择的与该子前导所占用的时间资源所在的位置相对应的序列。各个时间采取的序列可以完全相同,也可以部分相同,也可以完全不同。
图7C示出了单子带的随机接入信号的前导所对应的另一种资源图案:跳时-序列图案。在该图案中,在至少一个可用于发送子前导的时间资源内不发送任何子前导,其它的时间资源上的子前导所携带的序列是根据其所在的位置从序列集中选取的。
图8A示出了多子带的随机接入信号的前导所使用的另一种资源图案:跳频图案。在该图案中,至少有一个子带上不发送任何子前导,例如,图8A所示的子带f2。如图8A所示,在该结构中其它所有子带上的子前导都占用同一时间资源,各个子前导所采用的序列相同。在其它的实施例中,一个特定的前导中的每一个子前导所采用的序列与该前导的跳频图案相关联,也可以部分相同,也可以完全不同。
图8B示出了多子带的随机接入信号的前导所使用的另一种资源图案:跳序列图案。在该资源图案中,每个子带上均有一个子前导,每个子带上的子前导所采用的序列均是根据其所在频带从序列集中选择的,这些序列由前导的跳序列图案指定。
图8C示出了多子带的随机接入信号的前导所使用的又一种资源图案:跳频-序列图案。在该图案中,至少有一个子带(例如子带f2)不用于发送任何子前导,其它子带均用于发送子前导,且每 个子前导所采用的序列与其对应的子带相关,例如,采用序列k的子前导只能在子带fk上发送。
图8D示出了多子带的随机接入信号的前导所使用的又一种资源图案:跳时-频图案。在该图案中,在至少一个子带上有至少一个可用于发送子前导的时间资源未发送任何子前导(例如子带f1的发送时间t2)。在该图案中,只是使用了特定发送时间和特定的子带发送子前导,各个子前导所采用的序列相同。在其它实施例中,各个子前导所采用的序列可以不同。每一个子前导(或者其采用的序列)与包含该子前导的前导的跳时-频图案相关联,不同子前导对应的跳时-频图案可以完全相同,也可以部分相同,也可以完全不同。
图8E示出了多子带的随机接入信号的前导所使用的再一种资源图案:跳时-频-序列图案。在该结构中,在至少一个子带上有至少一个可用于发送子前导的时间资源上未发送任何子前导(例如子带f1的时间t2),每个子前导所采用的序列和其所在的子带位置和时间资源所在的位置相关。
多子带接入信号的前导还可以具有不同的波形参数。如图9A所示,在不同子带上的前导具有相同的子带带宽和相同的前导时间长度下,不同子带内子载波的间隔不同,各个子前导的长度随着子载波间隔的倍增而倍减。如图9B所示,在不同子带上的前导具有相同的前导序列长度和相同的前导时间时间长度下,子带宽度随着子载波间隔倍增而倍增。
本发明实施例提供的发送随机接入信号的方法可以应用于UE与网络设备建立上行通信。图10A示出了UE与网络设备(具体为网络设备)建立上行通信的过程,该流程包括:
步骤S401,网络设备发送下行系统信息。下行系统信息可以包括如下信息中的任意一种或者多种:RACH的结构,RACH所在的时间位置及时间长度、RACH所在的频率位置及载波数量、RACH包含的前导/子前导个数,前导的跳动图案的集合信息(例如,集合的编号),RACH内的网络设备的用于接收通过RACH传输的随机接入信号的各个接收波束的ID以及扫描时间、扫描频率,前导格式,网络设备的波束的一致性信息,时间提前量等等。在另外的实施例中,下行系统信息可以包括上述信息的索引(index)。波束的一致性信息是指同一个对象的发送波束和接收波束是否对应,即,只要知道特定对象的发送波束,就可以推导出接收波束,反之亦然。
步骤S402,UE与网络设备执行下行同步。在下行同步后,UE可以获取RACH的时间资源、频率资源等信息。UE在该步骤中,还可以获取下行通信中的UE的最佳接收波束的ID、网络设备的最佳发送波束的ID。UE根据已有的信息,从网络设备指定的跳动图案的集合中选择一个跳动图案,然后根据跳动图案生成随机接入信号。在该步骤中,UE可以采用图3所示实施例提供的方法发送随机接入信号。
步骤S403,UE与网络设备分别完成随机接入信号的发送和接收。
步骤S404,网络设备发送随机接入响应,UE在收到随机接入响应后发送可以包含UE身份信息等的上行信息,网络设备再发送下行信息供UE进行冲突检测,最后完成随机接入过程。
步骤S405,建立上行通信连接。
在另一实施例中,在步骤S402中,选择的跳动图案与网络设备的发送波束ID之间有一一对应关系,即,特定的跳动图案可以标识网络设备的发送波束ID。相应地,在步骤S403中,网络设备还可以根据跳动图案得到网络设备发送波束ID。
在另一实施例中,在步骤S402中,生成的随机接入信号中包含网络设备的发送波束信息。相应地,在步骤S403中,网络设备还可以检测到网络设备的发送波束信息。在步骤S403中,网络设备对接收信号进行检测,检测跳动图案,并得到接收跳动图案对应的前导的网络设备的最佳接收波束的ID。在步骤S404中,网络设备还可以向UE发送信息。例如,网络设备还可以把检测的跳动图 案通知UE,UE根据网络设备检测结果获知UE的最佳上行发送波束信息。再例如,把步骤S403中网络设备的最佳接收波束的ID通知UE。再例如,网络设备分配上行通信资源给UE,解决多个UE的随机接入冲突等。
图10B示出了随机接入的一信令流程,该信令流程包括:
步骤S406,网络设备发送下行系统信息。下行系统信息可以包括网络设备的用于接收在RACH上传输的随机接入信号的接收波束信息和跳动图案的集合信息。下行系统信息中还可以包括,RACH在网络设备进行接收波束扫描时所呈现出的结构。
步骤S407,UE根据网络设备的用于接收随机接入信号的接收波束信息和UE的用于发送随机接入信号的发送波束信息选择跳动图案,根据选择的跳动图案生成随机接入信号,并将该随机接入信号发送给网络设备。在该步骤中,UE可以采用图3所示实施例提供的方法发送随机接入信号。
步骤S408,网络设备检测接收到的随机接入信号的跳动图案,根据检测到的跳动图案,为发送上述随机接入信号的UE分配用于上行通信的通信资源。
图10B所示的信令流程可适用于但不限于如下场景下的随机接入:在上行接入过程中需要进行波束扫描,但已经明确了需要扫描的由网络设备的接收波束和UE的发送波束构成的波束对的情况下的随机接入;UE的发送波束和网络设备的接收波束都不需要进行波束扫描的情况下的随机接入。
图10C示出了随机接入的又一信令流程,该流程包括:
步骤S409,网络设备发送下行系统信息。下行系统信息可以包括网络设备的用于接收在RACH上传输的随机接入信号的接收波束信息和跳动图案的集合信息。下行系统信息中还可以包括,RACH在网络设备进行接收波束扫描时所呈现出的结构。
步骤S410,UE选择需要用于发送随机接入信号的发送波束,根据选择的发送波束和网络设备的用于接收在RACH上传输的随机接入信号的接收波束信息,选择跳动图案,根据选择的跳动图案生成随机接入信号,并将该随机接入信号发送给网络设备。在本步骤中,可以选择一个跳动图案,也可以选择两个或者两个以上的跳动图案,本发明实施例不做限制。在该步骤中,UE可以采用图3所示实施例提供的方法发送随机接入信号。
步骤S411,网络设备根据检测到的跳动图案,确定网络设备的最佳接收波束,为UE分配上行资源。
图10C所述的信令流程适用于UE已知用于发送随机接入信号的最佳发送波束的情况下的随机接入。
图10D示出了随机接入的又一信令流程,该流程包括:
步骤S412,网络设备发送下行系统信息。下行系统信息可以包括网络设备的用于接收在RACH上传输的随机接入信号的接收波束信息和跳动图案的集合信息。下行系统信息中还可以包括,RACH在网络设备进行接收波束扫描时所呈现出的结构。
步骤S413,UE根据下行系统信息中获知网络设备的用于接收随机接入信号的接收波束,根据网络设备的用于接收在RACH上传输的随机接入信号的接收波束选择跳动图案,根据选择的跳动图案生成随机接入信号,并将该随机接入信号发送给网络设备。在本步骤中,可以选择一个跳动图案,也可以选择两个或者两个以上的跳动图案,本发明实施例不做限制。在本步骤中,UE可以采用图3所示实施例提供的方法发送随机接入信号。
步骤S414,网络设备根据检测到的跳动图案,确定UE的最佳发送波束,并为UE分配上行资源。
图10D所示的信令流程可适用于在UE知道网络设备的最佳接收波束的情况下的随机接入。
图10E示出了随机接入的又一信令流程,该流程包括:
步骤S415,网络设备发送下行系统信息。下行系统信息可以包括网络设备的用于接收在RACH上传输的随机接入信号的接收波束信息和跳动图案的集合信息。下行系统信息中还可以包括,RACH在网络设备进行接收波束扫描时所呈现出的结构。
步骤S416,UE根据下行系统信息中获知网络设备的用于接收在RACH上传输的随机接入信号的接收波束,根据网络设备的用于接收在RACH上传输的随机接入信号的接收波束选择跳动图案,根据选择的跳动图案生成随机接入信号,并将该随机接入信号发送给网络设备。在本步骤中,可以选择一个跳动图案,也可以选择两个或者两个以上的跳动图案,本发明实施例不做限制。在本步骤中,UE可以采用图3所示实施例提供的方法发送随机接入信号。
步骤S417,网络设备根据检测到的跳动图案,确定网络设备的最佳接收波束和UE的最佳发送波束,并且分配上行资源。
图10E所示的信令流程可适用于UE不知道其用于发送随机接入信号的发送波束和网络设备的接收波束的情况下的随机接入。
用于一个RACH的资源包括时间、频率、序列三个维度的资源。基于这些资源,可以将跳动图案划分成多个互相没有交集的结合。在UE发送随机接入信号之前,网络设备将跳动图案的集合划分信息和/或可供UE选择的跳动图案的结合的信息通知UE。通知方式可以是用信令直接指示,也可以是通过特殊的下行信号设计,隐式指定(例如,可以采取类似于LTE中识别不同帧结构的方法)。划分跳动图案时,可以根据UE对RACH的需求来进行。例如根据UE与网络设备之间的距离,是否需要进行波束扫描。
图11示出了一个单子带RACH的结构一个示例。在本实施例中,RACH只有一个子带,该子带的频域宽度为72个子载波,子载波间隔是60KHz;在RACH的时长内UE发送有4个前导,每个前导的时长等于两个子前导的时长。各个前导之间在时间上可以连续,也可以不连续,但是互相不交叠。
针对在图11所示结构的RACH上传输的随机接入信号,网络设备在进行接收波束扫描时对其进行接收所呈现出的RACH的结构如图12所示。在本实施例中,网络设备在两个接收波束上进行扫描,在每个接收波束上均接收到两个前导。
在一个实施例中,在生成具有图11所示结构的信号时,UE可以从是图13A、图13B和图13C所示跳动图案中选择任意一种来用于生成和发送前导。
图13A所示的跳动图案1~3可以用于只在一个接收波束中发送前导,图13B和图13C所示的跳动图案4~10可以用于在多个接收波束内发送前导。
图13A可以适用于已确定UE的最佳发送波束和网络设备的最佳接收波束的场景,UE可以采用该图中所示的图案生成前导,用来发送调度请求,切换请求等。由于不需要进行波束扫描,图13A中所示结构的图案指定了较少的子前导,从而可以占用较少的开销。
图13B和图13C可以适用于没有确定UE的最佳发送波束和/或网络设备的接收波束的场景,UE可以采用该图所示的图案生成前导,以在随机接入过程中支持波束扫描。例如,UE在进行第一次上行同步UE时,或者UE与网络设备之间的上行链路发生链路中断(link failure)时,UE和网络设备就需要进行波束扫描以确定UE的最佳发送波束和网络设备的最佳接收波束,此时就可以采用图13B和图13C所示图案中任意一种跳动图案来生成前导,该前导可以被用来确定UE的最佳发送波束和网络设备的最佳接收波束。
在本发明实施中,可以考虑在由于在随机接入的过程中同时完成对UE的发送波束和/或接收波 束的扫描,此时UE在选择跳动图案时,需要确保每个波束的扫描时间内至少有一个子前导或者前导。
在图13A和图13B所示的跳动图案中,跳动图案1和跳动图案4常适用于无线链路状况好的UE(如距离网络设备近),跳动图案2和跳动图案5常适用于无线链路状况一般的UE(如距离网络设备适中),跳动图案3和跳动图案6常适用于无线链路状况比较差(如距离网络设备远)、或者前一次随机接入失败的用户。
在另外的实施例中,图13A中的跳动图案2和跳动图案3也可以被用来支持UE的发送波束扫描。例如在跳动图案2(UE2)中,在时间t1沿着UE的第一个发送波束的方向发送序列2;在时间t2沿着UE的第二个发送波束方向发送序列3。再例如跳动图案3(UE3)中,在时间t1~t2沿着UE的第一个发送波束方向发送序列4和序列5;在时间t5~t6沿着UE的第二个发送波束方向发送序列6和序列7。如果网络设备已经确定了最佳的接收波束,在网络设备在该最佳的接收波束方向接收信号。如果网络设备没有确定最佳的接收波束,假如网络设备的接收波束有两个,则网络设备按照图13A所示的波束扫描结构来接收信号。在本发明实施例中,子前导的结构如图5所示,CP实际上也是一种序列,GT是不发送数据的保护时间,因此,子前导实际上也可被认为是序列的一种,在图13A到18C中出现的序列均是指子前导。
在另外的实施例中,图13B中的跳动图案5和跳动图案6也可以被用来支持UE的发送波束扫描。例如跳动图案5(UE5)中,在时间t1和t3沿着UE的第一个发送波束的方向发送序列10和序列12;在时间t2和t4沿着UE的第二个发送波束的方向发送序列11和序列13。再例如跳动图案6(UE6)中,在时间t1~t4沿着UE的第一个发送波束的方向发送序列14-17;在时间t5~t8沿着UE的第二个发送波束的方向发送序列18-21。再例如跳动图案6(UE6)中,在时间t1,t3,t5,t7沿着UE的第一个发送波束方向发送序列14,16,18,和19;在时间t2,t4,t6,t8沿着UE的第二个发送波束方向发送序列15,17,19,和21。
在图13C中,一个UE可以采用两个跳动图案生成两个前导以进行随机接入。例如,可以在第一发送波束上发送根据跳动图案7生成的前导,可以在第二发送波束发送根据跳动图案8生成的前导。又例如,可以在第一发送波束上发送根据跳动图案9生成的前导,可以在第二发送波束发送根据跳动图案10生成的前导。在另一个实施中,UE可以在同一个发送波束上发送根据跳动图案7生成的前导和根据跳动图案8生成的前导,该发送方式可以增强网络设备成功检测到UE发送的前导的概率。
在上述实施例中,各个UE使用的跳动图案,可以是由网络设备指定,也可以是UE与网络设备预先约定的,还可以是由UE在网络设备指定的范围内根据某个规则选择(例如随机选择,或者根据接收信号能量选择)。网络设备知道UE所有可能采用的跳动图案的信息。
在进行网络设备的接收波束扫描的情况下,当采用13A、13B和13C所示跳动图案中任意一种生成图11所示结构的信号时,网络设备收到的信号的结构如图12所示,其收到的四个前导分别位于两个波束内。网络设备在各个波束内,对接收到的各个前导信号检测,分别检测其中的序列。
假设图13A的3个UE同时发送前,网络设备对接收到的前导进行检测时可能出现的一种序列检测结果为:
1)在t1接收的前导信号中,分别检测出序列1,序列2,序列4;
2)在t2接收的前导信号中,检测出序列3,序列5;
3)在t5接收的前导信号中,检测出序列6;
4)在t6接收的前导信号中,检测出序列7;
5)其它时间未检测出发送序列。
在进行以上序列检测时,序列2~3,或者序列4~7可以进行联合检测。根据以上检测结果,网络设备根据图13A所示跳动图案,可以判断出有三个UE发送了前导。
以序列2和序列3的联合检测为例,对本发明实施例的联合检测进行说明:
1)网络设备在时间t1内的接收信号中检测序列2,得到信号y2;在时间t2内的接收信号中检测序列3,得到信号y3;
2)将y2和y3的能量合并,与预设的门限值比较,如果大于门限值,则认为发送了序列2和序列3。
进一步的,本发明实施例中的每个跳动图案指定了用于子前导的至少一个特征序列,该特征序列只会出现在一个特定的跳动图案中,不会出现在其它跳动图案中,因此,网络设备只要检测到该特征序列,就可以认为有UE采用了该特征序列标识的唯一跳动图案发送前导。例如,在图13A中,序列1是跳动图案1的特征序列,序列2和序列3是跳动图案2的特征序列,序列6和序列7是跳动图案3的特征序列。
进一步的,在本发明实施例中,网络设备知道各个UE发送时可能采取的跳动图案。因此,网络设备在接收检测的时候:
1)在t1位置检测到序列1时,就判断出UE在发送前导信号时采取了跳动图案1
2)在t1位置检测到序列2和在t2位置检测到序列3,就认为有UE采用了跳动图案2来发送前导信号;
3)在t1和t2位置分别检测到序列4和序列5,并且在t5和t6位置分别检测到序列6和7,就认为有UE采用了跳动图案3来发送前导信号。
4)总共检测出三个跳动图案,可以认为有三个UE发送了波束。
假设图13B中3个UE都在同时发送了前导,并且每个UE只有一个发送波束的情况下,网络设备对接收到的前导信号进行检测时可能出现的一种序列检测结果为:
1)在t3接收的前导信号中,检测出序列9,序列12,序列16;
2)在t4接收的前导信号中,分别检测出序列13,序列17;
3)在t7接收的前导信号中,检测出序列20;
4)在t8接收的前导信号中,检测出序列21;
5)其它时间未检测出发送序列。
以上序列检测时,序列12~13,或者序列16~17、序列20~21可以进行联合检测。根据以上检测结果,以及网络设备根据图13B所示图案,网络设备可以判断出有三个UE发送了前导信号。由于上述被检测出的序列都是位于时间t3、t4、t7、和t8处的序列,而在其他时间上检测到序列,且由图11可知,时间t3、t4、t7、和t8对应的是网络设备的接收波束2的扫描时间,故根据上述检测结果可以知道网络设备的最佳接收波束是接收波束2。
假设13C中2个UE同时发送前导,并且每个UE的跳动图案分别沿不同的发送波束方向的情况下(跳动图案7和跳动图案9对应发送波束1,跳动图案8和跳动图案10对应发送波束2),网络设备对接收到的前导信号进行检测时可能出现的一种序列检测结果为:
1)在t1接收的前导信号中,分别检测出序列26;
2)在t3接收的前导信号中,检测出序列23;
3)在t5接收的前导信号中,检测出序列28;
4)其它时间未检测出发送序列。
以上序列检测时,序列26和序列28可以进行联合检测。网络检测设备根据以上检测结果,以及图13C所示的跳动图案,网络设备可以判断出有两个UE发送了前导,发送序列23的UE的最佳发送波束为发送波束1、网络设备的最佳接收波束是2;发送序列26和序列28的UE最佳发送波束为1、网络设备的最佳接收波束是接收波束2。
图14A、图14B和图14C示出了跳动图案的另外一些实例,这些跳动图案和网络设备的接收波束有关。具体地,这些跳动图案可以与RACH在网络设备进行接收波束扫描时所呈现出的结构有关。
UE获取网络设备的接收波束的扫描信息,然后选择跳动图案。
同一波束在其各个扫描时间内接收到的信号对应同一种跳动图案,不同接收波束接收到的信号可以对应完全相同的跳动图案。例如图14A所示,跳动图案1~3被用于只在网络设备的一个接收波束对应的扫描时间中发送前导;图14B和图14C所示,跳动图案4~15被用于在网络设备的多个接收波束对应的扫描时间内发送前导。
图14A所示的跳动图案可以适用于已经确定发送、接收波束的UE的场景,UE可以采用该图中所示的图案生成前导,用来发送调度请求,切换请求等作用。
图14B和图14C可以适用于没有确定UE的最佳发送波束或者网络设备的接收波束的场景,UE可以采用该图所示的图案生成前导,以在随机接入过程中支持波束扫描。例如,UE在进行第一次上行同步UE时,或者UE与网络设备之间的上行链路发生链路中断(link failure)时,UE和网络设备就需要进行波束扫描以确定UE的最佳发送波束和网络设备的最佳接收波束,此时就可以采用图14B和图14C所示图案中任意一种跳动图案来生成前导,该前导可以被用来确定UE的最佳发送波束和网络设备的最佳接收波束。
在图14A和图14B所示的跳动图案中,跳动图案1、跳动图案4、以及跳动图案5常适用于无线链路状况好的用户(如距离网络设备近),跳动图案2、跳动图案6、以及跳动图案7常适用于无线链路状况一般的用户(如距离网络设备适中),跳动图案3、跳动图案8、以及跳动图案9常适用于无线链路状况比较差(如距离网络设备远)、或者前一次随机接入失败的用户。
在另外的实施例中,图14A所示的跳动图案2和跳动图案3也可以被用来支持UE的发送波束扫描。例如UE2中,在时间t1沿着第一个发送波束方向发送序列2;在时间t2沿着第二个发送波束方向发送序列3。再例如UE3中,在时间t1~t2沿着第一个发送波束方向发送序列4和序列5;在时间t5~t6沿着第二个发送波束方向发送序列6和序列7。
在另外的实施例中,图14B所示的跳动图案6-9也可以被用来支持UE的发送波束扫描。例如UE5的跳动图案6和7,在时间t1和t3沿着第一个发送波束方向发送序列10和序列12;在时间t2和t4沿着第二个发送波束方向发送序列11和序列13。再例如UE6的跳动图案8和9,在时间t1~t4沿着第一个发送波束方向发送序列14-17;在时间t5~t6沿着第二个发送波束方向发送序列18-21。再例如跳动图案6(UE6)中,在时间t1,t3,t5,t7沿着第一个发送波束方向发送序列14,16,18,和29;在时间t2,t4,t6,t8沿着第二个发送波束方向发送序列15,17,19和21。
在另外的实施例中,图14C所示的跳动图案中,一个UE可以采用两个跳动图案生成两个前导以进行随机接入。例如UE7可以在第一发送波束上发送根据跳动图案8和10生成的前导,可以在第二发送波束发送根据跳动图案9和11生成的前导。又例如,UE8可以在第一发送波束上发送根据跳动图案12和14生成的前导,可以在第二发送波束发送根据跳动图案13和15生成的前导。在另一个实施中,UE可以在同一个发送波束上发送根据跳动图案8-11生成的前导和根据跳动图案8生成的前导,该发送方式可以增强网络设备成功检测到UE发送的前导的概率。
在网络设备的接收波束需要扫描的情况下,当采用图14A、图14B和图14C所示跳动图案中任意一种生成图11所示结构的信号时,网络设备收到的信号的结构如图12所示,其收到的四个前导分别位于在两个波束方向所接收到的信号中。网络设备在各个波束方向,对接收到的各个前导进行检测,分别检测其中的序列。
图14A所示的3个UE都同时发送前导,网络设备对接收到的前导进行检测时可能出现的一种序列检测结果为:
1)在t1接收的前导信号中,分别检测出序列1,序列2,序列4;
2)在t2接收的前导信号中,检测出序列3,序列5;
3)在t5接收的前导信号中,检测出序列6;
4)在t6接收的前导信号中,检测出序列7;
5)其它时间未检测出发送序列。
以上序列检测时,序列2~3,或者序列4~7可以进行联合检测。网络设备根据以上检测结果,和图14A所示的跳动图案,网络设备可以判断出有三个UE发送了前导。
图14B所示的3个UE同时发送前导,并且每个UE只有一个发送波束方向的情况下,网络设备对接收到的前导信号进行检测时可能出现的一种序列检测结果为:
1)在t3接收的前导信号中,检测出序列9,序列12,序列16;
2)在t4接收的前导信号中,分别检测出序列13,序列17;
3)在t7接收的前导信号中,检测出序列20;
4)在t8接收的前导信号中,检测出序列21。
5)其它时间未检测出发送序列。
注意以上序列检测时,序列12~13,或者序列16~17、序列20~21可以进行联合检测。网络设备根据以上检测结果,图14B所示跳动图案,可以判断出有三个UE发送了前导,最佳接收波束都是2。
图14C中2个UE同时发送前导,并且根据不同的跳动图案生成的前导分别沿不同的发送波束方向发送的情况下(跳动图案8,跳动图案10,跳动图案12,跳动图案14对应发送波束1,跳动图案9,跳动图案11,跳动图案13,跳动图案15对应发送波束2),网络设备对接收到的前导信号进行检测时可能出现的一种序列检测结果为:
1)在t1接收的前导信号中,分别检测出序列26;
2)在t3接收的前导信号中,检测出序列23;
3)在t5接收的前导信号中,检测出序列28;
4)其它时间未检测出发送序列。
以上序列检测时,序列26和序列28可以进行联合检测。网络设备根据以上检测结果,以及图14C所示跳动图案,网络设备可以判断出有两个UE发送了前导,发送序列23的UE的最佳发送波束为1、最佳接收波束是2;发送序列26和序列28的UE的最佳发送波束为1、最佳接收波束是2。
图15示出了一个多子带RACH的结构一个示例。在本实施例中,RACH有两个子带,每个子带的频域宽度为72个子载波,子载波间隔是60KHz;在RACH的时长内UE发送有4个前导,这4个前导分布两个子带上,每个子带上有两个前导,每个前导的时长等于两个子前导的时长。各个前导之间在时间上可以连续,也可以不连续,但是互相不交叠。
针对图15所示结构的信号,网络设备在进行接收波束扫描时接收到的信号的结构如图16所示。在本实施例中,网络设备在两个接收波束上进行扫描,在每个接收波束的一个扫描时间内上均接收 到位于两个子带上的前导。
UE根据接收到的下行指示信息,选择跳动图案。例如图17A所示,跳动图案1~2被用于只在一个接收波束方向发送前导;图17B所示,跳动图案3~4被用于在多个接收波束内发送前导;图17C所示,跳动图案5~6被用于在多个发送波束、接收波束内发送前导。
图17A可以适用于已经确定UE的最佳发送波束、网络设备的最佳接收波束场景,UE可以采用该图中所示的图案生成前导,用来发送调度请求,切换请求等。
图17B和图17C可以适用于没有确定UE的最佳发送波束和/或网络设备的最佳接收波束的场景,UE可以采用该图所示的图案生成前导,以在随机接入过程中支持波束扫描。例如,UE在进行第一次上行同步UE时,或者UE与网络设备之间的上行链路发生链路中断(link failure)时,UE和网络设备就需要进行波束扫描以确定UE的最佳发送波束和网络设备的最佳接收波束,此时就可以采用图17B和17C所示图案中任意一种跳动图案来生成前导,该前导可以被用来确定UE的最佳发送波束和网络设备的最佳接收波束。
在另外的实施例中,图17A所示的跳动图案2也可以被用来支持UE的发送波束扫描。例如跳动图案2(UE2)中,在时间t1沿着第一个发送波束方向发送序列2;在时间t2沿着第二个发送波束方向发送序列3。
在另外的实施例中,图17B所示的跳动图案3和跳动图案4也可以被用来支持UE的发送波束扫描。例如跳动图案3(UE3)中,在时间t1和t3沿着第一个发送波束方向发送序列4和序列6;在时间t2和t4沿着第二个发送波束方向发送序列5和序列7。
在另外的实施例中,图17C所示的两个跳动图案可以被一个UE采用来生成前导信号以进行随机接入。例如在发送波束方向1上发送根据跳动图案5生成的前导,在发送波束方向上发送根据跳动图案6生成的前导;或者在同一个发送波束方向上发送根据跳动图案5和跳动图案6生成的前导。
在网络设备的接收波束需要扫描的情况下,针对根据图17A、图17B、图17C所示的跳动图案生成的随机接入信号,网络设备接收到的2个前导,4个子前导信号,分别位于在两个接收波束方向接收到的信号中。在每个接收波束方向,均收到两个子前导(或者前导)。在各个波束内,对接收到的各个前导进行检测,分别检测其中的序列。
图17A的2个UE分别按照图示跳动图案发送前导,网络设备对接收到的前导进行检测时可能出现的一种序列检测结果为:
1)在t1接收的前导信号中,分别检测出序列1,序列2;
2)在t2接收的前导信号中,检测出序列3;
3)其它时间未检测出发送序列。
以上序列检测时,序列2和序列3可以进行联合检测。网络设备根据以上检测结果,以及图17A所示的跳动图案,网络设备可以判断出有两个UE发送了前导,最佳接收波束为1。
图17B中2个UE分别按照图示跳动图案发送前导信号,并且每个UE只有一个发送波束方向的情况下,网络设备对接收到的前导信号进行检测时可能出现的一种序列检测结果为:
1)在t1接收的前导信号中,检测出序列4;
2)在t2接收的前导信号中,检测出序列5;
3)在t3接收的前导信号中,检测出序列10,序列14;
4)在t4接收的前导信号中,检测出序列11,序列15。
以上序列检测时,序列4~5,或者序列10~11、序列14~15可以进行联合检测。网络设备根据以 上检测结果,以及图17B所示的跳动图案,网络设备可以判断出有三个UE发送了前导,序列4~5的最佳接收波束分别是接收波束1,序列10~11,序列14~15的最佳接收波束是接收波束2。
图17C中1个UE按照图示跳动图案发送前导,并且根据两个跳动图案生成的前导被分别沿不同的发送波束方向发送的情况下(跳动图案5对应发送波束1,跳动图案6对应发送波束2),网络设备对接收到的前导信号进行检测时可能出现的一种序列检测结果为:
1)在t2接收的前导信号中,检测出序列20和序列22;
2)其它时间未检测出发送序列。
注意以上序列检测时,序列20和序列22可以进行联合检测。网络设备根据以上检测结果,以及图17B所示的跳动图案,网络设备可以判断出有1个UE发送了前导,序列20和序列22的UE最佳发送波束为2、最佳接收波束是1。
图18A、图18B和图18C示出了跳动图案的另外一些实例,这些跳动图案和网络设备的接收波束有关。具体地,这些跳动图案可以与RACH在网络设备进行接收波束扫描时所呈现出的结构有关。
UE根据接收到的下行指示信息,选择跳动图案。
例如图18A所示,跳动图案1~2被用于只在一个接收波束中发送前导;图18B所示,跳动图案3~4被用于在多个接收波束内发送前导;图18C所示,跳动图案5~6被用于在多个发送波束、接收波束内发送前导。
图18A可以适用于已经确定发送波束、接收波束的UE的场景,UE可以采用该图中所示的图案生成前导,用来发送调度请求,切换请求等。
图18B和图18C可以适用于没有确定UE的最佳发送波束和/或网络设备的接收波束的场景,UE可以采用该图所示的图案生成前导,以在随机接入过程中支持波束扫描。例如,UE在进行第一次上行同步UE时,或者UE与网络设备之间的上行链路发生链路中断(link failure)时,UE和网络设备就需要进行波束扫描以确定UE的最佳发送波束和网络设备的最佳接收波束,此时就可以采用图18B和18C所示图案中任意一种跳动图案来生成前导,该前导可以被用来确定UE的最佳发送波束和网络设备的最佳接收波束。
在另外的实施例中,图18A所示的跳动图案2也可以被用来支持UE的发送波束扫描。例如跳动图案2(UE2)中,在时间t1沿着第一个发送波束方向发送序列2;时间t2沿着第二个发送波束方向发送序列3。
在另外的实施例中,在图18B所示的跳动图案3和跳动图案4也可以被用来支持UE的发送波束扫描。例如跳动图案3(UE3)中,在时间t1和t3沿着第一个发送波束方向发送序列4和序列6;在时间t2和t4沿着第二个发送波束方向发送序列5和序列7。
在另外的实施例中,一个UE根据图18C所示的两个跳动图案来生成前导以进行随机接入。例如在发送波束方向1发送根据跳动图案7和8生成的前导信号,在发送波束方向2发送根据跳动图案9和10生成的前导信号;或者用于同一个发送波束方向发送根据跳动图案7-10生成的前导信号。
在网络设备的接收波束需要扫描的情况下,针对根据图18A、图18B、图18C所示的跳动图案生成的随机接入信号,网络设备接收到的2个前导,4个子前导,分别位于两个接收波束方向接收到的信号中。在每个接收波束方向,均有2个接收到的子前导。在各个波束内,对接收到的各个子前导进行检测,分别检测其中的序列。
图18A的2个UE分别按照图示的跳动图案发送前导信号,网络设备对接收到的前导信号进行检测时可能出现的一种序列检测结果为:
1)在t1接收的前导中,分别检测出序列1,序列2;
2)在t2接收的前导中,检测出序列3;
3)其它时间未检测出发送序列。
以上序列检测时,序列2和序列3可以进行联合检测。网络设备根据以上检测结果,以及图18A所示的跳动图案,可以判断出有两个UE发送了前导,最佳接收波束为1。
图18B中2个UE分别按照图示跳动图案发送前导,并且每个UE只有一个发送波束方向的情况下,网络设备对接收到的前导进行检测时可能出现的一种序列检测结果为:
1)在t1接收的前导中,检测出序列4;
2)在t2接收的前导中,检测出序列5;
3)在t3接收的前导中,检测出序列10,序列14;
4)在t4接收的前导中,检测出序列11,序列15。
以上序列检测时,序列4~5,或者序列10~11、序列14~15可以进行联合检测。网络设备根据以上检测结果,以及图18B所示的跳动图案,判断出有三个UE发送了前导,序列4~5的最佳接收波束分别是接收波束1,序列10~11,序列14~15的最佳接收波束是接收波束2。
图18C中1个UE按照图示跳动图案发送前导,并且两个跳动图案被同一个UE采用分别沿不同的发送波束方向发送前导的情况下(跳动图案7和跳动图案8对应发送波束1,跳动图案9和跳动图案10对应发送波束2),可能的一种序列检测结果为:
1)在t2接收的前导信号中,检测出序列20和序列22;
2)其它时间未检测出发送序列。
以上序列检测时,序列20和序列22可以进行联合检测。根据以上检测结果,以及网络设备关于跳动图案的先验信息,网络设备可以判断出有1个UE发送了前导,序列20和序列22的UE最佳发送波束为2、网络设备的最佳接收波束是1。
相应于本发明实施例提供的发送随机接入信号的方法,本发明实施例提供一种接收随机接入信号的方法,如图19所示,包括:
步骤S500,网络设备接收随机接入信号;
步骤S600,对接收到的所述随机接入信号进行检测,得到所述随机接入信号所对应的资源图案,其中所述资源图案描述了前导被检测到时所处的资源位置;
步骤S700,根据检测得到的所述资源图案和预先保存的资源图案,确定发送所述随机接入信号的用户设备,其中,预先保存的资源图案描述了前导所占用的资源所在的位置。
在一实施例中,网络设备还可以根据检测到的资源图案确定网络设备的最佳接收波束。
在一实施例中,网络设备还可以根据检测到的资源图案确定发送所述随机接入信号的UE的最佳发送波束。
在一实施例中,网络设备还可以将可用于生成所述随机接入信号的资源图案的集合信息发送给UE。
相应于本发明实施例提供的发送随机接入信号的方法,本发明实施例还提供一种用户设备,其可用于执行本发明实施例提供的发送随机接入信号的方法。如图20所示,该用户设备包括:
处理器10,用于确定随机接入信号中的随机接入前导所对应的资源图案,所述资源图案指定了所述随机接入前导所占用的资源,所述资源包括用于频率资源、时间资源和序列资源中的至少一个;还用于根据所述资源图案,生成随机接入信号;
收发器20,用于将所述随机接入信号发送给网络设备。
在一实施例中,处理器10所确定的所述资源图案具体指定所述随机接入前导中每个子前导所使用的资源。
在一实施例中,处理器10所确定的所述资源图案具体是跳动图案,所述跳动图案是跳时图案、跳频图案、跳序列图案,跳时-频图案,跳时-序列图案,跳频-序列图案和跳时-频-序列图案中的任意一种。
在一实施例中,所述处理器10具体用于从包含所述资源图案的图案集合中选出所述资源图案,其中,所述图案集合包括至少两个资源图案,且所述至少两个资源图案中任意两个资源图案互不相同。
在一实施例中,所述处理器10还用于获取所述网络设备的接收波束扫描信息,所述接收波束扫描信息包括需要扫描的接收波束的个数和每个接收波束的扫描时间;所述处理器具体用于进一步根据所述接收波束扫描信息,确定所述资源图案,其中,所述确定出的所述资源图案使得所述网络设备在所述每个接收波束的至少一个扫描时长内能接收到至少一个子前导。
在一实施例中,所述处理器10具体用于:进一步根据所述用户设备的发送波束扫描信息,确定所述资源图案,其中,所述确定出的所述资源图案使得在所述用户设备在所述每个发送波束的至少一个扫描时长内发送有一个子前导;相应地,所述收发器20具体用于根据所述用户设备的发送波束的扫描时间结构发送所述随机接入信号。
在一实施例中,所述处理器10还用于获取用于发送所述随机接入信号的随机接入信道RACH的结构信息;相应地,所述处理器10具体用于进一步根据所述RACH的结构信息,确定所述资源图案,其中,所述资源图案具体用于指定所述前导在所述RACH中所占用的资源。
在一实施例中,所述处理器10还用于获取其与所述网络设备之间的距离和/或信道条件;相应地,所述处理器10具体用于进一步根据所述UE根据其与所述网络设备之间的距离和/或信道条件,确定所述资源图案。
用户设备的处理器和收发器执行上述步骤时的具体过程,可以参考图3所示实施例中的相关描述,此处不再赘述了。
相应于本发明实施例提供的发送参考信号的方法,本发明实施例还提供一种网络设备,可用于执行图19所示实施例提供的方法。如图21所示,该网络设备包括:
收发器30,用于接收随机接入信号;
处理器40,用于对接收到的所述随机接入信号进行检测,得到所述随机接入信号所对应的资源图案,其中所述资源图案描述了前导被检测到时所处的资源位置;还用于根据检测到得到的所述资源图案和预先保存的资源图案,判断发送所述随机接入信号的用户设备,其中,预先保存的资源图案描述了前导所占用的资源所在的位置。
在一实施例中,处理器40还用于根据检测到的资源图案确定网络设备的最佳接收波束。
在一实施例中,所述处理器40根据检测到的资源图案确定发送所述随机接入信号的UE的最佳发送波束。
在一实施例中,所述收发器30还用于将可用于生成所述随机接入信号的资源图案的集合信息发送给UE。
在本发明实施例中,处理器10和处理器40可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital  Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,处理器10还可以是多个处理器的组合。
本领域普通技术人员可知,上述方法中的全部或部分步骤可以通过程序指令相关的硬件完成,该程序可以存储于一计算机可读存储介质中,该计算机可读存储介质如ROM、RAM和光盘等。
综上所述,以上仅为本发明的实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (28)

  1. 一种发送随机接入信号的方法,其特征在于,所述方法包括:
    用户设备UE确定随机接入信号中的随机接入前导所对应的资源图案,所述资源图案指定了所述随机接入前导所占用的资源,所述资源包括频率资源、时间资源和序列资源中的至少一个;
    UE根据所述资源图案,生成随机接入信号;
    UE将所述随机接入信号发送给网络设备。
  2. 如权利要求1所述的方法,其特征在于,所述资源图案具体指定所述随机接入前导中每个子前导所占用的资源。
  3. 如权利要求1或2所述的方法,其特征在于,所述资源图案具体是跳动图案,所述跳动图案是跳时图案、跳频图案、跳序列图案,跳时-频图案,跳时-序列图案,跳频-序列图案和跳时-频-序列图案中的任意一种。
  4. 如权利要求1到3任一项所述的方法,其特征在于,所述UE确定随机接入信号中的随机接入前导所对应的资源图案包括:
    从包含所述资源图案的图案集合中选出所述资源图案,其中,所述图案集合包括至少两个资源图案,且所述至少两个资源图案中任意两个资源图案互不相同。
  5. 如权利要求1到4任一项所述的方法,其特征在于,所述方法还包括:
    所述UE获取所述网络设备的接收波束扫描信息,所述接收波束扫描信息包括需要扫描的接收波束和每个接收波束的扫描时间;
    相应地,所述UE确定随机接入信号中的随机接入前导所对应的资源图案具体包括:
    根据所述接收波束扫描信息,确定所述资源图案,其中,所述确定出的所述资源图案使得所述网络设备在所述每个接收波束的至少一个扫描时长内能接收到至少一个子前导。
  6. 如权利要求1到5任一项所述的方法,其特征在于,所述UE确定随机接入信号中的随机接入前导所对应的资源图案:
    根据所述UE的发送波束扫描信息,确定所述资源图案,其中,所述确定出的所述资源图案使得在UE在所述每个发送波束的至少一个扫描时长内发送有一个子前导,所述UE的发送波束扫描信息包括需要扫描的发送波束和每个发送波束的扫描时间;
    相应地,所述UE将所述随机接入信号发送给网络设备包括:
    根据所述UE的发送波束的扫描时间发送所述随机接入信号。
  7. 如权利要求1到6任意一项所述的方法,其特征在于,所述方法包括:
    所述UE获取用于发送所述随机接入信号的随机接入信道RACH的结构信息;
    相应地,所述UE确定随机接入信号中的随机接入前导所对应的资源图案具体包括:
    根据所述RACH的结构信息,确定所述资源图案,其中,所述资源图案具体用于指定所述前导在所述RACH中所占用的资源。
  8. 如权利要求1到7所述的方法,其特征在于,所述方法包括:
    所述UE获取其与所述网络设备之间的距离和/或信道条件;
    相应地,所述UE确定随机接入信号中的随机接入前导所对应的资源图案包括:
    所述UE根据其与所述网络设备之间的距离和/或信道条件,确定所述资源图案。
  9. 一种用户设备,其特征在于,所述用户设备包括:
    处理器,用于确定随机接入信号中的随机接入前导所对应的资源图案,所述资源图案指定了所述随机接入前导所占用的资源,所述资源包括用于频率资源、时间资源和序列资源中的至少一个; 还用于根据所述资源图案,生成随机接入信号;
    收发器,用于将所述随机接入信号发送给网络设备。
  10. 如权利要求9所述的用户设备,其特征在于,所述资源图案具体指定所述随机接入前导中每个子前导所使用的资源。
  11. 如权利要求9或10所述的用户设备,其特征在于,所述资源图案具体是跳动图案,所述跳动图案是跳时图案、跳频图案、跳序列图案,跳时-频图案,跳时-序列图案,跳频-序列图案和跳时-频-序列图案中的任意一种。
  12. 如权利要求9到11任一项所述的用户设备,其特征在于,所述处理器具体用于从包含所述资源图案的图案集合中选出所述资源图案,其中,所述图案集合包括至少两个资源图案,且所述至少两个资源图案中任意两个资源图案互不相同。
  13. 如权利要求9到12任一项所述的用户设备,其特征在于,所述处理器还用于获取所述网络设备的接收波束扫描信息,所述接收波束扫描信息包括需要扫描的接收波束的个数和每个接收波束的扫描时间;
    所述处理器具体用于进一步根据所述接收波束扫描信息,确定所述资源图案,其中,所述确定出的所述资源图案使得所述网络设备在所述每个接收波束的至少一个扫描时长内能接收到至少一个子前导。
  14. 如权利要求9到13任一项所述的用户设备,其特征在于,所述处理器具体用于:
    进一步根据所述用户设备的发送波束扫描信息,确定所述资源图案,其中,所述确定出的所述资源图案使得在所述用户设备在所述每个发送波束的至少一个扫描时长内发送有一个子前导;
    相应地,所述收发器具体用于根据所述用户设备的发送波束的扫描时间结构发送所述随机接入信号。
  15. 如权利要求9到14任意一项所述的用户设备,其特征在于,所述处理器还用于获取用于发送所述随机接入信号的随机接入信道RACH的结构信息;
    相应地,所述处理器具体用于进一步根据所述RACH的结构信息,确定所述资源图案,其中,所述资源图案具体用于指定所述前导在所述RACH中所占用的资源。
  16. 如权利要求9到15所述的用户设备,其特征在于,所述处理器还用于获取其与所述网络设备之间的距离和/或信道条件;
    相应地,所述处理器具体用于进一步根据所述UE根据其与所述网络设备之间的距离和/或信道条件,确定所述资源图案。
  17. 一种接收随机接入信号的方法,其特征在于,所述方法包括:
    网络设备接收随机接入信号;
    所述网络设备对接收到的所述随机接入信号进行检测,得到所述随机接入信号所对应的资源图案,其中所述资源图案指示了随机接入前导被检测到时所处的资源位置;
    所述网络设备根据检测得到的所述资源图案和预先保存的资源图案,确定发送所述随机接入信号的用户设备,其中,预先保存的资源图案指定了一个随机接入前导所占用的资源,所述资源包括用于频率资源、时间资源和序列资源中的至少一个。
  18. 如权利要求17所述的方法,其特征在于,所述预先保存的资源图案具体指定所述随机接入前导中每个子前导所使用的资源。
  19. 如权利要求17或18所述的方法,其特征在于,所述预先保存的资源图案具体是跳动图案, 所述跳动图案是跳时图案、跳频图案、跳序列图案,跳时-频图案,跳时-序列图案,跳频-序列图案和跳时-频-序列图案中的任意一种。
  20. 如权利要求17到19任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据检测到的资源图案确定所述网络设备的最佳接收波束。
  21. 如权利要求17到20任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据检测到的资源图案确定发送所述随机接入信号的用户设备UE的最佳发送波束。
  22. 如权利要求17到21任一项所述的方法,其特征在于,所述方法还包括:
    网络设备将可用于生成所述随机接入信号的资源图案的集合信息发送给UE。
  23. 一种网络设备,其特征在于,包括:
    收发器,用于接收随机接入信号;
    处理器,用于对接收到的所述随机接入信号进行检测,得到所述随机接入信号所对应的资源图案,其中所述资源图案指示了随机接入前导被检测到时所处的资源位置;还用于根据检测得到的所述资源图案和预先保存的资源图案,确定发送所述随机接入信号的用户设备,其中,预先保存的资源图案指定了一个随机接入前导所占用的资源,所述资源包括用于频率资源、时间资源和序列资源中的至少一个。
  24. 如权利要求23所述的网络设备,其特征在于,所述预先保存的资源图案具体指定随机接入前导中每个子前导所使用的资源。
  25. 如权利要求23或者24所述的网络设备,其特征在于,所述预先保存的资源图案具体是跳动图案,所述跳动图案是跳时图案、跳频图案、跳序列图案,跳时-频图案,跳时-序列图案,跳频-序列图案和跳时-频-序列图案中的任意一种。
  26. 如权利要求23到25任一项所述的网络设备,其特征在于,所述处理器还用于根据根据检测到的资源图案确定所述网络设备的最佳接收波束。
  27. 如权利要求23到26任一项所述的网络设备,其特征在于,所述处理器用于根据检测到的资源图案确定发送所述随机接入信号的用户设备UE的最佳发送波束。
  28. 如权利要求23到27任一项所述的网络设备,其特征在于,所述收发器还用于将可用于生成所述随机接入信号的资源图案的集合信息发送给UE。
PCT/CN2018/071279 2017-01-05 2018-01-04 随机接入信号的发送和接收方法、网络设备和用户设备 WO2018127070A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710008579.X 2017-01-05
CN201710008579.XA CN108282900B (zh) 2017-01-05 2017-01-05 随机接入信号的发送和接收方法、网络设备和用户设备

Publications (1)

Publication Number Publication Date
WO2018127070A1 true WO2018127070A1 (zh) 2018-07-12

Family

ID=62789356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071279 WO2018127070A1 (zh) 2017-01-05 2018-01-04 随机接入信号的发送和接收方法、网络设备和用户设备

Country Status (2)

Country Link
CN (2) CN108282900B (zh)
WO (1) WO2018127070A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110784932B (zh) * 2018-07-31 2022-02-01 维沃移动通信有限公司 随机接入方法、终端设备及网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394648A (zh) * 2007-09-17 2009-03-25 中兴通讯股份有限公司 一种时分双工系统中终端前导的发送方法
CN101472346A (zh) * 2007-12-26 2009-07-01 富士通株式会社 无线电通信系统中的通信方法、用户设备以及无线电基站
CN101964694A (zh) * 2010-09-27 2011-02-02 北京航空航天大学 高吞吐量、延时敏感无线网络的低截获信号传输系统及方法
CN103931112A (zh) * 2011-09-15 2014-07-16 三星电子株式会社 用于在波束形成无线通信系统中进行波束选择的装置和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102612162B (zh) * 2008-01-07 2015-09-09 三星电子株式会社 传输随机接入前导信号的设备和方法
CN103748942B (zh) * 2012-08-10 2018-03-13 华为技术有限公司 随机接入方法、基站及终端
CN105284174A (zh) * 2013-10-28 2016-01-27 华为技术有限公司 一种随机接入方法、随机接入配置方法、设备及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394648A (zh) * 2007-09-17 2009-03-25 中兴通讯股份有限公司 一种时分双工系统中终端前导的发送方法
CN101472346A (zh) * 2007-12-26 2009-07-01 富士通株式会社 无线电通信系统中的通信方法、用户设备以及无线电基站
CN101964694A (zh) * 2010-09-27 2011-02-02 北京航空航天大学 高吞吐量、延时敏感无线网络的低截获信号传输系统及方法
CN103931112A (zh) * 2011-09-15 2014-07-16 三星电子株式会社 用于在波束形成无线通信系统中进行波束选择的装置和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP: "3rd Generation Partnership Project;Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification (Release 13)", 3GPP TS 36.321 V13.4.0, 1 December 2016 (2016-12-01), XP055511299 *

Also Published As

Publication number Publication date
CN117377121A (zh) 2024-01-09
CN108282900A (zh) 2018-07-13
CN108282900B (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
US10383147B2 (en) Methods and apparatus for resource collision avoidance in vehicle to vehicle communication
JP6388966B2 (ja) 免許不要無線周波数スペクトルを介するワイヤレス通信
US11310776B2 (en) Sensing and resource selection for sidelink grant-free transmissions
US9980292B2 (en) Contention based uplink orthogonal frequency-division multiple access (OFDMA)
JP2022095803A (ja) 端末、ランダムアクセス方法、基地局、及び通信システム
TWI812603B (zh) 數據傳輸方法和裝置
Rosa et al. Standalone LTE in unlicensed spectrum: Radio challenges, solutions, and performance of MulteFire
US20200163071A1 (en) Processing method and apparatus for recovering beam
US20170311340A1 (en) Message Transmission Method and Apparatus
WO2017024988A1 (zh) 信息处理方法、装置及系统
CN111541527A (zh) 一种下行同步的方法、装置及系统
US10893541B2 (en) Clear channel assesment (CCA) in unlicensed wireless spectrum
WO2019194213A1 (en) Method for coordination of resources between a next generation radio access network node and at least one further ran node
WO2018113570A1 (zh) 一种随机接入方法及设备
CN111757503A (zh) 一种资源确定方法和装置
US10631338B2 (en) Communication method in unlicensed band and device using same
CN110831237A (zh) 发送和接收随机接入前导的方法以及通信装置
WO2019242452A1 (zh) 用于物理随机接入信道传输的信道接入方法、装置和程序
JP2021533611A (ja) 無線通信方法及びデバイス
WO2018145302A1 (zh) 无线通信方法、终端设备和网络设备
JP2023065640A (ja) ランダムアクセス構成方法、信号送信方法、装置及び通信システム
WO2018082610A1 (zh) 确定方法、接入、发送、处理方法及装置、基站及终端
CN109478914A (zh) 信号发送的方法、终端设备和网络设备
WO2016119219A1 (zh) 通信方法、基站和用户设备
US20190268890A1 (en) Method and apparatus for accessing a wireless network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18736408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18736408

Country of ref document: EP

Kind code of ref document: A1