WO2018028347A1 - 一种确定基带参数的方法和设备 - Google Patents

一种确定基带参数的方法和设备 Download PDF

Info

Publication number
WO2018028347A1
WO2018028347A1 PCT/CN2017/091495 CN2017091495W WO2018028347A1 WO 2018028347 A1 WO2018028347 A1 WO 2018028347A1 CN 2017091495 W CN2017091495 W CN 2017091495W WO 2018028347 A1 WO2018028347 A1 WO 2018028347A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
trp
baseband parameter
baseband
trp group
Prior art date
Application number
PCT/CN2017/091495
Other languages
English (en)
French (fr)
Inventor
高雪娟
郑方政
潘学明
高秋彬
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to KR1020197007224A priority Critical patent/KR102217696B1/ko
Priority to JP2019507730A priority patent/JP6920415B2/ja
Priority to US16/324,907 priority patent/US11394596B2/en
Priority to EP17838477.2A priority patent/EP3499945B1/en
Publication of WO2018028347A1 publication Critical patent/WO2018028347A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and apparatus for determining a baseband parameter.
  • a frame structure is defined for a Frequency Division Duplex (FDD) and a Time Division Duplex (TDD), respectively.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the LTE FDD system uses Frame Structure type 1 (FS1). As shown in FIG. 1A, uplink and downlink transmissions use different carrier frequencies, and both uplink and downlink transmissions use the same frame structure.
  • a 10 ms radio frame contains 10 1 ms subframes, each of which is divided into two 0.5 ms long slots.
  • the transmission time interval (TTI) of the uplink and downlink data transmission is 1 ms.
  • the LTE TDD system uses Frame Structure type 2 (FS2).
  • FS2 Frame Structure type 2
  • uplink and downlink transmissions use different subframes or different time slots on the same frequency.
  • Each 10ms radio frame is composed of two 5ms half-frames, each of which contains five subframes of 1 ms length.
  • the sub-frames in FS2 are classified into three types: downlink sub-frames, uplink sub-frames, and special sub-frames.
  • Each special sub-frame consists of a Downlink Pilot Time Slot (DwPTS) and a Guard Period (GP).
  • DwPTS Downlink Pilot Time Slot
  • GP Guard Period
  • UpPTS Uplink Pilot Time Slot
  • Each field includes at least one downlink subframe and at least one uplink subframe, and at most one special subframe. According to different uplink and downlink switching point periods and uplink and downlink allocation ratios, seven types of TDD uplink and downlink configurations as shown in Table 1 are defined.
  • each slot includes seven single carrier frequency division multiple access (SC-FDMA) symbols, first.
  • SC-FDMA single carrier frequency division multiple access
  • each slot contains 6 SC-FDMA symbols, and the CP length of each SC-FDMA symbol is It is 512Ts.
  • each time slot includes 7 Orthogonal Frequency Division Multiplex (OFDM) symbols, where the CP of the first OFDM symbol The length is 160Ts, and the CP length of other OFDM symbols is 144Ts.
  • OFDM Orthogonal Frequency Division Multiplex
  • each time slot contains 6
  • the CP length of each OFDM symbol is 512 Ts.
  • each slot contains 3 OFDM symbols
  • the CP length of each OFDM symbol is 1024 Ts.
  • MSSFN Multimedia Broadcast multicast service Single Frequency Network
  • a user equipment (also referred to as a UE) is required to access an LTE network, and must go through a cell search process to obtain cell system information.
  • numbers such as the International Telecommunication Union (ITU) and 3GPP have begun to research new wireless communication systems (such as 5G systems).
  • the new wireless communication system can operate in higher frequency bands and also work in the low and medium frequency bands for backward compatibility. Different frequency bands need to define different numerologies due to differences in transmission characteristics and requirements. The same frequency band or Transmission Reception Point (TRP) can also use different numerology due to different requirements. Therefore, a UE operating in a new wireless communication system needs to recognize the numerology used by the working frequency band in order to perform correct data transmission. At present, there is no clear solution for how to determine numerology in the new wireless communication system.
  • TRP Transmission Reception Point
  • the embodiments of the present invention provide a method and a device for determining a baseband parameter, which are used to solve the problem in how to determine a numerology that is not yet clear in a new wireless communication system.
  • a method of determining baseband parameters comprising:
  • the terminal Determining, by the terminal, the transmission and reception point TRP group to which the terminal belongs according to the detected initial synchronization signal, where the initial synchronization signal includes a first synchronization signal and/or a second synchronization signal;
  • the terminal determines a baseband parameter according to a third synchronization signal detected in the TRP group and/or system information of the TRP group.
  • the terminal before determining the baseband parameter according to the third synchronization signal detected in the TRP group and/or the system information of the TRP group, the terminal further includes:
  • the terminal detects the third synchronization signal on a system bandwidth of the TRP group.
  • the terminal detects the third synchronization signal on a transmission resource of a pre-agreed third synchronization signal
  • the terminal detects the third synchronization signal on a transmission resource of a third synchronization signal indicated in system information of the TRP group.
  • the terminal before the determining, by the terminal, the baseband parameter according to the third synchronization signal detected in the TRP group or the system information of the TRP group, the terminal further includes:
  • the terminal detects the third synchronization signal according to a preset baseband parameter
  • the terminal detects the third synchronization signal according to a baseband parameter supported by the communication system.
  • the terminal detects the third synchronization signal according to a baseband parameter indicated in system information of the TRP group; or
  • the baseband parameter detects the third synchronization signal.
  • the terminal determines the baseband parameter according to the third synchronization signal detected in the TRP group and/or the system information of the TRP group, including:
  • the TRP-specific system information includes a baseband parameter used by the TRP, a baseband parameter used by each Beam in the TRP, and a baseband parameter used by the TRP on different time domains and/or frequency domain resources. At least one of them.
  • the terminal determines the baseband parameters, including:
  • the terminal selects at least one third synchronization signal sequence from the at least two third synchronization signal sequences, and determines a baseband parameter used by the subband, TRP, and/or beam corresponding to the selected third synchronization signal sequence. .
  • the terminal selects at least one synchronization signal sequence from the at least two synchronization signal sequences, including:
  • the terminal reports the at least two third synchronization signal sequences to the network side, and receives at least one third synchronization signal sequence notified by the network side.
  • the terminal determines baseband parameters according to system information of the TRP group, including:
  • the terminal receives the system information of the TRP group, where the system information of the TRP group includes a baseband parameter used by the sub-band corresponding to the TRP group, and a time domain resource and/or a frequency domain resource corresponding to the TRP group. At least one of a baseband parameter used, a baseband parameter used by the TPR in the TRP group, and a baseband parameter used by a beam corresponding to the TRP group.
  • the transmission resource is a time domain resource and/or a frequency domain resource occupied by the third synchronization signal transmission, or is a time domain window for detecting the third synchronization signal and/or Frequency domain window.
  • the terminal determines the TRP according to the initial synchronization signal. a synchronization relationship of the group, detecting the third synchronization signal;
  • the terminal blindly detects the third synchronization in the time domain window and/or the frequency domain window And obtaining, by the third synchronization signal, a synchronization relationship of a sub-band or a TRP or a beam corresponding to the time domain window and/or the frequency domain window.
  • the correspondence between the third synchronization signal and the sub-band or the TRP or the beam is determined according to a pre-agreed manner or is notified by system information of the TRP group.
  • the terminal performs subsequent transmission according to the determined baseband parameter on the TRP or subband or beam in the TRP group.
  • a method of determining baseband parameters comprising:
  • the first network side device in the TRP group of the transmission receiving point transmits an initial synchronization signal in the TRP group, so that the terminal determines the TRP group to which the terminal belongs according to the initial synchronization signal, where the initial synchronization signal includes the first synchronization. a signal and/or a second synchronization signal;
  • the second network side device in the TRP group sends a third synchronization signal in the TRP group and/or the third network side device in the TRP group sends the system information of the TRP group in the TRP group. And determining, by the terminal, the baseband parameter of the second network side device or the baseband parameter of the network side device in the TRP group according to the third synchronization signal and/or the system information of the TRP group.
  • the second network side device sends the third synchronization signal on a transmission resource of the third synchronization signal indicated in system information of the TRP group.
  • the second network side device in the TRP group sends the third synchronization in the TRP group.
  • Signals including:
  • the second network side device determines, according to the correspondence between the frequency band and the baseband parameter, a baseband parameter corresponding to a frequency band currently transmitting the third synchronization signal, and sends the third synchronization signal according to the determined baseband parameter; or
  • the second network side device Determining, according to the correspondence between the third synchronization signal sequence indicated in the system information of the TRP group and the baseband parameter, the second network side device determining the baseband parameter corresponding to the second network side device a third synchronization signal sequence according to any one of a preset baseband parameter or a plurality of baseband parameters defined in the communication system or a baseband parameter indicated in system information of the TRP group or the second network side device a baseband parameter, the third synchronization signal sequence corresponding to a baseband parameter of the second network side device; or
  • the second network side device Determining, by the second network side device, the third synchronization corresponding to the second network side device according to the correspondence between the third synchronization signal sequence indicated by the pre-agreed or the system information of the TRP group and the network side device And transmitting, by the signal sequence, the third synchronization signal sequence corresponding to the second network side device according to the baseband parameter of the second network side device.
  • the system information of the TRP group includes a baseband parameter used by the subband corresponding to the TRP group, a time domain resource corresponding to the TRP group, and/or a baseband used by the frequency domain resource.
  • a parameter, a baseband parameter used by a beam corresponding to the TRP group, a baseband parameter used by each network side device in the TRP group, and a used by each beam of each network side device in the TRP group Baseband parameters, and at least one of baseband parameters used by each of the network side devices in the TRP group on different time domains and/or frequency domain resources.
  • the system information of the TRP group indicates a correspondence between a third synchronization signal sequence and a baseband parameter; or the system information of the TRP group indicates a baseband parameter.
  • a transmission resource of the third synchronization signal is indicated in system information of the TRP group.
  • the exclusive system information includes a baseband parameter used by the network side device, a baseband parameter used by each beam in the network side device, and a network side device on different time domain and/or frequency domain resources. At least one of the baseband parameters used.
  • the method further includes:
  • the first network side device or the second network side device or the third network side device is: a TRP or a base station in the TRP group.
  • a terminal where the terminal includes:
  • a TRP group determining module configured to determine, according to the detected initial synchronization signal, a transmission receiving point TRP group to which the terminal belongs, where the initial synchronization signal includes a first synchronization signal and/or a second synchronization signal;
  • the baseband parameter determining module is configured to determine a baseband parameter according to the third synchronization signal detected in the TRP group and/or the system information of the TRP group.
  • the baseband parameter determining module is further configured to:
  • the baseband parameter determining module is further configured to:
  • the baseband parameter determining module is specifically configured to:
  • the TRP-specific system information includes a baseband parameter used by the TRP, a baseband parameter used by each Beam in the TRP, and a baseband parameter used by the TRP on different time domains and/or frequency domain resources. At least one of them.
  • the baseband parameter determination module is specifically configured to:
  • the baseband parameter determining module is specifically configured to:
  • the baseband parameter determining module is specifically configured to:
  • the system information of the TRP group includes a baseband parameter used by a subband corresponding to the TRP group, a time domain resource corresponding to the TRP group, and/or a frequency domain resource used by the TRP group. At least one of a baseband parameter, a baseband parameter used by the TPR in the TRP group, and a baseband parameter used by a beam corresponding to the TRP group.
  • the transmission resource is a time domain resource and/or a frequency domain resource occupied by the third synchronization signal transmission, or is a time domain window for detecting the third synchronization signal and/or Frequency domain window.
  • the baseband parameter determination module synchronizes with the TRP group determined according to the initial synchronization signal. Relationship, detecting the third synchronization signal;
  • the correspondence between the third synchronization signal and the sub-band or the TRP or the beam is determined according to a pre-agreed manner or is notified by system information of the TRP group.
  • the terminal further includes:
  • a transmission module configured to perform subsequent transmission according to the baseband parameter determined by the baseband parameter determining module on a TRP or a subband or a beam in the TRP group.
  • a terminal including a transceiver, and at least one processor coupled to the transceiver, wherein:
  • the processor is configured to read a program in the memory and perform the following process:
  • the initial synchronization signal comprising a first synchronization signal and/or a second synchronization signal; according to the third detected in the TRP group Synchronizing signals and/or system information of the TRP group to determine baseband parameters;
  • the transceiver is configured to receive and transmit data under the control of the processor.
  • the processor reads a program in the memory, and further performs the following process:
  • the third synchronization signal is detected on a transmission resource of the third synchronization signal indicated in the system information of the TRP group.
  • the processor reads a program in the memory, and further performs the following process:
  • the baseband parameters are determined, the baseband parameters of each third synchronization signal sequence are determined, and the third synchronization signal is detected according to the determined baseband parameters.
  • the processor reads a program in the memory, and specifically performs the following process:
  • the TRP-specific system information includes a baseband parameter used by the TRP, a baseband parameter used by each Beam in the TRP, and a baseband parameter used by the TRP on different time domains and/or frequency domain resources. At least one of them.
  • the processor reads the program in the memory, and specifically performs the following process:
  • the at least two third synchronization signal sequences are reported to the network side, and the at least one third synchronization signal sequence notified by the network side is received.
  • the system information of the TRP group is received by the transceiver, where the system information of the TRP group includes a baseband parameter used by the subband corresponding to the TRP group, and a time domain resource and/or frequency corresponding to the TRP group. At least one of a baseband parameter used by the domain resource, a baseband parameter used by the TPR in the TRP group, and a baseband parameter used by the beam corresponding to the TRP group.
  • the transmission resource is a time domain resource and/or a frequency domain resource occupied by the third synchronization signal transmission, or is a time domain window for detecting the third synchronization signal and/or Frequency domain window.
  • the processor according to the synchronization relationship with the TRP group determined according to the initial synchronization signal, Detecting the third synchronization signal;
  • the correspondence between the third synchronization signal and the sub-band or the TRP or the beam is determined according to a pre-agreed manner or is notified by system information of the TRP group.
  • the processor reads a program in the memory, and further performs the following process:
  • Subsequent transmissions are performed on the TRP or subband or beam in the TRP group according to the baseband parameters determined by the baseband parameter determination module.
  • the fifth aspect provides a network side device, where the network side device belongs to a transmission receiving point TRP group, and includes:
  • a sending module configured to send an initial synchronization signal in the TRP group, so that the terminal determines, according to the initial synchronization signal, a TRP group to which the terminal belongs, where the initial synchronization signal includes a first synchronization signal and/or a second synchronization Signal;
  • Transmitting a third synchronization signal and/or system information of the TRP group in the TRP group, so that the terminal determines the network side according to the third synchronization signal and/or system information of the TRP group The baseband parameters of the device or the baseband parameters of the network side devices within the TRP group.
  • the sending module is specifically configured to:
  • the third synchronization signal sequence corresponding to the baseband parameter of the network side device Determining the third synchronization signal sequence corresponding to the baseband parameter of the network side device according to a pre-agreed relationship between the third synchronization signal sequence and the baseband parameter indicated in the system information of the TRP group, according to the preset a predetermined baseband parameter or any one of a plurality of baseband parameters defined in the communication system or a baseband parameter indicated in the system information of the TRP group or a baseband parameter of the network side device, sent to the network side device
  • the third synchronization signal sequence corresponding to the baseband parameter or
  • the baseband parameter sends the third synchronization signal sequence corresponding to the network side device.
  • the system information of the TRP group includes a baseband parameter used by the subband corresponding to the TRP group, a time domain resource corresponding to the TRP group, and/or a baseband used by the frequency domain resource.
  • a parameter, a baseband parameter used by a beam corresponding to the TRP group, a baseband parameter used by each network side device in the TRP group, and a used by each beam of each network side device in the TRP group Baseband parameters, and at least one of baseband parameters used by each of the network side devices in the TRP group on different time domains and/or frequency domain resources.
  • the correspondence between the third synchronization signal sequence indicated in the system information of the TRP group and the baseband parameter; or the baseband parameter in the system information of the TRP group is not limited.
  • a transmission resource of the third synchronization signal is indicated in system information of the TRP group.
  • the sending module is further configured to:
  • the information includes at least one of a baseband parameter used by the network side device, a baseband parameter used by each beam in the network side device, and a baseband parameter used by the network side device on different time domains and/or frequency domain resources.
  • the device further includes: a receiving module, configured to: receive a plurality of third synchronization signal sequences reported by the terminal, and select one or more third synchronization signal sequences therefrom;
  • the sending module is further configured to: notify the terminal of the third synchronization signal sequence selected by the receiving module.
  • the device further includes: a data transmission module, configured to perform subsequent data according to a baseband parameter of the network side device on a working bandwidth of the network side device transmission.
  • the network side device is: a TRP or a base station in the TRP group.
  • a network side device including a transceiver, and at least one processor coupled to the transceiver, wherein:
  • the processor is configured to read a program in the memory and perform the following process:
  • the transceiver is configured to receive and transmit data under the control of the processor.
  • the processor reads a program in the memory, and specifically performs the following process:
  • the processor reads a program in the memory, and specifically performs the following process:
  • the third synchronization signal sequence corresponding to the baseband parameter of the network side device Determining the third synchronization signal sequence corresponding to the baseband parameter of the network side device according to the correspondence between the third synchronization signal sequence and the baseband parameter indicated in the pre-agreed or the system information of the TRP group, and controlling the Transmitting and transmitting the transceiver according to any one of a preset baseband parameter or a plurality of baseband parameters defined in the communication system or a baseband parameter indicated in system information of the TRP group or a baseband parameter of the network side device The third synchronization signal sequence corresponding to the baseband parameter of the network side device; or
  • the baseband parameter of the network side device sends the third synchronization signal sequence corresponding to the network side device.
  • the system information of the TRP group includes a baseband parameter used by the subband corresponding to the TRP group, a time domain resource corresponding to the TRP group, and/or a baseband used by the frequency domain resource.
  • a parameter, a baseband parameter used by a beam corresponding to the TRP group, a baseband parameter used by each network side device in the TRP group, and the TRP group Baseband parameters used by each beam of each of the network side devices, and at least one of baseband parameters used by each network side device in the TRP group on different time domains and/or frequency domain resources.
  • the correspondence between the third synchronization signal sequence indicated in the system information of the TRP group and the baseband parameter; or the baseband parameter in the system information of the TRP group is not limited.
  • a transmission resource of the third synchronization signal is indicated in system information of the TRP group.
  • the processor reads a program in the memory, and further performs the following process:
  • the dedicated system information includes a baseband parameter used by the network side device, a baseband parameter used by each beam in the network side device, and a baseband parameter used by the network side device on different time domains and/or frequency domain resources. At least one.
  • the processor reads a program in the memory, and further performs the following process:
  • the processor reads a program in the memory, and further performs the following process:
  • the network side device is: a TRP or a base station in the TRP group.
  • a computer readable storage medium wherein executable program code is stored, the program code for implementing the method of the first aspect.
  • a computer readable storage medium wherein executable program code is stored, the program code for implementing the method of the second aspect.
  • the terminal first determines the TRP group to which the terminal belongs to synchronize with the TRP group, and then detects the third synchronization signal and/or the system information of the TRP group in the TRP group. It can correctly identify the different subbands in a TRP group, different TRPs, and/or baseband parameters corresponding to different beam Beams, thereby achieving synchronization with different subbands, different TRPs, and/or different beam Beams in the TRP group.
  • the terminal is able to operate on the corresponding subband, TRP and/or Beam according to the correct baseband parameters.
  • 1A is a schematic diagram of a frame structure 1 in an LTE FDD system
  • 1B is a schematic diagram of a frame structure 2 in an LTE FDD system
  • 2A is a schematic diagram of a method for determining baseband parameters on a terminal side according to an embodiment of the present invention
  • 2B is a schematic diagram of a method for determining baseband parameters on a network side according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an application scenario according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of an application scenario according to Embodiment 2 of the present invention.
  • 6A and 6B are schematic diagrams of a synchronization signal 3 in Embodiment 2 of the present invention.
  • FIG. 8 is a schematic diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of another terminal according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a network side device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of another network side device according to an embodiment of the present invention.
  • the TRP deployed in the communication system is divided into multiple TRP groups.
  • a TRP group is classified according to a System Information Area (SIA), that is, one SIA is a TRP group, and each TRP is used.
  • SIA System Information Area
  • a group (TRP group) has the following characteristics:
  • the TRP group has a group-specific synchronization signal, for example, may include only one synchronization signal, such as only the first synchronization signal sync1, and may also include multiple synchronization signals, such as the first synchronization signal sync1 and the first a synchronization signal sync2, the synchronization signal being valid for all TRPs in the TRP group or system information area SIA;
  • the TRP group has group-specific system information, which may also be referred to as necessary system information, and includes information necessary for camping on or accessing the TRP group, and may be specifically represented as a main information block ( a Master Information Block (MIB) and a System Information Block (SIB), that is, the system information is configuration information that is valid for all TRPs in the TRP group or SIA;
  • MIB Master Information Block
  • SIB System Information Block
  • a terminal in an idle (IDLE) state may reside on a TRP group
  • the TRP/Beam has the following features:
  • Each TRP has an ID. If a TRP contains multiple Beams, each Beam has an ID.
  • Each ID corresponds to one or more synchronization signal sequences (eg, a third synchronization signal) for identifying the ID;
  • the transmission bandwidth of each TRP/Beam may be the entire system bandwidth or part of the frequency domain resources in the system bandwidth, for example, occupying one or more sub-bands in the system bandwidth;
  • Each TRP/Beam may use different baseband parameters on different frequency domain resources over its transmission bandwidth, and/or different baseband parameters may be used within different time domain resources.
  • the baseband parameters include, but are not limited to, at least one of the following parameters: OFDM symbol length, CP length, subcarrier spacing, and the like.
  • Multiple, “plurality” and the like referred to in the embodiments of the present invention mean two or more; "/” means a relationship of "and/or", and “and/or” is used to describe an associated object.
  • the relationship of the relationship indicates that there may be three relationships. For example, A and/or B indicate that A exists separately, and A and B exist simultaneously, and B exists separately.
  • a method for determining baseband parameters on the terminal side including:
  • the terminal determines, according to the detected initial synchronization signal, a TRP group to which the terminal belongs, where the initial synchronization signal includes a first synchronization signal and/or a second synchronization signal.
  • the terminal determines a baseband parameter according to a third synchronization signal detected in the TRP group and/or system information of the TRP group.
  • the system information of the TRP group is configuration information that is valid for all TRPs in the TRP group, and is sent by some or all TRPs in the TRP group.
  • the system information may be sent by all TRPs in the TRP group, or sent by one or several TRPs in the TRP group, or operated in a certain frequency band (such as a low frequency band) in the TRP group. Some or all of the TRPs sent are sent.
  • the third synchronization signal detected by the terminal in the TRP group in S22 indicates that the energy, signal strength and/or reception index of the third synchronization signal received by the terminal exceeds a set threshold; or may also be embodied The best third synchronization signal for the detected energy, signal strength and/or reception index.
  • the receiving indicator includes, but is not limited to, Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and the like.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • the third synchronization signal may include only one synchronization signal, and may also include multiple synchronization signals, and the third synchronization signal includes, but is not limited to, at least one of the following: a primary synchronization signal (Primary Synchronization Signal, referred to as PSS), Secondary Synchronization Signal (SSS), subband detection signal.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the terminal first determines the TRP group to which the terminal belongs, and synchronizes with the TRP group; and then detects a TRP by correctly detecting the third synchronization signal and/or the system information of the TRP group in the TRP group.
  • the baseband parameters operate on the corresponding subbands, TRP and/or Beam.
  • the terminal detects the initial synchronization signal by using a default baseband parameter.
  • the default baseband parameter is a pre-agreed one or more baseband parameters, or the default baseband parameter is one or more baseband parameters supported or defined by the communication system, or the default baseband parameter has a corresponding relationship with the frequency band.
  • the terminal may determine the baseband parameter corresponding to the currently detected frequency band of the terminal according to the correspondence between the frequency band and the default baseband parameter, and detect the initial synchronization signal on the current frequency band according to the determined baseband parameter.
  • the three baseband parameters are defined as shown in Table 2.
  • Band 1 defines baseband parameter 1 and baseband parameter 2
  • band 2 defines baseband parameter 3; for example, band 1 defines baseband parameter 1, and band 2 defines baseband.
  • Parameter 2 Band 3 defines the baseband parameter 3, and so on.
  • the terminal blindly detects the initial synchronization signal according to each default baseband parameter.
  • the terminal detects the initial synchronization signal on a pre-agreed time domain resource and/or a frequency domain resource.
  • the terminal selects an initial synchronization signal with the largest signal strength from the detected initial synchronization signal
  • the terminal Determining, by the terminal, the TRP group ID corresponding to the selected initial synchronization signal according to the correspondence between the initial synchronization signal and the TRP group identifier (ID);
  • the terminal may also determine a synchronization relationship with the TRP group to which the terminal belongs based on the initial synchronization signal.
  • the synchronization relationship may be used for subsequent downlink reception in the TRP group, for example, receiving necessary system information of the TRP group, detecting an access synchronization signal, and the like.
  • the terminal before determining the baseband parameter according to the third synchronization signal detected in the TRP group and/or the system information of the TRP group, the terminal further includes:
  • the terminal detects a third synchronization signal in the TRP group.
  • a third synchronization signal in the TRP group there are three possible implementations:
  • the terminal detects the third synchronization signal on a system bandwidth of the TRP group.
  • the terminal detects the third synchronization signal on a transmission resource of a pre-agreed third synchronization signal.
  • the transmission resource of the pre-agreed third synchronization signal may be the same as the transmission resource of the initial synchronization signal, or a fixed frequency domain resource on the system bandwidth.
  • the mode C the terminal detects the third synchronization signal on a transmission resource of the third synchronization signal indicated by system information in the TRP group.
  • the transmission resource is a time domain resource and/or a frequency domain resource occupied by the third synchronization signal transmission, that is, a specific resource location and size, or is used for detecting the third synchronization signal.
  • the terminal is occupied by the third synchronization signal according to a synchronization relationship with the TRP group. Detecting the third synchronization signal on a time domain resource and a frequency domain resource;
  • the terminal blindly detects the third synchronization in the time domain window and/or the frequency domain window And synchronizing a sub-band, a TRP or a beam corresponding to the time domain window and/or the frequency domain window by the third synchronization signal.
  • the terminal detects the third synchronization signal in the TRP group, and includes the following possible implementation manners:
  • Manner 1 The terminal detects the third synchronization signal according to a preset baseband parameter.
  • one or more baseband parameters for detecting the third synchronization signal are preset.
  • the terminal blindly detects the third synchronization signal for each baseband parameter.
  • the preset baseband parameters may be the same as or different from the baseband parameters for detecting the initial synchronization signal.
  • Manner 2 The terminal determines, according to a correspondence between the frequency band and the baseband parameter, a baseband parameter corresponding to a frequency band currently detecting the third synchronization signal, and detects the third synchronization signal according to the determined baseband parameter.
  • the correspondence between the frequency band and the baseband parameter is preset, and the specific implementation manner may refer to the correspondence between the foregoing frequency band and the default baseband parameter.
  • the correspondence between the frequency band and the baseband parameter and the corresponding relationship between the frequency band and the default baseband parameter may be the same.
  • the terminal blindly detects the third synchronization signal according to each baseband parameter.
  • Manner 3 The terminal detects the third synchronization signal according to a baseband parameter supported by the communication system.
  • the terminal blindly detects the third synchronization signal according to each baseband parameter.
  • Manner 4 The terminal detects the third synchronization signal according to a baseband parameter indicated in system information of the TRP group.
  • the system information of the TRP group carries a baseband parameter for indicating detection of the third synchronization signal.
  • the terminal blindly detects the third synchronization signal according to each baseband parameter.
  • Manner 5 The terminal determines a baseband parameter of each third synchronization signal sequence according to a correspondence between a pre-agreed third synchronization signal sequence and a baseband parameter used by a subband or a TRP or a beam, and detects the baseband parameter according to the determined baseband parameter.
  • the third synchronization signal The third synchronization signal.
  • the terminal blindly detects the third synchronization signal according to a baseband parameter of each third synchronization signal sequence.
  • the terminal determines a baseband parameter of each third synchronization signal sequence according to a correspondence between a third synchronization signal sequence indicated in system information of the TRP group and a baseband parameter used by a subband or a TRP or a beam, The third synchronization signal is detected in accordance with the determined baseband parameter.
  • the baseband parameters used when transmitting the third synchronization signal may be different from the corresponding subbands or baseband parameters of TRP or Beam determined according to the third synchronization signal.
  • the terminal in S22 determines the baseband parameter according to the third synchronization signal detected in the TRP group and/or the system information of the TRP group, and includes the following possible implementation methods:
  • the terminal determines the baseband parameter used by the third synchronization signal transmission to be determined as a baseband parameter used by the subband, the TRP, and/or the beam corresponding to the third synchronization signal.
  • the terminal determines a subband, a TRP, and/or a beam corresponding to the detected third synchronization signal sequence according to a correspondence between a pre-agreed third synchronization signal sequence and a baseband parameter used by the subband or the TRP or the beam. Baseband parameters used.
  • the mode c determines the sub-band and the TRP corresponding to the detected third synchronization signal sequence according to the correspondence between the third synchronization signal sequence indicated in the system information and the baseband parameter used by the sub-band or the TRP or the beam. And/or the baseband parameters used by the beam.
  • the terminal determines the baseband parameters, including:
  • the terminal selects at least one third synchronization signal sequence from the at least two third synchronization signal sequences, and determines a baseband parameter used by the subband, TRP, and/or beam corresponding to the selected third synchronization signal sequence. .
  • the terminal selects at least one third synchronization signal sequence from the at least two third synchronization signal sequences, including:
  • the terminal selects at least one of the at least two third synchronization signal sequences according to the received energy, signal strength, and/or reception indicator (such as RSRP, RSRQ, etc.) of the at least two third synchronization signal sequences.
  • reception indicator such as RSRP, RSRQ, etc.
  • the terminal reports the at least two third synchronization signal sequences to the network side, and receives at least one third synchronization signal sequence notified by the network side.
  • the terminal selects one or more third synchronization signal sequences that receive the best energy, signal strength, and/or reception index from the at least two third synchronization signal sequences. For another example, if the received energy, signal strength, and/or reception index of the at least two third synchronization signal sequences are equivalent, the terminal randomly selects one or more of them.
  • the terminal receives the detected TRP-specific system information of the TRP corresponding to the third synchronization signal according to the preset baseband parameter, and determines the baseband parameter according to the TRP-specific system information.
  • the terminal receives the detected TRP-specific system information of the TRP corresponding to the third synchronization signal according to the baseband parameter indicated in the system information, and determines the baseband parameter according to the TRP-specific system information.
  • the TRP-specific system information is effective configuration information for the TRP that sends the TRP-specific system information.
  • the TRP-specific system information includes a baseband parameter used by the TRP, a baseband parameter used by each Beam in the TRP, and a baseband parameter used by the TRP on different time domains and/or frequency domain resources. At least one.
  • the subband is a bandwidth part pre-divided in the system bandwidth, and may be divided according to a pre-agreed manner, for example, according to system bandwidth and pre-agreed rules, the system bandwidth is divided into P.
  • the sub-bands may also be notified in the system information of the TRP group.
  • the correspondence between the third synchronization signal and the sub-band is determined according to a pre-agreed manner.
  • the transmission resource of each third synchronization signal corresponds to one or more sub-bands including the transmission resource.
  • each third synchronization signal sequence corresponds to one or more sub-bands including the transmission resource.
  • the third synchronization signal sequence 0 to A corresponds to subband 0
  • the third synchronization signal sequence A+1 to B corresponds to subband 1, and so on.
  • the corresponding relationship between the third synchronization signal and the sub-band is notified in the system information of the TRP group, for example, directly notifying the correspondence between different third synchronization signal sequences and different sub-bands, or notifying the different transmission of the third synchronization signal.
  • the baseband parameter determined by the terminal is both a baseband parameter used by the TRP and a baseband parameter used by the Beam, if a TRP There are a plurality of Beams. If the baseband parameters of each Beam are the same, the terminal determines the baseband parameters of the TRP according to the above, that is, the baseband parameters of each Beam.
  • the terminal is The baseband parameters can be determined for each Beam to obtain the baseband parameters of the TRP at Beam1, and the baseband parameters of the TRP at Beam2, and so on; if a TRP only works on one subband, the terminal determines The baseband parameter is both the baseband parameter used by the TRP and the baseband parameter of the subband. If a TRP operates on multiple subbands, if the baseband parameters of each subband are the same, the terminal determines the TRP according to the above.
  • the baseband parameter that is, the baseband parameter of each subband, if the baseband parameters of each subband are different, the terminal can determine its baseband parameter for each subband, thereby obtaining the The baseband parameter of the TRP in subband 1, and the baseband parameter of the TRP in subband 2, and so on; if a TRP has only one Beam and the TRP only works on one subband, the baseband determined by the terminal
  • the parameters are the TRP, the subband, and the baseband parameters used by the Beam.
  • a TRP has only one Beam, and the TRP works in multiple subbands, or if a TRP has multiple Beams, and the TRP only works in one subband On the top, or if a TRP has multiple Beams, and the TRP works on multiple sub-bands, the combination of the above cases can realize the identification of different sub-bands of one TRP and different Beam baseband parameters.
  • the method further includes receiving the TRP group. system message.
  • the system information of the TRP group may be received in a predetermined manner on a specific time domain resource and a frequency domain resource according to the synchronization relationship with the TRP group obtained based on the initial synchronization signal.
  • the third synchronization signal is recorded as the synchronization signal 3
  • the third synchronization signal sequence is recorded as the synchronization signal 3 sequence.
  • Method 1 The terminal receives system information transmitted in the TRP group, detects a synchronization signal 3 according to the indication of the system information, and further determines a baseband parameter.
  • At least the transmission resource for detecting the synchronization signal 3 (including a specific time domain resource and/or a frequency domain resource, or a time domain window and/or a frequency domain for detecting the synchronization signal 3) is indicated in the system information.
  • the baseband parameters of the TRP group or the synchronization signal 3 corresponds to the sequence of the synchronization signal 3 and the subband or the baseband parameters used by the TRP or Beam One or more of them.
  • the transmission resource indicated in the system information may be one or more, and the transmission resource may be the same as or different from the transmission resource of the initial synchronization signal.
  • the baseband parameters indicated in the system information may be one or more.
  • the method further includes the following five possible implementation methods:
  • Method 1-1 At least the transmission resource for detecting the synchronization signal 3 is indicated in the system information.
  • the terminal is determined according to a predetermined baseband parameter, or a baseband parameter indicated in the system information, or a plurality of baseband parameters supported in the communication system, or according to the corresponding relationship, on the transmission resource of the synchronization signal 3.
  • the baseband parameters of the different sync signal 3 sequences are detected, and the sync signal 3 is detected.
  • Different synchronization signal 3 sequences have a corresponding relationship with subbands or different baseband parameters used by TRP or Beam, which can reduce blind detection, but cannot implement the same TRP using different baseband parameters in different subbands unless different combinations are agreed.
  • the sync signal 3 sequence corresponds to the same TRP ID or Beam ID. The correspondence is pre-agreed or indicated in the system information.
  • the terminal determines, according to the synchronization signal 3 sequence detected on the transmission resource of each synchronization signal 3 and the corresponding relationship, a baseband parameter of the subband or TRP or Beam corresponding to the sequence of the synchronization signal 3, or
  • the terminal selects one or more synchronization signal 3 sequences in the synchronization signal 3 sequence detected on the transmission resource of each synchronization signal 3, and determines the selected one according to the selected synchronization signal 3 sequence and the corresponding relationship.
  • Method 1-2 at least the transmission resource for detecting the synchronization signal 3 is indicated in the system information, and the terminal is in accordance with multiple baseband parameters notified in the system information or multiple baseband parameters supported in the communication system.
  • the synchronization signal 3 is detected on the transmission resource of the synchronization signal 3.
  • the terminal uses the baseband parameter used by the sequence of the synchronization signal 3 detected on the transmission resource of the synchronization signal 3 as the baseband parameter of the subband, TRP and/or Beam corresponding to the synchronization signal 3; or the terminal
  • the baseband parameter used by the sequence of one or more synchronization signals 3 selected in the sequence of synchronization signals 3 detected on the transmission resource of each synchronization signal 3 is used as the subband corresponding to the sequence of the selected synchronization signal 3 or Baseband parameters for TRP or Beam.
  • the method adopts the blind detection method, that is, attempts to detect the synchronization signal 3 by using different baseband parameters.
  • the blind detection frequency is larger than the method 1-1. If there are N synchronization signal sequences 3 in the system, the method 1-1 only needs blind detection. Side N times, Method 1-2 requires blind detection side N*M times, M is the number of baseband parameter types supported in the system or defined in the standard.
  • the advantage of this method is that there is no need to pre-agreed or notify the synchronization signal 3 and baseband. Correspondence of parameters, and when a subband or TRP or Beam corresponds to a unique sequence of synchronization signals 3, one subband or TRP or Beam can be supported to use different baseband parameters on different frequency domain resources.
  • Method 1-3 The system information indicates at least a baseband parameter of the TRP group or a baseband parameter used for transmission of the synchronization signal 3 in the TRP group.
  • the baseband parameter indicated in the system information is one, then the default baseband parameters of all transmissions are the same, and the synchronization signal 3 is detected only to determine the subband, TRP and/or Beam accessed by the terminal.
  • the terminal detects the synchronization signal 3 according to the baseband parameter indicated in the system information on the system bandwidth of the TRP group or the transmission resource of the pre-agreed synchronization signal 3.
  • the specific position of the synchronization signal 3 on the system bandwidth is not known, and it is determined by blind detection that the synchronization signal 3 can be detected on the system bandwidth in each time domain unit, or in the pre-agreed part of the time domain unit.
  • the sync signal 3 is detected on the bandwidth.
  • the time domain unit represents a minimum unit for detecting the synchronization signal 3 in the time domain. For example, if one synchronization signal 3 occupies 1 OFDM symbol transmission, each time domain unit is 1 OFDM symbol, if one synchronization signal 3 occupies A For OFDM symbol transmission, each A OFDM symbol is a time domain unit.
  • Method 1-4 The system information indicates at least a baseband parameter used by the synchronization signal 3 in the TRP group.
  • the terminal detects the synchronization signal 3 according to the baseband parameter on the system bandwidth of the TRP group or the transmission resource of the pre-agreed synchronization signal 3. At this time, the specific position of the synchronization signal 3 on the system bandwidth is not known, and it is determined by blind detection that the synchronization signal 3 can be detected on the system bandwidth in each time domain unit, or in the system bandwidth of the pre-agreed partial time domain unit. The sync signal 3 is detected.
  • the different synchronization signal 3 sequences have a corresponding relationship with the sub-band or different baseband parameters used by the TRP or Beam, and the correspondence is pre-agreed or indicated in the system information.
  • the terminal determines, according to the detected sequence of the synchronization signal 3 and the corresponding relationship, a baseband parameter of the subband or the TRP or the Beam corresponding to the sequence of the detected synchronization signal 3, or the detected synchronization signal of the terminal Selecting one or more synchronization signal 3 sequences in the sequence, determining the sub-band or TRP or Beam corresponding to the selected synchronization signal 3 sequence according to the selected one or more synchronization signal 3 sequences and the corresponding relationship Baseband parameters.
  • the terminal blindly detects the synchronization signal 3 according to the at least two baseband parameters on the system bandwidth.
  • Method 1-5 The system information indicates at least a correspondence between different synchronization signal 3 sequences and different baseband parameters used by the sub-band or TRP or Beam.
  • the terminal is on the system bandwidth of the TRP group or the transmission resource of the pre-agreed synchronization signal 3, according to a predetermined baseband parameter, or a baseband parameter indicated in the system information, or a plurality of basebands supported in the communication system.
  • the sequence of the synchronization signal 3 is detected by a parameter, or a baseband parameter for detecting a sequence of different synchronization signals 3 determined according to the correspondence.
  • the specific position of the synchronization signal 3 on the system bandwidth is not known, and it is determined by blind detection that the synchronization signal 3 can be detected on the system bandwidth in each time domain unit, or in the system bandwidth of the pre-agreed partial time domain unit.
  • the sync signal 3 is detected.
  • Method 2 The method does not need to notify any information about the synchronization signal 3 in the system information, and directly performs blind detection. Therefore, the terminal receives the system information only to obtain the system bandwidth and the system frame number (SFN). The parameters of the class, if these parameters are not needed when detecting the synchronization signal 3, then it is not necessary to receive the system information at all, and the synchronization signal 3 can be directly detected.
  • SFN system frame number
  • the terminal detects the synchronization signal 3 in the system bandwidth of the TRP group or the transmission resource of the pre-agreed synchronization signal 3, and determines the baseband parameter according to the synchronization signal 3. Further includes the following two possible implementation methods:
  • Method 2-1 The terminal uses the baseband parameter used by the detected synchronization signal 3 as the synchronization signal 3 Corresponding subband, TRP and/or baseband parameters of the Beam; or the terminal selecting one or more sequences of synchronization signals 3 in the sequence of detected synchronization signals 3, said sequence of selected synchronization signals 3
  • the baseband parameters used are used as the baseband parameters of the selected sub-band, TR P and/or Beam corresponding to the sequence of synchronization signals 3.
  • Method 2-2 Pre-arrange the correspondence between different synchronization signal 3 sequences and different baseband parameters used by subbands or TRP or Beam. Determining, by the terminal according to the detected synchronization signal 3 sequence and the corresponding relationship, a baseband parameter of a subband or a TRP or a Beam corresponding to the sequence of the synchronization signal 3, or the terminal is in the detected synchronization signal One or more synchronization signal 3 sequences are selected in the sequence, and the baseband parameters of the selected sub-band or TRP or Beam corresponding to the selected synchronization signal 3 sequence are determined according to the selected synchronization signal 3 sequence and the corresponding relationship.
  • Method 3 The terminal first detects the synchronization signal 3, and then receives the TRP-specific system information (TRP specific system information) transmitted by the TRP corresponding to the detected synchronization signal 3, and obtains a baseband parameter.
  • TRP-specific system information TRP specific system information
  • the terminal is in the system bandwidth of the TRP group or on the transmission resource of the pre-agreed synchronization signal 3 or the transmission resource of the synchronization signal 3 indicated in the system information, according to the pre-agreed baseband parameter or the system information.
  • the synchronization signal 3 is detected by the baseband parameter indicated in the signal or a plurality of baseband parameters supported in the communication system.
  • the terminal receives the TRP-specific system information sent by the TRP corresponding to the synchronization signal 3 according to the pre-defined baseband parameter or the baseband parameter indicated in the system information, and determines the TRP according to the TRP-specific system information.
  • the terminal in S22 determines the baseband parameter according to the synchronization signal detected in the TRP group and/or the system information of the TRP group, and may also adopt the following manner:
  • system information of the TRP group includes a baseband parameter used by a subband corresponding to the TRP group, a time domain resource corresponding to the TRP group, and/or a frequency domain resource used by the TRP group. At least one of a baseband parameter, a baseband parameter used by the TPR in the TRP group, and a baseband parameter used by a beam corresponding to the TRP group.
  • the baseband parameter of each TRP, each subband, and each Beam in the TRP group can be obtained by directly detecting the third synchronization signal according to the indication in the system information of the TRP group. If at least one TRP contains multiple sub-bands and/or Beam, the baseband parameters of the TRP at each sub-band and/or Beam can also be obtained.
  • the terminal may further indicate on a system bandwidth of the TRP group or a pre-agreed transmission resource of a third synchronization signal or system information of the TRP group.
  • the correspondence between the third synchronization signal (or the synchronization signal 3) and the sub-band or the TRP or the beam is determined according to a pre-agreed manner, or is the TRP group.
  • the system information is notified; wherein the plurality of third synchronization signal sequences may correspond to the same TRP or Beam, for example, one TRP includes multiple sub-bands, each sub-band has different baseband parameters, and different third synchronizations may be sent on different sub-bands.
  • the signal sequence but both correspond to the same TRP.
  • a TRP contains multiple Beams. Each Beam has different baseband parameters. Different Beams can send different third synchronization signal sequences, but all correspond to the same TRP.
  • the method further includes:
  • the terminal transmits on the TRP or subband or Beam in the TRP group according to the determined baseband parameters.
  • a method for determining baseband parameters on the network side including:
  • the second network side device in the TRP group sends a third synchronization signal in the TRP group and/or the third network side device in the TRP group sends the TRP group in the TRP group.
  • System information so that the terminal determines a baseband parameter of the second network side device or a baseband parameter of the network side device in the TRP group according to the third synchronization signal and/or system information of the TRP group .
  • the terminal may determine a baseband parameter of the second network side device according to the third synchronization signal, or determine the second according to the third synchronization signal and system information of the TRP group.
  • the baseband parameter of the network side device may be determined according to the system information of the TRP group, and the baseband parameter of the network side device in the TRP group is determined, and the baseband parameter of the network side device determined by the second network side device is determined by the second network side device. Baseband parameters.
  • the second network side device and the third network side device are the same network side device in the TRP group or different network side devices in the TRP group.
  • the first network side device is a TRP or a base station in the TRP group. If the first network side device supports multiple beams, the first network transmission transmits the initial synchronization signal on some or all of the supported beams.
  • the second network side device is a TRP or a base station in the TRP group. If the second network side device supports multiple beams, the second network transmission transmits the third synchronization signal on some or all of the supported beams.
  • the third network side device is a TRP or a base station in the TRP group. If the third network side device supports multiple beams, the third network transmits the system that sends the TRP group on some or all of the supported beams. Information.
  • the second network side device sends the third synchronization signal in the TRP group, including the following possible implementation manners:
  • the second network side device sends the third synchronization signal on the system bandwidth of the TRP group corresponding to the working bandwidth of the second network side device.
  • the second network side device may send the third synchronization signal on a specific resource on the working bandwidth, for example, the terminal and the network side agreed resource; or may be optional on the working bandwidth.
  • the third synchronization signal is sent on the resource.
  • the terminal is not sure of the location of the resource that sends the third synchronization signal, and can only be blindly detected.
  • the second network side device sends the third synchronization signal on a pre-agreed transmission resource of the third synchronization signal.
  • the second network side device sends the third synchronization signal on the transmission resource of the third synchronization signal indicated by the system information of the TRP group.
  • the second network side device sends the third synchronization signal in the TRP group, including the following possible implementation manners:
  • the second network side device determines, according to the correspondence between the frequency band and the baseband parameter, the baseband parameter corresponding to the frequency band currently transmitting the third synchronization signal, and sends the third synchronization signal according to the determined baseband parameter.
  • the baseband parameter determined by the second network side device is a baseband parameter used when the second network side device performs subsequent data transmission.
  • the second network side device determines the baseband parameter of the second network side device according to the correspondence between the third synchronization signal sequence and the baseband parameter indicated in the system information of the TRP group.
  • the third synchronization signal sequence is according to any one of a preset baseband parameter or a plurality of baseband parameters defined in the communication system or a baseband parameter indicated in system information of the TRP group or the second network side
  • the baseband parameter of the device sends the third synchronization signal sequence corresponding to the baseband parameter of the second network side device.
  • the second network side device determines the first corresponding to the second network side device according to the correspondence between the third synchronization signal sequence indicated by the pre-agreed or the system information of the TRP group and the network side device. And the third synchronization signal sequence, the third synchronization signal sequence corresponding to the second network side device is sent according to the baseband parameter of the second network side device.
  • one or more third synchronization signal sequences correspond to one network side device, and the correspondence is known.
  • the terminal blindly detects multiple baseband parameters to obtain a third synchronization signal sequence under a baseband parameter, it may be known.
  • the network side device corresponding to the third synchronization signal sequence can further know that the network side device sends the third synchronization signal by using a baseband parameter corresponding to the detected third synchronization signal sequence.
  • the system information of the TRP group includes a baseband parameter used by the subband corresponding to the TRP group, a time domain resource corresponding to the TRP group, and/or a baseband used by the frequency domain resource.
  • a parameter, a baseband parameter used by a beam corresponding to the TRP group, a baseband parameter used by each network side device in the TRP group, and a used by each beam of each network side device in the TRP group Baseband parameters, and at least one of baseband parameters used by each network side device in the TRP group on different time domains and/or frequency domain resources, so that the terminal can directly determine the location according to the received system information.
  • the baseband parameters of each network side device in the TRP group are examples of each network side device in the TRP group.
  • the correspondence between the third synchronization signal sequence and the baseband parameter indicated in the system information of the TRP group so that the terminal can determine each according to the corresponding relationship indicated by the system information of the TRP group.
  • a baseband parameter of the third synchronization signal sequence to blindly detect the third synchronization signal using the determined baseband parameters.
  • the baseband parameter is indicated in the system information of the TRP group, so that the terminal can detect the third synchronization signal according to the baseband parameter indicated by the system information of the TRP group.
  • the system information of the TRP group indicates a transmission resource of the third synchronization signal, so that the terminal can detect the third synchronization on a transmission resource indicated by system information of the TRP group. signal.
  • the method further includes:
  • the exclusive system information includes a baseband parameter used by the network side device, a baseband parameter used by each beam in the network side device, and a network side device on different time domain and/or frequency domain resources. At least one of the baseband parameters used.
  • the method further includes:
  • the method further includes:
  • the second network side device performs subsequent data transmission according to its own baseband parameter on its working bandwidth.
  • the TRP can work on one or more sub-bands and can include one or more Beams.
  • the subsequent transmission is the data transmission after the terminal accesses the network side device, and the physical downlink shared channel (Physical Downlink Shared Channel, PDSCH for short), the physical downlink control channel (Physical Downlink Control Channel, PDCCH for short), and the physical uplink shared channel.
  • Physical Uplink Shared Channel referred to as PUSCH
  • Physical Uplink Control Channel PUCCH
  • Sounding Reference Signal SRS
  • the first synchronization signal is recorded as a synchronization signal 1
  • the second synchronization signal is recorded as a synchronization signal 2
  • the third synchronization signal is recorded as a synchronization signal 3
  • the third synchronization is recorded as a synchronization signal 3
  • the third synchronization is recorded as a sequence of sync signals 3.
  • each system information area corresponds to one TRP group, and each TRP group contains only one TRP, and each TRP independently transmits synchronization.
  • Signal and system information When the terminal accesses or camps on any TRP, it first detects the synchronization signal 1 and the synchronization signal 2 (the synchronization signals 1 and 2 can be agreed at a fixed position of the system bandwidth, for example, the middle position of the system bandwidth, thereby obtaining the system bandwidth. Then, the frequency domain position of the system bandwidth is determined based on the frequency domain positions of the synchronization signals 1 and 2.
  • time domain transmission positions of the synchronization signals 1 and 2 can be further agreed, so that it is easy to infer after blindly detecting the synchronization signals 1 and 2.
  • Obtaining a time domain boundary such as a radio frame/subframe/symbol boundary, may be detected according to a default baseband parameter, for example, assuming that the default baseband parameter is a 15 kHz subcarrier spacing and an OFDM symbol, CP defined under the subcarrier spacing.
  • the length of the subframe (or min-frame) may also be blindly detected according to various baseband parameters supported in the communication system, for example, the synchronization signal is first detected according to the 15 kHz subcarrier spacing and the corresponding parameter corresponding to the subcarrier spacing.
  • the terminal may obtain the system bandwidth of the TRP by using the system information, and the system information may further include subband configuration information of the system bandwidth.
  • the system bandwidth is 100M
  • the system bandwidth of 100M is divided into two sub-bands in one TRP, and different baseband parameters are used on different sub-bands; of course, sub-band division can also be performed.
  • the system information may also notify the correspondence between the synchronization signal 3 and the sub-band or the TRP or the Beam, or the corresponding relationship is pre-agreed, for example, including detection
  • the subband of the synchronization signal 3 transmission resource is the subband corresponding to the synchronization signal 3, and the synchronization signal 3 sequence is related to the TRP ID and/or the Beam ID. For example, if the sequence of the synchronization signal 3 is generated according to the TRP ID and/or the Beam ID, the terminal may infer the corresponding TRP ID and/or the Beam ID according to the detected sequence of the synchronization signal 3.
  • the terminal may be based on The TRP ID and/or the Beam ID infer the corresponding synchronization signal 3 sequence; for example, the correspondence or functional relationship between the synchronization signal 3 sequence and the TRP ID and/or the Beam ID is pre-agreed.
  • the correspondence or functional relationship between the synchronization signal 3 sequence and the TRP ID and/or the Beam ID is used.
  • TRP group ID, TRP ID TRP ID
  • the number of the synchronization signal 3 sequence f (TRP ID) or f (TRP group ID, TRP ID), etc.; for example, the sequence of the synchronization signal 3 sequence is (TRP group ID*W+TRP ID), W is a predefined integer.
  • the system information indicates at least a transmission resource for detecting the synchronization signal 3, for example, indicating a transmission resource of a synchronization signal 3 in each subband of the system bandwidth, or directly giving a system when the subband is not divided.
  • the corresponding frequency domain position of the bandwidth for example, Resource Block (RB) x to y
  • RB Resource Block
  • the terminal detects the synchronization signal 3 on the transmission resource of the synchronization signal 3 according to a default baseband parameter or a baseband parameter transmitted by the synchronization signal 3 indicated in the system information, as shown in FIG. 4B. .
  • the pre-agreed or the system information further indicates a correspondence between different synchronization signal 3 sequences and corresponding sub-bands or different baseband parameters used by TRP or Beam, and the terminal according to the synchronization signal 3 sequence detected on each transmission resource And the corresponding relationship, determining a baseband parameter corresponding to the subband, the TRP, and/or the Beam corresponding to the synchronization signal 3, or the terminal takes a sequence of the synchronization signal 3 with the best detection energy or performance on the plurality of transmission resources as the detected
  • the synchronization signal 3 sequence determines the baseband parameters of the sub-band, TPR and/or Beam corresponding to the synchronization signal 3 according to the synchronization signal 3 sequence and the corresponding relationship.
  • Method 2 At least the transmission resource for detecting the synchronization signal 3 (specifically, Method 1) is indicated in the system information.
  • the terminal on the transmission resources of the synchronization signals 3, according to a predetermined plurality of baseband parameters, or a plurality of baseband parameters indicated in the system information, or a plurality of baseband parameters supported or defined in the communication system, or Blind detection of the synchronization signal according to the baseband parameters corresponding to each synchronization signal 3 determined by the correspondence between the different synchronization signal 3 sequences indicated in the system information and the different baseband parameters used by the sub-band or TRP or Beam 3.
  • the terminal attempts to detect the synchronization signal 3 by using one of the above baseband parameters on each of the above transmission resources, and takes a synchronization signal with the highest detection energy or the best performance among the plurality of baseband parameters.
  • the terminal may use the baseband parameter used by the sequence of the detected synchronization signal 3 as a subband, TPR and/or Beam corresponding to the synchronization signal 3.
  • Baseband parameter or, the terminal takes a sequence of synchronization signals 3 with the best detection energy or performance on multiple transmission resources as the detected synchronization SEQ ID NO 3, the baseband signal 3 parameters of the synchronous sequence used as the synchronizing signal corresponding to the subband 3, the TRP and / or Baseband parameters used by Beam.
  • the system information indicates at least a baseband parameter of the TRP group or a baseband parameter used by the synchronization signal 3 in the TRP group.
  • the terminal may be different in the system bandwidth of the TRP group or the transmission resource of the predetermined synchronization signal 3 (for example, the same resource location as the synchronization signal 1 and/or the synchronization signal 2, for example, the synchronization signal 1
  • the synchronization signal 2 occupies RBx1 ⁇ y1 in the system bandwidth
  • the synchronization signal 3 occupies RBx2 ⁇ y2 in the system bandwidth, and the like
  • the synchronization signal 3 is blindly detected according to the above baseband parameter, for example, by scanning or on the system bandwidth.
  • the signal 3 sequence uses the baseband parameter used by the detected synchronization signal 3 sequence as the baseband parameter of the subband, TRP and/or Beam corresponding to the synchronization signal 3.
  • Method 4 The system information indicates at least a baseband parameter used by the synchronization signal 3 in the TRP group.
  • the synchronization signal 3 is detected only to determine the subband or the Beam accessed by the terminal; if the system information is If the indicated baseband parameters are multiple, it is necessary to blindly check different baseband parameters.
  • the terminal detects the synchronization signal 3 according to the baseband parameter on the system bandwidth of the TRP group or the transmission resource of the predetermined synchronization signal 3, and pre-arranges or indicates the different synchronization signal sequence 3 in the system information.
  • the correspondence between different subband parameters used by the subband or TPR or Beam for example, scanning or detecting a plurality of synchronization signal 3 sequences satisfying the threshold on a predetermined plurality of resources on the system bandwidth, or passing through the system bandwidth Scanning or detecting a sequence of synchronization signals 3 having a maximum energy or optimal performance on a predetermined one or more resources, and determining, by the terminal, the sub-corresponding to the synchronization signal 3 according to the detected synchronization signal 3 sequence and the corresponding relationship Baseband parameters for band, TRP and/or Beam.
  • Method 5 The system information indicates at least a correspondence between different synchronization signal 3 sequences and different baseband parameters used by the subband or TRP or Beam.
  • the terminal is on the system bandwidth of the TRP group or the transmission resource of the predetermined synchronization signal 3, according to one or more predetermined baseband parameters, or one or more baseband parameters indicated in the system information.
  • the sequence of the synchronization signal 3 is detected by a plurality of baseband parameters defined or supported in the communication system, or baseband parameters for detecting different synchronization signal 3 sequences determined according to the above correspondence.
  • the terminal needs to perform a blind detection side on each baseband parameter, for example, scanning or detecting a plurality of synchronization signal 3 sequences satisfying the threshold on a predetermined plurality of resources on the system bandwidth. Or detecting, by scanning on the system bandwidth or by detecting a synchronization signal 3 sequence with maximum energy or optimal performance on a predetermined one or more resources, determining the synchronization signal 3 according to the detected synchronization signal 3 sequence and the corresponding relationship.
  • Baseband parameters for the corresponding subband, TRP and/or Beam for the corresponding subband, TRP and/or Beam.
  • Method 6 The terminal detects the synchronization signal according to a predetermined one or more baseband parameters or a plurality of baseband parameters defined or supported in the communication system in the system bandwidth of the TRP group or the transmission resource of the predetermined synchronization signal 3. 3.
  • the terminal needs to perform blind detection on each baseband parameter, for example, in system bandwidth.
  • a plurality of synchronization signals 3 satisfying the set threshold are detected by scanning or on a predetermined plurality of resources, or a maximum energy or optimal performance is detected by scanning or detecting on a predetermined one or more resources on the system bandwidth.
  • the synchronization signal 3, the terminal uses the baseband parameter used by the synchronization signal 3 as the baseband parameter of the sub-band, TRP and/or Beam corresponding to the synchronization signal 3.
  • Method 7 Predetermine the correspondence between different synchronization signal 3 sequences and different baseband parameters used by subbands or TRP or Beam.
  • the terminal in the system bandwidth of the TRP group or the transmission resource of the predetermined synchronization signal 3, according to a predetermined one of the baseband parameters or the baseband parameter corresponding to each synchronization signal 3 sequence determined according to the corresponding relationship, Detecting a sequence of synchronization signals 3, for example by scanning over a system bandwidth or detecting a plurality of synchronization signal 3 sequences satisfying a set threshold on a predetermined plurality of resources, or by scanning over a system bandwidth or at a predetermined one or more The sequence of the synchronization signal 3 with the highest energy or the best performance is detected on the resource, and the terminal determines the baseband parameters of the subband, TRP and/or Beam corresponding to the synchronization signal 3 according to the detected sequence of the synchronization signal 3 and the corresponding relationship.
  • pre-agreed or the system information indicates that the synchronization signal 3 sequence 0 to A corresponds to the first type of baseband parameters, and the synchronization signal 3 sequence A+1 to B corresponds to the second type of baseband parameters. And so on; if it is a pre-agreed correspondence, how many kinds of baseband parameters are defined in the communication system, how many correspondences need to be agreed in advance, and if it is the corresponding relationship indicated in the system information, the terminal can be notified
  • the correspondence between all kinds of baseband parameters defined in the communication system and the synchronization signal 3 may also only inform the corresponding relationship between the baseband parameters (may be only one type and possibly multiple types) supported by the TRP group and the synchronization signal 3.
  • the sequence of the synchronization signal 3 detected by the terminal on the transmission resource 1 is a sequence between 0 and A
  • the baseband parameter of the sub-band 1 is the first type of baseband parameter
  • 2 (corresponding to subband 2)
  • the sequence of the synchronization signal 3 detected is a sequence between A+1 and B
  • the baseband parameter of the subband 2 is determined to be the second type of baseband parameter.
  • the terminal can simultaneously or TDM.
  • the terminal only TRP works on subband 2.
  • the number of blind detections of methods 4, 5, and 7 is greater than that of method 1, that is, if there are N synchronization signal sequences 3 in the system, method 1 only needs to be blinded side N times, and method 4 needs blind detection side N*M times, M is The number of baseband parameter types, method 5 also requires additional blind detection synchronization signal 3 transmission resource method 7 Although there is no need to blindly check the baseband parameters, but blind detection transmission resources are required, the advantages of methods 4, 5 and 7 are that no agreement or notification is required The correspondence between the synchronization signal 3 and the baseband parameters, the method 7 does not require the information of the synchronization signal 3 in the system information.
  • the number of blind detections of methods 2, 3, and 6 is greater than that of method 1, that is, if there are N synchronization signal sequences 3 in the system, method 1 only needs blind detection side N times, and methods 2, 3, and 6 need blind detection side N*. M times, M is the number of baseband parameter types, and methods 3 and 6 also require additional blind detection synchronization signal 3 transmission resources.
  • the advantage is that there is no need to agree or inform the correspondence between the synchronization signal 3 and the baseband parameters, and the method 6 does not need to be
  • the information of the synchronization signal 3 is configured in the system information.
  • the system information of the TRP broadcast may include a baseband parameter used by the TRP in each subband or bandwidth part of the system bandwidth or on the Beam. Thus, it is not necessary to obtain a baseband parameter based on the detection of the synchronization signal 3.
  • Embodiment 2 The scenario applied in this embodiment is as shown in FIG. 5.
  • One SIA corresponds to one TRP group, and each TRP group includes multiple TRPs. Multiple TRPs may be synchronized or not synchronized, and all or part of TRPs are sent the same.
  • Initial synchronization signal and the system information When the terminal accesses or camps on the TRP group, the synchronization signal 1 and the synchronization signal 2 are first detected. The specific process is similar to that in Embodiment 1, and is not described again. The synchronization with a TRP group is implemented, and then the TRP group is read. System information.
  • the sequence of the synchronization signal 3 detected by the terminal 1 only on the transmission resource 1 is a sequence X1 between 0 and A
  • the sequence X1 corresponds to TRP1 (the correspondence is predefined or according to The function relationship is calculated, the same below, then the terminal 1 belongs to the TRP1, and determines that the baseband parameter of the TRP1 in the subband 1 is the first type of baseband parameter;
  • sequence of the synchronization signal 3 detected by the terminal 2 on the transmission resource 1 is a sequence X2 between 0 and A
  • sequence of the synchronization signal 3 detected on the transmission resource 2 is A+1 to B
  • a sequence X3 between, and the sequences X2 and X3 correspond to TRP2
  • terminal 2 belongs to TRP2, and determines that the baseband parameter of TRP2 in subband 1 is the first type of baseband parameter, and the baseband parameter of subband 2 is the second.
  • the terminal 2 can work at least simultaneously or TDM on the subband 1 and the subband 2 of the TRP2, or assume that the terminal 2 determines the transmission resource after comparing the detection energy on the transmission resource 1 and the transmission resource 2.
  • the synchronization signal 3 sequence X3 detected on 2 has the largest energy.
  • the terminal 2 can also determine that the assignment is TRP2, and determines that the baseband parameter of the TRP2 on the subband 2 is The second type of baseband parameters, but since terminal 2 cannot determine whether TRP2 also contains other subbands (such as subband 1) and baseband parameters, at the beginning of accessing TRP2, it can only work on subband 2 according to the second type of baseband parameters.
  • sequence of the synchronization signal 3 detected by the terminal 3 on the transmission resource 1 is a sequence X4 between 0 and A
  • sequence of the synchronization signal 3 detected on the transmission resource 2 is a sequence X5 between A+1 and B.
  • the sequence of the synchronization signal 3 detected on the transmission resource 3 (corresponding to the sub-band 3) is a sequence X6 between B+1 and C
  • sequences X4, X5 and X6 all correspond to the TRP3, and the terminal 3 belongs to the TRP3.
  • the baseband parameter of TRP3 in subband 1 is the first type of baseband parameter
  • the baseband parameter in subband 2 is the second type of baseband parameter
  • the baseband parameter in subband 3 is the third type of baseband parameter.
  • TDM operates on sub-band 1, sub-band 2 and sub-band 3 of the TRP3, or, assuming that terminal 3 compares the detected energy on transmission resources 1, 2, 3, the synchronization signal detected on transmission resource 3 is determined. 3
  • the energy of sequence X6 is the largest. According to the above definition, terminal 3 can also determine that it belongs to TRP3, and determine that the baseband parameter of TRP3 on subband 3 is the third type of baseband parameter, but terminal 3 cannot determine whether TRP3 still contains other children.
  • the terminal 1 detects the synchronization signal 3 sequence X1 only on the transmission resource 1 using the first type of baseband parameters, and the sequence X1 corresponds to the TRP1, the terminal 1 determines to belong to the TRP1, and Determining the baseband parameter of TRP1 on subband 1 as the first type of baseband parameter;
  • the terminal 2 detects the synchronization signal 3 sequence X2 on the transmission resource 1 using the first type of baseband parameters, and detects the synchronization signal 3 sequence X3 on the transmission resource 2 using the second type of baseband parameters, and the sequences X2 and X3 correspond to the TRP2, Then, the terminal 2 determines to belong to the TRP2, and determines that the baseband parameter of the TRP2 in the subband 1 is the first type of baseband parameter, and the baseband parameter in the subband 2 is the second type of baseband parameter. At this time, the terminal 2 can work at least simultaneously or in TDM.
  • the terminal 2 can also determine that the attribution is TRP2, and determine that the baseband parameter of the TRP2 on the subband 2 is the second type of baseband parameter, but because the terminal 2 cannot determine whether the TRP2 further includes other subbands (such as subband 1) and The baseband parameters, at the beginning of access to TRP2, can only work on subband 2 according to the second type of baseband parameters until further configuration or indication of TRP2 is obtained;
  • the terminal 3 detects the synchronization signal 3 sequence X4 on the transmission resource 1 using the first type of baseband parameters, the synchronization signal 3 sequence X5 on the transmission resource 2 using the second type of baseband parameters, and the second type on the transmission resource 3
  • the baseband parameter detects the synchronization signal 3 sequence X6, and the sequences X4, X5 and X6 all correspond to the TRP3, then the terminal 3 determines the attribution to the TRP3, and determines that the baseband parameter of the TRP3 in the subband 1 is the first type of baseband parameter, in the subband 2
  • the baseband parameter is the second type of baseband parameter, and the baseband parameter of the subband 3 is the third type of baseband parameter.
  • the terminal can work at least simultaneously or TDM on the subband 1, subband 2, and subband 3 of the TRP3, or It is assumed that the terminal 3 determines that the energy of the synchronization signal 3 sequence X6 detected on the transmission resource 3 is the largest after comparing the detection energy on the transmission resources 1, 2, and 3. According to the above definition, the terminal 3 can also determine that the attribution is TRP3, and It is determined that the baseband parameter of TRP3 on subband 3 is the third type of baseband parameter, but since terminal 3 cannot determine whether TRP3 further includes other subbands (such as subbands 1, 2) and baseband parameters, at the beginning of accessing TRP3, only Can follow the third type of baseband The number works on subband 3 until a further configuration or indication of TRP3 is obtained.
  • Method 8 The terminal first detects the synchronization signal 3, and then receives the TRP-specific system information (TRP specific system information), Baseband parameters are obtained.
  • the terminal is notified on the system bandwidth of the TRP group or the transmission resource of the predetermined synchronization signal 3 or the transmission resource of the synchronization signal 3 indicated in the system information according to a predetermined baseband parameter or the system information.
  • the baseband parameter or the baseband parameter supported in the communication system detects the synchronization signal 3 so as to reside or be connected to the TRP corresponding to the synchronization signal 3.
  • the sync signal 3 should be detected using only one default baseband parameter.
  • the TRP-specific system information sent by the TRP is received according to a predetermined baseband parameter or a baseband parameter indicated in the system information, and the TRP or the TRP is determined according to the indication in the TRP-specific system information.
  • Baseband parameters for each Beam or the TRP on different time and frequency domain resources.
  • the terminal 1 detects the synchronization signal 3 sequence X1 only on the transmission resource 1 according to the maximum detection energy principle, and the sequence X1 corresponds to the TRP1, the terminal 1 determines to belong to the TRP1, and further the terminal 1 receives the TRP exclusive system transmitted by the TRP1.
  • the terminal 2 detects the synchronization signal 3 sequence X3 only on the transmission resource 2 according to the principle of maximum detection energy, and the sequence X3 corresponds to the TRP2, the terminal 2 determines to belong to the TRP2, and further the terminal 2 receives the TRP-specific system information transmitted by the TRP2.
  • the TRP-specific system information obtains the sub-bands in which the TRP2 operates and the baseband parameters of each sub-band, that is, the TRP2 operates on the sub-band 1 and the sub-band 2, and the first-type baseband parameters are used on the sub-band 1 in the sub-band 2 using the second type of baseband parameters;
  • the terminal 3 detects the synchronization signal 3 sequence X6 only on the transmission resource 3 according to the principle of maximum detection energy, and the sequence X6 corresponds to the TRP3, the terminal 3 determines to belong to the TRP3, and further the terminal 3 receives the TRP-specific system information sent by the TRP3.
  • the TRP-specific system information obtains the sub-bands in which the TRP3 operates and the baseband parameters of each sub-band, that is, the TRP3 operates on the sub-band 1, the sub-band 2, and the sub-band 3, and the first type of baseband parameters are used on the sub-band 1
  • the second type of baseband parameters are used on the sub-band 2
  • the third type of baseband parameters are used on the sub-band 3.
  • the terminal may directly detect the synchronization signal 3, receive the TRP-specific system information, and the like based on the synchronization of the synchronization signals 1 and 2, and may also use the synchronization signal 3 for further processing. Fine synchronization adjustment; if the TRP in the TRP group is not synchronized, the synchronization signals 1 and 2 and the synchronization signal 3 detected by the terminal may come from the unsynchronized TRP. At this time, the blind detection timing relationship is required when detecting the synchronization signal 3, that is, The downlink synchronization with a certain TRP is obtained through the synchronization signal 3, and then the TRP is accessed for further data transmission.
  • Embodiment 3 Application scenario of this embodiment As shown in FIG. 7, one SIA corresponds to one TRP group, and each TRP group includes multiple TRPs, and multiple TRPs may be synchronized or not synchronized, and some TRPs work in a high frequency band. Some TRPs work in the low frequency range.
  • the initial synchronization signals (synchronization signals 1 and 2) and the system information are transmitted only on all or part of the TRP in one frequency band, or simultaneously on all or part of the TRP on the low frequency and high frequency bands, and are transmitted by the TRP participating in the transmission.
  • the initial synchronization signal is the same as the system information; or the system information of the TRP broadcast on a certain frequency band may only include related information on the frequency band, and may also include related information of another frequency band.
  • the terminal When the terminal accesses or camps on a TRP group, it first detects the synchronization signal 1 and the synchronization signal 2, and can detect according to a default baseband parameter, for example, assuming that the default baseband parameter is a 15 kHz subcarrier spacing and the subcarrier spacing.
  • the blind detection of multiple baseband parameters supported in the system for example, first detecting the synchronization signals 1 and 2 according to the corresponding parameters of the 15 kHz subcarrier spacing and the subcarrier spacing, and then correspondingly corresponding to the 60 kHz subcarrier spacing and the subcarrier spacing.
  • the parameter detects the synchronization signals 1 and 2, if more baseband parameters are defined, and so on, the synchronization signal 1 and the synchronization signal 2 under one baseband parameter with the highest detection intensity are selected as the access point, and thus the synchronization signal 1 and 2
  • the corresponding TRP group performs initial synchronization, and then reads the system information of the TRP group.
  • the synchronization signals 1 and 2 can be agreed at a fixed position of the system bandwidth, for example, in the middle of the system bandwidth, thereby determining the frequency domain position of the system bandwidth based on the frequency domain positions of the synchronization signals 1 and 2 after obtaining the system bandwidth, and of course,
  • the time domain transmission locations of the synchronization signals 1 and 2 can be further agreed to facilitate the inference of time domain boundaries, such as radio frame/subframe/symbol boundaries, after blind detection of the synchronization signal.
  • the terminal needs to detect the initial synchronization signal and the system information on two frequency bands.
  • the initial synchronization signal may always be detected first in the low frequency band, if detected, synchronized with the low frequency band, and then the system information in the TRP group is received in the low frequency band.
  • the system information may include only the configuration information of the low frequency band, such as the related information of the synchronization signal 3, and the terminal may determine the home TRP and its baseband parameters in the low frequency band according to the method of the second embodiment; or the system The information may also include configuration information of the high frequency band, so that the terminal can determine the home TRP and its baseband parameters in the low frequency and high frequency bands according to the method of Embodiment 2.
  • the terminal may determine the home TRP and its baseband parameters in the high frequency band according to the method of the second embodiment, or the system information may also include the configuration of the low frequency band. Information, such that the terminal can determine the home TRP and its baseband parameters in the low and high frequency bands in accordance with the method of embodiment 2.
  • the initial synchronization signal can be detected in the low frequency and the high frequency band, the frequency band with the strongest signal is selected to obtain synchronization, and then the system information in the TRP group is received in the frequency band, and the system information can only include the configuration of a certain frequency band.
  • Information such as detecting information about the synchronization signal 3, etc., the terminal may determine the home TRP and its baseband parameters in the frequency band according to the method of Embodiment 2, or the system information includes both high frequency and low frequency band configuration information.
  • the terminal can determine the home TRP and its baseband parameters in the low frequency and high frequency bands according to the method of Embodiment 2.
  • the initial synchronization signal can be detected only in the frequency band, and after receiving the downlink synchronization, the system information sent on the frequency band is received, and the terminal can determine the frequency band according to the method in the second embodiment.
  • the above method processing flow can be implemented by a software program, which can be stored in a storage medium, and when the stored software program is called, the above method steps are performed.
  • a terminal is provided in the embodiment of the present invention.
  • the principle of solving the problem is similar to the method embodiment shown in FIG. 2A. Therefore, the implementation of the terminal can refer to the implementation of the method. No longer.
  • a terminal where the terminal includes:
  • the TRP group determining module 81 is configured to determine, according to the detected initial synchronization signal, a transmission receiving point TRP group to which the terminal belongs, where the initial synchronization signal includes a first synchronization signal and/or a second synchronization signal;
  • the baseband parameter determining module 82 is configured to determine a baseband parameter according to the third synchronization signal detected in the TRP group and/or the system information of the TRP group.
  • the baseband parameter determining module 82 is further configured to:
  • the third synchronization signal is detected on a transmission resource of the third synchronization signal indicated in the system information of the TRP group.
  • the baseband parameter determining module 82 is specifically configured to:
  • the TRP-specific system information includes a baseband parameter used by the TRP, a baseband parameter used by each Beam in the TRP, and a baseband parameter used by the TRP on different time domains and/or frequency domain resources. At least one of them.
  • the baseband parameter determination module 82 is specifically configured to:
  • the baseband parameter determining module 82 is specifically configured to:
  • the at least two third synchronization signal sequences are reported to the network side, and the at least one third synchronization signal sequence notified by the network side is received.
  • the baseband parameter determining module 82 is specifically configured to:
  • the system information of the TRP group includes a baseband parameter used by a subband corresponding to the TRP group, a time domain resource corresponding to the TRP group, and/or a frequency domain resource used by the TRP group. At least one of a baseband parameter, a baseband parameter used by the TPR in the TRP group, and a baseband parameter used by a beam corresponding to the TRP group.
  • the transmission resource is a time domain resource and/or a frequency domain resource occupied by the third synchronization signal transmission, or is a time domain window for detecting the third synchronization signal and/or Frequency domain window.
  • the baseband parameter determination module blindly detects the in the time domain window and/or the frequency domain window a third synchronization signal, and obtaining, by the third synchronization signal, a synchronization relationship of a sub-band or a TRP or a beam corresponding to the time domain window and/or the frequency domain window.
  • the correspondence between the third synchronization signal and the sub-band or the TRP or the beam is determined according to a pre-agreed manner, or is notified by the system information of the TRP group.
  • the transmitting module 83 is configured to perform subsequent transmission according to the baseband parameter determined by the baseband parameter determining module on a TRP or a subband or a beam in the TRP group.
  • another terminal including a transceiver 91, and at least one processor 92 coupled to the transceiver 91, wherein:
  • the processor 92 is configured to read the program in the memory 93 and perform the following process:
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 92 and various circuits of memory represented by memory 93.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver 91 can be an element or a plurality of elements, such as a plurality of receivers and transmitters, providing means for communicating with various other devices on a transmission medium.
  • the processor 92 can be a central buried device (CPU), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or a CPLD complex programmable.
  • CPU central buried device
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • CPLD complex programmable.
  • Logic Device Complex Programmable Logic Device, referred to as CPLD).
  • the processor 92 reads the program in the memory 93, and specifically performs the method in the embodiment shown in FIG. 2A.
  • the processor 92 reads the program in the memory 93, and specifically performs the method in the embodiment shown in FIG. 2A.
  • the processor 92 reads the program in the memory 93, and specifically performs the method in the embodiment shown in FIG. 2A.
  • a network side device belongs to a transmission receiving point TRP group, and includes:
  • the sending module 101 is configured to send an initial synchronization signal in the TRP group, so that the terminal determines, according to the initial synchronization signal, a TRP group to which the terminal belongs, where the initial synchronization signal includes a first synchronization signal and/or a second Sync signal; and/or
  • Transmitting a third synchronization signal and/or system information of the TRP group in the TRP group, so that the terminal determines the network side according to the third synchronization signal and/or system information of the TRP group The baseband parameters of the device or the baseband parameters of the network side devices within the TRP group.
  • the third synchronization signal sequence corresponding to the baseband parameter of the network side device Determining the third synchronization signal sequence corresponding to the baseband parameter of the network side device according to a pre-agreed relationship between the third synchronization signal sequence and the baseband parameter indicated in the system information of the TRP group, according to the preset a predetermined baseband parameter or any one of a plurality of baseband parameters defined in the communication system or a baseband parameter indicated in the system information of the TRP group or a baseband parameter of the network side device, sent to the network side device
  • the third synchronization signal sequence corresponding to the baseband parameter or
  • the system information of the TRP group includes a baseband parameter used by the subband corresponding to the TRP group, a time domain resource corresponding to the TRP group, and/or a baseband used by the frequency domain resource.
  • a parameter, a baseband parameter used by a beam corresponding to the TRP group, a baseband parameter used by each network side device in the TRP group, and a used by each beam of each network side device in the TRP group Baseband parameters, and at least one of baseband parameters used by each of the network side devices in the TRP group on different time domains and/or frequency domain resources.
  • the baseband parameters are indicated in the system information of the TRP group.
  • the sending module 101 is further configured to:
  • the information includes at least one of a baseband parameter used by the network side device, a baseband parameter used by each beam in the network side device, and a baseband parameter used by the network side device on different time domains and/or frequency domain resources.
  • the device further includes: a receiving module 102, configured to: receive a plurality of third synchronization signal sequences reported by the terminal, and select one or more third synchronization signal sequences therefrom;
  • the sending module 101 is further configured to: notify the terminal of a third synchronization signal sequence selected by the receiving module.
  • the device further includes a data transmission module 103, configured to perform subsequent data transmission according to the baseband parameter of the network side device on the working bandwidth of the network side device.
  • the network side device is: a TRP or a base station in the TRP group.
  • another network side device including a transceiver 111 and at least one processor 112 coupled to the transceiver 111, wherein:
  • the processor 112 is configured to read a program in the memory 113 and perform the following process:
  • the control transceiver 111 transmits an initial synchronization signal in the TRP group, so that the terminal determines the TRP group to which the terminal belongs according to the initial synchronization signal, and the initial synchronization signal includes a first synchronization signal and/or a second synchronization signal. ;and / or
  • the transceiver 111 is configured to receive and transmit data under the control of the processor 112.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 112 and various circuits of memory represented by memory 113.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 111 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 112 is responsible for managing the bus architecture and general processing, as well as providing various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 113 can store data used by the processor 112 when performing operations.
  • the processor 112 can be a CPU, an ASIC, an FPGA, or a CPLD.
  • the processor 112 reads the program in the memory 113, and specifically performs the method in the embodiment shown in FIG. 2A.
  • the processor 112 reads the program in the memory 113, and specifically performs the method in the embodiment shown in FIG. 2A.
  • the processor 112 reads the program in the memory 113, and specifically performs the method in the embodiment shown in FIG. 2A.
  • FIG. 2B For details, refer to the related description in the embodiment shown in FIG. 2B, and details are not described herein again.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种确定基带参数的方法和设备,用于解决新的无线通信系统中如何确定基带参数(numerology)还没有明确的方案的问题。方法包括:终端根据检测到的初始同步信号,确定所述终端归属的TRP组;终端根据在所述TRP组内检测到的第三同步信号和/或所述TRP组的系统信息,确定基带参数。采用本发明实施例提供的方案能够正确识别一个TRP组中的不同子带、不同TRP和/或不同波束Beam所对应的基带参数,从而实现了与TRP组中的不同子带、不同TRP和/或不同波束Beam的同步,保证了终端能够按照正确的基带参数工作在相应的子带、TRP和/或Beam上。

Description

一种确定基带参数的方法和设备
本申请要求在2016年8月12日提交中国专利局、申请号为201610665828.8、发明名称为一种确定基带参数的方法和设备的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,特别涉及一种确定基带参数(numerology)的方法和设备。
背景技术
现有长期演进(Long Term Evolution,简称LTE)系统中针对频分双工(Frequency Division Duplex,简称FDD)和时分双工(Time Division Duplex,简称TDD)分别定义了帧结构。
LTE FDD系统使用帧结构1(Frame Structure type 1,简称FS1),如图1A所示,上行和下行传输使用不同的载波频率,上行和下行传输均使用相同的帧结构。一个10ms长度的无线帧(radio frame)包含有10个1ms子帧(subframe),每个子帧内分为两个0.5ms长的时隙(slot)。上行和下行数据发送的传输时间间隔(Transmission Time Interval,简称TTI)为1ms。
LTE TDD系统使用帧结构2(Frame Structure type 2,简称FS2),如图1B所示,上行和下行传输使用相同的频率上的不同子帧或不同时隙。每个10ms无线帧由两个5ms半帧(half-frame)构成,每个半帧中包含5个1ms长度的子帧。FS2中的子帧分为三类:下行子帧、上行子帧和特殊子帧,每个特殊子帧由下行传输时隙(Downlink Pilot Time Slot,简称DwPTS)、保护间隔(Guard Period,简称GP)和上行传输时隙(Uplink Pilot Time Slot,简称UpPTS)三部分构成。每个半帧中包含至少1个下行子帧和至少1个上行子帧,以及至多1个特殊子帧。根据不同的上下行切换点周期和上下行分配比例,定义了如表1所示的7种TDD上下行配置。
表1:上下行配置(Uplink-downlink configurations)
Figure PCTCN2017091495-appb-000001
LTE系统中对FDD和TDD(普通子帧,特殊子帧中所包含的符号数短于下述定义) 定义了两种循环前缀(Cyclic Prefix,简称CP)类型,常规CP和扩展CP。对于上行传输,定义子载波间隔Δf=15kHz,在常规CP下,每个时隙中包含7个单载波频分多址接入(Single Carrier Frequency Division Multiple Access,简称SC-FDMA)符号,第一个SC-FDMA符号的CP长度为160Ts,其他SC-FDMA符号的CP长度为144Ts;在扩展CP下,每个时隙中包含6个SC-FDMA符号,每个SC-FDMA符号的CP长度都为512Ts。对于下行传输,在常规CP下,定义子载波间隔Δf=15kHz,每个时隙中包含7个正交频分复用(Orthogonal Frequency Division Multiplex,简称OFDM)符号,其中第一个OFDM符号的CP长度为160Ts,其他OFDM符号的CP长度为144Ts;在扩展CP下,定义了两种子载波间隔Δf=15kHz和Δf=7.5kHz,在载波间隔为Δf=15kHz时,每个时隙中包含6个OFDM符号,每个OFDM符号的CP长度都为512Ts,在载波间隔为Δf=7.5kHz时,每个时隙中包含3个OFDM符号,每个OFDM符号的CP长度都为1024Ts。其中,Ts为系统采样间隔,定义为307200*Ts=10ms。Δf=7.5kHz仅用于多播业务,仅在配置的多媒体广播多播单频网(Multimedia Broadcast multicast service Single Frequency Network,简称MBSFN)子帧中使用。
在LTE系统中,用户设备(Μser Equipment,简称UE;也称终端)要接入LTE网络,必须经过小区搜索过程,以获取小区系统信息。UE进行同步信号检测、广播信息和系统信息接收时都只存在一种基带参数(numerology),即子载波间隔为Δf=15kHz,且常规CP和扩展CP下分别对应固定的OFDM符号数和CP长度,因此,UE不需要识别numerology。随着移动通信业务需求的发展变化,国际电信联盟(International Telecommunication Union,简称ITU)和3GPP等组织都开始研究新的无线通信系统(例如5G系统)。新的无线通信系统可以工作在更高频段,同时为了后向兼容,也可以工作在中低频段。不同频段由于传输特性和需求差异,需要定义不同的numerology。同一个频段或传输接收点(Transmission Reception Point,简称TRP)由于需求不同,也可以使用不同的numerology。因此,工作在新的无线通信系统中的UE需要识别出所工作的频带使用的numerology,才能进行正确的数据传输。目前,新的无线通信系统中如何确定numerology还没有明确的方案。
发明内容
本发明实施例提供了一种确定基带参数的方法和设备,用于解决新的无线通信系统中如何确定numerology还没有明确的方案的问题。
第一方面,提供了一种确定基带参数的方法,所述方法包括:
终端根据检测到的初始同步信号,确定所述终端归属的传输接收点TRP组,所述初始同步信号包括第一同步信号和/或第二同步信号;
所述终端根据在所述TRP组内检测到的第三同步信号和/或所述TRP组的系统信息,确定基带参数。
一种可能的实施方式中,所述终端根据在所述TRP组内检测到的第三同步信号和/或所述TRP组的系统信息,确定基带参数之前,还包括:
所述终端在所述TRP组的系统带宽上,检测所述第三同步信号;或者
所述终端在预先约定的第三同步信号的传输资源上,检测所述第三同步信号;或者
所述终端在所述TRP组的系统信息中指示的第三同步信号的传输资源上,检测所述第三同步信号。
一种可能的实施方式中,所述终端根据在所述TRP组内检测到的第三同步信号/或所述TRP组的系统信息,确定基带参数之前,还包括:
所述终端按照预先设定的基带参数,检测所述第三同步信号;或者
所述终端根据频段与基带参数的对应关系,确定当前检测所述第三同步信号的频段对应的基带参数,并按照所确定的基带参数,检测所述第三同步信号;或者
所述终端按照通信系统支持的基带参数,检测所述第三同步信号;或者
所述终端按照所述TRP组的系统信息中指示的基带参数,检测所述第三同步信号;或者
所述终端按照预先约定的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定每个第三同步信号序列的基带参数,按照所确定的基带参数检测所述第三同步信号;或者
所述终端按照所述TRP组的系统信息中指示的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定每个第三同步信号序列的基带参数,按照所确定的基带参数检测所述第三同步信号。
一种可能的实施方式中,所述终端根据在所述TRP组内检测到的第三同步信号和/或所述TRP组的系统信息,确定基带参数,包括:
所述终端将检测到的所述第三同步信号传输使用的基带参数,确定为所述第三同步信号对应的子带、TRP和/或波束所使用的基带参数;或者
所述终端根据预先约定的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定检测到的所述第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数;或者
所述终端按照预先设定的基带参数,接收检测到的所述第三同步信号对应的TRP发送的TRP专属系统信息,并根据所述TRP专属系统信息,确定基带参数;或者
所述终端根据所述TRP组的系统信息中指示的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定检测到的所述第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数;或者
所述终端按照所述TRP组的系统信息中指示的基带参数,接收检测到的所述第三同步信号对应的TRP发送的TRP专属系统信息,并根据所述TRP专属系统信息,确定基带参数;
其中,所述TRP专属系统信息中包括所述TRP使用的基带参数、所述TRP中的每个Beam使用的基带参数、以及所述TRP在不同时域和/或频域资源上使用的基带参数中的至少一种。
一种可能的实施方式中,若检测到的第三同步信号序列的数量为至少两个,所述终端确定基带参数,包括:
所述终端确定每个第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数;或者
所述终端从所述至少两个第三同步信号序列中,选择至少一个第三同步信号序列,并确定所选择的第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数。
进一步,所述终端从所述至少两个同步信号序列中,选择至少一个同步信号序列,包括:
所述终端根据所述至少两个第三同步信号序列的接收能量、信号强度和/或接收指标,从所述至少两个第三同步信号序列中,选择至少一个第三同步信号序列;或者
所述终端将所述至少两个第三同步信号序列上报给网络侧,并接收网络侧通知的至少一个第三同步信号序列。
一种可能的实施方式中,所述终端根据所述TRP组的系统信息,确定基带参数,包括:
所述终端接收所述TRP组的系统信息,所述TRP组的系统信息中包括所述TRP组对应的子带所使用的基带参数、所述TRP组对应的时域资源和/或频域资源所使用的基带参数、所述TRP组中的TPR所使用的基带参数、以及所述TRP组对应的波束所使用的基带参数中的至少一种。
一种可能的实施方式中,所述传输资源为所述第三同步信号传输占用的时域资源和/或频域资源,或者为用于检测所述第三同步信号的时域窗口和/或频域窗口。
一种可能的实施方式中,若所述传输资源为所述第三同步信号传输占用的时域资源和/或频域资源,所述终端按照基于所述初始同步信号所确定的与所述TRP组的同步关系,检测所述第三同步信号;
若所述传输资源为用于检测所述第三同步信号的时域窗口和/或频域窗口,所述终端在所述时域窗口和/或频域窗口中,盲检测所述第三同步信号,并通过所述第三同步信号获得与所述时域窗口和/或频域窗口对应的子带或TRP或波束的同步关系。
一种可能的实施方式中,所述第三同步信号与子带或TRP或波束的对应关系为根据预先约定的方式确定的,或者为所述TRP组的系统信息通知的。
一种可能的实施方式中,所述终端根据在所述TRP组内检测到的第三同步信号和/或所述TRP组的系统信息,确定基带参数之后,还包括:
所述终端在所述TRP组中的TRP或子带或波束上,按照所确定的基带参数进行后续传输。
第二方面,提供了一种确定基带参数的方法,所述方法包括:
传输接收点TRP组中的第一网络侧设备在所述TRP组内发送初始同步信号,以使终端根据所述初始同步信号确定所述终端归属的TRP组,所述初始同步信号包括第一同步信号和/或第二同步信号;
所述TRP组中的第二网络侧设备在所述TRP组内发送第三同步信号和/或所述TRP组中的第三网络侧设备在所述TRP组内发送所述TRP组的系统信息,以使所述终端根据所述第三同步信号和/或所述TRP组的系统信息,确定所述第二网络侧设备的基带参数或所述TRP组内的网络侧设备的基带参数。
一种可能的实施方式中,所述TRP组中的第二网络侧设备在所述TRP组内发送第三同步信号,包括:
所述第二网络侧设备在所述TRP组的系统带宽上对应所述第二网络侧设备的工作带宽上,发送所述第三同步信号;或者
所述第二网络侧设备在预先约定的所述第三同步信号的传输资源上,发送所述第三同步信号;或者
所述第二网络侧设备在所述TRP组的系统信息中指示的所述第三同步信号的传输资源上,发送所述第三同步信号。
一种可能的实施方式中,所述TRP组中的第二网络侧设备在所述TRP组内发送第三同步 信号,包括:
所述第二网络侧设备根据频段与基带参数的对应关系,确定当前发送所述第三同步信号的频段对应的基带参数,并按照所确定的基带参数,发送所述第三同步信号;或者
所述第二网络侧设备按照预先约定的或所述TRP组的系统信息中指示的第三同步信号序列与基带参数的对应关系,确定所述第二网络侧设备的基带参数所对应的所述第三同步信号序列,按照预先设定的基带参数或者通信系统中定义的多种基带参数中的任意一种或所述TRP组的系统信息中指示的基带参数或者所述第二网络侧设备的基带参数,发送与所述第二网络侧设备的基带参数对应的所述第三同步信号序列;或者
所述第二网络侧设备按照预先约定的或所述TRP组的系统信息中指示的第三同步信号序列与网络侧设备的对应关系,确定所述第二网络侧设备对应的所述第三同步信号序列,按照所述第二网络侧设备的基带参数发送所述第二网络侧设备对应的所述第三同步信号序列。
一种可能的实施方式中,所述TRP组的系统信息中包括所述TRP组对应的子带所使用的基带参数、所述TRP组对应的时域资源和/或频域资源所使用的基带参数、所述TRP组对应的波束所使用的基带参数、所述TRP组中的每个网络侧设备所使用的基带参数、所述TRP组中的每个网络侧设备的每个波束所使用的基带参数、以及所述TRP组中的每个网络侧设备在不同时域和/或频域资源上使用的基带参数中的至少一种。
一种可能的实施方式中,所述TRP组的系统信息中指示第三同步信号序列与基带参数的对应关系;或者所述TRP组的系统信息中指示基带参数。
一种可能的实施方式中,所述TRP组的系统信息中指示所述第三同步信号的传输资源。
一种可能的实施方式中,所述方法还包括:
所述第二网络侧设备按照预先约定的基带参数或者所述TRP组的系统信息中指示的基带参数或所述第二网络侧设备的一种默认的基带参数,发送所述第二网络侧设备的专属系统信息,其中,所述专属系统信息中包括网络侧设备使用的基带参数、网络侧设备中的每个波束使用的基带参数、以及网络侧设备在不同时域和/或频域资源上使用的基带参数中的至少一种。
基于上述任一实施例,一种可能的实施方式中,所述方法还包括:
所述第二网络侧设备或所述第三网络侧设备接收所述终端上报的多个第三同步信号序列,从中选择一个或多个第三同步信号序列,并将所选择的第三同步信号序列通知给所述终端。
基于上述任一实施例,一种可能的实施方式中,所述方法还包括:所述第二网络侧设备在自身工作带宽上,按照自身的基带参数进行后续传输。
基于上述任一实施例,一种可能的实施方式中,所述第一网络侧设备或所述第二网络侧设备或所述第三网络侧设备为:所述TRP组中的TRP或基站。
第三方面,提供了一种终端,所述终端包括:
TRP组确定模块,用于根据检测到的初始同步信号,确定所述终端归属的传输接收点TRP组,所述初始同步信号包括第一同步信号和/或第二同步信号;
基带参数确定模块,用于根据在所述TRP组内检测到的第三同步信号和/或所述TRP组的系统信息,确定基带参数。
一种可能的实施方式中,所述基带参数确定模块还用于:
在所述TRP组的系统带宽上,检测所述第三同步信号;或者
在预先约定的第三同步信号的传输资源上,检测所述第三同步信号;或者
在所述TRP组的系统信息中指示的第三同步信号的传输资源上,检测所述第三同步信号。
一种可能的实施方式中,所述基带参数确定模块还用于:
按照预先设定的基带参数,检测所述第三同步信号;或者
根据频段与基带参数的对应关系,确定当前检测所述第三同步信号的频段对应的基带参数,并按照所确定的基带参数,检测所述第三同步信号;或者
按照通信系统支持的基带参数,检测所述第三同步信号;或者
按照所述TRP组的系统信息中指示的基带参数,检测所述第三同步信号;或者
按照预先约定的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定每个第三同步信号序列的基带参数,按照所确定的基带参数检测所述第三同步信号;或者
按照所述TRP组的系统信息中指示的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定每个第三同步信号序列的基带参数,按照所确定的基带参数检测所述第三同步信号。
一种可能的实施方式中,所述基带参数确定模块具体用于:
将检测到的所述第三同步信号传输使用的基带参数,确定为所述第三同步信号对应的子带、TRP和/或波束所使用的基带参数;或者
根据预先约定的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定检测到的所述第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数;或者
按照预先设定的基带参数,接收检测到的所述第三同步信号对应的TRP发送的TRP专属系统信息,并根据所述TRP专属系统信息,确定基带参数;或者
根据所述TRP组的系统信息中指示的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定检测到的所述第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数;或者
按照所述TRP组的系统信息中指示的基带参数,接收检测到的所述第三同步信号对应的TRP发送的TRP专属系统信息,并根据所述TRP专属系统信息,确定基带参数;
其中,所述TRP专属系统信息中包括所述TRP使用的基带参数、所述TRP中的每个Beam使用的基带参数、以及所述TRP在不同时域和/或频域资源上使用的基带参数中的至少一种。
一种可能的实施方式中,若检测到的第三同步信号序列的数量为至少两个,所述基带参数确定模块具体用于:
确定每个第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数;或者
从所述至少两个第三同步信号序列中,选择至少一个第三同步信号序列,并确定所选择的第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数。
一种可能的实施方式中,所述基带参数确定模块具体用于:
根据所述至少两个第三同步信号序列的接收能量、信号强度和/或接收指标,从所述至少两个第三同步信号序列中,选择至少一个第三同步信号序列;或者
将所述至少两个第三同步信号序列上报给网络侧,并接收网络侧通知的至少一个第三 同步信号序列。
一种可能的实施方式中,所述基带参数确定模块具体用于:
接收所述TRP组的系统信息,所述TRP组的系统信息中包括所述TRP组对应的子带所使用的基带参数、所述TRP组对应的时域资源和/或频域资源所使用的基带参数、所述TRP组中的TPR所使用的基带参数、以及所述TRP组对应的波束所使用的基带参数中的至少一种。
一种可能的实施方式中,所述传输资源为所述第三同步信号传输占用的时域资源和/或频域资源,或者为用于检测所述第三同步信号的时域窗口和/或频域窗口。
进一步,若所述传输资源为所述第三同步信号传输占用的时域资源和/或频域资源,所述基带参数确定模块按照基于所述初始同步信号所确定的与所述TRP组的同步关系,检测所述第三同步信号;
若所述传输资源为用于检测所述第三同步信号的时域窗口和/或频域窗口,所述基带参数确定模块在所述时域窗口和/或频域窗口中,盲检测所述第三同步信号,并通过所述第三同步信号获得与所述时域窗口和/或频域窗口对应的子带或TRP或波束的同步关系。
一种可能的实施方式中,所述第三同步信号与子带或TRP或波束的对应关系为根据预先约定的方式确定的,或者为所述TRP组的系统信息通知的。
一种可能的实施方式中,所述终端还包括:
传输模块,用于在所述TRP组中的TRP或子带或波束上,按照所述基带参数确定模块确定的基带参数进行后续传输。
第四方面,提供了一种终端,包括收发机、以及与所述收发机连接的至少一个处理器,其中:
所述处理器,用于读取存储器中的程序,执行下列过程:
根据检测到的初始同步信号,确定所述终端归属的传输接收点TRP组,所述初始同步信号包括第一同步信号和/或第二同步信号;根据在所述TRP组内检测到的第三同步信号和/或所述TRP组的系统信息,确定基带参数;
所述收发机,用于在所述处理器的控制下接收和发送数据。
一种可能的实施方式中,所述处理器读取所述存储器中的程序,还执行下列过程:
在所述TRP组的系统带宽上,检测所述第三同步信号;或者
在预先约定的第三同步信号的传输资源上,检测所述第三同步信号;或者
在所述TRP组的系统信息中指示的第三同步信号的传输资源上,检测所述第三同步信号。
一种可能的实施方式中,所述处理器读取所述存储器中的程序,还执行下列过程:
按照预先设定的基带参数,检测所述第三同步信号;或者
根据频段与基带参数的对应关系,确定当前检测所述第三同步信号的频段对应的基带参数,并按照所确定的基带参数,检测所述第三同步信号;或者
按照通信系统支持的基带参数,检测所述第三同步信号;或者
按照所述TRP组的系统信息中指示的基带参数,检测所述第三同步信号;或者
按照预先约定的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定每个第三同步信号序列的基带参数,按照所确定的基带参数检测所述第三同步信号;或者
按照所述TRP组的系统信息中指示的第三同步信号序列与子带或TRP或波束所使用的 基带参数的对应关系,确定每个第三同步信号序列的基带参数,按照所确定的基带参数检测所述第三同步信号。
一种可能的实施方式中,所述处理器读取所述存储器中的程序,具体执行下列过程:
将检测到的所述第三同步信号传输使用的基带参数,确定为所述第三同步信号对应的子带、TRP和/或波束所使用的基带参数;或者
根据预先约定的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定检测到的所述第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数;或者
按照预先设定的基带参数,接收检测到的所述第三同步信号对应的TRP发送的TRP专属系统信息,并根据所述TRP专属系统信息,确定基带参数;或者
根据所述TRP组的系统信息中指示的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定检测到的所述第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数;或者
按照所述TRP组的系统信息中指示的基带参数,接收检测到的所述第三同步信号对应的TRP发送的TRP专属系统信息,并根据所述TRP专属系统信息,确定基带参数;
其中,所述TRP专属系统信息中包括所述TRP使用的基带参数、所述TRP中的每个Beam使用的基带参数、以及所述TRP在不同时域和/或频域资源上使用的基带参数中的至少一种。
一种可能的实施方式中,若检测到的第三同步信号序列的数量为至少两个,所述处理器读取所述存储器中的程序,具体执行下列过程:
确定每个第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数;或者
从所述至少两个第三同步信号序列中,选择至少一个第三同步信号序列,并确定所选择的第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数。
一种可能的实施方式中,所述处理器读取所述存储器中的程序,具体执行下列过程:
根据所述至少两个第三同步信号序列的接收能量、信号强度和/或接收指标,从所述至少两个第三同步信号序列中,选择至少一个第三同步信号序列;或者
将所述至少两个第三同步信号序列上报给网络侧,并接收网络侧通知的至少一个第三同步信号序列。
一种可能的实施方式中,所述处理器读取所述存储器中的程序,具体执行下列过程:
通过所述收发机接收所述TRP组的系统信息,所述TRP组的系统信息中包括所述TRP组对应的子带所使用的基带参数、所述TRP组对应的时域资源和/或频域资源所使用的基带参数、所述TRP组中的TPR所使用的基带参数、以及所述TRP组对应的波束所使用的基带参数中的至少一种。
一种可能的实施方式中,所述传输资源为所述第三同步信号传输占用的时域资源和/或频域资源,或者为用于检测所述第三同步信号的时域窗口和/或频域窗口。
进一步,若所述传输资源为所述第三同步信号传输占用的时域资源和/或频域资源,所述处理器按照基于所述初始同步信号所确定的与所述TRP组的同步关系,检测所述第三同步信号;
若所述传输资源为用于检测所述第三同步信号的时域窗口和/或频域窗口,所述处理器在所述时域窗口和/或频域窗口中,盲检测所述第三同步信号,并通过所述第三同步信号获得与所述时域窗口和/或频域窗口对应的子带或TRP或波束的同步关系。
一种可能的实施方式中,所述第三同步信号与子带或TRP或波束的对应关系为根据预先约定的方式确定的,或者为所述TRP组的系统信息通知的。
一种可能的实施方式中,所述处理器读取所述存储器中的程序,还执行下列过程:
在所述TRP组中的TRP或子带或波束上,按照所述基带参数确定模块确定的基带参数进行后续传输。
第五方面,提供了一种网络侧设备,所述网络侧设备归属于传输接收点TRP组,包括:
发送模块,用于在所述TRP组内发送初始同步信号,以使终端根据所述初始同步信号确定所述终端归属的TRP组,所述初始同步信号包括第一同步信号和/或第二同步信号;和/或
在所述TRP组内发送第三同步信号和/或所述TRP组的系统信息,以使所述终端根据所述第三同步信号和/或所述TRP组的系统信息,确定所述网络侧设备的基带参数或所述TRP组内的网络侧设备的基带参数。
一种可能的实施方式中,所述发送模块具体用于:
在所述TRP组的系统带宽上对应所述网络侧设备的工作带宽上,发送所述第三同步信号;或者
在预先约定的所述第三同步信号的传输资源上,发送所述第三同步信号;或者
在所述TRP组的系统信息中指示的所述第三同步信号的传输资源上,发送所述第三同步信号。
一种可能的实施方式中,所述发送模块具体用于:
根据频段与基带参数的对应关系,确定当前发送所述第三同步信号的频段对应的基带参数,并按照所确定的基带参数,发送所述第三同步信号;或者
按照预先约定的或所述TRP组的系统信息中指示的第三同步信号序列与基带参数的对应关系,确定所述网络侧设备的基带参数所对应的所述第三同步信号序列,按照预先设定的基带参数或者通信系统中定义的多种基带参数中的任意一种或所述TRP组的系统信息中指示的基带参数或者所述网络侧设备的基带参数,发送与所述网络侧设备的基带参数对应的所述第三同步信号序列;或者
按照预先约定的或所述TRP组的系统信息中指示的第三同步信号序列与网络侧设备的对应关系,确定所述网络侧设备对应的所述第三同步信号序列,按照所述网络侧设备的基带参数发送所述网络侧设备对应的所述第三同步信号序列。
一种可能的实施方式中,所述TRP组的系统信息中包括所述TRP组对应的子带所使用的基带参数、所述TRP组对应的时域资源和/或频域资源所使用的基带参数、所述TRP组对应的波束所使用的基带参数、所述TRP组中的每个网络侧设备所使用的基带参数、所述TRP组中的每个网络侧设备的每个波束所使用的基带参数、以及所述TRP组中的每个网络侧设备在不同时域和/或频域资源上使用的基带参数中的至少一种。
一种可能的实施方式中,所述TRP组的系统信息中指示的第三同步信号序列与基带参数的对应关系;或者所述TRP组的系统信息中指示基带参数。
一种可能的实施方式中,所述TRP组的系统信息中指示所述第三同步信号的传输资源。
一种可能的实施方式中,所述发送模块还用于:
按照预先约定的基带参数或者所述TRP组的系统信息中指示的基带参数或所述网络侧设备的一种默认的基带参数,发送所述网络侧设备的专属系统信息,其中,所述专属系统 信息中包括网络侧设备使用的基带参数、网络侧设备中的每个波束使用的基带参数、以及网络侧设备在不同时域和/或频域资源上使用的基带参数中的至少一种。
一种可能的实施方式中,所述设备还包括接收模块,用于:接收所述终端上报的多个第三同步信号序列,从中选择一个或多个第三同步信号序列;
所述发送模块还用于:将所述接收模块选择的第三同步信号序列通知给所述终端。
基于上述任一实施例,一种可能的实施方式中,所述设备还包括数据传输模块,用于:在所述网络侧设备的工作带宽上,按照所述网络侧设备的基带参数进行后续数据传输。
基于上述任一实施例,一种可能的实施方式中,所述网络侧设备为:所述TRP组中的TRP或基站。
第六方面,提供了一种网络侧设备,包括收发机、以及与所述收发机连接的至少一个处理器,其中:
所述处理器,用于读取存储器中的程序,执行下列过程:
控制所述收发机在所述TRP组内发送初始同步信号,以使终端根据所述初始同步信号确定所述终端归属的TRP组,所述初始同步信号包括第一同步信号和/或第二同步信号;和/或
控制所述收发机在所述TRP组内发送第三同步信号和/或所述TRP组的系统信息,以使所述终端根据所述第三同步信号和/或所述TRP组的系统信息,确定所述网络侧设备的基带参数或所述TRP组内的网络侧设备的基带参数;
所述收发机,用于在所述处理器的控制下接收和发送数据。
一种可能的实施方式中,所述处理器读取所述存储器中的程序,具体执行下列过程:
控制所述收发机在所述TRP组的系统带宽上对应所述网络侧设备的工作带宽上,发送所述第三同步信号;或者
控制所述收发机在预先约定的所述第三同步信号的传输资源上,发送所述第三同步信号;或者
控制所述收发机在所述TRP组的系统信息中指示的所述第三同步信号的传输资源上,发送所述第三同步信号。
一种可能的实施方式中,所述处理器读取所述存储器中的程序,具体执行下列过程:
根据频段与基带参数的对应关系,确定当前发送所述第三同步信号的频段对应的基带参数,并控制所述收发机按照所确定的基带参数,发送所述第三同步信号;或者
按照预先约定的或所述TRP组的系统信息中指示的第三同步信号序列与基带参数的对应关系,确定所述网络侧设备的基带参数所对应的所述第三同步信号序列,控制所述收发机按照预先设定的基带参数或者通信系统中定义的多种基带参数中的任意一种或所述TRP组的系统信息中指示的基带参数或者所述网络侧设备的基带参数,发送与所述网络侧设备的基带参数对应的所述第三同步信号序列;或者
按照预先约定的或所述TRP组的系统信息中指示的第三同步信号序列与网络侧设备的对应关系,确定所述网络侧设备对应的所述第三同步信号序列,控制所述收发机按照所述网络侧设备的基带参数发送所述网络侧设备对应的所述第三同步信号序列。
一种可能的实施方式中,所述TRP组的系统信息中包括所述TRP组对应的子带所使用的基带参数、所述TRP组对应的时域资源和/或频域资源所使用的基带参数、所述TRP组对应的波束所使用的基带参数、所述TRP组中的每个网络侧设备所使用的基带参数、所述TRP组 中的每个网络侧设备的每个波束所使用的基带参数、以及所述TRP组中的每个网络侧设备在不同时域和/或频域资源上使用的基带参数中的至少一种。
一种可能的实施方式中,所述TRP组的系统信息中指示的第三同步信号序列与基带参数的对应关系;或者所述TRP组的系统信息中指示基带参数。
一种可能的实施方式中,所述TRP组的系统信息中指示所述第三同步信号的传输资源。
一种可能的实施方式中,所述处理器读取所述存储器中的程序,还执行下列过程:
控制所述收发机按照预先约定的基带参数或者所述TRP组的系统信息中指示的基带参数或所述网络侧设备的一种默认的基带参数,发送所述网络侧设备的专属系统信息,其中,所述专属系统信息中包括网络侧设备使用的基带参数、网络侧设备中的每个波束使用的基带参数、以及网络侧设备在不同时域和/或频域资源上使用的基带参数中的至少一种。
一种可能的实施方式中,所述处理器读取所述存储器中的程序,还执行下列过程:
控制所述收发机接收所述终端上报的多个第三同步信号序列,从中选择一个或多个第三同步信号序列;
控制所述收发机将所述接收模块选择的第三同步信号序列通知给所述终端。
基于上述任一实施例,一种可能的实施方式中,所述处理器读取所述存储器中的程序,还执行下列过程:
在所述网络侧设备的工作带宽上,按照所述网络侧设备的基带参数进行后续数据传输。
基于上述任一实施例,一种可能的实施方式中,所述网络侧设备为:所述TRP组中的TRP或基站。
第七方面,提供了一种计算机可读存储介质,其中存储有可执行的程序代码,该程序代码用以实现第一方面所述的方法。
第八方面,提供了一种计算机可读存储介质,其中存储有可执行的程序代码,该程序代码用以实现第二方面所述的方法。
本发明实施例提供的方法和设备中,终端先确定自身所归属的TRP组,实现与TRP组的同步;再通过在该TRP组内检测第三同步信号和/或该TRP组的系统信息,能够正确识别一个TRP组中的不同子带、不同TRP和/或不同波束Beam所对应的基带参数,从而实现了与TRP组中的不同子带、不同TRP和/或不同波束Beam的同步,保证了终端能够按照正确的基带参数工作在相应的子带、TRP和/或Beam上。
附图说明
图1A为LTE FDD系统中帧结构1的示意图;
图1B为LTE FDD系统中帧结构2的示意图;
图2A为本发明实施例提供的一种终端侧确定基带参数的方法的示意图;
图2B为本发明实施例提供的一种网络侧确定基带参数的方法的示意图;
图3为本发明实施例1的应用场景的示意图;
图4A和图4B为本发明实施例1中同步信号3的示意图;
图5为本发明实施例2的应用场景的示意图;
图6A和图6B为本发明实施例2中同步信号3的示意图;
图7为本发明实施例3的应用场景的示意图;
图8为本发明实施例提供的一种终端的示意图;
图9为本发明实施例提供的另一种终端的示意图;
图10为本发明实施例提供的一种网络侧设备的示意图;
图11为本发明实施例提供的另一种网络侧设备的示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面先对本发明实施例涉及的多个技术术语进行解释说明。
本发明实施例中,将通信系统中部署的TRP划分为多个TRP组,例如,按照系统信息区域(System Information Area,简称SIA)划分TRP组,即一个SIA即为一个TRP组,每个TRP组(TRP group)具有如下特征:
具有一个独立的TRP group ID;
TRP group内具有组专属(group-specific)的同步信号,例如可以仅包括一种同步信号,如仅包括第一同步信号sync1,当然也可以包括多个同步信号,如第一同步信号sync1和第二同步信号sync2,该同步信号对于该TRP group或系统信息区域SIA内的所有TRP均有效;
TRP group内具有组专属(group-specific)的系统信息,该系统信息也可以称为必要系统信息,包含驻留或接入到该TRP组中所必须的信息,可以具体表现为主信息块(Master Information Block,简称MIB)和系统信息块(System Information Block,简称SIB),即该系统信息是针对该TRP group或SIA内的所有TRP均有效的配置信息;
空闲(IDLE)态的终端可以驻留在TRP group上;
TRP group可以包含至少一个TRP/Beam,其中,若TRP group包括多个TRP/Beam,不同的TRP/Beam之间可以是同步的或者非同步的;
本发明实施例中,所述TRP/Beam具有如下特征:
每一个TRP具有一个ID,如果一个TRP包含多个Beam,则每个Beam具有一个ID;
每个ID对应一个或多个用于识别该ID的同步信号序列(例如第三同步信号);
每个TRP/Beam的传输带宽可以为整个系统带宽或者系统带宽中的部分频域资源,例如占用系统带宽中的一个或者多个子带;
每个TRP/Beam在其传输带宽上的不同频域资源上可以使用不同的基带参数,和/或,在不同的时域资源内可以使用不同的基带参数。
本发明实施例中,基带参数包括但不限于以下至少一种参数:OFDM符号长度、CP长度、子载波间隔等。
本发明实施例中涉及的“多种”、“多个”等均是指两个或两个以上;“/”表示“和/或”的关系,“和/或”是用于描述关联对象的关联关系的,表示可以存在三种关系,例如,A和/或B表示:单独存在A,同时存在A和B,单独存在B这三种情况。
下面结合说明书附图对本发明实施例作进一步详细描述。应当理解,此处所描述的实施例仅用于说明和解释本发明,并不用于限定本发明。
图2A所示实施例中,提供了一种终端侧确定基带参数的方法,包括:
S21、终端根据检测到的初始同步信号,确定所述终端归属的TRP组,所述初始同步信号包括第一同步信号和/或第二同步信号;
S22、所述终端根据在所述TRP组内检测到的第三同步信号和/或所述TRP组的系统信息,确定基带参数。
其中,所述TRP组的系统信息是对于该TRP group内的所有TRP均有效的配置信息,由TRP组内的部分或全部TRP发送。例如,所述系统信息可以由所述TRP组内的所有TRP发送,或者由所述TRP组内的一个或者几个TRP发送,或者由所述TRP组内工作在某一频段(如低频段)上的部分或全部TRP发送。
S22中所述终端在所述TRP组内检测到的第三同步信号表示所述终端接收到第三同步信号的能量、信号强度和/或接收指标超过设定的门限值;或者还可以体现为检测的能量、信号强度和/或接收指标最好的第三同步信号。
其中,所述接收指标包括但不限于:参考信号接收功率(Reference Signal Received Power,简称RSRP),参考信号接收质量(Reference Signal Received Quality,简称RSRQ)等。
可选的,所述第三同步信号可以仅包括一个同步信号,也可以包括多个同步信号,第三同步信号包括但不限于以下信号中的至少一种:主同步信号(Primary Synchronization Signal,简称PSS)、辅同步信号(Secondary Synchronization Signal,简称SSS)、子带检测信号。
本发明实施例中,终端先确定自身所归属的TRP组,实现与TRP组的同步;再通过在该TRP组内检测第三同步信号和/或该TRP组的系统信息,能够正确识别一个TRP组中的不同子带、不同TRP和/或不同波束Beam所对应的基带参数,从而实现了与TRP组中的不同子带、不同TRP和/或不同波束Beam的同步,保证了终端能够按照正确的基带参数工作在相应的子带、TRP和/或Beam上。
本发明实施例中,所述第一同步信号和所述第二同步信号为占用不同的时域资源和/或不同的频域资源发送的同步信号。
该方式中,所述终端采用默认的基带参数检测初始同步信号。其中,默认的基带参数为预先约定的一种或多种基带参数,或者默认的基带参数为通信系统支持或定义的一种或多种基带参数,或者默认的基带参数与频段存在对应关系,所述终端可以根据频段与默认的基带参数的对应关系,确定所述终端当前检测的频段对应的基带参数,并按照所确定的基带参数,在当前频段上检测初始同步信号。例如,三种基带参数的定义如表2所示,频段1定义了基带参数1和基带参数2,频段2定义了基带参数3;又如,频段1定义了基带参数1,频段2定义了基带参数2,频段3定义了基带参数3,等等。
其中,三种基带参数的一种可能的定义方式如表2所示:
表2
Figure PCTCN2017091495-appb-000002
Figure PCTCN2017091495-appb-000003
频段与默认的基带参数的对应关系的一种可能的实现如表3所示:
表3
频段 频段1:2GHz 频段2:4GHz~30GHz 频段3:≥30GHz
基带参数 基带参数1 基带参数2 基带参数3
频段与默认的基带参数的对应关系的另一种可能的实现如表4所示:
表4
频段 频段1:6GHz以下 频段2:6GHz及以上
基带参数 基带参数1,基带参数2 基带参数3
该方式中,若默认的基带参数为多种,所述终端根据每种默认的基带参数,盲检测所述初始同步信号。
该方式中,所述终端在预先约定的时域资源和/或频域资源上,检测所述初始同步信号。
该方式中,终端根据检测到的初始同步信号,确定该终端归属的TRP组的一种可能的实施方式如下:
终端从检测到的初始同步信号中,选择信号强度最大的初始同步信号;
终端根据初始同步信号与TRP组标识(ID)的对应关系,确定所选择的初始同步信号对应的TRP组ID;
终端将所确定的TRP组ID对应的TRP组,确定为该终端归属的TRP组;
终端还可以基于初始同步信号,确定与该终端归属的TRP组的同步关系。
其中,该同步关系可以用于后续在该TRP组中进行下行接收,例如接收TRP组的必要系统信息,检测接入同步信号等。
基于上述任一实施例,S22中所述终端根据在所述TRP组内检测到的第三同步信号和/或所述TRP组的系统信息,确定基带参数之前,还包括:
所述终端在所述TRP组内检测第三同步信号。具体包括以下三种可能的实现方式:
方式A、所述终端在所述TRP组的系统带宽上,检测所述第三同步信号。
其中,所述TRP组的系统带宽为预先约定的,或者为所述TRP组的系统信息通知的。
方式B、所述终端在预先约定的第三同步信号的传输资源上,检测所述第三同步信号。
其中,预先约定的第三同步信号的传输资源可以与所述初始同步信号的传输资源相同,或者为系统带宽上的固定频域资源。
方式C、所述终端在所述TRP组的系统信息中指示的所述第三同步信号的传输资源上,检测所述第三同步信号。
本发明实施例中,所述传输资源为所述第三同步信号传输占用的时域资源和/或频域资源,即具体的资源位置和大小;或者为用于检测所述第三同步信号的时域窗口和/或频域窗口,即时域检测范围和/或频域检测范围,该范围比一个第三同步信号传输所占用的时域资源和/或频域资源大。
其中,若所述传输资源为所述第三同步信号传输占用的时域资源和/或频域资源,所述终端按照与所述TRP组的同步关系,在所述第三同步信号传输占用的时域资源和频域资源上检测所述第三同步信号;
若所述传输资源为用于检测所述第三同步信号的时域窗口和/或频域窗口,所述终端在所述时域窗口和/或频域窗口中,盲检测所述第三同步信号,并通过所述第三同步信号获得与所述时域窗口和/或频域窗口对应的子带、TRP或波束的同步关系。
基于上述任一实施例,所述终端在所述TRP组内检测第三同步信号,包括以下几种可能的实现方式:
方式一、所述终端按照预先设定的基带参数,检测所述第三同步信号。
该方式中,预先设定一种或多种用于检测所述第三同步信号的基带参数。
该方式中,若预先设定了多种用于检测所述第三同步信号的基带参数,则所述终端按照每种基带参数,盲检测所述第三同步信号。
该方式中,预先设定的基带参数可以与检测初始同步信号的基带参数相同或不同。
方式二、所述终端根据频段与基带参数的对应关系,确定当前检测所述第三同步信号的频段对应的基带参数,并按照所确定的基带参数,检测所述第三同步信号。
该方式中,频段与基带参数的对应关系为预先设定的,其具体实现方式可参照上述频段与默认的基带参数的对应关系。
其中,频段与基带参数的对应关系和频段与默认的基带参数的对应关系可以相同。
该方式中,若确定当前检测所述第三同步信号的频段对应的基带参数为多种,则所述终端按照每种基带参数,盲检测所述第三同步信号。
方式三、所述终端按照通信系统支持的基带参数,检测所述第三同步信号。
该方式中,若通信系统支持的基带参数为多种,则所述终端按照每种基带参数,盲检测所述第三同步信号。
方式四、所述终端按照所述TRP组的系统信息中指示的基带参数,检测所述第三同步信号。
该方式中,所述TRP组的系统信息中携带用于指示检测所述第三同步信号的基带参数。
该方式中,若所述系统信息所指示的基带参数为多种,则所述终端按照每种基带参数,盲检测所述第三同步信号。
方式五、所述终端按照预先约定的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定每个第三同步信号序列的基带参数,按照所确定的基带参数检测 所述第三同步信号。
该方式中,所述终端按照每个第三同步信号序列的基带参数,盲检测所述第三同步信号。
方式六、所述终端按照所述TRP组的系统信息中指示的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定每个第三同步信号序列的基带参数,按照所确定的基带参数检测所述第三同步信号。
对于上述方式一~四中,传输所述第三同步信号时所使用的基带参数与根据第三同步信号确定的相应的子带或TRP或Beam的基带参数可以不同。
基于上述任一实施例,S22中所述终端根据在所述TRP组内检测到的第三同步信号和/或所述TRP组的系统信息,确定基带参数,包括以下几种可能的实现方法:
方式a、所述终端将检测到的所述第三同步信号传输使用的基带参数,确定为所述第三同步信号对应的子带、TRP和/或波束所使用的基带参数。
方式b、所述终端根据预先约定的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定检测到的第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数。
方式c、所述终端根据所述系统信息中指示的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定检测到的第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数。
方式a、b和方式c中,若检测到的第三同步信号序列的数量为至少两个,所述终端确定基带参数,包括:
所述终端确定每个第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数;或者
所述终端从所述至少两个第三同步信号序列中,选择至少一个第三同步信号序列,并确定所选择的第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数。
进一步,所述终端从所述至少两个第三同步信号序列中,选择至少一个第三同步信号序列,包括:
所述终端根据所述至少两个第三同步信号序列的接收能量、信号强度和/或接收指标(如RSRP、RSRQ等),从所述至少两个第三同步信号序列中,选择至少一个第三同步信号序列;或者
所述终端将所述至少两个第三同步信号序列上报给网络侧,并接收网络侧通知的至少一个第三同步信号序列。
举例说明,例如,所述终端从所述至少两个第三同步信号序列中,选择接收能量、信号强度和/或接收指标最好的一个或多个第三同步信号序列。又如,如果所述至少两个第三同步信号序列的接收能量、信号强度和/或接收指标相当,所述终端随机选择其中一个或多个。
方式d、所述终端按照预先设定的基带参数,接收检测到的所述第三同步信号对应的TRP发送的TRP专属系统信息,并根据所述TRP专属系统信息,确定基带参数。
方式e、所述终端按照所述系统信息中指示的基带参数,接收检测到的所述第三同步信号对应的TRP发送的TRP专属系统信息,并根据所述TRP专属系统信息,确定基带参数。
方式d和方式e中,TRP专属系统信息是对于发送该TRP专属系统信息的TRP的有效配置信息。所述TRP专属系统信息中包括所述TRP使用的基带参数、所述TRP中的每个Beam使用的基带参数、以及所述TRP在不同时域和/或频域资源上使用的基带参数中的至少一种。
本发明实施例中,所述子带为系统带宽中预先划分的带宽部分(bandwidth part),可以为按照预先约定的方式划分的,例如根据系统带宽以及预先约定的规则,将系统带宽划分为P个子带,也可以为所述TRP组的系统信息中通知的。
本发明实施例中,第三同步信号与子带的对应关系为根据预先约定的方式确定的,例如每个第三同步信号的传输资源对应一个或多个包含该传输资源的子带。或者每个第三同步信号序列对应一个或多个包含该传输资源的子带。例如,第三同步信号序列0~A对应子带0,第三同步信号序列A+1~B对应子带1,以此类推。或者第三同步信号与子带的对应关系为所述TRP组的系统信息中通知的,例如直接通知不同的第三同步信号序列与不同子带的对应关系,或通知第三同步信号的不同传输资源与不同子带的对应关系。
需要说明的是,上述方式a~方式e中,若一个TRP只有一个Beam,则所述终端确定出的基带参数既为该TRP使用的基带参数,也为该Beam使用的基带参数,若一个TRP有多个Beam,如果每个Beam的基带参数相同,则所述终端按照上述确定出的TRP的基带参数,即为每个Beam的基带参数,如果每个Beam的基带参数不同,则所述终端可以针对每个Beam确定其基带参数,从而得到该TRP在Beam1的基带参数,以及该TRP在Beam2的基带参数,以此类推;若一个TRP只工作在一个子带上,则所述终端确定出的基带参数既为该TRP使用的基带参数,也为该子带的基带参数,若一个TRP工作在多个子带上,如果每个子带的基带参数相同,则所述终端按照上述确定出的TRP的基带参数,即为每个子带的基带参数,如果每个子带的基带参数不同,则所述终端可以针对每个子带确定其基带参数,从而得到该TRP在子带1的基带参数,以及该TRP在子带2的基带参数,以此类推;若一个TRP只有一个Beam,且该TRP只工作在一个子带上,则所述终端确定出的基带参数为该TRP、该子带和该Beam使用的基带参数,若一个TRP只有一个Beam,且该TRP工作在多个子带,或若一个TRP有多个Beam,且该TRP仅工作在一个子带上,或若一个TRP有多个Beam,且该TRP工作在多个子带上,基于上述情况的组合可以实现对一个TRP的不同子带、不同Beam的基带参数的识别。
上述方式A~方式C、方式一~方式六、以及方式a~方式e中,如果需要从TRP组的系统信息中获取相关信息,在检测第三同步信号之前还包括,接收所述TRP组的系统信息。
具体的,可以按照基于所述初始同步信号取得的与所述TRP组的同步关系,在特定的时域资源和频域资源上按照预定的方式接收所述TRP组的系统信息。
下面通过几个实施例,对上述方式A~方式C、方式一~方式六、以及方式a~方式e的结合使用的方法进行详细说明。为了便于说明,以下实施例中将所述第三同步信号记为同步信号3,将所述第三同步信号序列记为同步信号3序列。
方法1:所述终端接收所述TRP组中传输的系统信息,根据所述系统信息的指示,检测同步信号3,进一步确定基带参数。
该方法中,所述系统信息中至少指示用于检测同步信号3的传输资源(包括具体的时域资源和/或频域资源,或用于检测同步信号3的时域窗口和/或频域窗口)、TRP组或同步信号3的基带参数、同步信号3序列与子带或TRP或Beam所使用的基带参数的对应关系 中的一种或多种。
其中,所述系统信息中指示的传输资源可以为1个或者多个,该传输资源可以与所述初始同步信号的传输资源相同或者不同。所述系统信息中指示的基带参数可以为一个或者多个。
该方法进一步又包括以下五种可能的实现方法:
方法1-1:所述系统信息中至少指示用于检测同步信号3的传输资源。
所述终端在所述同步信号3的传输资源上,按照预定的基带参数,或所述系统信息中指示的基带参数,或通信系统中支持的多种基带参数,或按照所述对应关系确定的检测不同的同步信号3序列的基带参数,检测同步信号3。
不同的同步信号3序列与子带或TRP或Beam所使用的不同基带参数存在对应关系,可以减少盲检,但不能实现同一个TRP在不同的子带使用不同的基带参数,除非约定多个不同的同步信号3序列对应同一个TRP ID或Beam ID。所述对应关系为预先约定或者为所述系统信息中指示的。
进一步,所述终端根据在每个同步信号3的传输资源上检测到的同步信号3序列以及所述对应关系,确定所述同步信号3序列对应的子带或TRP或Beam的基带参数,或者所述终端在每个同步信号3的传输资源上检测到的同步信号3序列中选择一个或多个同步信号3序列,根据该选择出的同步信号3序列以及所述对应关系,确定该选择出的同步信号3序列对应的子带或TRP或Beam的基带参数。
方法1-2:所述系统信息中至少指示用于检测同步信号3的传输资源,所述终端按照所述系统信息中通知的多种基带参数或者通信系统中支持的多种基带参数,在所述同步信号3的传输资源上检测同步信号3。
进一步,所述终端将在同步信号3的传输资源上检测到的同步信号3序列所使用的基带参数作为该同步信号3所对应的子带、TRP和/或Beam的基带参数;或者所述终端将在每个同步信号3的传输资源上检测到的同步信号3序列中选择出的一个或多个同步信号3序列所使用的基带参数作为该选择出的同步信号3序列所对应的子带或TRP或Beam的基带参数。
该方法采用盲检测的方式,即尝试使用不同的基带参数检测同步信号3,该方法盲检次数大于方法1-1,如果系统中存在N个同步信号3序列,方法1-1只需要盲检侧N次,方法1-2需要盲检侧N*M次,M为系统中支持的或者标准中定义的基带参数种类个数,该方法的优点是不需要预先约定或通知同步信号3与基带参数的对应关系,且在一个子带或TRP或Beam对应唯一的一个同步信号3序列时,可以支持一个子带或TRP或Beam在不同频域资源上使用不同的基带参数。
方法1-3:所述系统信息中至少指示该TRP组的基带参数或该TRP组中的同步信号3传输所使用的基带参数。
其中,如果所述系统信息中指示的基带参数为一种,则默认所有传输的基带参数相同,则检测同步信号3只是为了确定终端接入的子带、TRP和/或Beam。
所述终端在所述TRP组的系统带宽上或预先约定的同步信号3的传输资源上,按照所述系统信息中指示的基带参数检测同步信号3。此时不知道同步信号3在系统带宽上的具体位置,需通过盲检测确定,可以在每个时域单元内都在系统带宽上检测同步信号3,或者在预先约定的部分时域单元内在系统带宽上检测同步信号3。
其中,时域单元表示时域上检测同步信号3的最小单元,例如如果一个同步信号3占用1个OFDM符号传输,则每个时域单元为1个OFDM符号,如果一个同步信号3占用A个OFDM符号传输,则每A个OFDM符号为一个时域单元。
进一步,所述终端将检测到的同步信号3序列所使用的基带参数作为该检测到同步信号3序列所对应的子带或TRP或Beam的基带参数;或者所述终端将检测到的同步信号3序列中选择出的一个或多个序列所使用的基带参数作为该选择出的同步信号3序列所对应的子带或TRP或Beam的基带参数。
方法1-4:所述系统信息中至少指示该TRP组中的同步信号3传输所使用的基带参数。
所述终端在所述TRP组的系统带宽上或预先约定的同步信号3的传输资源上,按照所述基带参数检测同步信号3。此时不知道同步信号3在系统带宽上的具体位置,通过盲检测确定,可以在每个时域单元内都在系统带宽上检测同步信号3,或者在预先约定的部分时域单元内在系统带宽上检测同步信号3。
不同的同步信号3序列与子带或TRP或Beam所使用的不同基带参数存在对应关系,所述对应关系为预先约定或者为所述系统信息中指示的。
进一步,所述终端根据检测到的同步信号3序列以及所述对应关系,确定该检测到同步信号3序列所对应的子带或TRP或Beam的基带参数,或者所述终端在检测到的同步信号3序列中选择一个或多个同步信号3序列,根据所述选择的一个或多个同步信号3序列以及所述对应关系,确定该选择出的同步信号3序列所对应的子带或TRP或Beam的基带参数。
对于方法1-3或方法1-4,当所述系统信息中指示存在至少2种基带参数时,所述终端在所述系统带宽上按照所述至少2种基带参数盲检测同步信号3。
方法1-5:所述系统信息中至少指示不同的同步信号3序列与子带或TRP或Beam所使用的不同基带参数存在对应关系。
所述终端在所述TRP组的系统带宽上或预先约定的同步信号3的传输资源上,按照预定的基带参数,或所述系统信息中指示的基带参数,或通信系统中支持的多种基带参数,或按照所述对应关系确定的检测不同的同步信号3序列的基带参数,检测同步信号3序列。此时不知道同步信号3在系统带宽上的具体位置,通过盲检测确定,可以在每个时域单元内都在系统带宽上检测同步信号3,或者在预先约定的部分时域单元内在系统带宽上检测同步信号3。
进一步,所述终端根据所述检测到的同步信号3序列以及所述对应关系,确定该同步信号3序列所对应的子带或TRP或Beam的基带参数;或者所述终端在检测到的同步信号3序列中选择一个或多个同步信号3序列,根据该选择出的同步信号3序列以及所述对应关系,确定该选择出的同步信号3序列所对应的子带或TRP或Beam的基带参数。
方法2:该方法不需要所述系统信息中通知有关同步信号3的任何信息,直接盲检,所以所述终端接收系统信息只是为了获得系统带宽、系统帧号(System Frame Number,简称SFN)之类的参数,如果这些参数在检测同步信号3的时候也不需要,那么完全不需要先接收所述系统信息,可以直接检测同步信号3。
所述终端在所述TRP组的系统带宽中或预先约定的同步信号3的传输资源上检测同步信号3,根据所述同步信号3,确定基带参数。进一步包括以下两种可能的实现方法:
方法2-1:所述终端将检测到的同步信号3所使用的基带参数作为所述同步信号3所 对应的子带、TRP和/或Beam的基带参数;或者所述终端在所述检测到的同步信号3序列中选择一个或多个同步信号3序列,将该选择出的同步信号3序列所述使用的基带参数作为该选择出的同步信号3序列所对应的子带、TR P和/或Beam的基带参数。
方法2-2:预先约定不同的同步信号3序列与子带或TRP或Beam所使用的不同基带参数的对应关系。所述终端根据检测到的同步信号3序列与所述对应关系,确定所述同步信号3序列所对应的子带或TRP或Beam的基带参数,或者,所述终端在所述检测到的同步信号3序列中选择一个或多个同步信号3序列,根据该选择出的同步信号3序列以及所述对应关系,确定该选择出的同步信号3序列所对应的子带或TRP或Beam的基带参数。
方法3:终端先检测同步信号3,然后接收检测到的同步信号3对应的TRP发送的TRP专属系统信息(TRP specific系统信息),获得基带参数。
所述终端在所述TRP组的系统带宽中或预先约定的同步信号3的传输资源上或所述系统信息中指示的同步信号3的传输资源上,根据预先约定的基带参数或所述系统信息中指示的基带参数或通信系统中支持的多种基带参数检测同步信号3。
进一步,所述终端按照预先约定的基带参数或所述系统信息中指示的基带参数,接收所述同步信号3所对应的TRP发送的TRP专属系统信息,根据所述TRP专属系统信息确定所述TRP的基带参数、或或所述TRP中的每个Beam的基带参数、或所述TRP在不同时域资源和/或频域资源上的基带参数。
本发明实施例中,S22中所述终端根据在所述TRP组内检测到的同步信号和/或所述TRP组的系统信息,确定基带参数,还可以采用如下方式:
所述终端接收所述TRP组的系统信息,所述系统信息中包括所述TRP组对应的子带所使用的基带参数、所述TRP组对应的时域资源和/或频域资源所使用的基带参数、所述TRP组中的TPR所使用的基带参数、以及所述TRP组对应的波束所使用的基带参数中的至少一种。
此种方式下,可以不需要检测第三同步信号,直接根据TRP组的系统信息中的指示,即可获得该TRP组中的每个TRP、每个子带、每个Beam的基带参数,其中,若至少一个TRP包含多个子带和/或Beam,则还可以获得该TRP在每个子带和/或Beam的基带参数。当所述终端需要接入一个TRP进行工作时,所述终端可以进一步在所述TRP组的系统带宽上或预先约定的第三同步信号的传输资源上或所述TRP组的系统信息中指示的第三同步信号的传输资源上,检测第三同步信号,取一个检测信号强度最强的第三同步信号,将该第三同步信号所对应的TRP作为所述终端接入的TRP;检测第三同步信号时,按照所述TRP组的系统信息中指示的基带参数与TRP或Beam或子带的对应关系,以及每个TRP或Beam或子带与第三同步信号的对应关系,确定每个第三同步信号的基带参数,即例如第三同步信号序列A对应TRP1以及基带参数1,第三同步信号序列B对应TRP2以及基带参数2,第三同步信号序列C对应TRP3以及基带参数1,第三同步信号序列D对应TRP4以及基带参数3,以此类推,从而所述终端逐个盲检第三同步信号序列,即尝试使用基带参数1检测第三同步信号序列A,尝试使用基带参数2检测第三同步信号序列B,尝试使用基带参数1检测第三同步信号序列C,尝试使用基带参数3检测第三同步信号序列D,以此类推;所述终端接入或驻留到检测到的信号强度最强的第三同步信号所对应的TRP或Beam或子带;还可以进一步获取该接入TRP的TRP专属系统信息,从而获取该TRP的更多配置信息,以便在该TRP的服务下作进一步的数据传输。
基于上述任一实施例,本发明实施例中,所述第三同步信号(或同步信号3)与子带或TRP或波束的对应关系为根据预先约定的方式确定的,或者为所述TRP组的系统信息通知的;其中,多个第三同步信号序列可以对应同一个TRP或Beam,例如一个TRP包含多个子带,每个子带的基带参数不同,不同子带上可以发送不同的第三同步信号序列,但都对应同一个TRP,又例如一个TRP包含多个Beam,每个Beam的基带参数不同,不同Beam上可以发送不同的第三同步信号序列,但都对应同一个TRP。
基于上述任一实施例,S22之后,所述方法还包括:
所述终端在所述TRP组中的TRP或子带或Beam上,按照所确定的基带参数进行传输。
具体的,所述终端通过检测到的第三同步信号可以确定自身驻留或接入的TRP、子带和/或Beam,终端在所确定的TRP、子带和/或Beam上,按照根据S22确定的基带参数进行后续传输。
另外,终端还可以根据第三同步信号确定与自身驻留或接入的TRP、子带和/或Beam的精同步;还可以进一步接收自身驻留或接入的TRP所发送的TRP专属系统信息(包括MIB和SIB中的至少一种),从而获得该TRP的具体配置信息,如传输带宽等。
图2B所示实施例中,提供了一种网络侧确定基带参数的方法,包括:
S31、TRP组中的第一网络侧设备在所述TRP组内发送初始同步信号,以使终端根据所述初始同步信号确定所述终端归属的TRP组,所述初始同步信号包括第一同步信号和/或第二同步信号;
S32、所述TRP组中的第二网络侧设备在所述TRP组内发送第三同步信号和/或所述TRP组中的第三网络侧设备在所述TRP组内发送所述TRP组的系统信息,以使所述终端根据所述第三同步信号和/或所述TRP组的系统信息,确定所述第二网络侧设备的基带参数或所述TRP组内的网络侧设备的基带参数。
具体的,所述终端可以根据所述第三同步信号,确定所述第二网络侧设备的基带参数;也可以根据所述第三同步信号和所述TRP组的系统信息,确定所述第二网络侧设备的基带参数;还可以根据所述TRP组的系统信息,确定所述TRP组内的网络侧设备的基带参数,此时确定出的网络侧设备的基带参数包括第二网络侧设备的基带参数。
可选的,所述第一网络侧设备与所述第二网络侧设备为所述TRP组中相同的网络侧设备或所述TRP组中不同的网络侧设备;和/或所述第一网络侧设备与所述第三网络侧设备为所述TRP组中相同的网络侧设备或所述TRP组中不同的网络侧设备。
可选的,所述第二网络侧设备与所述第三网络侧设备为所述TRP组中相同的网络侧设备或所述TRP组中不同的网络侧设备。
可选的,所述第一网络侧设备为所述TRP组中的TRP或基站。若所述第一网络侧设备支持多个波束时,所述第一网络传输在所支持的部分或全部波束上发送所述初始同步信号。
可选的,所述第二网络侧设备为所述TRP组中的TRP或基站。若所述第二网络侧设备支持多个波束时,所述第二网络传输在所支持的部分或全部波束上发送所述第三同步信号。
可选的,所述第三网络侧设备为所述TRP组中的TRP或基站。若所述第三网络侧设备支持多个波束时,所述第三网络传输在所支持的部分或全部波束上发送所述TRP组的系 统信息。
基于上述任一实施例,所述第二网络侧设备在所述TRP组内发送第三同步信号,包括以下几种可能的实现方式:
一、所述第二网络侧设备在所述TRP组的系统带宽上对应所述第二网络侧设备的工作带宽上,发送所述第三同步信号。
该方式中,所述第二网络侧设备可以在该工作带宽上的特定资源,例如,终端和网络侧约定好的资源上发送所述第三同步信号;也可以在该工作带宽上的任选的资源上发送所述第三同步信号,此时,终端不确定发送所述第三同步信号的资源的位置,只能盲检。
二、所述第二网络侧设备在预先约定的所述第三同步信号的传输资源上,发送所述第三同步信号。
三、所述第二网络侧设备在所述TRP组的系统信息中指示的所述第三同步信号的传输资源上,发送所述第三同步信号。
基于上述任一实施例,所述第二网络侧设备在所述TRP组内发送第三同步信号,包括以下几种可能的实现方式:
一、所述第二网络侧设备根据频段与基带参数的对应关系,确定当前发送所述第三同步信号的频段对应的基带参数,并按照所确定的基带参数,发送所述第三同步信号。
该方式中,所述第二网络侧设备所确定的基带参数即为所述第二网络侧设备后续数据传输时使用的基带参数。
二、所述第二网络侧设备按照预先约定的或所述TRP组的系统信息中指示的第三同步信号序列与基带参数的对应关系,确定所述第二网络侧设备的基带参数所对应的所述第三同步信号序列,按照预先设定的基带参数或者通信系统中定义的多种基带参数中的任意一种或所述TRP组的系统信息中指示的基带参数或者所述第二网络侧设备的基带参数,发送与所述第二网络侧设备的基带参数对应的所述第三同步信号序列。
三、所述第二网络侧设备按照预先约定的或所述TRP组的系统信息中指示的第三同步信号序列与网络侧设备的对应关系,确定所述第二网络侧设备对应的所述第三同步信号序列,按照所述第二网络侧设备的基带参数发送所述第二网络侧设备对应的所述第三同步信号序列。
该方式中,一个或多个第三同步信号序列对应一个网络侧设备,该对应关系已知,当终端盲检多种基带参数得到一种基带参数下的一个第三同步信号序列时,可以知道该第三同步信号序列所对应的网络侧设备,进而可以获知该网络侧设备是使用检测出的第三同步信号序列对应的基带参数的发送所述第三同步信号的。
一种可能的实施方式中,所述TRP组的系统信息中包括所述TRP组对应的子带所使用的基带参数、所述TRP组对应的时域资源和/或频域资源所使用的基带参数、所述TRP组对应的波束所使用的基带参数、所述TRP组中的每个网络侧设备所使用的基带参数、所述TRP组中的每个网络侧设备的每个波束所使用的基带参数、以及所述TRP组中的每个网络侧设备在不同时域和/或频域资源上使用的基带参数中的至少一种,以使终端可以直接根据接收到的系统信息确定出所述TRP组内每个网络侧设备的基带参数。
一种可能的实施方式中,所述TRP组的系统信息中指示的第三同步信号序列与基带参数的对应关系,以使终端可以根据所述TRP组的系统信息指示的对应关系,确定每个第三同步信号序列的基带参数,以使用所确定的基带参数盲检测所述第三同步信号。
一种可能的实施方式中,所述TRP组的系统信息中指示基带参数,以使终端可以根据所述TRP组的系统信息指示的基带参数检测所述第三同步信号。
一种可能的实施方式中,所述TRP组的系统信息中指示所述第三同步信号的传输资源,以使终端可以在所述TRP组的系统信息指示的传输资源上检测所述第三同步信号。
一种可能的实施方式中,所述方法还包括:
所述第二网络侧设备按照预先约定的基带参数或者所述TRP组的系统信息中指示的基带参数或所述第二网络侧设备的一种默认的基带参数,发送所述第二网络侧设备的专属系统信息,其中,所述专属系统信息中包括网络侧设备使用的基带参数、网络侧设备中的每个波束使用的基带参数、以及网络侧设备在不同时域和/或频域资源上使用的基带参数中的至少一种。
基于上述任一实施例,一种可能的实施方式中,所述方法还包括:
所述第二网络侧设备或所述第三网络侧设备接收所述终端上报的多个第三同步信号序列,从中选择一个或多个第三同步信号序列,并将所选择的第三同步信号序列通知给所述终端。
基于上述任一实施例,一种可能的实施方式中,所述方法还包括:
所述第二网络侧设备在自身工作带宽上,按照自身的基带参数进行后续数据传输。
具体的,TRP组内的每个网络侧设备表现为一个TRP时,该TRP可以工作在一个或多个子带上,可以包含一个或多个Beam。
其中,后续传输即终端接入该网络侧设备之后的数据传输,如下行共享物理信道(Physical Downlink Shared Channel,简称PDSCH)、物理下行控制信道(Physical Downlink Control Channel,简称PDCCH)、物理上行共享信道(Physical Uplink Shared Channel,简称PUSCH)、物理上行控制信道(Physical Uplink Control Channel,简称PUCCH)、探测参考信号(Sounding Reference Signal,简称SRS)等。
下面通过三个具体实施例,对本发明实施例提供的一种确定基带参数的方法进行详细说明。为了便于说明,以下实施例中,所述第一同步信号记为同步信号1,所述第二同步信号记为同步信号2,所述第三同步信号记为同步信号3,所述第三同步信号序列记为同步信号3序列。
实施例1:本实施例应用的场景如图3所示,每个系统信息区域(System Information Area,简称SIA)对应一个TRP group,每个TRP group中仅包含一个TRP,每个TRP独立发送同步信号和系统信息。终端在接入或驻留到任一TRP时,首先检测同步信号1和同步信号2(同步信号1和2可以被约定在系统带宽的固定位置,例如系统带宽的中间位置,从而在获得系统带宽之后基于同步信号1和2的频域位置确定系统带宽的频域位置,当然,还可以进一步约定同步信号1和2的时域传输位置,从而在盲检到该同步信号1和2后便于推断得到时域边界,如无线帧/子帧/符号边界),可以按照默认的一种基带参数检测,例如假设默认的基带参数为15kHz子载波间隔以及该子载波间隔下所定义的OFDM符号、CP、子帧(或min-frame)之类的长度,也可以按照通信系统中支持的多种基带参数盲检,例如先按照15kHz子载波间隔以及该子载波间隔下对应的相应参数检测同步信号1和2,再按照60kHz子载波间隔以及该子载波间隔下对应的相应参数检测同步信号1和2,如果定义了更多的基带参数,以此类推,选择检测强度最高的一个基带参数下的同步信号1和同步信号2作为接入点,从而与该同步信号1和2相对应的TRP进行初始同步,然后读取 该TRP上的系统信息。
进一步,终端可以通过所述系统信息获得该TRP的系统带宽,当然所述系统信息还可以进一步包括系统带宽的子带配置信息。例如,如图4A和图4B所示,假设系统带宽为100M,在一个TRP中将100M的系统带宽分为两个子带,不同子带上使用了不同的基带参数;当然,子带划分还可以是根据系统带宽的大小以及预先规定的规则自行划分的;当然所述系统信息还可以通知同步信号3与子带或TRP或Beam的对应关系,或者对应关系是预先约定的,例如,包含检测到同步信号3传输资源的子带为同步信号3所对应的子带,同步信号3序列与TRP ID和/或Beam ID相关等。例如,同步信号3序列为根据TRP ID和/或Beam ID产生的,则所述终端可以根据检测到的同步信号3序列推断出相应的TRP ID和/或Beam ID,同样,所述终端可以根据TRP ID和/或Beam ID推断出相应的同步信号3序列;又如,预先约定同步信号3序列与TRP ID和/或Beam ID之间的对应关系或函数关系。举例说明同步信号3序列与TRP ID和/或Beam ID之间的对应关系或函数关系,例如,每个同步信号3序列的产生与TRP ID有关,同步信号3序列=f(TRP ID)或f(TRP group ID,TRP ID)等等,或者同步信号3序列的编号=f(TRP ID)或f(TRP group ID,TRP ID)等等;又如,同步信号3序列的编号为(TRP group ID*W+TRP ID),W为预先定义的整数。
具体包括以下几种可能的实现方法:
方法1:所述系统信息中至少指示用于检测同步信号3的传输资源,例如在系统带宽的每个子带中指示一个同步信号3的传输资源,或者在没有划分子带时,直接给出系统带宽的相应频域位置(例如资源块(Resource Block,简称RB)x~y)作为同步信号3的传输资源。
该方法中,终端在这些同步信号3的传输资源上,按照一种默认的基带参数或者所述系统信息中指示的一种同步信号3传输的基带参数,检测同步信号3,如图4B所示。预先约定或所述系统信息中还指示不同的同步信号3序列与对应的子带或TRP或Beam所使用的不同基带参数的对应关系,终端根据在每个传输资源上检测到的同步信号3序列以及上述对应关系,确定同步信号3对应的子带、TRP和/或Beam所对应的基带参数,或者,终端取多个传输资源上检测能量或性能最好的一个同步信号3序列作为检测到的同步信号3序列,根据该同步信号3序列以及上述对应关系,确定该同步信号3所对应的子带、TPR和/或Beam的基带参数。
方法2:所述系统信息中至少指示用于检测同步信号3的传输资源(具体如方法1)。
该方法中,终端在这些同步信号3的传输资源上,按照预定的多种基带参数、或者所述系统信息中指示的多种基带参数、或者通信系统中支持或定义的多种基带参数、或者根据预先约定或所述系统信息中指示的不同的同步信号3序列与子带或TRP或Beam所使用的不同基带参数的对应关系确定的每个同步信号3所对应的基带参数,盲检测同步信号3,如图4A所示,例如终端在上述每个传输资源上分别尝试使用上述基带参数中的一种检测同步信号3,取多种基带参数中检测能量最大或性能最好的一个同步信号3序列作为在该传输资源上检测到的同步信号3序列,终端可以将该检测出的同步信号3序列所使用的基带参数作为该同步信号3所对应的子带、TPR和/或Beam所使用的基带参数;或者,终端取多个传输资源上检测能量或性能最好的一个同步信号3序列作为检测到的同步信号3序列,将该同步信号3序列所使用的基带参数作为该同步信号3所对应的子带、TRP和/或 Beam所使用的基带参数。
方法3:所述系统信息中至少指示该TRP group的基带参数或该TRP group中的同步信号3传输所使用的基带参数。
具体的,如果所述系统信息中指示的基带参数为一种,则默认所有子带的基带参数相同,则检测同步信号3只是为了确定终端接入的子带或Beam;如果所述系统信息中指示的基带参数为多种,则需要盲检不同的基带参数。
该方法中,终端在该TRP group的系统带宽上、或预定的同步信号3的传输资源上(例如与同步信号1和/或同步信号2相同的资源位置,当然也可以不同,例如同步信号1和同步信号2占用系统带宽中的RBx1~y1,同步信号3占用系统带宽中的RBx2~y2之类的,下同),按照上述基带参数盲检测同步信号3,例如在系统带宽上通过扫描或者在预定的多个资源位置上检测得到多个满足设定门限的同步信号3,或者,在系统带宽上通过扫描或在预定的一个或多个资源上检测得到一个最大能量或最佳性能的同步信号3序列,将检测到的同步信号3序列所使用的基带参数作为同步信号3所对应的子带、TRP和/或Beam的基带参数。
方法4:所述系统信息中至少指示该TRP group中的同步信号3传输所使用的基带参数。
具体的,如果所述系统信息中指示的基带参数为一种,则默认所有子带的基带参数相同,则检测同步信号3只是为了确定终端接入的子带或Beam;如果所述系统信息中指示的基带参数为多种,则需要盲检不同的基带参数。
该方法中,终端在该TRP group的系统带宽上或预定的同步信号3的传输资源上,按照上述基带参数检测同步信号3,预先约定或所述系统信息中还指示不同的同步信号3序列与子带或TPR或Beam所使用的不同基带参数的对应关系,例如在系统带宽上通过扫描或者在预定的多个资源上检测得到多个满足门限的同步信号3序列,或者,在系统带宽上通过扫描或者在预定的一个或多个资源上检测得到一个最大能量或最佳性能的同步信号3序列,终端根据检测到的同步信号3序列以及上述对应关系,确定检测到同步信号3所对应的子带、TRP和/或Beam的基带参数。
方法5:所述系统信息中至少指示不同的同步信号3序列与子带或TRP或Beam所使用的不同基带参数的对应关系。
该方法中,终端在该TRP group的系统带宽上或预定的同步信号3的传输资源上,按照预定的一种或多种基带参数、或所述系统信息中指示的一种或多种基带参数、或通信系统中定义或支持的多种基带参数、或按照上述对应关系确定的检测不同的同步信号3序列的基带参数,检测同步信号3序列。
其中,如果有多种基带参数,则终端需要对每种基带参数进行盲检侧,例如,在系统带宽上通过扫描或者在预定的多个资源上检测得到多个满足门限的同步信号3序列,或者在系统带宽上通过扫描或者在预定的一个或多个资源上检测得到一个最大能量或最佳性能的同步信号3序列,根据检测到的同步信号3序列以及上述对应关系,确定该同步信号3所对应的子带、TRP和/或Beam的基带参数。
方法6:终端在该TRP group的系统带宽中或预定的同步信号3的传输资源上,按照预定的一种或多种基带参数、或通信系统中定义或支持的多种基带参数,检测同步信号3。
其中,如果有多种基带参数,则终端需要对每种基带参数进行盲检,例如在系统带宽 上通过扫描或者在预定的多个资源上检测得到多个满足设定门限的同步信号3,或者在系统带宽上通过扫描或者在预定的一个或多个资源上检测得到一个最大能量或最佳性能的同步信号3,终端将检测到的同步信号3所使用的基带参数作为同步信号3所对应的子带、TRP和/或Beam的基带参数。
方法7:预先定义不同的同步信号3序列与子带或TRP或Beam所使用的不同基带参数的对应关系。
该方法中,终端在该TRP group的系统带宽中或预定的同步信号3的传输资源上,按照预定的一种基带参数或根据上述对应关系确定的每个同步信号3序列所对应的基带参数,检测同步信号3序列,例如在系统带宽上通过扫描或者在预定的多个资源上检测得到多个满足设定门限的同步信号3序列,或者在系统带宽上通过扫描或者在预定的一个或多个资源上检测得到一个最大能量或最佳性能的同步信号3序列,终端根据检测到的同步信号3序列以及上述对应关系,确定同步信号3所对应的子带、TRP和/或Beam的基带参数。
对于上述方法1、4、5、7:例如预先约定或者所述系统信息中指示同步信号3序列0~A对应第一类基带参数,同步信号3序列A+1~B对应第二类基带参数,以此类推;如果是预先约定的对应关系,则通信系统中定义了多少种基带参数,就需要预先约定多少种对应关系,如果是所述系统信息中指示的对应关系,则可以通知给终端通信系统中定义的所有种基带参数与同步信号3的对应关系,也可以仅通知该TRP组中所支持的基带参数(可能仅有一种,也可能有多种)与同步信号3的对应关系。假设终端在传输资源1(对应子带1)上检测到的同步信号3序列为0~A之间的一个序列,则确定子带1的基带参数为第一类基带参数;假设终端在传输资源2上(对应子带2)检测到的同步信号3序列为A+1~B之间的一个序列,则确定子带2的基带参数为第二类基带参数,此时,终端可以同时或者TDM工作在该TRP的子带1和子带2上;或者,假设终端在传输资源2上检测到的同步信号3序列能量最大,确定子带2的基带参数为第二类基带参数,终端仅在该TRP的子带2上工作。
其中,方法4、5、7盲检次数大于方法1,即如果系统中存在N个同步信号3序列,方法1只需要盲检侧N次,方法4需要盲检侧N*M次,M为基带参数种类个数,方法5还需要额外盲检同步信号3的传输资源方法7虽然不需要盲检基带参数,但需要盲检传输资源,方法4、5和7的优点是不需要约定或通知同步信号3与基带参数的对应关系,方法7不需要所述系统信息中配置同步信号3的信息。
对于上述方法2、3、6:例如,假设终端在传输资源1上检到同步信号3使用第一类基带参数,则确定子带1使用第一类基带参数;假设终端在传输资源2上检到同步信号3使用第二类基带参数,则确定子带2使用第二类基带参数,终端可以同时或者TDM的工作在该TRP的子带1或子带2上,或者,假设终端在传输资源2上检测到同步信号3序列能量最佳,则终端确定子带2的基带参数为第二类基带参数,终端仅在该TRP的子带2上工作。
其中,方法2、3、6的盲检次数大于方法1,即如果系统中存在N个同步信号3序列,方法1只需要盲检侧N次,方法2、3、6需要盲检侧N*M次,M为基带参数种类个数,方法3、6还需要额外盲检同步信号3的传输资源,优点是不需要约定或通知同步信号3与基带参数的对应关系,方法6也不需要所述系统信息中配置同步信号3的信息。
对于上述方法3、4和5:当不知道同步信号3在系统带宽上的具体位置时,通过盲检 确定其传输资源,可以在每个时域单元内都在系统带宽上扫描同步信号3,或者在预先约定的部分时域单元内在系统带宽上扫描同步信号3。
对于上述方法6和7:不需要所述系统信息中通知有关同步信号3的任何信息,直接盲检,所以接收所述系统信息只是为了获得系统带宽、SFN之类的参数,如果这些参数在检测同步信号3的时候不需要,那么不需要先接收所述系统信息,可以直接检测同步信号3。
另外,该场景中,由于一个TRP即一个TRP group,该TRP广播的所述系统信息中可包含该TRP在系统带宽中的每个子带或带宽部分(bandwidth part)或Beam上所使用的基带参数,从而不需要基于同步信号3的检测获得基带参数。
实施例2:本实施例应用的场景如图5所示,一个SIA对应一个TRP group,每个TRP group中包含多个TRP,多个TRP之间可以同步或者不同步,全部或者部分TRP发送相同的初始同步信号以及所述系统信息。终端在接入或驻留到该TRP group中时,首先检测同步信号1和同步信号2,具体过程与实施例1类似,不再赘述,实现与一个TRP group的同步,然后读取该TRP group的系统信息。
进一步,终端可以通过所述系统信息获得该TRP group的系统带宽,当然还可以进一步包括系统带宽的子带配置信息。例如,图6A和图6B中,假设系统带宽为100M,将100M的系统带宽分为三个子带,不同子带上使用了不同的基带参数;当然,子带划分还可以是根据系统带宽的大小以及预先规定的规则自行划分的;当然所述系统信息还可以指示同步信号3与子带/TRP/Beam的对应关系,或者对应关系是预先约定的,例如,包含检测到同步信号3传输资源的子带为同步信号3所对应的子带,同步信号3序列与TRP ID和/或Beam ID相关等。具体包括以下三种可能的实现方法:
方法1~7:除了下述描述的区别之外,其他同实施例1。
对于上述方法1、4、5、7:例如预先约定或者所述系统信息中指示同步信号3序列0~A对应第一类基带参数,同步信号3序列A+1~B对应第二类基带参数,同步信号3序列B+1~C对应第三类基带参数,以此类推;如果是预先约定的对应关系,则通信系统中定义了多少种基带参数,就需要预先约定多少种对应关系,如果是所述系统信息中通知的对应关系,则可以通知给终端通信系统中定义的所有种基带参数与不同的同步信号3序列的对应关系,也可以仅通知该TRP组中所支持的基带参数(可能仅有一种,也可能有多种)与不同的同步信号3序列的对应关系。
举例说明,假设终端1仅在传输资源1上(对应子带1)检测到的同步信号3序列为0~A之间的一个序列X1,且序列X1对应TRP1(对应关系为预先定义的或者按照函数关系计算的,下同),则终端1归属到TRP1,并确定TRP1在子带1的基带参数为第一类基带参数;
假设终端2在传输资源1上检测到的同步信号3序列为0~A之间的一个序列X2,在传输资源2上(对应子带2)检测到的同步信号3序列为A+1~B之间的一个序列X3,且序列X2和X3都对应TRP2,则终端2归属到TRP2,并确定TRP2在子带1的基带参数为第一类基带参数,在子带2的基带参数为第二类基带参数,此时,终端2至少可以同时或者TDM工作在该TRP2的子带1和子带2上,或者,假设终端2比较在传输资源1和传输资源2上的检测能量之后确定在传输资源2上检测到的同步信号3序列X3的能量最大,按照上述定义,终端2同样可以确定归属为TRP2,并确定TRP2在子带2上的基带参数为 第二类基带参数,但由于终端2不能确定TRP2是否还包含其他子带(如子带1)及基带参数,在接入TRP2的最初,只能按照第二类基带参数工作在子带2上,直到得到TRP2的进一步配置或者指示,例如接收TRP2发送的TRP专属系统信息或者配置信息,通知终端在TRP2上的具体工作带宽和基带参数等信息;
假设终端3在传输资源1上检测到的同步信号3序列为0~A之间的一个序列X4,在传输资源2上检测到的同步信号3序列为A+1~B之间的一个序列X5,在传输资源3上(对应子带3)检测到的同步信号3序列为B+1~C之间的一个序列X6,且序列X4、X5和X6都对应TRP3,则终端3归属到TRP3,并确定TRP3在子带1的基带参数为第一类基带参数,在子带2的基带参数为第二类基带参数,在子带3的基带参数为第三类基带参数此时,终端至少可以同时或者TDM工作在该TRP3的子带1、子带2和子带3上,或者,假设终端3比较在传输资源1、2、3上的检测能量之后确定在传输资源3上检测到的同步信号3序列X6的能量最大,按照上述定义,终端3同样可以确定归属为TRP3,并确定TRP3在子带3上的基带参数为第三类基带参数,但由于终端3不能确定TRP3是否还包含其他子带(如子带1、2)及基带参数,在接入TRP3的最初,只能按照第三类基带参数工作在子带3上,直到得到TRP3的进一步配置或者指示,例如接收TRP3发送的TRP专属系统信息或者配置信息,通知终端在TRP3上的具体工作带宽和基带参数等信息。
对于上述方法2、3、6:举例说明,假设终端1仅在传输资源1上使用第一类基带参数检到同步信号3序列X1,且序列X1对应TRP1,则终端1确定归属到TRP1,并确定TRP1在子带1上的基带参数为第一类基带参数;
假设终端2在传输资源1上使用第一类基带参数检到同步信号3序列X2,在传输资源2上使用第二类基带参数检到同步信号3序列X3,且序列X2和X3都对应TRP2,则终端2确定归属到TRP2,并确定TRP2在子带1的基带参数为第一类基带参数,在子带2的基带参数为第二类基带参数,此时,终端2至少可以同时或者TDM工作在该TRP2的子带1和子带2上,或者,假设终端2比较在传输资源1和传输资源2上的检测能量之后确定在传输资源2上检测到的同步信号3序列X3的能量最大,按照上述定义,终端2同样可以确定归属为TRP2,并确定TRP2在子带2上的基带参数为第二类基带参数,但由于终端2不能确定TRP2是否还包含其他子带(如子带1)及基带参数,在接入TRP2的最初,只能按照第二类基带参数工作在子带2上,直到得到TRP2的进一步配置或者指示;
假设终端3在传输资源1上使用第一类基带参数检到同步信号3序列X4,在传输资源2上使用第二类基带参数检到同步信号3序列X5,在传输资源3上使用第二类基带参数检到同步信号3序列X6,且序列X4、X5和X6都对应TRP3,则终端3确定归属到TRP3,并确定TRP3在子带1的基带参数为第一类基带参数,在子带2的基带参数为第二类基带参数,在子带3的基带参数为第三类基带参数此时,终端至少可以同时或者TDM工作在该TRP3的子带1、子带2和子带3上,或者,假设终端3比较在传输资源1、2、3上的检测能量之后确定在传输资源3上检测到的同步信号3序列X6的能量最大,按照上述定义,终端3同样可以确定归属为TRP3,并确定TRP3在子带3上的基带参数为第三类基带参数,但由于终端3不能确定TRP3是否还包含其他子带(如子带1、2)及基带参数,在接入TRP3的最初,只能按照第三类基带参数工作在子带3上,直到得到TRP3的进一步配置或者指示。
方法8:终端先检测同步信号3,然后接收TRP专属系统信息(TRP specific系统信息), 获得基带参数。
具体的,终端在TRP group的系统带宽上或预定的同步信号3的传输资源上或所述系统信息中指示的同步信号3的传输资源上,根据预定的基带参数或所述系统信息中通知的基带参数或通信系统中支持的基带参数,检测同步信号3,从而驻留或者接入到该同步信号3所对应的TRP中。较优的,应只采用一种默认的基带参数检测同步信号3。
进一步,按照预定的一种基带参数或所述系统信息中指示的一种基带参数,接收该TRP发送的TRP专属系统信息,根据该TRP专属系统信息中的指示,确定该TRP或该TRP中的每个Beam或该TRP在不同时域和频域资源上的基带参数。
举例说明,假设终端1按照检测能量最大原则仅在传输资源1上检到同步信号3序列X1,且序列X1对应TRP1,则终端1确定归属到TRP1,进一步终端1接收该TRP1发送的TRP专属系统信息,从该TRP专属系统信息中得到该TRP1所工作的子带以及每个子带的基带参数,即该TRP1仅工作在子带1上且采用第一类基带参数;
假设终端2按照检测能量最大原则仅在传输资源2上检到同步信号3序列X3,且序列X3对应TRP2,则终端2确定归属到TRP2,进一步终端2接收该TRP2发送的TRP专属系统信息,从该TRP专属系统信息中得到该TRP2所工作的子带以及每个子带的基带参数,即该TRP2工作在子带1和子带2上,在子带1上采用第一类基带参数,在子带2上采用第二类基带参数;
假设终端3按照检测能量最大原则仅在传输资源3上检到同步信号3序列X6,且序列X6对应TRP3,则终端3确定归属到TRP3,进一步终端3接收该TRP3发送的TRP专属系统信息,从该TRP专属系统信息中得到该TRP3所工作的子带以及每个子带的基带参数,即该TRP3工作在子带1、子带2和子带3上,在子带1上采用第一类基带参数,在子带2上采用第二类基带参数,在子带3上采用第三类基带参数。
需要说明的是,本实施例中仅以识别TRP或子带为例进行说明,将TRP或子带替换Beam同样适用,此处不再赘述。
另外,本实施例中,如果TRP group中的所有TRP同步,则终端可以直接基于同步信号1和2的同步情况检测同步信号3、接收TRP专属系统信息等,当然也可以使用同步信号3作进一步精同步调整;如果TRP group中的TRP不同步,则终端检测到的同步信号1和2与同步信号3可能来自不同步的TRP,此时,检测同步信号3时需要盲检定时关系,即可以通过同步信号3获得与某个TRP的下行同步,然后再接入该TRP进行进一步数据传输。
实施例3:本实施例的应用场景如图7所示,一个SIA对应一个TRP group,每个TRP group中包含多个TRP,多个TRP之间可以同步或者不同步,部分TRP工作在高频段,部分TRP工作在低频段。初始同步信号(同步信号1和2)和所述系统信息仅在一个频段上的全部或者部分TRP上发送,或者同时在低频和高频段上的全部或者部分TRP上发送,参与发送的TRP所发送的初始同步信号和所述系统信息相同;或者,某个频段上的TRP广播的所述系统信息可以仅包括该频段上的相关信息,也可以同时包含另一个频段的相关信息。
终端在接入或驻留到一个TRP group中时,首先检测同步信号1和同步信号2,可以按照默认的一种基带参数检测,例如假设默认的基带参数为15kHz子载波间隔以及该子载波间隔下所定义的OFDM符号、CP、子帧(或min-frame)之类的长度;也可以按照通信 系统中支持的多种基带参数盲检,例如先按照15kHz子载波间隔以及该子载波间隔下对应的相应参数检测同步信号1和2,再按照60kHz子载波间隔以及该子载波间隔下对应的相应参数检测同步信号1和2,如果定义了更多的基带参数,以此类推,选择检测强度最高的一个基带参数下的同步信号1和同步信号2作为接入点,从而和该同步信号1和2相对应的TRP group进行初始同步,然后读取该TRP group的系统信息。其中,同步信号1和2可以被约定在系统带宽的固定位置,例如系统带宽的中间,从而在获得系统带宽之后基于同步信号1和2的频域位置确定系统带宽的频域位置,当然,还可以进一步约定同步信号1和2的时域传输位置,从而在盲检到该同步信号后便于推断得到时域边界,如无线帧/子帧/符号边界。
本实施例中,终端需要在两个频段上检测初始同步信号和所述系统信息。
举例说明,例如可以默认总是先在低频段检测初始同步信号,如果检测到,与低频段取得同步,然后在低频段接收TRP group中的所述系统信息。所述系统信息中可以仅包含低频段的配置信息,如检测同步信号3的相关信息等,终端可以按照同实施例2的方法在低频段确定归属的TRP以及其基带参数;或者,所述系统信息中还可以包括高频段的配置信息,这样终端可以按照同实施例2的方法在低频和高频段中确定归属的TRP以及其基带参数。如果终端在低频段没有检测到初始同步信号,则在高频段检测初始同步信号,与高频段取得同步,然后在高频段接收TRP group中的所述系统信息,所述系统信息中可以仅包含高频段的配置信息,如检测同步信号3的相关信息等,终端可以按照同实施例2的方法在高频段确定归属的TRP以及其基带参数,或者,所述系统信息中还可以包括低频段的配置信息,这样终端可以按照同实施例2的方法在低频和高频段中确定归属的TRP以及其基带参数。
又如,可以在低频和高频段检测初始同步信号,选择信号最强的频段取得同步,然后在该频段接收TRP group中的所述系统信息,所述系统信息中可以仅包含某一频段的配置信息,如检测同步信号3的相关信息等,终端可以按照同实施例2的方法在该频段确定归属的TRP以及其基带参数,或者,所述系统信息中同时包括高频和低频段的配置信息,这样终端可以按照同实施例2的方法在低频和高频段中确定归属的TRP以及其基带参数。
再如,对于仅支持某一频段的终端,可以仅在该频段上检测初始同步信号,取得下行同步后,接收该频段上发送的系统信息,终端可以按照同实施例2的方法在该频段确定归属的TRP以及其基带参数。
上述方法处理流程可以用软件程序实现,该软件程序可以存储在存储介质中,当存储的软件程序被调用时,执行上述方法步骤。
基于同一发明构思,本发明实施例中还提供了一种终端,由于该终端解决问题的原理与上述图2A所示的方法实施例相似,因此该终端的实施可以参见方法的实施,重复之处不再赘述。
图8所示实施例中,提供了一种终端,所述终端包括:
TRP组确定模块81,用于根据检测到的初始同步信号,确定所述终端归属的传输接收点TRP组,所述初始同步信号包括第一同步信号和/或第二同步信号;
基带参数确定模块82,用于根据在所述TRP组内检测到的第三同步信号和/或所述TRP组的系统信息,确定基带参数。
一种可能的实施方式中,所述基带参数确定模块82还用于:
在所述TRP组的系统带宽上,检测所述第三同步信号;或者
在预先约定的第三同步信号的传输资源上,检测所述第三同步信号;或者
在所述TRP组的系统信息中指示的第三同步信号的传输资源上,检测所述第三同步信号。
一种可能的实施方式中,所述基带参数确定模块82还用于:
按照预先设定的基带参数,检测所述第三同步信号;或者
根据频段与基带参数的对应关系,确定当前检测所述第三同步信号的频段对应的基带参数,并按照所确定的基带参数,检测所述第三同步信号;或者
按照通信系统支持的基带参数,检测所述第三同步信号;或者
按照所述TRP组的系统信息中指示的基带参数,检测所述第三同步信号;或者
按照预先约定的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定每个第三同步信号序列的基带参数,按照所确定的基带参数检测所述第三同步信号;或者
按照所述TRP组的系统信息中指示的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定每个第三同步信号序列的基带参数,按照所确定的基带参数检测所述第三同步信号。
一种可能的实施方式中,所述基带参数确定模块82具体用于:
将检测到的所述第三同步信号传输使用的基带参数,确定为所述第三同步信号对应的子带、TRP和/或波束所使用的基带参数;或者
根据预先约定的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定检测到的所述第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数;或者
按照预先设定的基带参数,接收检测到的所述第三同步信号对应的TRP发送的TRP专属系统信息,并根据所述TRP专属系统信息,确定基带参数;或者
根据所述TRP组的系统信息中指示的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定检测到的所述第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数;或者
按照所述TRP组的系统信息中指示的基带参数,接收检测到的所述第三同步信号对应的TRP发送的TRP专属系统信息,并根据所述TRP专属系统信息,确定基带参数;
其中,所述TRP专属系统信息中包括所述TRP使用的基带参数、所述TRP中的每个Beam使用的基带参数、以及所述TRP在不同时域和/或频域资源上使用的基带参数中的至少一种。
一种可能的实施方式中,若检测到的第三同步信号序列的数量为至少两个,所述基带参数确定模块82具体用于:
确定每个第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数;或者
从所述至少两个第三同步信号序列中,选择至少一个第三同步信号序列,并确定所选择的第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数。
一种可能的实施方式中,所述基带参数确定模块82具体用于:
根据所述至少两个第三同步信号序列的接收能量、信号强度和/或接收指标,从所述至少两个第三同步信号序列中,选择至少一个第三同步信号序列;或者
将所述至少两个第三同步信号序列上报给网络侧,并接收网络侧通知的至少一个第三同步信号序列。
一种可能的实施方式中,所述基带参数确定模块82具体用于:
接收所述TRP组的系统信息,所述TRP组的系统信息中包括所述TRP组对应的子带所使用的基带参数、所述TRP组对应的时域资源和/或频域资源所使用的基带参数、所述TRP组中的TPR所使用的基带参数、以及所述TRP组对应的波束所使用的基带参数中的至少一种。
一种可能的实施方式中,所述传输资源为所述第三同步信号传输占用的时域资源和/或频域资源,或者为用于检测所述第三同步信号的时域窗口和/或频域窗口。
进一步,若所述传输资源为所述第三同步信号传输占用的时域资源和/或频域资源,所述基带参数确定模块按照基于所述初始同步信号所确定的与所述TRP组的同步关系,检测所述第三同步信号;
若所述传输资源为用于检测所述第三同步信号的时域窗口和/或频域窗口,所述基带参数确定模块在所述时域窗口和/或频域窗口中,盲检测所述第三同步信号,并通过所述第三同步信号获得与所述时域窗口和/或频域窗口对应的子带或TRP或波束的同步关系。
本发明实施例中,所述第三同步信号与子带或TRP或波束的对应关系为根据预先约定的方式确定的,或者为所述TRP组的系统信息通知的。
基于上述任一实施例,所述终端还包括:
传输模块83,用于在所述TRP组中的TRP或子带或波束上,按照所述基带参数确定模块确定的基带参数进行后续传输。
图9所示实施例中,提供了另一种终端,包括收发机91、以及与收发机91连接的至少一个处理器92,其中:
处理器92,用于读取存储器93中的程序,执行下列过程:
根据检测到的初始同步信号,确定所述终端归属的传输接收点TRP组,所述初始同步信号包括第一同步信号和/或第二同步信号;根据在所述TRP组内检测到的第三同步信号和/或所述TRP组的系统信息,确定基带参数;
收发机91,用于在处理器92的控制下接收和发送数据。
在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器92代表的一个或多个处理器和存储器93代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机91可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口94还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。处理器92负责管理总线架构和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。存储器93可以存储处理器500在执行操作时所使用的数据。
可选的,处理器92可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或CPLD复杂可编程逻辑器件(Complex Programmable Logic Device,简称 CPLD)。
本实施例中,处理器92读取存储器93中的程序,具体执行图2A所示实施例中的方法,具体参见图2A所示实施例中的相关描述,此处不再赘述。
基于同一发明构思,本发明实施例中还提供了一种网络侧设备,由于该设备解决问题的原理与上述图2B所示的方法实施例相似,因此该设备的实施可以参见方法的实施,重复之处不再赘述。
图10所示实施例中,提供了一种网络侧设备,所述网络侧设备归属于传输接收点TRP组,包括:
发送模块101,用于在所述TRP组内发送初始同步信号,以使终端根据所述初始同步信号确定所述终端归属的TRP组,所述初始同步信号包括第一同步信号和/或第二同步信号;和/或
在所述TRP组内发送第三同步信号和/或所述TRP组的系统信息,以使所述终端根据所述第三同步信号和/或所述TRP组的系统信息,确定所述网络侧设备的基带参数或所述TRP组内的网络侧设备的基带参数。
一种可能的实施方式中,所述发送模块101具体用于:
在所述TRP组的系统带宽上对应所述网络侧设备的工作带宽上,发送所述第三同步信号;或者
在预先约定的所述第三同步信号的传输资源上,发送所述第三同步信号;或者
在所述TRP组的系统信息中指示的所述第三同步信号的传输资源上,发送所述第三同步信号。
一种可能的实施方式中,所述发送模块101具体用于:
根据频段与基带参数的对应关系,确定当前发送所述第三同步信号的频段对应的基带参数,并按照所确定的基带参数,发送所述第三同步信号;或者
按照预先约定的或所述TRP组的系统信息中指示的第三同步信号序列与基带参数的对应关系,确定所述网络侧设备的基带参数所对应的所述第三同步信号序列,按照预先设定的基带参数或者通信系统中定义的多种基带参数中的任意一种或所述TRP组的系统信息中指示的基带参数或者所述网络侧设备的基带参数,发送与所述网络侧设备的基带参数对应的所述第三同步信号序列;或者
按照预先约定的或所述TRP组的系统信息中指示的第三同步信号序列与网络侧设备的对应关系,确定所述网络侧设备对应的所述第三同步信号序列,按照所述网络侧设备的基带参数发送所述网络侧设备对应的所述第三同步信号序列。
一种可能的实施方式中,所述TRP组的系统信息中包括所述TRP组对应的子带所使用的基带参数、所述TRP组对应的时域资源和/或频域资源所使用的基带参数、所述TRP组对应的波束所使用的基带参数、所述TRP组中的每个网络侧设备所使用的基带参数、所述TRP组中的每个网络侧设备的每个波束所使用的基带参数、以及所述TRP组中的每个网络侧设备在不同时域和/或频域资源上使用的基带参数中的至少一种。
一种可能的实施方式中,所述TRP组的系统信息中指示的第三同步信号序列与基带参数的对应关系;或者
所述TRP组的系统信息中指示基带参数。
一种可能的实施方式中,所述TRP组的系统信息中指示所述第三同步信号的传输资 源。
一种可能的实施方式中,所述发送模块101还用于:
按照预先约定的基带参数或者所述TRP组的系统信息中指示的基带参数或所述网络侧设备的一种默认的基带参数,发送所述网络侧设备的专属系统信息,其中,所述专属系统信息中包括网络侧设备使用的基带参数、网络侧设备中的每个波束使用的基带参数、以及网络侧设备在不同时域和/或频域资源上使用的基带参数中的至少一种。
基于上述任一实施例,所述设备还包括接收模块102,用于:接收所述终端上报的多个第三同步信号序列,从中选择一个或多个第三同步信号序列;
所述发送模块101还用于:将所述接收模块选择的第三同步信号序列通知给所述终端。
基于上述任一实施例,所述设备还包括数据传输模块103,用于:在所述网络侧设备的工作带宽上,按照所述网络侧设备的基带参数进行后续数据传输。
基于上述任一实施例,所述网络侧设备为:所述TRP组中的TRP或基站。
图11所示实施例中,提供了另一种网络侧设备,包括收发机111、以及与收发机111连接的至少一个处理器112,其中:
处理器112,用于读取存储器113中的程序,执行下列过程:
控制收发机111在所述TRP组内发送初始同步信号,以使终端根据所述初始同步信号确定所述终端归属的TRP组,所述初始同步信号包括第一同步信号和/或第二同步信号;和/或
控制收发机111在所述TRP组内发送第三同步信号和/或所述TRP组的系统信息,以使所述终端根据所述第三同步信号和/或所述TRP组的系统信息,确定所述网络侧设备的基带参数或所述TRP组内的网络侧设备的基带参数;
收发机111,用于在处理器112的控制下接收和发送数据。
其中,在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器112代表的一个或多个处理器和存储器113代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机111可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器112负责管理总线架构和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。存储器113可以存储处理器112在执行操作时所使用的数据。
可选的,处理器112可以是CPU、ASIC、FPGA或CPLD。
本实施例中,处理器112读取存储器113中的程序,具体执行图2A所示实施例中的方法,具体参见图2B所示实施例中的相关描述,此处不再赘述。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流 程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (44)

  1. 一种确定基带参数的方法,其特征在于,所述方法包括:
    终端根据检测到的初始同步信号,确定所述终端归属的传输接收点TRP组,所述初始同步信号包括第一同步信号和/或第二同步信号;
    所述终端根据在所述TRP组内检测到的第三同步信号和/或所述TRP组的系统信息,确定基带参数。
  2. 根据权利要求1所述的方法,其特征在于,所述终端根据在所述TRP组内检测到的第三同步信号和/或所述TRP组的系统信息,确定基带参数之前,还包括:
    所述终端在所述TRP组的系统带宽上,检测所述第三同步信号;或者
    所述终端在预先约定的第三同步信号的传输资源上,检测所述第三同步信号;或者
    所述终端在所述TRP组的系统信息中指示的第三同步信号的传输资源上,检测所述第三同步信号。
  3. 根据权利要求1所述的方法,其特征在于,所述终端根据在所述TRP组内检测到的第三同步信号/或所述TRP组的系统信息,确定基带参数之前,还包括:
    所述终端按照预先设定的基带参数,检测所述第三同步信号;或者
    所述终端根据频段与基带参数的对应关系,确定当前检测所述第三同步信号的频段对应的基带参数,并按照所确定的基带参数,检测所述第三同步信号;或者
    所述终端按照通信系统支持的基带参数,检测所述第三同步信号;或者
    所述终端按照所述TRP组的系统信息中指示的基带参数,检测所述第三同步信号;或者
    所述终端按照预先约定的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定每个第三同步信号序列的基带参数,按照所确定的基带参数检测所述第三同步信号;或者
    所述终端按照所述TRP组的系统信息中指示的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定每个第三同步信号序列的基带参数,按照所确定的基带参数检测所述第三同步信号。
  4. 根据权利要求1所述的方法,其特征在于,所述终端根据在所述TRP组内检测到的第三同步信号和/或所述TRP组的系统信息,确定基带参数,包括:
    所述终端将检测到的所述第三同步信号传输使用的基带参数,确定为所述第三同步信号对应的子带、TRP和/或波束所使用的基带参数;或者
    所述终端根据预先约定的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定检测到的所述第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数;或者
    所述终端按照预先设定的基带参数,接收检测到的所述第三同步信号对应的TRP发送的TRP专属系统信息,并根据所述TRP专属系统信息,确定基带参数;或者
    所述终端根据所述TRP组的系统信息中指示的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定检测到的所述第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数;或者
    所述终端按照所述TRP组的系统信息中指示的基带参数,接收检测到的所述第三同步信号对应的TRP发送的TRP专属系统信息,并根据所述TRP专属系统信息,确定基带参数;
    其中,所述TRP专属系统信息中包括所述TRP使用的基带参数、所述TRP中的每个Beam使用的基带参数、以及所述TRP在不同时域和/或频域资源上使用的基带参数中的至少一种。
  5. 根据权利要求4所述的方法,其特征在于,若检测到的第三同步信号序列的数量为至少两个,所述终端确定基带参数,包括:
    所述终端确定每个第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数;或者
    所述终端从所述至少两个第三同步信号序列中,选择至少一个第三同步信号序列,并确定所选择的第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数。
  6. 根据权利要求5所述的方法,其特征在于,所述终端从所述至少两个同步信号序列中,选择至少一个同步信号序列,包括:
    所述终端根据所述至少两个第三同步信号序列的接收能量、信号强度和/或接收指标,从所述至少两个第三同步信号序列中,选择至少一个第三同步信号序列;或者
    所述终端将所述至少两个第三同步信号序列上报给网络侧,并接收网络侧通知的至少一个第三同步信号序列。
  7. 根据权利要求1所述的方法,其特征在于,所述终端根据所述TRP组的系统信息,确定基带参数,包括:
    所述终端接收所述TRP组的系统信息,所述TRP组的系统信息中包括所述TRP组对应的子带所使用的基带参数、所述TRP组对应的时域资源和/或频域资源所使用的基带参数、所述TRP组中的TPR所使用的基带参数、以及所述TRP组对应的波束所使用的基带参数中的至少一种。
  8. 根据权利要求2所述的方法,其特征在于,所述传输资源为所述第三同步信号传输占用的时域资源和/或频域资源,或者为用于检测所述第三同步信号的时域窗口和/或频域窗口。
  9. 根据权利要求8所述的方法,其特征在于,若所述传输资源为所述第三同步信号传输占用的时域资源和/或频域资源,所述终端按照基于所述初始同步信号所确定的与所述TRP组的同步关系,检测所述第三同步信号;
    若所述传输资源为用于检测所述第三同步信号的时域窗口和/或频域窗口,所述终端在所述时域窗口和/或频域窗口中,盲检测所述第三同步信号,并通过所述第三同步信号获得与所述时域窗口和/或频域窗口对应的子带或TRP或波束的同步关系。
  10. 根据权利要求3或4所述的方法,其特征在于,所述第三同步信号与子带或TRP或波束的对应关系为根据预先约定的方式确定的,或者为所述TRP组的系统信息通知的。
  11. 根据权利要求1所述的方法,其特征在于,所述终端根据在所述TRP组内检测到的第三同步信号和/或所述TRP组的系统信息,确定基带参数之后,还包括:
    所述终端在所述TRP组中的TRP或子带或波束上,按照所确定的基带参数进行后续传输。
  12. 一种确定基带参数的方法,其特征在于,所述方法包括:
    传输接收点TRP组中的第一网络侧设备在所述TRP组内发送初始同步信号,以使终端根据所述初始同步信号确定所述终端归属的TRP组,所述初始同步信号包括第一同步信号和/或第二同步信号;
    所述TRP组中的第二网络侧设备在所述TRP组内发送第三同步信号和/或所述TRP组中的第三网络侧设备在所述TRP组内发送所述TRP组的系统信息,以使所述终端根据所述第三同步信号和/或所述TRP组的系统信息,确定所述第二网络侧设备的基带参数或所述TRP组内的网络侧设备的基带参数。
  13. 根据权利要求12所述的方法,其特征在于,所述TRP组中的第二网络侧设备在所述TRP组内发送第三同步信号,包括:
    所述第二网络侧设备在所述TRP组的系统带宽上对应所述第二网络侧设备的工作带宽上,发送所述第三同步信号;或者
    所述第二网络侧设备在预先约定的所述第三同步信号的传输资源上,发送所述第三同步信号;或者
    所述第二网络侧设备在所述TRP组的系统信息中指示的所述第三同步信号的传输资源上,发送所述第三同步信号。
  14. 根据权利要求12所述的方法,其特征在于,所述TRP组中的第二网络侧设备在所述TRP组内发送第三同步信号,包括:
    所述第二网络侧设备根据频段与基带参数的对应关系,确定当前发送所述第三同步信号的频段对应的基带参数,并按照所确定的基带参数,发送所述第三同步信号;或者
    所述第二网络侧设备按照预先约定的或所述TRP组的系统信息中指示的第三同步信号序列与基带参数的对应关系,确定所述第二网络侧设备的基带参数所对应的所述第三同步信号序列,按照预先设定的基带参数或者通信系统中定义的多种基带参数中的任意一种或所述TRP组的系统信息中指示的基带参数或者所述第二网络侧设备的基带参数,发送与所述第二网络侧设备的基带参数对应的所述第三同步信号序列;或者
    所述第二网络侧设备按照预先约定的或所述TRP组的系统信息中指示的第三同步信号序列与网络侧设备的对应关系,确定所述第二网络侧设备对应的所述第三同步信号序列,按照所述第二网络侧设备的基带参数发送所述第二网络侧设备对应的所述第三同步信号序列。
  15. 根据权利要求12所述的方法,其特征在于,所述TRP组的系统信息中包括所述TRP组对应的子带所使用的基带参数、所述TRP组对应的时域资源和/或频域资源所使用的基带参数、所述TRP组对应的波束所使用的基带参数、所述TRP组中的每个网络侧设备所使用的基带参数、所述TRP组中的每个网络侧设备的每个波束所使用的基带参数、以及所述TRP组中的每个网络侧设备在不同时域和/或频域资源上使用的基带参数中的至少一种。
  16. 根据权利要求12所述的方法,其特征在于,所述TRP组的系统信息中指示第三同步信号序列与基带参数的对应关系;或者
    所述TRP组的系统信息中指示基带参数。
  17. 根据权利要求12所述的方法,其特征在于,所述TRP组的系统信息中指示所述第三同步信号的传输资源。
  18. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述第二网络侧设备按照预先约定的基带参数或者所述TRP组的系统信息中指示的基带参数或所述第二网络侧设备的一种默认的基带参数,发送所述第二网络侧设备的专属系统信息,其中,所述专属系统信息中包括网络侧设备使用的基带参数、网络侧设备中的每个波束使用的基带参数、以及网络侧设备在不同时域和/或频域资源上使用的基带参数中的至少一种。
  19. 根据权利要求12~18任一项所述的方法,其特征在于,所述方法还包括:
    所述第二网络侧设备或所述第三网络侧设备接收所述终端上报的多个第三同步信号序列,从中选择一个或多个第三同步信号序列,并将所选择的第三同步信号序列通知给所述终端。
  20. 根据权利要求12~18任一项所述的方法,其特征在于,所述方法还包括:
    所述第二网络侧设备在自身工作带宽上,按照自身的基带参数进行后续传输。
  21. 根据权利要求12~18任一项所述的方法,其特征在于,所述第一网络侧设备或所述第二网络侧设备或所述第三网络侧设备为:所述TRP组中的TRP或基站。
  22. 一种终端,其特征在于,所述终端包括:
    TRP组确定模块,用于根据检测到的初始同步信号,确定所述终端归属的传输接收点TRP组,所述初始同步信号包括第一同步信号和/或第二同步信号;
    基带参数确定模块,用于根据在所述TRP组内检测到的第三同步信号和/或所述TRP组的系统信息,确定基带参数。
  23. 根据权利要求22所述的终端,其特征在于,所述基带参数确定模块还用于:
    在所述TRP组的系统带宽上,检测所述第三同步信号;或者
    在预先约定的第三同步信号的传输资源上,检测所述第三同步信号;或者
    在所述TRP组的系统信息中指示的第三同步信号的传输资源上,检测所述第三同步信号。
  24. 根据权利要求22所述的终端,其特征在于,所述基带参数确定模块还用于:
    按照预先设定的基带参数,检测所述第三同步信号;或者
    根据频段与基带参数的对应关系,确定当前检测所述第三同步信号的频段对应的基带参数,并按照所确定的基带参数,检测所述第三同步信号;或者
    按照通信系统支持的基带参数,检测所述第三同步信号;或者
    按照所述TRP组的系统信息中指示的基带参数,检测所述第三同步信号;或者
    按照预先约定的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定每个第三同步信号序列的基带参数,按照所确定的基带参数检测所述第三同步信号;或者
    按照所述TRP组的系统信息中指示的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定每个第三同步信号序列的基带参数,按照所确定的基带参数检测所述第三同步信号。
  25. 根据权利要求22所述的终端,其特征在于,所述基带参数确定模块具体用于:
    将检测到的所述第三同步信号传输使用的基带参数,确定为所述第三同步信号对应的子带、TRP和/或波束所使用的基带参数;或者
    根据预先约定的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定检测到的所述第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数; 或者
    按照预先设定的基带参数,接收检测到的所述第三同步信号对应的TRP发送的TRP专属系统信息,并根据所述TRP专属系统信息,确定基带参数;或者
    根据所述TRP组的系统信息中指示的第三同步信号序列与子带或TRP或波束所使用的基带参数的对应关系,确定检测到的所述第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数;或者
    按照所述TRP组的系统信息中指示的基带参数,接收检测到的所述第三同步信号对应的TRP发送的TRP专属系统信息,并根据所述TRP专属系统信息,确定基带参数;
    其中,所述TRP专属系统信息中包括所述TRP使用的基带参数、所述TRP中的每个Beam使用的基带参数、以及所述TRP在不同时域和/或频域资源上使用的基带参数中的至少一种。
  26. 根据权利要求25所述的终端,其特征在于,若检测到的第三同步信号序列的数量为至少两个,所述基带参数确定模块具体用于:
    确定每个第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数;或者
    从所述至少两个第三同步信号序列中,选择至少一个第三同步信号序列,并确定所选择的第三同步信号序列对应的子带、TRP和/或波束所使用的基带参数。
  27. 根据权利要求26所述的终端,其特征在于,所述基带参数确定模块具体用于:
    根据所述至少两个第三同步信号序列的接收能量、信号强度和/或接收指标,从所述至少两个第三同步信号序列中,选择至少一个第三同步信号序列;或者
    将所述至少两个第三同步信号序列上报给网络侧,并接收网络侧通知的至少一个第三同步信号序列。
  28. 根据权利要求22所述的终端,其特征在于,所述基带参数确定模块具体用于:
    接收所述TRP组的系统信息,所述TRP组的系统信息中包括所述TRP组对应的子带所使用的基带参数、所述TRP组对应的时域资源和/或频域资源所使用的基带参数、所述TRP组中的TPR所使用的基带参数、以及所述TRP组对应的波束所使用的基带参数中的至少一种。
  29. 根据权利要求23所述的终端,其特征在于,所述传输资源为所述第三同步信号传输占用的时域资源和/或频域资源,或者为用于检测所述第三同步信号的时域窗口和/或频域窗口。
  30. 根据权利要求29所述的终端,其特征在于,若所述传输资源为所述第三同步信号传输占用的时域资源和/或频域资源,所述基带参数确定模块按照基于所述初始同步信号所确定的与所述TRP组的同步关系,检测所述第三同步信号;
    若所述传输资源为用于检测所述第三同步信号的时域窗口和/或频域窗口,所述基带参数确定模块在所述时域窗口和/或频域窗口中,盲检测所述第三同步信号,并通过所述第三同步信号获得与所述时域窗口和/或频域窗口对应的子带或TRP或波束的同步关系。
  31. 根据权利要求24或25所述的终端,其特征在于,所述第三同步信号与子带或TRP或波束的对应关系为根据预先约定的方式确定的,或者为所述TRP组的系统信息通知的。
  32. 根据权利要求22所述的终端,其特征在于,所述终端还包括:
    传输模块,用于在所述TRP组中的TRP或子带或波束上,按照所述基带参数确定模块确定的基带参数进行后续传输。
  33. 一种网络侧设备,其特征在于,所述网络侧设备归属于传输接收点TRP组,包括:
    发送模块,用于在所述TRP组内发送初始同步信号,以使终端根据所述初始同步信号确定所述终端归属的TRP组,所述初始同步信号包括第一同步信号和/或第二同步信号;和/或
    在所述TRP组内发送第三同步信号和/或所述TRP组的系统信息,以使所述终端根据所述第三同步信号和/或所述TRP组的系统信息,确定所述网络侧设备的基带参数或所述TRP组内的网络侧设备的基带参数。
  34. 根据权利要求33所述的设备,其特征在于,所述发送模块具体用于:
    在所述TRP组的系统带宽上对应所述网络侧设备的工作带宽上,发送所述第三同步信号;或者
    在预先约定的所述第三同步信号的传输资源上,发送所述第三同步信号;或者
    在所述TRP组的系统信息中指示的所述第三同步信号的传输资源上,发送所述第三同步信号。
  35. 根据权利要求33所述的设备,其特征在于,所述发送模块具体用于:
    根据频段与基带参数的对应关系,确定当前发送所述第三同步信号的频段对应的基带参数,并按照所确定的基带参数,发送所述第三同步信号;或者
    按照预先约定的或所述TRP组的系统信息中指示的第三同步信号序列与基带参数的对应关系,确定所述网络侧设备的基带参数所对应的所述第三同步信号序列,按照预先设定的基带参数或者通信系统中定义的多种基带参数中的任意一种或所述TRP组的系统信息中指示的基带参数或者所述网络侧设备的基带参数,发送与所述网络侧设备的基带参数对应的所述第三同步信号序列;或者
    按照预先约定的或所述TRP组的系统信息中指示的第三同步信号序列与网络侧设备的对应关系,确定所述网络侧设备对应的所述第三同步信号序列,按照所述网络侧设备的基带参数发送所述网络侧设备对应的所述第三同步信号序列。
  36. 根据权利要求33所述的设备,其特征在于,所述TRP组的系统信息中包括所述TRP组对应的子带所使用的基带参数、所述TRP组对应的时域资源和/或频域资源所使用的基带参数、所述TRP组对应的波束所使用的基带参数、所述TRP组中的每个网络侧设备所使用的基带参数、所述TRP组中的每个网络侧设备的每个波束所使用的基带参数、以及所述TRP组中的每个网络侧设备在不同时域和/或频域资源上使用的基带参数中的至少一种。
  37. 根据权利要求33所述的设备,其特征在于,所述TRP组的系统信息中指示的第三同步信号序列与基带参数的对应关系;或者
    所述TRP组的系统信息中指示基带参数。
  38. 根据权利要求33所述的设备,其特征在于,所述TRP组的系统信息中指示所述第三同步信号的传输资源。
  39. 根据权利要求33所述的设备,其特征在于,所述发送模块还用于:
    按照预先约定的基带参数或者所述TRP组的系统信息中指示的基带参数或所述网络侧设备的一种默认的基带参数,发送所述网络侧设备的专属系统信息,其中,所述专属系统信息中包括网络侧设备使用的基带参数、网络侧设备中的每个波束使用的基带参数、以 及网络侧设备在不同时域和/或频域资源上使用的基带参数中的至少一种。
  40. 根据权利要求33~39任一项所述的设备,其特征在于,所述设备还包括接收模块,用于:接收所述终端上报的多个第三同步信号序列,从中选择一个或多个第三同步信号序列;
    所述发送模块还用于:将所述接收模块选择的第三同步信号序列通知给所述终端。
  41. 根据权利要求33~39任一项所述的设备,其特征在于,所述设备还包括数据传输模块,用于:在所述网络侧设备的工作带宽上,按照所述网络侧设备的基带参数进行后续数据传输。
  42. 根据权利要求33~39任一项所述的设备,其特征在于,所述网络侧设备为:所述TRP组中的TRP或基站。
  43. 一种终端,其特征在于,该终端包括存储器、处理器和收发机;其中,
    所述存储器用于存储计算机可读程序;
    所述处理器通过运行所述存储器中的程序,以完成如权利要求1至11任一所述的方法;
    所述收发机用于在所述处理器的控制下接收和发送数据。
  44. 一种网络侧设备,其特征在于,该终端包括存储器、处理器和收发机;其中,
    所述存储器用于存储计算机可读程序;
    所述处理器通过运行所述存储器中的程序,以完成如权利要求12至21任一所述的方法;
    所述收发机用于在所述处理器的控制下接收和发送数据。
PCT/CN2017/091495 2016-08-12 2017-07-03 一种确定基带参数的方法和设备 WO2018028347A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197007224A KR102217696B1 (ko) 2016-08-12 2017-07-03 베이스밴드 파라미터를 결정하는 방법 및 장치
JP2019507730A JP6920415B2 (ja) 2016-08-12 2017-07-03 ベースバンドパラメータを決定する方法及び装置
US16/324,907 US11394596B2 (en) 2016-08-12 2017-07-03 Method and device for determining baseband parameter
EP17838477.2A EP3499945B1 (en) 2016-08-12 2017-07-03 Method and system for determining baseband parameter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610665828.8A CN107733828B (zh) 2016-08-12 2016-08-12 一种确定基带参数的方法和设备
CN201610665828.8 2016-08-12

Publications (1)

Publication Number Publication Date
WO2018028347A1 true WO2018028347A1 (zh) 2018-02-15

Family

ID=61162759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091495 WO2018028347A1 (zh) 2016-08-12 2017-07-03 一种确定基带参数的方法和设备

Country Status (6)

Country Link
US (1) US11394596B2 (zh)
EP (1) EP3499945B1 (zh)
JP (1) JP6920415B2 (zh)
KR (1) KR102217696B1 (zh)
CN (1) CN107733828B (zh)
WO (1) WO2018028347A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019157765A1 (en) * 2018-02-16 2019-08-22 Qualcomm Incorporated System information acquisition over bandwidth parts
KR20200017882A (ko) * 2018-08-09 2020-02-19 삼성전자주식회사 무선통신 시스템에서 동기화 신호 블록 지시 방법 및 장치
EP3800947A4 (en) * 2018-06-29 2021-08-18 Datang Mobile Communications Equipment Co., Ltd. SYNCHRONIZATION SOURCE DETERMINATION METHOD AND TERMINAL

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107733829B (zh) * 2016-08-12 2021-11-02 大唐移动通信设备有限公司 一种发送和检测同步信号的方法、设备
US10862613B2 (en) * 2018-02-01 2020-12-08 T-Mobile Usa, Inc. Dynamic numerology based on services
CN110391889B (zh) * 2018-04-23 2020-11-17 华为技术有限公司 一种时隙格式的确定方法及装置
CN113196835A (zh) * 2018-11-30 2021-07-30 索尼集团公司 终端设备和方法
CN114371342B (zh) * 2022-03-21 2022-05-27 国仪量子(合肥)技术有限公司 Fpga及基于其的实时信号测频方法以及锁相放大器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101986745A (zh) * 2009-07-28 2011-03-16 美国博通公司 一种通信方法和通信系统
US20150043465A1 (en) * 2012-03-09 2015-02-12 Sharp Kabushiki Kaisha Base station, terminal, communication method, and integrated circuit
CN104717749A (zh) * 2013-12-11 2015-06-17 华为技术有限公司 一种基于共享小区的导频配置方法、相关装置及系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008049028A1 (en) * 2006-10-17 2008-04-24 Intel Corporation Device, system, and method for partitioning and framing communication signals in broadband wireless access networks
US9137075B2 (en) * 2007-02-23 2015-09-15 Telefonaktiebolaget Lm Ericsson (Publ) Subcarrier spacing identification
JP5984769B2 (ja) * 2013-09-26 2016-09-06 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
WO2015046831A1 (ko) * 2013-09-27 2015-04-02 주식회사 케이티 단말의 상향 링크 제어 채널 자원 할당 방법 및 그 장치
EP3462648B1 (en) 2013-11-27 2020-05-27 Telefonaktiebolaget LM Ericsson (publ) Network node, wireless device, methods therein, for sending and detecting, respectively, synchronization signal and an associated information
CN104796218B (zh) * 2014-01-17 2019-02-12 电信科学技术研究院 信号传输方法和装置
CN104796242B (zh) * 2014-01-22 2018-01-19 电信科学技术研究院 一种发送和接收同步信号的方法、系统及设备
CN108886819B (zh) * 2016-03-30 2022-05-10 Idac控股公司 使用签名的初始接入方法
US10512046B2 (en) * 2016-06-09 2019-12-17 Samsung Electronics Co., Ltd. Method and apparatus for measurement reference signal and synchronization
CN107733829B (zh) * 2016-08-12 2021-11-02 大唐移动通信设备有限公司 一种发送和检测同步信号的方法、设备
JP2018026818A (ja) * 2016-08-12 2018-02-15 華碩電腦股▲ふん▼有限公司 無線通信システムにおいてヌメロロジ帯域幅を決定する方法及び装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101986745A (zh) * 2009-07-28 2011-03-16 美国博通公司 一种通信方法和通信系统
US20150043465A1 (en) * 2012-03-09 2015-02-12 Sharp Kabushiki Kaisha Base station, terminal, communication method, and integrated circuit
CN104717749A (zh) * 2013-12-11 2015-06-17 华为技术有限公司 一种基于共享小区的导频配置方法、相关装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3499945A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019157765A1 (en) * 2018-02-16 2019-08-22 Qualcomm Incorporated System information acquisition over bandwidth parts
US11791965B2 (en) 2018-02-16 2023-10-17 Qualcomm Incorporated System information acquisition over bandwidth parts
EP3800947A4 (en) * 2018-06-29 2021-08-18 Datang Mobile Communications Equipment Co., Ltd. SYNCHRONIZATION SOURCE DETERMINATION METHOD AND TERMINAL
US11641632B2 (en) 2018-06-29 2023-05-02 Datang Mobile Communications Equipment Co., Ltd. Method for determining synchronization source and terminal
KR20200017882A (ko) * 2018-08-09 2020-02-19 삼성전자주식회사 무선통신 시스템에서 동기화 신호 블록 지시 방법 및 장치
KR102614022B1 (ko) * 2018-08-09 2023-12-14 삼성전자주식회사 무선통신 시스템에서 동기화 신호 블록 지시 방법 및 장치
US11985616B2 (en) 2018-08-09 2024-05-14 Samsung Electronics Co., Ltd Method and device for indicating synchronization signal block in wireless communication system

Also Published As

Publication number Publication date
EP3499945A4 (en) 2019-06-19
EP3499945A1 (en) 2019-06-19
EP3499945B1 (en) 2021-09-01
CN107733828B (zh) 2020-10-09
KR20190039242A (ko) 2019-04-10
KR102217696B1 (ko) 2021-02-18
JP2019526967A (ja) 2019-09-19
CN107733828A (zh) 2018-02-23
JP6920415B2 (ja) 2021-08-18
US11394596B2 (en) 2022-07-19
US20210306198A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
US11516773B2 (en) Methods and apparatus for supporting multiple services in wireless communication system
WO2018028347A1 (zh) 一种确定基带参数的方法和设备
RU2751550C1 (ru) Пользовательский терминал и способ радиосвязи
RU2734656C2 (ru) Терминальное устройство, устройство базовой станции и способ связи
EP3334201B1 (en) Terminal device and corresponding method
RU2748617C1 (ru) Пользовательский терминал и способ радиосвязи
KR102282754B1 (ko) 데이터 전송 방법, 무선 네트워크 장치, 및 통신 시스템
US11219061B2 (en) Listen-before-talk (LBT) modes for random access procedures
JP6961591B2 (ja) 端末、無線通信方法、基地局及び無線通信システム
KR102324958B1 (ko) 무선 통신 시스템에서 다양한 서비스를 지원하기 위한 방법 및 장치
EP3334234A1 (en) Terminal device, base station device, and communication method
CN115606310A (zh) 用于Msg3的覆盖增强的方法和装置
US10045316B2 (en) Method and device for sending synchronization signal and method and device for synchronization between base stations
AU2018379172B2 (en) User terminal and radio communication method
WO2018028270A1 (zh) 一种发送和检测同步信号的方法、设备
WO2020135417A1 (zh) 由用户设备执行的方法以及用户设备
JP2016506180A (ja) 無線接続時ステムにおいてチャネル品質指示情報を送受信する方法及びそれを支援する装置
US11234134B2 (en) Initial network access for licensed supplemental downlink paired with unlicensed primary component carrier
US10952168B2 (en) Method for transmitting downlink control signal and apparatus
CN115152310A (zh) 用于随机接入过程的方法和装置
WO2019157904A1 (zh) 同步信号块的发送、接收方法及装置
KR102140959B1 (ko) 무선 네트워크에서의 디바이스간 직접 통신장치 및 방법
WO2020063471A1 (zh) 波束扫描方法、波束配置方法、终端及网络设备
KR102581594B1 (ko) 무선 통신 시스템에서 반송파 집적 방법 및 장치
WO2018028428A1 (zh) 接入子带的方法、装置及存储媒介

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507730

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197007224

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017838477

Country of ref document: EP

Effective date: 20190312