WO2020063471A1 - 波束扫描方法、波束配置方法、终端及网络设备 - Google Patents
波束扫描方法、波束配置方法、终端及网络设备 Download PDFInfo
- Publication number
- WO2020063471A1 WO2020063471A1 PCT/CN2019/106933 CN2019106933W WO2020063471A1 WO 2020063471 A1 WO2020063471 A1 WO 2020063471A1 CN 2019106933 W CN2019106933 W CN 2019106933W WO 2020063471 A1 WO2020063471 A1 WO 2020063471A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- synchronization signal
- link
- signal block
- beams
- beam scanning
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 63
- 238000010408 sweeping Methods 0.000 title abstract description 6
- 230000011664 signaling Effects 0.000 claims description 42
- 238000012545 processing Methods 0.000 claims description 10
- 239000000969 carrier Substances 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract description 22
- 230000006870 function Effects 0.000 description 12
- 235000019527 sweetened beverage Nutrition 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 238000004891 communication Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0695—Hybrid systems, i.e. switching and simultaneous transmission using beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0868—Hybrid systems, i.e. switching and combining
- H04B7/088—Hybrid systems, i.e. switching and combining using beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/006—Quality of the received signal, e.g. BER, SNR, water filling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/046—Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/542—Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
Definitions
- the present disclosure relates to the field of communication technologies, and in particular, to a beam scanning method, a beam configuration method, a terminal, and a network device.
- the terminal uses a PC5 port (Proximity Communication Port 5), and a short-range communication port 5 ) Sidelink (direct link or secondary link or bypass) for direct communication.
- PC5 port Proximity Communication Port 5
- short-range communication port 5 Sidelink (direct link or secondary link or bypass) for direct communication.
- the two terminals that need to communicate first establish synchronization on the PC5 port.
- the method for establishing synchronization is that one terminal A sends a synchronization signal, and the other terminal B receives the synchronization signal sent by terminal A. Once terminal B receives and demodulates successfully, the two terminals can establish synchronization, which is ready for the next step of direct communication. ready.
- the synchronization signal of the NR UU port (the interface between the user and the network) is carried by the SSB (Synchronization Signal Block).
- the SSB includes a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS) and a Physical Broadcast Channel (PBCH).
- PSS Primary Synchronization Signal
- SSS Secondary Synchronization Signal
- PBCH Physical Broadcast Channel
- Each Slot (slot) carries 2 SSB blocks. And PSS and SSS have no time domain repetition mechanism.
- the SSB of the NR UU port needs to be beam scanned (Beam Sweeping).
- the beam scanning means that the base station sends the SSB once in each possible beam direction within a certain time interval (5ms).
- the terminal measures the SSB signal strength of each beam and reports the measurement results to the base station. Based on the measurement results reported by the terminal, the base station selects the most appropriate beam to send data to the terminal.
- the number of directions in which beam scanning is required is also different.
- the maximum values of SSB beam scanning candidate directions in different carrier frequency ranges are: 4/8/64, and the number of beam scanning directions that are actually configured cannot exceed this maximum.
- PSSS Primary, Sidelink, Synchronization, Signal
- SSSS Secondary, Sidelink, Synchronization, Signal
- FIG. 1 it is a schematic diagram of the design of R15 LTE V2X synchronization signal block (SSB).
- the abscissa is the time domain, and each column represents an OFDM symbol.
- the ordinate is the frequency domain, which is 6RB in this figure.
- a Slot contains an SSB, and an SSB includes PSSS, SSSS, PSBCH (Physical Sidelink Broadcast Channel), and DMRS (Demodulation Reference Signal, demodulation pilot reference signal).
- the synchronization signal block in R15 LTE V2X Sidelink will only be sent once by an omnidirectional antenna, which makes it impossible for the UE to increase the synchronization signal block by beam scanning when transmitting and receiving the synchronization signal block.
- Signal strength so the coverage of R15, LTE, V2X, and Sidelink synchronous broadcast information is small.
- 5G NR supports larger bandwidth, flexible configuration of subcarrier spacing, synchronization signals and broadcast information sent in the form of SSB beam scanning. This brings new challenges to the design of the NR V2X physical layer structure. The original transmission and reception of synchronization signals and broadcast information performed by the UE on the synchronization subframes need to be redesigned, and the SSB beam scanning mechanism needs to be introduced. To meet the needs of NR V2X.
- the existing SSB beam scanning mechanism in NR needs to complete the beam scanning within 5ms.
- service data cannot be sent during the beam scanning process, and V2X has high requirements on the delay of service data.
- Beam scanning time of 1 to 2 ms is allowed, so the current 5 ms beam scanning mechanism in NR cannot meet the requirements of NR V2X, and a mechanism that can complete beam scanning in a shorter time needs to be designed.
- Embodiments of the present disclosure provide a beam scanning method, a beam configuration method, a terminal, and a network device.
- SSB beam scanning can be completed in fewer synchronization subframes. It reduces the occupation of resources and reserves more transmission time for service transmission, thereby improving the resource utilization performance of Sidelink data transmission.
- the embodiments of the present disclosure provide the following technical solutions:
- a beam scanning method applied to a terminal includes:
- the synchronization signal block is a combination block of a through link synchronization signal and a physical through link broadcast channel;
- the synchronization in the through link of the terminal is determined according to at least one of three factors including frequency band usage, subcarrier interval, and number of synchronization signal blocks included in each time slot.
- the maximum number of beams in the signal block beam scan including:
- the direct link is determined according to at least one of three factors including frequency band usage, subcarrier interval, and number of synchronization signal blocks included in each time slot.
- the maximum number of beams in the sync signal block beam scan in the terminal's straight-through link.
- the terminal is determined according to at least one of three factors including frequency band usage, subcarrier interval, and number of synchronization signal blocks included in each time slot of the through link.
- the maximum number of beams in a sync signal block beam scan in a straight-through link including:
- the terminal After the terminal is powered on, it automatically reads at least one of the three factors stored in the terminal, including the frequency band usage, the subcarrier interval, and the number of synchronization signal blocks included in each time slot, and the synchronization signal and the physical broadcast channel.
- the terminal After the terminal is powered on, it obtains at least one of three factors, including the frequency band usage, the subcarrier interval, and the number of synchronization signal blocks included in each time slot, which are stored in the network device in advance.
- the correspondence relationship table of the maximum number of beams in the signal beam scanning, and according to the correspondence relationship table, the maximum number of beams in the synchronization signal block beam scanning in the through link of the terminal is determined.
- the maximum number of beams in the synchronization signal block beam scan in the terminal's through link includes:
- the notification signaling carrying three factors including frequency band usage, subcarrier interval, and number of synchronization signal blocks included in each time slot according to the through link of the network device At least one factor, determining the maximum number of beams in a synchronization signal block beam scan in a straight-through link of the terminal.
- the notification signaling is any one of a broadcast message, downlink control information DCI, and radio resource control RRC signaling.
- performing beam scanning of the synchronization signal block according to the maximum number of beams in the beam scanning includes:
- Beam scanning of the synchronization signal block is performed according to the scanning pattern.
- each subframe includes at least one slot Slot
- each slot includes at least 3 synchronization signal blocks
- each synchronization signal block includes at least: a main straight-through link synchronization signal PSSS, secondary direct link synchronization signal SSSS, and physical direct link broadcast channel PSBCH.
- determining the scanning pattern of the synchronization signal block according to the maximum number of beams in the beam scanning includes: if the maximum number of beams in the beam scanning is a first value, the system bandwidth is the first system When the bandwidth is the same and the subcarrier interval is the first subcarrier interval, the scan pattern of the synchronization signal block is determined to include at least one time slot Slot in each sub-frame and N1 synchronization signal blocks in each Slot.
- One synchronization signal block includes: a primary direct link synchronization signal PSSS located on one OFDM symbol, a secondary direct link synchronization signal SSSS located on one OFDM symbol, a physical direct link broadcast channel PSBCH located on one OFDM symbol, and one For a demodulated pilot reference signal DMRS on an OFDM symbol, the N1 is greater than or equal to 3.
- determining the scanning pattern of the synchronization signal block according to the maximum number of beams in the beam scanning includes: if the maximum number of beams in the beam scanning is a second value, the system bandwidth is a second system When the bandwidth is the same and the subcarrier interval is the second subcarrier interval, the scanning pattern of the synchronization signal block is determined to include at least one time slot Slot in each sub-frame and N2 synchronization signal blocks in each Slot.
- One synchronization signal block includes: a primary through link synchronization signal PSSS located on one OFDM symbol, a secondary through link synchronization signal SSSS located on a partial subcarrier of an OFDM symbol, and a physical through link broadcast on at least one OFDM symbol Channel PSBCH, where N2 is greater than or equal to 3.
- determining the scanning pattern of the synchronization signal block according to the maximum number of beams in the beam scanning includes: if the maximum number of beams in the beam scanning is a third value, the system bandwidth is a third system When the bandwidth is the same and the subcarrier interval is the third subcarrier interval, the scanning pattern of the synchronization signal block is determined to include at least one time slot Slot in each sub-frame and N3 synchronization signal blocks in each Slot.
- One synchronization signal block includes: a primary through link synchronization signal PSSS located on one OFDM symbol, a secondary through link synchronization signal SSSS located on a partial subcarrier of one OFDM symbol, and a physical through link on at least two OFDM symbols Broadcast channel PSBCH, where N3 is greater than or equal to 3.
- An embodiment of the present disclosure also provides a method for configuring the number of beams, which is applied to a network device.
- the method includes:
- the maximum beam size in the synchronization signal block beam scan in the through link is configured.
- the beam scanning of the synchronization signal block in the through link is configured
- the maximum number of medium beams including:
- the notification signaling carries three factors including frequency band usage, subcarrier interval, and number of synchronization signal blocks included in each time slot of the network device according to the through link At least one factor, which determines the maximum number of beams in the sync signal block beam scan in the through link.
- the notification signaling is any one of a broadcast message, downlink control information DCI, and radio resource control RRC signaling.
- An embodiment of the present disclosure further provides a terminal, including:
- a processor configured to determine, based on at least one of three factors including a frequency band usage condition, a subcarrier interval, and the number of synchronization signal blocks included in each time slot of the through link, the synchronization of the terminal through link
- the maximum number of beams in a signal block beam scan, the synchronization signal block is a combination block of a through link synchronization signal and a physical through link broadcast channel;
- the transceiver is configured to perform beam scanning of the synchronization signal block according to the maximum number of the beams.
- An embodiment of the present disclosure further provides a beam scanning device for a synchronization signal block, including:
- a processing module configured to determine the synchronization in the direct link of the terminal according to at least one of three factors including frequency band usage, subcarrier interval, and number of synchronization signal blocks included in each time slot
- the maximum number of beams in a signal block beam scan, the synchronization signal block is a combination block of a through link synchronization signal and a physical through link broadcast channel;
- the transceiver module is configured to perform beam scanning of the synchronization signal block according to the maximum number of the beams.
- An embodiment of the present disclosure further provides a terminal including a processor configured to perform a function of: according to a pass-through link including frequency band usage, subcarrier interval, and number of synchronization signal blocks included in each time slot. At least one of three factors determines the maximum number of beams in the synchronization signal block beam scanning in the terminal's direct link, the synchronization signal block is a combination block of the direct link synchronization signal and the physical direct link broadcast channel Performing beam scanning of the synchronization signal block according to the maximum number of the beams.
- An embodiment of the present disclosure further provides a network device, including:
- a processor configured to configure a beam of a synchronization signal block in the through link according to at least one of three factors including frequency band usage, subcarrier interval, and number of synchronization signal blocks included in each time slot
- the maximum number of beams during scanning enables the terminal to perform beam scanning of the synchronization signal block according to the maximum number of beams;
- the synchronization signal block is a combination block of a through link synchronization signal and a physical through link broadcast channel.
- An embodiment of the present disclosure further provides an apparatus for configuring the number of beams, including:
- a processing module configured to configure a beam of a synchronization signal block in the through link according to at least one of three factors including frequency band usage, subcarrier interval, and number of synchronization signal blocks included in each time slot
- the maximum number of beams during scanning enables the terminal to perform beam scanning of the synchronization signal block according to the maximum number of beams;
- the synchronization signal block is a combination block of a through link synchronization signal and a physical through link broadcast channel.
- An embodiment of the present disclosure further provides a network device including a processor configured to perform the following functions: according to a through link including frequency band usage, subcarrier interval, and number of synchronization signal blocks included in each time slot At least one of the three factors, configuring the maximum number of beams in the synchronization signal block beam scanning in the through link, so that the terminal performs the beam scanning of the synchronization signal block according to the maximum number of the beams; the synchronization
- the signal block is a combination block of a through link synchronization signal and a physical through link broadcast channel.
- An embodiment of the present disclosure further provides a beam scanning method, including:
- a scanning pattern of a synchronization signal block of a through link is obtained;
- the synchronization signal block is a combination block of a through link synchronization signal and a physical through link broadcast channel; in the scanning pattern, each subframe includes at least one time slot Slot, each Slot includes at least 3 sync signal blocks;
- Beam scanning of the synchronization signal block is performed according to the scanning pattern.
- each subframe includes at least one slot Slot
- each slot includes at least 3 synchronization signal blocks
- each synchronization signal block includes at least: a main straight-through link synchronization signal PSSS, secondary direct link synchronization signal SSSS, and physical direct link broadcast channel PSBCH.
- the scanning pattern every 1 synchronization
- the signal block includes: a primary direct link synchronization signal PSSS located on an OFDM symbol, a secondary direct link synchronization signal SSSS located on an OFDM symbol, a physical direct link broadcast channel PSBCH located on an OFDM symbol, and located on an OFDM symbol Demodulation pilot reference signal DMRS.
- the system bandwidth is the second system bandwidth
- the subcarrier interval is the second subcarrier interval
- in the scanning pattern every 1 synchronization
- the signal block includes a primary through link synchronization signal PSSS located on one OFDM symbol, a secondary through link synchronization signal SSSS located on a partial subcarrier of an OFDM symbol, and a physical through link broadcast channel PSBCH located on at least one OFDM symbol.
- the system bandwidth is a third system bandwidth
- the subcarrier interval is a third subcarrier interval
- the signal block includes: a primary through link synchronization signal PSSS located on one OFDM symbol, a secondary through link synchronization signal SSSS located on a partial subcarrier of an OFDM symbol, and a physical through link broadcast channel PSBCH located on at least two OFDM symbols .
- An embodiment of the present disclosure further provides a terminal, including:
- the synchronization signal block is a combination block of a through link synchronization signal and a physical through link broadcast channel; in the scanning pattern, every 1 subframe Including at least one time slot Slot, and each Slot includes at least 3 synchronization signal blocks;
- a transceiver configured to perform beam scanning of the synchronization signal block according to the scanning pattern.
- An embodiment of the present disclosure further provides a beam scanning device for a synchronization signal block, including:
- the synchronization signal block is a combination block of a synchronization signal of the through link and a physical through link broadcast channel; in the scanning pattern, every 1 subframe Including at least one time slot Slot, and each Slot includes at least 3 synchronization signal blocks;
- the transceiver module is configured to perform beam scanning of the synchronization signal block according to the scanning pattern.
- An embodiment of the present disclosure further provides a terminal including a processor configured to perform a function of obtaining a scanning pattern of a synchronization signal block of a through link; the synchronization signal block is a through link synchronization signal and a physical through link Combined block of broadcast channels; Beam scan of the synchronization signal block according to the scanning pattern; In the scanning pattern, each subframe includes at least one slot Slot, and each Slot includes at least 3 Slots Sync signal block.
- An embodiment of the present disclosure also provides a computer storage medium including instructions that, when the instructions are run on a computer, cause the computer to execute the method as described above.
- the beneficial effects of the embodiments of the present disclosure are:
- the direct link of the terminal is determined according to at least one of three factors including frequency band usage, subcarrier interval, and number of synchronization signal blocks included in each time slot of the direct link.
- SSB beam scanning can be completed in fewer synchronization subframes. It reduces the occupation of resources and reserves more transmission time for service transmission, thereby improving the resource utilization performance of Sidelink data transmission.
- Figure 1 is a design diagram of R15 LTE V2X Sidelink synchronization signal block
- FIG. 2 is a schematic flowchart of a signal transmission method according to an embodiment of the present disclosure
- FIG. 3 is a schematic diagram of determining the number of beams in a notification signaling manner according to an embodiment of the present disclosure
- FIG. 4 is a schematic diagram of an example of a first manner of sending a synchronization signal block according to an embodiment of the present disclosure
- FIG. 5 is a schematic diagram of another example of the first manner of sending patterns of a synchronization signal block according to an embodiment of the present disclosure
- FIG. 6 is a schematic diagram of a second manner of sending a synchronization signal block according to an embodiment of the present disclosure
- FIG. 7 is a schematic diagram of a third manner of transmitting a synchronization signal block according to an embodiment of the present disclosure.
- FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
- FIG. 9 is a schematic architecture diagram of a network device according to an embodiment of the present disclosure.
- an embodiment of the present disclosure provides a beam scanning method.
- the method includes steps 21 and 22.
- Step 21 Determine at least one of three factors including the frequency band usage, the subcarrier interval, and the number of synchronization signal blocks included in each time slot of the through link, and determine the synchronization signal block in the through link of the terminal.
- the synchronization signal block is a combination block of a through link synchronization signal and a physical through link broadcast channel;
- a through link synchronization signal, such as PSSS, SSSS, etc., is a physical through link broadcast channel, Such as PSBCH;
- At least one of three factors including the frequency band usage, the subcarrier interval, and the number of synchronization signal blocks included in each time slot can be configured in advance or by receiving notification signaling. Factors to determine the maximum number of beams in the sync signal block beam scan in the terminal's through link.
- Step 22 Perform beam scanning of the synchronization signal block according to the maximum number of the beams.
- the SSB beam scanning can be completed in fewer synchronization subframes, which reduces the occupation of resources and reserves more transmission time for service transmission, thereby improving the resource utilization performance of Sidelink data transmission.
- step 21 according to a pre-configured manner, according to the three factors including the frequency band usage, the subcarrier interval, and the number of synchronization signal blocks included in each time slot of the through link, Determining at least one factor of the maximum number of beams in the synchronization signal block beam scan in the terminal's through link, including:
- the terminal After the terminal is powered on, it automatically reads at least one of three factors, including the frequency band usage, the subcarrier interval, and the number of synchronization signal blocks included in each time slot, and the synchronization signal and the physical broadcast channel.
- the terminal After the terminal is powered on, it obtains at least one of three factors, including the frequency band usage, the subcarrier interval, and the number of synchronization signal blocks included in each time slot, which are stored in the network device in advance.
- the correspondence relationship table of the maximum number of beams in the signal beam scanning, and according to the correspondence relationship table, the maximum number of beams in the synchronization signal block beam scanning in the through link of the terminal is determined.
- each slot contains Correspondence table between the number of SSBs and the maximum number of beams in the SSB beam scan of the through link, and then according to the corresponding relationship in the table, the maximum number of beams in the SSB beam scan of the through link is determined.
- the preset "band usage", “subcarrier interval setting” and / or "number of SSBs included in each slot" and the straight-through chain issued by the base station are read from the base station side.
- This embodiment is simple and straightforward, does not occupy air interfaces or Sidelink signaling, and has low overhead.
- step 21 three factors including the frequency band usage, the subcarrier interval, and the number of synchronization signal blocks included in each time slot are received by way of receiving notification signaling. Determining, by at least one of the following factors, the maximum number of beams in a synchronization signal block beam scan in a straight-through link of the terminal includes:
- the notification signaling carrying three factors including frequency band usage, subcarrier interval, and number of synchronization signal blocks included in each time slot according to the through link of the network device At least one factor, a correspondence relationship table with the maximum number of beams in the synchronization signal block beam scanning, and according to the correspondence relationship table, the maximum number of beams in the synchronization signal block beam scanning in the through link of the terminal is determined.
- the notification signaling is any one of a broadcast message, downlink control information DCI, and radio resource control RRC signaling.
- air interface signaling includes multiple possible methods, for example, the maximum number of beams in SSB beam scanning of the direct link that the base station may notify the terminal through a broadcast message; or the base station uses dynamic DCI signaling in the PDCCH.
- the air interface signaling configuration method is shown in FIG. 3.
- “band usage situation”, “subcarrier interval setting situation” and / or “number of SSBs included in each slot” and SSB beams of the through link The corresponding relationship between the maximum number of beams in the scan is relatively flexible, and dynamic or semi-static adjustment can be performed, which is simple and straightforward.
- the above step 22 may specifically include:
- Step 221 Determine a scanning pattern of the synchronization signal block according to the maximum number of beams in the beam scanning.
- Step 222 Perform beam scanning of the synchronization signal block according to the scanning pattern.
- the scanning pattern includes: each subframe includes at least one slot (Slot), each slot includes at least 3 synchronization signal blocks, and each synchronization signal block includes at least: a main direct link synchronization signal (PSSS), Secondary Direct Link Synchronization Signal (SSSS), and Physical Direct Link Broadcast Channel (PSBCH).
- PSSS main direct link synchronization signal
- SSSS Secondary Direct Link Synchronization Signal
- PSBCH Physical Direct Link Broadcast Channel
- a first implementation manner of step 221 includes: if the maximum number of beams in the beam scanning is a first value, a system bandwidth is a first system bandwidth, and a subcarrier interval is a first subcarrier interval, determining the synchronization
- the scanning pattern of the signal block is: each subframe includes at least one slot Slot, each slot includes N1 synchronization signal blocks, and each synchronization signal block includes: PSSS on one OFDM symbol, and one OFDM symbol For SSSS on a symbol, PSBCH on one OFDM symbol, and DMRS on one OFDM symbol, the N1 is greater than or equal to three.
- each Slot contains 3 SSBs
- the maximum number of SSB beam scans is determined to be 6, so that it can be scanned in 1ms (including There are 2 Slots) to complete the SSB beam scanning, that is, the transmission of 6 SSB beams is completed.
- the PSSS, SSSS, PSBCH, and DMRS signals in each SSB occupy one symbol, and the order of the four items can be adjusted.
- the two implementations of the distributed mode are shown in FIGS. 4 and 5.
- one Slot can accommodate 3 SSBs, which is beneficial to complete beam scanning in a short time.
- a second implementation manner of step 221 includes: if the maximum number of beams in the beam scanning is a second value, a system bandwidth is a second system bandwidth, and a subcarrier interval is a second subcarrier interval, determining the synchronization
- the scanning pattern of the signal block is: each subframe includes at least one slot Slot, each slot includes N2 synchronization signal blocks, and each synchronization signal block includes: PSSS on one OFDM symbol, and one OFDM symbol The SSSS on a partial subcarrier of the symbol and the PSBCH located on at least one OFDM symbol, the N2 is greater than or equal to 3.
- each Slot contains 4 SSBs
- the maximum number of SSB beam scans is determined to be 4, so that it can be completed in 1ms (including 1 Slot).
- the PSSS occupies one symbol
- the PSBCH channel occupies one symbol and a partial subcarrier of another symbol
- the SSSS occupies a partial subcarrier of one symbol.
- An implementation manner of the distribution mode is shown in FIG. 6.
- one Slot can accommodate 4 SSBs, which is beneficial to complete beam scanning in a short time.
- a third implementation manner of step 221 includes: if the maximum number of beams in the beam scanning is a third value, a system bandwidth is a third system bandwidth, and a subcarrier interval is a third subcarrier interval, determining the synchronization
- the scanning pattern of the signal block is: each subframe includes at least one slot Slot, each slot includes N3 synchronization signal blocks, and each synchronization signal block includes: PSSS on one OFDM symbol, and one OFDM symbol The SSSS on a partial subcarrier of the symbol and the PSBCH located on at least two OFDM symbols, the N3 is greater than or equal to 3.
- the maximum number of SSB beam scans is determined to be 6, so that it can be completed in 1ms (including 2 Slots) )
- the PSSS occupies one symbol
- the PSBCH occupies two symbols and a partial subcarrier of another symbol
- the SSSS occupies a partial subcarrier of one symbol.
- An implementation manner of the distribution mode is shown in FIG. 7. In this embodiment, only a bandwidth of 20 RB is required in the frequency domain, so that the minimum supported bandwidth of the solution is 20 RB.
- the SSB beam scanning mid-beam of the through link can be configured according to the "band usage situation" of the through link, "the setting condition of the subcarrier interval” and / or "the number of SSBs contained in each slot" And the terminal performs SSB beam scanning according to the configured maximum number of beam scanning.
- the SSB beam scanning can be completed in fewer synchronization subframes. It reduces the occupation of resources and reserves more transmission time for service transmission, thereby improving the resource utilization performance of Sidelink data transmission.
- an embodiment of the present disclosure further provides a terminal 80 including:
- the processor 82 is configured to determine the direct link of the terminal according to at least one of three factors including frequency band usage, subcarrier interval, and number of synchronization signal blocks included in each time slot,
- the maximum number of beams in the synchronization signal block beam scanning, the synchronization signal block is a combination block of a through link synchronization signal and a physical through link broadcast channel;
- the transceiver 81 is configured to perform beam scanning of the synchronization signal block according to the maximum number of the beams.
- the processor 82 is specifically configured to pre-configure or receive notification signaling, according to three of the through link including frequency band usage, subcarrier interval, and number of synchronization signal blocks included in each time slot. At least one of the factors determines a maximum number of beams in a synchronization signal block beam scan in a through link of the terminal.
- the pass-through of the terminal is determined according to at least one of three factors including frequency band usage, subcarrier interval, and number of synchronization signal blocks included in each time slot of the pass-through link.
- the maximum number of beams in the sync signal block beam scan in the link including:
- the terminal After the terminal is powered on, it automatically reads at least one of the three factors stored in the terminal, including the frequency band usage, the subcarrier interval, and the number of synchronization signal blocks included in each time slot, and the synchronization signal and the physical broadcast channel.
- the terminal After the terminal is powered on, it obtains at least one of three factors, including the frequency band usage, the subcarrier interval, and the number of synchronization signal blocks included in each time slot, which are stored in the network device in advance.
- the correspondence relationship table of the maximum number of beams in the signal beam scanning, and according to the correspondence relationship table, the maximum number of beams in the synchronization signal block beam scanning in the through link of the terminal is determined.
- the terminal is determined by receiving notification signaling according to at least one of three factors including frequency band usage, subcarrier interval, and number of synchronization signal blocks included in each time slot of the through link.
- the maximum number of beams in a sync signal block beam scan in a straight-through link including:
- the notification signaling carrying three factors including frequency band usage, subcarrier interval, and number of synchronization signal blocks included in each time slot according to the through link of the network device At least one factor, determining the maximum number of beams in a synchronization signal block beam scan in a straight-through link of the terminal.
- the notification signaling is any one of a broadcast message, downlink control information DCI, and radio resource control RRC signaling.
- the transceiver 81 is specifically configured to determine a scanning pattern of the synchronization signal block according to the maximum number of beams in the beam scanning; and perform beam scanning of the synchronization signal block according to the scanning pattern.
- the scanning pattern includes: each subframe includes at least one time slot Slot, each slot includes at least 3 synchronization signal blocks, and each synchronization signal block includes at least: a main direct link synchronization signal (PSSS ), Secondary Direct Link Synchronization Signal (SSSS), and Physical Direct Link Broadcast Channel (PSBCH).
- PSSS main direct link synchronization signal
- SSSS Secondary Direct Link Synchronization Signal
- PSBCH Physical Direct Link Broadcast Channel
- determining the scanning pattern of the synchronization signal block according to the maximum number of beams in the beam scanning includes:
- the scan pattern of the synchronization signal block is determined as:
- Each subframe includes at least one slot Slot, each slot includes N1 synchronization signal blocks, and each synchronization signal block includes: a main straight-through link synchronization signal (PSSS) located on an OFDM symbol, A secondary direct link synchronization signal (SSSS) on an OFDM symbol, a physical direct link broadcast channel (PSBCH) on one OFDM symbol, and a demodulation pilot reference signal (DMRS) on one OFDM symbol, where N1 is greater than or Is equal to 3.
- PSSS main straight-through link synchronization signal
- SSSS secondary direct link synchronization signal
- PSBCH physical direct link broadcast channel
- DMRS demodulation pilot reference signal
- determining the scanning pattern of the synchronization signal block according to the maximum number of beams in the beam scanning includes:
- the scan pattern of the synchronization signal block is determined as:
- Each sub-frame includes at least one time slot Slot, each Slot includes N2 synchronization signal blocks, each synchronization signal block includes: a main through link synchronization signal (PSSS) located on an OFDM symbol, The secondary direct link synchronization signal (SSSS) on part of the subcarriers of the OFDM symbol and the physical direct link broadcast channel (PSBCH) located on at least one OFDM symbol, the N2 is greater than or equal to 3.
- PSSS main through link synchronization signal
- SSSS secondary direct link synchronization signal
- PSBCH physical direct link broadcast channel
- determining the scanning pattern of the synchronization signal block according to the maximum number of beams in the beam scanning includes:
- the scan pattern of the synchronization signal block is determined as:
- Each sub-frame includes at least one slot Slot, each Slot includes N3 synchronization signal blocks, and each synchronization signal block includes: a main through link synchronization signal (PSSS) located on an OFDM symbol, The secondary direct link synchronization signal (SSSS) on part of the subcarriers of the OFDM symbol and the physical direct link broadcast channel (PSBCH) located on at least two OFDM symbols, the N3 is greater than or equal to 3.
- PSSS main through link synchronization signal
- SSSS secondary direct link synchronization signal
- PSBCH physical direct link broadcast channel
- the embodiment of the terminal is a terminal corresponding to the method shown in FIG. 2 described above. All implementation manners of the embodiments shown in FIG. 2 to FIG. 7 are applicable to this embodiment, and the same technical effects can also be achieved.
- the terminal may further include a memory 83, and the processor 82 and the memory 83 may be communicatively connected to the transceiver 81 through a bus interface.
- the functions of the processor 82 may also be implemented by the transceiver 81, and the functions of the transceiver 81 may also be processed. ⁇ 82achieved.
- An embodiment of the present disclosure further provides a beam scanning device for a synchronization signal block, including:
- a processing module configured to determine the synchronization in the direct link of the terminal according to at least one of three factors including frequency band usage, subcarrier interval, and number of synchronization signal blocks included in each time slot
- the maximum number of beams in a signal block beam scan, the synchronization signal block is a combination block of a through link synchronization signal and a physical through link broadcast channel;
- the transceiver module is configured to perform beam scanning of the synchronization signal block according to the maximum number of the beams.
- FIG. 2 to FIG. 7 are all applicable to this embodiment, and the same technical effects can also be achieved.
- An embodiment of the present disclosure further provides a terminal including a processor configured to perform a function of: according to a pass-through link including frequency band usage, subcarrier interval, and number of synchronization signal blocks included in each time slot. At least one of three factors determines the maximum number of beams in the synchronization signal block beam scanning in the terminal's direct link, the synchronization signal block is a combination block of the direct link synchronization signal and the physical direct link broadcast channel Performing beam scanning of the synchronization signal block according to the maximum number of the beams. It should be noted that all implementation manners of the foregoing method on the terminal side are applicable to this embodiment, and the same technical effect can also be achieved.
- An embodiment of the present disclosure also provides a method for configuring the number of beams, which is applied to a network device.
- the method includes:
- the maximum beam size in the synchronization signal block beam scan in the through link is configured.
- the notification signaling carries three factors including frequency band usage, subcarrier interval, and number of synchronization signal blocks included in each time slot of the network device according to the through link At least one factor, which determines the maximum number of beams in the sync signal block beam scan in the through link.
- the notification signaling is any one of a broadcast message, downlink control information DCI, and radio resource control RRC signaling.
- the SSB beam scanning mid-beam of the through link can be configured according to the "band usage situation" of the through link, "the setting condition of the subcarrier interval” and / or "the number of SSBs included in each slot" And the terminal performs SSB beam scanning according to the configured maximum number of beam scanning.
- the SSB beam scanning can be completed in fewer synchronization subframes. It reduces the occupation of resources and reserves more transmission time for service transmission, thereby improving the resource utilization performance of Sidelink data transmission.
- an embodiment of the present disclosure further provides a network device 90, including:
- a processor 92 configured to configure a synchronization signal block in the through link according to at least one of three factors including frequency band usage, subcarrier interval, and number of synchronization signal blocks included in each time slot
- the maximum number of beams in the beam scanning enables the terminal to perform beam scanning of the synchronization signal block according to the maximum number of the beams;
- the synchronization signal block is a combination block of a through link synchronization signal and a physical through link broadcast channel .
- the network device 90 may further include: a transceiver 91, a memory 93, and the like.
- the transceiver 91 and the memory 93, and the transceiver 91 and the processor 92 may be communicatively connected through a bus interface.
- the functions of the transceiver 91 may also be implemented by the processor 92.
- An embodiment of the present disclosure further provides an apparatus for configuring the number of beams, including:
- a processing module configured to configure a beam of a synchronization signal block in the through link according to at least one of three factors including frequency band usage, subcarrier interval, and number of synchronization signal blocks included in each time slot
- the maximum number of beams during scanning enables the terminal to perform beam scanning of the synchronization signal block according to the maximum number of beams;
- the synchronization signal block is a combination block of a through link synchronization signal and a physical through link broadcast channel.
- the above-mentioned network device may be a base station, etc., all implementation manners of the above method on the network device side are applicable to this embodiment, and the same technical effect can also be achieved.
- An embodiment of the present disclosure further provides a network device including a processor configured to perform the following functions: according to a through link including frequency band usage, subcarrier interval, and number of synchronization signal blocks included in each time slot At least one of the three factors, configuring the maximum number of beams in the synchronization signal block beam scanning in the through link, so that the terminal performs the beam scanning of the synchronization signal block according to the maximum number of the beams; the synchronization
- the signal block is a combination block of a through link synchronization signal and a physical through link broadcast channel.
- An embodiment of the present disclosure further provides a beam scanning method, including:
- Step 101 Obtain a scanning pattern of a synchronization signal block of a through link;
- the synchronization signal block is a combination block of a through link synchronization signal and a physical through link broadcast channel; in the scanning pattern, each sub-frame includes at least One slot Slot, each Slot includes at least 3 synchronization signal blocks;
- Step 102 Perform beam scanning of the synchronization signal block according to the scanning pattern.
- each synchronization signal block includes at least: a primary through link synchronization signal (PSSS), a secondary through link synchronization signal (SSSS), and a physical through link broadcast channel (PSBCH).
- PSSS primary through link synchronization signal
- SSSS secondary through link synchronization signal
- PSBCH physical through link broadcast channel
- Each synchronization signal block includes: a primary through link synchronization signal (PSSS) on one OFDM symbol, a secondary through link synchronization signal (SSSS) on an OFDM symbol, and a physical through link on an OFDM symbol Channel broadcast channel (PSBCH) and demodulated pilot reference signal (DMRS) located on one OFDM symbol.
- PSSS primary through link synchronization signal
- SSSS secondary through link synchronization signal
- PSBCH OFDM symbol Channel broadcast channel
- DMRS demodulated pilot reference signal
- Each synchronization signal block includes: a primary through link synchronization signal (PSSS) located on one OFDM symbol, a secondary through link synchronization signal (SSSS) located on a partial subcarrier of an OFDM symbol, and located on at least one OFDM symbol Physical Direct Link Broadcast Channel (PSBCH).
- PSSS primary through link synchronization signal
- SSSS secondary through link synchronization signal
- PSBCH Physical Direct Link Broadcast Channel
- the scanning pattern includes: Each synchronization signal block includes: a primary through link synchronization signal (PSSS) located on one OFDM symbol, a secondary through link synchronization signal (SSSS) located on a partial subcarrier of an OFDM symbol, and at least two OFDM symbols
- PSSS primary through link synchronization signal
- SSSS secondary through link synchronization signal
- PSBCH The physical direct link broadcast channel
- FIG. 2 to FIG. 7 are all applicable to this embodiment, and the same technical effects can also be achieved.
- An embodiment of the present disclosure further provides a terminal, including:
- the synchronization signal block is a combination block of a through link synchronization signal and a physical through link broadcast channel; in the scanning pattern, every 1 subframe Including at least one time slot Slot, and each Slot includes at least 3 synchronization signal blocks;
- a transceiver configured to perform beam scanning of the synchronization signal block according to the scanning pattern.
- each synchronization signal block includes at least: a primary through link synchronization signal (PSSS), a secondary through link synchronization signal (SSSS), and a physical through link broadcast channel (PSBCH).
- PSSS primary through link synchronization signal
- SSSS secondary through link synchronization signal
- PSBCH physical through link broadcast channel
- every 1 sync signal block Includes: Primary Direct Link Synchronization Signal (PSSS) on one OFDM symbol, Secondary Direct Link Synchronization Signal (SSSS) on one OFDM symbol, Physical Direct Link Broadcast Channel (PSBCH) on one OFDM symbol, and Demodulated pilot reference signal (DMRS) on one OFDM symbol.
- PSSS Primary Direct Link Synchronization Signal
- SSSS Secondary Direct Link Synchronization Signal
- PSBCH Physical Direct Link Broadcast Channel
- DMRS Demodulated pilot reference signal
- every 1 sync signal block Includes: Primary Direct Link Synchronization Signal (PSSS) on one OFDM symbol, Secondary Direct Link Synchronization Signal (SSSS) on some subcarriers of an OFDM symbol, and Physical Direct Link Broadcast Channel on at least one OFDM symbol (PSBCH).
- PSSS Primary Direct Link Synchronization Signal
- SSSS Secondary Direct Link Synchronization Signal
- PSBCH Physical Direct Link Broadcast Channel on at least one OFDM symbol
- each synchronization signal block Includes: Primary Direct Link Synchronization Signal (PSSS) on one OFDM symbol, Secondary Direct Link Synchronization Signal (SSSS) on some subcarriers of an OFDM symbol, and Physical Direct Link broadcast on at least two OFDM symbols Channel (PSBCH).
- PSSS Primary Direct Link Synchronization Signal
- SSSS Secondary Direct Link Synchronization Signal
- PSBCH Physical Direct Link broadcast on at least two OFDM symbols Channel
- An embodiment of the present disclosure further provides a beam scanning device for a synchronization signal block, including:
- the synchronization signal block is a combination block of a synchronization signal of the through link and a physical through link broadcast channel; in the scanning pattern, every 1 subframe Including at least one time slot Slot, and each Slot includes at least 3 synchronization signal blocks;
- the transceiver module is configured to perform beam scanning of the synchronization signal block according to the scanning pattern.
- step 101 and step 102 in the foregoing embodiment are applicable to the embodiment of the sending device, and the same technical effects can also be achieved.
- An embodiment of the present disclosure further provides a terminal including a processor configured to perform a function of obtaining a scanning pattern of a synchronization signal block of a through link; the synchronization signal block is a through link synchronization signal and a physical through link Combined block of broadcast channels; Beam scan of the synchronization signal block according to the scanning pattern; In the scanning pattern, each subframe includes at least one slot Slot, and each Slot includes at least 3 Slots Sync signal block. All implementation manners of step 101 and step 102 in the foregoing embodiment are applicable to the embodiment of the sending device, and the same technical effects can also be achieved.
- An embodiment of the present disclosure also provides a computer storage medium including instructions that, when the instructions are run on a computer, cause the computer to execute the method as described above.
- the disclosed apparatus and method may be implemented in other ways.
- the device embodiments described above are only schematic.
- the division of the unit is only a logical function division.
- multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
- the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
- each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
- the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
- the technical solution of the present disclosure is essentially a part that contributes to the existing technology or a part of the technical solution may be embodied in the form of a software product.
- the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in various embodiments of the present disclosure.
- the foregoing storage medium includes various media that can store program codes, such as a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
- each component or each step can be disassembled and / or recombined.
- These decompositions and / or recombinations should be regarded as equivalent solutions of the present disclosure.
- the steps for performing the series of processes described above can be performed naturally in chronological order in accordance with the described order, but need not necessarily be performed in chronological order, and certain steps can be performed in parallel or independently of each other.
- it is able to understand all or any steps or components of the methods and devices of the present disclosure and may be implemented in hardware, firmware in any computing device (including a processor, a storage medium, etc.) or a network of computing devices.
- Software, or a combination thereof which can be achieved by a person of ordinary skill in the art using their basic programming skills after reading the description of the present disclosure.
- the purpose of the present disclosure can also be achieved by running a program or a group of programs on any computing device.
- the computing device may be a well-known general-purpose device. Therefore, the object of the present disclosure can also be achieved only by providing a program product including a program code that implements the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
- the storage medium may be any known storage medium or any storage medium developed in the future. It should also be noted that, in the apparatus and method of the present disclosure, it is obvious that each component or each step can be disassembled and / or recombined.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开公开了一种波束扫描方法、波束配置方法、终端及网络设备。波束扫描方法包括:根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定终端的直通链路中,同步信号块波束扫描中波束的最大个数;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块;按照所述波束的最大个数,进行所述同步信号块的波束扫描。
Description
相关申请的交叉引用
本申请主张在2018年9月28日在中国提交的中国专利申请No.201811142612.9的优先权,其全部内容通过引用包含于此。
本公开涉及通信技术领域,尤其涉及一种波束扫描方法、波束配置方法、终端及网络设备。
在5G NR(NR Radio Access,新无线接入技术)V2X(Vehicle-to-Everything,智能网联汽车技术)系统中,终端与终端之间使用PC5口(Proximity Communication Port 5,近距离通信端口5)Sidelink(直通链路或者副链路或者旁路)进行直接通信。在进行业务数据传输之前,首先需要进行通信的两个终端之间在PC5口建立同步。建立同步的方法就是一个终端A发送同步信号,另外一个终端B接收终端A发送的同步信号,一旦终端B接收并解调成功,这两个终端就能够建立同步,为下一步直接通信做好了准备。
NR UU口(用户与网络的接口)的同步信号是通过SSB(Synchronization Signal Block,同步信号块)携带的。SSB包括PSS(Primary Synchronization Signal,主同步信号),SSS(Secondary Synchronization Signal,辅同步信号)和PBCH(Physical Broadcast Channel,物理广播信道)等,每个Slot(时隙)中携带2个SSB块,并且PSS与SSS没有时域重复机制。
为了完成波束测量与波束选择,NR UU口的SSB需要做波束扫描(Beam Sweeping),波束扫描是指基站在一定的时间区间内(5ms),将SSB在可能的各个波束方向上都发送一次,然后终端测量各个波束的SSB信号强度并将测量结果上报给基站,基站根据终端上报的测量结果,选择最合适的波束给终端发送数据。根据不同的载波频率与不同的子载波间隔,需要做波束扫描的方向的数量也是不同的。SSB波束扫描候选方向在不同的载频范围的最大 值分别为:4/8/64个,实际配置的波束扫描方向的数量不能超过该最大值。
在R15 LTE V2X通信中,当UE准备在Sidelink上进行业务传输之前,首先需要在Sidelink上取得同步,为了扩大同步信号的覆盖范围,需要进行PSSS(Primary Sidelink Synchronization Signal,主直通链路同步信号)/SSSS(Secondary Sidelink Synchronization Signal,辅直通链路同步信号)信号的时域重复,以增强同步信号的检测性能。
如图1所示,是R15 LTE V2X同步信号块(SSB)的设计示意图。横坐标是时域,每列代表一个OFDM符号。纵坐标是频域,该图中是6RB。一个Slot里容纳了一个SSB,一个SSB包括有PSSS、SSSS、PSBCH(Physical Sidelink Broadcast Channel,物理直通链路广播信道)以及必要的DMRS(Demodulation Reference Signal,解调导频参考信号)。
如图1所示,R15 LTE V2X Sidelink中同步信号块只会以全向天线的方式发送一次,这就使得UE在发送与接收同步信号块时,无法通过波束扫描的方式来增加同步信号块的信号强度,所以R15 LTE V2X Sidelink同步广播信息的覆盖范围较小。
随着5G NR的出现,促使车联网技术进一步发展,以满足新应用场景的需求。5G NR支持更大的带宽、灵活的子载波间隔的配置、同步信号与广播信息以SSB波束扫描的形式发送。这就给NR V2X物理层结构的设计带来了新的挑战,原来UE在同步子帧上所进行的同步信号与广播信息的发送与接收,需要重新进行设计,需要引入SSB波束扫描的机制,以满足NR V2X的需求。
另外,NR中现有的SSB波束扫描机制,需要在5ms之内完成波束扫描,对V2X来讲,波束扫描过程中无法发送业务数据,而V2X对业务数据的时延要求很高,一般只能容许1~2ms的波束扫描的时间,所以目前NR中的需要耗时5ms的波束扫描机制无法满足NR V2X的需求,需要设计在更短时间内可以完成波束扫描的机制。
发明内容
本公开实施例提供了一种波束扫描方法、波束配置方法、终端及网络设 备。可以在较少的同步子帧内,完成SSB波束扫描。降低了对资源的占用,为业务传输保留出更多的传输时间,从而提高了Sidelink数据传输的资源利用性能。
为解决上述技术问题,本公开的实施例提供如下技术方案:
一种波束扫描方法,应用于终端,所述方法包括:
根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定终端的直通链路中,同步信号块波束扫描中波束的最大个数;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块;
按照所述波束的最大个数,进行所述同步信号块的波束扫描。
可选地,根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定所述终端的直通链路中同步信号块波束扫描中波束的最大个数,包括:
通过预先配置或者接收通知信令的方式,根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定所述终端的直通链路中同步信号块波束扫描中波束的最大个数。
可选地,通过预先配置的方式,根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定所述终端的直通链路中同步信号块波束扫描中波束的最大个数,包括:
终端开机后,自动读取终端中预先存储的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,与同步信号与物理广播信道的信号波束扫描中波束的最大个数的对应关系表,根据所述对应关系表,确定所述终端的直通链路中同步信号块波束扫描中波束的最大个数;或者
终端开机后,获取网络设备中预先存储的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,与同步信号与物理广播信道的信号波束扫描中波束的最大个数的对应关系表,根据所述对应关系表,确定所述终端的直通链路中同步信号块波束扫描中波束 的最大个数。
可选地,通过接收通知信令的方式,根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定所述终端的直通链路中同步信号块波束扫描中波束的最大个数,包括:
从网络设备接收通知信令,所述通知信令中携带所述网络设备根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定的所述终端的直通链路中同步信号块波束扫描中波束的最大个数。
可选地,所述通知信令为:广播消息、下行控制信息DCI和无线资源控制RRC信令中的任一个。
可选地,按照所述波束扫描中波束的最大个数,进行所述同步信号块的波束扫描,包括:
按照所述波束扫描中波束的最大个数,确定所述同步信号块的扫描图案;
按照所述扫描图案,进行所述同步信号块的波束扫描。
可选地,所述扫描图案包括:每1个子帧中包括至少一个时隙Slot,每1个Slot中包括至少3个同步信号块,每1个同步信号块至少包括:主直通链路同步信号PSSS、辅直通链路同步信号SSSS以及物理直通链路广播信道PSBCH。
可选地,按照所述波束扫描中波束的最大个数,确定所述同步信号块的扫描图案,包括:若所述波束扫描中波束的最大个数为第一值,系统带宽为第一系统带宽,且子载波间隔为第一子载波间隔时,确定所述同步信号块的扫描图案为:每1个子帧中包括至少一个时隙Slot,每1个Slot中包括N1个同步信号块,每1个同步信号块包括:位于一个OFDM符号上的主直通链路同步信号PSSS、位于一个OFDM符号上的辅直通链路同步信号SSSS、位于一个OFDM符号上物理直通链路广播信道PSBCH以及位于一个OFDM符号上的解调导频参考信号DMRS,所述N1大于或者等于3。
可选地,按照所述波束扫描中波束的最大个数,确定所述同步信号块的扫描图案,包括:若所述波束扫描中波束的最大个数为第二值,系统带宽为 第二系统带宽,且子载波间隔为第二子载波间隔时,确定所述同步信号块的扫描图案为:每1个子帧中包括至少一个时隙Slot,每1个Slot中包括N2个同步信号块,每1个同步信号块包括:位于一个OFDM符号上的主直通链路同步信号PSSS、位于一个OFDM符号的部分子载波上的辅直通链路同步信号SSSS以及位于至少一个OFDM符号上物理直通链路广播信道PSBCH,所述N2大于或者等于3。
可选地,按照所述波束扫描中波束的最大个数,确定所述同步信号块的扫描图案,包括:若所述波束扫描中波束的最大个数为第三值,系统带宽为第三系统带宽,且子载波间隔为第三子载波间隔时,确定所述同步信号块的扫描图案为:每1个子帧中包括至少一个时隙Slot,每1个Slot中包括N3个同步信号块,每1个同步信号块包括:位于一个OFDM符号上的主直通链路同步信号PSSS、位于一个OFDM符号的部分子载波上的辅直通链路同步信号SSSS以及位于至少两个OFDM符号上物理直通链路广播信道PSBCH,所述N3大于或者等于3。
本公开的实施例还提供一种波束个数的配置方法,应用于网络设备,所述方法包括:
根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,配置直通链路中同步信号块波束扫描中波束的最大个数,使终端按照所述波束的最大个数进行所述同步信号块的波束扫描;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块。
可选地,根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,配置直通链路中同步信号块波束扫描中波束的最大个数,包括:
向终端发送通知信令,所述通知信令中携带将所述网络设备根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定的所述直通链路中同步信号块波束扫描中波束的最大个数。
可选地,所述通知信令为:广播消息、下行控制信息DCI和无线资源控 制RRC信令中的任一个。
本公开的实施例还提供一种终端,包括:
处理器,用于根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定终端的直通链路中,同步信号块波束扫描中波束的最大个数,所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块;
收发机,用于按照所述波束的最大个数,进行所述同步信号块的波束扫描。
本公开的实施例还提供一种同步信号块的波束扫描装置,包括:
处理模块,用于根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定终端的直通链路中,同步信号块波束扫描中波束的最大个数,所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块;
收发模块,用于按照所述波束的最大个数,进行所述同步信号块的波束扫描。
本公开的实施例还提供一种终端,包括:处理器,被配置为执行如下功能:根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定终端的直通链路中,同步信号块波束扫描中波束的最大个数,所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块;按照所述波束的最大个数,进行所述同步信号块的波束扫描。
本公开的实施例还提供一种网络设备,包括:
处理器,用于根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,配置直通链路中同步信号块波束扫描中波束的最大个数,使终端按照所述波束的最大个数进行所述同步信号块的波束扫描;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块。
本公开的实施例还提供一种波束个数的配置装置,包括:
处理模块,用于根据直通链路的包括频段使用情况、子载波间隔和每个 时隙包括的同步信号块的个数的三个因素中的至少一个因素,配置直通链路中同步信号块波束扫描中波束的最大个数,使终端按照所述波束的最大个数进行所述同步信号块的波束扫描;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块。
本公开的实施例还提供一种网络设备,包括:处理器,被配置为执行如下功能:根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,配置直通链路中同步信号块波束扫描中波束的最大个数,使终端按照所述波束的最大个数进行所述同步信号块的波束扫描;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块。
本公开的实施例还提供一种波束扫描方法,包括:
获得直通链路的同步信号块的扫描图案;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块;所述扫描图案中,每1个子帧中包括至少一个时隙Slot,每1个Slot中包括至少3个同步信号块;
按照所述扫描图案,进行所述同步信号块的波束扫描。
可选地,所述扫描图案包括:每1个子帧中包括至少一个时隙Slot,每1个Slot中包括至少3个同步信号块,每1个同步信号块至少包括:主直通链路同步信号PSSS、辅直通链路同步信号SSSS以及物理直通链路广播信道PSBCH。
可选地,若所述波束扫描中波束的最大个数为第一值,系统带宽为第一系统带宽,且子载波间隔为第一子载波间隔时,所述扫描图案中:每1个同步信号块包括:位于一个OFDM符号上的主直通链路同步信号PSSS、位于一个OFDM符号上的辅直通链路同步信号SSSS、位于一个OFDM符号上物理直通链路广播信道PSBCH以及位于一个OFDM符号上的解调导频参考信号DMRS。
可选地,若所述波束扫描中波束的最大个数为第二值,系统带宽为第二系统带宽,且子载波间隔为第二子载波间隔时,所述扫描图案中:每1个同步信号块包括:位于一个OFDM符号上的主直通链路同步信号PSSS、位于一个OFDM符号的部分子载波上的辅直通链路同步信号SSSS以及位于至少 一个OFDM符号上物理直通链路广播信道PSBCH。
可选地,若所述波束扫描中波束的最大个数为第三值,系统带宽为第三系统带宽,且子载波间隔为第三子载波间隔时,所述扫描图案中:每1个同步信号块包括:位于一个OFDM符号上的主直通链路同步信号PSSS、位于一个OFDM符号的部分子载波上的辅直通链路同步信号SSSS以及位于至少两个OFDM符号上物理直通链路广播信道PSBCH。
本公开的实施例还提供一种终端,包括:
处理器,用于获得直通链路的同步信号块的扫描图案;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块;所述扫描图案中,每1个子帧中包括至少一个时隙Slot,每1个Slot中包括至少3个同步信号块;
收发机,用于按照所述扫描图案,进行所述同步信号块的波束扫描。
本公开的实施例还提供一种同步信号块的波束扫描装置,包括:
处理模块,用于获得直通链路的同步信号块的扫描图案;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块;所述扫描图案中,每1个子帧中包括至少一个时隙Slot,每1个Slot中包括至少3个同步信号块;
收发模块,用于按照所述扫描图案,进行所述同步信号块的波束扫描。
本公开的实施例还提供一种终端,包括:处理器,被配置为执行如下功能:获得直通链路的同步信号块的扫描图案;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块;按照所述扫描图案,进行所述同步信号块的波束扫描;所述扫描图案中,每1个子帧中包括至少一个时隙Slot,每1个Slot中包括至少3个同步信号块。
本公开的实施例还提供一种计算机存储介质,包括指令,当所述指令在计算机运行时,使得计算机执行如上所述的方法。本公开实施例的有益效果是:
本公开的上述实施例中,根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定终端的直通链路中,同步信号块波束扫描中波束的最大个数;所述同步信号 块为直通链路同步信号与物理直通链路广播信道的组合块;按照所述波束的最大个数,进行所述同步信号块的波束扫描。可以在较少的同步子帧内,完成SSB波束扫描。降低了对资源的占用,为业务传输保留出更多的传输时间,从而提高了Sidelink数据传输的资源利用性能。
图1为R15 LTE V2X Sidelink同步信号块设计图;
图2为本公开的实施例提出一种信号的发送方法的流程示意图;
图3为本公开的实施例的通知信令的方式确定波束个数的示意图;
图4为本公开的实施例的同步信号块的发送图案第一种方式的一种实例示意图;
图5为本公开的实施例的同步信号块的发送图案第一种方式的另一种实例示意图;
图6为本公开的实施例的同步信号块的发送图案第二种方式的示意图;
图7为本公开的实施例的同步信号块的发送图案第三种方式的示意图;
图8为本公开的实施例的终端的架构示意图;
图9为本公开的实施例的网络设备的架构示意图。
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
如图2所示,本公开的实施例提出一种波束扫描方法,所述方法包括:步骤21和22。
步骤21,根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定终端的直通链路中,同步信号块波束扫描中波束的最大个数;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块;直通链路同步信号,如PSSS、SSSS 等,物理直通链路广播信道,如PSBCH等;
具体来说,可以通过预先配置或者接收通知信令的方式,根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定所述终端的直通链路中同步信号块波束扫描中波束的最大个数。
步骤22,按照所述波束的最大个数,进行所述同步信号块的波束扫描。
该实施例可以在较少的同步子帧内,完成SSB波束扫描,降低了对资源的占用,为业务传输保留出更多的传输时间,从而提高了Sidelink数据传输的资源利用性能。
本公开的一具体实施例中,步骤21中,通过预先配置的方式,根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定所述终端的直通链路中同步信号块波束扫描中波束的最大个数,包括:
终端开机后,自动读取终端中预先存储的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,与同步信号与物理广播信道的信号波束扫描中波束的最大个数的对应关系表,根据所述对应关系表,确定所述终端的直通链路中同步信号块波束扫描中波束的最大个数;或者
终端开机后,获取网络设备中预先存储的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,与同步信号与物理广播信道的信号波束扫描中波束的最大个数的对应关系表,根据所述对应关系表,确定所述终端的直通链路中同步信号块波束扫描中波束的最大个数。
具体实现如下:比如可能是终端开机后,就自动读取存储在终端中的预先设定好的“频段使用情况”、“子载波间隔(SCS)的设置情况”和/或“每Slot包含的SSB个数”与直通链路的SSB波束扫描中波束的最大个数的对应表格,然后按照表格中的对应关系,确定直通链路的SSB波束扫描中波束的最大个数。
也可能是终端开机后,从基站侧读取基站下发的预先设定好的“频段使用 情况”、“子载波间隔的设置情况”和/或“每Slot包含的SSB个数”与直通链路的SSB波束扫描中波束的最大个数的对应表格。
所述的预先设定好的“频段使用情况”、“子载波间隔的设置情况”,和/或“每Slot包含的SSB个数”与直通链路的SSB波束扫描中波束的最大个数的对应表格的一种可能情况,如下表1所示:
表1
该实施例简单直接,不占用空口或Sidelink信令,开销小。
本公开的具体实施例中,步骤21中,通过接收通知信令的方式,根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定所述终端的直通链路中同步信号块波束扫描中波束的最大个数,包括:
从网络设备接收通知信令,所述通知信令中携带所述网络设备根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,与同步信号块波束扫描中波束的最大个数的对应关系表,根据所述对应关系表,确定所述终端的直通链路中同步信号块波束扫描中波束的最大个数。
其中,所述通知信令为:广播消息、下行控制信息DCI和无线资源控制RRC信令中的任一个。
具体实现如下:空口信令通知包括有多种可能的方法,比如可能是基站通过广播消息通知给终端直通链路的SSB波束扫描中波束的最大个数;或者基站通过PDCCH中的动态DCI信令通知给终端直通链路的SSB波束扫描中波束的最大个数;也可能是基站通过RRC信令通知给终端直通链路的SSB波束扫描中波束的最大个数。
所述的空口信令配置方法如图3所示,该实施例“频段使用情况”、“子载 波间隔的设置情况”和/或“每Slot包含的SSB个数”与直通链路的SSB波束扫描中波束的最大个数之间的对应关系比较灵活,可以进行动态或半静态调整,简单直接。
本公开的具体实施例中,上述步骤22具体可以包括:
步骤221,按照所述波束扫描中波束的最大个数,确定所述同步信号块的扫描图案;
步骤222,按照所述扫描图案,进行所述同步信号块的波束扫描。
其中,所述扫描图案为:每1个子帧中包括至少一个时隙(Slot),每1个Slot中包括至少3个同步信号块,每1个同步信号块至少包括:主直通链路同步信号(PSSS)、辅直通链路同步信号(SSSS)以及物理直通链路广播信道(PSBCH)。
步骤221的第一种实现方式包括:若所述波束扫描中波束的最大个数为第一值,系统带宽为第一系统带宽,且子载波间隔为第一子载波间隔时,确定所述同步信号块的扫描图案为:每1个子帧中包括至少一个时隙Slot,每1个Slot中包括N1个同步信号块,每1个同步信号块包括:位于一个OFDM符号上的PSSS、位于一个OFDM符号上的SSSS、位于一个OFDM符号上PSBCH以及位于一个OFDM符号上的DMRS,所述N1大于或者等于3。
具体的,该实施例中,当系统带宽为50RB、子载波间隔为30KHz、并且每1个Slot里面包含3个SSB时,确定SSB波束扫描的最大个数是6,这样就可以在1ms(包含有2个Slot)中完成SSB波束扫描,即完成6个SSB波束的发送。每个SSB中PSSS、SSSS、PSBCH、DMRS信号各占用一个符号,而这4项内容的排列次序可以调整。所述的分布模式的两种实现方式如图4和图5所示,该实施例中,一个Slot下可以容纳3个SSB,有利于在较短时间内完成波束扫描。
步骤221的第二种实现方式包括:若所述波束扫描中波束的最大个数为第二值,系统带宽为第二系统带宽,且子载波间隔为第二子载波间隔时,确定所述同步信号块的扫描图案为:每1个子帧中包括至少一个时隙Slot,每1个Slot中包括N2个同步信号块,每1个同步信号块包括:位于一个OFDM符号上的PSSS、位于一个OFDM符号的部分子载波上的SSSS以及位于至少 一个OFDM符号上的PSBCH,所述N2大于或者等于3。
具体实现时,当系统带宽为50RB、子载波间隔为15KHz、并且每1个Slot里面包含4个SSB时,确定SSB波束扫描的最大个数是4,这样就可以在1ms(包含有1个Slot)中完成SSB波束扫描,即完成4个SSB波束的发送。每个SSB中PSSS占用一个符号、PSBCH信道占用一个符号和另外一个符号的部分子载波,SSSS占用一个符号的部分子载波。所述的分布模式的一种实现方式如图6所示,该实施例中,一个Slot下可以容纳4个SSB,有利于在较短时间内完成波束扫描。
步骤221的第三种实现方式包括:若所述波束扫描中波束的最大个数为第三值,系统带宽为第三系统带宽,且子载波间隔为第三子载波间隔时,确定所述同步信号块的扫描图案为:每1个子帧中包括至少一个时隙Slot,每1个Slot中包括N3个同步信号块,每1个同步信号块包括:位于一个OFDM符号上的PSSS、位于一个OFDM符号的部分子载波上的SSSS以及位于至少两个OFDM符号上的PSBCH,所述N3大于或者等于3。
具体实现时,当系统带宽为20RB、子载波间隔为30KHz、并且每1个Slot里面包含3个SSB时,确定SSB波束扫描的最大个数是6,这样就可以在1ms(包含有2个Slot)中完成SSB波束扫描,即完成6个SSB波束的发送。每个SSB中PSSS占用一个符号、PSBCH占用两个符号和另外一个符号的部分子载波,SSSS占用一个符号的部分子载波。所述的分布模式的一种实现方式如图7所示,该实施例中,在频域仅仅需要占用20RB的带宽,使得该方案的最小支持带宽是20RB。
本公开的上述实施例,可以根据直通链路的“频段使用情况”、“子载波间隔的设置情况”和/或“每Slot包含的SSB个数”,配置直通链路的SSB波束扫描中波束的最大个数,然后终端按照配置的波束扫描的最大个数进行SSB波束扫描,可以在较少的同步子帧内,完成SSB波束扫描。降低了对资源的占用,为业务传输保留出更多的传输时间,从而提高了Sidelink数据传输的资源利用性能。
如图8所示,本公开的实施例还提供一种终端80,包括:
处理器82,用于根据直通链路的包括频段使用情况、子载波间隔和每个 时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定终端的直通链路中,同步信号块波束扫描中波束的最大个数,所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块;
收发机81,用于按照所述波束的最大个数,进行所述同步信号块的波束扫描。
其中,所述处理器82具体用于通过预先配置或者接收通知信令的方式,根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定所述终端的直通链路中同步信号块波束扫描中波束的最大个数。
其中,通过预先配置的方式,根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定所述终端的直通链路中同步信号块波束扫描中波束的最大个数,包括:
终端开机后,自动读取终端中预先存储的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,与同步信号与物理广播信道的信号波束扫描中波束的最大个数的对应关系表,根据所述对应关系表,确定所述终端的直通链路中同步信号块波束扫描中波束的最大个数;或者
终端开机后,获取网络设备中预先存储的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,与同步信号与物理广播信道的信号波束扫描中波束的最大个数的对应关系表,根据所述对应关系表,确定所述终端的直通链路中同步信号块波束扫描中波束的最大个数。
其中,通过接收通知信令的方式,根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定所述终端的直通链路中同步信号块波束扫描中波束的最大个数,包括:
从网络设备接收通知信令,所述通知信令中携带所述网络设备根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定的所述终端的直通链路中同步信号块波 束扫描中波束的最大个数。
其中,所述通知信令为:广播消息、下行控制信息DCI和无线资源控制RRC信令中的任一个。
其中,收发机81具体用于按照所述波束扫描中波束的最大个数,确定所述同步信号块的扫描图案;按照所述扫描图案,进行所述同步信号块的波束扫描。
其中,所述扫描图案包括:每1个子帧中包括至少一个时隙Slot,每1个Slot中包括至少3个同步信号块,每1个同步信号块至少包括:主直通链路同步信号(PSSS)、辅直通链路同步信号(SSSS)以及物理直通链路广播信道(PSBCH)。
其中,按照所述波束扫描中波束的最大个数,确定所述同步信号块的扫描图案,包括:
若所述波束扫描中波束的最大个数为第一值,系统带宽为第一系统带宽,且子载波间隔为第一子载波间隔时,确定所述同步信号块的扫描图案为:
每1个子帧中包括至少一个时隙Slot,每1个Slot中包括N1个同步信号块,每1个同步信号块包括:位于一个OFDM符号上的主直通链路同步信号(PSSS)、位于一个OFDM符号上的辅直通链路同步信号(SSSS)、位于一个OFDM符号上物理直通链路广播信道(PSBCH)以及位于一个OFDM符号上的解调导频参考信号(DMRS),所述N1大于或者等于3。
其中,按照所述波束扫描中波束的最大个数,确定所述同步信号块的扫描图案,包括:
若所述波束扫描中波束的最大个数为第二值,系统带宽为第二系统带宽,且子载波间隔为第二子载波间隔时,确定所述同步信号块的扫描图案为:
每1个子帧中包括至少一个时隙Slot,每1个Slot中包括N2个同步信号块,每1个同步信号块包括:位于一个OFDM符号上的主直通链路同步信号(PSSS)、位于一个OFDM符号的部分子载波上的辅直通链路同步信号(SSSS)以及位于至少一个OFDM符号上物理直通链路广播信道(PSBCH),所述N2大于或者等于3。
其中,按照所述波束扫描中波束的最大个数,确定所述同步信号块的扫 描图案,包括:
若所述波束扫描中波束的最大个数为第三值,系统带宽为第三系统带宽,且子载波间隔为第三子载波间隔时,确定所述同步信号块的扫描图案为:
每1个子帧中包括至少一个时隙Slot,每1个Slot中包括N3个同步信号块,每1个同步信号块包括:位于一个OFDM符号上的主直通链路同步信号(PSSS)、位于一个OFDM符号的部分子载波上的辅直通链路同步信号(SSSS)以及位于至少两个OFDM符号上物理直通链路广播信道(PSBCH),所述N3大于或者等于3。
该终端的实施例是与上述图2所示方法对应的终端,上述图2至图7所示实施例的所有实现方式均适用于该实施例中,也能达到相同的技术效果。该终端还可以进一步包括存储器83,该处理器82、存储器83均可以通过总线接口与收发机81通信连接,处理器82的功能也可以由收发机81实现,收发机81的功能也可以由处理器82实现。
本公开的实施例还提供一种同步信号块的波束扫描装置,包括:
处理模块,用于根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定终端的直通链路中,同步信号块波束扫描中波束的最大个数,所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块;
收发模块,用于按照所述波束的最大个数,进行所述同步信号块的波束扫描。
需要说明的是,上述图2至图7所示实施例均适用于该实施例中,也能达到相同的技术效果。
本公开的实施例还提供一种终端,包括:处理器,被配置为执行如下功能:根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定终端的直通链路中,同步信号块波束扫描中波束的最大个数,所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块;按照所述波束的最大个数,进行所述同步信号块的波束扫描。需要说明的是,上述终端侧的方法的所有实现方式均适用该实施例中,也能达到相同的技术效果。
本公开的实施例还提供一种波束个数的配置方法,应用于网络设备,所述方法包括:
根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,配置直通链路中同步信号块波束扫描中波束的最大个数,使终端按照所述波束的最大个数进行所述同步信号块的波束扫描;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块。
其中,根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,配置直通链路中同步信号块波束扫描中波束的最大个数,包括:
向终端发送通知信令,所述通知信令中携带将所述网络设备根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定的所述直通链路中同步信号块波束扫描中波束的最大个数。
其中,所述通知信令为:广播消息、下行控制信息DCI和无线资源控制RRC信令中的任一个。
本公开的该实施例,可以根据直通链路的“频段使用情况”、“子载波间隔的设置情况”和/或“每Slot包含的SSB个数”,配置直通链路的SSB波束扫描中波束的最大个数,然后终端按照配置的波束扫描的最大个数进行SSB波束扫描,可以在较少的同步子帧内,完成SSB波束扫描。降低了对资源的占用,为业务传输保留出更多的传输时间,从而提高了Sidelink数据传输的资源利用性能。
如图9所示,本公开的实施例还提供一种网络设备90,包括:
处理器92,用于根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,配置直通链路中同步信号块波束扫描中波束的最大个数,使终端按照所述波束的最大个数进行所述同步信号块的波束扫描;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块。该网络设备90还可以包括:收发机91,存储器93等,收发机91与存储器93,以及收发机91与处理器92均可以通过总 线接口通讯连接,处理器92的功能也可以由收发机91实现,收发机91的功能也可以由处理器92实现。
本公开的实施例还提供一种波束个数的配置装置,包括:
处理模块,用于根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,配置直通链路中同步信号块波束扫描中波束的最大个数,使终端按照所述波束的最大个数进行所述同步信号块的波束扫描;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块。
需要说明的是,上述网络设备可以是基站等,上述网络设备侧的方法的所有实现方式均适用该实施例中,也能达到相同的技术效果。
本公开的实施例还提供一种网络设备,包括:处理器,被配置为执行如下功能:根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,配置直通链路中同步信号块波束扫描中波束的最大个数,使终端按照所述波束的最大个数进行所述同步信号块的波束扫描;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块。需要说明的是,上述网络设备侧的方法的所有实现方式均适用该实施例中,也能达到相同的技术效果。
本公开的实施例还提供一种波束扫描方法,包括:
步骤101,获得直通链路的同步信号块的扫描图案;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块;所述扫描图案中,每1个子帧中包括至少一个时隙Slot,每1个Slot中包括至少3个同步信号块;
步骤102,按照所述扫描图案,进行所述同步信号块的波束扫描。
其中,所述扫描图案中:每1个同步信号块至少包括:主直通链路同步信号(PSSS)、辅直通链路同步信号(SSSS)以及物理直通链路广播信道(PSBCH)。
其中,如图4、5所示,若所述波束扫描中波束的最大个数为第一值,系统带宽为第一系统带宽,且子载波间隔为第一子载波间隔时,所述扫描图案中:每1个同步信号块包括:位于一个OFDM符号上的主直通链路同步信号(PSSS)、位于一个OFDM符号上的辅直通链路同步信号(SSSS)、位于一个 OFDM符号上物理直通链路广播信道(PSBCH)以及位于一个OFDM符号上的解调导频参考信号(DMRS)。
其中,如图6所示,若所述波束扫描中波束的最大个数为第二值,系统带宽为第二系统带宽,且子载波间隔为第二子载波间隔时,所述扫描图案中:每1个同步信号块包括:位于一个OFDM符号上的主直通链路同步信号(PSSS)、位于一个OFDM符号的部分子载波上的辅直通链路同步信号(SSSS)以及位于至少一个OFDM符号上物理直通链路广播信道(PSBCH)。
其中,如图7所示,若所述波束扫描中波束的最大个数为第三值,系统带宽为第三系统带宽,且子载波间隔为第三子载波间隔时,所述扫描图案中:每1个同步信号块包括:位于一个OFDM符号上的主直通链路同步信号(PSSS)、位于一个OFDM符号的部分子载波上的辅直通链路同步信号(SSSS)以及位于至少两个OFDM符号上物理直通链路广播信道(PSBCH)。
需要说明的是,上述图2至图7所示实施例均适用于该实施例中,也能达到相同的技术效果。
本公开的实施例还提供一种终端,包括:
处理器,用于获得直通链路的同步信号块的扫描图案;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块;所述扫描图案中,每1个子帧中包括至少一个时隙Slot,每1个Slot中包括至少3个同步信号块;
收发机,用于按照所述扫描图案,进行所述同步信号块的波束扫描。
其中,所述扫描图案中:每1个同步信号块至少包括:主直通链路同步信号(PSSS)、辅直通链路同步信号(SSSS)以及物理直通链路广播信道(PSBCH)。
其中,若所述波束扫描中波束的最大个数为第一值,系统带宽为第一系统带宽,且子载波间隔为第一子载波间隔时,所述扫描图案中:每1个同步信号块包括:位于一个OFDM符号上的主直通链路同步信号(PSSS)、位于一个OFDM符号上的辅直通链路同步信号(SSSS)、位于一个OFDM符号上物理直通链路广播信道(PSBCH)以及位于一个OFDM符号上的解调导频参考信号(DMRS)。
其中,若所述波束扫描中波束的最大个数为第二值,系统带宽为第二系统带宽,且子载波间隔为第二子载波间隔时,所述扫描图案中:每1个同步信号块包括:位于一个OFDM符号上的主直通链路同步信号(PSSS)、位于一个OFDM符号的部分子载波上的辅直通链路同步信号(SSSS)以及位于至少一个OFDM符号上物理直通链路广播信道(PSBCH)。
其中,若所述波束扫描中波束的最大个数为第三值,系统带宽为第三系统带宽,且子载波间隔为第三子载波间隔时,所述扫描图案中:每1个同步信号块包括:位于一个OFDM符号上的主直通链路同步信号(PSSS)、位于一个OFDM符号的部分子载波上的辅直通链路同步信号(SSSS)以及位于至少两个OFDM符号上物理直通链路广播信道(PSBCH)。
本公开的实施例还提供一种同步信号块的波束扫描装置,包括:
处理模块,用于获得直通链路的同步信号块的扫描图案;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块;所述扫描图案中,每1个子帧中包括至少一个时隙Slot,每1个Slot中包括至少3个同步信号块;
收发模块,用于按照所述扫描图案,进行所述同步信号块的波束扫描。
上述实施例中的步骤101以及步骤102的所有实现方式均适用于该发送装置的实施例中,也能达到相同的技术效果。
本公开的实施例还提供一种终端,包括:处理器,被配置为执行如下功能:获得直通链路的同步信号块的扫描图案;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块;按照所述扫描图案,进行所述同步信号块的波束扫描;所述扫描图案中,每1个子帧中包括至少一个时隙Slot,每1个Slot中包括至少3个同步信号块。上述实施例中的步骤101以及步骤102的所有实现方式均适用于该发送装置的实施例中,也能达到相同的技术效果。
本公开的实施例还提供一种计算机存储介质,包括指令,当所述指令在计算机运行时,使得计算机执行如上所述的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结 合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本公开所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤 是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。
Claims (28)
- 一种波束扫描方法,包括:根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定终端的直通链路中,同步信号块波束扫描中波束的最大个数;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块;按照所述波束的最大个数,进行所述同步信号块的波束扫描。
- 根据权利要求1所述的波束扫描方法,其中,根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定所述终端的直通链路中同步信号块波束扫描中波束的最大个数,包括:通过预先配置或者接收通知信令的方式,根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定所述终端的直通链路中同步信号块波束扫描中波束的最大个数。
- 根据权利要求2所述的波束扫描方法,其中,通过预先配置的方式,根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定所述终端的直通链路中同步信号块波束扫描中波束的最大个数,包括:终端开机后,自动读取终端中预先存储的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,与同步信号与物理广播信道的信号波束扫描中波束的最大个数的对应关系表,根据所述对应关系表,确定所述终端的直通链路中同步信号块波束扫描中波束的最大个数;或者终端开机后,获取网络设备中预先存储的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,与同步信号与物理广播信道的信号波束扫描中波束的最大个数的对应关系表,根据所述对应关系表,确定所述终端的直通链路中同步信号块波束扫描中波束 的最大个数。
- 根据权利要求2所述的波束扫描方法,其中,通过接收通知信令的方式,根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定所述终端的直通链路中同步信号块波束扫描中波束的最大个数,包括:从网络设备接收通知信令,所述通知信令中携带所述网络设备根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定的所述终端的直通链路中同步信号块波束扫描中波束的最大个数。
- 根据权利要求4所述的波束扫描方法,其中,所述通知信令为:广播消息、下行控制信息DCI和无线资源控制RRC信令中的任一个。
- 根据权利要求1所述的波束扫描方法,其中,按照所述波束扫描中波束的最大个数,进行所述同步信号块的波束扫描,包括:按照所述波束扫描中波束的最大个数,确定所述同步信号块的扫描图案;按照所述扫描图案,进行所述同步信号块的波束扫描。
- 根据权利要求6所述的波束扫描方法,其中,所述扫描图案包括:每1个子帧中包括至少一个时隙Slot,每1个Slot中包括至少3个同步信号块,每1个同步信号块至少包括:主直通链路同步信号PSSS、辅直通链路同步信号SSSS以及物理直通链路广播信道PSBCH。
- 根据权利要求7所述的波束扫描方法,其中,按照所述波束扫描中波束的最大个数,确定所述同步信号块的扫描图案,包括:若所述波束扫描中波束的最大个数为第一值,系统带宽为第一系统带宽,且子载波间隔为第一子载波间隔时,确定所述同步信号块的扫描图案为:每1个子帧中包括至少一个时隙Slot,每1个Slot中包括N1个同步信号块,每1个同步信号块包括:位于一个OFDM符号上的主直通链路同步信号PSSS、位于一个OFDM符号上的辅直通链路同步信号SSSS、位于一个OFDM符号上物理直通链路广播信道PSBCH以及位于一个OFDM符号上的解调导频参考信号DMRS,所述N1大于或者等于3。
- 根据权利要求7所述的波束扫描方法,其中,按照所述波束扫描中波 束的最大个数,确定所述同步信号块的扫描图案,包括:若所述波束扫描中波束的最大个数为第二值,系统带宽为第二系统带宽,且子载波间隔为第二子载波间隔时,确定所述同步信号块的扫描图案为:每1个子帧中包括至少一个时隙Slot,每1个Slot中包括N2个同步信号块,每1个同步信号块包括:位于一个OFDM符号上的主直通链路同步信号PSSS、位于一个OFDM符号的部分子载波上的辅直通链路同步信号SSSS以及位于至少一个OFDM符号上物理直通链路广播信道PSBCH,所述N2大于或者等于3。
- 根据权利要求7所述的波束扫描方法,其中,按照所述波束扫描中波束的最大个数,确定所述同步信号块的扫描图案,包括:若所述波束扫描中波束的最大个数为第三值,系统带宽为第三系统带宽,且子载波间隔为第三子载波间隔时,确定所述同步信号块的扫描图案为:每1个子帧中包括至少一个时隙Slot,每1个Slot中包括N3个同步信号块,每1个同步信号块包括:位于一个OFDM符号上的主直通链路同步信号PSSS、位于一个OFDM符号的部分子载波上的辅直通链路同步信号SSSS以及位于至少两个OFDM符号上物理直通链路广播信道PSBCH,所述N3大于或者等于3。
- 一种波束个数的配置方法,应用于网络设备,包括:根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,配置直通链路中同步信号块波束扫描中波束的最大个数,使终端按照所述波束的最大个数进行所述同步信号块的波束扫描;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块。
- 根据权利要求11所述的波束个数的配置方法,其中,根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,配置直通链路中同步信号块波束扫描中波束的最大个数,包括:向终端发送通知信令,所述通知信令中携带将所述网络设备根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的 三个因素中的至少一个因素,确定的所述直通链路中同步信号块波束扫描中波束的最大个数。
- 根据权利要求12所述的波束个数的配置方法,其中,所述通知信令为:广播消息、下行控制信息DCI和无线资源控制RRC信令中的任一个。
- 一种终端,包括:处理器,用于根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定终端的直通链路中,同步信号块波束扫描中波束的最大个数,所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块;收发机,用于按照所述波束的最大个数,进行所述同步信号块的波束扫描。
- 一种同步信号块的波束扫描装置,包括:处理模块,用于根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定终端的直通链路中,同步信号块波束扫描中波束的最大个数,所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块;收发模块,用于按照所述波束的最大个数,进行所述同步信号块的波束扫描。
- 一种终端,包括:处理器,被配置为执行如下功能:根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,确定终端的直通链路中,同步信号块波束扫描中波束的最大个数,所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块;按照所述波束的最大个数,进行所述同步信号块的波束扫描。
- 一种网络设备,包括:处理器,用于根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,配置直通链路中同步信号块波束扫描中波束的最大个数,使终端按照所述波束的最大个数进行所述同步信号块的波束扫描;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块。
- 一种波束个数的配置装置,包括:处理模块,用于根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,配置直通链路中同步信号块波束扫描中波束的最大个数,使终端按照所述波束的最大个数进行所述同步信号块的波束扫描;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块。
- 一种网络设备,包括:处理器,被配置为执行如下功能:根据直通链路的包括频段使用情况、子载波间隔和每个时隙包括的同步信号块的个数的三个因素中的至少一个因素,配置直通链路中同步信号块波束扫描中波束的最大个数,使终端按照所述波束的最大个数进行所述同步信号块的波束扫描;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块。
- 一种波束扫描方法,包括:获得直通链路的同步信号块的扫描图案;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块;所述扫描图案中,每1个子帧中包括至少一个时隙Slot,每1个Slot中包括至少3个同步信号块;按照所述扫描图案,进行所述同步信号块的波束扫描。
- 根据权利要求20所述的波束扫描方法,其中,所述扫描图案中:每1个同步信号块至少包括:主直通链路同步信号PSSS、辅直通链路同步信号SSSS以及物理直通链路广播信道PSBCH。
- 根据权利要求21所述的波束扫描方法,其中,若所述波束扫描中波束的最大个数为第一值,系统带宽为第一系统带宽,且子载波间隔为第一子载波间隔时,所述扫描图案中:每1个同步信号块包括:位于一个OFDM符号上的主直通链路同步信号PSSS、位于一个OFDM符号上的辅直通链路同步信号SSSS、位于一个OFDM符号上物理直通链路广播信道PSBCH以及位于一个OFDM符号上的解调导频参考信号DMRS。
- 根据权利要求21所述的波束扫描方法,其中,若所述波束扫描中波束的最大个数为第二值,系统带宽为第二系统带宽,且子载波间隔为第二子载波间隔时,所述扫描图案中:每1个同步信号块包括:位于一个OFDM符号上的主直通链路同步信号PSSS、位于一个OFDM 符号的部分子载波上的辅直通链路同步信号SSSS以及位于至少一个OFDM符号上物理直通链路广播信道PSBCH。
- 根据权利要求21所述的波束扫描方法,其中,若所述波束扫描中波束的最大个数为第三值,系统带宽为第三系统带宽,且子载波间隔为第三子载波间隔时,所述扫描图案中:每1个同步信号块包括:位于一个OFDM符号上的主直通链路同步信号PSSS、位于一个OFDM符号的部分子载波上的辅直通链路同步信号SSSS以及位于至少两个OFDM符号上物理直通链路广播信道PSBCH。
- 一种终端,包括:处理器,用于获得直通链路的同步信号块的扫描图案;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块;所述扫描图案中,每1个子帧中包括至少一个时隙Slot,每1个Slot中包括至少3个同步信号块;收发机,用于按照所述扫描图案,进行所述同步信号块的波束扫描。
- 一种同步信号块的波束扫描装置,包括:处理模块,用于获得直通链路的同步信号块的扫描图案;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块;所述扫描图案中,每1个子帧中包括至少一个时隙Slot,每1个Slot中包括至少3个同步信号块;收发模块,用于按照所述扫描图案,进行所述同步信号块的波束扫描。
- 一种终端,包括:处理器,被配置为执行如下功能:获得直通链路的同步信号块的扫描图案;所述同步信号块为直通链路同步信号与物理直通链路广播信道的组合块;按照所述扫描图案,进行所述同步信号块的波束扫描;所述扫描图案中,每1个子帧中包括至少一个时隙Slot,每1个Slot中包括至少3个同步信号块。
- 一种计算机存储介质,包括指令,其中,当所述指令在计算机运行时,使得计算机执行如权利要求1至10任一项所述的方法或者权利要求11至13任一项所述的方法或者权利要求20至24任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811142612.9 | 2018-09-28 | ||
CN201811142612.9A CN110971281B (zh) | 2018-09-28 | 2018-09-28 | 一种波束扫描方法、波束配置方法、终端及网络设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020063471A1 true WO2020063471A1 (zh) | 2020-04-02 |
Family
ID=69951189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/106933 WO2020063471A1 (zh) | 2018-09-28 | 2019-09-20 | 波束扫描方法、波束配置方法、终端及网络设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110971281B (zh) |
WO (1) | WO2020063471A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113783596A (zh) * | 2021-08-23 | 2021-12-10 | 厦门大学 | 毫米波通信中af中继设备的波束对准方法、中继设备 |
CN114390539A (zh) * | 2020-10-16 | 2022-04-22 | 维沃移动通信有限公司 | 传输方法、装置、终端及网络侧设备 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116709268A (zh) * | 2022-02-28 | 2023-09-05 | 华为技术有限公司 | 侧行链路管理方法、装置和系统 |
WO2023231041A1 (en) * | 2022-06-03 | 2023-12-07 | Qualcomm Incorporated | Machine learning based predictive initial beam pairing for sidelink |
CN118055494A (zh) * | 2022-11-10 | 2024-05-17 | 华为技术有限公司 | 通信方法和通信装置 |
CN118510040A (zh) * | 2023-02-16 | 2024-08-16 | 中信科智联科技有限公司 | 一种资源选择方法、装置及设备 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108270710A (zh) * | 2017-01-03 | 2018-07-10 | 中兴通讯股份有限公司 | 一种信号传输方法、装置及系统 |
WO2018174602A1 (ko) * | 2017-03-22 | 2018-09-27 | 엘지전자(주) | 무선 통신 시스템에서 사이드링크 동기 신호를 송수신하는 방법 및 이를 위한 장치 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107820273B (zh) * | 2016-09-14 | 2020-05-19 | 深圳市中兴微电子技术有限公司 | 一种检测D2D中sidelink的同步信号的方法及装置 |
CN108282842B (zh) * | 2017-01-06 | 2021-04-13 | 中国移动通信有限公司研究院 | 一种初始小区接入的方法和装置 |
CN116390235A (zh) * | 2017-02-07 | 2023-07-04 | 创新技术实验室株式会社 | 用于通信系统的广播信道配置和广播信道传输和接收的方法和装置 |
CN108512637B (zh) * | 2017-02-27 | 2020-12-29 | 上海朗帛通信技术有限公司 | 一种ue、基站中的用于下行信息传输的方法和装置 |
WO2018201469A1 (zh) * | 2017-05-05 | 2018-11-08 | 北京小米移动软件有限公司 | 信号传输方法、装置、电子设备和计算机可读存储介质 |
-
2018
- 2018-09-28 CN CN201811142612.9A patent/CN110971281B/zh active Active
-
2019
- 2019-09-20 WO PCT/CN2019/106933 patent/WO2020063471A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108270710A (zh) * | 2017-01-03 | 2018-07-10 | 中兴通讯股份有限公司 | 一种信号传输方法、装置及系统 |
WO2018174602A1 (ko) * | 2017-03-22 | 2018-09-27 | 엘지전자(주) | 무선 통신 시스템에서 사이드링크 동기 신호를 송수신하는 방법 및 이를 위한 장치 |
Non-Patent Citations (2)
Title |
---|
INTERDIGITAL INC.: "On V2X Synchronization in NR", 3GPP TSG RAN WG1 MEETING #94 R1-1809095, 24 August 2018 (2018-08-24), XP051516464 * |
NOKIA: "SS Block Composition, SS Burst Set Composition and SS Time Index Indication", 3GPP TSG-RAN WG1 MEETING #88BIS R1-1705837, 7 April 2017 (2017-04-07), XP051243949 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114390539A (zh) * | 2020-10-16 | 2022-04-22 | 维沃移动通信有限公司 | 传输方法、装置、终端及网络侧设备 |
CN114390539B (zh) * | 2020-10-16 | 2024-06-11 | 维沃移动通信有限公司 | 传输方法、装置、终端及网络侧设备 |
CN113783596A (zh) * | 2021-08-23 | 2021-12-10 | 厦门大学 | 毫米波通信中af中继设备的波束对准方法、中继设备 |
Also Published As
Publication number | Publication date |
---|---|
CN110971281A (zh) | 2020-04-07 |
CN110971281B (zh) | 2021-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020063471A1 (zh) | 波束扫描方法、波束配置方法、终端及网络设备 | |
KR102451082B1 (ko) | Nr 시스템에서 광대역 동작 방법 및 장치 | |
JP6961591B2 (ja) | 端末、無線通信方法、基地局及び無線通信システム | |
CN107733829B (zh) | 一种发送和检测同步信号的方法、设备 | |
CN104871581A (zh) | 蜂窝无线通信中的灵活频谱支持 | |
WO2018028347A1 (zh) | 一种确定基带参数的方法和设备 | |
CN113692000B (zh) | 接收公共控制消息的方法、终端及存储介质 | |
CN112564868B (zh) | 一种信号的发送、接收方法及终端 | |
CN112311712B (zh) | 一种信号的发送、接收方法、终端及装置 | |
US20220400470A1 (en) | Terminal device, base station apparatus, and communication method | |
EP3506694B1 (en) | Signal transmission method, terminal device, and network device | |
WO2019183972A1 (zh) | 一种信息的指示方法及装置、计算机存储介质 | |
CN107409387A (zh) | 一种无线接入方法、ue和基站 | |
WO2021012256A1 (zh) | 速率匹配的指示方法、装置、设备及存储介质 | |
WO2020135486A1 (zh) | 边链路信息传输方法、用户终端及计算机可读存储介质 | |
EP3927083B1 (en) | Initial signal transmission method and device | |
CN110537386B (zh) | 同步广播块的发送方法、接收方法、装置、设备及介质 | |
KR20210024657A (ko) | 채널 액세스를 위한 시스템 및 방법 | |
WO2020063479A1 (zh) | 由用户设备执行的方法以及用户设备 | |
WO2020063439A1 (zh) | 信号的发送方法、波形的配置方法、终端及网络设备 | |
US20180054739A1 (en) | Systems and methods for wireless transmission during channel availability check on mixed dfs channels | |
WO2020088637A1 (zh) | 信号的发送方法及终端 | |
WO2019214586A1 (zh) | 通信方法和通信装置 | |
WO2018024246A1 (zh) | 信道映射和检测的方法和装置、基站以及用户设备 | |
CN106664698B (zh) | 终端装置、集成电路以及通信方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19866028 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19866028 Country of ref document: EP Kind code of ref document: A1 |