WO2018174602A1 - 무선 통신 시스템에서 사이드링크 동기 신호를 송수신하는 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 사이드링크 동기 신호를 송수신하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2018174602A1
WO2018174602A1 PCT/KR2018/003370 KR2018003370W WO2018174602A1 WO 2018174602 A1 WO2018174602 A1 WO 2018174602A1 KR 2018003370 W KR2018003370 W KR 2018003370W WO 2018174602 A1 WO2018174602 A1 WO 2018174602A1
Authority
WO
WIPO (PCT)
Prior art keywords
slss
terminal
relay
remote
received
Prior art date
Application number
PCT/KR2018/003370
Other languages
English (en)
French (fr)
Inventor
김명섭
서한별
김영태
이승민
이재욱
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Priority to US16/610,900 priority Critical patent/US11337172B2/en
Publication of WO2018174602A1 publication Critical patent/WO2018174602A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a wireless communication system supporting sidelink, and more particularly, to a method for transmitting and receiving a sidelink synchronization signal (SLSS) and an apparatus for supporting the same.
  • SLSS sidelink synchronization signal
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded not only voice but also data service, and the explosive increase in traffic causes shortage of resources and users require faster services. Therefore, a more advanced mobile communication system is required. .
  • An object of the present specification is to provide a method of reducing power consumption of a remote UE and reducing interference to UEs in a neighboring cell by transmitting only SLSS for sidelink discovery in a remote UE (user equipment).
  • the present disclosure provides a method for transmitting and receiving a sidelink synchronization signal (SLSS) in a wireless communication system, the method performed by a first terminal, the method comprising: receiving configuration information related to the SLSS; Receiving the SLSS from a second terminal; Determining whether the received SLSS is an SLSS associated with sidelink communication or an SLSS associated with sidelink discovery based on the received configuration information; And if the received SLSS is an SLSS associated with sidelink discovery, transmitting the received SLSS.
  • SLSS sidelink synchronization signal
  • configuration information related to the SLSS is characterized in that it includes information on the time when the SLSS is transmitted, information on the resource on which the SLSS is transmitted, and information on the type of the SLSS.
  • the type of the SLSS in the present specification is characterized by indicating the SLSS associated with sidelink communication (sidelink communication) or SLSS associated with sidelink discovery (sidelink discovery).
  • configuration information related to the SLSS may be received from a base station or received from the second terminal.
  • the first terminal is characterized in that the terminal operating in a low power mode.
  • the first terminal is a remote UE (User Equipment)
  • the second terminal is characterized in that the relay UE.
  • the present specification provides a first terminal for transmitting and receiving a sidelink synchronization signal (Sidelink Synchronization Signal, SLSS) in a wireless communication system, RF (Radio Frequency) module for transmitting and receiving a wireless signal; And a processor operatively coupled to the RF module, the processor receiving configuration information associated with the SLSS; Receive the SLSS from a second terminal; Determine whether the received SLSS is an SLSS associated with sidelink communication or an SLSS associated with sidelink discovery based on the received configuration information; And if the received SLSS is an SLSS associated with sidelink discovery, the received SLSS is configured to transmit the received SLSS.
  • SLSS Sidelink Synchronization Signal
  • SLSS for sidelink discovery is transmitted from a remote UE (user equipment), thereby reducing power consumption of the remote UE and reducing interference with UEs in neighboring cells.
  • FIG. 1 illustrates a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • FIG. 3 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • FIG. 4 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
  • FIG. 5 is a diagram for explaining elements of a D2D technique.
  • FIG. 6 is a diagram illustrating an embodiment of a configuration of a resource unit.
  • FIG. 7 is a diagram illustrating an example of a UE-to-UE relay method proposed in the present specification.
  • FIG. 8 is a flowchart illustrating an example of a terminal operation for implementing a method proposed in the present specification.
  • FIG. 9 illustrates a block diagram of a wireless communication device to which the methods proposed herein can be applied.
  • FIG. 10 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • FIG. 11 is a diagram illustrating an example of an RF module of a wireless communication device to which a method proposed in this specification can be applied.
  • FIG. 12 is a diagram illustrating still another example of an RF module of a wireless communication device to which a method proposed in this specification can be applied.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • the term 'base station (BS)' refers to a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and a general NB (gNB).
  • eNB evolved-NodeB
  • BTS base transceiver system
  • AP access point
  • gNB general NB
  • a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
  • UE user equipment
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS Advanced Mobile Station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal and a receiver may be part of a base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of IEEE 802, 3GPP, and 3GPP2, which are wireless access systems. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • FIG. 1 illustrates a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • 3GPP LTE / LTE-A supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • Type 1A illustrates the structure of a type 1 radio frame.
  • Type 1 radio frames may be applied to both full duplex and half duplex FDD.
  • a radio frame consists of 10 subframes.
  • One subframe consists of two consecutive slots in the time domain, and subframe i consists of slot 2i and slot 2i + 1.
  • the time taken to transmit one subframe is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • uplink transmission and downlink transmission are distinguished in the frequency domain. While there is no restriction on full-duplex FDD, the terminal cannot simultaneously transmit and receive in half-duplex FDD operation.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain. Since 3GPP LTE uses OFDMA in downlink, the OFDM symbol is for representing one symbol period. The OFDM symbol may be referred to as one SC-FDMA symbol or symbol period.
  • a resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
  • FIG. 1B illustrates a frame structure type 2.
  • an uplink-downlink configuration is a rule indicating whether uplink and downlink are allocated (or reserved) for all subframes.
  • Table 1 shows an uplink-downlink configuration.
  • 'D' represents a subframe for downlink transmission
  • 'U' represents a subframe for uplink transmission
  • 'S' represents a downlink pilot.
  • a special subframe consisting of three fields: a time slot, a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • GP is a section for removing interference caused in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • the uplink-downlink configuration can be classified into seven types, and the location and / or number of downlink subframes, special subframes, and uplink subframes are different for each configuration.
  • Switch-point periodicity refers to a period in which an uplink subframe and a downlink subframe are repeatedly switched in the same manner, and both 5ms or 10ms are supported.
  • the special subframe S exists every half-frame, and in case of having a period of 5ms downlink-uplink switching time, it exists only in the first half-frame.
  • subframes 0 and 5 and DwPTS are sections for downlink transmission only.
  • the subframe immediately following the UpPTS and the subframe subframe is always an interval for uplink transmission.
  • the uplink-downlink configuration may be known to both the base station and the terminal as system information.
  • the base station may notify the terminal of the change of the uplink-downlink allocation state of the radio frame by transmitting only an index of the configuration information.
  • the configuration information is a kind of downlink control information, which may be transmitted through a physical downlink control channel (PDCCH) like other scheduling information, and is commonly transmitted to all terminals in a cell through a broadcast channel as broadcast information. May be
  • PDCCH physical downlink control channel
  • Table 2 shows the configuration of the special subframe (length of DwPTS / GP / UpPTS).
  • the structure of a radio frame according to the example of FIG. 1 is just one example, and the number of subcarriers included in the radio frame or the number of slots included in the subframe and the number of OFDM symbols included in the slot may vary. Can be.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • one downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes seven OFDM symbols, and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
  • Each element on the resource grid is a resource element, and one resource block (RB) includes 12 ⁇ 7 resource elements.
  • the number N ⁇ DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 3 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • up to three OFDM symbols in the first slot in a subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which PDSCH (Physical Downlink Shared Channel) is allocated. data region).
  • PDSCH Physical Downlink Shared Channel
  • An example of a downlink control channel used in 3GPP LTE includes a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid-ARQ indicator channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels within the subframe.
  • the PHICH is a response channel for the uplink and carries an ACK (Acknowledgement) / NACK (Not-Acknowledgement) signal for a hybrid automatic repeat request (HARQ).
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • the downlink control information includes uplink resource allocation information, downlink resource allocation information or an uplink transmission (Tx) power control command for a certain terminal group.
  • the PDCCH is a resource allocation and transmission format of DL-SCH (Downlink Shared Channel) (also referred to as a downlink grant), resource allocation information of UL-SCH (Uplink Shared Channel) (also called an uplink grant), and PCH ( Paging information in paging channel, system information in DL-SCH, resource allocation for upper-layer control message such as random access response transmitted in PDSCH, arbitrary terminal It may carry a set of transmission power control commands for the individual terminals in the group, activation of Voice over IP (VoIP), and the like.
  • the plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • the PDCCH consists of a set of one or a plurality of consecutive CCEs.
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of available bits of the PDCCH are determined according to the association between the number of CCEs and the coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and attaches a CRC (Cyclic Redundancy Check) to the control information.
  • the CRC is masked with a unique identifier (referred to as RNTI (Radio Network Temporary Identifier)) according to the owner or purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • a unique identifier of the terminal for example, a C-RNTI (Cell-RNTI) may be masked to the CRC.
  • a paging indication identifier for example, P-RNTI (P-RNTI) may be masked to the CRC.
  • the system information more specifically, the PDCCH for the system information block (SIB), the system information identifier and the system information RNTI (SI-RNTI) may be masked to the CRC.
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • Enhanced PDCCH carries UE-specific signaling.
  • the EPDCCH is located in a physical resource block (PRB) that is UE-specifically configured.
  • PRB physical resource block
  • the PDCCH may be transmitted in up to three OFDM symbols in the first slot in the subframe, but the EPDCCH may be transmitted in a resource region other than the PDCCH.
  • the start time (ie, symbol) of the EPDCCH in the subframe may be configured in the terminal through higher layer signaling (eg, RRC signaling, etc.).
  • EPDCCH is a transport format associated with the DL-SCH, resource allocation and HARQ information, a transport format associated with the UL-SCH, resource allocation and HARQ information, resource allocation associated with Side-link Shared Channel (SL-SCH) and Physical Sidelink Control Channel (PSCCH) Can carry information, etc.
  • Multiple EPDCCHs may be supported and the UE may monitor a set of EPCCHs.
  • the EPDCCH may be transmitted using one or more consecutive enhanced CCEs (ECCEs), and the number of ECCEs per single EPDCCH may be determined for each EPDCCH format.
  • ECCEs enhanced CCEs
  • Each ECCE may be composed of a plurality of enhanced resource element groups (EREGs).
  • EREG is used to define the mapping of ECCE to RE.
  • the terminal may monitor the plurality of EPDCCHs. For example, one or two EPDCCH sets in one PRB pair in which the UE monitors EPDCCH transmission may be configured.
  • the EPCCH may use localized transmission or distributed transmission, so that the mapping of ECCE to the RE in the PRB may be different.
  • FIG. 4 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) carrying uplink control information is allocated to the control region.
  • the data region is allocated a Physical Uplink Shared Channel (PUSCH) that carries user data.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • a PUCCH for one UE is allocated a resource block (RB) pair in a subframe.
  • RBs belonging to the RB pair occupy different subcarriers in each of the two slots.
  • This RB pair allocated to the PUCCH is said to be frequency hopping at the slot boundary (slot boundary).
  • FIG. 5 is a diagram for explaining elements of a D2D technique.
  • a UE means a terminal of a user, but when network equipment such as an eNB transmits and receives a signal according to a communication method with the UE, the corresponding network equipment may also be regarded as a kind of UE.
  • UE1 may operate to select a resource unit corresponding to a specific resource in a resource pool representing a set of resources and transmit a D2D signal using the corresponding resource unit.
  • UE2 which is a receiving UE, configures a resource pool through which UE1 can transmit a signal, and detects a signal of UE1 within the corresponding pool.
  • the resource pool may inform the base station when UE1 is in the connection range of the base station, and may be determined by another UE or determined as a predetermined resource when it is outside the connection range of the base station.
  • a resource pool may include a plurality of resource units, and each UE may select one or a plurality of resource units to use for transmitting their D2D signals.
  • FIG. 6 is a diagram illustrating an embodiment of a configuration of a resource unit.
  • a total frequency resource is divided into N_F and a total time resource is divided into N_T, so that a total of N_F * N_T resource units may be defined.
  • the resource pool is repeated every N_T subframes.
  • one resource unit may appear periodically and repeatedly as shown in the figure.
  • an index of a physical resource unit to which one logical resource unit is mapped may change in a predetermined pattern according to time.
  • a resource pool may mean a set of resource units that can be used for transmission by a UE that wants to transmit a D2D signal.
  • resource pools may be classified according to content of D2D signals transmitted from each resource pool.
  • contents of the D2D signal may be classified as follows, and a separate resource pool may be configured for each.
  • SA Scheduling assignment: location of resources used for transmission of D2D data channel performed by each transmitting UE, modulation and coding scheme (MCS) or MIMO transmission scheme required for demodulation of other data channels and / or Signal containing information such as timing advance.
  • MCS modulation and coding scheme
  • This signal may be transmitted multiplexed with D2D data on the same resource unit.
  • an SA resource pool may mean a pool of resources in which an SA is multiplexed with D2D data and transmitted, and may also be referred to as a D2D control channel.
  • D2D data channel A resource pool used by a transmitting UE to transmit user data using resources specified through SA. If it is possible to be multiplexed and transmitted with D2D data on the same resource unit, only a D2D data channel having a form other than SA information may be transmitted in a resource pool for the D2D data channel. In other words, the resource elements used to transmit SA information on individual resource units in the SA resource pool can still be used to transmit D2D data in the D2D data channel resource pool.
  • a transmission timing determination method of a D2D signal for example, is it transmitted when a synchronization reference signal is received or is transmitted by applying a certain timing advance at that time
  • a resource allocation method for example, For example, whether the eNB assigns transmission resources of an individual signal to an individual transmitting UE or whether an individual transmitting UE selects an individual signaling resource on its own within a pool, and a signal format (for example, each D2D signal occupies one subframe).
  • the number of symbols, the number of subframes used for transmission of one D2D signal), the signal strength from the eNB, and the transmission power strength of the D2D UE may be further divided into different resource pools.
  • Mode 1 or Mode 3 a transmission resource region is set in advance, or the eNB designates a transmission resource region for a method in which the eNB directly indicates a transmission resource of the D2D transmitting UE in D2D or V2V communication.
  • a method of directly selecting a transmission resource by the UE will be referred to as / defining Mode 2 or Mode 4.
  • D2D discovery when the eNB directly indicates a resource, a type 2 when a UE directly selects a transmission resource in a type 2, a preset resource region, or an eNB-indicated resource region will be referred to as / definition.
  • the above-mentioned D2D may be called sidelink
  • SA is a physical sidelink control channel (PSCCH)
  • D2D synchronization signal is a sidelink synchronization signal (SSS), and transmits the most basic information before D2D communication transmitted with SSS
  • the control channel may be referred to as a physical sidelink broadcast channel (PSBCH), or another name, a PD2DSCH (Physical D2D synchronization channel).
  • PSBCH physical sidelink broadcast channel
  • PD2DSCH Physical D2D synchronization channel
  • PSDCH physical sidelink discovery channel
  • the D2D communication UE transmits the PSBCH with the SSS, and therefore, the measurement of the SSS is performed using the DMRS of the PSBCH.
  • the UE measures the DMRS of the PSBCH and measures the RSRP (reference signal received power) of the signal to determine whether it is to be a synchronization source.
  • the present disclosure provides a method for performing synchronization in a UE-UE relay situation in which a UE transmits a signal to another UE.
  • FIG. 7 is a diagram illustrating an example of a UE-to-UE relay method proposed in the present specification.
  • FIG. 7A illustrates a method in which UE 1 corresponding to a relay UE receives a signal from a donor eNB and relays to UE 2 corresponding to a remote UE.
  • a backhaul link may be a band (or link) with which an eNB and a UE communicate, and an access link may be in the same band as the backhaul link or between UE-to-UE It may also be a band (or link) for performing.
  • the band in which the eNB and the UE communicate may be, for example, LTE uplink / downlink.
  • the band for performing the UE-to-UE communication may be, for example, a sidelink or a D2D link.
  • FIG. 7B illustrates another example of a UE-to-UE relay, in which UE 1 corresponding to the relay UE receives a signal from UE 0 and relays to UE 2 corresponding to a remote UE.
  • both the UE 1 and the UE 2 are in synchronization with the eNB.
  • Timing information may be obtained from a signal (or a synchronization signal equivalent to an eNB).
  • the UE 1 when the UE 1 is not transparent to the UE 2, that is, when relaying is performed in such a manner that the UE 2 can recognize the existence of the UE 1, the UE 2 receives a synchronization signal transmitted from the UE 1. You can get timing.
  • the synchronization signal transmitted by the UE (UE-to-UE), not the eNB is referred to as 'Sidelink Synchronization Signal (SLSS)', the synchronization signal that the UE relays (UE-to-UE) Will be expressed as 'RSS' among the SLSS.
  • SLSS 'Sidelink Synchronization Signal
  • the RSS signal may be of the same type as the synchronization signal of the eNB, the same timing (PSS / SSS), or may be the same type / timing as the SLSS.
  • UE 2 may acquire timing from a synchronization signal of an eNB or SLSS or RSS transmitted from UE 0 or UE 1.
  • UE 1 and UE 2 are both within the coverage of the same eNB (eNB 1) in FIG. 7A.
  • the eNB 1 may perform configuration for transmission of synchronization signals of respective UEs.
  • the configuration may include the time point at which the SLSS synchronization signal related to the UE-to-UE is transmitted, the resource to be transmitted, and the type (or type) / content of the synchronization signal.
  • a time point at which a specific UE transmits a sync signal may be the same timing as a sync signal of an eNB or a time point at which a predetermined offset is applied from the timing.
  • the constant offset may be a value that advances timing by UL TA (Timing Advance).
  • the offset value or the absolute value of the offset is sufficiently large (e.g., several symbols or More than several subframes can be set to advance timing.
  • a resource to which the synchronization signal of the specific UE needs to be defined also needs to be defined in advance.
  • a resource corresponding to the center 6 resource block (RB) of a specific band may be used as a SLSS (synchronous) resource.
  • the sync signal transmits the content of the sync signal of the eNB as it is (e.g., so that UEs in direct communication between the UEs can acquire or confirm a physical cell ID (PCID), etc.) or separately. Can be transmitted in the form of an SLSS (eg to enable SLSS ID acquisition or confirm).
  • PCID physical cell ID
  • a broadcasting channel (e.g. PSBCH) may be transmitted to the UE (s) after the transmission of the SLSS.
  • Rel. 12 and Rel. PSBCH Physical Sidelink Broadcast Channel
  • Rel. 15 FeD2D or SLSS for future next generation systems is available in Rel. 12 and Rel. It does not need to be distinguished from D2D of 13.
  • each UE transmits signals to each other by a single frequency network (SFN). The effect of receiving can be obtained.
  • SFN single frequency network
  • PSBCH for FeD2D may additionally include information for the FeD2D.
  • Information for the FeD2D may be mapped through some reserved bits of the PSBCH.
  • the PSBCHs of the D2D UE and the FeD2D UE may not be SFN with each other and may act as interference to each UE.
  • the network may map and transmit the corresponding information to the PSBCH for the D2D (when additional information for the FeD2D is included in the PSBCH).
  • the UE can receive the PSBCH for the D2D and the PSBCH for the FeD2D in the SFN manner, and Rel.
  • 15 SLSS for FeD2D or SLSS for future systems is Rel. It does not need to be distinguished from SLSS of 12/13 D2D.
  • the number of receiving antennas that can use or use a narrow band may be burdensome to limit or skip SLSS transmission. Can be.
  • whether to transmit the SLSS may be determined according to the UE type.
  • UE 1 there may be three types of UEs, each type of a relay UE (UE 1), a remote UE (UE 2), and a normal UE (UE 0) that does not belong to either a relay UE or a remote UE. May be).
  • UE 2 a relay UE
  • UE 2 a remote UE
  • UE 0 normal UE
  • the relay UE may be configured to transmit the SLSS in the form of a relay synchronization signal (RSS).
  • RSS relay synchronization signal
  • the relay UE should perform not only an operation of transmitting data directly generated by itself and an operation of receiving data necessary for itself, but also a role of transmitting data required by other UEs.
  • the relay UE corresponds to a UE type that is difficult to operate with low power / ultra low power as described above.
  • SLSS transmission may not significantly affect the overall power consumption.
  • Information on the SLSS transmission associated with whether the relay UE uses the SLSS or the SLSS resource may be indicated to the UEs through the SIB.
  • the relay UE is in an RRC connected state with the eNB for a longer time (or more frequently) than at least other types of UEs (e.g., remote UEs).
  • the eNB may indicate the information on the SLSS transmission to the relay UE through dedicated signaling.
  • the eNB may indicate the SLSS transmission to the UE semi-statically through RRC signaling or dynamically through physical layer signaling.
  • the indication information on the SLSS transmission indicated by the SIB may be overriding.
  • the remote UE receiving the SLSS through the relay UE is configured not to transmit the corresponding SLSS again.
  • Such a configuration may be dynamically delivered to the UE through an RRC message, a physical channel, or the like, or semi-persistently transmitted through an SIB.
  • a system information block (SIB) for a relay UE and a remote UE may include resource related configuration information for synchronization.
  • SIB system information block
  • the remote UE or the relay UE may not transmit the SLSS.
  • the SIB for the relay UE and the SIB for the remote UE may be distinguished from each other. That is, when the SIB for the remote UE does not include the resource information for the synchronization, the remote UE may not transmit the SLSS.
  • the relay UE may not transmit the SLSS.
  • normal UEs (not relay UEs or remote UEs) can also be configured to transmit SLSS.
  • Such normal UEs may also acquire information for SLSS transmission through SIB or dedicated signaling. However, these normal UEs may be configured not to transmit the SLSS when the UEs are restricted by a system bandwidth or maximum data rate supported by the MTC UE or a UE operating in a low power mode.
  • N means a natural number.
  • the remote UE may define to transmit the SLSS for discovery.
  • the MTC UE and the like may also be defined to transmit the SLSS for discovery.
  • the UE (M-UE 2) that is not the associated relay UE (L-UE 1) and the remote UE (M-UE 1) breaks the association with the relay UE (L-UE 2) that was originally associated, There may be a case where association with another (relay) UE is required.
  • the M-UE 1 when the M-UE 1 relays the SLSS (and / or associated discovery signal, etc.) for the discovery of the L-UE 1 in the SFN manner, the M-UE 2 is the corresponding SLSS (and / or associated) The relay can be changed by measuring the discovery signal.
  • a case where a remote UE (M-UE 1) has to be associated with a relay UE (L-UE 1) to which it is associated and needs to associate with another (relay) UE (L-UE 2) may occur. .
  • another relay may receive a SLSS (and / or associated discovery signal, etc.) for discovery of the remote UE (M-UE 1) to perform a discovery signal and a new association.
  • a relay association operation may be performed by transmitting a SLSS (and / or associated discovery signal, etc.) for.
  • only UEs satisfying a specific condition may be defined to transmit the SLSS.
  • UEs transmitting the same SLSS may obtain SFN effects or coverage extension effects.
  • UE 1 or UE 2 of FIG. 7 transmits a synchronization signal of eNB 1 at a cell boundary, which affects acquisition of synchronization of UEs in an adjacent cell.
  • the following methods may be considered to reduce the influence of interference due to the transmission of the SLSS.
  • a reception sensitivity (eg RSSI) of a synchronization signal of an eNB received from a cell (serving cell) to which a specific UE belongs is equal to or greater than a specific threshold (eg X1). If the largest value among the reception sensitivity of the synchronization signal of the eNB received from the neighbor cell is less than or equal to a specific threshold (eg X2), the UE may transmit the SLSS.
  • this is to prevent the SLSS (or retransmission of the synchronization signal of the eNB) transmitted by the UE belonging to a specific cell from affecting the UEs belonging to the neighboring cell.
  • SLSS power transmitted by the UE
  • P_UE P_UE
  • the synchronization signal of the serving cell eNB and the synchronization signal of the neighbor cell eNB may be compared, the SLSS received in the serving cell and the SLSS received from the neighbor cell may be compared to determine whether the UE receives the SLSS.
  • specific UEs e.g. representative UEs
  • some UEs of a specific group may transmit SLSS.
  • the SLSS may also act as interference to UEs in the adjacent group. Therefore, the reception sensitivity (eg RSSI) of the SLSS received from the group to which a specific UE belongs must be greater than or equal to a specific threshold (eg X1), and the largest value of the reception sensitivity of the SLSS received from an adjacent group is less than or equal to a specific threshold (eg X2). In this case, the UE may transmit the SLSS.
  • a specific threshold eg X1
  • a specific threshold eg X2
  • the UE may transmit the SLSS.
  • this is to prevent the SLSS transmitted by the UE belonging to a specific group from affecting the UEs belonging to the neighboring group.
  • an in-coverage relay UE may be supported as a synchronization source for an in-coverage remote UE.
  • the remote UE may receive synchronization signals and data from the linked relay UE (or eNB).
  • UEs may be configured to transmit SLSS for discovery and communication.
  • a UE that uses a narrow band (e.g., 1 RB or 6 RB) or does not have the ability to transmit high-speed data (e.g., a remote UE)
  • physical resources are very sparse.
  • even a small amount of resources for transmitting the SLSS can be a burden.
  • a guard interval may be required and may also be treated as additional overhead for the UE.
  • the remote UE is a wearable device
  • the relay *? *? UE is its control device (e.g., a smartphone or tablet PC, etc.)
  • the UEs can be in very close proximity, the relay UE and the remote UE Sending all SLSS may not be effective.
  • relay UEs are configured to send SLSS for communication with remote UEs (eg, using SIB or dedicated signaling).
  • the Remote UE does not need to send the SLSS for communication for power efficiency.
  • the transmission period of the discovery signal is longer than the period of sidelink communication, and the SLSS transmission for discovery, which occurs once in every discovery period, may not be a burden on the remote UE.
  • Another UE may need to discover a particular remote UE.
  • a relay UE and a remote UE belong to another cell before the association or that a UE other than the relay UE tries to discover the remote UE for potential change of the associated relay.
  • the network simply cannot provide SLSS resources to the remote UE, which does not affect the spec.
  • the remote UE whose bandwidth is limited transmits the SLSS only for discovery
  • the current spec. Does not support such an operation, and therefore, the operation of the corresponding UE should be supported.
  • the first proposal is that the remote UE does not transmit the SLSS for communication but transmits the SLSS for discovery.
  • the relay UE In the relaying mode, the relay UE needs to receive the eNB synchronization signal with the highest priority. There are at least two options of the synchronization signal that the remote UE can receive.
  • One option is an eNB sync signal and the other option is SLSS.
  • the remote UE does not need to receive the eNB synchronization signal with the highest priority.
  • the relay UE and the remote UE may be arranged in different eNBs. That is, the relay UE lies in eNB 1, the remote UE lies in eNB 2, and the remote UE will follow the timing criteria of eNB 2.
  • the remote UE since the remote UE cannot know whether the relay UE is located in the same cell, the remote UE attempts to decode the sidelink signal from a plurality of resource pools with different timings.
  • the remote UE may prioritize the SLSS of the linked relay UE.
  • the remote UE may decode the sidelink signal from the resource pool associated with the relay UE even when both the relay UE and the remote UE move to the neighboring cell, as in the case of group handover.
  • the relay UE when all signals and data required or relayed during the relaying operation can be relayed by the relay UE, it is desirable to configure the remote UE to receive the SLSS at the highest priority from the relay UE.
  • the remote UE may change to communicate directly with the eNB instead of the relaying scheme.
  • the remote UE may be assigned to an existing ProSe and / or V2X SLSS priority assignment method. As such, it may be configured to receive the eNB synchronization signal having the highest priority.
  • the Remote UE After the Remote UE is linked with the relay UE, it may be set to follow other priority rules than ProSe and / or V2X depending on the (pre) configuration by the network.
  • the SLSS ID of the relay UE to which the remote UE is linked is not only different from the SLSS ID of the eNB, but also receives the SLSS from the linked relay UE having the highest priority that can be interpreted as having a higher priority than the SLSS ID of other UEs. It is set to.
  • the SLSS ID information of the relay UE may be indicated to the remote UE through the PSDCH (or PSSCH).
  • the second proposal may be set so that the remote UE gives priority to the SLSS of the relay UE having the highest priority after being associated with the relay UE.
  • the contents of the PSBCH and the physical channel format are the same between ProSe and FeD2D, they can be combined in the SFN method and can also improve the reception performance. Therefore, it is not desirable to distinguish the PSBCH of ProSe and FeD2D.
  • the network may set the reserved bit of the ProSe PSBCH equal to the reserved bit of the FeD2D PSBCH (used to indicate additional information).
  • the resources of the SLSS are related to the resources of the PSBCH.
  • the SLSS of the V2X can be distinguished because the PSBCH format is different, and when the ProSe UE can avoid the decoding attempt of the PSBCH for V2X, it is possible to save the battery of the UE.
  • the third suggestion is that it is not necessary to distinguish between SLSS of ProSe and FeD2D.
  • the relay UE's SLSS may be considered a high synchronization priority.
  • a UE with limited RX chain capability or a UE sharing an RX chain between SL RX and DL RX
  • Tx resource pool In addition, the transmission resource pool (Tx resource pool) will be described.
  • L-UE 1 and M-UE 1 belong to different cells and the corresponding cells are asynchronous, the existing Rel. 12 and Rel.
  • D2D of 13 L-UE 1 and M-UE 1 each perform a transmission operation according to synchronization timing of their own cell and transmission resource pool information set by the corresponding cell (eg, SIB message). In other words, no special optimization was done for asynchronous inter-cell situations.
  • the synchronization timing of the serving cell / base station is synch.
  • the priority order is changed as the highest priority order of the reference, the above transmission operation needs to be changed or optimized accordingly.
  • the relay UE when the SLSS of the relay UE is set to the highest priority than the synchronization timing of the serving cell / base station, the relay UE does not perform the transmission operation based on the Tx resource pool information of the cell to which the remote UE is transmitted. According to the Tx resource pool information on the SIB message (sent by the serving cell of the relay UE), the transmission operation is performed.
  • the Tx resource pool when the Tx resource pool is present in the same band as the cell, the Tx resource pool will be separated from the wireless area network (WAN) communication band of the existing cell, so that interference can be avoided and the same as the cell.
  • WAN wireless area network
  • the band exists in a dedicated carrier or spectrum rather than a band, resources between UEs using the same resource pool may be controlled to some extent through coordination or sensing in an eNB indicated or UE autonomous manner.
  • the remote UE may have a large interference with the relay UE or a cell to which the relay UE belongs. That is, in a state where different Tx resource pools are used, if the relay UE or the relay UE does not recognize the Tx resource pool of the remote UE, interference effects may be large.
  • the remote UE performs the transmission operation according to the Tx resource pool information on the SIB message delivered by the relay UE, the opposite of the content described above may occur.
  • the remote UE may interfere with its serving cell or UEs belonging to the serving cell.
  • the Tx power of the remote UE is determined for the purpose of increasing the reception sensitivity (or satisfying the link budget) of the signal received by the serving cell (relay UE or remote UE). Rather, it needs to be determined for the purpose of increasing the reception sensitivity of the signal received by the relay UE.
  • the Tx power of the remote UE may be determined by the path loss between the relay UE and the remote UE (to compensate for the path loss).
  • the remote UE may be interpreted as performing a transmission operation according to a Tx resource pool indicated by a target (ie, a relay UE) of its synchronization reference.
  • the remote UE informs the relay UE of the Tx resource pool information (or its ID information can be added) associated with (or instructed) its serving cell, and causes the relay UE to
  • the UE may perform communication using resources that overlap with (or instructed) the Tx resource pool associated with the serving cell of the relay UE.
  • the relay UE relays SL resource location information (or location information on SL resource candidates) that can reduce interference to its serving cell (WAN communication in the same band or SL communication in dedicated spectrum). It may be recommended to
  • FIG. 8 is a flowchart illustrating an example of a terminal operation for implementing a method proposed in the present specification.
  • FIG. 8 illustrates an operation method of a terminal for transmitting and receiving a sidelink synchronization signal (SLSS) in a wireless communication system.
  • SLSS sidelink synchronization signal
  • a first terminal means a salping remote UE in FIG. 7, and a second terminal means a relay UE.
  • the first terminal receives configuration information related to the SLSS (S810).
  • the configuration information related to the SLSS may include at least one of information on a time point at which the SLSS is transmitted, information on a resource on which the SLSS is transmitted, or information on the type of the SLSS.
  • the type (or type) of the SLSS may indicate an SLSS associated with sidelink communication or an SLSS associated with sidelink discovery.
  • the type of the SLSS when the type value of the SLSS is set to '0', the type of the SLSS may be a SLSS for sidelink communication, and when set to '1', the type of the SLSS may be a SLSS for sidelink discovery. have.
  • configuration information related to the SLSS may be received from a base station or from the second terminal.
  • the first terminal refers to a remote UE, and may correspond to a terminal operating in a low power mode.
  • the first terminal receives the SLSS from the second terminal (S820).
  • the first terminal determines whether the received SLSS is SLSS associated with sidelink communication or SLSS associated with sidelink discovery based on the received configuration information (S830).
  • the first terminal transmits the received SLSS (S840).
  • the first terminal does not transmit the SLSS received from the second terminal, but when the type of the SLSS is SLSS for sidelink discovery, the first terminal is received from the second terminal as at least one terminal. It will send a SLSS.
  • FIG. 9 illustrates a block diagram of a wireless communication device to which the methods proposed herein can be applied.
  • a wireless communication system includes a base station 910 and a plurality of terminals 920 located in a base station area.
  • the base station 910 includes a processor 911, a memory 912, and an RF unit 913.
  • the processor 1311 implements the functions, processes, and / or methods proposed in FIGS. 1 to 8. Layers of the air interface protocol may be implemented by a processor.
  • the memory 912 is connected to the processor and stores various information for driving the processor.
  • the RF unit 913 is connected to a processor to transmit and / or receive a radio signal.
  • the RF unit may be referred to as an RF unit or an RF module.
  • the terminal 920 includes a processor, a memory, and an RF unit.
  • the processor implements the functions, processes and / or methods proposed in FIGS. 1 to 8 above.
  • Layers of the air interface protocol may be implemented by a processor.
  • the memory 922 is connected to the processor and stores various information for driving the processor.
  • the RF unit is connected to a processor to transmit and / or receive a radio signal.
  • the memories 912 and 922 may be inside or outside the processors 911 and 921 and may be connected to the processor by various well-known means.
  • the base station and / or the terminal may have a single antenna or multiple antennas.
  • FIG. 10 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • FIG. 10 illustrates the terminal of FIG. 9 in more detail.
  • a terminal may include a processor (or a digital signal processor (DSP) 1010, an RF module (or RF unit) 1035, and a power management module 1005). ), Antenna 1040, battery 1055, display 1015, keypad 1020, memory 1030, SIM card Subscriber Identification Module card) 1025 (this configuration is optional), a speaker 1045, and a microphone 1050.
  • the terminal may also include a single antenna or multiple antennas. Can be.
  • the processor 1010 implements the functions, processes, and / or methods proposed in FIGS. 1 to 8.
  • the layer of the air interface protocol may be implemented by a processor.
  • the memory 1030 is connected to the processor and stores information related to the operation of the processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.
  • the processor 1010 receives the command information, processes the telephone number, and performs a proper function. Operational data may be extracted from the SIM card 1025 or the memory 1030. In addition, the processor 1010 may display command information or driving information on the display 1015 for the user to recognize and for convenience.
  • the RF module 1035 is connected to the processor 1010 and transmits and / or receives an RF signal.
  • the processor 1010 communicates command information to the RF module 1035 to transmit, for example, a radio signal constituting voice communication data to initiate communication.
  • the RF module 1035 is composed of a receiver and a transmitter for receiving and transmitting a radio signal.
  • the antenna 1040 functions to transmit and receive radio signals.
  • the RF module 1035 may transmit the signal and convert the signal to baseband for processing by the processor 1010.
  • the processed signal may be converted into audible or readable information output through the speaker 1045.
  • FIG. 11 is a diagram illustrating an example of an RF module of a wireless communication device to which a method proposed in this specification can be applied.
  • FIG. 11 illustrates an example of an RF module that may be implemented in a frequency division duplex (FDD) system.
  • FDD frequency division duplex
  • the processor described in FIGS. 9 and 10 processes the data to be transmitted and provides an analog output signal to the transmitter 1110.
  • the analog output signal is filtered by a low pass filter (LPF) 1111 to remove images caused by digital-to-analog conversion (ADC), and an upconverter ( Up-converted from baseband to RF by a Mixer, 1112, amplified by a Variable Gain Amplifier (VGA) 1113, the amplified signal is filtered by a filter 1114, and a power amplifier Further amplified by Amplifier, PA) 1115, routed through duplexer (s) 1150 / antenna switch (s) 1160, and transmitted via antenna 1170.
  • LPF low pass filter
  • ADC analog-to-analog conversion
  • ADC analog-converter
  • VGA Variable Gain Amplifier
  • antenna 1170 receives signals from the outside and provides the received signals, which are routed through antenna switch (s) 1160 / duplexers 1150 and receiver 1120. Is provided.
  • the received signals are amplified by a Low Noise Amplifier (LNA) 1123, filtered by a bandpass filter 1124, and received from RF by a downconverter (Mixer) 1125. Downconvert to baseband.
  • LNA Low Noise Amplifier
  • Mcixer downconverter
  • the down-converted signal is filtered by a low pass filter (LPF) 1126 and amplified by VGA 1127 to obtain an analog input signal, which is provided to the processor described in FIGS. 9 and 10.
  • LPF low pass filter
  • a local oscillator (LO) generator 1140 provides transmit and receive LO signals to the generate and up converter 1112 and down converter 1125, respectively.
  • LO local oscillator
  • Phase Locked Loop (PLL) 1130 also receives control information from the processor to generate transmit and receive LO signals at appropriate frequencies and provides control signals to LO generator 1140.
  • circuits shown in FIG. 11 may be arranged differently from the configuration shown in FIG. 11.
  • FIG. 12 is a diagram illustrating still another example of an RF module of a wireless communication device to which a method proposed in this specification can be applied.
  • FIG. 12 illustrates an example of an RF module that may be implemented in a time division duplex (TDD) system.
  • TDD time division duplex
  • the transmitter 1210 and the receiver 1220 of the RF module in the TDD system are the same as the structure of the transmitter and the receiver of the RF module in the FDD system.
  • the RF module of the TDD system will be described only for the structure that differs from the RF module of the FDD system, and the description of the same structure will be described with reference to FIG. 11.
  • the signal amplified by the power amplifier (PA) 1215 of the transmitter is routed through a band select switch (1250), a band pass filter (BPF) 1260, and an antenna switch (s) 1270. And is transmitted through the antenna 1280.
  • a band select switch (1250)
  • BPF band pass filter
  • s antenna switch
  • the antenna 1280 receives signals from the outside and provides the received signals, which signals antenna switch (s) 1270, band pass filter 1260 and band select switch 1250. Routed through, and provided to the receiver 1220.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the method of performing sidelink communication in the wireless communication system of the present invention has been described with reference to the example applied to the 3GPP LTE / LTE-A system, but can be applied to various wireless communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 명세서는 무선 통신 시스템에서 사이드링크 동기 신호(Sidelink Synchronization Signal, SLSS)를 송수신하는 방법을 제공한다. 구체적으로, 제 1 단말에 의해 수행되는 방법은, 상기 SLSS와 관련된 설정(configuration) 정보를 수신하는 단계; 상기 SLSS를 제 2 단말로부터 수신하는 단계; 상기 수신된 configuration 정보에 기초하여 상기 수신된 SLSS가 사이드링크 통신(sidelink communication)과 관련된 SLSS인지 또는 사이드링크 디스커버리(sidelink discovery)와 관련된 SLSS인지를 결정하는 단계; 및 상기 수신된 SLSS가 사이드링크 디스커버리(sidelink discovery)와 관련된 SLSS인 경우, 상기 수신된 SLSS를 전송하는 단계를 포함한다. 이를 통해, 본 명세서에서 제안하는 방법은 제 1 단말의 불필요한 배터리 소모를 줄이고, 인접 셀의 단말들에게 간섭을 최소화할 수 있는 효과가 있다.

Description

무선 통신 시스템에서 사이드링크 동기 신호를 송수신하는 방법 및 이를 위한 장치
본 발명은 사이드링크(sidelink)를 지원하는 무선 통신 시스템에 관한 것으로서, 보다 상세하게 사이드링크 동기 신호(sidelink synchronization signal, SLSS)를 송수신하는 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스를 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 명세서는 remote UE(user equipment)에서 sidelink discovery를 위한 SLSS만을 전송하게 함으로써, remote UE의 파워 소모를 줄이고, 인접 셀 내 UE들에 대한 간섭을 줄이는 방법을 제공함에 목적이 있다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서는 무선 통신 시스템에서 사이드링크 동기 신호(Sidelink Synchronization Signal, SLSS)를 송수신하는 방법에 있어서, 제 1 단말에 의해 수행되는 방법은, 상기 SLSS와 관련된 설정(configuration) 정보를 수신하는 단계; 상기 SLSS를 제 2 단말로부터 수신하는 단계; 상기 수신된 configuration 정보에 기초하여 상기 수신된 SLSS가 사이드링크 통신(sidelink communication)과 관련된 SLSS인지 또는 사이드링크 디스커버리(sidelink discovery)와 관련된 SLSS인지를 결정하는 단계; 및 상기 수신된 SLSS가 사이드링크 디스커버리(sidelink discovery)와 관련된 SLSS인 경우, 상기 수신된 SLSS를 전송하는 단계를 포함하는 것을 특징으로 한다.
또한, 본 명세서에서 상기 SLSS와 관련된 설정(configuration) 정보는 SLSS가 전송되는 시점에 대한 정보, SLSS가 전송되는 자원에 대한 정보 및 SLSS의 타입에 대한 정보를 포함하는 것을 특징으로 한다.
또한, 본 명세서에서 상기 SLSS의 타입은 사이드링크 통신(sidelink communication)과 관련된 SLSS를 나타내거나 또는 사이드링크 디스커버리(sidelink discovery)와 관련된 SLSS를 나타내는 것을 특징으로 한다.
또한, 본 명세서에서 상기 SLSS와 관련된 설정(configuration) 정보는 기지국으로부터 수신되거나 또는 상기 제 2 단말로부터 수신되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 제 1 단말은 저전력 모드로 동작하는 단말인 것을 특징으로 한다.
또한, 본 명세서에서 상기 제 1 단말은 remote UE(User Equipment)이고, 상기 제 2 단말은 relay UE인 것을 특징으로 한다.
또한, 본 명세서는 무선 통신 시스템에서 사이드링크 동기 신호(Sidelink Synchronization Signal, SLSS)를 송수신하는 제 1 단말에 있어서, 무선 신호를 송수신하기 위한 RF(Radio Frequency) 모듈; 및 상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는, 상기 SLSS와 관련된 설정(configuration) 정보를 수신하고; 상기 SLSS를 제 2 단말로부터 수신하고; 상기 수신된 configuration 정보에 기초하여 상기 수신된 SLSS가 사이드링크 통신(sidelink communication)과 관련된 SLSS인지 또는 사이드링크 디스커버리(sidelink discovery)와 관련된 SLSS인지를 결정하고; 및 상기 수신된 SLSS가 사이드링크 디스커버리(sidelink discovery)와 관련된 SLSS인 경우, 상기 수신된 SLSS를 전송하도록 설정되는 것을 특징으로 한다.
본 명세서는 remote UE(user equipment)에서 sidelink discovery를 위한 SLSS만을 전송하게 함으로써, remote UE의 파워 소모를 줄이고, 인접 셀 내 UE들에 대한 간섭을 줄일 수 있는 효과가 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 5는 단말간 직접 통신(D2D) 기법에 대한 요소를 설명하기 위한 도면이다.
도 6은 자원 유닛의 구성 실시 예를 도시한 도면이다.
도 7은 본 명세서에서 제안하는 UE 대 UE 간 릴레이(relay) 방법의 일례를 나타낸 도이다.
도 8은 본 명세서에서 제안하는 방법을 구현하기 위한 단말 동작의 일례를 나타낸 순서도이다.
도 9는 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 블록 구성도를 예시한다.
도 10은 본 발명의 일 실시 예에 따른 통신 장치의 블록 구성도를 예시한다.
도 11은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 장치의 RF 모듈의 일례를 나타낸 도이다.
도 12는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 장치의 RF 모듈의 또 다른 일례를 나타낸 도이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), gNB(general NB) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시 예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시 예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A/NR(New RAT)을 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
시스템 일반
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
3GPP LTE/LTE-A에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 1에서 무선 프레임의 시간 영역에서의 크기는 T_s=1/(15000*2048)의 시간 단위의 배수로 표현된다. 하향링크 및 상향링크 전송은 T_f=307200*T_s=10ms의 구간을 가지는 무선 프레임으로 구성된다.
도 1의 (a)는 타입 1 무선 프레임의 구조를 예시한다. 타입 1 무선 프레임은 전이중(full duplex) 및 반이중(half duplex) FDD에 모두 적용될 수 있다.
무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성된다. 하나의 무선 프레임은 T_slot=15360*T_s=0.5ms 길이의 20개의 슬롯으로 구성되고, 각 슬롯은 0부터 19까지의 인덱스가 부여된다. 하나의 서브프레임은 시간 영역(time domain)에서 연속적인 2개의 슬롯(slot)으로 구성되고, 서브프레임 i는 슬롯 2i 및 슬롯 2i+1로 구성된다. 하나의 서브프레임을 전송하는데 걸리는 시간을 TTI(transmission time interval)이라 한다. 예를 들어, 하나의 서브 프레임은 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms일 수 있다.
FDD에서 상향링크 전송 및 하향링크 전송은 주파수 도메인에서 구분된다. 전이중 FDD에 제한이 없는 반면, 반이중 FDD 동작에서 단말은 동시에 전송 및 수신을 할 수 없다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(RB: Resource Block)을 포함한다. 3GPP LTE는 하향링크에서 OFDMA를 사용하므로 OFDM 심볼은 하나의 심볼 구간(symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 블록(resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부 반송파(subcarrier)를 포함한다.
도 1의 (b)는 타입 2 프레임 구조(frame structure type 2)를 나타낸다. 타입 2 무선 프레임은 각 153600*T_s=5ms의 길이의 2개의 하프 프레임(half frame)으로 구성된다. 각 하프 프레임은 30720*T_s=1ms 길이의 5개의 서브프레임으로 구성된다.
TDD 시스템의 타입 2 프레임 구조에서 상향링크-하향링크 구성(uplink-downlink configuration)은 모든 서브프레임에 대하여 상향링크와 하향링크가 할당(또는 예약)되는지 나타내는 규칙이다. 표 1은 상향링크-하향링크 구성을 나타낸다.
Figure PCTKR2018003370-appb-T000001
표 1을 참조하면, 무선 프레임의 각 서브프레임 별로, 'D'는 하향링크 전송을 위한 서브프레임을 나타내고, 'U'는 상향링크 전송을 위한 서브프레임을 나타내며, 'S'는 DwPTS(Downlink Pilot Time Slot), 보호구간(GP: Guard Period), UpPTS(Uplink Pilot Time Slot) 3가지의 필드로 구성되는 스페셜 서브프레임(special subframe)을 나타낸다.
DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. GP는 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
각 서브프레임 i는 각 T_slot=15360*T_s=0.5ms 길이의 슬롯 2i 및 슬롯 2i+1로 구성된다.
상향링크-하향링크 구성은 7가지로 구분될 수 있으며, 각 구성 별로 하향링크 서브프레임, 스페셜 서브프레임, 상향링크 서브프레임의 위치 및/또는 개수가 다르다.
하향링크에서 상향링크로 변경되는 시점 또는 상향링크에서 하향링크로 전환되는 시점을 전환 시점(switching point)이라 한다. 전환 시점의 주기성(Switch-point periodicity)은 상향링크 서브프레임과 하향링크 서브프레임이 전환되는 양상이 동일하게 반복되는 주기를 의미하며, 5ms 또는 10ms가 모두 지원된다. 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 스페셜 서브프레임(S)은 하프-프레임 마다 존재하고, 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 첫번째 하프-프레임에만 존재한다.
모든 구성에 있어서, 0번, 5번 서브프레임 및 DwPTS는 하향링크 전송만을 위한 구간이다. UpPTS 및 서브프레임 서브프레임에 바로 이어지는 서브프레임은 항상 상향링크 전송을 위한 구간이다.
이러한, 상향링크-하향링크 구성은 시스템 정보로써 기지국과 단말이 모두 알고 있을 수 있다. 기지국은 상향링크-하향링크 구성 정보가 바뀔 때마다 구성 정보의 인덱스만을 전송함으로써 무선 프레임의 상향링크-하향링크 할당상태의 변경을 단말에 알려줄 수 있다. 또한, 구성 정보는 일종의 하향링크 제어정보로서 다른 스케줄링 정보와 마찬가지로 PDCCH(Physical Downlink Control Channel)를 통해 전송될 수 있으며, 방송 정보로서 브로드캐스트 채널(broadcast channel)을 통해 셀 내의 모든 단말에 공통으로 전송될 수도 있다.
표 2는 스페셜 서브프레임의 구성(DwPTS/GP/UpPTS의 길이)을 나타낸다.
Figure PCTKR2018003370-appb-T000002
도 1의 예시에 따른 무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 부 반송파의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 2를 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
자원 그리드 상에서 각 요소(element)를 자원 요소(resource element)하고, 하나의 자원 블록(RB: resource block)은 12 × 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 N^DL은 하향링크 전송 대역폭(bandwidth)에 종속한다.
상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 3을 참조하면, 서브 프레임내의 첫번째 슬롯에서 앞의 최대 3개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH(Physical Downlink Shared Channel)이 할당되는 데이터 영역(data region)이다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 일례로 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다.
PCFICH는 서브 프레임의 첫번째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향 링크에 대한 응답 채널이고, HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Not-Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보(DCI: downlink control information)라고 한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송(Tx) 파워 제어 명령을 포함한다.
PDCCH는 DL-SCH(Downlink Shared Channel)의 자원 할당 및 전송 포맷(이를 하향링크 그랜트라고도 한다.), UL-SCH(Uplink Shared Channel)의 자원 할당 정보(이를 상향링크 그랜트라고도 한다.), PCH(Paging Channel)에서의 페이징(paging) 정보, DL-SCH에서의 시스템 정보, PDSCH에서 전송되는 랜덤 액세스 응답(random access response)과 같은 상위 레이어(upper-layer) 제어 메시지에 대한 자원 할당, 임의의 단말 그룹 내 개별 단말들에 대한 전송 파워 제어 명령들의 집합, VoIP(Voice over IP)의 활성화 등을 나를 수 있다. 복수의 PDCCH들은 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH들을 모니터링할 수 있다. PDCCH는 하나 또는 복수의 연속적인 CCE(control channel elements)의 집합으로 구성된다. CCE는 무선 채널의 상태에 따른 부호화율(coding rate)을 PDCCH에 제공하기 위하여 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)들에 대응된다. PDCCH의 포맷 및 사용 가능한 PDCCH의 비트 수는 CCE들의 수와 CCE들에 의해 제공되는 부호화율 간의 연관 관계에 따라 결정된다.
기지국은 단말에게 전송하려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(Cyclic Redundancy Check)를 붙인다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다.)가 마스킹된다. 특정의 단말을 위한 PDCCH라면 단말의 고유한 식별자, 예를 들어 C-RNTI(Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(Paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보, 더욱 구체적으로 시스템 정보 블록(SIB: system information block)를 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(system information RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위하여, RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다.
EPDCCH(enhanced PDCCH)는 단말 특정(UE-specific) 시그널링을 나른다. EPDCCH는 단말 특정하게 설정된 물리 자원 블록(PRB: physical resource block)에 위치한다. 다시 말해, 상술한 바와 같이 PDCCH는 서브 프레임내의 첫번째 슬롯에서 앞의 최대 3개의 OFDM 심볼들에서 전송될 수 있으나, EPDCCH는 PDCCH 이외의 자원 영역에서 전송될 수 있다. 서브프레임 내 EPDCCH가 시작되는 시점(즉, 심볼)은 상위 계층 시그널링(예를 들어, RRC 시그널링 등)을 통해 단말에 설정될 수 있다.
EPDCCH는 DL-SCH와 관련된 전송 포맷, 자원 할당 및 HARQ 정보, UL-SCH와 관련된 전송 포맷, 자원 할당 및 HARQ 정보, SL-SCH(Sidelink Shared Channel) 및 PSCCH(Physical Sidelink Control Channel)과 관련된 자원 할당 정보 등을 나를 수 있다. 다중의 EPDCCH가 지원될 수 있으며, 단말은 EPCCH의 세트를 모니터링할 수 있다.
EPDCCH는 하나 또는 그 이상의 연속된 진보된 CCE(ECCE: enhanced CCE)를 이용하여 전송될 수 있으며, 각 EPDCCH 포맷 별로 단일의 EPDCCH 당 ECCE의 개수가 정해질 수 있다.
각 ECCE는 복수의 자원 요소 그룹(EREG: enhanced resource element group)으로 구성될 수 있다. EREG는 ECCE의 RE에의 매핑을 정의하기 위하여 사용된다. PRB 쌍 별로 16개의 EREG가 존재한다. 각 PRB 쌍 내에서 DMRS를 나르는 RE를 제외하고, 모든 RE는 주파수가 증가하는 순서대로 그 다음 시간이 증가하는 순서대로 0 내지 15까지의 번호가 부여된다.
단말은 복수의 EPDCCH를 모니터링할 수 있다. 예를 들어, 단말이 EPDCCH 전송을 모니터링하는 하나의 PRB 쌍 내 하나 또는 두 개의 EPDCCH 세트가 설정될 수 있다.
서로 다른 개수의 ECCE가 병합됨으로써 EPCCH를 위한 서로 다른 부호화율(coding rate)이 실현될 수 있다. EPCCH는 지역적 전송(localized transmission) 또는 분산적 전송(distributed transmission)을 사용할 수 있으며, 이에 따라 PRB 내 RE에 ECCE의 매핑이 달라질 수 있다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 4를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH(Physical Uplink Control Channel)이 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared Channel)이 할당된다. 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH와 PUSCH을 동시에 전송하지 않는다.
하나의 단말에 대한 PUCCH에는 서브 프레임 내에 자원 블록(RB: Resource Block) 쌍이 할당된다. RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이를 PUCCH에 할당된 RB 쌍은 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.
D2D (Device-to-Device) 통신
도 5는 단말간 직접 통신(D2D) 기법에 대한 요소를 설명하기 위한 도면이다.
도 5에서 UE는 사용자의 단말을 의미하지만 eNB와 같은 네트워크 장비가 UE와의 통신 방식에 따라서 신호를 송수신하는 경우에는, 해당 네트워크 장비 역시 일종의 UE로 간주될 수 있다. 이하에서는 UE1은 일련의 자원의 집합을 의미하는 자원 풀(resource pool) 내에서 특정한 자원에 해당하는 자원 유닛(resource unit)을 선택하고, 해당 자원 유닛을 사용하여 D2D 신호를 송신하도록 동작할 수 있다. 이에 대한 수신 UE인 UE2는 UE1이 신호를 전송할 수 있는 자원 풀을 구성(configure)받고 해당 풀 내에서 UE1의 신호를 검출한다. 여기서 자원 풀은 UE1이 기지국의 연결 범위에 있는 경우 기지국이 알려줄 수 있으며, 기지국의 연결 범위 밖에 있는 경우에는 다른 UE가 알려주거나 혹은 사전에 정해진 자원으로 결정될 수도 있다. 일반적으로 자원 풀은 복수의 자원 유닛들을 포함할 수 있으며 각 UE는 하나 혹은 복수의 자원 유닛을 선정하여 자신의 D2D 신호 송신에 사용할 수 있다.
도 6은 자원 유닛의 구성 실시 예를 도시한 도면이다.
도 6을 참조하면, 전체 주파수 자원이 N_F개로 분할되고 전체 시간 자원이 N_T개로 분할되어 총 N_F*N_T 개의 자원 유닛이 정의될 수 있다. 여기서는 해당 자원 풀이 N_T 서브 프레임을 주기로 반복된다고 표현할 수 있다. 특징적으로 한 자원 유닛은 본 도면에 도시한 바와 같이 주기적으로 반복하여 나타날 수 있다. 혹은 시간이나 주파수 차원에서의 다이버시티 효과를 얻기 위해서 하나의 논리적인 자원 유닛이 맵핑되는 물리적 자원 유닛의 인덱스가 시간에 따라서 사전에 정해진 패턴으로 변화할 수도 있다. 이러한 자원 유닛 구조에 있어서 자원 풀이란 D2D 신호를 송신하고자 하는 UE가 송신에 사용할 수 있는 자원 유닛의 집합을 의미할 수 있다.
상기 설명한 자원 풀은 여러 종류로 세분화될 수 있다. 먼저 자원 풀은 각 자원 풀에서 전송되는 D2D 신호의 내용(content)에 따라서 구분될 수 있다. 일 예로 D2D 신호의 내용은 아래와 같이 구분될 수 있으며, 각각에 대하여 별도의 자원 풀이 구성될 수 있다.
스케줄링 할당(Scheduling assignment; SA): 각 송신 UE가 수행하는 D2D 데이터 채널의 전송으로 사용하는 자원의 위치, 그 외 데이터 채널의 복조를 위해서 필요한 MCS(modulation and coding scheme)나 MIMO 전송 방식 및/또는 timing advance 등의 정보를 포함하는 신호. 이 신호는 동일 자원 유닛 상에서 D2D 데이터와 함께 멀티플렉스되어 전송되는 것도 가능함. 본 명세서에서 SA 자원 풀이란 SA가 D2D 데이터와 멀티플렉스되어 전송되는 자원의 풀을 의미할 수 있으며, D2D 제어 채널이라 지칭될 수도 있다.
D2D 데이터 채널: SA를 통하여 지정된 자원을 사용하여 송신 UE가 사용자 데이터(user data)를 전송하는데 사용하는 자원 풀. 만일 동일 자원 유닛 상에서 D2D 데이터와 함께 멀티 플렉스되어 전송되는 것이 가능한 경우에는 D2D 데이터 채널을 위한 자원 풀에서는 SA 정보를 제외한 형태의 D2D 데이터 채널만이 전송될 수 있다. 다시 말하면 SA 자원 풀 내의 개별 자원 유닛 상에서 SA 정보를 전송하는데 사용되었던 자원 요소를 D2D 데이터 채널 자원 풀에서는 여전히 D2D 데이터를 전송하는데 사용할 수 있다.
디스커버리 채널(Discovery channel): 송신 UE가 자신의 ID등의 정보를 전송하여 인접 UE로 하여금 자신을 발견할 수 있도록 하는 메시지를 위한 자원 풀.
상술한 경우와 반대로, D2D 신호의 내용(content)이 동일한 경우에도 D2D 신호의 송수신 속성에 따라서 상이한 자원 풀을 사용할 수 있다. 일 예로 동일한 D2D 데이터 채널이나 디스커버리 메시지라 하더라도 D2D 신호의 송신 타이밍 결정 방식(예를 들어 동기 기준 신호의 수신 시점에서 송신되는지 아니면 해당 시점에서 일정한 timing advance를 적용하여 전송되는지)이나 자원 할당 방식(예를 들어 개별 신호의 전송 자원을 eNB가 개별 송신 UE에게 지정해주는지 아니면 개별 송신 UE가 풀 내에서 자체적으로 개별 신호 전송 자원을 선택하는지), 신호 포맷(예를 들어 각 D2D 신호가 한 서브프레임에서 차지하는 심볼의 개수나, 한 D2D 신호의 전송에 사용되는 서브프레임의 개수), eNB로부터의 신호 세기, D2D UE의 송신 전력 세기 등에 따라서 다시 상이한 자원 풀로 구분될 수 있다.
본 명세서에서는 설명의 편의상 D2D 또는 V2V 통신에서 eNB가 D2D 송신 UE의 송신 자원을 직접 지시하는 방법을 Mode 1 또는 Mode 3, 전송 자원 영역이 사전에 설정되어 있거나, eNB가 전송 자원 영역을 지정하고, UE가 직접 송신 자원을 선택하는 방법을 Mode 2 또는 Mode 4라 지칭/정의하기로 한다. D2D 디스커버리의 경우에는 eNB가 직접 자원을 지시하는 경우에는 Type 2, 사전에 설정된 자원 영역 혹은 eNB가 지시한 자원 영역에서 UE가 직접 전송 자원을 선택하는 경우는 Type 1이라 지칭/정의하기로 한다.
상기 언급한 D2D는 사이드링크(sidelink)라고 불릴 수도 있으며, SA는 physical sidelink control channel (PSCCH), D2D synchronization signal은 sidelink synchronization signal (SSS), SSS와 함께 전송되는 D2D 통신 이전에 가장 기본적인 정보를 전송하는 제어 채널을 Physical sidelink broadcast channel (PSBCH), 혹은 다른 이름으로 PD2DSCH (Physical D2D synchronization channel)이라고 부를 수 있다. 특정 단말이 자신이 주변에 있음을 알리기 위한 신호, 이때 이 신호에는 특정 단말의 ID가 포함되어 있을 수 있으며, 이러한 채널을 physical sidelink discovery channel (PSDCH)라 부를 수 있다.
Rel. 12의 D2D에서는 D2D 통신 UE만이 PSBCH를 SSS와 함께 전송하였고 이로 인하여, SSS의 측정은 PSBCH의 DMRS를 이용하여 수행한다. 아웃-커버리지(out-coverage) UE는 PSBCH의 DMRS를 측정해 보고, 이 신호의 RSRP(reference signal received power) 등을 측정하여 자신이 동기화 소스(synchronization source)가 될지 여부를 결정하게 된다.
이하, 본 명세서에서 제안하는 UE와 UE 간 릴레이(relay) 상황에서 동기(synchronization)을 수행하는 방법에 대해 살펴보기로 한다.
보다 구체적으로, 본 명세서는 UE가 다른 UE에게 신호를 전달해주는 UE-UE 간 relay 상황에서의 동기를 수행하는 방법을 제공한다.
도 7은 본 명세서에서 제안하는 UE 대 UE 간 릴레이(relay) 방법의 일례를 나타낸 도이다.
도 7a는 relay UE에 해당하는 UE 1이 eNB(donor eNB)의 신호를 수신하여 remote UE에 해당하는 UE 2로 릴레이(relay) 해주는 방법을 나타낸다.
도 7a에서, 백홀 링크(backhaul link)는 eNB와 UE가 통신하는 대역 (또는 링크)일 수 있으며, 액세스 링크(access link)는 상기 backhaul link와 동일한 대역일 수도 있거나 또는 UE-to-UE 간의 통신을 수행하기 위한 대역(또는 링크)일 수도 있다.
상기 eNB와 UE가 통신하는 대역은 예를 들어, LTE uplink / downlink일 수 있다.
상기 UE-to-UE 간의 통신을 수행하기 위한 대역은 일례로, sidelink, D2D 링크일 수 있다.
도 7b는 UE-to-UE relay의 또 다른 일례로서, relay UE에 해당하는 UE 1이 UE 0(donor UE)의 신호를 수신하여 remote UE에 해당하는 UE 2로 relay 해주는 방법을 나타낸 도이다.
도 7a와 같은 방식에서, UE 1이 UE 2에게 transparent한 경우, 즉 UE 2가 UE 1의 존재를 인지하지 못하는 형태로 릴레잉(relaying)이 수행되는 경우, UE 1과 UE 2는 모두 eNB 동기 신호 (또는 eNB와 equivalent한 동기 신호)로부터 타이밍(timing) 정보를 획득할 수 있다.
도 7a와 같은 방식에서, UE 1이 UE 2에게 transparent하지 않은 경우, 즉 UE 2가 UE 1의 존재를 인지할 수 있는 형태로 relaying이 수행되는 경우, UE 2는 UE 1으로부터 전송되는 동기 신호로부터 timing을 획득할 수 있다.
이하에서 설명의 편의를 위해, eNB가 아닌 UE에 의해(UE-to-UE) 전송되는 동기 신호는 'SLSS(Sidelink Synchronization Signal)'로 칭하고, UE가 (UE-to-UE) relaying 하는 동기 신호는 SLSS 중에서도 'RSS'로 표현하기로 한다.
물론, 상기 RSS 신호는 상기 eNB의 동기 신호와 동일한 형태와, 동일한 timing (PSS/SSS)일 수도 있고 또는, SLSS와 동일한 형태/timing일 수도 있다.
도 7a와 유사하게, 도 7b와 같은 방식에서 UE 2는 eNB의 동기 신호 또는 UE 0 혹은 UE 1으로부터 전송되는 SLSS 또는 RSS로부터 timing을 획득할 수 있다.
예를 들어, 도 7a에서 UE 1과 UE 2가 모두 동일한 eNB(eNB 1)의 커버리지(coverage) 내에 놓여 있다고 가정하자.
상기 eNB(eNB 1)는 각각의 UE들의 동기 신호 전송에 대한 configuration을 수행할 수 있다.
즉, 해당 configuration은 UE-to-UE와 관련된 SLSS 동기 신호가 전송될 시점, 전송될 자원, 그리고 동기 신호의 종류(또는 타입)/내용 등을 포함할 수 있다.
예를 들어, 특정 UE가 동기 신호를 전송하게 되는 시점은 eNB의 동기 신호와 동일한 timing이거나 또는 상기 timing으로부터 일정한 offset이 적용된 시점일 수 있다.
상기 일정한 offset은 UL TA(Timing Advance)만큼 timing을 앞당기는 값일 수 있다.
또는, 특정 UE가 eNB의 동기 신호와 동일한 시점에서 상기 eNB의 동기 신호가 검출되는 것을 원하지 않는 경우, 상기 offset 값 또는 상기 offset의 절대값은 충분히 크게(예를 들어, UL TA보다 수개의 심볼 또는 수개의 subframe 이상 timing을 앞당김) 설정될 수도 있다.
또한, 특정 UE에게 동기화되어 있지 않은 상태에서 상기 특정 UE의 동기 신호를 검출하기 위해서 상기 특정 UE의 동기 신호가 전송될 자원 역시 사전에 정의되어 있을 필요가 있다.
예를 들어, 특정 대역의 중심(center) 6 RB(Resource Block)에 해당하는 자원을 SLSS (동기) 자원으로 사용할 수 있다.
상기 동기 신호는 eNB의 동기 신호의 내용을 그대로 (예를 들어, UE 간 직접 통신을 하는 UE들이 physical cell ID(PCID) 등을 획득(acquisition) 또는 확인(confirm) 가능하도록) 전송하거나 또는, 별도의 SLSS 형태 (e.g. SLSS ID acquisition 혹은 confirm 가능하도록)로 전송할 수 있다.
또 다른 실시 예로, SLSS의 전송 이후에 방송 채널(broadcasting channel, e.g. PSBCH)이 UE(s)로 전송될 수 있다
이 경우, Rel. 12 및 Rel. 13의 D2D를 위한 PSBCH(Physical Sidelink Broadcast Channel)과 Rel. 15의 FeD2D (Further enhanced D2D, 또는 향후의 시스템)를 위한 PSBCH가 동일한 경우, Rel. 15의 FeD2D 또는 향후 차세대 시스템을 위한 SLSS는 Rel. 12 및 Rel. 13의 D2D와 구분될 필요가 없다.
D2D UE와 FeD2D UE가 동일한 ID(Identifier)를 갖는 SLSS를 전송하는 경우 즉, D2D UE와 FeD2D UE가 동일한 구조의 SLSS를 전송하고 있는 경우, 각각의 UE는 신호들을 서로 SFN(Single Frequency Network)하여 수신하는 효과를 얻을 수 있다.
한편, FeD2D에 대한 PSBCH는 상기 FeD2D를 위한 정보를 추가적으로 포함할 수 있다. 상기 FeD2D를 위한 정보는 PSBCH의 일부 reserved bit를 통해 mapping될 수 있다.
단, D2D에 대한 PSBCH에서 상기 FeD2D를 위한 정보와 같은 정보가 mapping되어 있지 않는 경우(e.g. zero padding), D2D UE와 FeD2D UE의 PSBCH는 서로 SFN 되지 못하고, 각각의 UE에게 간섭으로 작용할 수 있다.
따라서, 상기와 같은 문제를 해결하기 위해 network는 (FeD2D를 위한 추가적인 정보를 PSBCH에 포함시키는 경우) D2D에 대한 PSBCH에도 동일한 위치에 해당 정보를 mapping하여 전송하도록 할 수 있다.
이와 같은 방식으로 UE는 D2D에 대한 PSBCH와 FeD2D에 대한 PSBCH를 SFN 방식으로 수신할 수 있게 되며, Rel. 15 FeD2D에 대한 SLSS 또는 향후의 시스템을 위한 SLSS는 Rel. 12/13 D2D의 SLSS와 구분될 필요가 없다.
앞서 살핀 바와 같이, 특정 eNB의 coverage안에 있는 UE들이 기지국으로부터 SLSS에 대한 정보를 수신하여도 (혹은 사전에 SLSS 전송에 대하여 정의가 되어 있어도) 반드시 모든 UE들이 SLSS를 전송할 필요는 없다.
모든 UE들이 SLSS를 전송하는 것은 불필요한 전력 소모가 될 수 있을 뿐만 아니라 또한 많은 UE들이 동기 신호를 전송함으로써, 인접 UE들에게 간섭을 더 증가시키고, 가용한 자원을 줄일 수 있게 된다.
특정 UE가 동기 신호를 전송하고 나서, 다시 특정 UE가 수신 모드로 모드를 변경하기까지 추가적인 Tx-Rx switching gap이 필요하므로, 이 부분 역시 overhead로 작용할 수도 있다.
특히, UE들 중에서 지원하는 시스템 대역폭(system bandwidth)나 최대 데이터 레이트(max data rate) 등에 제약이 따르는 UE들 (예를 들어, MTC UE와 같이 narrow band를 사용하거나 사용할 수 있는 수신 안테나의 개수가 한정되어 있는 UE들, 또는 저전력 / 초 저전력으로 일체의 신호 전송 및 수신을 최소로 제한해야 하는 UE들)은 상기의 동기 신호 전송 자체가 부담이 될 수 있으므로, SLSS 전송을 제한하거나 또는 skip하도록 할 수 있다.
따라서, 앞서 살핀 이유들로 인해 SLSS의 선택적인 전송이 필요할 수 있다.
일례로, SLSS의 전송 여부는 UE type에 따라 결정될 수 있다.
도 7를 참조하면, 3가지 type의 UE들이 존재할 수 있으며, 각각의 type은 relay UE (UE 1), remote UE (UE 2), 그리고 relay UE나 remote UE 중 어느 쪽에도 속하지 않는 normal UE (UE 0)일 수 있다.
이 경우, 예를 들어 relay UE는 RSS(Relay Synchronization Signal)의 형태로 SLSS를 전송할 수 있도록 configure될 수 있다.
Relay UE는 자신이 직접 생성한 data를 전송하는 동작과 자신에게 필요한 data를 수신하는 동작뿐만 아니라, 다른 UE(remote UE)들이 필요로 하는 data들을 전송해주는 역할까지 수행해야 한다.
따라서, 상기 Relay UE는 앞서 살핀 것처럼 저전력 / 초 저전력으로 동작하기는 힘든 UE type에 해당한다.
다만, SLSS의 전송 여부는 전체 전력 소모량에 큰 영향을 주지 않을 수도 있다. Relay UE의 SLSS 사용 여부 또는 SLSS 자원(resource) 등과 관련된 SLSS 전송에 대한 정보는 SIB 등을 통해 UE들로 지시될 수도 있다.
또한, 상기와 같은 이유로 relay UE는 적어도 다른 형태의 UE (e.g. remote UE)들보다는 더 오랜 시간 (또는 더 잦은 빈도로) eNB와 RRC connected 상태에 있다고 볼 수 있다.
따라서, eNB가 dedicated signaling 등을 통해 relay UE로 상기 SLSS 전송에 대한 정보를 지시하는 것이 바람직할 수 있다.
예를 들어, eNB는 RRC signaling 등으로 semi-static하게 또는 physical layer signaling 등을 통해 dynamic하게 SLSS 전송을 UE로 지시할 수 있다. 이 경우, SIB로 지시 받은 SLSS 전송에 대한 지시 정보는 overriding될 수 있다.
한편, relay UE를 통해 SLSS를 수신한 remote UE는 해당 SLSS를 다시 전송하지 않도록 configure되는 것이 바람직할 수 잇다.
이러한 configuration은 RRC message, physical channel 등을 통해 dynamic하게 UE로 전달될 수 있거나, 혹은 SIB 등을 통해 semi-persistent하게 전달될 수도 있다.
예를 들어, relay UE와 remote UE를 위한 SIB(System Information Block)은 synchronization을 위한 resource 관련 configuration 정보를 포함할 수 있다.
이 때, remote UE는 물론 relay UE 역시 해당 SIB 상에 상기 synchronization을 위한 resource 정보를 포함하고 있지 않는 경우, remote UE 또는 relay UE는 SLSS를 전송하지 못할 수 있다.
또 다른 일례로, relay UE를 위한 SIB와 remote UE를 위한 SIB는 각각 구분될 수 있다. 즉, remote UE를 위한 SIB가 상기 synchronization을 위한 resource 정보를 포함하고 있지 않는 경우, 상기 remote UE는 SLSS를 전송하지 못할 수 있다.
마찬가지로, relay UE를 위한 SIB가 상기 synchronization을 위한 resource 정보를 포함하고 있지 않는 경우, 상기 relay UE는 SLSS를 전송하지 못할 수 있다.
또한, (relay UE도 아니고 remote UE도 아닌) normal UE들도 역시 SLSS를 전송할 수 있도록 configure 될 수 있다.
이러한 normal UE들 역시 SIB 또는 dedicated signaling 등을 통해 SLSS 전송을 위한 정보를 획득할 수 있다. 단, 이러한 normal UE들이 MTC UE와 같이 지원하는 system bandwidth나 maximum data rate 등에 제약이 따르는 UE이거나 혹은 저전력 모드로 동작하는 UE인 경우에는 SLSS를 전송하지 않도록 configure될 수 있다.
이를 위해, 일례로 UE의 전력 사용 정도에 따라 UE의 동작 모드를 전체 N개의 mode로 구분하였을 때, 상위 n개의 mode (0<=n<=N)는 저전력 모드로 구분하도록 할 수 있다. 여기서, N는 자연수를 의미한다.
다만, remote UE도 일정한 주기마다 discovery를 수행한다고 할 때, remote UE는 discovery를 위한 SLSS는 전송하도록 정의할 수 있다.
또한, MTC UE 등도 지속적으로 주변 UE들에게 discovery 신호 전송 등을 통해 위치나 연결 상태, 혹은 존재 여부 등을 알릴 필요가 있으므로, MTC UE 등도 discovery를 위한 SLSS는 전송하도록 정의할 수 있다.
일례로, associated 되어 있는 relay UE (L-UE 1) 및 remote UE (M-UE 1)가 아닌 UE (M-UE 2)가 원래 association되어 있던 relay UE (L-UE 2)와의 association을 끊고, 다른 (relay) UE와 association을 해야 하는 경우가 발생할 수 있다.
이 때, 상기 M-UE 1이 L-UE 1의 discovery를 위한 SLSS (및/또는 연관된 discovery 신호 등)을 relay하여 SFN 방식으로 전송하는 경우, 상기 M-UE 2는 해당 SLSS (및/또는 연관된 discovery 신호 등)을 measure하여 relay 변경을 시도할 수 있다.
본 명세서에서 기재하는 'A 및/또는 B'는 'A 또는 B 중 적어도 하나를 포함한다'와 동일한 의미로 해석될 수 있다.
또 다른 일례로, remote UE (M-UE 1)가 associated 되어 있는 relay UE (L-UE 1)와 association을 끊고 다른 (relay) UE (L-UE 2)와 association을 해야 하는 경우가 발생할 수도 있다.
이 때, 다른 (relay) UE (L-UE 2)가 remote UE (M-UE 1)의 discovery를 위한 SLSS (및/또는 연관된 discovery 신호 등)을 수신하여 discovery 신호 및 새로운 association을 수행하게 될 수도 있다.
또 다른 일례로, association되기 전의 (potential) relay UE (L-UE 1)와 (potential) remote UE (M-UE 1)가 서로 다른 cell에 속해 있는 경우에도 remote UE (M-UE 1)는 discovery를 위한 SLSS (및/또는 연관된 discovery 신호 등)을 전송하여 relay association 동작을 수행할 수도 있다.
또 다른 일례로, 특정 조건을 만족하는 UE들만 SLSS를 전송하도록 정의할 수도 있다.
다수의 UE들이 동시에 SLSS를 전송하는 경우, 동일한 SLSS를 전송하는 UE들 간에는 서로 SFN 효과 혹은 coverage extension 효과 등을 얻을 수 있다.
그러나, 동일한 시점에 서로 다른 종류의 SLSS를 전송하는 UE에게는 간섭으로 작용할 수 밖에 없다.
일례로, 특정 SLSS가 eNB 동기 신호를 재전송 하는 형태라고 가정할 경우, 도 7의 UE 1 또는 UE 2 등이 셀 경계에서 eNB 1의 동기 신호를 전송하게 되며 이것은 인접한 셀의 UE들의 동기 획득에 영향을 줄 수 있다.
따라서, 이러한 상황에서 SLSS의 전송으로 인한 간섭의 영향을 줄이기 위해 다음과 같은 방법들을 고려할 수 있다.
먼저, 특정 eNB에 속한 (in coverage) UE들이 SLSS를 전송하는 상황에서, 특정 UE가 속한 cell (서빙 cell)로부터 수신한 eNB의 동기 신호의 수신감도(e.g. RSSI)가 특정한 threshold (e.g. X1) 이상이어야 하고, 인접 cell로부터 수신한 eNB의 동기 신호의 수신감도 중 가장 큰 값이 특정한 threshold (e.g. X2) 이하인 경우, 해당 UE는 SLSS를 전송할 수 있다.
즉, 이것은 특정 cell에 속한 UE가 전송하는 SLSS (혹은 eNB의 동기 신호를 재전송)가 인접 셀에 속한 UE들에게 영향을 미치지 않도록 하기 위한 것이다.
이를 위해, X1 >= X2를 만족해야 하며, UE가 (SLSS를) 전송하는 power가 'P_UE'라고 할 때, 바람직하게는 X1 = X2+P_UE일 수 있다.
상기와 같이, 서빙 셀 eNB의 동기 신호와 인접 셀 eNB의 동기 신호를 비교할 수도 있지만, 서빙 셀 내에서 수신한 SLSS 및 인접 셀로부터 수신한 SLSS를 비교하여 UE의 SLSS 수신 여부를 결정할 수도 있다.
다음으로, UE들 간에 group cast / group communication 등을 수행함에 있어서 특정 group의 특정 UE (e.g. 대표 UE) 또는 일부 UE들이 SLSS를 전송하도록 할 수 있다.
이 경우, 해당 SLSS은 역시 인접한 group의 UE들에게 간섭으로 작용할 수 있다. 따라서, 특정 UE가 속한 group으로부터 수신한 SLSS의 수신감도 (e.g. RSSI)가 특정한 threshold (e.g. X1) 이상이어야 하고, 인접한 group으로부터 수신한 SLSS의 수신감도 중 가장 큰 값이 특정한 threshold (e.g. X2) 이하인 경우, 해당 UE는 SLSS를 전송할 수 있다.
즉, 이것은 특정 group에 속한 UE가 전송하는 SLSS가 인접 group에 속한 UE들에게 영향을 미치지 않도록 하기 위한 것이다.
이를 위해, X1 >= X2를 만족해야 할 것이며, UE가 (SLSS를) 전송하는 power가 'P_UE'라고 할 때, 바람직하게는 X1 = X2+P_UE일 수 있다.
앞서 살핀 내용들을 간략히 정리하면 아래와 같다.
즉, 아래 내용들은 FeD2D(Further enhancement LTE D2D)에 대한 동기(synchronization) 측면과 관련된다.
먼저, in-coverage Relay UE는 in-coverage Remote UE에 대한 동기 소스(synchronization source)로서 지원될 수 있다.
이하, FeD2D에 대한 동기와 관련된 몇 가지 사항들에 대해 살펴본다.
1. Remote UE의 SLSS 전송
FeD2D 시나리오에서, remote UE는 링크된 relay UE (또는 eNB)로부터 동기 신호 및 데이터를 수신할 수 있다. 여기서, UE들은 discovery 및 communication을 위해 SLSS를 전송하도록 설정될 수 있다.
그러나, 이는 일부 UE들에게는 부담이 될 수 있어서, 모든 UE들이 SLSS를 전송해야 하는 것은 아니다.
예를 들어, narrow band (예를 들어, 1 RB 또는 6 RB)를 사용하거나 또는 고속 데이터를 전송하는 능력이 없는 UE (예를 들어, remote UE)에 대해, 물리 자원(physical resource)는 매우 희박하고, SLSS를 전송하기 위한 소량의 자원조차도 burden이 될 수 있다.
일반적으로, 모바일 환경에서 UE (특히, 소형 wearable device)의 배터리 전력은 제한적이므로, 해당 UE에 대한 불필요한 신호 전송 및 전력 소비를 줄여야 한다.
UE가 SLSS 전송 모드에서 sidelink data 수신 모드로 복귀할 때, 보호 구간(guard interval)이 요구될 수 있고, 또한 UE에 대한 부가적인 오버 헤드로서 다루어질 수 있다.
또한, remote UE가 wearable device이고, relay *?*?UE가 자신의 control device(예를 들어, 스마트 폰 또는 태블릿 PC 등)라고 가정하면, UE들은 매우 근접하게 있을 수 있고, relay UE 및 remote UE 모두 SLSS를 전송하는 것은 효과적이지 않을 수 있다.
하나의 relay UE 대 다수 remote UEs의 경우를 가정하면, remote UE는 remote UE들 사이에서 직접적으로가 아니라 relay UE를 통해 충분히 통신하는 것이 가능하기 때문에 remote UE들 간에 SLSS를 교환할 필요가 없다.
따라서, relay 모드에서, relay UE들은 remote UE들과의 통신을 위해 SLSS를 전송하도록(예를 들어, SIB 또는 dedicated signaling을 사용하여) 설정된다. Remote UE는 전력의 효율을 위해 통신을 위해 SLSS를 전송할 필요가 없다.
그러나, discovery의 경우, discovery signal의 전송 주기(period)는 sidelink communication의 period보다 충분히 길고, 모든 discovery period에 한 번 발생하는 discovery를 위한 SLSS 전송은 remote UE에 큰 부담이 되지 않을 수 있다.
실제로, 다른 UE가 특정 remote UE를 발견할 필요가 있을 수 있다.
예를 들면, relay UE 및 remote UE가 association 전에 다른 셀에 속하거나 또는 relay UE 이외의 UE가 associated relay의 잠재적인 변경을 위해 remote UE를 발견하려고 하는 경우일 수 있다.
이를 고려할 때, remote UE가 communication을 위해 SLSS를 전송하지 않는 상황에서 discovery를 위해 SLSS를 전송하는 것을 배제하지 않는다.
이와 같은 동작을 정의하는 방법으로서, remote UE에 대한 synchronization resource의 signaling이 지원되는 시스템 대역폭의 차이로 인해 relay UE들을 포함하는 다른 UE들에 대한 SIB로부터 분리될 것으로 예상된다.
그러므로, 대역폭이 제한된 remote UE가 임의의 SLSS를 전송하지 않기로 가정되는 경우, network는 단순히 remote UE에 SLSS 자원을 제공할 수 없으며, 이는 spec.에도 영향을 미치지 않는다.
대역폭이 제한된 remote UE가 discovery를 위해서만 SLSS를 전송한다고 가정하면, 현재 spec.이 이와 같은 동작을 지원하지 않기 때문에 해당 UE의 동작을 지원해야 한다.
즉, 첫 번째 제안은, 원격 UE는 communication을 위해 SLSS를 전송하지 않지만 discovery를 위해 SLSS를 전송하는 점이다.
2. 가장 높은 우선 순위를 가지는 relay UE의 SLSS 우선 순위 조건(Condition of prioritizing SLSS of relay UE with highest priority)
Relaying 모드에서, relay UE는 가장 높은 우선 순위를 갖는 eNB 동기 신호를 수신할 필요가 있다. remote UE가 수신할 수 있는 동기 신호의 옵션들은 적어도 두 가지가 있다.
하나의 옵션은, eNB 동기 신호이고, 다른 하나의 옵션은 SLSS이다.
Relay UE와 달리, remote UE는 가장 높은 우선 순위를 갖는 eNB 동기 신호를 수신 할 필요가 없다.
Remote UE가 eNB 동기 신호를 우선시한다고 가정하면, relay UE 및 remote UE가 서로 다른 eNB에 배치될 수 있다. 즉, Relay UE가 eNB 1에 놓여 있고, remote UE가 eNB 2에 놓여 있으며, remote UE는 eNB 2의 타이밍 기준을 따를 것이다.
이 경우, remote UE는 relay UE가 동일한 셀에 위치하는지 여부를 알 수 없기 때문에, 서로 다른 타이밍을 가지고 다수의 resource pool로부터 sidelink 신호를 decoding하려고 시도한다.
이는, remote UE의 배터리 소모를 증가시킬 것이다. 따라서, remote UE가 링크된 relay UE의 SLSS에 우선 순위를 두는 것이 더 바람직할 수 있다.
Relay UE의 SLSS가 우선되는 경우, remote UE는 group handover(그룹 핸드오버)의 경우와 같이 relay UE 및 remote UE 모두가 인접 셀로 이동하는 경우에도 relay UE에 관련된 resource pool에서 sidelink 신호를 디코딩하면 된다.
특히, relaying 동작 중에 필요하거나 중계된 모든 신호 및 데이터가 relay UE에 의해 relay될 수 있는 경우, relay UE로부터 SLSS를 가장 높은 우선 순위로 수신하도록 remote UE를 설정하는 것이 바람직하다.
Relay UE의 SLSS가 검출되지 않은 경우, remote UE가 다음 우선 순위로서 eNB 동기 신호를 수신하는 것은 자연스러운 일이며, remote UE는 relaying 방식 대신에 eNB와 직접 통신하도록 변경할 수 있다.
Relay UE의 SLSS가 모든 상황에서 가장 높은 우선 순위를 갖는지와 관련해서는 더 논의 될 수 있으며, remote UE가 relay UE의 SLSS를 우선시 해야 하는 시기를 지정할 필요가 있다.
예를 들어, relaying mode 동안 또는 remote UE가 relay UE와 링크되기 전에 remote UE가 eNB와 통신 (또는 신호 및 데이터 교환)해야 하는 경우, remote UE는 기존 ProSe 및/또는 V2X SLSS 우선 순위의 지정 방법과 같이 가장 높은 우선 순위를 가지는 eNB 동기 신호를 수신하도록 설정될 수 있다.
Remote UE가 relay UE와 링크된 후에 network에 의한 (사전) configuration에 따라 ProSe 및/또는 V2X보다 다른 우선 순위 규칙을 따르도록 설정될 수 있다.
이는, remote UE가 링크된 relay UE의 SLSS ID가 eNB의 SLSS ID 다른 뿐만 아니라, 다른 UE들의 SLSS ID 보다 우선 순위가 높은 것으로 해석될 수 있는 가장 높은 우선 순위를 갖는 링크된 relay UE로부터 SLSS를 수신하도록 설정되는 것을 의미한다.
이 경우, 예를 들어, relay UE의 SLSS ID 정보는 PSDCH (또는 PSSCH)를 통해 remote UE로 지시될 수 있다.
즉, 두 번째 제안은, remote UE는 relay UE와 association된 후 우선 순위가 가장 높은 relay UE의 SLSS에 우선 순위를 부여하도록 설정될 수 있다.
3. ProSe와 FeD2D 간의 SLSS 차이(SLSS differentiation between ProSe and FeD2D)
PSBCH의 contents와 물리 채널 포맷이 ProSe와 FeD2D 사이에서 동일 할 때, 이들은 SFN 방식으로 결합될 수 있고, 또한 수신 성능을 향상시킬 수 있다. 따라서, ProSe와 FeD2D의 PSBCH를 구별하는 것은 바람직하지 않다.
그러나, FeD2D의 경우, relay operation에 관한 부가적인 정보가 PSBCH로 전달될 필요가 있을 수 있다. FeD2D에 대한 해당 정보가 PSBCH의 reserved bit에 의해 지시되면 위에서 언급한 SFN 효과는 발생하지 않고, ProSe 및 FeD2D의 PSBCH는 서로 간섭으로 나타날 것이다.
이를 피하기 위해, network는 ProSe PSBCH의 reserved bit를 FeD2D PSBCH의 reserved bit (추가 정보를 나타내는 데 사용됨)와 동일하게 설정할 수 있다.
일반적으로, SLSS의 자원은 PSBCH의 자원과 관련된다. V2X의 경우, PSBCH 포맷이 다르므로 V2X의 SLSS가 구별될 수 있으며, ProSe UE가 V2X 용 PSBCH의 디코딩 시도를 피할 수 있는 경우, UE의 배터리를 절약할 수 있다.
FeD2D의 경우 동일한 PSBCH format이 ProSe로 사용되기 때문에 실제로 동일한 ID의 SLSS가 SFN으로 함께 결합되도록 허용되는 것이 바람직하다.
즉, 세 번째 제안은, ProSe와 FeD2D의 SLSS를 구별 할 필요가 없다는 점이다.
추가적으로, 사전에 설정된 또는 시그널링된 아래 2 종류의 UE type의 경우, relay UE와 링크 셋-업(link set-up)을 수행한 후, (항상) eNB의 synchronization signal(또는 timing)보다 (링키지된) relay UE의 SLSS (타이밍)을 높은 동기 우선 순위로 간주할 수도 있다.
(1) 제한된 RX 체인 능력(limited RX chain capability)를 가진 UE (또는 RX chain을 SL RX와 DL RX 간에 sharing하는 UE)
(2) (사전에 설정된(또는 시그널링된) 크기의) 제한된 밴드(limited band 또는 narrow-band) 능력을 가진 UE
추가적으로, 전송 자원 풀(Tx resource pool)에 대해 살펴보기로 한다.
Relay UE (L-UE 1)와 (potential) remote UE (M-UE 1)가 서로 다른 cell에 속하고 해당 셀들이 asynchronous한 경우, 기존 Rel. 12 및 Rel. 13의 D2D에서는 L-UE 1과 M-UE 1은 각자 자신의 속한 셀의 synchronization timing과 해당 cell이 설정한(예: SIB message) 전송 자원 풀 정보에 따라 전송 동작을 수행한다. 즉, asynchronous한 inter-cell 상황에 대해 특별한 optimization이 이루어지지 않았다.
이와 같은 상황은 서빙 셀 / 기지국의 synchronization timing이 synch. reference의 가장 높은 priority order로서 설정된 경우로서, priority order가 변경되는 경우, 위의 전송 동작도 그에 맞춰서 변경 혹은 최적화될 필요가 있다.
즉, relay UE의 SLSS가 서빙 셀 / 기지국의 synchronization timing보다 가장 높은 priority로 설정된 경우 remote UE로 하여금, 자신이 속한 셀의 Tx resource pool 정보 기반의 전송 동작을 수행하는 것이 아니라, relay UE가 전달해주는 (relay UE의 서빙 셀이 전송하는) SIB message 상의 Tx resource pool 정보에 따라, 전송 동작을 수행하도록 하는 것이다.
위와 같은 기존 Rel. 12 및 Rel. 13의 D2D 동작은 remote UE가 전송하는 신호가 자신의 서빙 셀에서 지정해주는 Tx resource pool에서 전송되는 것이므로 해당 서빙 셀에 가해지는 간섭이 크지 않다.
즉, 상기 Tx resource pool이 해당 셀과 동일한 대역에 존재하는 경우, 해당 Tx resource pool이 기존 셀의 WAN(Wireless Area Network) 통신 대역과 구분되어 있을 것이므로 간섭을 회피할 수 있을 것이며, 해당 셀과 동일한 대역이 아니고 dedicated carrier 혹은 spectrum에 존재하는 경우, 동일한 resource pool을 사용하는 UE들 간의 자원을 eNB indicated 또는 UE autonomous한 방식으로 coordination 혹은 sensing 등을 통하여 어느 정도 제어할 수 있다.
그러나, 이러한 경우 remote UE는 relay UE 또는 relay UE가 속해 있는 셀에 큰 간섭을 발생시킬 수 있는 여지가 있다. 즉, 서로 다른 Tx resource pool을 사용하고 있는 상태에서, relay UE 또는 relay UE가 remote UE의 Tx resource pool을 인지하고 있지 못하면 간섭 영향을 크게 받을 수 밖에 없다.
또한, asynchronous한 상태이므로 symbol 및/또는 subframe boundary 등의 timing이 어긋날 수도 있으므로 이것 또한 간섭의 원인이 될 수 있다.
물론, relay UE가 전달해주는 SIB message 상의 Tx resource pool 정보에 따라 remote UE가 전송 동작을 수행하는 경우에는 앞서 살핀 내용과 반대의 현상이 발생할 수 있다.
즉, remote UE가 자신의 서빙 셀 혹은 서빙 셀에 속해 있는 UE들에게 간섭을 줄 수 있는 것이다.
하지만, relay UE와 remote UE 간의 relaying 상황에서 remote UE의 Tx power는 (relay UE 또는 remote UE의) 서빙 셀이 수신하는 신호의 수신 감도를 높이기 위한 (혹은 link budget을 만족하기 위한) 목적으로 결정되는 것이 아니라, Relay UE가 수신하는 신호의 수신 감도를 높이기 위한 목적으로 결정될 필요가 있다.
따라서, 예를 들어, remote UE의 Tx power는 relay UE와 remote UE 사이의 path loss에 의해 (해당 path loss를 compensation할 수 있도록) 결정될 수 있다.
이러한 방식은 Rel. 12 및 Rel. 13 D2D에서도 유효하게 적용될 수 있다.
이와 같이, remote UE의 Tx power 및 전송 coverage가 relaying 동작에 의해서 제한되는 경우 (remote UE 관점에서의) 서빙 셀에 줄 수 있는 간섭을 줄일 수 있다.
앞서 살핀 방법들을 종합해 보면, remote UE는 자신의 synchronization reference의 대상 (즉, 여기서는 relay UE)이 지시해 주는 Tx resource pool에 따라 전송 동작을 수행하는 것으로 해석될 수 있다.
상기와 같은 상황에서, 또 다른 방법으로, remote UE가 자신의 서빙 셀과 연관된 (혹은 지시받은) Tx resource pool 정보 (자신의 ID 정보가 추가될 수 있음)를 relay UE에게 알려주고, relay UE로 하여금, relay UE의 서빙 셀과 연관된 (또는 지시받은) Tx resource pool과 가급적 중첩되는 자원들을 이용하여 통신을 수행하도록 할 수도 있다.
즉, remote UE에서 자신의 서빙 셀과 relay UE (및 그 서빙 셀)에게 impact를 최소화 하도록 하는 것이다.
또는, remote UE가 자신의 서빙 셀 (동일 대역인 경우 WAN 통신 또는 dedicated spectrum인 경우 SL 통신)에 가해지는 간섭을 줄일 수 있는 SL 자원 위치 정보(또는 SL 자원 candidate들에 대한 위치 정보)를 relay UE에게 recommend할 수도 있다.
도 8은 본 명세서에서 제안하는 방법을 구현하기 위한 단말 동작의 일례를 나타낸 순서도이다.
즉, 도 8은 무선 통신 시스템에서 사이드링크 동기 신호(Sidelink Synchronization Signal, SLSS)를 송수신하기 위한 단말의 동작 방법을 나타낸다.
이하에서, 제 1 단말은 도 7에서 살핀 remote UE를 의미하고, 제 2 단말은 relay UE를 의미한다.
먼저, 제 1 단말은 상기 SLSS와 관련된 설정(configuration) 정보를 수신한다(S810).
상기 SLSS와 관련된 설정(configuration) 정보는 SLSS가 전송되는 시점에 대한 정보, SLSS가 전송되는 자원에 대한 정보 또는 SLSS의 타입에 대한 정보 중 적어도 하나를 포함할 수 있다.
여기서, 상기 SLSS의 타입(또는 종류)는 사이드링크 통신(sidelink communication)과 관련된 SLSS를 나타내거나 또는 사이드링크 디스커버리(sidelink discovery)와 관련된 SLSS를 나타낼 수 있다.
예를 들어, 상기 SLSS의 타입 값이 '0'으로 설정된 경우, 상기 SLSS의 타입은 sidelink communication을 위한 SLSS일 수 있고, '1'로 설정된 경우, 상기 SLSS의 타입은 sidelink discovery를 위한 SLSS일 수 있다.
또한, 상기 SLSS와 관련된 설정(configuration) 정보는 기지국으로부터 수신되거나 또는 상기 제 2 단말로부터 수신될 수 있다.
상기 제 1 단말은 앞서 살핀 것처럼, remote UE를 의미하는 것으로, 저전력 모드로 동작하는 단말에 해당할 수 있다.
이후, 상기 제 1 단말은 상기 SLSS를 제 2 단말로부터 수신한다(S820).
이후, 상기 제 1 단말은 상기 수신된 configuration 정보에 기초하여 상기 수신된 SLSS가 사이드링크 통신(sidelink communication)과 관련된 SLSS인지 또는 사이드링크 디스커버리(sidelink discovery)와 관련된 SLSS인지를 결정한다(S830).
이후, 상기 제 1 단말은 상기 수신된 SLSS가 사이드링크 디스커버리(sidelink discovery)와 관련된 SLSS인 경우, 상기 수신된 SLSS를 전송한다(S840).
기본적으로, 상기 제 1 단말은 상기 제 2 단말로부터 수신되는 SLSS를 전송하지 않지만, 상기 SLSS의 타입이 sidelink discovery를 위한 SLSS인 경우 상기 제 1 단말은 적어도 하나의 단말로 상기 제 2 단말로부터 수신되는 SLSS를 전송하게 된다.
본 발명이 적용될 수 있는 장치 일반
도 9는 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 블록 구성도를 예시한다.
도 9를 참조하면, 무선 통신 시스템은 기지국(910)과 기지국 영역 내에 위치한 다수의 단말(920)을 포함한다.
기지국(910)은 프로세서(processor, 911), 메모리(memory, 912) 및 RF부(radio frequency module, 913)을 포함한다. 프로세서(1311)는 앞서 도 1 내지 도 8에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서에 의해 구현될 수 있다. 메모리(912)는 프로세서와 연결되어, 프로세서를 구동하기 위한 다양한 정보를 저장한다. RF부(913)는 프로세서와 연결되어, 무선 신호를 송신 및/또는 수신한다.
상기 RF부는 RF 유닛 또는 RF 모듈로 호칭될 수 있다.
단말(920)은 프로세서, 메모리 및 RF부를 포함한다.
프로세서는 앞서 도 1 내지 도 8에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서에 의해 구현될 수 있다. 메모리(922)는 프로세서와 연결되어, 프로세서를 구동하기 위한 다양한 정보를 저장한다. RF부는 프로세서와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(912, 922)는 프로세서(911, 921) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
또한, 기지국 및/또는 단말은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
도 10은 본 발명의 일 실시 예에 따른 통신 장치의 블록 구성도를 예시한다.
특히, 도 10에서는 앞서 도 9의 단말을 보다 상세히 예시하는 도면이다.
도 10을 참조하면, 단말은 프로세서(또는 디지털 신호 프로세서(DSP: digital signal processor)(1010), RF 모듈(RF module)(또는 RF 유닛)(1035), 파워 관리 모듈(power management module)(1005), 안테나(antenna)(1040), 배터리(battery)(1055), 디스플레이(display)(1015), 키패드(keypad)(1020), 메모리(memory)(1030), 심카드(SIM(Subscriber Identification Module) card)(1025)(이 구성은 선택적임), 스피커(speaker)(1045) 및 마이크로폰(microphone)(1050)을 포함하여 구성될 수 있다. 단말은 또한 단일의 안테나 또는 다중의 안테나를 포함할 수 있다.
프로세서(1010)는 앞서 도 1 내지 도 8에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층은 프로세서에 의해 구현될 수 있다.
메모리(1030)는 프로세서와 연결되고, 프로세서의 동작과 관련된 정보를 저장한다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
사용자는 예를 들어, 키패드(1020)의 버튼을 누르거나(혹은 터치하거나) 또는 마이크로폰(1050)를 이용한 음성 구동(voice activation)에 의해 전화 번호 등과 같은 명령 정보를 입력한다. 프로세서(1010)는 이러한 명령 정보를 수신하고, 전화 번호로 전화를 거는 등 적절한 기능을 수행하도록 처리한다. 구동 상의 데이터(operational data)는 심카드(1025) 또는 메모리(1030)로부터 추출할 수 있다. 또한, 프로세서(1010)는 사용자가 인지하고 또한 편의를 위해 명령 정보 또는 구동 정보를 디스플레이(1015) 상에 디스플레이할 수 있다.
RF 모듈(1035)는 프로세서(1010)에 연결되어, RF 신호를 송신 및/또는 수신한다. 프로세서(1010)는 통신을 개시하기 위하여 예를 들어, 음성 통신 데이터를 구성하는 무선 신호를 전송하도록 명령 정보를 RF 모듈(1035)에 전달한다. RF 모듈(1035)은 무선 신호를 수신 및 송신하기 위하여 수신기(receiver) 및 전송기(transmitter)로 구성된다. 안테나(1040)는 무선 신호를 송신 및 수신하는 기능을 한다. 무선 신호를 수신할 때, RF 모듈(1035)은 프로세서(1010)에 의해 처리하기 위하여 신호를 전달하고 기저 대역으로 신호를 변환할 수 있다. 처리된 신호는 스피커(1045)를 통해 출력되는 가청 또는 가독 정보로 변환될 수 있다.
도 11은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 장치의 RF 모듈의 일례를 나타낸 도이다.
구체적으로, 도 11은 FDD(Frequency Division Duplex) 시스템에서 구현될 수 있는 RF 모듈의 일례를 나타낸다.
먼저, 전송 경로에서, 도 9 및 도 10에서 기술된 프로세서는 전송될 데이터를 프로세싱하여 아날로그 출력 신호를 송신기(1110)에 제공한다.
송신기(1110) 내에서, 아날로그 출력 신호는 디지털-대-아날로그 변환(ADC)에 의해 야기되는 이미지들을 제거하기 위해 저역 통과 필터(Low Pass Filter,LPF)(1111)에 의해 필터링되고, 상향 변환기(Mixer, 1112)에 의해 기저대역으로부터 RF로 상향 변환되고, 가변이득 증폭기(Variable Gain Amplifier,VGA)(1113)에 의해 증폭되며, 증폭된 신호는 필터(1114)에 의해 필터링되고, 전력 증폭기(Power Amplifier,PA)(1115)에 의해 추가로 증폭되며, 듀플렉서(들)(1150)/안테나 스위치(들)(1160)을 통해 라우팅되고, 안테나(1170)을 통해 전송된다.
또한, 수신 경로에서, 안테나(1170)은 외부로부터 신호들을 수신하여 수신된 신호들을 제공하며, 이 신호들은 안테나 스위치(들)(1160)/듀플렉서들 (1150)을 통해 라우팅되고, 수신기(1120)으로 제공된다.
수신기(1120)내에서, 수신된 신호들은 저잡음 증폭기(Low Noise Amplifier, LNA)(1123)에 의해 증폭되며, 대역통과 필터(1124)에 의해 필터링되고, 하향 변환기(Mixer,1125)에 의해 RF로부터 기저대역으로 하향 변환된다.
상기 하향 변환된 신호는 저역 통과 필터(LPF,1126)에 의해 필터링되며, VGA(1127)에 의해 증폭되어 아날로그 입력 신호를 획득하고, 이는 도 9 및 도 10에서 기술된 프로세서에 제공된다.
또한, 로컬 오실레이터 (local oscillator, LO) 발생기(1140)는 전송 및 수신 LO 신호들을 발생 및 상향 변환기(1112) 및 하향 변환기(1125)에 각각 제공한다.
또한, 위상 고정 루프(Phase Locked Loop,PLL)(1130)은 적절한 주파수들에서 전송 및 수신 LO 신호들을 생성하기 위해 프로세서로부터 제어 정보를 수신하고, 제어 신호들을 LO 발생기(1140)에 제공한다.
또한, 도 11에 도시된 회로들은 도 11에 도시된 구성과 다르게 배열될 수도 있다.
도 12는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 장치의 RF 모듈의 또 다른 일례를 나타낸 도이다.
구체적으로, 도 12는 TDD(Time Division Duplex) 시스템에서 구현될 수 있는 RF 모듈의 일례를 나타낸다.
TDD 시스템에서의 RF 모듈의 송신기(1210) 및 수신기(1220)은 FDD 시스템에서의 RF 모듈의 송신기 및 수신기의 구조와 동일하다.
이하, TDD 시스템의 RF 모듈은 FDD 시스템의 RF 모듈과 차이가 나는 구조에 대해서만 살펴보기로 하고, 동일한 구조에 대해서는 도 11의 설명을 참조하기로 한다.
송신기의 전력 증폭기(Power Amplifier,PA)(1215)에 의해 증폭된 신호는 밴드 선택 스위치(Band Select Switch,1250), 밴드 통과 필터(BPF,1260) 및 안테나 스위치(들)(1270)을 통해 라우팅되고, 안테나(1280)을 통해 전송된다.
또한, 수신 경로에서, 안테나(1280)은 외부로부터 신호들을 수신하여 수신된 신호들을 제공하며, 이 신호들은 안테나 스위치(들)(1270), 밴드 통과 필터(1260) 및 밴드 선택 스위치(1250)을 통해 라우팅되고, 수신기(1220)으로 제공된다.
이상에서 설명된 실시 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성하는 것도 가능하다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시 예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 통상의 기술자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명의 무선 통신 시스템에서 사이드링크 통신을 수행하는 방안은 3GPP LTE/LTE-A 시스템에 적용되는 예를 중심으로 설명하였으나, 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (7)

  1. 무선 통신 시스템에서 사이드링크 동기 신호(Sidelink Synchronization Signal, SLSS)를 송수신하는 방법에 있어서, 제 1 단말에 의해 수행되는 방법은,
    상기 SLSS와 관련된 설정(configuration) 정보를 수신하는 단계;
    상기 SLSS를 제 2 단말로부터 수신하는 단계;
    상기 수신된 configuration 정보에 기초하여 상기 수신된 SLSS가 사이드링크 통신(sidelink communication)과 관련된 SLSS인지 또는 사이드링크 디스커버리(sidelink discovery)와 관련된 SLSS인지를 결정하는 단계; 및
    상기 수신된 SLSS가 사이드링크 디스커버리(sidelink discovery)와 관련된 SLSS인 경우, 상기 수신된 SLSS를 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
  2. 제 1항에 있어서,
    상기 SLSS와 관련된 설정(configuration) 정보는 SLSS가 전송되는 시점에 대한 정보, SLSS가 전송되는 자원에 대한 정보 및 SLSS의 타입에 대한 정보를 포함하는 것을 특징으로 하는 방법.
  3. 제 2항에 있어서,
    상기 SLSS의 타입은 사이드링크 통신(sidelink communication)과 관련된 SLSS를 나타내거나 또는 사이드링크 디스커버리(sidelink discovery)와 관련된 SLSS를 나타내는 것을 특징으로 하는 방법.
  4. 제 1항에 있어서,
    상기 SLSS와 관련된 설정(configuration) 정보는 기지국으로부터 수신되거나 또는 상기 제 2 단말로부터 수신되는 것을 특징으로 하는 방법.
  5. 제 1항에 있어서,
    상기 제 1 단말은 저전력 모드로 동작하는 단말인 것을 특징으로 하는 방법.
  6. 제 1항에 있어서,
    상기 제 1 단말은 remote UE(User Equipment)이고, 상기 제 2 단말은 relay UE인 것을 특징으로 하는 방법.
  7. 무선 통신 시스템에서 사이드링크 동기 신호(Sidelink Synchronization Signal, SLSS)를 송수신하는 제 1 단말에 있어서,
    무선 신호를 송수신하기 위한 RF(Radio Frequency) 모듈; 및
    상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는,
    상기 SLSS와 관련된 설정(configuration) 정보를 수신하고;
    상기 SLSS를 제 2 단말로부터 수신하고;
    상기 수신된 configuration 정보에 기초하여 상기 수신된 SLSS가 사이드링크 통신(sidelink communication)과 관련된 SLSS인지 또는 사이드링크 디스커버리(sidelink discovery)와 관련된 SLSS인지를 결정하고; 및
    상기 수신된 SLSS가 사이드링크 디스커버리(sidelink discovery)와 관련된 SLSS인 경우, 상기 수신된 SLSS를 전송하도록 설정되는 것을 특징으로 하는 단말.
PCT/KR2018/003370 2017-03-22 2018-03-22 무선 통신 시스템에서 사이드링크 동기 신호를 송수신하는 방법 및 이를 위한 장치 WO2018174602A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/610,900 US11337172B2 (en) 2017-03-22 2018-03-22 Method for transmitting or receiving sidelink synchronization signal in wireless communication system and apparatus therefor

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US201762474619P 2017-03-22 2017-03-22
US62/474,619 2017-03-22
US201762500552P 2017-05-03 2017-05-03
US62/500,552 2017-05-03
US201762543962P 2017-08-10 2017-08-10
US62/543,962 2017-08-10
US201762548409P 2017-08-22 2017-08-22
US201762548906P 2017-08-22 2017-08-22
US62/548,906 2017-08-22
US62/548,409 2017-08-22

Publications (1)

Publication Number Publication Date
WO2018174602A1 true WO2018174602A1 (ko) 2018-09-27

Family

ID=63585644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003370 WO2018174602A1 (ko) 2017-03-22 2018-03-22 무선 통신 시스템에서 사이드링크 동기 신호를 송수신하는 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US11337172B2 (ko)
WO (1) WO2018174602A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020063471A1 (zh) * 2018-09-28 2020-04-02 电信科学技术研究院有限公司 波束扫描方法、波束配置方法、终端及网络设备
US11632728B2 (en) 2019-07-18 2023-04-18 Qualcomm Incorporated Directional measurements for sidelink synchronization signal transmission

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11476899B2 (en) * 2019-04-18 2022-10-18 Huawei Technologies Co., Ltd. Uplink multi-user equipment (UE) cooperative transmission
US11665655B2 (en) * 2020-04-10 2023-05-30 Qualcomm Incorporated Sidelink synchronization signal for connected user equipment
US11412471B2 (en) * 2020-04-20 2022-08-09 AR & NS Investment, LLC Repeater device with slave mode
KR102526546B1 (ko) * 2020-06-29 2023-04-27 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 사용자 단말(ue)이 사이드링크 ue 성능 정보를 보고하기 위한 방법 및 장치
CN113938981B (zh) * 2020-06-29 2023-11-14 华硕电脑股份有限公司 无线通信系统中中继报告侧链路用户设备能力信息的方法和设备
US11451949B2 (en) 2021-06-14 2022-09-20 Ultralogic 6G, Llc Sidelink V2V, V2X, and low-complexity IoT communication in 5G and 6G

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015065768A1 (en) * 2013-10-31 2015-05-07 Intel IP Corporation Signaling for inter-cell d2d discovery in an lte network
WO2016164823A1 (en) * 2015-04-10 2016-10-13 Kyocera Corporation Device-to-device synchronization signal (d2dss) resource management
US20160302250A1 (en) * 2015-04-09 2016-10-13 Sharp Laboratories Of America, Inc. Method and apparatus for implementing partial coverage and out-of-coverage sidelink discovery resource pools for wireless communications
WO2016182597A1 (en) * 2015-05-14 2016-11-17 Intel IP Corporation Ue-to-network relay initiation and configuration
US20160338055A1 (en) * 2015-05-15 2016-11-17 Lg Electronics Inc. User apparatus including a dedicated rf chain for prose and transmitting and receiving method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015301066B2 (en) * 2014-08-06 2019-02-07 Sharp Kabushiki Kaisha Synchronization signals for device-to-device communications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015065768A1 (en) * 2013-10-31 2015-05-07 Intel IP Corporation Signaling for inter-cell d2d discovery in an lte network
US20160302250A1 (en) * 2015-04-09 2016-10-13 Sharp Laboratories Of America, Inc. Method and apparatus for implementing partial coverage and out-of-coverage sidelink discovery resource pools for wireless communications
WO2016164823A1 (en) * 2015-04-10 2016-10-13 Kyocera Corporation Device-to-device synchronization signal (d2dss) resource management
WO2016182597A1 (en) * 2015-05-14 2016-11-17 Intel IP Corporation Ue-to-network relay initiation and configuration
US20160338055A1 (en) * 2015-05-15 2016-11-17 Lg Electronics Inc. User apparatus including a dedicated rf chain for prose and transmitting and receiving method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020063471A1 (zh) * 2018-09-28 2020-04-02 电信科学技术研究院有限公司 波束扫描方法、波束配置方法、终端及网络设备
US11632728B2 (en) 2019-07-18 2023-04-18 Qualcomm Incorporated Directional measurements for sidelink synchronization signal transmission

Also Published As

Publication number Publication date
US11337172B2 (en) 2022-05-17
US20210014813A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
WO2018143786A1 (ko) 무선 통신 시스템에서 사이드링크 통신을 수행하는 방법 및 이를 위한 장치
WO2018174602A1 (ko) 무선 통신 시스템에서 사이드링크 동기 신호를 송수신하는 방법 및 이를 위한 장치
WO2018128297A1 (ko) 측정 정보를 보고하는 방법 및 이를 위한 단말
WO2019164353A1 (ko) 무선 통신 시스템에서 단말의 v2x 통신 방법 및 상기 방법을 이용하는 장치
WO2019098772A1 (ko) 무선 통신 시스템에서 사이드링크 통신 수행 방법 및 장치
WO2016013901A1 (ko) 단말 간 통신을 지원하는 무선 통신 시스템에서 파워 제어 방법 및 이를 위한 장치
WO2018030744A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 상향링크 채널 송수신 방법 및 이를 지원하는 장치
WO2018084610A1 (ko) 무선 통신 시스템에서 상향링크 채널을 전송하는 방법 및 이를 위한 장치
WO2015069051A1 (ko) 무선 통신시스템에서 단말 간 직접통신을 수행하기 위한 자원할당 방법 및 장치
WO2018182262A1 (ko) 무선 통신 시스템에서 v2x 단말에 의해 수행되는 v2x 통신 수행 방법 및 상기 방법을 이용하는 단말
WO2018062841A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 신호 송수신 방법 및 이를 지원하는 장치
WO2019031927A1 (ko) 무선 통신 시스템에서 사이드링크 전송과 관련된 그랜트를 전송하는 방법 및 이를 위한 장치
WO2018131857A1 (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
WO2017123047A1 (ko) V2v 단말의 시간 동기 방법
WO2015122718A1 (ko) 무선 통신시스템에서 단말간 직접통신을 수행하기 위한 방법 및 장치
WO2012128598A2 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2018164476A1 (ko) 무선 통신 시스템에서 사이드링크 통신을 수행하는 방법 및 이를 위한 장치
WO2018034485A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 복수의 비면허 요소 반송파들을 통한 상향링크 신호 전송 방법 및 이를 지원하는 장치
WO2019017746A1 (ko) 무선 통신 시스템에서 lte 및 nr에 기반한 신호 송수신 방법 및 이를 위한 장치
WO2022149774A1 (ko) 무선 통신 시스템에서 빔 실패 복구 방법 및 장치
WO2017217697A1 (ko) 무선 통신 시스템에서 페이징을 수행하는 방법 및 이를 위한 장치
WO2016013888A1 (ko) 기기간 통신을 지원하는 무선 접속 시스템에서 데이터 릴레이 방법 및 장치
WO2019212249A1 (ko) 릴레이 노드를 통한 데이터 처리 방법 및 그 장치
WO2021206340A1 (ko) 사이드링크 통신을 제어하는 방법 및 그 장치
WO2019022473A1 (ko) 무선 통신 시스템에서 bwp 동작을 수행하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771610

Country of ref document: EP

Kind code of ref document: A1