WO2022149774A1 - 무선 통신 시스템에서 빔 실패 복구 방법 및 장치 - Google Patents
무선 통신 시스템에서 빔 실패 복구 방법 및 장치 Download PDFInfo
- Publication number
- WO2022149774A1 WO2022149774A1 PCT/KR2021/019793 KR2021019793W WO2022149774A1 WO 2022149774 A1 WO2022149774 A1 WO 2022149774A1 KR 2021019793 W KR2021019793 W KR 2021019793W WO 2022149774 A1 WO2022149774 A1 WO 2022149774A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bfd
- coreset
- terminal
- base station
- beam failure
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0695—Hybrid systems, i.e. switching and simultaneous transmission using beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/19—Connection re-establishment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/04—Arrangements for maintaining operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0408—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0628—Diversity capabilities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0695—Hybrid systems, i.e. switching and simultaneous transmission using beam selection
- H04B7/06952—Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
- H04B7/06968—Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using quasi-colocation [QCL] between signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/005—Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/0051—Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0094—Indication of how sub-channels of the path are allocated
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/046—Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/22—Processing or transfer of terminal data, e.g. status or physical capabilities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/022—Site diversity; Macro-diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
- H04L5/001—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present disclosure relates to a wireless communication system, and more particularly, to a beam failure recovery method and apparatus in a wireless communication system.
- a mobile communication system has been developed to provide a voice service while ensuring user activity.
- the mobile communication system has expanded its scope to not only voice but also data service.
- an explosive increase in traffic causes a shortage of resources and users demand a higher speed service, so a more advanced mobile communication system is required. have.
- next-generation mobile communication system requirements are largely to accommodate explosive data traffic, to dramatically increase the transmission rate per user, to accommodate a significantly increased number of connected devices, to support very low end-to-end latency, and to support high energy efficiency.
- Dual Connectivity Massive Multiple Input Multiple Output (MIMO), In-band Full Duplex, Non-Orthogonal Multiple Access (NOMA), Super Wideband
- MIMO Massive Multiple Input Multiple Output
- NOMA Non-Orthogonal Multiple Access
- an additional technical problem of the present disclosure is to provide a method and apparatus for performing beam failure recovery based on the number of beam failure detection reference signals supported by a terminal.
- the method in a method for a terminal to perform beam failure recovery (BFR) in a wireless communication system, includes: beam failure detection supported by the terminal - a reference signal (beam failure detection) -reference signal, BFD-RS) transmitting capability information including the maximum number of BFD-RSs that can be included in each set to the base station; and receiving, from the base station, configuration information including information related to at least one BFD-RS set, wherein each of the at least one BFD-RS set includes the maximum number of BFD-RS resources or less.
- BFR beam failure recovery
- the method in a method for a base station to perform beam failure recovery (BFR) in a wireless communication system, includes: a beam failure detection supported by the terminal - a reference signal (beam failure Receiving from the terminal capability information including the maximum number of BFD-RSs that can be included for each detection-reference signal, BFD-RS set; and transmitting configuration information including information related to at least one BFD-RS set to the terminal, wherein each of the at least one BFD-RS set includes the maximum number of BFD-RS resources or less.
- BFR beam failure recovery
- a method and apparatus for performing beam failure recovery in a wireless communication system may be provided.
- a method and apparatus for performing beam failure recovery based on the number of beam failure detection reference signals supported by a terminal may be provided.
- a beam failure recovery operation in a frequency band in which a control resource set in which a plurality of transmission configuration indicators are configured may be supported.
- FIG. 1 illustrates a structure of a wireless communication system to which the present disclosure can be applied.
- FIG. 2 illustrates a frame structure in a wireless communication system to which the present disclosure can be applied.
- FIG. 3 illustrates a resource grid in a wireless communication system to which the present disclosure can be applied.
- FIG. 4 illustrates a physical resource block in a wireless communication system to which the present disclosure can be applied.
- FIG. 5 illustrates a slot structure in a wireless communication system to which the present disclosure can be applied.
- FIG. 6 illustrates physical channels used in a wireless communication system to which the present disclosure can be applied and a general signal transmission/reception method using them.
- FIG. 7 illustrates a multiple TRP transmission scheme in a wireless communication system to which the present disclosure can be applied.
- FIG. 8 is a diagram for explaining a beam failure recovery operation of a terminal according to an embodiment of the present disclosure.
- FIG. 9 is a diagram for explaining a beam failure recovery operation of a base station according to an embodiment of the present disclosure.
- FIG. 10 is a diagram for explaining a signaling procedure of a network side and a terminal according to an embodiment of the present disclosure.
- FIG. 11 illustrates a block diagram of a wireless communication device according to an embodiment of the present disclosure.
- a component when it is said that a component is “connected”, “coupled” or “connected” with another component, it is not only a direct connection relationship, but also an indirect connection relationship in which another component exists between them. may also include. Also in this disclosure the terms “comprises” or “having” specify the presence of a recited feature, step, operation, element and/or component, but one or more other features, steps, operations, elements, components and/or The presence or addition of groups thereof is not excluded.
- first and second are used only for the purpose of distinguishing one component from other components and are not used to limit the components, unless otherwise specified. It does not limit the order or importance between them. Accordingly, within the scope of the present disclosure, a first component in one embodiment may be referred to as a second component in another embodiment, and similarly, a second component in one embodiment is referred to as a first component in another embodiment. can also be called
- the present disclosure describes a wireless communication network or a wireless communication system as a target, and operations performed in the wireless communication network control the network and transmit or receive a signal from a device (eg, a base station) having jurisdiction over the wireless communication network. It may be made in the process of receiving (receive), or it may be made in the process of transmitting or receiving a signal from a terminal coupled to a corresponding wireless network to a network or between terminals.
- a device eg, a base station
- transmitting or receiving a channel includes the meaning of transmitting or receiving information or a signal through a corresponding channel.
- transmitting the control channel means transmitting control information or a signal through the control channel.
- transmit a data channel means to transmit data information or a signal over the data channel.
- downlink means communication from a base station to a terminal
- uplink means communication from a terminal to a base station
- DL downlink
- UL uplink
- the transmitter may be a part of the base station
- the receiver may be a part of the terminal
- the transmitter may be a part of the terminal
- the receiver may be a part of the base station.
- the base station may be represented as a first communication device
- the terminal may be represented as a second communication device.
- Base station is a fixed station (fixed station), Node B, evolved-NodeB (eNB), gNB (Next Generation NodeB), BTS (base transceiver system), access point (AP: Access Point), network (5G) network), AI (Artificial Intelligence) system/module, RSU (road side unit), robot (robot), drone (UAV: Unmanned Aerial Vehicle), AR (Augmented Reality) device, VR (Virtual Reality) device, etc.
- BS Base station
- Node B evolved-NodeB
- gNB Next Generation NodeB
- BTS base transceiver system
- AP Access Point
- 5G network
- AI Artificial Intelligence
- RSU road side unit
- robot robot
- drone UAV: Unmanned Aerial Vehicle
- AR Algmented Reality
- VR Virtual Reality
- the terminal may be fixed or have mobility, UE (User Equipment), MS (Mobile Station), UT (user terminal), MSS (Mobile Subscriber Station), SS (Subscriber Station), AMS (Advanced Mobile) Station), WT (Wireless terminal), MTC (Machine-Type Communication) device, M2M (Machine-to-Machine) device, D2D (Device-to-Device) device, vehicle, RSU (road side unit), It may be replaced with terms such as a robot, an artificial intelligence (AI) module, an unmanned aerial vehicle (UAV), an augmented reality (AR) device, and a virtual reality (VR) device.
- AI artificial intelligence
- UAV unmanned aerial vehicle
- AR augmented reality
- VR virtual reality
- CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
- TDMA may be implemented with a radio technology such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
- GSM Global System for Mobile communications
- GPRS General Packet Radio Service
- EDGE Enhanced Data Rates for GSM Evolution
- OFDMA may be implemented with a radio technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), and the like.
- UTRA is part of the Universal Mobile Telecommunications System (UMTS).
- 3GPP 3rd Generation Partnership Project
- Long Term Evolution is a part of Evolved UMTS (E-UMTS) using E-UTRA and LTE-A (Advanced)/LTE-A pro is an evolved version of 3GPP LTE.
- 3GPP NR New Radio or New Radio Access Technology is an evolved version of 3GPP LTE/LTE-A/LTE-A pro.
- LTE refers to technology after 3GPP Technical Specification (TS) 36.xxx Release 8.
- TS Technical Specification
- LTE technology after 3GPP TS 36.xxx Release 10 is referred to as LTE-A
- LTE technology after 3GPP TS 36.xxx Release 13 is referred to as LTE-A pro
- 3GPP NR refers to technology after TS 38.xxx Release 15.
- LTE/NR may be referred to as a 3GPP system.
- "xxx" stands for standard document detail number.
- LTE/NR may be collectively referred to as a 3GPP system.
- TS 36.211 physical channels and modulation
- TS 36.212 multiplex and channel coding
- TS 36.213 physical layer procedures
- TS 36.300 overall description
- TS 36.331 radio resource control
- TS 38.211 physical channels and modulation
- TS 38.212 multiplex and channel coding
- TS 38.213 physical layer procedures for control
- TS 38.214 physical layer procedures for data
- TS 38.300 Overall description of NR and New Generation-Radio Access Network (NG-RAN)
- TS 38.331 Radio Resource Control Protocol Specification
- channel quality indicator channel quality indicator
- channel state information - reference signal resource indicator channel state information - reference signal resource indicator
- channel state information channel state information
- channel state information - interference measurement channel state information - interference measurement
- channel state information - reference signal channel state information - reference signal
- demodulation reference signal demodulation reference signal
- interleaved frequency division multiple access (interleaved frequency division multiple access)
- first layer reference signal received power (Layer 1 reference signal received power)
- first layer reference signal received quality (Layer 1 reference signal received quality)
- PDCCH physical downlink control channel (physical downlink control channel)
- precoding matrix indicator precoding matrix indicator
- radio resource control radio resource control
- SSB (or SS / PBCH block): synchronization signal block (including primary synchronization signal (PSS), secondary synchronization signal (SSS: secondary synchronization signal) and physical broadcast channel (PBCH: physical broadcast channel))
- PSS primary synchronization signal
- SSS secondary synchronization signal
- PBCH physical broadcast channel
- tracking reference signal tracking reference signal
- NR is an expression showing an example of 5G RAT.
- a new RAT system including NR uses an OFDM transmission scheme or a similar transmission scheme.
- the new RAT system may follow OFDM parameters different from those of LTE.
- the new RAT system may support a larger system bandwidth (eg, 100 MHz) while following the existing numerology of LTE/LTE-A.
- one cell may support a plurality of numerologies. That is, terminals operating in different numerology can coexist in one cell.
- Numerology corresponds to one subcarrier spacing in the frequency domain.
- different numerology can be defined.
- FIG. 1 illustrates a structure of a wireless communication system to which the present disclosure can be applied.
- NG-RAN is NG-RA (NG-Radio Access) user plane (ie, new access stratum (AS) sublayer / packet data convergence protocol (PDCP) / RLC (radio link control) / MAC / PHY) and gNBs that provide control plane (RRC) protocol termination for the UE.
- the gNBs are interconnected through an Xn interface.
- the gNB is also connected to a New Generation Core (NGC) through an NG interface. More specifically, the gNB is connected to an Access and Mobility Management Function (AMF) through an N2 interface and a User Plane Function (UPF) through an N3 interface.
- AMF Access and Mobility Management Function
- UPF User Plane Function
- FIG. 2 illustrates a frame structure in a wireless communication system to which the present disclosure can be applied.
- An NR system can support multiple numerologies.
- numerology may be defined by subcarrier spacing and cyclic prefix (CP) overhead.
- CP cyclic prefix
- a plurality of subcarrier spacings may be derived by scaling the basic (reference) subcarrier spacing to an integer N (or ⁇ ).
- the numerology used can be selected independently of the frequency band, although it is assumed that very low subcarrier spacing is not used at very high carrier frequencies.
- various frame structures according to multiple numerologies may be supported.
- OFDM numerology and frame structure that can be considered in the NR system will be described.
- a number of OFDM numerologies supported in the NR system may be defined as shown in Table 1 below.
- NR supports multiple numerology (or subcarrier spacing, SCS) to support various 5G services.
- SCS subcarrier spacing
- FR1 frequency range
- FR2 may mean a millimeter wave (mmW).
- ⁇ f max 480 ⁇ 10 3 Hz
- N f 4096.
- slots are numbered in increasing order of n s ⁇ ⁇ ⁇ 0,..., N slot subframe, ⁇ ⁇ 1 ⁇ within a subframe, and within a radio frame They are numbered in increasing order of n s,f ⁇ ⁇ 0,..., N slot frame, ⁇ -1 ⁇ .
- One slot consists of consecutive OFDM symbols of N symb slots , and N symb slots are determined according to CP.
- the start of the slot n s ⁇ in a subframe is temporally aligned with the start of the OFDM symbol n s ⁇ N symb slot in the same subframe. Not all terminals can transmit and receive at the same time, which means that all OFDM symbols of a downlink slot or an uplink slot cannot be used.
- Table 3 shows the number of OFDM symbols per slot (N symb slot ), the number of slots per radio frame (N slot frame, ⁇ ), and the number of slots per subframe (N slot subframe, ⁇ ) in the general CP
- Table 4 denotes the number of OFDM symbols per slot, the number of slots per radio frame, and the number of slots per subframe in the extended CP.
- one subframe may include four slots.
- 1 subframe ⁇ 1,2,4 ⁇ slots shown in FIG. 2 is an example, and the number of slot(s) that can be included in 1 subframe is defined as shown in Table 3 or Table 4.
- a mini-slot may contain 2, 4 or 7 symbols, or may contain more or fewer symbols.
- an antenna port antenna port
- a resource grid resource grid
- resource element resource element
- resource block resource block
- carrier part carrier part
- an antenna port is defined such that a channel on which a symbol on an antenna port is carried can be inferred from a channel on which another symbol on the same antenna port is carried.
- the two antenna ports are QC/QCL (quasi co-located or QC/QCL) quasi co-location).
- the wide range characteristic includes at least one of delay spread, Doppler spread, frequency shift, average received power, and received timing.
- 3 illustrates a resource grid in a wireless communication system to which the present disclosure can be applied. Referring to FIG.
- the resource grid is composed of N RB ⁇ N sc RB subcarriers in the frequency domain, and that one subframe is composed of 14 ⁇ 2 ⁇ OFDM symbols, but limited to this it's not going to be
- a transmitted signal is described by one or more resource grids consisting of N RB ⁇ N sc RB subcarriers and OFDM symbols of 2 ⁇ N symb ( ⁇ ) .
- N RB ⁇ ⁇ N RB max, ⁇ The N RB max, ⁇ represents the maximum transmission bandwidth, which may vary between uplink and downlink as well as numerologies.
- one resource grid may be configured for each ⁇ and antenna port p.
- Each element of the resource grid for ⁇ and antenna port p is referred to as a resource element, and is uniquely identified by an index pair (k,l').
- l' 0,...,2 ⁇ N symb ( ⁇ ) -1 is a symbol in a subframe indicates the location of
- an index pair (k,l) is used.
- l 0,...,N symb ⁇ -1 .
- a resource element (k,l') for ⁇ and an antenna port p corresponds to a complex value a k,l' (p, ⁇ ) .
- indices p and ⁇ may be dropped, so that the complex value is a k,l' (p) or can be a k,l' .
- Point A serves as a common reference point of the resource block grid and is obtained as follows.
- - OffsetToPointA for the primary cell (PCell: Primary Cell) downlink represents a frequency offset between point A and the lowest subcarrier of the lowest resource block overlapping the SS/PBCH block used by the UE for initial cell selection. It is expressed in resource block units assuming a 15 kHz subcarrier spacing for FR1 and a 60 kHz subcarrier spacing for FR2.
- - absoluteFrequencyPointA indicates the frequency-position of point A expressed as in ARFCN (absolute radio-frequency channel number).
- Common resource blocks are numbered from 0 upwards in the frequency domain for the subcarrier interval setting ⁇ .
- the center of subcarrier 0 of common resource block 0 for subcarrier interval setting ⁇ coincides with 'point A'.
- the relationship between the common resource block number n CRB ⁇ and the resource element (k,l) for the subcarrier interval setting ⁇ is given by Equation 1 below.
- Physical resource blocks are numbered from 0 to N BWP,i size, ⁇ -1 in the bandwidth part (BWP: bandwidth part), and i is the number of the BWP.
- BWP bandwidth part
- i the number of the BWP.
- Equation 2 The relationship between the physical resource block n PRB and the common resource block n CRB in BWP i is given by Equation 2 below.
- N BWP,i start, ⁇ is a common resource block in which the BWP starts relative to the common resource block 0.
- FIG. 4 illustrates a physical resource block in a wireless communication system to which the present disclosure can be applied.
- FIG. 5 illustrates a slot structure in a wireless communication system to which the present disclosure can be applied.
- a slot includes a plurality of symbols in the time domain. For example, in the case of a normal CP, one slot includes 7 symbols, but in the case of an extended CP, one slot includes 6 symbols.
- the carrier includes a plurality of subcarriers in the frequency domain.
- a resource block (RB) is defined as a plurality of (eg, 12) consecutive subcarriers in the frequency domain.
- a bandwidth part (BWP) is defined as a plurality of consecutive (physical) resource blocks in the frequency domain, and may correspond to one numerology (eg, SCS, CP length, etc.).
- a carrier may include a maximum of N (eg, 5) BWPs. Data communication is performed through the activated BWP, and only one BWP may be activated for one terminal.
- Each element in the resource grid is referred to as a resource element (RE), and one complex symbol may be mapped.
- RE resource element
- the NR system may support up to 400 MHz per one component carrier (CC). If the terminal operating in such a wideband CC (wideband CC) always operates with a radio frequency (RF) chip for the entire CC turned on, the terminal battery consumption may increase.
- CC component carrier
- RF radio frequency
- different numerologies eg, subcarrier spacing, etc.
- the capability for the maximum bandwidth may be different for each terminal.
- the base station may instruct the terminal to operate only in a partial bandwidth rather than the entire bandwidth of the broadband CC, and the partial bandwidth is defined as a bandwidth part (BWP) for convenience.
- the BWP may be composed of consecutive RBs on the frequency axis, and may correspond to one numerology (eg, subcarrier interval, CP length, slot/mini-slot interval).
- the base station may set a plurality of BWPs even within one CC configured for the terminal. For example, a BWP occupying a relatively small frequency domain may be configured in the PDCCH monitoring slot, and a PDSCH indicated by the PDCCH may be scheduled on a larger BWP.
- some UEs may be configured as a different BWP for load balancing.
- a partial spectrum from the entire bandwidth may be excluded and both BWPs may be configured in the same slot. That is, the base station may configure at least one DL/UL BWP to the terminal associated with the broadband CC.
- the base station may activate at least one DL/UL BWP among DL/UL BWP(s) configured at a specific time (by L1 signaling or MAC CE (Control Element) or RRC signaling, etc.).
- the base station may indicate switching to another configured DL/UL BWP (by L1 signaling or MAC CE or RRC signaling, etc.).
- the timer value expires based on the timer, it may be switched to a predetermined DL/UL BWP.
- the activated DL/UL BWP is defined as an active DL/UL BWP.
- the terminal may not receive the configuration for the DL / UL BWP in a situation such as when the terminal is performing an initial access process or before the RRC connection is set up, in this situation, the terminal This assumed DL/UL BWP is defined as the first active DL/UL BWP.
- FIG. 6 illustrates physical channels used in a wireless communication system to which the present disclosure can be applied and a general signal transmission/reception method using them.
- a terminal receives information from a base station through downlink, and the terminal transmits information to the base station through uplink.
- Information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist according to the type/use of the information they transmit and receive.
- the terminal When the terminal is powered on or newly enters a cell, the terminal performs an initial cell search operation such as synchronizing with the base station (S601). To this end, the terminal receives a primary synchronization signal (PSS) and a secondary synchronization channel (PSS) from the base station, synchronizes with the base station, and obtains information such as a cell identifier (ID). can Thereafter, the terminal may receive a physical broadcast channel (PBCH) from the base station to obtain intra-cell broadcast information. Meanwhile, the UE may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
- PSS primary synchronization signal
- PSS secondary synchronization channel
- ID information such as a cell identifier
- the terminal may receive a physical broadcast channel (PBCH) from the base station to obtain intra-cell broadcast information.
- PBCH physical broadcast channel
- the UE may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel
- the UE After completing the initial cell search, the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to information carried on the PDCCH to obtain more specific system information. It can be done (S602).
- a physical downlink control channel (PDCCH)
- a physical downlink control channel (PDSCH)
- S602 After completing the initial cell search, the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to information carried on the PDCCH to obtain more specific system information. It can be done (S602).
- PDCCH physical downlink control channel
- PDSCH physical downlink control channel
- the terminal may perform a random access procedure (RACH) with the base station (steps S603 to S606).
- RACH random access procedure
- the UE transmits a specific sequence as a preamble through a physical random access channel (PRACH) (S603 and S605), and receives a response message to the preamble through the PDCCH and the corresponding PDSCH ( S604 and S606).
- PRACH physical random access channel
- a contention resolution procedure may be additionally performed.
- the UE After performing the procedure as described above, the UE performs PDCCH/PDSCH reception (S607) and a physical uplink shared channel (PUSCH)/physical uplink control channel (physical uplink) as a general uplink/downlink signal transmission procedure.
- control channel, PUCCH) transmission (S608) may be performed.
- the UE receives downlink control information (DCI) through the PDCCH.
- DCI downlink control information
- the DCI includes control information such as resource allocation information for the UE, and has different formats depending on the purpose of its use.
- the control information that the terminal transmits to the base station through the uplink or the terminal receives from the base station is a downlink/uplink ACK/NACK (Acknowledgment/Non-Acknowledgment) signal, a channel quality indicator (CQI), and a precoding matrix (PMI). Indicator), RI (Rank Indicator), and the like.
- the UE may transmit the above-described control information such as CQI/PMI/RI through PUSCH and/or PUCCH.
- Table 5 shows an example of a DCI format in the NR system.
- DCI format uses 0_0 Scheduling of PUSCH in one cell 0_1 Scheduling of one or multiple PUSCHs in one cell, or indication of cell group (CG) downlink feedback information to the UE 0_2 Scheduling of PUSCH in one cell 1_0 Scheduling of PDSCH in one DL cell 1_1 Scheduling of PDSCH in one cell 1_2 Scheduling of PDSCH in one cell
- DCI formats 0_0, 0_1 and 0_2 are resource information related to PUSCH scheduling (eg, UL/SUL (Supplementary UL), frequency resource allocation, time resource allocation, frequency hopping, etc.), transport block ( transport block, TB) related information (eg, MCS (Modulation Coding and Scheme), NDI (New Data Indicator), RV (Redundancy Version), etc.), HARQ (Hybrid - Automatic Repeat and request) related information (eg, , process number, Downlink Assignment Index (DAI), PDSCH-HARQ feedback timing, etc.), multi-antenna related information (eg, DMRS sequence initialization information, antenna port, CSI request, etc.), power control information (eg, PUSCH power control, etc.), and control information included in each DCI format may be predefined.
- PUSCH scheduling eg, UL/SUL (Supplementary UL), frequency resource allocation, time resource allocation, frequency hopping, etc.
- transport block transport
- DCI format 0_0 is used for scheduling PUSCH in one cell.
- Information included in DCI format 0_0 is C-RNTI (cell radio network temporary identifier, Cell RNTI) or CS-RNTI (Configured Scheduling RNTI) or MCS-C-RNTI (Modulation Coding Scheme Cell RNTI) by CRC (cyclic redundancy check) ) is scrambled and transmitted.
- DCI format 0_1 is used to indicate to the UE the scheduling of one or more PUSCHs or configured grant (CG) downlink feedback information in one cell.
- CG configured grant
- DCI format 0_1 Information included in DCI format 0_1 is CRC scrambled and transmitted by C-RNTI or CS-RNTI or SP-CSI-RNTI (Semi-Persistent CSI RNTI) or MCS-C-RNTI.
- DCI format 0_2 is used for scheduling PUSCH in one cell.
- Information included in DCI format 0_2 is CRC scrambled and transmitted by C-RNTI or CS-RNTI or SP-CSI-RNTI or MCS-C-RNTI.
- DCI formats 1_0, 1_1 and 1_2 are resource information related to PDSCH scheduling (eg, frequency resource allocation, time resource allocation, virtual resource block (VRB)-physical resource block (PRB) mapping, etc.), transport block (TB) related information (eg, MCS, NDI, RV, etc.), HARQ related information (eg, process number, DAI, PDSCH-HARQ feedback timing, etc.), multi-antenna related information (eg, antenna port) , transmission configuration indicator (TCI), sounding reference signal (SRS) request, etc.), PUCCH-related information (eg, PUCCH power control, PUCCH resource indicator, etc.), and control information included in each DCI format is It can be predefined.
- PDSCH scheduling eg, frequency resource allocation, time resource allocation, virtual resource block (VRB)-physical resource block (PRB) mapping, etc.
- transport block (TB) related information eg, MCS, NDI, RV, etc.
- HARQ related information eg
- DCI format 1_0 is used for scheduling PDSCH in one DL cell.
- Information included in DCI format 1_0 is CRC scrambled and transmitted by C-RNTI or CS-RNTI or MCS-C-RNTI.
- DCI format 1_1 is used for scheduling PDSCH in one cell.
- Information included in DCI format 1_1 is CRC scrambled and transmitted by C-RNTI, CS-RNTI, or MCS-C-RNTI.
- DCI format 1_2 is used for scheduling PDSCH in one cell.
- Information included in DCI format 1_2 is CRC scrambled and transmitted by C-RNTI, CS-RNTI, or MCS-C-RNTI.
- FIG. 7 illustrates a multiple TRP transmission scheme in a wireless communication system to which the present disclosure can be applied.
- the same codeword (codeword, CW) / transport block (transport block, TB) for transmitting the layer group (layer group) corresponding to different TRP shows a case.
- the layer group may mean a predetermined set of layers consisting of one or more layers.
- the amount of transmission resources increases due to the number of layers, which has the advantage that robust channel coding with a low code rate can be used for TB. ) can be expected to improve the reliability of the received signal based on the gain.
- FIG. 7(b) an example of transmitting different CWs through layer groups corresponding to different TRPs is shown.
- TBs corresponding to CW #1 and CW #2 in the figure are the same. That is, CW #1 and CW #2 mean that the same TB is converted into different CWs through channel coding or the like by different TRPs, respectively. Therefore, it can be seen as an example of repeated transmission of the same TB.
- the code rate corresponding to the TB is high.
- the code rate may be adjusted by indicating different RV (redundancy version) values for encoded bits generated from the same TB, or the modulation order of each CW may be adjusted. has the advantage of being
- the same TB is repeatedly transmitted through different layer groups, and as each layer group is transmitted by different TRP/panel, data reception of the terminal can increase the probability.
- This is referred to as a Spatial Division Multiplexing (SDM)-based M-TRP URLLC transmission scheme.
- Layers belonging to different layer groups are respectively transmitted through DMRS ports belonging to different DMRS CDM groups.
- BFR basic beam failure recovery
- BM uplink/downlink beam management
- BM may refer to a process of acquiring and maintaining a beam set that can be used for downlink and uplink transmission/reception.
- the BM is a beam measurement process for measuring the characteristics of a beamforming signal received from a base station or a terminal, and beam determination for determining a transmission beam (Tx beam) and a reception beam (Rx beam) of the base station or the terminal itself ( determination) process, a beam sweeping process of covering a spatial region using a transmit beam and/or a receive beam for a predetermined time interval in a predetermined manner, and the terminal transmits information of the beam signal to the base station based on the beam measurement result It may include a reporting beam reporting process.
- a beam mismatch problem may occur due to various factors. For example, when the terminal moves or rotates, or when the wireless channel environment is changed due to the movement of a nearby object (for example, it was a line-of-sight (LoS) environment and then changed to a non-LoS environment as the beam is blocked. change), an optimal uplink/downlink beam pair may be changed. At this time, when the terminal or the base station fails to track the changed optimal uplink/downlink beam pair (ie, BM tracking), it can be considered that a beam failure has occurred.
- LiS line-of-sight
- the UE may determine whether beam failure occurs based on the reception quality of a downlink reference signal (RS). In addition, the UE must report a message on whether or not a beam failure has occurred or a message for a beam recovery request (beam failure recovery request message, BFRQ message) to the base station. Upon receiving the message, the base station may perform a beam recovery process through various processes such as beam RS transmission or beam report request for beam recovery. This series of beam recovery processes is called a beam failure recovery (BFR) process.
- BFR beam failure recovery
- the basic BFR operation is a special cell (SpCell) (that is, a primary cell (PCell) or a primary secondary cell (PScell) in which a contention-based PRACH resource exists.
- the BFR process includes a beam failure detection (BFD) process of the terminal, a BFRQ transmission process, and a process of monitoring the response of the base station to the BFRQ, each process in a serving cell can be performed in
- BFD beam failure detection
- the quality value may be determined based on a hypothetical block error rate (BLER). That is, the theoretical BLER may mean a probability that demodulation of the control information fails when the control information is transmitted on a specific PDCCH.
- BLER block error rate
- one or a plurality of search spaces for monitoring the PDCCH may be configured in the UE, and a PDCCH beam may be configured differently for each search space.
- a PDCCH beam may be configured differently for each search space.
- Two methods which will be described later, may be supported as a method in which the terminal receives an indication/configuration of the BFD-RS from the base station for determining whether a beam failure instance has occurred.
- an implicit configuration method of BFD-RS may be supported.
- a control resource set (CORESET) ID which is a resource area in which the PDCCH can be transmitted, is set, and for each CORESET ID, RS information that is QCLed in terms of spatial RX parameters (e.g., , CSI-RS resource ID, SSB ID) may be indicated/configured.
- the RS that is QCLed from the viewpoint of spatial reception parameters may be indicated or configured through transmit configuration information (TCI). That is, the BFD-RS may be implicitly configured/indicated to the UE based on QCL information indicated or configured through TCI.
- TCI transmit configuration information
- the terminal when the base station instructs or sets the QCL RS (ie, QCL Type D RS) to the terminal from the viewpoint of the spatial reception parameter, the terminal receives a specific PDCCH DMRS from the viewpoint of the spatial reception parameter.
- a signal may be transmitted between spatially QCLed antenna ports through the same transmission beam or similar transmission beams (eg, when beam widths are different while beam directions are the same/similar).
- an explicit configuration method of the BFD-RS may be supported.
- the base station may explicitly configure or instruct the UE to set the beam RS for BFD purpose.
- the beam RS may correspond to the 'all PDCCH beams'.
- the terminal physical layer informs the MAC sublayer that a beam failure instance (BFI) has occurred whenever an event in which the theoretical BLER measured based on the set (or indicated) BFD-RS deteriorates above a specific threshold value occurs.
- BFI beam failure instance
- the terminal MAC sublayer determines that a beam failure has occurred and initiates a related RACH operation when BFI occurs a certain number of times (eg, 'beamFailureInstanceMaxCount') within a predetermined time (eg, 'BFD timer'). can do.
- the UE may determine that a beam failure has occurred and may perform a beam failure recovery operation.
- the UE may perform a BFRQ process based on RACH (ie, PRACH) as an example of a beam failure recovery operation.
- RACH ie, PRACH
- the base station may set a candidate beam RS list ('candidateBeamRSList') including replaceable candidate beam RSs to the terminal through RRC signaling. And, the base station may configure a dedicated PRACH resource for the candidate beam RSs.
- the dedicated PRACH resource may be a non-contention based PRACH resource (or a contention free PRACH resource). If an alternative beam RS is not found in the candidate beam RS list, the UE may select at least one of preset SSB resources. And, the terminal may transmit the collision-based PRACH to the base station based on at least one selected.
- a specific SCell may not have an uplink carrier (UL carrier). That is, in the case of an SCell having only a downlink carrier, uplink transmission is impossible. And, even if there is an uplink carrier in the SCell, the collision-based PRACH cannot be configured. Therefore, the PRACH-based BFR process to which the CA is applied may be limitedly applied only to the SpCell (PCell or PSCell), and the BFR process may not be supported for the SCell. That is, according to the basic BFR operation, the PRACH-based BFR operation in the SpCell may not be supported in the SCell.
- CA carrier aggregation
- the PRACH-based BFR process may not be supported in the corresponding high-frequency band.
- the PRACH-based BFR process is performed in the high-frequency band that requires more BFR support. There is a problem that it is not supported.
- the improved BFR operation includes an operation for the BFR of the SCell.
- the UE may perform BFRQ for the SCell using a dedicated PUCCH resource for BFRQ configured in the SpCell.
- the 'dedicated PUCCH resource' will be referred to as BFR-PUCCH for convenience of description.
- the role of the BFR-PUCCH is to report only 'BF occurrence information for the SCell' to the base station. Further, detailed information related to the generated BF may be transmitted to the base station through the BFR MAC-CE or UCI as a subsequent report.
- the detailed government transmitted as the follow-up report includes information about the SCell(s) in which BF has occurred (eg, component carrier (CC) index information), whether there is a new candidate beam for the SCell(s) in which BF has occurred. , and when a new candidate beam exists, the corresponding beam RS ID may be included.
- information about the SCell(s) in which BF has occurred eg, component carrier (CC) index information
- CC index information component carrier
- the BFR-PUCCH uses the same PUCCH format as an SR (scheduling request), and may be defined through the ID of a specific SR for BFR use. If there is a UL-SCH allocated from the base station when the terminal detects BF for the SCell, the terminal omits the BFR-PUCCH transmission procedure like the SR transmission procedure, and uses the BFR MAC directly through the allocated UL-SCH. -CE can be transmitted to the base station.
- M-TRP transmission eg, PDCCH, PUCCH, PUSCH, etc.
- PDCCH Physical Downlink Control Channel
- PUCCH Physical Uplink Control Channel
- PUSCH Physical Uplink Control Channel
- the DL M-TRP URLLC transmission method refers to a method in which multiple TPRs transmit the same data/DCI using different spaces (eg, layer/port)/time/frequency resources.
- TRP 1 may transmit specific data/DCI in resource 1
- TRP 2 may transmit the specific data/DCI (ie, same data/DCI) in resource 2.
- the UE may receive the same data/DCI using different space/time/frequency resources.
- the terminal may receive an indication of the QCL RS/type (ie, DL TCI state) used in the space/time/frequency resource for receiving the corresponding data/DCI from the base station.
- the UE may be instructed by the base station of the DL TCI state used in resource 1 and the DL TCI state used in resource 2 from the base station.
- the terminal can achieve high reliability (reliability).
- This M-TRP URLLC transmission scheme may be applied to PDSCH/PDCCH.
- a specific TCI state when receiving data/DCI/UCI through a specific space/time/frequency resource, using (or mapping) a specific TCI state means (in the case of DL) specific space/time It may mean estimating a channel from DMRS using the QCL type and QCL RS indicated by a specific TCI state in /frequency resource, and receiving/demodulating data/DCI/UCI with the estimated channel.
- the M-TRP eMBB transmission method refers to a method in which M-TRP transmits different data/DCI using different space/time/frequency resources.
- the M-TRP eMBB transmission scheme it is assumed that the UE may receive a plurality of TCI states from the base station through DCI, and that data received using QCL RS indicated by each of the plurality of TCI states are different data.
- the UE can determine whether a specific transmission/reception is M-TRP URLLC transmission/reception or M-TRP eMBB transmission/reception. For example, when RNTI for URLLC is used and CRC masking is performed for DCI, the UE may determine the corresponding transmission as URLLC transmission. In addition, when the RNTI for eMBB is used and CRC masking is performed for DCI, the UE may determine the corresponding transmission as eMBB transmission. As another example, the base station may set the M-TRP URLLC transmission/reception method or the M-TRP eMBB transmission/reception method to the terminal through new signaling.
- the present disclosure can be extended to three or more multiple TRP environments, and can be extended and applied to environments in which transmission/reception is performed in different panels or beams in the same TRP.
- the UE may recognize different TRPs as different TCI states. When the UE transmits/receives data/DCI/UCI using TCI state 1, it means that it transmits/receives data/DCI/UCI/ from TRP 1 (or to TRP 1).
- the meaning that a plurality of base stations (ie, M-TRP) repeatedly transmit the same PDCCH may mean that the same DCI is transmitted through a plurality of PDCCH candidates, and a plurality of It has the same meaning that the base station repeatedly transmits the same DCI.
- two DCIs having the same DCI format/size/payload may be viewed as the same DCI.
- the two DCIs may be regarded as the same DCI.
- a time domain resource allocation (TDRA) field of DCI is a slot/symbol position of data and a slot/symbol position of A(ACK)/N(NACK) based on a reception time of DCI. can be determined relatively.
- the TDRA fields of the two DCIs are different, and as a result, the DCI payloads are different from each other. Accordingly, even if the payloads of the two DCIs are different, if the scheduling results are the same, the two DCIs may be regarded as the same DCI.
- the two DCIs may be regarded as the same DCI.
- DCI 1 received before the first data indicates (or scheduling) data repetition N times
- DCI 2 received before the second data is N-1 Indicate data repetition (scheduling).
- the scheduling result (or data) of DCI 2 becomes a subset of the scheduling result (or data) of DCI 1, and both DCIs have scheduling results for the same data. Therefore, even in this case, the two DCIs can be regarded as the same DCI.
- a plurality of base stations (ie, M-TRP) transmit the same PDCCH by dividing one DCI through one PDCCH candidate, but TRP 1 is defined for the corresponding PDCCH candidate It may mean that some resources are transmitted, and TRP 2 transmits the remaining resources.
- each TRP transmits the same PDSCH/PDCCH in different space/time/frequency resources, as well as a method in which the same PDSCH/PDCCH is repeatedly transmitted in the same space/time/frequency resource (that is, , a single frequency network (SFN) transmission scheme) may be applied.
- SFN single frequency network
- a plurality of TRPs may transmit the same PDCCH/PDSCH DMRS port together, a plurality of TCI states may be configured/indicated for the same PDCCH/PDSCH.
- the existing scheme in which one TCI state is indicated per CORESET may be changed to a scheme in which a plurality of TCI states are indicated per CORESET.
- the UE may determine that it is not a beam failure situation. For example, if all CORESETs transmitting PDCCH in a specific TRP are beam failure situations, or there is a CORESET that is not beam failure among CORESETs transmitting PDCCH in other TRPs, the UE does not determine the current situation as a beam failure situation.
- a TPR-specific BFR scheme may be applied. That is, when a beam failure occurs for one or more serving beams corresponding to a specific TRP, a TPR-specific BFR scheme for quickly recovering it may be applied.
- the TPR-specific BFR scheme when beam failure occurs for one or more partial beams (belonging to a specific TRP) among one or more PDCCH beams or serving beams, the UE reports the beam failure status to the base station and recovers the method, that is, part ( partial) may mean the BFR method.
- a specific TRP or BFD procedure for each TRP may be performed independently. To this end, the definition of a specific TRP or BFD-RS set for each TRP should be determined first.
- the determination method for the BFD-RS set includes an implicit BFD-RS set determination method and an explicit BFD-RS set determination method, similar to the basic BFR operation or the improved BFR operation described above.
- the explicit BFD-RS set determination method may refer to a method in which the base station explicitly sets the BFD-RS set corresponding to each TRP. That is, a plurality of BFD-RS sets corresponding to a plurality of TRPs in the same CC / BWP may be configured by the base station, respectively, and the terminal independently performs a BFD procedure (eg, BFI count, etc.) for each configured BFD-RS set. can be performed.
- a BFD procedure eg, BFI count, etc.
- the implicit BFD-RS set determination method determines the BFD-RS using the TCI state (or QCL type-D RS in the TCI state) set in CORESET. This is a method of monitoring whether or not a beam fails with respect to a PDCCH transmission beam.
- the BFD procedure was performed by configuring the BFD-RS set for all of the CORESETs set for each CC/BWP.
- BFD-RS set for some CORESET(s) among a plurality of CORESETs set for each CC/BWP (or by dividing some CORESET(s) by each) BFD-RS set (eg, BFD-RS set for each TRP) may be configured, and a BFD procedure (eg, BFI count, etc.) may be performed independently for each BFD-RS set.
- the method of dividing a plurality of CORESETs in CC/BWP for each TRP is 1) a method of dividing CORESETs for each TRP based on the CORESET pool setting introduced for multi-DCI-based M-TRP PDSCH transmission, and 2) a separately set CORESET group A method of dividing CORESETs for each TRP based on (group) may be included.
- method 1) is a method of configuring a BFD-RS set based on each CORESET pool index
- method 2) is a method of configuring each BFD-RS set based on a separately set CORESET group index.
- 2) method may support not only TRP-specific BFD but also other use cases (eg, performing BFR with only some of the serving beams within the same TRP).
- the UE While monitoring the downlink radio link quality for the primary cell (PCell or SpCell), if it is determined that the radio link quality is degraded below the threshold, the UE may report the RLM result to the base station.
- PCell primary cell
- SpCell primary cell
- the downlink radio link (radio link) quality of the primary cell is not synchronized (out-of-sync) state or synchronized (in-sync) state informing / indicating to a higher layer (higher layer) For this purpose, it may be monitored by the terminal.
- the UE does not need to monitor the downlink radio link quality of the BWP other than the active downlink BWP in the primary cell.
- the active downlink BWP is an initial BWP and is for the SS/PBCH block and CORESET multiplexing pattern 2 or 3
- the associated SS/PBCH block index is provided by the higher layer parameter 'RadioLinkMonitoringRS'.
- RLM may be performed using the associated SS/PBCH block.
- the terminal when the secondary cell group (SCG) is configured, the upper layer parameter 'rlf-TimersAndConstants' is provided, and it is set to not be released, the downlink radio link quality of the PSCell in the SCG is,
- the terminal For the purpose of notifying/indicating an out-of-sync state/in-sync state to a higher layer, it may be monitored by the terminal.
- the UE does not need to monitor the downlink radio link quality in the DL BWP other than the active downlink BWP in the primary secondary cell.
- the UE may be provided with the CSI-RS resource configuration index by the upper layer parameter 'csi-RS-Index' or the SS/PBCH block index by 'ssb-Index'.
- the UE may perform a radio link monitoring operation using the RS corresponding to the resource index provided by 'RadioLinkMonitoringRS' for the active downlink BWP. And, if 'RadioLinkMonitoringRS' is not provided for the active downlink BWP, the UE performs a radio link monitoring operation using RS(s) provided through the active TCI state set for PDCCH reception in the CORESET of the active downlink BWP. can do.
- the physical layer of the terminal indicates the state of the radio link to an upper layer. It may indicate an out-of-sync state ('out-of-sync').
- the physical layer of the terminal synchronizes the radio link state to the upper layer It may indicate that it is in a state of being in sync ('in-sync').
- the following method may be applied (or defined).
- Method 1 Prioritize the CORESET with the shorter minimum monitoring period set in the search space (set) belonging to each CORESET
- Method 3 (RS selection method in TCI state): When a plurality of RSs are included in a single TCI state, the RS corresponding to QCL type-D is preferentially selected
- method 1 is applied preferentially over method 2. That is, CORESET is preferentially selected based on the minimum monitoring period set in the search space (set) (that is, method 1 is applied first), but method 2 is applied to CORESETs having the same minimum monitoring period set in the search space (set).
- Method 3 may be commonly applied to RLM RS selection and BFD RS selection. For example, when two RSs are included in the activated TCI state for PDCCH reception, the UE expects one RS to have QCL-Type D, and sets the RS to QCL-Type D for RLM. It is possible to use the RS having (ie, method 3 applied). Here, the UE may not expect both RSs to have QCL-Type D.
- the BFD-RS set may include an RS index with QCL-Type D configuration for the corresponding TCI state.
- the UE may preferentially select the RS index with the QCL-Type D configuration.
- the maximum number of SSBs determined by the frequency range of the cell may be determined by the frequency range of the cell, subcarrier spacing (SCS), FDD/TDD, whether shared spectrum access is applied, etc.
- the N LR-RLM value which is the maximum number of RSs that can be set for BFD and RLM purposes, may be determined.
- up to two RSs among the N LR-RLM RSs may be used for BFD purposes, and up to N RLM RSs may be used for RLM purposes.
- the methods 1 and 2 are applied to the case where the L max value is 4. And, since RLM is performed only in SpCell, only up to two BFD RSs can be configured/applied in SCell. In case of basic BFR operation or improved BFR operation, the maximum number of BFD RSs supported by the UE for each CC/BWP is 2 it's a dog Therefore, when three or more CORESETs are set for each CC/BWP, method 1 and method 2 (or another method) may be applied, but since the base station can implement up to two TCI state/QCL type-D RSs, BFD -RS selection method may be further discussed.
- a plurality of CORESET pools are supported, and the total number of CORESETs configurable for the UE is increased.
- a method in which a plurality of TRPs cooperatively transmit PDCCH/DCI may be applied to improve reliability of the PDCCH.
- a plurality of TCI state/QCL type-D RSs may be activated in a single CORESET.
- a linkage may be established between a plurality of CORESETs/search spaces (sets). In this case, the CORESET/search spaces (sets) in which the linkage is configured may repeatedly transmit the same DCI.
- the UE monitors the TCI state/QCL type-D RS of the CORESET(s) configured to perform the BFD/RLM operation. Should be. Accordingly, there is a problem that an increase in the number of CORESETs and/or the number of TCI/QCL Type-D RSs of CORESET may cause an increase in the number of RSs that the UE needs to monitor for BFD/RLM.
- the terminal uses a plurality of methods to describe the maximum number of RSs that the terminal can support for BFD purposes (or RLM purposes).
- One or more of (Method 1 to Method 4) may be used to report to the base station.
- the terminal may report the maximum number of RSs that can be supported for BFD use (or RLM use) to the base station as terminal capability information.
- the UE may report to the base station the maximum number of RSs that the UE can support for BFD purposes (and/or RLM purposes) for each CORESET pool/group (Method 1).
- the UE may report to the base station the maximum number of RSs that the UE can support for the BFD purpose (and/or RLM purpose) for the entire CORESET pool/group (Method 2).
- the UE reports the maximum number of CORESETs (having a different TCI state or QCL type-D RS) that the UE can support for BFD usage (and/or RLM usage) for each CORESET pool/group, and BFD usage per CORESET (and / or RLM purpose), the maximum number of TCI states/RSs (eg, 1 or 2) that the terminal can support may be reported to the base station (method 3).
- the UE reports the maximum number of CORESETs (having a different TCI state or QCL type-D RS) that the UE can support for BFD purposes (and/or RLM purposes) for the entire CORESET pool/group, and BFD usage per CORESET (and/or RLM purpose), the maximum number of TCI states/RSs (eg, 1 or 2) that the UE can support may be reported to the base station (Method 4).
- Methods 1 to 4 The plurality of methods (Methods 1 to 4) described above may be used together with each other.
- Method 1 and Method 2 may be used together. That is, the terminal uses the maximum number of RSs that the terminal can support for BFD use (and/or RLM use) for each CORESET pool/group, and the terminal for BFD use (and/or RLM use) for the entire CORESET pool/group. The maximum number of RSs that can be supported may be reported to the base station.
- some or all of the values exemplified in the plurality of methods may be predefined (or prescribed) values rather than values reported as supportable by the terminal. That is, a specific UE may be defined to support RS of a predefined value for BFD purpose and/or RLM purpose.
- the specific terminal supports the M-TRP-related method (eg, multiple CORESET pool / group, TRP-specific BFR method, CORESET in which a plurality of TCI states are set, PDCCH SFN transmission method, etc.) It may mean a terminal, but is not limited thereto.
- BFD usage per CORESET may be predefined (or prescribed) to support up to two TCI states / RS.
- the terminal has a value for a specific or single CC/BWP, and/or a value for a cell group (in a dual connectivity environment), and / or a value for the entire cell (eg, per UE) may be reported.
- the terminal in a specific CC / BWP and / or in a specific cell group and / or in the entire cell, the maximum number of RSs that the terminal can support for BFD use for each CORESET pool / group. It can be reported to the base station.
- the burden of a theoretical (hypothetical) BLER calculation for the BFD RS (and/or RLM RS) of the terminal may be increased.
- the UE may report a value supported by the UE (eg, the number of BFD/RLM RSs supported by the UE, etc.) to the eNB by using at least one of the plurality of methods (Methods 1 to 4). Accordingly, the base station may configure the BFD/RLM RS for the terminal according to the reported value.
- the UE can expect that the BFD/RLM RS of a value exceeding the reported value is not set (in units of a specific cell and/or a plurality of cells).
- the UE is Some or all of the rules may be applied to select CORESET(s) and TCI(s) to be included as BFD-RS (or BFD-RS set) (in a specific CORESET pool/group).
- the specific value may mean the total number of CORESETs set for the terminal and/or the total number of TCI states set in the CORESETs and/or the total number of TCI states set in the specific CORESET.
- the maximum value supported by the UE in relation to the BFD and/or RLM is the maximum number of BFD-RS resources per BFD-RS set supported by the UE, and/or one or more BFDs configured for each CC/BWP supported by the UE. It may include, but is not limited to, the total number of BFD-RS resources that can be included in the -RS set.
- the UE may select CORESET based on the number of configured TCI states (Rule 1).
- the UE may select a CORESET to be included in the BFD-RS (or BFD-RS set) according to the number of TCI states set among one or more CORESETs included in a specific CORESET pool/group.
- the UE may preferentially select a CORESET having a large number of set TCI states (from among CORESETs included in a specific CORESET pool/group) (Rule 1-1).
- the number of TCI states set in a specific CORESET is greater than the number of TCI states set in other CORESETs, the PDCCH included in the specific CORESET may be more important from the viewpoint of reliability. Accordingly, the UE may preferentially select a specific CORESET in which a large number of TCI states are set.
- the UE may preferentially select a CORESET with a small number of configured TCI states (from among CORESETs included in a specific CORESET pool/group) (Rule 1-2). Since transmission of the PDCCH may be successful only for a primary or specific TRP/panel/beam, the UE may preferentially select a CORESET in which a small number of TCI states are configured.
- the UE may apply rule 1-1, rule 1-2, or a rule not giving priority according to the number of TCI states according to a predefined condition.
- the predefined condition is a PDCCH transmission method (eg, SFN, TDM, SDM, FDM) of a CORESET in which a plurality of TCIs are configured (or a search space set belonging to a CORESET in which a plurality of TCI states are configured) or the PDCCH It may include whether or not there is a CORESET/search space set to which the transmission method is applied, but is not limited thereto.
- the UE may select CORESET based on whether there is a linkage between CORESET/search space sets (Rule 2).
- the UE may select a CORESET to be included in a BFD-RS (or a BFD-RS set) when a linkage exists among one or more CORESETs included in a specific CORESET pool/group.
- linkage refers to a connection between CORESET/search space sets configured for repeated transmission of the same DCI.
- a CORESET in which a linkage exists may be an important CORESET from a reliability point of view, and the terminal is a CORESET in which a linkage exists (or a CORESET including a search space in which a linkage exists) can be selected preferentially (Rule 2-1).
- the UE since transmission of the PDCCH may be successful only for a primary or a specific TRP/panel/beam, the UE has a CORESET (or linkage) in which a linkage does not exist.
- CORESET including a search space that does not exist can be preferentially selected (Rule 2-2).
- the UE may apply a rule that does not give priority according to the existence of a rule 1-2, a rule 2-2, or a linkage according to a predefined condition.
- the predefined condition is whether there is a PDCCH transmission method (eg, SFN, TDM, SDM, FDM) of linked CORESET/search space sets or a CORESET/search space set to which the PDCCH transmission method is applied. It may include whether or not, but is not limited thereto.
- the UE may select CORESET according to the transmission type (or method) of the CORESET/search space set (where a plurality of TCI states are set) (rule 3).
- the UE when selecting a specific CORESET from among a plurality of CORESETs in which the same number of TCI states are set, transmits a PDCCH transmission method (eg, SFN, TDM, SDM, FDM) of CORESET (or a search space set belonging to CORESET). ) or a specific CORESET may be selected based on whether a CORESET/search space set to which the PDCCH transmission method is applied exists.
- a PDCCH transmission method eg, SFN, TDM, SDM, FDM
- the UE may select CORESET according to the period (eg, monitoring period, etc.) of the search space (set) included in the CORESET (Rule 4).
- the UE may preferentially select a CORESET having the shortest search space set period (eg, monitoring period) among a plurality of CORESETs included in a specific CORESET pool/group (like the RLM RS selection method).
- a CORESET having the shortest search space set period eg, monitoring period
- the UE may preferentially select a CORESET having the shortest search space set period (eg, monitoring period) among a plurality of CORESETs included in a specific CORESET pool/group (like the RLM RS selection method).
- the UE may select a CORESET according to the CORESET ID (rule 5).
- the UE may preferentially select a CORESET having a high CORESET ID from among a plurality of CORESETs included in a specific CORESET pool/group (like the RLM RS selection method).
- this is only an embodiment, and the UE may preferentially select a CORESET having a low CORESET ID from among a plurality of CORESETs included in a specific CORESET pool/group.
- the UE may select CORESET according to the CORESET pool/group ID (Rule 6).
- the UE may preferentially select the included CORESET(s) according to a specific CORESET pool/group ID.
- the UE may select a TCI state according to the order of the plurality of TCI states (rule 7).
- the UE may select a TCI state using a predefined rule (eg, a rule for selecting the first N TCI states from among a plurality of TCI states) (Rule 7-1).
- a predefined rule eg, a rule for selecting the first N TCI states from among a plurality of TCI states
- the terminal may select the TCI state according to the order set/indicated by the base station (Rule 7-2).
- the base station may set, for the terminal, which TCI state to select first among the first TCI state or the second TCI state.
- rules 7-1 and 7-2, etc., among a plurality of TCI states belonging to a specific CORESET may be a rule for selecting a specific TCI state from the TCI state to be included as a BFD-RS (or BFD-RS set) for a specific TRP (eg, CORESET pool/group).
- rules 7-1 and 7-2 may be rules for selecting (ie, preferentially selecting) a specific TCI state among TCI states included in each BFD-RS set. That is, the rules 7-1 and 7-2 are a rule for selecting a specific TCI status from among TCI status #0 and TCI status #3 and/or a rule for selecting a specific TCI status from among TCI status #1 and TCI status #2. can be
- the UE may select a specific RS in the TCI state according to the QCL parameter/type (Rule 8).
- the UE may preferentially select a QCL type-D RS for a beam-related QCL parameter among the plurality of RSs. .
- BFD/RLM RS is preferentially selected for a specific CC/BWP rules may be required.
- Rules 9 and 10 which will be described later, relate to rules for preferentially selecting a specific CC/BWP in a multi-CC operating environment.
- the UE may select a specific CC/BWP according to the type/property of the CC/BWP (Rule 9).
- Rule 9 is a rule for preferentially selecting a specific CC/BWP according to the type or nature of the CC/BWP.
- rule 9 may include a rule for preferentially selecting a PCell or a PSCell over an SCell or a rule for preferentially selecting a PCell over a PScell.
- the UE may select a specific CC/BWP according to the ID of the CC/BWP (Rule 10).
- Rule 10 is a rule for preferentially selecting a specific CC/BWP according to the ID of the CC/BWP.
- rule 10 may include a rule for preferentially selecting a CC/BWP having a low ID or a high ID.
- the terminal may use/apply at least one rule among the plurality of rules (rule 1 to rule 10) described above, and whether a rule is preferentially applied among the plurality of rules may be additionally defined.
- a rule to select CC/BWP (Rule 9 and Rule 10), a rule to select a CORESET within CC/BWP (Rule 1 to Rule 6), a rule to select a TCI state within a CORESET (Rule 7) , a rule (rule 8) for selecting an RS in the TCI state may be applied to the UE.
- rule 9 may be applied preferentially to CC/BWP selection, and then rule 10 may be applied.
- rules 4,5 may be applied in order after rule 1/2/3 is preferentially applied to CORESET selection, but is not limited thereto, and after rule 4 is applied, rule 1/2/3 and rule 5 order can be applied as
- rule 1 to rule 10 The order of application of the above-described plurality of rules (rule 1 to rule 10) is only an example, and each rule may be applied in various orders.
- the above-mentioned rules and the order in which the rules are applied may be predefined or may be set/indicated by the base station for the terminal.
- FIG. 8 is a diagram for explaining a beam failure recovery operation of a terminal according to an embodiment of the present disclosure.
- the terminal may transmit capability information including the maximum number of BFD-RSs per beam failure detection-reference signal (BFD-RS) set supported by the terminal to the base station (S810) . That is, the capability information reported from the terminal to the base station may include the maximum number of BFD-RSs per one BFD-RS set supported by the terminal.
- BFD-RS beam failure detection-reference signal
- the BFD-RS may include at least one of a CSI-RS and a synchronization signal block (SSB), but is not limited thereto.
- SSB synchronization signal block
- a BFD-RS set may be expressed as a BFD-RS resource set, and a BFD-RS may be expressed as a BFD-RS resource.
- the terminal may receive configuration information including information related to at least one BFD-RS set from the base station (S820).
- each of the at least one BFD-RS set may include the maximum number of BFD-RSs included in the capability information transmitted to the base station or less.
- the information related to at least one BFD-RS set may include configuration information on one or more TCI states configured for a specific CORESET.
- a BFD-RS to be included in the BFD-RS set may be implicitly configured based on one or more TCI states configured for a specific CORESET.
- information related to at least one BFD-RS set may include information indicating an RS (or RS resource) included in each BFD-RS set. That is, the RS (or RS resource) included in the BFD-RS set may be explicitly indicated (or configured) by the base station.
- Each of the at least one BFD-RS set may correspond to one or more CORESET groups.
- the at least one BFD-RS set may include a first BFD-RS set and a second BFD-RS set.
- the first BFD-RS set may correspond to the first CORESET group
- the second BFD-RS set may correspond to the second CORESET group.
- the CORESET group may mean a CORESET pool introduced for multiple DCI-based M-TRP PDSCH transmission or a group including one or more CORESETs for a separate purpose.
- the CORESET group may correspond to the TRP.
- the first CORESET group may correspond to TRP 1
- the second CORESET group may correspond to TRP 2.
- One or more CORESETs may be included in a CORESET group.
- one or more transmission configuration indicators may be configured in CORESET.
- the TCI state may correspond to one or more RSs (or one RS set). That is, the TCI state may include information indicating one or more RSs having a QCL relationship.
- the ID of one or more RSs (or one RS set) corresponding to the TCI state is a quasi co-location (QCL) indication (eg, QCL type-D related to a spatial parameter) RS ( For example, CSI-RS, SSB, etc.) may be indicated/referenced.
- QCL quasi co-location
- RS with QCL relationship indicated by the TCI state may be referred to as "QCL source RS” or "QCL reference RS".
- the RS having the QCL relationship indicated by the TCI state may correspond to the BFD-RS.
- the number of TCI states set for at least one COREST included in the first CORESET group or the second CORESET group is the maximum number included in the capability information (ie, the maximum number of BFD-RSs)
- the BFD-RS corresponding to the TCI state to be included in the first BFD-RS set or the second BFD-RS set may be determined based on a monitoring period of a search space corresponding to each of at least one CORESET. .
- the BFD-RS corresponding to the TCI state set in the CORESET having the shortest monitoring period of the search space among at least one CORESET may be preferentially included in the first BFD-RS set or the second BFD-RS set.
- the UE may select CORESET according to the ascending order of the monitoring period of the corresponding search space.
- the UE preferentially selects (or determines) CORESETs in the order of the shortest monitoring period of the search space in at least one CORESET, and the BFD-RS corresponding to the TCI state set in the selected specific CORESET is the first BFD-RS set or the first BFD-RS set. 2 It can be determined to be included in the BFD-RS set.
- the BFD-RS to be included in the first BFD-RS set or the second BFD-RS set is A CORESET to which a corresponding TCI state is set may be determined based on an index value of the at least one CORESET.
- the UE selects the CORESET in which the TCI state corresponding to the BFD-RS to be included in the BFD-RS set is set based on the index value of each CORESET. can decide
- the BFD-RS corresponding to the TCI state set in the CORESET having the largest index value among at least one CORESET may be determined to be preferentially included in the first BFD-RS set or the second BFD-RS set. That is, the UE may determine the CORESET according to the descending order of the CORESET index values. The UE selects (or determines) CORESETs in the order of increasing index values from at least one CORESET, and the BFD-RS corresponding to the TCI state set in the selected specific CORESET is the first BFD-RS set or the second BFD-RS set may decide to include it.
- the BFD-RS corresponding to the TCI state set in the CORESET having the smallest index value among at least one CORESET is preferentially applied to the first BFD-RS set or the second BFD-RS set. may be determined to be included.
- the terminal may receive information setting/instructing a method of configuring a BFD-RS set from the base station.
- the UE transmits, from the base station, information that sets/instructs a method of determining a TCI state corresponding to a BFD-RS to be included in the BFD-RS set and/or a CORESET corresponding to the TCI state in an RRC message/MAC-CE/DCI can be received through
- the total number of BFD-RSs that can be included in the first BFD-RS set and the second BFD-RS set supported by the terminal, and/or The number of TCI states set for at least one CORESET included in the first CORESET group or the second CORESET group supported by the UE may be included.
- the UE performs a beam failure detection operation by detecting a beam failure instance (BFI) in the first BFD-RS set and/or the second BFD-RS set including the maximum number of BFD-RSs.
- BFI beam failure instance
- FIG. 9 is a diagram for explaining a beam failure recovery operation of a base station according to an embodiment of the present disclosure.
- the base station may transmit capability information including the maximum number of BFD-RSs per BFD-RS set supported by the terminal to the base station (S910).
- the capability information reported from the terminal to the base station may include the maximum number of BFD-RSs that can be included in one BFD-RS set supported by the terminal.
- the base station may transmit configuration information including information related to at least one BFD-RS set to the terminal (S920).
- the information related to at least one BFD-RS set may include configuration information on one or more TCI states configured for a specific CORESET.
- information related to at least one BFD-RS set may include information indicating an RS (or RS resource) included in each BFD-RS set.
- the base station may configure one or more BFD-RS sets including the maximum number of BFD-RSs included in the capability information received from the terminal for the terminal.
- the base station may transmit information setting/instructing a method of configuring a BFD-RS set to the terminal. For example, the base station transmits information that sets/instructs a method for determining a TCI state corresponding to a BFD-RS to be included in the BFD-RS set and/or a CORESET corresponding to the TCI state through an RRC message/MAC-CE/DCI. It can be transmitted to the terminal.
- the UE based on at least one of a CORESET ID and a monitoring period of a search space corresponding to CORESET, may be configured to include a TCI state and/or TCI corresponding to a BFD-RS to be included in the BFD-RS set.
- CORESET corresponding to the state may be determined. Since the related embodiment has been described in detail with reference to FIG. 8 , a redundant description will be omitted.
- the base station Based on detecting BFIs of a predetermined number or more in the first BFD-RS set and/or the second BFD-RS set including the maximum number of BFD-RSs or less based on the capability information in the terminal, the base station requests beam failure recovery from the terminal (beam failure request, BFRQ) may be received.
- the predetermined number of times may mean a value set by a higher layer parameter (eg, 'beamFailureInstanceMaxCount').
- the base station may transmit a response to the BFRQ to the terminal. For example, when the non-collision (contention-free) PRACH resource and preamble are received from the terminal as BFRQ, the base station sends a response including the uplink grant DCI included in the PDCCH masked with C-RNTI to the terminal can be sent to As another example, when a contention-free PRACH resource and a preamble are received from the terminal as BFRQ, the base station may transmit a response to the terminal using CORESET configured for a basic contention-free PRACH-based random access procedure.
- FIG. 10 is a diagram for explaining a signaling procedure of the network side and the terminal according to the present disclosure.
- 10 is an M-TRP situation to which the above-described examples of the present disclosure (eg, embodiment 1, embodiment 2, or a combination of one or more of detailed examples) can be applied, a network side and a terminal An example of signaling between (UE) is shown.
- the UE/network side is exemplary, and as described with reference to FIG. 11 , it may be substituted for various devices.
- 10 is for convenience of description, and does not limit the scope of the present disclosure. Also, some step(s) shown in FIG. 10 may be omitted depending on circumstances and/or settings.
- the above-described uplink transmission/reception operation, M-TRP related operation, etc. may be referred to or used.
- the network side may be a single base station including a plurality of TRPs, and may be a single cell including a plurality of TRPs.
- the network side may include a plurality of remote radio heads (RRHs)/remote radio units (RRUs).
- RRHs remote radio heads
- RRUs remote radio units
- an ideal/non-ideal backhaul may be configured between TRP 1 and TRP 2 constituting the network side.
- the following description is based on a plurality of TRPs, this may be equally extended and applied to transmission through a plurality of panels/cells, and may also be extended and applied to transmission through a plurality of RRHs/RRUs.
- TRP is a panel, an antenna array, a cell (eg, macro cell/small cell/ pico cell, etc.), TP (transmission point), base station (base station, gNB, etc.) may be replaced and applied.
- the TRP may be classified according to information (eg, CORESET index, ID) on the CORESET group (or CORESET pool). For example, when one terminal is configured to perform transmission and reception with a plurality of TRPs (or cells), this may mean that a plurality of CORESET groups (or CORESET pools) are configured for one terminal.
- the configuration of such a CORESET group (or CORESET pool) may be performed through higher layer signaling (eg, RRC signaling, etc.).
- the base station may mean a generic term for an object that transmits and receives data with the terminal.
- the base station may be a concept including one or more TPs (Transmission Points), one or more TRPs (Transmission and Reception Points), and the like.
- the TP and/or TRP may include a panel of the base station, a transmission and reception unit, and the like.
- the UE may report RLM/BFD related UE capability information to the network side in a method according to the above-described example (eg, embodiment 1, embodiment 2, or a combination of one or more of detailed examples) (S105) ).
- the terminal may receive configuration information for M-TRP-based transmission/reception through/using TRP 1 and/or TRP 2 from the network side (S110).
- the setting information may include information related to a network-side configuration (ie, TRP configuration), M-TRP-based transmission/reception related resource information (resource allocation), and the like.
- the configuration information may be transmitted through higher layer signaling (eg, RRC signaling, MAC-CE, etc.).
- RRC signaling e.g., RRC signaling, MAC-CE, etc.
- the setting information is predefined or set, the corresponding step may be omitted.
- the setting information is CORESET-related setting information (eg, ControlResourceSet IE) may include.
- the CORESET-related setting information may include a CORESET-related ID (eg, controlResourceSetID), an index of the CORESET pool for CORESET (eg, CORESETPoolIndex), time/frequency resource setting of CORESET, TCI information related to CORESET, etc.
- the setting information may include information related to RLM/BFR, etc.
- the TCI information related to the CORESET may be information about one or a plurality of TCI state(s) for each CORESET.
- the operation of the UE ( 100 or 200 in FIG. 11 ) of the above-described step S115 receiving the configuration information from the network side ( 200 or 100 in FIG. 11 ) may be implemented by the apparatus of FIG. 11 to be described below.
- the one or more processors 102 may control one or more transceivers 106 and/or one or more memories 104 to receive the configuration information, and the one or more transceivers 106 may receive the configuration information from the network side.
- the one or more processors 102 may control one or more transceivers 106 and/or one or more memories 104 to receive the configuration information, and the one or more transceivers 106 may receive the configuration information from the network side.
- the UE may receive a reference signal for RLM/BFD through/using TRPs from the network side (S115).
- RS 1/RS 2 for the RLM/BFD may be SSB/CSI-RS.
- the operation of the UE ( 100 or 200 in FIG. 11 ) of the above-described step S115 transmitting the reference signal to the network side ( 200 or 100 in FIG. 11 ) may be implemented by the apparatus of FIG. 11 to be described below.
- one or more processors 102 may control one or more transceivers 106 and/or one or more memories 104 to transmit the reference signal, and the one or more transceivers 106 may transmit the reference signal to a network side. can be transmitted
- the UE may perform RLM/BFD based on the RS 1 and/or RS 2 received through/using TRP 1 and/or TRP 2 from the network side (S120).
- the RLM/BFD operation may be performed based on the above-described embodiment (eg, embodiment 1, embodiment 2, or a combination of one or more of detailed examples thereof).
- the UE measures/estimates a theoretical (hypothetical) BLER based on the reception quality of RS 1 and/or RS 2, and can determine whether BF/out-of-synch/in-synch accordingly. have.
- both RS 1 and RS 2 are activated as the TCI state for a specific CORESET, the UE regards both RS 1 and RS 2 as RLM/BFD RS and performs RLM/BFD procedures, specific Only one RS is regarded as RLM/BFD RS and RLM/BFD procedures are performed, or both RSs are not regarded as RLM/BFD RS.
- Embodiment 2 or a combination of one or more of detailed examples thereof) may be determined (or performed).
- the operation of the UE (100 or 200 in FIG. 11 ) performing RLM/BFR in step S120 described above may be implemented by the apparatus of FIG. 11 below.
- one or more processors 102 may control one or more memories 104 and the like to perform the RLM/BFR operation.
- the UE may transmit a report (eg, BFRQ) for the RLM/BFR to the network side through/using TRP 1 and/or TRP2 (S125).
- a report eg, BFRQ
- the report on the RLM / BFR for TRP 1 eg, BFRQ, etc.
- the report on the RLM / BFR for TRP 2 eg, BFRQ, etc.
- the UE is configured to transmit a report (eg, BFRQ, etc.) for RLM / BFR to the representative TRP (eg, TRP 1), and report on RLM / BFR to another TRP (eg, TRP 2) (eg, BFRQ) etc.) transmission may be omitted.
- the UE may be configured to transmit a BFR report (eg, BFRQ, etc.) in the same TRP as the TRP in which the beam failure occurred.
- the UE may be configured to transmit a report on RLM/BFR (eg, BFRQ, etc.) in TRP rather than TRP in which beam failure occurs.
- the network side that has received a report/BFRQ for BF through/using TRP 1 and/or TRP 2 from the UE may transmit new RLM/BM/BFR-related RS information for beam recovery to the UE.
- the operation of the UE (100/200 in FIG. 11 ) of the above-described step S125 transmitting a report (eg, BFRQ, etc.) for RLM/BFR from the network side ( 100/200 in FIG. 11 ) will be described below. It may be implemented by the apparatus of FIG. 11 .
- the one or more processors 102 may control one or more transceivers 106 and/or one or more memories 104, etc. to transmit a report for RLM/BFR (eg, BFRQ, etc.), and one or more The transceiver 106 may transmit a report (eg, BFRQ, etc.) for RLM/BFR to the network side.
- the above-described network-side/UE signaling and embodiments are performed by the apparatus to be described with reference to FIG. 11 .
- the network side eg, TRP 1 / TRP 2
- the UE may correspond to the second device 200
- vice versa may be considered in some cases.
- the above-described network-side/UE signaling and operation may be performed on one or more processors (eg, 102, 202) of FIG. 11 .
- It may be stored in a memory (eg, one or more memories (eg, 104 , 204 ) of FIG. 11 in the form of an instruction/program (eg, instruction, executable code) for
- FIG. 11 illustrates a block diagram of a wireless communication device according to an embodiment of the present disclosure.
- the first device 100 and the second device 200 may transmit/receive radio signals through various radio access technologies (eg, LTE, NR).
- various radio access technologies eg, LTE, NR.
- the first device 100 includes one or more processors 102 and one or more memories 104 , and may further include one or more transceivers 106 and/or one or more antennas 108 .
- the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this disclosure.
- the processor 102 may process the information in the memory 104 to generate the first information/signal, and then transmit a wireless signal including the first information/signal through the transceiver 106 .
- the processor 102 may receive the radio signal including the second information/signal through the transceiver 106 , and then store the information obtained from the signal processing of the second information/signal in the memory 104 .
- the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102 .
- the memory 104 may provide instructions for performing some or all of the processes controlled by the processor 102 , or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this disclosure. may store software code including
- the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
- a wireless communication technology eg, LTE, NR
- the transceiver 106 may be coupled with the processor 102 and may transmit and/or receive wireless signals via one or more antennas 108 .
- the transceiver 106 may include a transmitter and/or a receiver.
- the transceiver 106 may be used interchangeably with a radio frequency (RF) unit.
- RF radio frequency
- a device may mean a communication modem/circuit/chip.
- the second device 200 includes one or more processors 202 , one or more memories 204 , and may further include one or more transceivers 206 and/or one or more antennas 208 .
- the processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this disclosure.
- the processor 202 may process the information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206 .
- the processor 202 may receive the radio signal including the fourth information/signal through the transceiver 206 , and then store information obtained from signal processing of the fourth information/signal in the memory 204 .
- the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202 .
- the memory 204 may provide instructions for performing some or all of the processes controlled by the processor 202 , or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this disclosure. may store software code including
- the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
- a wireless communication technology eg, LTE, NR
- the transceiver 206 may be coupled to the processor 202 and may transmit and/or receive wireless signals via one or more antennas 208 .
- the transceiver 206 may include a transmitter and/or a receiver.
- the transceiver 206 may be used interchangeably with an RF unit.
- a device may mean a communication modem/circuit/chip.
- one or more protocol layers may be implemented by one or more processors 102 , 202 .
- one or more processors 102 , 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
- the one or more processors 102, 202 may be configured to process one or more PDU (Protocol Data Unit) and/or one or more SDU (Service Data Unit) according to the description, function, procedure, proposal, method and/or operation flowchart disclosed in this disclosure.
- PDU Protocol Data Unit
- SDU Service Data Unit
- One or more processors 102 , 202 may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or flow charts disclosed in this disclosure.
- the one or more processors 102, 202 transmit a signal (eg, a baseband signal) including PDUs, SDUs, messages, control information, data or information according to the functions, procedures, proposals and/or methods disclosed in the present disclosure. generated and provided to one or more transceivers (106, 206).
- the one or more processors 102 , 202 may receive signals (eg, baseband signals) from one or more transceivers 106 , 206 , the descriptions, functions, procedures, proposals, methods and/or methods disclosed in this disclosure.
- PDU, SDU, message, control information, data or information may be obtained according to the operation flowcharts.
- One or more processors 102 , 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
- One or more processors 102 , 202 may be implemented by hardware, firmware, software, or a combination thereof.
- ASICs Application Specific Integrated Circuits
- DSPs Digital Signal Processors
- DSPDs Digital Signal Processing Devices
- PLDs Programmable Logic Devices
- FPGAs Field Programmable Gate Arrays
- the descriptions, functions, procedures, proposals, methods, and/or flowcharts of operations disclosed in this disclosure may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, and the like.
- the descriptions, functions, procedures, proposals, methods, and/or flow charts disclosed in this disclosure provide firmware or software configured to perform one or more of the processors 102 , 202 , or stored in one or more memories 104 , 204 . It may be driven by the above processors 102 and 202 .
- the descriptions, functions, procedures, proposals, methods, and/or flowcharts of operations disclosed in this disclosure may be implemented using firmware or software in the form of code, instructions, and/or a set of instructions.
- One or more memories 104 , 204 may be coupled to one or more processors 102 , 202 and may store various forms of data, signals, messages, information, programs, code, instructions, and/or instructions.
- the one or more memories 104 and 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof.
- One or more memories 104 , 204 may be located inside and/or external to one or more processors 102 , 202 .
- one or more memories 104 , 204 may be coupled to one or more processors 102 , 202 through various technologies, such as wired or wireless connections.
- One or more transceivers 106 , 206 may transmit user data, control information, radio signals/channels, etc. referred to in the methods and/or operational flowcharts of the present disclosure, to one or more other devices.
- One or more transceivers 106, 206 may receive user data, control information, radio signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods, and/or flow charts, etc. disclosed in this disclosure from one or more other devices. have.
- one or more transceivers 106 , 206 may be coupled to one or more processors 102 , 202 and may transmit and receive wireless signals.
- one or more processors 102 , 202 may control one or more transceivers 106 , 206 to transmit user data, control information, or wireless signals to one or more other devices.
- one or more processors 102 , 202 may control one or more transceivers 106 , 206 to receive user data, control information, or wireless signals from one or more other devices.
- one or more transceivers 106 , 206 may be coupled to one or more antennas 108 , 208 , and the one or more transceivers 106 , 206 may be connected via one or more antennas 108 , 208 to the descriptions, functions, and functions disclosed in this disclosure. , procedures, proposals, methods and/or operation flowcharts, etc.
- one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
- the one or more transceivers 106, 206 convert the received radio signal/channel, etc. from the RF band signal to process the received user data, control information, radio signal/channel, etc. using the one or more processors 102, 202. It can be converted into a baseband signal.
- One or more transceivers 106 and 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 and 202 from baseband signals to RF band signals.
- one or more transceivers 106 , 206 may include (analog) oscillators and/or filters.
- the scope of the present disclosure includes software or machine-executable instructions (eg, operating system, application, firmware, program, etc.) that cause operation according to the method of various embodiments to be executed on a device or computer, and such software or and non-transitory computer-readable media in which instructions and the like are stored and executed on a device or computer.
- Instructions that can be used to program a processing system to perform features described in this disclosure may be stored on/in a storage medium or computer-readable storage medium, and may be viewed using a computer program product including such storage medium.
- Features described in the disclosure may be implemented.
- the storage medium may include, but is not limited to, high-speed random access memory such as DRAM, SRAM, DDR RAM or other random access solid state memory device, one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or may include non-volatile memory, such as other non-volatile solid state storage devices.
- the memory optionally includes one or more storage devices located remotely from the processor(s).
- the memory or alternatively the non-volatile memory device(s) within the memory includes a non-transitory computer-readable storage medium.
- Features described in this disclosure may be stored on any one of the machine readable media to control hardware of a processing system, and cause the processing system to interact with other mechanisms that utilize results according to embodiments of the present disclosure. It may be incorporated into software and/or firmware.
- Such software or firmware may include, but is not limited to, application code, device drivers, operating systems, and execution environments/containers.
- the wireless communication technology implemented in the devices 100 and 200 of the present disclosure may include a narrowband Internet of Things for low-power communication as well as LTE, NR, and 6G.
- NB-IoT technology may be an example of LPWAN (Low Power Wide Area Network) technology, may be implemented in standards such as LTE Cat NB1 and/or LTE Cat NB2, and is limited to the above-mentioned names not.
- the wireless communication technology implemented in the devices 100 and 200 of the present disclosure may perform communication based on LTE-M technology.
- the LTE-M technology may be an example of an LPWAN technology, and may be called by various names such as enhanced machine type communication (eMTC).
- eMTC enhanced machine type communication
- LTE-M technology is 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL (non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine It may be implemented in at least one of various standards such as Type Communication, and/or 7) LTE M, and is not limited to the above-described name.
- the wireless communication technology implemented in the devices 100 and 200 of the present disclosure is at least one of ZigBee, Bluetooth, and Low Power Wide Area Network (LPWAN) in consideration of low power communication. It may include one, and is not limited to the above-mentioned names.
- the ZigBee technology can create PAN (personal area networks) related to small/low-power digital communication based on various standards such as IEEE 802.15.4, and can be called by various names.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Databases & Information Systems (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
무선 통신 시스템에서 빔 실패 복구를 수행하는 방법 및 장치가 개시된다. 본 개시의 일 실시예에 따른 단말이 빔 실패 복구를 수행하는 방법은, 상기 단말이 지원하는 BFD-RS 세트 별로 포함될 수 있는 BFD-RS의 최대 개수를 포함하는 능력 정보를 기지국으로 전송하는 단계 및 적어도 하나의 BFD-RS 세트와 관련된 정보가 포함된 설정 정보를 상기 기지국으로부터 수신하는 단계를 포함하고, 상기 적어도 하나의 BFD-RS 세트 각각은, 상기 최대 개수 이하의 BFD-RS 자원을 포함할 수 있다.
Description
본 개시는 무선 통신 시스템에 관한 것으로서, 보다 상세하게 무선 통신 시스템에서 빔 실패 복구 방법 및 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스에 대한 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 개시의 기술적 과제는, 무선 통신 시스템에서 빔 실패 복구를 수행하는 방법 및 장치를 제공하는 것이다.
또한, 본 개시의 추가적인 기술적 과제는, 단말이 지원하는 빔 실패 검출 참조 신호의 개수에 기초하여 빔 실패 복구를 수행하는 방법 및 장치를 제공하는 것이다.
본 개시에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 개시의 일 실시예로, 무선 통신 시스템에서 단말이 빔 실패 복구(beam failure recovery, BFR)를 수행하는 방법에 있어서, 상기 방법은: 상기 단말이 지원하는 빔 실패 검출-참조 신호(beam failure detection-reference signal, BFD-RS) 세트 별로 포함될 수 있는 BFD-RS 의 최대 개수를 포함하는 능력(capability) 정보를 기지국으로 전송하는 단계; 및 적어도 하나의 BFD-RS 세트와 관련된 정보가 포함된 설정 정보를 상기 기지국으로부터 수신하는 단계를 포함하고, 상기 적어도 하나의 BFD-RS 세트 각각은, 상기 최대 개수 이하의 BFD-RS 자원을 포함할 수 있다.
본 개시의 또 다른 실시예로, 무선 통신 시스템에서 기지국이 빔 실패 복구(beam failure recovery, BFR)를 수행하는 방법에 있어서, 상기 방법은: 상기 단말이 지원하는 빔 실패 검출-참조 신호(beam failure detection-reference signal, BFD-RS) 세트 별로 포함될 수 있는 BFD-RS 의 최대 개수를 포함하는 능력(capability) 정보를 단말로부터 수신하는 단계; 및 적어도 하나의 BFD-RS 세트와 관련된 정보가 포함된 설정 정보를 상기 단말로 전송하는 단계를 포함하고, 상기 적어도 하나의 BFD-RS 세트 각각은, 상기 최대 개수 이하의 BFD-RS 자원을 포함할 수 있다.
본 개시의 일 실시예에 따르면, 무선 통신 시스템에서 빔 실패 복구를 수행하는 방법 및 장치가 제공될 수 있다.
본 개시의 일 실시예에 따르면, 단말이 지원하는 빔 실패 검출 참조 신호의 개수에 기초하여 빔 실패 복구를 수행하는 방법 및 장치가 제공될 수 있다.
본 개시의 일 실시예에 따르면, 복수의 전송 설정 지시자가 설정된 제어 자원 세트가 설정된 주파수 대역에서의 빔 실패 복구 동작을 지원할 수 있다.
본 개시에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 개시에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 개시에 대한 실시예를 제공하고, 상세한 설명과 함께 본 개시의 기술적 특징을 설명한다.
도 1은 본 개시가 적용될 수 있는 무선 통신 시스템의 구조를 예시한다.
도 2는 본 개시가 적용될 수 있는 무선 통신 시스템에서 프레임 구조를 예시한다.
도 3은 본 개시가 적용될 수 있는 무선 통신 시스템에서 자원 그리드(resource grid)를 예시한다.
도 4는 본 개시가 적용될 수 있는 무선 통신 시스템에서 물리 자원 블록(physical resource block)을 예시한다.
도 5는 본 개시가 적용될 수 있는 무선 통신 시스템에서 슬롯 구조를 예시한다.
도 6은 본 개시가 적용될 수 있는 무선 통신 시스템에서 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송수신 방법을 예시한다.
도 7은 본 개시가 적용될 수 있는 무선 통신 시스템에서 다중 TRP 전송 방식을 예시한다.
도 8은 본 개시의 일 실시예에 따른 단말의 빔 실패 복구 동작을 설명하기 위한 도면이다.
도 9은 본 개시의 일 실시예에 따른 기지국의 빔 실패 복구 동작을 설명하기 위한 도면이다.
도 10는 본 개시의 일 실시예에 따른 네트워크 측 및 단말의 시그널링 절차를 설명하기 위한 도면이다.
도 11은 본 개시의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
이하, 본 개시에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 개시의 예시적인 실시형태를 설명하고자 하는 것이며, 본 개시가 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 개시의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 개시가 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 개시의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 개시에 있어서, 어떤 구성요소가 다른 구성요소와 "연결", "결합" 또는 "접속"되어 있다고 할 때, 이는 직접적인 연결관계 뿐만 아니라, 그 사이에 또 다른 구성요소가 존재하는 간접적인 연결관계도 포함할 수 있다. 또한 본 개시에서 용어 "포함한다" 또는 "가진다"는 언급된 특징, 단계, 동작, 요소 및/또는 구성요소의 존재를 특정하지만, 하나 이상의 다른 특징, 단계, 동작, 요소, 구성요소 및/또는 이들의 그룹의 존재 또는 추가를 배제하지 않는다.
본 개시에 있어서, "제 1", "제 2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용되고 구성요소들을 제한하기 위해서 사용되지 않으며, 특별히 언급되지 않는 한 구성요소들 간의 순서 또는 중요도 등을 한정하지 않는다. 따라서, 본 개시의 범위 내에서 일 실시예에서의 제 1 구성요소는 다른 실시예에서 제 2 구성요소라고 칭할 수도 있고, 마찬가지로 일 실시예에서의 제 2 구성요소를 다른 실시예에서 제 1 구성요소라고 칭할 수도 있다.
본 개시에서 사용된 용어는 특정 실시예에 대한 설명을 위한 것이며 청구범위를 제한하려는 것이 아니다. 실시예의 설명 및 첨부된 청구범위에서 사용되는 바와 같이, 단수 형태는 문맥상 명백하게 다르게 나타내지 않는 한 복수 형태도 포함하도록 의도한 것이다. 본 개시에 사용된 용어 "및/또는"은 관련된 열거 항목 중의 하나를 지칭할 수도 있고, 또는 그 중의 둘 이상의 임의의 및 모든 가능한 조합을 지칭하고 포함하는 것을 의미한다. 또한, 본 개시에서 단어들 사이의 "/"는 달리 설명되지 않는 한 "및/또는"과 동일한 의미를 가진다.
본 개시는 무선 통신 네트워크 또는 무선 통신 시스템을 대상으로 설명하며, 무선 통신 네트워크에서 이루어지는 동작은 해당 무선 통신 네트워크를 관할하는 장치(예를 들어 기지국)에서 네트워크를 제어하고 신호를 송신(transmit) 또는 수신(receive)하는 과정에서 이루어지거나, 해당 무선 네트워크에 결합한 단말에서 네트워크와의 또는 단말 간의 신호를 송신 또는 수신하는 과정에서 이루어질 수 있다.
본 개시에서, 채널을 송신 또는 수신한다는 것은 해당 채널을 통해서 정보 또는 신호를 송신 또는 수신한다는 의미를 포함한다. 예를 들어, 제어 채널을 송신한다는 것은, 제어 채널을 통해서 제어 정보 또는 신호를 송신한다는 것을 의미한다. 유사하게, 데이터 채널을 송신한다는 것은, 데이터 채널을 통해서 데이터 정보 또는 신호를 송신한다는 것을 의미한다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다. 기지국은 제1 통신 장치로, 단말은 제2 통신 장치로 표현될 수도 있다. 기지국(BS: Base Station)은 고정국(fixed station), Node B, eNB(evolved-NodeB), gNB(Next Generation NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), 네트워크(5G 네트워크), AI(Artificial Intelligence) 시스템/모듈, RSU(road side unit), 로봇(robot), 드론(UAV: Unmanned Aerial Vehicle), AR(Augmented Reality)장치, VR(Virtual Reality)장치 등의 용어에 의해 대체될 수 있다. 또한, 단말(Terminal)은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치, 차량(vehicle), RSU(road side unit), 로봇(robot), AI(Artificial Intelligence) 모듈, 드론(UAV: Unmanned Aerial Vehicle), AR(Augmented Reality)장치, VR(Virtual Reality)장치 등의 용어로 대체될 수 있다.
이하의 기술은 CDMA, FDMA, TDMA, OFDMA, SC-FDMA 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)/LTE-A pro는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A/LTE-A pro의 진화된 버전이다.
설명을 명확하게 하기 위해, 3GPP 통신 시스템(예를 들어, LTE-A, NR)을 기반으로 설명하지만 본 개시의 기술적 사상이 이에 제한되는 것은 아니다. LTE는 3GPP TS(Technical Specification) 36.xxx Release 8 이후의 기술을 의미한다. 세부적으로, 3GPP TS 36.xxx Release 10 이후의 LTE 기술은 LTE-A로 지칭되고, 3GPP TS 36.xxx Release 13 이후의 LTE 기술은 LTE-A pro로 지칭된다. 3GPP NR은 TS 38.xxx Release 15 이후의 기술을 의미한다. LTE/NR은 3GPP 시스템으로 지칭될 수 있다. "xxx"는 표준 문서 세부 번호를 의미한다. LTE/NR은 3GPP 시스템으로 통칭될 수 있다. 본 개시의 설명에 사용된 배경기술, 용어, 약어 등에 관해서는 본 개시 이전에 공개된 표준 문서에 기재된 사항을 참조할 수 있다. 예를 들어, 다음 문서를 참조할 수 있다.
3GPP LTE의 경우, TS 36.211(물리 채널들 및 변조), TS 36.212(다중화 및 채널 코딩), TS 36.213(물리 계층 절차들), TS 36.300(전반적인 설명), TS 36.331(무선 자원 제어)을 참조할 수 있다.
3GPP NR의 경우, TS 38.211(물리 채널들 및 변조), TS 38.212(다중화 및 채널 코딩), TS 38.213(제어를 위한 물리 계층 절차들), TS 38.214(데이터를 위한 물리 계층 절차들), TS 38.300(NR 및 NG-RAN(New Generation-Radio Access Network) 전반적인 설명), TS 38.331(무선 자원 제어 프로토콜 규격)을 참조할 수 있다.
본 개시에서 사용될 수 있는 용어들의 약자는 다음과 같이 정의된다.
- BM: 빔 관리(beam management)
- CQI: 채널 품질 지시자(channel quality indicator)
- CRI: 채널 상태 정보 - 참조 신호 자원 지시자(channel state information - reference signal resource indicator)
- CSI: 채널 상태 정보(channel state information)
- CSI-IM: 채널 상태 정보 - 간섭 측정(channel state information - interference measurement)
- CSI-RS: 채널 상태 정보 - 참조 신호(channel state information - reference signal)
- DMRS: 복조 참조 신호(demodulation reference signal)
- FDM: 주파수 분할 다중화(frequency division multiplexing)
- FFT: 고속 푸리에 변환(fast Fourier transform)
- IFDMA: 인터리빙된 주파수 분할 다중 액세스(interleaved frequency division multiple access)
- IFFT: 역 고속 푸리에 변환(inverse fast Fourier transform)
- L1-RSRP: 제1 레이어 참조 신호 수신 파워(Layer 1 reference signal received power)
- L1-RSRQ: 제1 레이어 참조 신호 수신 품질(Layer 1 reference signal received quality)
- MAC: 매체 액세스 제어(medium access control)
- NZP: 논-제로 파워(non-zero power)
- OFDM: 직교 주파수 분할 다중화(orthogonal frequency division multiplexing)
- PDCCH: 물리 하향링크 제어 채널(physical downlink control channel)
- PDSCH: 물리 하향링크 공유 채널(physical downlink shared channel)
- PMI: 프리코딩 행렬 지시자(precoding matrix indicator)
- RE: 자원 요소(resource element)
- RI: 랭크 지시자(Rank indicator)
- RRC: 무선 자원 제어(radio resource control)
- RSSI: 수신 신호 강도 지시자(received signal strength indicator)
- Rx: 수신(Reception)
- QCL: 준-동일 위치(quasi co-location)
- SINR: 신호 대 간섭 및 잡음비(signal to interference and noise ratio)
- SSB (또는 SS/PBCH block): 동기 신호 블록(프라이머리 동기 신호(PSS: primary synchronization signal), 세컨더리 동기 신호(SSS: secondary synchronization signal) 및 물리 방송 채널(PBCH: physical broadcast channel)을 포함)
- TDM: 시간 분할 다중화(time division multiplexing)
- TRP: 전송 및 수신 포인트(transmission and reception point)
- TRS: 트래킹 참조 신호(tracking reference signal)
- Tx: 전송(transmission)
- UE: 사용자 장치(user equipment)
- ZP: 제로 파워(zero power)
시스템 일반
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라, 기존의 무선 액세스 기술(radio access technology, RAT)에 비해 향상된 모바일 브로드밴드(mobile broadband) 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브(massive) MTC(machine type communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(enhanced mobile broadband communication), Mmtc(massive MTC), URLLC (utra-reliable and low latency communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 개시에서는 편의상 해당 기술을 NR이라고 부른다. NR은 5G RAT의 일례를 나타낸 표현이다.
NR을 포함하는 새로운 RAT 시스템은 OFDM 전송 방식 또는 이와 유사한 전송 방식을 사용한다. 새로운 RAT 시스템은 LTE의 OFDM 파라미터들과는 다른 OFDM 파라미터들을 따를 수 있다. 또는 새로운 RAT 시스템은 기존의 LTE/LTE-A의 뉴머롤로지(numerology)를 그대로 따르나 더 큰 시스템 대역폭(예를 들어, 100MHz)를 지원할 수 있다. 또는 하나의 셀이 복수 개의 numerology들을 지원할 수도 있다. 즉, 서로 다른 numerology로 동작하는 하는 단말들이 하나의 셀 안에서 공존할 수 있다.
numerology는 주파수 도메인에서 하나의 서브캐리어 간격(subcarrier spacing)에 대응한다. 참조 서브캐리어 간격(reference subcarrier spacing)을 정수 N으로 스케일링(scaling)함으로써, 상이한 numerology가 정의될 수 있다.
도 1은 본 개시가 적용될 수 있는 무선 통신 시스템의 구조를 예시한다.
도 1을 참조하면, NG-RAN은 NG-RA(NG-Radio Access) 사용자 평면(즉, 새로운 AS(access stratum) 서브계층/PDCP(packet data convergence protocol)/RLC(radio link control)/MAC/PHY) 및 UE에 대한 제어 평면(RRC) 프로토콜 종단을 제공하는 gNB들로 구성된다. 상기 gNB는 Xn 인터페이스를 통해 상호 연결된다. 상기 gNB는 또한, NG 인터페이스를 통해 NGC(New Generation Core)로 연결된다. 보다 구체적으로는, 상기 gNB는 N2 인터페이스를 통해 AMF(Access and Mobility Management Function)로, N3 인터페이스를 통해 UPF(User Plane Function)로 연결된다.
도 2는 본 개시가 적용될 수 있는 무선 통신 시스템에서 프레임 구조를 예시한다.
NR 시스템은 다수의 뉴머롤로지(numerology)들을 지원할 수 있다. 여기서, numerology는 서브캐리어 간격(subcarrier spacing)과 순환 전치(cyclic prefix, CP) 오버헤드에 의해 정의될 수 있다. 이때, 다수의 서브캐리어 간격은 기본(참조) 서브캐리어 간격을 정수 N(또는, μ)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 서브캐리어 간격을 이용하지 않는다고 가정될지라도, 이용되는 numerology는 주파수 대역과 독립적으로 선택될 수 있다. 또한, NR 시스템에서는 다수의 numerology에 따른 다양한 프레임 구조들이 지원될 수 있다.
이하, NR 시스템에서 고려될 수 있는 OFDM numerology 및 프레임 구조를 살펴본다. NR 시스템에서 지원되는 다수의 OFDM numerology들은 아래 표 1과 같이 정의될 수 있다.
μ | Δf=2μ·15 [kHz] | CP |
0 | 15 | 일반(Normal) |
1 | 30 | 일반 |
2 | 60 | 일반, 확장(Extended) |
3 | 120 | 일반 |
4 | 240 | 일반 |
NR은 다양한 5G 서비스들을 지원하기 위한 다수의 numerology(또는 서브캐리어 간격(subcarrier spacing, SCS)를 지원한다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)를 지원하며, SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다. NR 주파수 밴드(frequency band)는 2가지 타입(FR1, FR2)의 주파수 범위(frequency range)로 정의된다. FR1, FR2는 아래 표 2와 같이 구성될 수 있다. 또한, FR2는 밀리미터 웨이브(millimeter wave, mmW)를 의미할 수 있다.
주파수 범위 지정(Frequency Range designation) | 해당 주파수 범위(Corresponding frequency range) | 서브캐리어 간격(Subcarrier Spacing) |
FR1 | 410MHz - 7125MHz | 15, 30, 60kHz |
FR2 | 24250MHz - 52600MHz | 60, 120, 240kHz |
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 도메인의 다양한 필드의 크기는 Tc=1/(Δfmax·Nf)의 시간 단위의 배수로 표현된다. 여기에서, Δfmax=480·103 Hz이고, Nf=4096 이다. 하향링크(downlink) 및 상향링크(uplink) 전송은 Tf=1/(ΔfmaxNf/100)·Tc=10ms의 구간을 가지는 무선 프레임(radio frame)으로 구성(organized)된다. 여기에서, 무선 프레임은 각각 Tsf=(ΔfmaxNf/1000)·Tc=1ms의 구간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 이 경우, 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다. 또한, 단말로부터의 상향링크 프레임 번호 i에서의 전송은 해당 단말에서의 해당 하향링크 프레임의 시작보다 TTA=(NTA+NTA,offset)Tc 이전에 시작해야 한다. 서브캐리어 간격 구성 μ 에 대하여, 슬롯(slot)들은 서브프레임 내에서 ns
μ∈{0,..., Nslot
subframe,μ-1} 의 증가하는 순서로 번호가 매겨지고, 무선 프레임 내에서 ns,f
μ∈{0,..., Nslot
frame,μ-1} 의 증가하는 순서로 번호가 매겨진다. 하나의 슬롯은 Nsymb
slot의 연속하는 OFDM 심볼들로 구성되고, Nsymb
slot는, CP에 따라 결정된다. 서브프레임에서 슬롯 ns
μ의 시작은 동일 서브프레임에서 OFDM 심볼 ns
μNsymb
slot의 시작과 시간적으로 정렬된다. 모든 단말이 동시에 송신 및 수신을 할 수 있는 것은 아니며, 이는 하향링크 슬롯(downlink slot) 또는 상향링크 슬롯(uplink slot)의 모든 OFDM 심볼들이 이용될 수는 없다는 것을 의미한다. 표 3은 일반 CP에서 슬롯 별 OFDM 심볼의 개수(Nsymb
slot), 무선 프레임 별 슬롯의 개수(Nslot
frame,μ), 서브프레임 별 슬롯의 개수(Nslot
subframe,μ)를 나타내며, 표 4는 확장 CP에서 슬롯 별 OFDM 심볼의 개수, 무선 프레임 별 슬롯의 개수, 서브프레임 별 슬롯의 개수를 나타낸다.
μ | Nsymb slot | Nslot frame,μ | Nslot subframe,μ |
0 | 14 | 10 | 1 |
1 | 14 | 20 | 2 |
2 | 14 | 40 | 4 |
3 | 14 | 80 | 8 |
4 | 14 | 160 | 16 |
μ | Nsymb slot | Nslot frame,μ | Nslot subframe,μ |
2 | 12 | 40 | 4 |
도 2는, μ=2인 경우(SCS가 60kHz)의 일례로서, 표 3을 참고하면 1 서브프레임(subframe)은 4개의 슬롯(slot)들을 포함할 수 있다. 도 2에 도시된 1 subframe={1,2,4} slot은 일례로서, 1 subframe에 포함될 수 있는 slot(들)의 개수는 표 3 또는 표 4와 같이 정의된다. 또한, 미니 슬롯(mini-slot)은 2, 4 또는 7 심볼들을 포함하거나 그 보다 더 많은 또는 더 적은 심볼들을 포함할 수 있다.NR 시스템에서의 물리 자원(physical resource)과 관련하여, 안테나 포트(antenna port), 자원 그리드(resource grid), 자원 요소(resource element), 자원 블록(resource block), 캐리어 파트(carrier part) 등이 고려될 수 있다. 이하, NR 시스템에서 고려될 수 있는 상기 물리 자원들에 대해 구체적으로 살펴본다. 먼저, 안테나 포트와 관련하여, 안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 광범위 특성(large-scale property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 유추될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다. 여기서, 상기 광범위 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 쉬프트(Frequency shift), 평균 수신 파워(Average received power), 수신 타이밍(Received Timing) 중 하나 이상을 포함한다.도 3은 본 개시가 적용될 수 있는 무선 통신 시스템에서 자원 그리드(resource grid)를 예시한다. 도 3을 참조하면, 자원 그리드가 주파수 도메인 상으로 NRB
μNsc
RB 서브캐리어들로 구성되고, 하나의 서브프레임이 14·2μ OFDM 심볼들로 구성되는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다. NR 시스템에서, 전송되는 신호(transmitted signal)는 NRB
μNsc
RB 서브캐리어들로 구성되는 하나 또는 그 이상의 자원 그리드들 및 2μNsymb
(μ)의 OFDM 심볼들에 의해 설명된다. 여기서, NRB
μ≤NRB
max,μ이다. 상기 NRB
max,μ는 최대 전송 대역폭을 나타내고, 이는, numerology들 뿐만 아니라 상향링크와 하향링크 간에도 달라질 수 있다. 이 경우, μ 및 안테나 포트 p 별로 하나의 자원 그리드가 설정될 수 있다. μ 및 안테나 포트 p에 대한 자원 그리드의 각 요소는 자원 요소(resource element)로 지칭되며, 인덱스 쌍 (k,l')에 의해 고유적으로 식별된다. 여기에서, k=0,...,NRB
μNsc
RB-1 는 주파수 도메인 상의 인덱스이고, l'=0,...,2μNsymb
(μ)-1 는 서브프레임 내에서 심볼의 위치를 지칭한다. 슬롯에서 자원 요소를 지칭할 때에는, 인덱스 쌍 (k,l) 이 이용된다. 여기서, l=0,...,Nsymb
μ-1 이다. μ 및 안테나 포트 p에 대한 자원 요소 (k,l')는 복소 값(complex value) ak,l'
(p,μ)에 해당한다. 혼동(confusion)될 위험이 없는 경우 혹은 특정 안테나 포트 또는 numerology가 특정되지 않은 경우에는, 인덱스들 p 및 μ는 드롭(drop)될 수 있으며, 그 결과 복소 값은 ak,l'
(p) 또는 ak,l' 이 될 수 있다. 또한, 자원 블록(resource block, RB)은 주파수 도메인 상의 Nsc
RB=12 연속적인 서브캐리어들로 정의된다.
포인트(point) A는 자원 블록 그리드의 공통 기준 포인트(common reference point)로서 역할을 하며 다음과 같이 획득된다.
- 프라이머리 셀(PCell: Primary Cell) 다운링크에 대한 offsetToPointA는 초기 셀 선택을 위해 단말에 의해 사용된 SS/PBCH block과 겹치는 가장 낮은 자원 블록의 가장 낮은 서브 캐리어와 point A 간의 주파수 오프셋을 나타낸다. FR1에 대해 15kHz 서브캐리어 간격 및 FR2에 대해 60kHz 서브캐리어 간격을 가정한 리소스 블록 단위(unit)들로 표현된다.
- absoluteFrequencyPointA는 ARFCN(absolute radio-frequency channel number)에서와 같이 표현된 point A의 주파수-위치를 나타낸다.
공통 자원 블록(common resource block)들은 서브캐리어 간격 설정 μ에 대한 주파수 도메인에서 0부터 위쪽으로 numbering된다. 서브캐리어 간격 설정 μ에 대한 공통 자원 블록 0의 subcarrier 0의 중심은 'point A'와 일치한다. 주파수 도메인에서 공통 자원 블록 번호 nCRB
μ 와 서브캐리어 간격 설정 μ에 대한 자원 요소(k,l)와의 관계는 아래 수학식 1과 같이 주어진다.
수학식 1에서, k는 k=0이 point A를 중심으로 하는 서브캐리어에 해당하도록 point A에 상대적으로 정의된다. 물리 자원 블록들은 대역폭 파트(BWP: bandwidth part) 내에서 0부터 NBWP,i
size,μ-1까지 번호가 매겨지고, i는 BWP의 번호이다. BWP i에서 물리 자원 블록 nPRB 와 공통 자원 블록 nCRB 간의 관계는 아래 수학식 2에 의해 주어진다.
NBWP,i
start,μ는 BWP가 공통 자원 블록 0에 상대적으로 시작하는 공통 자원 블록이다.
도 4는 본 개시가 적용될 수 있는 무선 통신 시스템에서 물리 자원 블록(physical resource block)을 예시한다. 그리고, 도 5는 본 개시가 적용될 수 있는 무선 통신 시스템에서 슬롯 구조를 예시한다.
도 4 및 도 5를 참조하면, 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함한다.
반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예를 들어, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (물리) 자원 블록으로 정의되며, 하나의 numerology(예를 들어, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예를 들어, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(RE: Resource Element)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
NR 시스템은 하나의 컴포넌트 캐리어(component carrier, CC) 당 최대 400 MHz까지 지원될 수 있다. 이러한 광대역 CC(wideband CC)에서 동작하는 단말이 항상 CC 전체에 대한 무선 주파수(radio frequency, RF) 칩(chip)를 켜둔 채로 동작한다면 단말 배터리 소모가 커질 수 있다. 혹은 하나의 광대역 CC 내에 동작하는 여러 활용 케이스들(예를 들어, eMBB, URLLC, Mmtc, V2X 등)을 고려할 때 해당 CC 내에 주파수 대역 별로 서로 다른 numerology(예를 들어, 서브캐리어 간격 등)가 지원될 수 있다. 혹은 단말 별로 최대 대역폭에 대한 능력(capability)이 다를 수 있다. 이를 고려하여 기지국은 광대역 CC의 전체 대역폭이 아닌 일부 대역폭에서만 동작하도록 단말에게 지시할 수 있으며, 해당 일부 대역폭을 편의상 대역폭 부분(bandwidth part, BWP)로 정의한다. BWP는 주파수 축 상에서 연속한 RB들로 구성될 수 있으며, 하나의 numerology(예를 들어, 서브캐리어 간격, CP 길이, 슬롯/미니-슬롯 구간)에 대응될 수 있다.
한편, 기지국은 단말에게 설정된 하나의 CC 내에서도 다수의 BWP를 설정할 수 있다. 예를 들어, PDCCH 모니터링 슬롯에서는 상대적으로 작은 주파수 도메인을 차지하는 BWP를 설정하고, PDCCH에서 지시하는 PDSCH는 그보다 큰 BWP 상에 스케줄링될 수 있다. 혹은, 특정 BWP에 UE 들이 몰리는 경우 로드 밸런싱(load balancing)을 위해 일부 단말들을 다른 BWP로 설정할 수 있다. 혹은, 이웃 셀 간의 주파수 도메인 셀간 간섭 제거(frequency domain inter-cell interference cancellation) 등을 고려하여 전체 대역폭 중 가운데 일부 스펙트럼(spectrum)을 배제하고 양쪽 BWP들을 동일 슬롯 내에서도 설정할 수 있다. 즉, 기지국은 광대역 CC와 연관된(association) 단말에게 적어도 하나의 DL/UL BWP를 설정할 수 있다. 기지국은 특정 시점에 설정된 DL/UL BWP(들) 중 적어도 하나의 DL/UL BWP를 (L1 시그널링 또는 MAC CE(Control Element) 또는 RRC 시그널링 등에 의해) 활성화시킬 수 있다. 또한, 기지국은 다른 설정된 DL/UL BWP로 스위칭을 (L1 시그널링 또는 MAC CE 또는 RRC 시그널링 등에 의해) 지시할 수 있다. 또는, 타이머 기반으로 타이머 값이 만료되면 정해진 DL/UL BWP로 스위칭될 수도 있다. 이때, 활성화된 DL/UL BWP를 활성(active) DL/UL BWP로 정의한다. 하지만, 단말이 최초 접속(initial access) 과정을 수행하는 중이거나, 혹은 RRC 연결이 셋업(set up)되기 전 등의 상황에서는 DL/UL BWP에 대한 설정을 수신하지 못할 수 있으므로, 이러한 상황에서 단말이 가정하는 DL/UL BWP는 최초 활성 DL/UL BWP라고 정의한다.
도 6은 본 개시가 적용될 수 있는 무선 통신 시스템에서 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송수신 방법을 예시한다.
무선 통신 시스템에서 단말은 기지국으로부터 하향링크(downlink)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(uplink)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S601). 이를 위해, 단말은 기지국으로부터 주 동기 신호(primary synchronization signal, PSS) 및 부 동기 채널(secondary synchronization signal, PSS)을 수신하여 기지국과 동기를 맞추고, 셀 식별자(identifier, ID) 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(physical broadcast channel, PBCH)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(downlink reference signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(physical downlink control channel, PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S602).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(random access procedure, RACH)을 수행할 수 있다(단계 S603 내지 단계 S606). 이를 위해, 단말은 물리 임의 접속 채널(physical random access channel, PRACH)을 통해 특정 시퀀스를 프리앰블로 송신하고(S603 및 S605), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S604 및 S606). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(contention resolution procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S607) 및 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH)/물리 상향링크 제어 채널(physical uplink control channel, PUCCH) 송신(S608)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(downlink control information, DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK(Acknowledgement/Non-Acknowledgement) 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.
표 5는 NR 시스템에서의 DCI 포맷(format)의 일례를 나타낸다.
DCI 포맷 | 활용 |
0_0 | 하나의 셀 내 PUSCH의 스케줄링 |
0_1 | 하나의 셀 내 하나 또는 다중 PUSCH의 스케줄링, 또는 UE에게 셀 그룹(CG: cell group) 하향링크 피드백 정보의 지시 |
0_2 | 하나의 셀 내 PUSCH의 스케줄링 |
1_0 | 하나의 DL 셀 내 PDSCH의 스케줄링 |
1_1 | 하나의 셀 내 PDSCH의 스케줄링 |
1_2 | 하나의 셀 내 PDSCH의 스케줄링 |
표 5를 참조하면, DCI format 0_0, 0_1 및 0_2는 PUSCH의 스케줄링에 관련된 자원 정보(예를 들어, UL/SUL(Supplementary UL), 주파수 자원 할당, 시간 자원 할당, 주파수 호핑 등), 전송 블록(transport block, TB) 관련 정보(예를 들어, MCS(Modulation Coding and Scheme), NDI(New Data Indicator), RV(Redundancy Version) 등), HARQ(Hybrid - Automatic Repeat and request) 관련 정보(예를 들어, 프로세스 번호, DAI(Downlink Assignment Index), PDSCH-HARQ 피드백 타이밍 등), 다중 안테나 관련 정보(예를 들어, DMRS 시퀀스 초기화 정보, 안테나 포트, CSI 요청 등), 전력 제어 정보(예를 들어, PUSCH 전력 제어 등)을 포함할 수 있으며, DCI 포맷 각각에 포함되는 제어 정보들은 미리 정의될 수 있다.DCI format 0_0은 하나의 셀에서 PUSCH의 스케줄링에 사용된다. DCI 포맷 0_0에 포함된 정보는 C-RNTI(cell radio network temporary identifier, Cell RNTI) 또는 CS-RNTI(Configured Scheduling RNTI) 또는 MCS-C-RNTI(Modulation Coding Scheme Cell RNTI)에 의해 CRC(cyclic redundancy check) 스크램블링되어 전송된다. DCI format 0_1은 하나의 셀에서 하나 이상의 PUSCH의 스케줄링, 또는 설정된 그랜트(configure grant, CG) 하향링크 피드백 정보를 단말에게 지시하는 데 사용된다. DCI format 0_1에 포함된 정보는 C-RNTI 또는 CS-RNTI 또는 SP-CSI-RNTI(Semi-Persistent CSI RNTI) 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다. DCI format 0_2는 하나의 셀에서 PUSCH의 스케줄링에 사용된다. DCI format 0_2에 포함된 정보는 C-RNTI 또는 CS-RNTI 또는 SP-CSI-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다.
다음으로, DCI format 1_0, 1_1 및 1_2는 PDSCH의 스케줄링에 관련된 자원 정보(예를 들어, 주파수 자원 할당, 시간 자원 할당, VRB(virtual resource block)-PRB(physical resource block) 매핑 등), 전송블록(TB) 관련 정보(예를 들어, MCS, NDI, RV 등), HARQ 관련 정보(예를 들어, 프로세스 번호, DAI, PDSCH-HARQ 피드백 타이밍 등), 다중 안테나 관련 정보(예를 들어, 안테나 포트, TCI(transmission configuration indicator), SRS(sounding reference signal) 요청 등), PUCCH 관련 정보(예를 들어, PUCCH 전력 제어, PUCCH 자원 지시자 등)을 포함할 수 있으며, DCI 포맷 각각에 포함되는 제어 정보들은 미리 정의될 수 있다.
DCI format 1_0은 하나의 DL 셀에서 PDSCH의 스케줄링을 위해 사용된다. DCI format 1_0에 포함된 정보는 C-RNTI 또는 CS-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다.
DCI format 1_1은 하나의 셀에서 PDSCH의 스케줄링을 위해 사용된다. DCI format 1_1에 포함되는 정보는 C-RNTI 또는 CS-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다.
DCI format 1_2는 하나의 셀에서 PDSCH의 스케줄링을 위해 사용된다. DCI format 1_2에 포함되는 정보는 C-RNTI 또는 CS-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다.
도 7은 본 개시가 적용될 수 있는 무선 통신 시스템에서 다중 TRP 전송 방식을 예시한다.
도 7(a)를 참조하면, 동일한 코드워드(codeword, CW)/전송블록(transport block, TB)를 전송하는 레이어 그룹(layer group)이 서로 다른 TRP에 대응하는 경우를 보여준다. 이때, layer group은 하나 또는 하나 이상의 layer로 이루어진 소정의 layer 집합을 의미할 수 있다. 이러한 경우, 다수의 layer 수로 인해 전송 자원의 양이 증가하며, 이를 통해 TB에 대해 낮은 부호율의 강건한 채널 코딩을 사용할 수 있다는 장점이 있으며, 또한, 다수의 TRP로부터 채널이 다르기 때문에 다이버시티(diversity) 이득을 바탕으로 수신 신호의 신뢰도 향상을 기대할 수 있다.
도 7(b)를 참조하면, 서로 다른 CW를 서로 다른 TRP에 대응하는 layer group을 통해 전송하는 예를 보여준다. 이때, 그림의 CW #1과 CW #2에 대응하는 TB는 서로 동일함을 가정할 수 있다. 즉, CW #1과 CW #2는 각각 서로 다른 TRP에 의해 동일한 TB가 채널 코딩 등을 통해 서로 다른 CW로 변환된 것을 의미한다. 따라서, 동일 TB의 반복 전송의 예로 볼 수 있다. 도 7(b)의 경우, 앞서 도 7(a)와 대비하여 TB에 대응하는 부호율이 높다는 단점을 가질 수 있다. 하지만, 채널 환경에 따라 동일 TB로부터 생성된 인코딩된 비트들(encoding bits)에 대해서 서로 다른 RV(redundancy version) 값을 지시하여 부호율을 조정하거나, 각 CW의 변조 차수(modulation order)를 조절할 수 있다는 장점을 갖는다.
앞서 도 7(a) 및 도 7(b)에서 예시한 방식에 따르면, 동일 TB가 서로 다른 layer group을 통해 반복 전송되고, 각 layer group이 서로 다른 TRP/panel에 의해 전송됨에 따라 단말의 데이터 수신확률을 높일 수 있다. 이를 SDM(Spatial Division Multiplexing) 기반 M-TRP URLLC 전송 방식으로 지칭한다. 서로 다른 Layer group에 속한 layer들은 서로 다른 DMRS CDM 그룹에 속한 DMRS 포트들을 통해 각각 전송된다.
또한, 상술한 다수 TRP 관련된 내용은 서로 다른 레이어를 이용하는 SDM(spatial division multiplexing) 방식을 기준으로 설명되었지만, 이는 FDM 방식 및/또는 TDM 방식에도 확장하여 적용될 수 있음은 물론이다.
기초적인(basic) 빔 실패 복구(beam failure recovery, BFR)
단말 및/또는 기지국은 데이터 송수신을 위해 상향링크/하향링크 빔 관리(beam management, BM)를 수행할 수 있다. 여기서, BM은 하향링크 및 상향링크 송/수신에 사용될 수 있는 빔 세트를 획득 및 유지하는 과정을 의미할 수 있다.
구체적으로, BM은 기지국 또는 단말로부터 수신된 빔 형성 신호의 특성을 측정(measurement)하는 빔 측정 과정, 기지국 또는 단말 자신의 송신 빔(Tx beam) 및 수신 빔(Rx beam)을 결정하는 빔 결정(determination) 과정, 미리 결정된 방식으로 일정 시간 간격 동안 송신 빔 및/또는 수신 빔을 이용하여 공간 영역을 커버하는 빔 스위핑(sweeping) 과정, 및 단말이 빔 측정 결과에 기초하여 빔 신호의 정보를 기지국으로 보고하는 빔 보고(reporting) 과정을 포함할 수 있다.
상술된 상향링크/하향링크 BM 과정이 수행되는 동안, 다양한 요소에 의해 빔 미스 매치(mismatch) 문제가 발생할 수 있다. 예를 들어, 단말이 이동 또는 회전하는 경우 또는, 주변 물체의 이동으로 무선 채널 환경이 바뀌는 경우(예를 들어, LoS(line-of-sight) 환경이었다가 빔이 블락됨에 따라 Non-LoS 환경으로 바뀌는 경우), 최적의 상향링크/하향링크 빔 페어(pair)가 변경될 수 있다. 이 때, 단말 또는 기지국이 변경된 최적의 상향링크/하향링크 빔 페어의 추적(즉, BM 트래킹(tracking))에 실패할 경우, 빔 실패가 발생한 것으로 볼 수 있다.
단말은 하향링크 참조 신호(reference signal, RS)의 수신 품질에 기초하여 빔 실패의 발생 여부를 판단할 수 있다. 그리고, 단말은 빔 실패 발생 여부에 대한 보고 메시지 혹은 빔 복구 요청을 위한 메시지(beam failure recovery request message, BFRQ message)를 기지국으로 보고해야 한다. 상기 메시지를 수신한 기지국은 빔 복구를 위해 빔 RS 전송 또는 빔 보고 요청 등 다양한 과정을 통해 빔 복구 과정을 수행할 수 있다. 이러한 일련의 빔 복구 과정을 빔 실패 복구(beam failure recovery, BFR) 과정이라 한다.
기초적인 BFR 동작은 충돌 기반(contention based) PRACH 자원이 존재하는 스페셜 셀(special cell, SpCell)(즉, 프라이머리 셀(primary cell, PCell) 또는 프라이머리 세컨더리 셀(primary secondary cell, PScell)에 대한 BFR 과정을 포함한다. 상기 BFR 과정은, 단말의 BFD(beam failure detection) 과정, BFRQ 전송 과정, 및 BFRQ에 대한 기지국의 응답을 모니터링하는 과정으로 구성되며, 각 과정은 서빙 셀(serving cell)내에서 수행될 수 있다.
빔 실패 검출(Beam failure detection, BFD)
모든 PDCCH 빔의 품질 값(Q_out)이 미리 정의된 값 이하로 떨어지는 경우, 한번의 빔 실패 인스턴스(beam failure instance)가 발생한 것으로 볼 수 있다. 여기서, 품질 값은 이론적(hypothetical) BLER(block error rate)을 기준으로 결정될 수 있다. 즉, 이론적 BLER은, 특정 PDCCH로 제어 정보가 전송될 때 상기 제어 정보의 복조가 실패할 확률을 의미할 수 있다.
그리고, PDCCH를 모니터링할 검색 공간(search space)은 단말에 하나 혹은 복수 개 설정될 수 있으며, 각 검색 공간 별로 PDCCH 빔이 다르게 설정될 수 있다. 이 때, 모든 PDCCH 빔의 품질 값이 미리 정의된 값 이하로 떨어진다는 것은, 모든 PDCCH 빔의 품질 값이 BLER 임계값(threshold) 아래로 떨어지는 경우를 의미한다.
단말이 빔 실패 인스턴스가 발생되었는지 여부를 파악하기 위한 BFD-RS를 기지국으로부터 지시/설정받는 방식으로 후술하는 두 가지 방식이 지원될 수 있다.
첫번째 방식으로, BFD-RS의 암시적 설정(implicit configuration) 방식이 지원될 수 있다. 각 검색 공간에는 PDCCH가 전송될 수 있는 자원 영역인 제어 자원 세트(control resource set, CORESET) ID가 설정되며, 각 CORESET ID 마다 공간 수신(spatial RX) 파라미터 관점에서 QCL되어 있는 RS 정보(예를 들어, CSI-RS 자원 ID, SSB ID)가 지시/설정될 수 있다. 공간 수신 파라미터 관점에서 QCL되어 있는 RS는 TCI(transmit configuration information)를 통해 지시 또는 설정될 수 있다. 즉, TCI를 통해 지시 또는 설정된 QCL 정보에 기초하여 BFD-RS가 암시적으로 단말에 설정/지시될 수 있다.
여기서, 기지국이 공간 수신 파라미터 관점에서 QCL되어 있는 RS(즉, QCL Type D RS)를 단말에게 지시 또는 설정할 경우, 단말은 특정 PDCCH DMRS를 수신할 때 공간 수신 파라미터 관점에서 QCL되어 있는 RS의 수신에 사용했던 빔을 사용할 수 있다. 즉, 공간적으로 QCL되어 있는 안테나 포트들 간에는, 동일 전송 빔 혹은 유사한 전송 빔(예를 들어, 빔 방향은 동일/유사하면서 빔 폭이 상이한 경우)을 통해 신호가 전송될 수 있다.
두번째 방식으로, BFD-RS의 명시적 설정(explicit configuration) 방식이 지원될 수 있다. 기지국은 BFD 용도의 빔 RS를 명시적으로 단말에 설정 또는 지시할 수 있다. 이 때, 빔 RS가 상기 '모든 PDCCH 빔'에 해당할 수 있다.
단말 물리 계층은 설정된(또는, 지시된) BFD-RS를 기준으로 측정한 이론적 BLER이 특정 임계값 이상으로 열화되는 이벤트가 발생될 때마다 BFI(beam failure instance)가 발생되었다는 것을 MAC 서브계층으로 알려줄 수 있다. 그리고, 단말 MAC 서브계층은, 일정 시간 이내에(예로, 'BFD timer'), 일정 횟수(예로, 'beamFailureInstanceMaxCount')만큼 BFI가 발생할 경우, 빔 실패가 발생했다고 판단하고 관련 RACH 동작을 개시(initiate)할 수 있다.
BFRQ (PRACH 기반): 새로운 빔 식별(new beam identification) 및 PRACH 전송
상술한 바와 같이, 일정 수 이상의 BFI가 발생되는 경우, 단말은 빔 실패가 발생했다고 판단하고, 빔 실패 복구 동작을 수행할 수 있다. 단말은 빔 실패 복구 동작의 일례로 RACH(즉, PRACH)에 기반한 BFRQ 과정을 수행할 수 있다. 이하, 해당 BFRQ 과정에 대해 구체적으로 살펴본다.
기지국은 빔 실패 발생 시 대체할 수 있는 후보 빔 RS들이 포함된 후보 빔 RS 리스트('candidateBeamRSList')를 RRC 시그널링(signaling)을 통해 단말에 설정할 수 있다. 그리고, 기지국은 상기 후보 빔 RS들에 대해 전용 PRACH 자원을 설정할 수 있다. 이 때, 전용 PRACH 자원은 비-충돌 기반(non-contention based) PRACH 자원(또는, contention free PRACH 자원)일 수 있다. 상기 후보 빔 RS 리스트에서 대체할 수 있는 빔 RS를 찾지 못한 경우, 단말은 기설정된 SSB 자원 중 적어도 하나를 선택할 수 있다. 그리고, 단말은 선택한 적어도 하나에 기초하여 충돌 기반 PRACH를 기지국으로 전송할 수 있다.
개선된 빔 실패 복구(beam failure recovery)
캐리어 병합(carrier aggregation, CA)이 적용되는 경우, 특정 SCell에는 상향링크 캐리어(UL carrier)가 없을 수 있다. 즉, 하향링크 캐리어만 있는 SCell의 경우, 상향링크 전송이 불가능하다. 그리고, SCell에 상향링크 캐리어가 있더라도 충돌 기반 PRACH가 설정될 수 없다. 따라서, CA가 적용되는 PRACH 기반의 BFR 과정은 SpCell(PCell 또는 PSCell)에만 한정적으로 적용될 수 있으며, SCell에는 BFR 과정이 지원되지 않을 수 있다. 즉, 기초적인 BFR 동작에서 따르면, SpCell에서 PRACH 기반의 BFR 동작은 SCell에서 지원되지 않을 수 있다.
구체적으로, BFR이 필요한 고주파 대역이 SCell로 설정된 경우, 해당 고주파 대역에는 PRACH 기반의 BFR 과정이 지원되지 않을 수 있다. 예를 들어, 저주파 대역(예를 들어, 6GHz 이하)에서 PCell을 운영하면서 고주파 대역(예를 들어, 30GHz)에서 SCell을 운영하고자 하는 경우, BFR 지원이 보다 필요한 고주파 대역에서 PRACH 기반의 BFR 과정이 지원되지 않는다는 문제점이 존재한다.
상술된 문제점을 해결하기 위하여, 개선된 BFR 동작에서는 SCell의 BFR를 위한 동작을 포함한다. 예를 들어, 단말은, SpCell에 설정된 BFRQ를 위한 전용 PUCCH 자원을 이용하여 SCell에 대한 BFRQ를 수행할 수 있다. 이하에서는 상기 '전용 PUCCH 자원'을 설명의 편의상 BFR-PUCCH로 지칭하도록 한다.
상기 BFR-PUCCH의 역할은 'SCell에 대한 BF 발생 정보'만을 기지국으로 보고하는 것이다. 그리고, 발생한 BF와 관련된 세부 정보는 후속 보고로서 BFR MAC-CE 또는 UCI를 통해 기지국으로 전송될 수 있다.
여기서, 상기 후속 보고로서 전송되는 세부 정부는, BF가 발생한 SCell(s)에 대한 정보(예를 들어, CC(component carrier) 인덱스 정보), BF가 발생한 SCell(들)에 대한 새로운 후보 빔 존재 유무, 및 새로운 후보 빔이 존재하는 경우, 해당 빔 RS ID를 포함할 수 있다.
그리고, 상기 BFR-PUCCH는 SR(scheduling request)과 동일 PUCCH 포맷을 이용하며, BFR 용도의 특정 SR의 ID를 통해 정의될 수 있다. 만약, 단말이 SCell에 대한 BF를 감지하였을 때 기지국으로부터 할당된 UL-SCH가 존재하는 경우, 단말은 SR 전송 절차와 마찬가지로 BFR-PUCCH 전송 절차를 생략하고, 바로 할당된 UL-SCH를 통해 BFR MAC-CE를 기지국으로 전송할 수 있다.
하향링크 다중-TRP(multiple TRP, M-TRP) URLLC 전송 동작
기초적인 MIMO 시스템에서는, 단일 DCI 기반(single DCI-based) 또는 다중 DCI 기반(multi DCI-based) PDSCH 전송 동작이 적용되었다. 개선된 MIMO 시스템에서는, PDSCH를 제외한 나머지 M-TRP 전송(예로, PDCCH, PUCCH, PUSCH 등) 동작이 적용될 수 있다.
DL M-TRP URLLC 전송 방식은, 다중의 TPR가 동일 데이터/DCI를 서로 다른 공간(예로, 레이어(layer)/포트(port))/시간/주파수 자원을 이용하여 전송하는 방식을 의미한다. 예를 들어, TRP 1은 자원 1에서 특정 데이터/DCI을 전송하고, TRP 2는 자원 2에서 상기 특정 데이터/DCI(즉, 동일 데이터/DCI)를 전송할 수 있다.
즉, DL M-TRP URLLC 전송 방식이 설정된 경우, 단말은 서로 다른 공간/시간/주파수 자원을 이용하여 동일 데이터/DCI를 수신할 수 있다. 이 때, 단말은 해당 데이터/DCI를 수신하는 공간/시간/주파수 자원에서 사용하는 QCL RS/타입(즉, DL TCI 상태)에 대한 지시를 기지국으로부터 받을 수 있다.
예를 들어, 해당 데이터/DCI가 자원 1 및 자원 2에서 수신되는 경우, 단말은 자원 1에서 사용되는 DL TCI 상태와 자원 2에서 사용되는 DL TCI 상태를 기지국으로부터 지시받을 수 있다. 단말은 해당 데이터/DCI를 자원 1 및 자원 2를 통해 수신함으로써, 높은 신뢰도(reliability)가 달성될 수 있다. 이러한 M-TRP URLLC 전송 방식은 PDSCH/PDCCH에 대해 적용될 수 있다.
또한, 본 개시를 설명함에 있어서, 특정 공간/시간/주파수 자원을 통해 데이터/DCI/UCI를 수신할 때, 특정 TCI 상태를 사용(또는, 매핑)한다는 것은, (DL의 경우) 특정 공간/시간/주파수 자원에서 특정 TCI 상태에 의해 지시된 QCL 타입 및 QCL RS를 이용하여 DMRS로부터 채널을 추정하고, 추정된 채널로 데이터/DCI/UCI를 수신/복조한다는 것을 의미할 수 있다.
M-TRP eMBB 전송 방식은 M-TRP가 서로 다른 데이터/DCI를 서로 다른 공간/시간/주파수 자원을 이용하여 전송하는 방식을 의미한다. M-TRP eMBB 전송 방식이 설정된 경우, 단말은 DCI를 통해 복수의 TCI 상태를 기지국으로부터 지시받을 수 있고, 복수의 TCI 상태 각각이 지시하는 QCL RS를 이용하여 수신된 데이터는 서로 다른 데이터임을 가정할 수 있다.
그리고, M-TRP URLLC 용 RNTI 및 M-TRP eMBB RNTI는 별도로 구분되어 이용됨에 따라, 단말은 특정 송수신이 M-TRP URLLC 송수신인지 M-TRP eMBB 송수신인지 여부를 파악할 수 있다. 예를 들어, URLLC 용 RNTI가 이용되어 DCI에 대해 CRC 마스킹(masking)된 경우, 단말은 해당 전송을 URLLC 전송으로 파악할 수 있다. 그리고, eMBB 용 RNTI가 이용되어 DCI에 대해 CRC 마스킹된 경우, 단말은 해당 전송을 eMBB 전송으로 파악할 수 있다. 또 다른 예로, 기지국은 새로운 시그널링(signaling)을 통해 단말에게 M-TRP URLLC 전송/수신 방식 또는 M-TRP eMBB 전송/수신 방식을 설정할 수 있다.
본 개시의 설명의 편의를 위해, 2 TRP가 서로 협력하여 전송/수신 동작을 수행하는 것으로 가정하였으나, 이에 한정되는 것은 아니다. 즉, 본 개시는 3 이상의 다중 TRP 환경에서도 확장 적용 가능하며, 동일 TRP에서 서로 다른 패널(panel) 혹은 빔으로 전송/수신하는 환경에서도 확장 적용 가능하다. 단말은 서로 다른 TRP를 서로 다른 TCI 상태로 인식할 수 있다. 단말이 TCI 상태 1을 이용하여 데이터/DCI/UCI를 송수신한다는 것은, TRP 1으로부터(또는, TRP 1으로) 데이터/DCI/UCI/를 송수신한다는 것을 의미한다.
또한, 본 개시를 설명함에 있어서, 복수의 기지국(즉, M-TRP)이 동일 PDCCH를 반복 전송한다는 의미는, 동일 DCI를 다수의 PDCCH 후보(candidate)를 통해 전송한다는 것을 의미할 수 있으며, 복수 기지국이 동일 DCI를 반복 전송한다는 의미와 동일하다. 여기서, DCI 포맷(format)/사이즈(size)/페이로드(payload)가 동일한 두 DCI는 서로 동일한 DCI로 볼 수 있다.
또는, 두 DCI의 페이로드가 다르더라도 스케줄링 결과가 동일한 경우, 두 DCI는 서로 동일한 DCI로 볼 수 있다. 예를 들어, DCI의 시간 도메인 자원 할당(time domain resource allocation, TDRA) 필드는, DCI의 수신 시점을 기준으로 데이터의 슬롯/심볼 위치 및 A(ACK)/N(NACK)의 슬롯/심볼 위치를 상대적으로 결정할 수 있다. 이 때, n 시점에서 수신된 DCI와 n+1 시점에서 수신된 DCI가 서로 동일한 스케줄링 결과를 단말에게 지시할 경우, 두 DCI의 TDRA 필드는 달라지며, 결과적으로 DCI 페이로드는 서로 달라지게 된다. 따라서, 두 DCI의 페이로드가 상이하더라도 스케줄링 결과가 동일한 경우, 두 DCI는 서로 동일한 DCI로 볼 수 있다.
또는, 두 DCI의 페이로드가 다르고 스케줄링 결과가 동일하지 않더라도, 하나의 DCI의 스케줄링 결과가 다른 DCI의 스케줄링 결과에 부분집합(subset)일 경우, 두 DCI는 동일 DCI로 볼 수 있다. 예를 들어, 동일 데이터가 TDM되어 N 번 반복 전송되는 경우, 첫 번째 데이터 전에 수신한 DCI 1은 N 번 데이터 반복을 지시(또는, 스케줄링)하고, 두 번째 데이터 전에 수신한 DCI 2는 N-1 데이터 반복(스케줄링)을 지시한다. 이 때, DCI 2의 스케줄링 결과(또는, 데이터)는 DCI 1의 스케줄링 결과(또는, 데이터)의 부분 집합이 되며, 두 DCI는 모두 동일 데이터에 대한 스케줄링 결과를 가진다. 따라서, 이 경우에도 두 DCI는 동일 DCI라고 볼 수 있다.
그리고, 본 개시를 설명함에 있어서, 복수의 기지국(즉, M-TRP)이 동일 PDCCH를 나누어 전송한다는 것은, 하나의 DCI를 하나의 PDCCH 후보를 통해 전송하되, TRP 1이 해당 PDCCH 후보에 대해 정의된 일부 자원을 전송하고, TRP 2가 나머지 자원을 전송하는 것을 의미할 수 있다.
M-TRP URLLC 전송 방식으로서, 각 TRP가 서로 다른 공간/시간/주파수 자원에서 동일 PDSCH/PDCCH를 전송하는 방식 뿐만 아니라 동일 공간/시간/주파수 자원에서 동일 PDSCH/PDCCH를 중복하여 전송하는 방식(즉, 단일 주파수 방송망(single frequency network, SFN) 전송 방식)이 적용될 수 있다. SFN 전송 방식의 경우, 복수의 TRP가 동일 PDCCH/PDSCH DMRS 포트를 함께 전송할 수 있으므로, 동일 PDCCH/PDSCH에 대해 복수의 TCI 상태가 설정/지시될 수 있다. 특히, SFN 전송 방식을 PDCCH 전송에 적용하기 위하여, CORESET 당 하나의 TCI 상태가 지시되던 기존 방식에서 CORESET 당 복수의 TCI 상태가 지시되는 방식으로 변경될 수 있다.
M-TRP BFR 관련 동작
상술된 기초적인 BFR 동작 또는 개선된 BFR 동작을 M-TRP 전송 환경에 그대로 적용할 경우, 특정 CORESET에서 빔 실패가 발생하더라도, 단말은 빔 실패 상황이 아니라고 판단할 수 있다. 예를 들어, 특정 TRP에서 PDCCH를 전송하는 CORESET들이 모두 빔 실패 상황이거나, 다른 TRP에서 PDCCH를 전송하는 CORESET 중 빔 실패가 아닌 CORESET이 존재하는 경우, 단말은 현 상황을 빔 실패 상황이라고 판단하지 않을 수 있다.
이러한 문제를 해결하기 위하여, TPR-특정(specific) BFR 방식이 적용될 수 있다. 즉, 특정 TRP에 해당하는 하나 이상의 서빙 빔(serving beam)에 대해 빔 실패가 발생한 경우, 이를 빠르게 복구하기 위한 TPR-특정 BFR 방식이 적용될 수 있다. TPR-특정 BFR 방식은, 하나 이상의 PDCCH 빔 혹은 서빙 빔 중에서 (특정 TRP에 속한) 하나 이상의 일부 빔에 대해 빔 실패가 발생한 경우, 단말이 빔 실패 상황을 기지국에 보고하고 복구하는 방식 즉, 부분(partial) BFR 방식을 의미할 수 있다.
M-TRP BFR 방식을 적용하기 위해, 특정 TRP 또는 각 TRP에 대한 BFD 절차가 독립적으로 수행될 수 있다. 이를 위해, 특정 TRP 또는 각 TRP에 대한 BFD-RS 세트의 정의가 우선적으로 결정되어야 한다.
BFD-RS 세트에 대한 결정 방법은, 상술된 기초적인 BFR 동작 또는 개선된 BFR 동작과 마찬가지로, 암시적(implicit) BFD-RS 세트 결정 방식과 명시적(explicit) BFD-RS 세트 결정 방식을 포함할 수 있다.
명시적 BFD-RS 세트 결정 방식은, 기지국이 각 TRP에 해당하는 BFD-RS 세트를 명시적으로 설정해주는 방식을 의미할 수 있다. 즉, 동일 CC/BWP에서 복수의 TRP에 대응되는 복수의 BFD-RS 세트가 기지국에 의해 각각 설정될 수 있으며, 단말은 설정된 각 BFD-RS 세트에 대해 독립적으로 BFD 절차(예로, BFI 카운트 등)를 수행할 수 있다.
암시적 BFD-RS 세트 결정 방식은, 상술된 기초적인 BFR 동작 또는 개선된 BFR 동작과 마찬가지로, CORESET에 설정된 TCI 상태(또는, TCI 상태의 QCL 타입-D RS)를 이용하여 BFD-RS를 결정하는 방식이며, 기술적으로는 PDCCH 송신 빔에 대해 빔 실패 여부를 모니터링하는 방식이다.
상술된 기초적인 BFR 동작 또는 개선된 BFR 동작에서는, 각 CC/BWP에 대해 설정된 CORESET 모두에 대해 BFD-RS 세트를 구성함으로써 BFD 절차를 수행하였다. 더욱 개선된 BFR 동작에서는, 각 CC/BWP에 대해 설정된 복수의 CORESET 중 일부 CORESET(s)에 대해(또는, 일부 CORESET(s)씩 나누어) BFD-RS 세트(예로, TRP 별 BFD-RS 세트)를 구성하고, 각 BFD-RS 세트에 대해 독립적으로 BFD 절차(예로, BFI 카운트 등)를 수행할 수 있다.
CC/BWP 내의 복수의 CORESET 들을 TRP 별로 나누는 방식은, 1)다중 DCI 기반 M-TRP PDSCH 전송을 위해 도입된 CORESET 풀(pool) 설정에 기초하여 CORESET들을 TRP 별로 나누는 방식 및 2)별도로 설정된 CORESET 그룹(group)에 기초하여 CORESET 들을 TRP 별로 나누는 방식이 포함될 수 있다.
즉, 1)방식은 각 CORESET 풀 인덱스에 기초하여 BFD-RS 세트를 구성하는 방식이고, 2)방식은 별도로 설정된 CORESET 그룹 인덱스에 기초하여 각 BFD-RS 세트를 구성하는 방식이다. 2)방식은 TRP-특정 BFD 뿐만 아니라 다른 유스 케이스(use case)(예로, 동일 TRP 내에 서빙 빔들 중 일부만으로 BFR 수행 등)까지 지원할 수 있다.
무선 링크 모니터링(radio link monitoring, RLM) 절차
프라이머리 셀(PCell 또는 SpCell)에 대한 하향링크 무선 링크 품질을 모니터링하는 동안, 무선 링크의 품질이 임계값 미만으로 열화된 것으로 판단되면, 단말은 기지국으로 RLM에 대한 결과를 보고할 수 있다.
구체적으로, 프라이머리 셀의 하향링크 무선 링크(radio link) 품질은, 동기화되지 않은(out-of-sync) 상태 또는 동기화된(in-sync) 상태를 상위 계층(higher layer)에 알리기/나타내기 위한 목적으로, 단말에 의해 모니터링될 수 있다. 단말은, 프라이머리 셀에서, 활성(active) 하향링크 BWP 이외의 BWP의 하향링크 무선 링크 품질을 모니터링할 필요가 없다.
활성 하향링크 BWP가 초기(initial) BWP이고 SS/PBCH 블록 및 CORESET 다중화 패턴 2 또는 3에 대한 것인 경우, 연관된 SS/PBCH 블록 인덱스가 상위 계층 파라미터인 'RadioLinkMonitoringRS'에 의해 제공될 때, 단말은 연관된 SS/PBCH 블록을 이용하여 RLM을 수행할 수 있다.
그리고, 단말에 대해, SCG(secondary cell group)가 설정되고, 상위계층 파라미터인 'rlf-TimersAndConstants'가 제공되고, 해제(release)되지 않는 것으로 설정된 경우, SCG에서 PSCell의 하향링크 무선 링크 품질은, 동기화되지 않은(out-of-sync) 상태/동기화된(in-sync) 상태를 상위 계층에 알릴/나타낼 목적으로, 단말에 의해 모니터링될 수 있다. 단말은, 프라이머리 세컨더리 셀에서, 활성(active) 하향링크 BWP 이외의 DL BWP에서 하향링크 무선 링크 품질을 모니터링할 필요가 없다.
단말은 상위 계층 파라미터 'csi-RS-Index'에 의해 CSI-RS 자원 구성 인덱스 또는 'ssb-Index'에 의해 SS/PBCH 블록 인덱스를 제공받을 수 있다.
서빙 셀에 대해 다중(multi) 하향링크 BWP가 설정된 경우, 단말은 활성 하향링크 BWP에 대해 'RadioLinkMonitoringRS'에 의해 제공되는 자원 인덱스에 대응되는 RS를 이용하여 무선 링크 모니터링 동작을 수행할 수 있다. 그리고, 활성 하향링크 BWP에 대해 'RadioLinkMonitoringRS'가 제공되지 않은 경우, 단말은 활성 하향링크 BWP의 CORESET에서 PDCCH 수신을 위해 설정된 활성 TCI 상태를 통해 제공된 RS(들)를 이용하여 무선 링크 모니터링 동작을 수행할 수 있다.
무선 링크 품질이 평가되는 프레임에서, 상기 무선 링크 품질이 무선 링크 모니터링을 위한 자원 세트의 모든 자원에 대한 임계값(예로, Qout)보다 나쁜 경우, 단말의 물리 계층은 상위 계층에 무선 링크의 상태가 동기화 되지 않은 상태('out-of-sync')임을 나타낼 수 있다. 무선 링크 품질이 평가되는 프레임에서, 상기 무선 링크 품질이 무선 링크 모니터링을 위한 자원 세트의 임의의 자원에 대한 임계값(Qin)보다 좋은 경우, 단말의 물리 계층은 상위 계층에 무선 링크의 상태가 동기화된 상태('in-sync')임을 나타낼 수 있다.
BFD(및/또는, RLM)를 위한 RS와 관련된 설정
단말에 대해 설정된 전체 CORESET의 TCI/QCL 타입-D RS의 수가 단말이 지원 가능한 최대 RLM(radio link monitoring) RS의 수보다 큰 경우, 하기와 같은 방식이 적용(또는, 정의)될 수 있다.
1)방식 1(CORESET 선택 방식): (CORESET 각각에 속한) 검색 공간(search space) (세트)에 설정된 최소 모니터링 주기가 더 짧은 CORESET을 우선적으로 선택
2)방식 2(CORESET 선택 방식): CORESET ID 값이 높은 CORESET을 우선적으로 선택
3)방식 3(TCI 상태 내에서 RS 선택 방식): 단일 TCI 상태에 복수의 RS가 포함되어 있는 경우, QCL 타입-D에 해당하는 RS를 우선적으로 선택
여기서, 방식 1은 방식 2보다 우선적으로 적용된다. 즉, 검색 공간 (세트)에 설정된 최소 모니터링 주기에 기초하여 CORESET을 우선적으로 선택(즉, 방식 1을 우선 적용)하되, 검색 공간 (세트)에 설정된 최소 모니터링 주기가 동일한 CORESET에 대해서는 방식 2가 적용될 수 있다.
방식 3은 RLM RS 선택 및 BFD RS 선택에 공통적으로 적용될 수 있다. 예를 들어, PDCCH 수신을 위한 활성화(active)된 TCI 상태에 2개의 RS를 포함하는 경우, 단말은 하나의 RS가 QCL-타입 D를 가질 것으로 예상하고, 상기 RS를 RLM을 위해 QCL-타입 D를 가지는 상기 RS를 이용(즉, 방식 3 적용)할 수 있다. 여기서, 단말은 두 RS 모두가 QCL-타입 D를 가지는 것으로 기대하지 않을 수 있다.
또 다른 예로, TCI 상태에 2개의 RS 인덱스가 존재하는 경우, BFD-RS 세트는, 해당 TCI 상태에 대한 QCL-타입 D 설정이 있는 RS 인덱스를 포함할 수 있다. 여기서, 단말은 QCL-타입 D 설정이 있는 RS 인덱스를 우선적으로 선택할 수 있다.
그리고, 하기 표 6과 같이, 셀의 주파수 대역(frequency range), 서브캐리어 간격(subcarrier spacing, SCS), FDD/TDD, 공유 스펙트럼 액세스(shared spectrum access) 적용 여부 등에 의해 결정되는 최대 SSB의 개수인 Lmax 값에 따라, BFD 및 RLM 용도로 설정 가능한 최대 RS의 개수인 NLR-RLM 값이 정해질 수 있다. 여기서, NLR-RLM 개의 RS 중 최대 2개의 RS는 BFD 용도로 사용될 수 있으며, 최대 NRLM 개의 RS는 RLM 용도로 사용될 수 있다.
Lmax | NLR-RLM | NRLM |
4 | 2 | 2 |
8 | 6 | 4 |
64 | 8 | 8 |
현재 상기 방식 1 및 방식 2는, Lmax 값이 4인 경우에 대하여 적용되었다. 그리고, RLM은 SpCell에서만 수행되므로, SCell에서는 최대 2개의 BFD RS만이 설정/적용될 수 있다.기초적인 BFR 동작 또는 개선된 BFR 동작의 경우, CC/BWP 별로 단말이 지원 가능한 BFD RS의 최대 개수는 2개이다. 따라서, CC/BWP 별로 CORESET이 셋 이상 설정된 경우, 방식 1 및 방식 2(또는, 다른 방식)가 적용될 수도 있으나, 기지국이 구현적으로 두 개의 TCI 상태/QCL 타입-D RS까지 이용할 수 있으므로, BFD-RS 선택 방식은 추가적으로 논의될 수 있다.
개선된 MIMO 시스템에서는, 두 개의 DCI 기반 M-TRP 전송 방식을 지원하기 위하여, 복수의 CORESET 풀이 지원되면서, 단말에 대해 설정 가능한 CORESET의 총 수가 증가하였다. 또한, 더욱 개선된 MIMO 시스템에서는, PDCCH에 대한 신뢰도(reliability) 향상을 위해 복수의 TRP가 PDCCH/DCI를 협력 전송하는 방식이 적용될 수 있다.
예를 들어, PDCCH의 M-TRP SFN 전송을 위해, 단일 CORESET에서 복수의 TCI 상태/QCL 타입-D RS가 활성화될 수 있다. 또 다른 예로, M-TRP(및/또는, S-TRP) PDCCH TDM/FDM 전송을 위해, 복수의 CORESET/검색 공간 (세트) 간에 연결(linkage)이 설정될 수 있다. 이 때, 상기 연결(linkage)이 설정된 CORESET/검색 공간 (세트)들은 동일 DCI를 반복 전송할 수 있다.
상술한 바와 같이, 단말에 대해 명시적으로(explicit) BFD/RLM RS가 설정되지 않은 경우, 단말은 BFD/RLM 동작을 수행하기 위하여 설정된 CORESET(들)의 TCI 상태/QCL 타입-D RS를 모니터링해야 한다. 따라서, CORESET의 수 및/또는 CORESET의 TCI/QCL 타입-D RS의 수의 증가는 단말이 BFD/RLM을 위해 모니터링해야 할 RS의 수의 증가를 야기할 수 있다는 문제가 존재한다.
이하에서는 BFD(및/또는 RLB 용도)를 위한 RS의 설정에 관련된 본 개시의 구체적인 예시들에 대해 설명하도록 한다.
실시예 1
복수의 CORESET 풀(pool)이 설정되는 경우 및/또는 단일 CORESET에 복수의 TCI가 설정되는 경우, 단말은 BFD 용도(또는, RLM 용도)로 단말이 지원할 수 있는 최대 RS 개수를 후술할 복수의 방법(방법 1 내지 방법 4) 중 하나 이상을 이용하여 기지국으로 보고할 수 있다. 여기서, 단말은 BFD 용도(또는, RLM 용도)로 지원할 수 있는 최대 RS 개수를 단말 능력 정보(capability)로서 기지국으로 보고할 수 있다.
단말은 CORESET 풀/그룹(group) 별로 BFD 용도(및/또는 RLM 용도)로 단말이 지원할 수 있는 최대 RS 개수를 기지국으로 보고할 수 있다(방법 1).
또는, 단말은 전체 CORESET 풀/그룹에 대해 BFD 용도(및/또는 RLM 용도)로 단말이 지원할 수 있는 최대 RS 개수를 기지국으로 보고할 수 있다(방법 2).
또는, 단말은 CORESET 풀/그룹 별로 BFD 용도(및/또는 RLM 용도)로 단말이 지원할 수 있는 (상이한 TCI 상태 또는 QCL 타입-D RS를 가지는) 최대 CORESET 개수를 보고하고, CORESET 당 BFD 용도(및/또는 RLM 용도)로 단말이 지원할 수 있는 최대 TCI 상태/RS 개수(예로, 1 또는 2)를 기지국으로 보고할 수 있다(방법 3).
또는, 단말은 전체 CORESET 풀/그룹에 대해 BFD 용도(및/또는 RLM 용도) 로 단말이 지원할 수 있는 (상이한 TCI 상태 또는 QCL 타입-D RS를 가지는) 최대 CORESET 개수를 보고하고, CORESET 당 BFD 용도(및/또는 RLM 용도)로 단말이 지원할 수 있는 최대 TCI 상태/RS 개수(예로, 1 또는 2)를 기지국으로 보고할 수 있다(방법 4).
상술된 복수의 방법(방법 1 내지 방법 4)은 서로 함께 사용될 수 있다. 예를 들어, 방법 1 및 방법 2가 함께 사용될 수 있다. 즉, 단말은 CORESET 풀/그룹(group) 별로 BFD 용도(및/또는 RLM 용도)로 단말이 지원할 수 있는 최대 RS 개수 및 전체 CORESET 풀/그룹에 대해 BFD 용도(및/또는 RLM 용도)로 단말이 지원할 수 있는 최대 RS 개수를 기지국으로 보고할 수 있다.
또한, 상기 복수의 방법(방법 1 내지 방법 4)들에 예시된 값 중 일부 또는 전부는 단말이 지원 가능하다고 보고한 값이 아닌 미리 정의된(또는, 규정된) 값일 수 있다. 즉, 특정 단말은 BFD 용도 및/또는 RLM 용도로 미리 정의된 값의 RS를 지원하도록 규정될 수 있다. 여기서, 특정 단말은 M-TRP와 관련된 방식(예로, 다중(multiple)의 CORESET 풀/그룹, TRP-특정(specific) BFR 방식, 복수의 TCI 상태가 설정된 CORESET, PDCCH SFN 전송 방식 등)을 지원하는 단말을 의미할 수 있으나, 이에 한정되는 것은 아니다.
예를 들어, 2개의 TCI 상태가 설정된 단일(single) CORESET에 기초하여 PDCCH 신뢰성(reliability)를 향상시키는 방식(예로, PDCCH를 반복 전송하는 방식)을 지원하는 단말의 경우, CORESET 당 BFD 용도(및/또는 RLM 용도)로 2개까지의 TCI 상태/RS를 지원하도록 미리 정의(또는, 규정)될 수 있다.
또한, 상기 복수의 방법(방법 1 내지 방법 4)이 적용되는 경우, 단말은 특정 혹은 단일 CC/BWP에 대한 값, 및/또는 (이중 연결성(dual connectivity) 환경에서) 셀 그룹에 대한 값, 및/또는 전체 셀(예로, 단말 별)에 대한 값을 보고할 수 있다. 예를 들어, 방법 1이 적용되는 경우, 단말은, 특정 CC/BWP에서 및/또는 특정 셀 그룹에서 및/또는 전체 셀에서, CORESET 풀/그룹 별로 BFD 용도로 단말이 지원할 수 있는 최대 RS 개수를 기지국으로 보고할 수 있다.
복수의 TCI 상태가 설정된 CORESET 및/또는 복수의 CORESET 풀/그룹이 설정되는 환경에서, 단말의 BFD RS(및/또는, RLM RS)에 대한 이론적(hypothetical) BLER 계산의 부담이 증가될 수 있다. 단말은 상기 복수의 방법(방법 1 내지 방법 4) 중 적어도 하나를 이용함으로써 단말이 지원하는 값(예로, 단말이 지원하는 BFD/RLM RS의 개수 등)을 기지국으로 보고할 수 있다. 이에 따라, 기지국은 보고된 값에 맞추어 단말에 대해 BFD/RLM RS를 설정할 수 있다. 단말은 보고된 값을 초과하는 값의 BFD/RLM RS가 (특정 셀 및/또는 복수의 셀 단위로) 설정되지 않는 것을 기대할 수 있다.
실시예 2
단말에 대해 (특정 CORESET 풀/그룹에) 단일 혹은 복수 개의 CORESET이 설정되고, 특정 값이 BFD 및/또는 RLM 관련하여 단말이 지원하는 최대 값 또는 기지국이 설정한 값을 초과하는 경우, 단말은 하기 규칙들 중 일부 또는 전부를 적용하여 (특정 CORESET 풀/그룹에서) BFD-RS(또는, BFD-RS 세트)로 포함될 CORESET(들) 및 TCI(들)을 선택할 수 있다.
여기서, 상기 특정 값은, 단말에 대해 설정된 CORESET들의 총 개수 및/또는 상기 CORESET들에 설정된 TCI 상태의 총 개수 및/또는 특정 CORESET에 설정된 TCI 상태의 총 개수를 의미할 수 있다.
그리고, 상기 BFD 및/또는 RLM 관련하여 단말이 지원하는 최대 값은, 단말이 지원하는 BFD-RS 세트 당 BFD-RS 자원의 최대 개수, 및/또는 단말이 지원하는 CC/BWP 별로 설정된 하나 이상의 BFD-RS 세트에 포함될 수 있는 전체 BFD-RS 자원의 개수 등을 포함할 수 있으나, 이에 한정되는 것은 아니다.
단말은 설정된 TCI 상태의 개수에 기초하여 CORESET을 선택할 수 있다(규칙 1). 단말은 특정 CORESET 풀/그룹에 포함된 하나 이상의 CORESET 중 설정된 TCI 상태의 개수에 따라 BFD-RS(또는, BFD-RS 세트)에 포함될 CORESET을 선택할 수 있다.
예를 들어, 단말은 (특정 CORESET 풀/그룹에 포함된 CORESET 중) 설정된 TCI 상태의 개수가 많은 CORESET을 우선적으로 선택할 수 있다(규칙 1-1). 특정 CORESET에 설정된 TCI 상태의 개수가 다른 CORESET에 설정된 TCI 상태의 개수보다 많을 경우, 특정 CORESET에 포함된 PDCCH는 신뢰성(reliability) 관점에서 더 중요할 수 있다. 따라서, 단말은 많은 수의 TCI 상태가 설정된 특정 CORESET을 우선적으로 선택할 수 있다.
또 다른 예로, 단말은 (특정 CORESET 풀/그룹에 포함된 CORESET 중) 설정된 TCI 상태의 개수가 적은 CORESET을 우선적으로 선택할 수 있다(규칙 1-2). 프라이머리(primary) 또는 특정(specific) TRP/패널/빔에 대해서만 PDCCH의 전송이 성공되어도 무방하므로, 단말은 적은 수의 TCI 상태가 설정된 CORESET을 우선적으로 선택할 수 있다.
또 다른 예로, 단말은 미리 정의된 조건에 따라 규칙 1-1, 규칙 1-2, 또는 TCI 상태의 개수에 따라 우선 순위를 부여하지 않는 규칙을 적용할 수 있다. 여기서, 미리 정의된 조건은, 복수의 TCI가 설정된 CORESET (또는, 복수의 TCI 상태가 설정된 CORESET에 속한 검색 공간 세트)의 PDCCH 전송 방법(예를 들어, SFN, TDM, SDM, FDM) 또는 상기 PDCCH 전송 방법이 적용되는 CORESET/검색 공간 세트가 존재하는지 여부 등을 포함할 수 있으나, 이에 한정되는 것은 아니다.
단말은 CORESET/검색 공간 세트 간의 연결(linkage)이 존재하는지 여부에 기초하여 CORESET을 선택할 수 있다(규칙 2). 단말은 특정 CORESET 풀/그룹에 포함된 하나 이상의 CORESET 중 연결(linkage)이 존재하 BFD-RS(또는, BFD-RS 세트)에 포함될 CORESET을 선택할 수 있다. 여기서, 연결(linkage)은 동일 DCI의 반복 전송을 위해 설정된 CORESET/검색 공간 세트 간의 연결을 의미한다.
예를 들어, 연결(linkage)이 존재하는 CORESET은 신뢰성 관점에서 중요한 CORESET일 수 있는 바, 단말은 연결(linkage)이 존재하는 CORESET(또는, 연결(linkage)이 존재하는 검색 공간을 포함하는 CORESET)을 우선적으로 선택할 수 있다(규칙 2-1).
또 다른 예로, 프라이머리(primary) 또는 특정(specific) TRP/패널/빔에 대해서만 PDCCH의 전송이 성공되어도 무방하므로, 단말은 연결(linkage)이 존재하지 않는 CORESET (또는, 연결(linkage)이 존재하지 않는 검색 공간을 포함하는 CORESET)을 우선적으로 선택할 수 있다(규칙 2-2).
또 다른 예로, 단말은 미리 정의된 조건에 따라 규칙 1-2, 규칙 2-2, 또는 연결(linkage)의 존재 여부에 따라 우선 순위를 부여하지 않는 규칙을 적용할 수 있다. 여기서, 미리 정의된 조건은, 연결된(linked) CORESET/검색 공간 세트들의 PDCCH 전송 방법(예를 들어, SFN, TDM, SDM, FDM) 또는 상기 PDCCH 전송 방법이 적용되는 CORESET/검색 공간 세트가 존재하는지 여부 등을 포함할 수 있으나, 이에 한정되는 것은 아니다.
단말은 (복수의 TCI 상태가 설정된) CORESET/검색 공간 세트의 전송 타입(또는, 방법)에 따라 CORESET을 선택할 수 있다(규칙 3).
예를 들어, 동일 개수의 TCI 상태가 설정된 복수의 CORESET 중에서 특정 CORESET을 선택할 때, 단말은 CORESET(또는, CORESET에 속한 검색 공간 세트)의 PDCCH 전송 방법(예를 들어, SFN, TDM, SDM, FDM) 또는 상기 PDCCH 전송 방법이 적용되는 CORESET/검색 공간 세트가 존재하는지 여부에 기초하여 특정 CORESET을 선택할 수 있다.
단말은 CORESET에 포함된 검색 공간 (세트)의 주기(예로, 모니터링 주기 등)에 따라 CORESET을 선택할 수 있다(규칙 4).
예를 들어, 단말은 (RLM RS 선택 방식과 같이) 특정 CORESET 풀/그룹에 포함된 복수의 CORESET 중 가장 짧은 검색 공간 세트의 주기(예로, 모니터링 주기)를 가지는 CORESET을 우선적으로 선택할 수 있다.
단말은 CORESET ID에 따라 CORESET을 선택할 수 있다(규칙 5).
예를 들어, 단말은 (RLM RS 선택 방식과 같이) 특정 CORESET 풀/그룹에 포함된 복수의 CORESET 중 높은 CORESET ID를 가지는 CORESET을 우선적으로 선택할 수 있다. 다만, 이는 일 실시예에 불과하며, 단말은 특정 CORESET 풀/그룹에 포함된 복수의 CORESET 중 낮은 CORESET ID를 가지는 CORESET을 우선적으로 선택할 수도 있다.
단말은 CORESET 풀/그룹 ID에 따라 CORESET을 선택할 수 있다(규칙 6).
예를 들어, 단말은 특정 CORESET 풀/그룹 ID에 따라 포함된 CORESET(들)을 우선적으로 선택할 수 있다. 여기서, 특정 CORESET 풀/그룹 ID는, 미리 규정된 ID(예로, CORESET 풀 ID=0), 기지국이 설정/지시한 CORESET 풀/그룹 ID, 또는 특정 속성(예로, 공통 검색 공간이 설정된 CORESET 포함 또는 CORESET 0을 포함)을 가지는 CORESET 풀/그룹 ID를 의미할 수 있으나, 이에 한정되는 것은 아니다.
CORESET에 대해 복수의 TCI 상태가 설정된 경우, 단말은 복수의 TCI 상태의 순서(order)에 따라 TCI 상태를 선택할 수 있다(규칙 7).
예를 들어, 단말은 미리 정의된 규칙(예로, 복수의 TCI 상태 중 최초 N 개의 TCI 상태를 선택하는 규칙 등)을 이용하여 TCI 상태를 선택할 수 있다(규칙 7-1).
또 다른 예로, 단말은 기지국이 설정/지시한 순서에 따라 TCI 상태를 선택할 수 있다(규칙 7-2). 예를 들어, 기지국은 첫 번째 TCI 상태 또는 두 번째 TCI 상태 중 어떤 TCI 상태를 먼저 선택할지 여부를 단말에 대해 설정할 수 있다.
TPR-특정(specific) BFR 방식이 적용되는 경우, 규칙 7-1 및 규칙 7-2 등은, 특정 CORESET에 속한 복수의 TCI 상태 중 (TRP-특정 BFR 동작과 관련하여 규정/설정된 다른 규칙에 의해) 특정 TRP(예로, CORESET 풀/그룹)에 대한 BFD-RS(또는, BFD-RS 세트)로 포함될 TCI 상태에서 특정 TCI 상태를 선택하는 규칙일 수 있다.
예를 들어, TCI 상태 #0,1,2,3을 가지는 CORESET이 존재하고, TCI 상태 #0 및 #3은 TRP #0을 위한 BFD-RS 세트 #0에 포함되고, TCI 상태 #1 및 #2는 TRP #1을 위한 BFD-RS 세트 #1에 포함되는 경우를 가정한다. 이 때, 규칙 7-1 및 규칙 7-2는, 각 BFD-RS 세트 내에 포함된 TCI 상태 중 특정 TCI 상태를 선택(즉, 우선적으로 선택)하는 규칙일 수 있다. 즉, 규칙 7-1 및 규칙 7-2는, TCI 상태 #0 과 TCI 상태 #3중에서 특정 TCI 상태를 선택하는 규칙 및/또는 TCI 상태 #1과 TCI 상태 #2 중에서 특정 TCI 상태를 선택하는 규칙일 수 있다.
단말은 QCL 파라미터/타입에 따라 TCI 상태 내에서 특정 RS를 선택할 수 있다(규칙 8).
예를 들어, (RLM RS/BFD RS 선택 방식과 같이) 단일 TCI 상태에 복수의 RS가 포함된 경우, 단말은 복수의 RS 중 빔 관련 QCL 파라미터에 대한 QCL 타입-D RS를 우선적으로 선택할 수 있다.
본 개시의 또 다른 실시예로, 캐리어 병합(carrier aggregation) 또는 이중 연결성(dual connectivity)이 설정된 다중-CC(multi-CC) 동작 환경에서는, 특정 CC/BWP에 대해서 BFD/RLM RS를 우선적으로 선택하는 규칙이 필요할 수 있다. 후술할 규칙 9 및 10은 다중-CC 동작 환경에서 특정 CC/BWP를 우선적으로 선택하는 규칙에 관한 것이다.
단말은 CC/BWP의 타입/성질(property)에 따라 특정 CC/BWP를 선택할 수 있다(규칙 9).
규칙 9는 CC/BWP의 타입 또는 성질에 따라 특정 CC/BWP를 우선적으로 선택하는 규칙이다. 예를 들어, 규칙 9는 PCell 또는 PSCell을 SCell보다 우선적으로 선택하는 규칙 또는 PCell을 PScell보다 우선적으로 선택하는 규칙 등을 포함할 수 있다.
단말은 CC/BWP의 ID에 따라 특정 CC/BWP를 선택할 수 있다(규칙 10).
규칙 10은 CC/BWP의 ID에 따라 특정 CC/BWP를 우선적으로 선택하는 규칙이다. 예를 들어, 규칙 10은 낮은 ID 또는 높은 ID를 가지는 CC/BWP를 우선적으로 선택하는 규칙 등을 포함할 수 있다.
단말은 상술된 복수의 규칙(규칙 1 내지 규칙 10) 중 적어도 하나의 규칙을 이용/적용할 수 있으며, 상기 복수의 규칙 간에 어떤 규칙이 우선적으로 적용될지 여부가 추가적으로 정의될 수 있다.
예를 들어, CC/BWP을 선택하는 규칙(규칙 9 및 규칙 10), CC/BWP 내에서 CORESET을 선택하는 규칙(규칙 1 내지 규칙 6), CORESET 내에서 TCI 상태를 선택하는 규칙(규칙 7), TCI 상태 내에서 RS를 선택하는 규칙(규칙 8)이 단말에 대해 적용될 수 있다.
또한, CC/BWP 선택에 대해서도 규칙 9가 우선적으로 적용된 후 규칙 10이 적용될 수 있다. 그리고, CORESET 선택에 대해서도 규칙 1/2/3이 우선적으로 적용된 후 규칙 4,5가 순서대로 적용될 수 있으나, 이에 한정되는 것은 아니며, 규칙 4가 적용된 후, 규칙 1/2/3 그리고 규칙 5 순서대로 적용될 수 있다.
상술된 복수의 규칙(규칙 1 내지 규칙 10)의 적용 순서는 일 예시에 불과하며, 다양한 순서로 각 규칙이 적용될 수 있다. 상술된 규칙들 및 규칙들이 적용될 순서는 미리 정의되거나 기지국이 단말에 대해 설정/지시할 수 있다.
RLM/BFD RS가 기지국에 의해 명시적으로 설정되는 경우, CC/BWP 내의 CORESET 선택, CORESET 내의 TCI 상태 선택, 및 TCI 내의 RS 선택은 불필요할 수 있다. 따라서, 상술된 복수의 규칙(규칙 1 내지 규칙 10) 중 일부(또는, 전부)는, RLM/BFD RS가 RRC 메시지 등을 통해 기지국에 의해 명시적으로 설정되지 않은 경우에 대해 제한적으로 적용될 수 있다.
도 8은 본 개시의 일 실시예에 따른 단말의 빔 실패 복구 동작을 설명하기 위한 도면이다.
단말은, 단말이 지원하는 빔 실패 검출-참조 신호(beam failure detection-reference signal, BFD-RS) 세트 당 BFD-RS의 최대 개수를 포함하는 능력(capability) 정보를 기지국으로 전송할 수 있다(S810). 즉, 단말에서 기지국으로 보고되는 능력 정보에는, 단말이 지원하는 하나의 BFD-RS 세트 당 BFD-RS의 최대 개수가 포함될 수 있다.
여기서, BFD-RS는, CSI-RS 또는 SSB(synchronization signal block) 중 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.
그리고, 본 개시를 설명함에 있어서, BFD-RS 세트는 BFD-RS 자원 세트로 표현될 수도 있으며, BFD-RS는 BFD-RS 자원으로 표현될 수 있다.
단말은 적어도 하나의 BFD-RS 세트와 관련된 정보가 포함된 설정 정보를 기지국으로부터 수신할 수 있다(S820). 여기서, 적어도 하나의 BFD-RS 세트 각각은, 기지국으로 전송된 능력 정보에 포함된 최대 개수 이하의 BFD-RS를 포함할 수 있다.
여기서, 적어도 하나의 BFD-RS 세트와 관련된 정보는, 특정 CORESET에 대해서 설정되는 하나 이상의 TCI 상태에 대한 설정 정보를 포함할 수 있다. 특정 CORESET에 대해서 설정되는 하나 이상의 TCI 상태에 기초하여 BFD-RS 세트에 포함될 BFD-RS가 암시적으로 설정될 수 있다.
또 다른 예로, 적어도 하나의 BFD-RS 세트와 관련된 정보는, 각각의 BFD-RS 세트에 포함되는 RS(또는, RS 자원)를 지시하는 정보를 포함할 수 있다. 즉, BFD-RS 세트에 포함된 RS(또는, RS 자원)은 기지국에 의해 명시적으로 지시(또는, 설정)될 수 있다.
이하에서는, 기지국으로부터 수신된 설정 정보에 따라 2개의 BFD-RS 세트가 설정된 경우를 가정하여 본 개시를 설명하도록 한다. 다만, 이는 일 실시예에 불과하며, 본 개시는 3개 이상의 BFD-RS 세트가 설정되는 경우에도 확장 적용될 수 있다.
상기 적어도 하나의 BFD-RS 세트 각각은 하나 이상의 CORESET 그룹에 대응될 수 있다. 예를 들어, 상기 적어도 하나의 BFD-RS 세트는 제1 BFD-RS 세트 및 제2 BFD-RS 세트를 포함할 수 있다. 그리고, 제1 BFD-RS 세트는 제1 CORESET 그룹에 대응되고, 제2 BFD-RS 세트는 제2 CORESET 그룹에 대응될 수 있다.
여기서, CORESET 그룹은, 다중 DCI 기반 M-TRP PDSCH 전송을 위해 도입된 CORESET 풀(pool) 또는 별도의 목적으로 하나 이상의 CORESET을 포함하는 그룹을 의미할 수 있다. 그리고, CORESET 그룹은 TRP에 대응될 수 있다. 예를 들어, 제1 CORESET 그룹은 TRP 1에 대응될 수 있으며, 제2 CORESET 그룹은 TRP 2에 대응될 수 있다.
CORESET 그룹에는 하나 이상의 CORESET가 포함될 수 있다. 그리고, CORESET에는 하나 이상의 전송 설정 지시자(transmission configuration indicator, TCI)가 설정될 수 있다.
TCI 상태는 하나 이상의 RS(또는, 하나의 RS 세트)에 대응될 수 있다. 즉, TCI 상태는 QCL 관계를 가지는 하나 이상의 RS를 지시하는 정보를 포함할 수 있다. TCI 상태에 대응되는 하나 이상의 RS(또는, 하나의 RS 세트)의 ID는, QCL(quasi co-location) 지시(indication)(예로, 공간(spatial) 파라미터와 관련된 QCL 타입-D)를 위한 RS(예로, CSI-RS, SSB 등)를 지시/참조할 수 있다.
그리고, TCI 상태에 의해 지시되는 "QCL 관계를 가지는 RS"는, "QCL 소스 RS" 또는 "QCL 참조 RS"라고 칭하여질 수도 있다. TCI 상태가 지시하는 QCL 관계를 가지는 RS는 BFD-RS에 대응될 수 있다.
본 개시의 일 실시예로, 제1 CORESET 그룹 또는 제2 CORESET 그룹에 포함된 적어도 하나의 COREST에 대해 설정된 TCI 상태의 개수가 상기 능력 정보에 포함된 최대 개수(즉, BFD-RS의 최대 개수)를 초과함에 기반하여, 제1 BFD-RS 세트 또는 제2 BFD-RS 세트에 포함될 TCI 상태에 대응되는 BFD-RS는, 적어도 하나의 CORESET 각각에 대응되는 검색 공간의 모니터링 주기에 기초하여 결정될 수 있다.
예를 들어, 적어도 하나의 CORESET 중 검색 공간의 모니터링 주기가 가장 짧은 CORESET에 설정된 TCI 상태에 대응되는 BFD-RS가 우선적으로 제1 BFD-RS 세트 또는 제2 BFD-RS 세트에 포함될 수 있다.
즉, 단말은 대응되는 검색 공간의 모니터링 주기의 오름차순(ascending order)에 따라 CORESET을 선택할 수 있다. 단말은 적어도 하나의 CORESET에서 검색 공간의 모니터링 주기가 짧은 순서대로 CORESET을 우선적으로 선택(또는, 결정)하고, 선택된 특정 CORESET에 설정된 TCI 상태에 대응되는 BFD-RS가 제1 BFD-RS 세트 또는 제2 BFD-RS 세트에 포함되도록 결정할 수 있다.
본 개시의 또 다른 실시예로, 적어도 하나의 CORESET 각각에 대응되는 검색 공간의 모니터링 주기가 서로 동일함에 기반하여, 상기 제1 BFD-RS 세트 또는 상기 제2 BFD-RS 세트에 포함될 BFD-RS에 대응되는 TCI 상태가 설정된 CORESET는, 상기 적어도 하나의 CORESET의 인덱스 값에 기초하여 결정될 수 있다.
즉, CORESET 그룹에 포함된 CORESET 각각에 대응되는 검색 공간의 모니터링 주기가 서로 동일한 경우, 단말은 CORESET 각각의 인덱스 값에 기초하여 BFD-RS 세트에 포함될 BFD-RS에 대응되는 TCI 상태가 설정된 CORESET을 결정할 수 있다.
예를 들어, 적어도 하나의 CORESET 중 인덱스 값이 가장 큰 CORESET에 설정된 TCI 상태에 대응되는 BFD-RS가, 우선적으로 제1 BFD-RS 세트 또는 상기 제2 BFD-RS 세트에 포함되도록 결정될 수 있다. 즉, 단말은 CORESET 인덱스 값의 내림차순(descending order)에 따라 CORESET을 결정할 수 있다. 단말은 적어도 하나의 CORESET에서 인덱스 값이 큰 순서대로 CORESET을 선택(또는, 결정)하고, 선택된 특정 CORESET에 설정된 TCI 상태에 대응되는 BFD-RS가 제1 BFD-RS 세트 또는 제2 BFD-RS 세트에 포함되도록 결정할 수 있다.
다만, 이는 일 실시예에 불과하며, 적어도 하나의 CORESET 중 인덱스 값이 가장 작은 CORESET에 설정된 TCI 상태에 대응되는 BFD-RS가, 우선적으로 제1 BFD-RS 세트 또는 상기 제2 BFD-RS 세트에 포함되도록 결정될 수 있다.
본 개시의 또 다른 실시예로, 단말은 기지국으로부터 BFD-RS 세트를 구성하는 방법을 설정/지시하는 정보를 수신할 수 있다. 예를 들어, 단말은 기지국으로부터 BFD-RS 세트에 포함될 BFD-RS에 대응되는 TCI 상태 및/또는 TCI 상태에 대응되는 CORESET을 결정하는 방식을 설정/지시하는 정보를 RRC 메시지/MAC-CE/DCI를 통해 수신할 수 있다.
본 개시의 또 다른 실시예로, 단말에서 기지국으로 보고되는 능력 정보에는, 단말이 지원하는 제1 BFD-RS 세트 및 제2 BFD-RS 세트에 포함될 수 있는 총 BFD-RS의 개수, 및/또는 단말이 지원하는 제1 CORESET 그룹 또는 제2 CORESET 그룹에 포함된 적어도 하나의 CORESET에 대해 설정된 TCI 상태의 개수를 포함할 수 있다.
그리고, 단말은 최대 개수 이하의 BFD-RS가 포함된 제1 BFD-RS 세트 및/또는 제2 BFD-RS 세트에서 빔 실패 인스턴스(beam failure instance, BFI)를 검출함으로써 빔 실패 검출 동작을 수행할 수 있다.
도 9는 본 개시의 일 실시예에 따른 기지국의 빔 실패 복구 동작을 설명하기 위한 도면이다.
기지국은, 단말이 지원하는 BFD-RS 세트 당 BFD-RS의 최대 개수를 포함하는 능력(capability) 정보를 기지국으로 전송할 수 있다(S910).
즉, 단말에서 기지국으로 보고되는 능력 정보에는, 단말이 지원하는 하나의 BFD-RS 세트에 포함될 수 있는 BFD-RS의 최대 개수가 포함될 수 있다.
기지국은 적어도 하나의 BFD-RS 세트와 관련된 정보가 포함된 설정 정보를 단말로 전송할 수 있다(S920).
여기서, 적어도 하나의 BFD-RS 세트와 관련된 정보는, 특정 CORESET에 대해서 설정되는 하나 이상의 TCI 상태에 대한 설정 정보를 포함할 수 있다. 또 다른 예로, 적어도 하나의 BFD-RS 세트와 관련된 정보는, 각각의 BFD-RS 세트에 포함되는 RS(또는, RS 자원)를 지시하는 정보를 포함할 수 있다.
예를 들어, 기지국은 단말로부터 수신된 능력 정보에 포함된 최대 개수 이하의 BFD-RS를 포함하는 하나 이상의 BFD-RS 세트를 단말에 대해 설정할 수 있다.
TCI 상태, CORESET, CORESET 그룹 및 BFD-RS와 관련된 구체적인 예시 및 설명은 도 8을 참조하여 설명하였으므로, 중복되는 설명은 생략하도록 한다.
본 개시의 일 실시예로, 기지국은 BFD-RS 세트를 구성하는 방법을 설정/지시하는 정보를 단말로 전송할 수 있다. 예를 들어, 기지국은 BFD-RS 세트에 포함될 BFD-RS에 대응되는 TCI 상태 및/또는 TCI 상태에 대응되는 CORESET을 결정하는 방식을 설정/지시하는 정보를 RRC 메시지/MAC-CE/DCI를 통해 단말로 전송할 수 있다.
다만, 이는 일 실시예에 불과하며, 단말은, CORESET에 대응되는 검색 공간의 모니터링 주기 또는 CORESET ID 중 적어도 하나에 기초하여, BFD-RS 세트에 포함될 BFD-RS에 대응되는 TCI 상태 및/또는 TCI 상태에 대응되는 CORESET을 결정할 수 있다. 이와 관련된 실시예는 도 8을 참조하여 구체적으로 설명하였으므로 중복되는 설명은 생략하도록 한다.
단말에서 능력 정보에 기초한 최대 개수 이하의 BFD-RS가 포함된 제1 BFD-RS 세트 및/또는 제2 BFD-RS 세트에서 일정 횟수 이상의 BFI를 검출함에 기반하여, 기지국은 단말로부터 빔 실패 복구 요청(beam failure request, BFRQ)를 수신할 수 있다. 여기서, 일정 횟수는 상위 계층 파라미터(예로, 'beamFailureInstanceMaxCount')에 의해 설정된 값을 의미할 수 있다.
기지국은 BFRQ에 대한 응답(response)를 단말로 전송할 수 있다. 예를 들어, 비-충돌(contention-free) PRACH 자원 및 프리앰블이 BFRQ로서 단말로부터 수신된 경우, 기지국은 C-RNTI로 마스킹된 PDCCH에 포함된 상향링크 그랜트(grant) DCI가 포함된 응답을 단말로 전송할 수 있다. 또 다른 예로, 충돌(contention-free) PRACH 자원 및 프리앰블이 BFRQ로서 단말로부터 수신된 경우, 기지국은 기초적인 충돌 PRACH-기반 랜덤 액세스 절차를 위해 설정된 CORESET를 이용하여 응답을 단말로 전송할 수 있다.
도 10은 본 개시에 따른 네트워크 측 및 단말의 시그널링 절차를 설명하기 위한 도면이다.
도 10은 전술한 본 개시의 예시들(예를 들어, 실시예 1, 실시예 2 또는 그 세부 예시들 중의 하나 이상의 조합)이 적용될 수 있는 M-TRP 상황에서, 네트워크 측(network side) 및 단말(UE) 간의 시그널링의 예시를 나타낸다. 여기서 UE/네트워크 측은 예시적인 것이며, 도 11을 참조하여 설명하는 바와 같이 다양한 장치로 대체 적용될 수 있다. 도 10는 설명의 편의를 위한 것으로, 본 개시의 범위를 제한하는 것이 아니다. 또한, 도 10에 나타난 일부 단계(들)은 상황 및/또는 설정 등에 따라 생략될 수도 있다. 또한, 도 10의 네트워크 측/UE의 동작에 있어서, 전술한 상향링크 송수신 동작, M-TRP 관련 동작 등이 참조되거나 이용될 수 있다.
이하 설명에서 네트워크 측은 복수의 TRP를 포함하는 하나의 기지국일 수 있으며, 복수의 TRP를 포함하는 하나의 셀일 수도 있다. 또는, 네트워크 측은 복수의 RRH(remote radio head)/RRU(remote radio unit)를 포함할 수도 있다. 일례로, 네트워크 측을 구성하는 TRP 1과 TRP 2 간에는 이상적/비-이상적 백홀(backhaul)이 설정될 수도 있다. 또한, 이하 설명은 다수의 TRP들을 기준으로 설명되나, 이는 다수의 패널/셀들을 통한 전송에도 동일하게 확장하여 적용될 수 있고, 다수의 RRH/RRU 등을 통한 전송에도 확장 적용될 수 있다.
또한, 이하 설명에서 "TRP"를 기준으로 설명되지만, 상술한 바와 같이, "TRP"는 패널(panel), 안테나 어레이(antenna array), 셀(cell)(예를 들어, 매크로 셀/스몰 셀/피코 셀 등), TP(transmission point), 기지국(base station, gNB 등) 등의 표현으로 대체되어 적용될 수 있다. 상술한 바와 같이, TRP는 CORESET 그룹(또는 CORESET 풀)에 대한 정보(예를 들어, CORESET 인덱스, ID)에 따라 구분될 수 있다. 일례로, 하나의 단말이 다수의 TRP(또는 셀)들과 송수신을 수행하도록 설정된 경우, 이는 하나의 단말에 대해 다수의 CORESET 그룹(또는 CORESET 풀)들이 설정된 것을 의미할 수 있다. 이와 같은 CORESET 그룹(또는 CORESET 풀)에 대한 설정은 상위 계층 시그널링(예를 들어, RRC 시그널링 등)을 통해 수행될 수 있다.
또한, 기지국은 단말과 데이터의 송수신을 수행하는 객체(object)를 총칭하는 의미일 수 있다. 예를 들어, 상기 기지국은 하나 이상의 TP(Transmission Point)들, 하나 이상의 TRP(Transmission and Reception Point)들 등을 포함하는 개념일 수 있다. 또한, TP 및/또는 TRP는 기지국의 패널, 송수신 유닛(transmission and reception unit) 등을 포함하는 것일 수 있다.
UE는 네트워크 측으로 상술된 예시(예를 들어, 실시예 1, 실시예 2 또는 그 세부 예시들 중의 하나 이상의 조합)에 따른 방법으로 RLM/BFD 관련된 UE 능력(capability) 정보를 보고할 수 있다(S105). 단말은 네트워크 측으로부터 TRP 1 및/또는 TRP 2를 통해/이용해 M-TRP 기반의 송수신에 대한 설정 정보(configuration information)를 수신할 수 있다(S110).
상기 설정 정보는, 네트워크 측의 구성(즉, TRP 구성)과 관련된 정보, M-TRP 기반의 송수신과 관련된 자원 정보(resource allocation) 등을 포함할 수 있다. 이 때, 상기 설정 정보는 상위 계층 시그널링(예: RRC 시그널링, MAC-CE 등)을 통해 전달될 수 있다. 또한, 상기 설정 정보가 미리 정의 또는 설정되어 있는 경우, 해당 단계는 생략될 수도 있다.
예를 들어, 상술한 실시예(예를 들어, 실시예 1, 실시예 2, 또는 그 세부 예시들 중의 하나 이상의 조합)에서와 같이 상기 설정 정보는 CORESET 관련 설정 정보(예를 들어, ControlResourceSet IE)를 포함할 수 있다. 상기 CORESET 관련 설정 정보는, CORESET 관련 ID(예를 들어, controlResourceSetID), CORESET에 대한 CORESET pool의 인덱스 (예를 들어, CORESETPoolIndex), CORESET의 시간/주파수 자원 설정, CORESET과 관련된 TCI 정보 등을 포함할 수 있다. 예를 들어, 상기 설정 정보는, 상술한 실시예(예를 들어, 실시예 1, 실시예 2 또는 그 세부 예시들 중의 하나 이상의 조합)들에서 설명한 바와 같이, RLM/ BFR 등과 관련된 정보를 포함할 수 있다. 예를 들어, 상기 CORESET과 관련된 TCI 정보는 각 CORESET에 대한 하나 또는 복수개의 TCI 상태(들)에 대한 정보일 수 있다.
예를 들어, 상술한 S115 단계의 UE(도 11의 100 또는 200)가 네트워크 측(도 11의 200 또는 100)로부터 상기 설정 정보를 수신하는 동작은, 이하 설명될 도 11의 장치에 의해 구현될 수 있다. 예를 들어, 도 11을 참고하면, 하나 이상의 프로세서 102는 상기 설정 정보를 수신하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 하나 이상의 트랜시버 106은 네트워크 측으로부터 상기 설정 정보를 수신할 수 있다.
UE는 네트워크 측으로부터 TRP들을 통해/이용해 RLM/BFD를 위한 참조 신호(reference signal)를 수신할 수 있다(S115). 예를 들어, 상기 RLM/BFD를 위한 RS 1/ RS 2는 SSB/CSI-RS 일 수 있다
예를 들어, 상술한 S115 단계의 UE(도 11의 100 또는 200)가 네트워크 측(도 11의 200 또는 100)으로 상기 참조 신호를 전송하는 동작은 이하 설명될 도 11의 장치에 의해 구현될 수 있다. 예를 들어, 도 11을 참고하면, 하나 이상의 프로세서 102는 상기 참조 신호를 전송하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 하나 이상의 트랜시버 106은 네트워크 측으로 상기 참조 신호를 전송할 수 있다.
UE는 네트워크 측으로부터 TRP 1 및/또는 TRP 2를 통해/이용하여 수신한 상기 RS 1 및/또는 상기 RS 2에 기반하여 RLM/BFD를 수행할 수 있다(S120). 예를 들어, RLM/BFD 동작은 상술한 실시예(예를 들어, 실시예 1, 실시예 2 또는 그 세부 예시들 중의 하나 이상의 조합) 등에 기반하여 수행될 수 있다. 예를 들어, UE는 상기 RS 1 및/또는 RS 2의 수신 품질을 기반으로 이론적(hypothetical) BLER을 측정/추정하게 되고, 그에 따라 BF/out-of-synch/in-synch 여부를 판단할 수 있다.
예를 들어, RS 1 및 RS 2 모두가 특정 CORESET에 대한 TCI 상태로서 활성화되어 있는 경우, 단말은 해당 RS 1 및 RS 2 모두를 RLM/BFD RS로 간주하고 RLM/BFD 절차들을 수행할 지, 특정 하나의 RS에 대해서만 RLM/BFD RS로 간주하고 RLM/BFD 절차들을 수행할 지, 혹은 두 RS 모두 RLM/BFD RS로 간주하지 않을지 여부를 본 개시에서의 실시예(예를 들어, 실시예 1, 실시예 2 또는 그 세부 예시들 중의 하나 이상의 조합) 등에 기반하여 결정(또는, 수행)할 수 있다.
예를 들어, 상술한 S120 단계의 UE(도 11의 100 또는 200)가 RLM/BFR을 수행하는 동작은 이하 도 11의 장치에 의해 구현될 수 있다. 예를 들어, 도 11을 참조하면, 하나 이상의 프로세서 102는 상기 RLM/BFR 동작을 수행하도록 하나 이상의 메모리 104 등을 제어할 수 있다.
UE는 상기 RLM/BFR에 대한 보고(예를 들어, BFRQ)을 TRP 1 및/또는 TRP2를 통해/이용해 네트워크 측으로 전송할 수 있다(S125). 이 경우, TRP 1에 대한 RLM/BFR에 대한 보고(예로, BFRQ 등)와 TRP 2에 대한 RLM/BFR에 대한 보고(예로, BFRQ 등)는 각각 전송될 수도 있고 또는 하나로 결합될 수도 있다. 또한, UE는 대표 TRP(예로, TRP 1)로의 RLM/BFR에 대한 보고(예로, BFRQ 등)을 전송하도록 설정되고, 다른 TRP(예로, TRP 2)로의 RLM/BFR에 대한 보고(예로, BFRQ 등) 전송은 생략될 수도 있다. 또는, UE는 빔 실패가 발생한 TRP와 동일 TRP로 BFR에 대한 보고(예로, BFRQ 등)을 전송하도록 설정될 수도 있다. 또는, UE는 빔 실패가 발생한 TRP가 아닌 TRP로 RLM/BFR에 대한 보고(예로, BFRQ 등)를 전송하도록 설정될 수도 있다.
예를 들어, UE로부터 TRP 1 및/또는 TRP 2를 통해/이용해 BF에 대한 보고/BFRQ 등을 수신한 네트워크 측은, 빔 복구를 위한 새로운 RLM/BM/BFR 관련 RS 정보를 UE에 전송할 수 있다.
예를 들어, 상술한 S125 단계의 UE(도 11의 100/200)가 네트워크 측 (도 11의 100/200)로부터 RLM/BFR에 대한 보고(예로, BFRQ 등)를 전송하는 동작은 이하 설명될 도 11의 장치에 의해 구현될 수 있다. 예를 들어, 도 11을 참고하면, 하나 이상의 프로세서 102는 RLM/BFR에 대한 보고(예로, BFRQ 등)를 전송하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 하나 이상의 트랜시버 106은 네트워크 측으로 RLM/ BFR에 대한 보고(예로, BFRQ 등)를 전송할 수 있다.
앞서 언급한 바와 같이, 상술한 네트워크 측/UE 시그널링 및 실시예(예를 들어, 실시예 1, 실시예 2, 또는 그 세부 예시들 중의 하나 이상의 조합)는 도 11을 참조하여 설명될 장치에 의해 구현될 수 있다. 예를 들어, 네트워크 측(예로, TRP 1 / TRP 2)는 제 1 디바이스(100), UE는 제 2 디바이스(200)에 해당할 수 있고, 경우에 따라 그 반대의 경우도 고려될 수 있다.
예를 들어, 상술한 네트워크 측/UE 시그널링 및 동작(예를 들어, 실시예 1, 실시예 2 또는 그 세부 예시들 중의 하나 이상의 조합)은 도 11의 하나 이상의 프로세서(예로, 102, 202)에 의해 처리될 수 있으며, 상술한 네트워크 측/UE 시그널링 및 동작(예를 들어, 실시예 1 또는 그 세부 예시들 중의 하나 이상의 조합)은 도 11의 적어도 하나의 프로세서(예로, 102, 202)를 구동하기 위한 명령어/프로그램(예로, instruction, executable code)형태로 메모리(예로, 도 11의 하나 이상의 메모리(예로, 104, 204)에 저장될 수도 있다.
본 개시가 적용될 수 있는 장치 일반
도 11은 본 개시의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 11을 참조하면, 제1 디바이스(100)와 제2 디바이스(200)는 다양한 무선 접속 기술(예를 들어, LTE, NR)을 통해 무선 신호를 송수신할 수 있다.
제1 디바이스(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예를 들어, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 개시에서 디바이스는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 디바이스(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예를 들어, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 개시에서 디바이스는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 디바이스(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예를 들어, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 개시에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예를 들어, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예를 들어, 베이스밴드 신호)를 수신할 수 있고, 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 개시의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 개시에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예를 들어, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
이상에서 설명된 실시예들은 본 개시의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 개시의 실시예를 구성하는 것도 가능하다. 본 개시의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 개시는 본 개시의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 개시의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 개시의 등가적 범위 내에서의 모든 변경은 본 개시의 범위에 포함된다.
본 개시의 범위는 다양한 실시예의 방법에 따른 동작이 장치 또는 컴퓨터 상에서 실행되도록 하는 소프트웨어 또는 머신-실행가능한 명령들(예를 들어, 운영체제, 애플리케이션, 펌웨어(firmware), 프로그램 등), 및 이러한 소프트웨어 또는 명령 등이 저장되어 장치 또는 컴퓨터 상에서 실행 가능한 비-일시적 컴퓨터-판독가능 매체(non-transitory computer-readable medium)를 포함한다. 본 개시에서 설명하는 특징을 수행하는 프로세싱 시스템을 프로그래밍하기 위해 사용될 수 있는 명령은 저장 매체 또는 컴퓨터 판독가능 저장 매체 상에/내에 저장될 수 있고, 이러한 저장 매체를 포함하는 컴퓨터 프로그램 제품을 이용하여 본 개시에서 설명하는 특징이 구현될 수 있다. 저장 매체는 DRAM, SRAM, DDR RAM 또는 다른 랜덤 액세스 솔리드 스테이트 메모리 디바이스와 같은 고속 랜덤 액세스 메모리를 포함할 수 있지만, 이에 제한되지 않으며, 하나 이상의 자기 디스크 저장 디바이스, 광 디스크 저장 장치, 플래시 메모리 디바이스 또는 다른 비-휘발성 솔리드 스테이트 저장 디바이스와 같은 비-휘발성 메모리를 포함할 수 있다. 메모리는 선택적으로 프로세서(들)로부터 원격에 위치한 하나 이상의 저장 디바이스를 포함한다. 메모리 또는 대안적으로 메모리 내의 비-휘발성 메모리 디바이스(들)는 비-일시적 컴퓨터 판독가능 저장 매체를 포함한다. 본 개시에서 설명하는 특징은, 머신 판독가능 매체 중 임의의 하나에 저장되어 프로세싱 시스템의 하드웨어를 제어할 수 있고, 프로세싱 시스템이 본 개시의 실시예에 따른 결과를 활용하는 다른 메커니즘과 상호작용하도록 하는 소프트웨어 및/또는 펌웨어에 통합될 수 있다. 이러한 소프트웨어 또는 펌웨어는 애플리케이션 코드, 디바이스 드라이버, 운영 체제 및 실행 환경/컨테이너를 포함할 수 있지만 이에 제한되지 않는다.
여기서, 본 개시의 디바이스(100, 200)에서 구현되는 무선 통신 기술은 LTE, NR 및 6G뿐만 아니라 저전력 통신을 위한 Narrowband Internet of Things를 포함할 수 있다. 이때, 예를 들어 NB-IoT 기술은 LPWAN(Low Power Wide Area Network) 기술의 일례일 수 있고, LTE Cat NB1 및/또는 LTE Cat NB2 등의 규격으로 구현될 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 개시의 디바이스(100, 200)에서 구현되는 무선 통신 기술은 LTE-M 기술을 기반으로 통신을 수행할 수 있다. 이때, 일 예로, LTE-M 기술은 LPWAN 기술의 일례일 수 있고, eMTC(enhanced Machine Type Communication) 등의 다양한 명칭으로 불릴 수 있다. 예를 들어, LTE-M 기술은 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL(non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, 및/또는 7) LTE M 등의 다양한 규격 중 적어도 어느 하나로 구현될 수 있으며 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 개시의 디바이스(100, 200)에서 구현되는 무선 통신 기술은 저전력 통신을 고려한 지그비(ZigBee), 블루투스(Bluetooth) 및 저전력 광역 통신망(Low Power Wide Area Network, LPWAN) 중 적어도 어느 하나를 포함할 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 일 예로 ZigBee 기술은 IEEE 802.15.4 등의 다양한 규격을 기반으로 소형/저-파워 디지털 통신에 관련된 PAN(personal area networks)을 생성할 수 있으며, 다양한 명칭으로 불릴 수 있다.
본 개시에서 제안하는 방법은 3GPP LTE/LTE-A, 5G 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A, 5G 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.
Claims (18)
- 무선 통신 시스템에서 단말이 빔 실패 복구(beam failure recovery, BFR)를 수행하는 방법에 있어서, 상기 방법은:상기 단말이 지원하는 빔 실패 검출-참조 신호(beam failure detection-reference signal, BFD-RS) 세트 당 BFD-RS의 최대 개수를 포함하는 능력(capability) 정보를 기지국으로 전송하는 단계; 및적어도 하나의 BFD-RS 세트와 관련된 정보가 포함된 설정 정보를 상기 기지국으로부터 수신하는 단계를 포함하고,상기 적어도 하나의 BFD-RS 세트 각각은, 상기 최대 개수 이하의 BFD-RS를 포함하는, 방법.
- 제1항에 있어서,상기 적어도 하나의 BFD-RS 세트는, 제1 BFD-RS 세트 및 제2 BFD-RS 세트를 포함하고,상기 제1 BFD-RS 세트는, 제1 제어 자원 세트(control resource set, CORESET) 그룹에 대응되고,상기 제2 BFD-RS 세트는, 제2 CORESET 그룹에 대응되는, 방법.
- 제2항에 있어서,상기 제1 CORESET 그룹 또는 상기 제2 CORESET 그룹에 포함된 적어도 하나의 CORESET에 대해 설정된 전송 설정 지시자(transmission configuration indicator, TCI) 상태의 개수가 상기 BFD-RS의 최대 개수를 초과함에 기반하여, 상기 제1 BFD-RS 세트 또는 상기 제2 BFD-RS 세트에 포함될 TCI 상태에 대응되는 BFD-RS는, 상기 적어도 하나의 CORESET 각각에 대응되는 검색 공간(search space)의 모니터링 주기(monitoring periodicity)에 기초하여 결정되는, 방법.
- 제3항에 있어서,상기 적어도 하나의 CORESET 중 상기 검색 공간의 모니터링 주기가 가장 짧은 CORESET에 설정된 TCI 상태에 대응되는 BFD-RS가 우선적으로 상기 제1 BFD-RS 세트 또는 상기 제2 BFD-RS 세트에 포함되는, 방법.
- 제3항에 있어서,상기 적어도 하나의 CORESET 각각에 대응되는 검색 공간의 모니터링 주기가 서로 동일함에 기반하여, 상기 제1 BFD-RS 세트 또는 상기 제2 BFD-RS 세트에 포함될 BFD-RS에 대응되는 TCI 상태가 설정된 CORESET는, 상기 적어도 하나의 CORESET의 인덱스 값에 기초하여 결정되는, 방법.
- 제5항에 있어서,상기 적어도 하나의 CORESET 중 인덱스 값이 가장 큰 CORESET에 설정된 TCI 상태에 대응되는 BFD-RS가 우선적으로 상기 제1 BFD-RS 세트 또는 상기 제2 BFD-RS 세트에 포함되는, 방법.
- 제2항에 있어서,상기 능력 정보는,상기 단말이 지원하는 상기 제1 BFD-RS 세트 및 상기 제2 BFD-RS 세트에 포함될 수 있는 총 BFD-RS의 개수를 포함하는, 방법.
- 제2항에 있어서,상기 능력 정보는,상기 단말이 지원하는 상기 제1 CORESET 그룹 또는 상기 제2 CORESET 그룹에 포함된 적어도 하나의 CORESET에 대해 설정된 TCI 상태의 개수를 포함하는, 방법.
- 제1항에 있어서,상기 최대 개수 이하의 BFD-RS가 포함된 상기 적어도 하나의 BFD-RS 세트에서 빔 실패 인스턴스(beam failure instance, BFI)를 검출하는, 방법.
- 제1항에 있어서,상기 BFD-RS는, CSI-RS(channel state information-reference signal) 또는 SSB(synchronization signal block) 중 적어도 하나인, 방법.
- 제3항에 있어서,상기 TCI 상태는, QCL(quasi co-location) 관계를 가지는 RS를 지시하는 정보를 포함하는, 방법.
- 제1항에 있어서,상기 적어도 하나의 BFD-RS 세트와 관련된 정보는,특정 제어 자원 세트(control resource set, CORESET)에 대해서 설정되는 하나 이상의 전송 설정 지시자(transmission configuration indicator, TCI) 상태에 대한 설정 정보를 포함하는, 방법.
- 제1항에 있어서,상기 적어도 하나의 BFD-RS 세트와 관련된 정보는,각각의 BFD-RS 세트에 포함되는 RS를 지시하는 정보를 포함하는, 방법.
- 무선 통신 시스템에서 빔 실패 복구(beam failure recovery, BFR)를 수행하는 단말에 있어서, 상기 단말은:하나 이상의 송수신기(transceiver); 및상기 하나 이상의 송수신기와 연결된 하나 이상의 프로세서를 포함하고,상기 하나 이상의 프로세서는:상기 단말이 지원하는 빔 실패 검출-참조 신호(beam failure detection-reference signal, BFD-RS) 세트 별로 포함될 수 있는 BFD-RS 의 최대 개수를 포함하는 능력(capability) 정보를 기지국으로 상기 하나 이상의 송수신기를 통해 전송하고; 및적어도 하나의 BFD-RS 세트와 관련된 정보가 포함된 설정 정보를 상기 기지국으로부터 상기 하나 이상의 송수신기를 통해 수신하도록 설정되고,상기 적어도 하나의 BFD-RS 세트 각각은, 상기 최대 개수 이하의 BFD-RS 자원을 포함하는, 방법.
- 무선 통신 시스템에서 기지국이 빔 실패 복구(beam failure recovery, BFR)를 수행하는 방법에 있어서, 상기 방법은:상기 단말이 지원하는 빔 실패 검출-참조 신호(beam failure detection-reference signal, BFD-RS) 세트 별로 포함될 수 있는 BFD-RS 의 최대 개수를 포함하는 능력(capability) 정보를 단말로부터 수신하는 단계; 및적어도 하나의 BFD-RS 세트와 관련된 정보가 포함된 설정 정보를 상기 단말로 전송하는 단계를 포함하고,상기 적어도 하나의 BFD-RS 세트 각각은, 상기 최대 개수 이하의 BFD-RS 자원을 포함하는, 방법.
- 무선 통신 시스템에서 빔 실패 복구(beam failure recovery, BFR)를 수행하는 기지국에 있어서, 상기 기지국은:하나 이상의 송수신기(transceiver); 및상기 하나 이상의 송수신기와 연결된 하나 이상의 프로세서를 포함하고,상기 하나 이상의 프로세서는:상기 단말이 지원하는 빔 실패 검출-참조 신호(beam failure detection-reference signal, BFD-RS) 세트 별로 포함될 수 있는 BFD-RS 의 최대 개수를 포함하는 능력(capability) 정보를 단말로부터 상기 하나 이상의 송수신기를 통해 수신하고; 및적어도 하나의 BFD-RS 세트와 관련된 정보가 포함된 설정 정보를 상기 단말로 상기 하나 이상의 송수신기를 통해 전송하도록 설정되고,상기 적어도 하나의 BFD-RS 세트 각각은, 상기 최대 개수 이하의 BFD-RS 자원을 포함하는, 기지국.
- 무선 통신 시스템에서 빔 실패 복구(beam failure recovery, BFR)를 수행하기 위해 단말을 제어하도록 설정되는 프로세싱 장치에 있어서, 상기 프로세싱 장치는:하나 이상의 프로세서; 및상기 하나 이상의 프로세서에 동작 가능하게 연결되고, 상기 하나 이상의 프로세서에 의해 실행됨에 기반하여, 동작들을 수행하는 명령(instruction)들을 저장하는 하나 이상의 컴퓨터 메모리를 포함하며,상기 동작들은:상기 단말이 지원하는 빔 실패 검출-참조 신호(beam failure detection-reference signal, BFD-RS) 세트 별로 포함될 수 있는 BFD-RS 의 최대 개수를 포함하는 능력(capability) 정보를 기지국으로 전송하는 동작; 및적어도 하나의 BFD-RS 세트와 관련된 정보가 포함된 설정 정보를 상기 기지국으로부터 수신하는 동작을 포함하고,상기 적어도 하나의 BFD-RS 세트 각각은, 상기 최대 개수 이하의 BFD-RS 자원을 포함하는, 프로세싱 장치.
- 하나 이상의 명령을 저장하는 하나 이상의 비-일시적(non-transitory) 컴퓨터 판독가능 매체로서,상기 하나 이상의 명령은 하나 이상의 프로세서에 의해서 실행되어, 무선 통신 시스템에서 빔 실패 복구(beam failure recovery, BFR)를 수행하는 장치가:상기 단말이 지원하는 빔 실패 검출-참조 신호(beam failure detection-reference signal, BFD-RS) 세트 별로 포함될 수 있는 BFD-RS 의 최대 개수를 포함하는 능력(capability) 정보를 기지국으로 전송하고; 및적어도 하나의 BFD-RS 세트와 관련된 정보가 포함된 설정 정보를 상기 기지국으로부터 수신하도록 제어하고,상기 적어도 하나의 BFD-RS 세트 각각은, 상기 최대 개수 이하의 BFD-RS 자원을 포함하는, 컴퓨터 판독가능 매체.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/780,172 US11963249B2 (en) | 2021-01-05 | 2021-12-24 | Beam failure recovery method and apparatus in wireless communication system |
EP21895913.8A EP4054107A4 (en) | 2021-01-05 | 2021-12-24 | METHOD AND DEVICE FOR RADIATION FAILURE RECOVERY IN A WIRELESS COMMUNICATION SYSTEM |
CN202180007566.5A CN115039363B (zh) | 2021-01-05 | 2021-12-24 | 无线通信系统中的波束故障恢复方法及设备 |
KR1020227018194A KR102562608B1 (ko) | 2021-01-05 | 2021-12-24 | 무선 통신 시스템에서 빔 실패 복구 방법 및 장치 |
JP2022538876A JP7487313B2 (ja) | 2021-01-05 | 2021-12-24 | 無線通信システムにおいてビーム失敗復旧方法及び装置 |
US18/158,193 US12028922B2 (en) | 2021-01-05 | 2023-01-23 | Beam failure recovery method and apparatus in wireless communication system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20210001133 | 2021-01-05 | ||
KR10-2021-0001133 | 2021-01-05 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/780,172 A-371-Of-International US11963249B2 (en) | 2021-01-05 | 2021-12-24 | Beam failure recovery method and apparatus in wireless communication system |
US18/158,193 Continuation US12028922B2 (en) | 2021-01-05 | 2023-01-23 | Beam failure recovery method and apparatus in wireless communication system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022149774A1 true WO2022149774A1 (ko) | 2022-07-14 |
Family
ID=82357207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/019793 WO2022149774A1 (ko) | 2021-01-05 | 2021-12-24 | 무선 통신 시스템에서 빔 실패 복구 방법 및 장치 |
Country Status (6)
Country | Link |
---|---|
US (2) | US11963249B2 (ko) |
EP (1) | EP4054107A4 (ko) |
JP (1) | JP7487313B2 (ko) |
KR (1) | KR102562608B1 (ko) |
CN (1) | CN115039363B (ko) |
WO (1) | WO2022149774A1 (ko) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117134867A (zh) * | 2016-11-02 | 2023-11-28 | 交互数字专利控股公司 | 接收机带宽适配 |
CN108632984B (zh) * | 2017-03-24 | 2021-09-21 | 展讯通信(上海)有限公司 | 公共控制信道的配置及接收方法、装置 |
CN114900891A (zh) * | 2018-08-17 | 2022-08-12 | 成都华为技术有限公司 | 信号传输的方法和通信装置 |
US20220240293A1 (en) * | 2021-01-25 | 2022-07-28 | Qualcomm Incorporated | Ue capability of bfd rs per beam group |
US20220247475A1 (en) * | 2021-02-01 | 2022-08-04 | Qualcomm Incorporated | Mitigating non-transmitted beam failure detection reference signal due to listen-before-talk failure |
US20230032365A1 (en) * | 2021-08-02 | 2023-02-02 | Qualcomm Incorporated | Identification of a beam failure detection reference signal and a new beam identification reference signal |
WO2024167284A1 (ko) * | 2023-02-07 | 2024-08-15 | 엘지전자 주식회사 | 무선 통신 시스템에서 빔 실패 복구를 위한 방법 및 장치 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200068644A1 (en) * | 2017-05-05 | 2020-02-27 | Huawei Technologies Co., Ltd. | Method For Receiving Beam Recovery Request And Network Device |
KR102107714B1 (ko) * | 2018-08-22 | 2020-05-07 | 엘지전자 주식회사 | 무선 통신 시스템에서 상향링크 전송을 수행하는 방법 및 이를 위한 장치 |
WO2020160304A1 (en) * | 2019-01-30 | 2020-08-06 | Apple Inc. | Downlink reception signal collision avoidance |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6607916B2 (en) * | 2001-02-08 | 2003-08-19 | Isis Pharmaceuticals, Inc. | Antisense inhibition of Casein kinase 2-alpha expression |
CN110999471B (zh) | 2017-06-16 | 2023-10-24 | Lg电子株式会社 | 在无线通信系统中执行波束故障恢复的方法及其设备 |
US10880761B2 (en) * | 2017-09-11 | 2020-12-29 | Qualcomm Incorporated | System and method for selecting resources to transmit a beam failure recovery request |
EP3644677A4 (en) * | 2017-09-11 | 2020-07-08 | LG Electronics Inc. -1- | BEAM RECOVERY METHOD IN WIRELESS COMMUNICATION SYSTEM, AND ASSOCIATED DEVICE |
SG11202003186PA (en) * | 2017-11-17 | 2020-05-28 | Lg Electronics Inc | Method for carrying out beam failure recovery in wireless communication system and device therefor |
US11316798B2 (en) * | 2018-02-06 | 2022-04-26 | Apple Inc. | Control signaling of beam failure detection |
US11050877B2 (en) | 2018-07-02 | 2021-06-29 | Qualcomm Incorporated | Methods and apparatus for beam failure detection |
CN113302956A (zh) * | 2019-01-10 | 2021-08-24 | 康维达无线有限责任公司 | 用于管理波束故障检测的用户设备和基站 |
CN113424461A (zh) | 2019-02-11 | 2021-09-21 | 苹果公司 | 用于增强波束恢复的装置和方法 |
WO2020222144A1 (en) | 2019-05-02 | 2020-11-05 | Nokia Technologies Oy | Robust beam failure recovery using a non-serving cell |
EP3982674A1 (en) * | 2019-06-06 | 2022-04-13 | Ntt Docomo, Inc. | Terminal and wireless communication method |
US11903069B2 (en) | 2019-08-16 | 2024-02-13 | Intel Corporation | Beam failure recovery in secondary cells |
US20210092003A1 (en) | 2019-09-24 | 2021-03-25 | Qualcomm Incorporated | Beam failure detection (bfd) behavior after receiving beam failure recovery (bfr) response |
CN111093219A (zh) * | 2019-11-07 | 2020-05-01 | 中兴通讯股份有限公司 | 信息的确定、对应关系的确定方法、装置、设备及介质 |
CN115004745B (zh) * | 2019-12-04 | 2023-12-19 | 株式会社Ntt都科摩 | 终端以及无线通信方法 |
US11076439B2 (en) | 2020-01-01 | 2021-07-27 | PanPsy Technologies, LLC | Wireless device and wireless network processes for secondary cell to primary cell scheduling |
US11838774B2 (en) | 2020-09-25 | 2023-12-05 | Qualcomm Incorporated | Transmission reception point specific beam failure recovery process |
-
2021
- 2021-12-24 US US17/780,172 patent/US11963249B2/en active Active
- 2021-12-24 KR KR1020227018194A patent/KR102562608B1/ko active IP Right Grant
- 2021-12-24 CN CN202180007566.5A patent/CN115039363B/zh active Active
- 2021-12-24 JP JP2022538876A patent/JP7487313B2/ja active Active
- 2021-12-24 WO PCT/KR2021/019793 patent/WO2022149774A1/ko unknown
- 2021-12-24 EP EP21895913.8A patent/EP4054107A4/en active Pending
-
2023
- 2023-01-23 US US18/158,193 patent/US12028922B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200068644A1 (en) * | 2017-05-05 | 2020-02-27 | Huawei Technologies Co., Ltd. | Method For Receiving Beam Recovery Request And Network Device |
KR102107714B1 (ko) * | 2018-08-22 | 2020-05-07 | 엘지전자 주식회사 | 무선 통신 시스템에서 상향링크 전송을 수행하는 방법 및 이를 위한 장치 |
WO2020160304A1 (en) * | 2019-01-30 | 2020-08-06 | Apple Inc. | Downlink reception signal collision avoidance |
Non-Patent Citations (5)
Title |
---|
3GPP LTE, TS 36.211 |
3GPP NR, TS 38.211 |
APPLE INC.: "On Multi-TRP Beam Management Enhancement", 3GPP DRAFT; R1-2103091, vol. RAN WG1, 7 April 2021 (2021-04-07), pages 1 - 6, XP052177892 * |
MEDIATEK INC.: "Summary 2 on Remaing issues on Beam Failure Recovery Document for discussion ", 3GPP DRAFT; R1-1807796_SUMMARY_BFR_V07, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Busan, Korea; 20180521 - 20180525, 24 May 2018 (2018-05-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 29, XP051463405 * |
MODERATOR (CATT): "Summary on beam management for simultaneous multi-TRP transmission with multiple Rx panels", 3GPP DRAFT; R1-2009500, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 26 November 2020 (2020-11-26), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051960786 * |
Also Published As
Publication number | Publication date |
---|---|
JP7487313B2 (ja) | 2024-05-20 |
CN115039363B (zh) | 2023-12-12 |
US12028922B2 (en) | 2024-07-02 |
EP4054107A1 (en) | 2022-09-07 |
CN115039363A (zh) | 2022-09-09 |
US20230327741A1 (en) | 2023-10-12 |
US20230164865A1 (en) | 2023-05-25 |
JP2023512896A (ja) | 2023-03-30 |
US11963249B2 (en) | 2024-04-16 |
KR20220101116A (ko) | 2022-07-19 |
KR102562608B1 (ko) | 2023-08-02 |
EP4054107A4 (en) | 2023-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021182863A1 (ko) | 무선 통신 시스템에서 무선 링크 품질 평가 방법 및 장치 | |
WO2022149774A1 (ko) | 무선 통신 시스템에서 빔 실패 복구 방법 및 장치 | |
WO2022060014A1 (ko) | 무선 통신 시스템에서 빔 보고 방법 및 장치 | |
WO2021230640A1 (ko) | 무선 통신 시스템에서 csi-rs 송수신 방법 및 장치 | |
WO2021201623A1 (ko) | 무선 통신 시스템에서 pdcch 송수신 방법 및 장치 | |
WO2021172903A1 (ko) | 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치 | |
WO2021162264A1 (ko) | 무선 통신 시스템에서 상향링크 채널 반복 전송 방법 및 장치 | |
WO2021261879A1 (ko) | 무선 통신 시스템에서 상향링크 송수신 방법 및 장치 | |
WO2023287184A2 (ko) | 무선 통신 시스템에서 주파수 자원 설정 기반의 무선 신호 송수신 방법 및 장치 | |
WO2022215968A1 (ko) | 무선 통신 시스템에서 하향링크 제어 채널 송수신 방법 및 장치 | |
WO2022071672A1 (ko) | 무선 통신 시스템에서 빔 실패 복구 방법 및 장치 | |
WO2022030906A1 (ko) | 무선 통신 시스템에서 시간 단위의 그룹 기반 송수신 방법 및 장치 | |
WO2021206389A1 (ko) | 무선 통신 시스템에서 빔 연계 상태 기반 상향링크/하향링크 송수신 방법 및 장치 | |
WO2022158825A1 (ko) | 무선 통신 시스템에서 상향링크 송수신 방법 및 장치 | |
WO2022186632A1 (ko) | 무선 통신 시스템에서 통신을 수행하는 방법 및 장치 | |
WO2022211355A1 (ko) | 무선 통신 시스템에서 상향링크 송수신을 수행하는 방법 및 장치 | |
WO2022139394A1 (ko) | 무선 통신 시스템에서 빔 실패 복구 방법 및 장치 | |
WO2023003290A1 (ko) | 무선 통신 시스템에서 상향링크 또는 하향링크 송수신을 수행하는 방법 및 장치 | |
WO2022225296A1 (ko) | 무선 통신 시스템에서 상향링크 송수신 방법 및 장치 | |
WO2022154502A1 (ko) | 무선 통신 시스템에서 공간 파라미터 적용 방법 및 장치 | |
WO2022030909A1 (ko) | 무선 통신 시스템에서 상향링크 또는 하향링크 송수신 방법 및 장치 | |
WO2021194217A1 (ko) | 무선 통신 시스템에서 공간 파라미터 기반 상향링크 송수신 방법 및 장치 | |
WO2021157910A1 (ko) | 무선 통신 시스템에서 다중 송수신 포인트에 대한 상향링크 채널 전송 방법 및 장치 | |
WO2023003281A1 (ko) | 무선 통신 시스템에서 비-서빙 엔터티에 대한 측정 방법 및 장치 | |
WO2022149938A1 (ko) | 무선 통신 시스템에서 공간 파라미터 기반 신호 송수신 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 20227018194 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2021895913 Country of ref document: EP Effective date: 20220530 |
|
ENP | Entry into the national phase |
Ref document number: 2022538876 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |