WO2019183940A1 - 波束选择方法及装置 - Google Patents

波束选择方法及装置 Download PDF

Info

Publication number
WO2019183940A1
WO2019183940A1 PCT/CN2018/081399 CN2018081399W WO2019183940A1 WO 2019183940 A1 WO2019183940 A1 WO 2019183940A1 CN 2018081399 W CN2018081399 W CN 2018081399W WO 2019183940 A1 WO2019183940 A1 WO 2019183940A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
transmitted
transmission
location
receiving
Prior art date
Application number
PCT/CN2018/081399
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2018/081399 priority Critical patent/WO2019183940A1/zh
Priority to EP18911750.0A priority patent/EP3771269A4/en
Priority to CN201880000376.9A priority patent/CN109451869B/zh
Publication of WO2019183940A1 publication Critical patent/WO2019183940A1/zh
Priority to US17/011,454 priority patent/US11516805B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a beam selection method and apparatus.
  • the wireless communication system extends the working frequency band to the unlicensed spectrum.
  • the frequency bands with better signal transmission characteristics such as the low frequency band
  • the deployment of wireless communication systems has been relatively crowded. Therefore, in the research of the fifth generation mobile communication technology (5th Generation, 5G for short), consider the higher frequency bands.
  • the wireless communication system is deployed and transmitted by means of a beam.
  • LAA Authorized Assisted Access
  • WIFI WIreless-FIdelity
  • LBT Listen-Before-Talk
  • the channel competition access mechanism the sender needs to detect whether the channel is idle when there is data to be sent, and only when the channel is in an idle state, the sender can send data.
  • the base station may use different beams to transmit data at different times.
  • the user equipment determines the optimal transmission beam and transmission beam with the base station during the initial access process. Therefore, channel detection is required on the unlicensed frequency band. As a result, when the channel is busy, the user equipment cannot determine the optimal beam during the initial access process, thereby affecting the performance of the system.
  • the embodiments of the present disclosure provide a beam selection method and apparatus, which are used to obtain an optimal beam as soon as possible during initial access of a user equipment.
  • a beam selection method applied to a data receiving end, the method comprising:
  • an optimal transmission beam is determined.
  • the determining, in the set transmission period, the receiving location for monitoring data to be transmitted includes:
  • the receiving location is determined based on the location parameter or a receiving window comprising a plurality of receiving locations is determined based on the location parameter.
  • the determining, in the set transmission period, the receiving location for monitoring data to be transmitted includes:
  • the receiving location is determined based on the location parameter or a receiving window comprising a plurality of receiving locations is determined based on the location parameter.
  • the data to be transmitted is a sync block signal
  • the data to be transmitted is a sync block signal, and a beam indication signaling or a beam indicating signal.
  • the beam indication signal is a predefined pilot sequence, and the beam indication signaling or the beam indication signal carries beam information of a data transmission beam.
  • the data to be transmitted is a random access preamble.
  • the determining, based on the monitoring result, the optimal transmission beam includes:
  • the data transmission beam corresponding to the highest received data to be transmitted is determined as the optimal transmission beam.
  • a beam selection method which is applied to a data transmitting end, and the method includes:
  • the determining, according to a channel state of a channel to be detected and a set position parameter in a set transmission period, determining a target sending location for each beam including:
  • the first location or all locations where the channel state is unoccupied is determined as the target transmission location for each beam.
  • the set position parameter is obtained by a system agreement, or the set position parameter is set by a base station.
  • the sending, by the corresponding transmitting beam, the data to be transmitted in the target sending position for each beam including:
  • the beam indication signaling or the beam indication signal or the synchronization block signal is sent through the corresponding transmission beam at the other target transmission locations;
  • the beam indication signaling or the beam indication signal or the synchronization block signal is continued to be transmitted at other target transmission locations, or the beam indication signaling or the beam indication signal is rejected at the other target transmission locations. Or sync block signals.
  • the beam indication signal is a predefined pilot sequence, and the beam indication signaling or the beam indication signal carries beam information of a data transmission beam.
  • the method further includes:
  • the sending, by the corresponding transmission beam, the data to be transmitted, in the target sending position for each beam includes:
  • a random access preamble is transmitted through the corresponding transmission beam at the target transmission location for each beam.
  • a beam selecting apparatus which is applied to a data receiving end, the apparatus comprising:
  • a first determining module configured to determine a receiving location for monitoring data to be transmitted within a set transmission period
  • the monitoring module is configured to monitor data to be transmitted sent by the data transmitting end through different beams at the receiving location, where the data to be transmitted can indicate a corresponding transmitting beam;
  • the second determining module is configured to determine an optimal transmission beam based on the monitoring result.
  • the first determining module comprises:
  • a receiving submodule configured to receive a location parameter sent by the base station by using RRC signaling, or a MAC CE, or physical layer signaling;
  • the first determining submodule is configured to determine a receiving location based on the location parameter or to determine a receiving window comprising a plurality of receiving locations based on the location parameter.
  • the first determining module comprises:
  • a second determining submodule configured to determine, according to a system convention, a location parameter that listens for data to be transmitted within a set transmission period
  • a third determining submodule configured to determine a receiving location based on the location parameter or to determine a receiving window comprising the plurality of receiving locations based on the location parameter.
  • the data to be transmitted is a sync block signal
  • the data to be transmitted is a sync block signal, and a beam indication signaling or a beam indicating signal.
  • the beam indication signal is a predefined pilot sequence, and the beam indication signaling or the beam indication signal carries beam information of a data transmission beam.
  • the data to be transmitted is a random access preamble.
  • the second determining module is configured to determine a data transmission beam corresponding to the highest received data to be transmitted as an optimal transmission beam.
  • a beam selecting apparatus which is applied to a data transmitting end, the apparatus comprising:
  • a third determining module configured to determine a target sending location for each beam based on a channel state of the channel to be detected and a set position parameter within a set transmission period
  • a sending module configured to send the to-be-transmitted data through a corresponding transmission beam at the target transmission location for each beam, where the data receiving end determines an optimal beam based on a monitoring result of monitoring the to-be-transmitted data.
  • the third determining module comprises:
  • a fourth determining submodule configured to determine, according to the set location parameter, a sending location or a sending window available for transmitting the to-be-transmitted data for each beam;
  • a fifth determining submodule configured as a fifth determining submodule configured to: in the transmitting location available for transmitting data to be transmitted for each beam, the channel state being the first transmitting location of the unoccupied state or All transmission locations are determined as target transmission locations for each beam; or,
  • a sixth determining submodule configured to determine, in the transmission window that can be used to transmit data to be transmitted, a first location or all locations where the channel state is an unoccupied state as a target transmission location for each beam.
  • the set position parameter is obtained by a system agreement, or the set position parameter is set by a base station.
  • the sending module includes:
  • a first sending submodule configured to send a synchronization block signal by using a corresponding transmission beam at a location for transmitting a synchronization block signal in the target transmission location
  • a second sending submodule configured to: if the synchronization block signal is not successfully sent, send beam indication signaling or a beam indication signal, or a synchronization block signal, through a corresponding transmission beam at another subsequent target transmission location;
  • the third sending submodule is configured to continue to send the beam indication signaling or the beam indication signal or the synchronization block signal at other target transmission locations later, if the synchronization block signal is successfully sent, or reject the other target transmission locations later Transmit beam indication signaling or beam indication signal or sync block signal.
  • the beam indication signal is a predefined pilot sequence, and the beam indication signaling or the beam indication signal carries beam information of a data transmission beam.
  • the device further includes:
  • the receiving module is configured to receive the set location parameter sent by the base station by using RRC signaling, or MAC CE, or physical layer signaling.
  • the sending module is configured to send a random access preamble through a corresponding transmission beam at the target transmission location for each beam.
  • a data receiving end including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • an optimal transmission beam is determined.
  • a data transmitting end including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • a non-transitory computer readable storage medium having stored thereon computer instructions that, when executed by a processor, implement the following steps:
  • an optimal transmission beam is determined.
  • a non-transitory computer readable storage medium having stored thereon computer instructions that, when executed by a processor, implement the following steps:
  • the data receiving end can listen to the data to be transmitted at two or more receiving locations within the set transmission period, for example, monitoring the synchronization block signal or other signals capable of indicating the transmission beam at more than two receiving locations within one synchronization block transmission period. Let or signal and determine the optimal transmission beam based on the monitoring result. Therefore, the technical solution of the present disclosure implements that the data receiving end monitors the data to be transmitted through two or more receiving locations during the initial access process of the user equipment, thereby determining an optimal beam for communication, and avoiding the channel in the related art. When busy, the user equipment cannot determine the optimal beam problem during the initial access process.
  • FIG. 1A is a flowchart of a beam selection method according to an exemplary embodiment.
  • FIG. 1B is a scene diagram of a beam selection method, according to an exemplary embodiment.
  • FIG. 1C is a schematic diagram 1 showing data to be transmitted transmitted through different beams according to an exemplary embodiment.
  • FIG. 1D is a schematic diagram 2 of transmitting data to be transmitted through different beams according to an exemplary embodiment.
  • FIG. 2 is a flow chart of interaction of various entities in another beam selection method according to an exemplary embodiment.
  • FIG. 3A is a flow chart of interaction of various entities in another beam selection method according to an exemplary embodiment.
  • FIG. 3B is a schematic diagram 3 of transmitting data to be transmitted through different beams according to an exemplary embodiment.
  • FIG. 4 is a flow chart of interaction of various entities in another beam selection method according to an exemplary embodiment.
  • FIG. 5 is a flowchart of a beam selection method according to an exemplary embodiment.
  • FIG. 6 is a flowchart of still another beam selection method according to an exemplary embodiment.
  • FIG. 7 is a block diagram of a beam selection apparatus, according to an exemplary embodiment.
  • FIG. 8 is a block diagram of another beam selection apparatus, according to an exemplary embodiment.
  • FIG. 9 is a block diagram of a beam selection apparatus, according to an exemplary embodiment.
  • FIG. 10 is a block diagram of another beam selection device, according to an exemplary embodiment.
  • FIG. 11 is a block diagram of a beam selection device suitable for use in accordance with an exemplary embodiment.
  • FIG. 12 is a block diagram of a beam selection device suitable for use in accordance with an exemplary embodiment.
  • the technical solution provided by the present disclosure is applicable to a process in which a user equipment accesses a system that uses a beam for transmission.
  • FIG. 1A is a flowchart of a beam selection method according to an exemplary embodiment
  • FIG. 1B is a scene diagram of a beam selection method according to an exemplary embodiment
  • FIG. 1C is a diagram according to an exemplary embodiment
  • FIG. 1D is a schematic diagram 2 of transmitting data to be transmitted through different beams according to an exemplary embodiment; the beam selection method can be applied to a data receiving end according to an exemplary embodiment.
  • the beam selection method includes the following steps 101-103:
  • step 101 it is determined that the receiving position for monitoring data to be transmitted is set within the transmission period.
  • the receiving location for monitoring data to be transmitted during the transmission period may be configured by the base station, and if the user equipment is the data receiving end, the base station may receive by using RRC signaling, MAC CE or physical layer signaling.
  • the location is sent to the user equipment; in an embodiment, the receiving location for monitoring the data to be transmitted during the transmission period can also be agreed in advance by the system in the protocol.
  • the receiving position for monitoring the data to be transmitted during the set transmission period may be a time point within the set transmission period, as indicated by the mark 11-mark 14 in FIG. 1C;
  • the receiving position for monitoring the data to be transmitted in the set transmission period may be a time window within the set transmission period, as shown in the time window marked by the label 15 in FIG. 1D, the data receiving end may continue in the time window. Listen for data to be transmitted.
  • the data to be transmitted when the user equipment is the data receiving end, the data to be transmitted may be a synchronization block signal, or a synchronization block signal and other signaling or signals capable of indicating beam information of the transmission beam, and specific data transmission and reception.
  • the process can be referred to the embodiment shown in FIG. 2 and FIG. 3A respectively.
  • the data to be transmitted can be a random access preamble for the user equipment to access, and the specific data sending and receiving process can be seen in FIG. 4 .
  • step 102 the data to be transmitted sent by the data transmitting end through different beams is received at the receiving location, and the data to be transmitted can indicate the corresponding transmitting beam.
  • the system may pre-establish the correspondence between the data to be transmitted and the corresponding transmission beam by using an implicit rule.
  • the data to be transmitted corresponding to the transmission beam is selected. (such as sync block signal, random access preamble) to send.
  • the data to be transmitted may be explicitly carried with beam information for identifying the transmission beam, thereby enabling the data to be transmitted to indicate the corresponding transmission beam.
  • step 103 an optimal transmission beam is determined based on the monitoring result.
  • the data receiving end can determine the optimal transmission beam based on the data to be transmitted monitored at each receiving position, and the receiving quality can be the highest.
  • the data transmission beam corresponding to the data to be transmitted is determined as an optimal transmission beam. For example, there are four receiving positions in the transmission period, and two data to be transmitted are monitored.
  • the data to be transmitted 1 passes through the beam 1, and the data to be transmitted 2 is transmitted through the beam 2.
  • the signal receiving quality of the data to be transmitted 1 is higher than that to be transmitted. For the signal reception quality of data 2, it can be determined that beam 1 is better than beam 2, and beam 1 can be determined as the optimal transmission beam.
  • the mobile network is a new generation network (such as a 5G network) and the base station is a gNB as an example.
  • the technical solution of the present disclosure is not limited to use in a new generation network.
  • the scenario shown in FIG. 1B the mobile network is a new generation network (such as a 5G network) and the base station is a gNB as an example.
  • the technical solution of the present disclosure is not limited to use in a new generation network.
  • FIG. 1B the mobile network is a new generation network (such as a 5G network) and the base station is a gNB as an example.
  • the technical solution of the present disclosure is not limited to use in a new generation network.
  • the gNB 10 and the UE 20 are included, wherein the UE 20 can monitor the synchronization block signal sent by the gNB 10 in the set transmission period (sync block signal transmission period) during the initial access process, or other The signal or signal of the beam can be identified, and the optimal transmission beam is determined based on the monitoring result in the set transmission period; or the gNB 10 can also monitor the random access preamble transmitted by the UE 20 within the set transmission period, and based on The monitoring result in the set transmission period determines the optimal transmission beam.
  • the gNB 10 can also monitor the random access preamble transmitted by the UE 20 within the set transmission period, and based on The monitoring result in the set transmission period determines the optimal transmission beam.
  • the data receiving end can listen to the data to be transmitted at two or more receiving locations within the set transmission period, for example, two or more receiving locations within one sync block sending period.
  • the synchronization block signal or other signaling or signal capable of indicating the transmission beam is monitored, and the optimal transmission beam is determined according to the monitoring result. Therefore, the technical solution of the present disclosure implements that the data receiving end monitors the data to be transmitted through two or more receiving locations during the initial access process of the user equipment, thereby determining an optimal beam for communication, and avoiding the channel in the related art. When busy, the user equipment cannot determine the optimal beam problem during the initial access process.
  • FIG. 2 is a flow chart of interaction of each entity in another beam selection method according to an exemplary embodiment.
  • This embodiment uses the foregoing method provided by the embodiment of the present disclosure to use a base station as a data sending end and a user equipment as data receiving.
  • the example in which the data to be transmitted is a synchronization block signal is exemplified, and the base station may perform the technical solution of the embodiment when the channel detection fails to cause the synchronization block signal to be transmitted. As shown in Figure 2, the following steps are included:
  • the base station determines a target transmission location for each beam based on a channel state of the channel to be detected and a set position parameter within a set transmission period.
  • the set position parameter may be a set of positions of a plurality of sending positions. Referring to the mark 11-14 in FIG. 1B, four sending positions may be set in one sync block signal transmission period, and the mark is set. 11 and 13 are transmission positions for beam 1, and markers 12 and 14 are transmission positions for beam 2; in an embodiment, as indicated by reference numeral 15 in Fig. 1C, a synchronization block signal transmission period may be set. There is a transmission window for transmitting the sync block signal, and the transmission window can be composed of a plurality of transmission positions for each beam.
  • the set location parameters may be agreed by a system protocol; in an embodiment, the set location parameters may be set by the base station and may be through RRC signaling, or MAC CE, or physical layer signaling.
  • the set position parameters are sent to the user equipment.
  • the base station may use different beams to transmit the synchronization block signal at multiple transmission locations determined based on the set position parameters, but the signal energy of the channel needs to be measured when the base station wants to use the unlicensed spectrum resource to transmit data. And determining whether the channel is idle based on the signal energy of the channel. If not idle, the base station cannot use the corresponding beam to transmit data on the channel, so the sending position for transmitting the synchronization block signal needs to be that the channel state is idle and based on The set location parameter determines the resource to which it is.
  • step 202 the base station transmits a sync block signal through the corresponding transmit beam at the target transmit location for each beam.
  • four transmission positions can be set in one sync block signal transmission period, and synchronization is transmitted through the beam 1 at the transmission positions marked by the marks 11 and 13
  • the block signal transmits the sync block signal through the beam 2 at the transmission position marked by the marker 12 and the marker 14. If the channel detection is a channel detection failure if the transmission position marked by the flag 11 is detected, the transmission position marked by the marker 13 can be detected. Channel detection, and when channel detection is successful, the sync block signal is transmitted through beam 1 at the transmission location marked by flag 13.
  • the first channel is determined to be a target transmission position.
  • Position, that is, for each beam, the target transmission location has only one location; in one embodiment, for each beam, if a plurality of channels are determined to be in an unoccupied state in one synchronization block signal transmission period, The transmission position in which all channels are in an unoccupied state can be determined as the target transmission position, that is, there can be multiple target transmission positions for each beam.
  • a sync window signal transmission period may be set with a transmission window for transmitting a sync block signal, in which the base station can continuously detect the channel.
  • the channel state, and when the channel detection is successful, each of the beams is used to transmit the sync block signal at the first or all of the locations where the channel detection succeeds.
  • step 203 the user equipment determines a receiving position for monitoring the sync block signal in the set transmission period, and monitors the sync block signal transmitted by the data transmitting end through different beams at the receiving position, and the sync block signal can indicate the corresponding transmission beam.
  • the user equipment may also determine, by the set position parameter, a receiving position for monitoring the sync block signal within the set transmission period.
  • the system may pre-establish the correspondence between the synchronization block signal and the corresponding transmission beam by using an implicit rule.
  • the synchronization block signal corresponding to the transmission beam is selected. (such as sync block signal, random access preamble) to send.
  • the synchronization block signal may carry the beam information for identifying the transmission beam, thereby implementing the synchronization block signal to indicate the corresponding transmission beam.
  • step 204 an optimal transmission beam is determined based on the monitoring result.
  • step 204 can be referred to the description of step 103 of the embodiment shown in FIG. 1A, and will not be described in detail herein.
  • an implementation manner for determining an optimal transmission beam in an initial access process of a user equipment is disclosed.
  • the base station may use different beams to transmit a synchronization block signal in multiple transmission locations within a set transmission period, thereby enabling
  • the user equipment determines the optimal beam for communication in the initial access process, which avoids the problem that the user equipment cannot determine the optimal beam in the initial access process when the channel is busy.
  • FIG. 3A is a flowchart of interaction of each entity in another beam selection method according to an exemplary embodiment
  • FIG. 3B is a schematic diagram 3 of transmitting data to be transmitted through different beams according to an exemplary embodiment
  • This embodiment uses the foregoing method provided by the embodiment of the present disclosure to exemplify a base station as a data sending end, a user equipment as a data receiving end, a data to be transmitted as a synchronization block signal, and other signaling or signals capable of identifying a beam.
  • the base station may perform the technical solution of the embodiment when the channel detection fails to cause the synchronization block signal to be transmitted. As shown in FIG. 3A, the following steps are included:
  • the base station determines a target transmission location for each beam based on a channel state of the channel to be detected and a set position parameter within a set transmission period.
  • the base station may use different beams to transmit the synchronization block signal or the beam indication signaling or the beam indication signal at multiple transmission locations determined based on the set position parameters, but the base station utilizes the unlicensed spectrum resource.
  • the base station When transmitting data, it is necessary to measure the signal energy of the channel, and then determine whether the channel is idle based on the signal energy of the channel. If not, the base station cannot use the corresponding beam to transmit data on the channel, and therefore is used to transmit the synchronization block signal beam indication.
  • the transmission location of the signaling or beam indication signal needs to be a resource whose channel state is idle and is determined based on the set location parameter.
  • the target transmission location that can be set for each beam during a sync block signal transmission period can include more than one transmission location, wherein for the sync block signal For transmission, each beam may be pre-configured with a transmission location for transmitting a synchronization block signal, and other transmission locations may be used for transmitting beam indication signaling or beam indication signals; for example, transmitting synchronization through beam 1 at the transmission location marked by flag 31
  • the block signal, the sync block signal is transmitted through the beam 2 at the transmission position marked by the flag 32, and the beam indication signaling or the beam indication signal may be used at the subsequent transmission position, if the transmission position marked by the flag 33 transmits the beam indication through the beam 1.
  • the signaling or beam indicating signal, through the beam 2 transmits beam indicating signaling or beam indicating signal at the transmitting location marked by the flag 34.
  • the beam indication signal or the beam indication signal may be transmitted using the beam 1 at the subsequent transmission position, or the beam may not be used. 1 Send beam indication signaling or beam indication signal again.
  • a transmission window for transmitting a synchronization block signal may be set in a synchronization block signal transmission period, and multiple transmission windows may be used for transmitting to be transmitted.
  • the location of the data, for each beam, if a plurality of channels are determined to be in an unoccupied state in the transmission window, the location where the first channel is in an unoccupied state may be determined as the target transmission location, that is, for each The beam has only one location for the target transmission location; in one embodiment, for each beam, if a plurality of channels are determined to be in an unoccupied state within one transmission window, the location of all channels in an unoccupied state may be determined as The target transmission location, that is, there may be multiple destination transmission locations for each beam.
  • the set location parameters may be agreed by a system protocol; in an embodiment, the set location parameters may be set by the base station and may be through RRC signaling, or MAC CE, or physical layer signaling.
  • the set position parameters are sent to the user equipment.
  • step 302 the first position for transmitting the synchronization block signal in the target transmission location is transmitted by the corresponding transmission beam, and step 303 or step 304 is performed.
  • step 303 if the synchronization block signal is not successfully transmitted, the beam indication signaling or the beam indication signal is sent through the corresponding transmission beam at the other target transmission locations, and step 305 is performed.
  • the beam indication signaling or the beam indication signal may identify beam information of the transmission beam.
  • the beam indication signal may be a pre-defined pilot sequence, and the beam indication signaling may be a dedicated signaling for indicating a transmission beam, or may be an existing signaling, and carrying the identifier in the existing signaling.
  • the beam information of the transmission beam is used to ensure that the data receiving end can identify the transmission beam of the beam indication signaling.
  • the beam indication signaling may be a signaling with a certain transmission format carried on a certain channel, and the content of the signaling needs to carry the identifier transmission beam.
  • the beam information and the contents of other parts of the signaling are not limited.
  • step 304 if the synchronization block signal is successfully transmitted, the beam indication signaling or the beam indication signal is continued to be transmitted at other target transmission locations, or the beam indication signaling or the beam indication signal is rejected at the other target transmission locations.
  • step 305 the user equipment determines a receiving position for monitoring the sync block signal in the set transmission period, and monitors the data to be transmitted transmitted by the data transmitting end at the receiving position.
  • the system may pre-establish the correspondence between the synchronization block signal and the corresponding transmission beam by using an implicit rule.
  • the data to be transmitted corresponding to the transmission beam is selected. (such as sync block signal, random access preamble) to send.
  • the synchronization block signal may carry the beam information for identifying the transmission beam, thereby enabling the data to be transmitted to indicate the corresponding transmission beam.
  • step 306 the user equipment determines an optimal transmission beam based on the monitoring result.
  • step 306 can be referred to the description of step 103 of the embodiment shown in FIG. 1A, and will not be described in detail herein.
  • an implementation manner for determining an optimal transmission beam in an initial access process of a user equipment is disclosed.
  • a base station fails to use a beam transmission synchronization block signal due to channel detection failure in a set transmission period
  • the other indication positions in the transmission period are sent to the beam indication signaling or the beam indication signal, so that the user equipment can obtain the optimal transmission beam as soon as possible, and the related equipment cannot determine the most in the initial access process when the channel is busy. Excellent beam problem.
  • FIG. 4 is a flow chart of interaction of each entity in another beam selection method according to an exemplary embodiment.
  • This embodiment uses the foregoing method provided by the embodiment of the present disclosure to use the user equipment as the data sending end and the base station as the data receiving.
  • the terminal and the data to be transmitted are random access preambles as an example for exemplary description. As shown in Figure 4, the following steps are included:
  • step 401 the user equipment determines a target transmission location for each beam based on a channel state of the channel to be detected and a set location parameter within a set transmission period.
  • the user equipment may use a location parameter sent by the base station through RRC signaling, or MAC CE, or physical layer signaling; determine a receiving location based on the location parameter, or determine a receiving window including multiple receiving locations based on the location parameter. .
  • the user equipment may determine a location parameter for listening to data to be transmitted within a set transmission period, determine a reception location based on the location parameter, or determine a reception window including the plurality of reception locations based on the location parameter.
  • step 402 the user equipment sends the data to be transmitted through the corresponding transmission beam at the target transmission location for each beam, and the data receiver determines the optimal beam based on the monitoring result of the data to be transmitted.
  • the base station determines the receiving position for monitoring the data to be transmitted in the set transmission period, and the data to be transmitted transmitted by the data transmitting end through different beams is received at the receiving location, and the data to be transmitted can indicate the corresponding transmitting beam.
  • step 404 the base station determines an optimal transmission beam based on the monitoring result.
  • step 403 and step 404 can be referred to the description of step 203 and step 204 of the embodiment of FIG. 2, and details are not described herein.
  • the base station may send a message for indicating the optimal transmission beam to the user equipment. For example, the base station determines that the beam 3 is the signal quality based on the monitoring result of monitoring the random access preamble. The best beam can indicate the user equipment, and beam 3 is the beam with the best signal quality. Therefore, when the user equipment subsequently transmits data to the base station, the user can preferentially use the beam 3 to transmit data.
  • an implementation manner of determining an optimal transmission beam in an initial access process of a user equipment is disclosed.
  • the user equipment may send a random access preamble in multiple transmission locations through different beams in a random access procedure.
  • the base station determines the optimal beam for communication in the initial access process, which avoids the problem that the user equipment cannot determine the optimal beam in the initial access process when the channel is busy.
  • FIG. 5 is a flowchart of a beam selection method according to an exemplary embodiment.
  • the beam selection method may be applied to a data transmitting end, such as a user equipment and a base station.
  • the beam selecting method includes the following: Steps 501-502:
  • a target transmission position for each beam is determined based on a channel state of a channel to be detected and a set position parameter within a set transmission period.
  • the implementation manner of determining the target sending location may be referred to the embodiment shown in FIG. 6, which is not described in detail herein.
  • the set position parameters may be set by the base station or may be agreed by the system through a protocol.
  • the implementation of determining the target sending location may be referred to the description of step 201 of the embodiment shown in FIG. 2, or the description of step 401 of the embodiment shown in FIG. 4, which is not described in detail herein.
  • step 502 the data to be transmitted is transmitted through the corresponding transmission beam at the target transmission location for each beam, and is used by the data receiving end to determine the optimal beam based on the monitoring result of the data to be transmitted.
  • the user equipment may send a random access preamble through the corresponding transmitting beam at the target sending position.
  • the base station may The sync block signal, or the sync block signal and the beam indication signal or the beam indication signal, are transmitted through the corresponding transmission beam at the target transmission position.
  • the sending and receiving of the data to be transmitted can be implemented in the manner described in the embodiment shown in FIG. 2 and FIG. 3A, which will not be described in detail herein.
  • the sending and receiving of the data to be transmitted can be implemented in the manner described in the embodiment shown in FIG. 4, which is not described in detail herein.
  • an implementation manner for determining an optimal transmission beam in an initial access process of a user equipment is disclosed.
  • the data sending end may determine multiple transmission locations based on the set location parameters, and send multiple transmissions based on the channel state.
  • the target transmission location is selected in the location, so that the user equipment obtains the optimal transmission beam as soon as possible.
  • FIG. 6 is a flowchart of still another method of beam selection according to an exemplary embodiment. This embodiment uses the above method provided by the embodiment of the present disclosure to exemplify how the data transmitting end determines the target sending position. As shown in FIG. 6, the following steps are included:
  • step 601 based on the set position parameters, a transmission position or transmission window available for transmitting the data to be transmitted for each beam is determined.
  • the set position parameter may be a set of positions of the plurality of sending positions; in an embodiment, the set position parameter may also be a sending window for transmitting the sync block signal.
  • a first transmission location or all transmission locations in which the channel state is an unoccupied state is determined as a target transmission location for each beam among the transmission locations available for transmitting the data to be transmitted for each beam; or The first location in which the channel state is unoccupied or all locations determined to be the target transmission location for each beam will be available in the transmission window that will be used to transmit the data to be transmitted.
  • the data sending end performs channel detection before sending the data to be sent to the transmitting location or the sending window of the data to be transmitted, and if the channel detecting is the unoccupied state of the channel state, A transmission position or a transmission window usable for transmitting data to be transmitted is determined as a target transmission position.
  • all the transmission locations whose channel states are in the non-occupied state may be determined as the target transmission location; in an embodiment, for each beam, only the channel state may be unoccupied.
  • the first sending position of the state determines the target sending location.
  • the target sending position after determining the sending position or the sending window that can be used to send the data to be transmitted through the set position parameter, the target sending position can be further determined through channel detection, thereby implementing data transmission.
  • FIG. 7 is a block diagram of a beam selection apparatus applied to a data receiving end, as shown in FIG. 7, the beam selecting apparatus includes:
  • the first determining module 71 is configured to determine a receiving location for monitoring data to be transmitted within a set transmission period
  • the monitoring module 72 is configured to: at the receiving location, monitor data to be transmitted by the data transmitting end through different beams, where the data to be transmitted can indicate the corresponding transmitting beam;
  • the second determining module 73 is configured to determine an optimal transmission beam based on the monitoring result.
  • FIG. 8 is a block diagram of another beam selection apparatus according to an exemplary embodiment. As shown in FIG. 8, on the basis of the foregoing embodiment shown in FIG. 7, in an embodiment, the first determining module 71 includes :
  • the receiving submodule 711 is configured to receive a location parameter sent by the base station by using RRC signaling, or MAC CE, or physical layer signaling;
  • the first determining sub-module 712 is configured to determine a receiving location based on the location parameter, or determine a receiving window that includes the multiple receiving locations based on the location parameter; or
  • the second determining submodule 713 is configured to determine, according to a system convention, a location parameter that listens to data to be transmitted within a set transmission period;
  • the third determining sub-module 714 is configured to determine a receiving location based on the location parameter or to determine a receiving window comprising the plurality of receiving locations based on the location parameter.
  • the data to be transmitted is a sync block signal
  • the data to be transmitted is a sync block signal, and beam indication signaling or beam indication signal.
  • the beam indication signal is a predefined pilot sequence, and the beam indication signaling or the beam indication signal carries beam information of the data transmission beam.
  • the data to be transmitted is a random access preamble.
  • the second determining module 73 is configured to determine, as the optimal transmission beam, a data transmission beam corresponding to the to-be-transmitted data with the highest reception quality.
  • FIG. 9 is a block diagram of a beam selection apparatus, which is applied to a data transmitting end, as shown in FIG. 9, according to an exemplary embodiment.
  • the beam selecting apparatus includes:
  • the third determining module 91 is configured to determine a target sending location for each beam based on a channel state of the channel to be detected and a set position parameter in the set transmission period;
  • the sending module 92 is configured to send the data to be transmitted through the corresponding transmission beam at the target transmission location for each beam, and the data receiving end determines the optimal beam based on the monitoring result of the data to be transmitted.
  • FIG. 10 is a block diagram of another beam selection apparatus according to an exemplary embodiment. As shown in FIG. 10, on the basis of the foregoing embodiment shown in FIG. 9, in an embodiment, the third determining module 91 includes :
  • the fourth determining submodule 911 is configured to determine, according to the set location parameter, a sending location or a sending window that is available for transmitting data to be transmitted for each beam;
  • the fifth determining sub-module 912 is configured to determine, as the target sending position for each beam, a transmitting position in which the channel state is an unoccupied state in a transmitting position that can be used for transmitting data to be transmitted for each beam; or
  • the sixth determining sub-module 913 is configured to determine, in a transmission window usable for transmitting data to be transmitted, a location in which the channel state is an unoccupied state as a target transmission location for each beam.
  • the set position parameters are obtained by system agreement, or the set position parameters are set by the base station.
  • the sending module 92 includes:
  • the first sending submodule 921 is configured to send the synchronization block signal by using a corresponding transmission beam at a position of the first one of the target transmission locations for transmitting the synchronization block signal;
  • the second sending sub-module 922 is configured to: if the synchronization block signal is not successfully sent, send the beam indication signaling or the beam indication signal or the synchronization block signal through the corresponding transmission beam at the other target transmission locations;
  • the third sending sub-module 923 is configured to continue to send the beam indication signaling or the beam indication signal or the synchronization block signal at other target transmission locations later, if the synchronization block signal is successfully sent, or refuse to transmit at other target transmission locations later.
  • the beam indicates signaling or a beam indicating signal or a sync block signal.
  • the beam indication signal is a predefined pilot sequence, and the beam indication signaling or the beam indication signal carries beam information of the data transmission beam.
  • the device further includes:
  • the receiving module 93 is configured to receive the set location parameter sent by the base station by using RRC signaling, or MAC CE, or physical layer signaling.
  • the transmitting module is configured to transmit the random access preamble through the corresponding transmission beam at the target transmission location for each beam.
  • the data receiving end provided by the embodiment of the present disclosure may be the user equipment shown in FIG. 11 or the base station shown in FIG. 12; the data sending end provided by the embodiment of the present disclosure may be the user equipment shown in FIG. It is the base station shown in FIG.
  • FIG. 11 is a block diagram of a beam selection device suitable for use in accordance with an exemplary embodiment.
  • the device 1100 can be a user device such as a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • apparatus 1100 can include one or more of the following components: processing component 1102, memory 1104, power component 1106, multimedia component 1108, audio component 1112, input/output (I/O) interface 1112, sensor component 1114, And a communication component 1116.
  • Processing component 1102 typically controls the overall operation of device 1100, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 1102 can include one or more processors 1120 to execute instructions to perform all or part of the steps described above.
  • processing component 1102 can include one or more modules to facilitate interaction between component 1102 and other components.
  • processing component 1102 can include a multimedia module to facilitate interaction between multimedia component 1108 and processing component 1102.
  • the memory 1104 is configured to store various types of data to support operation at the device 1100. Examples of such data include instructions for any application or method operating on device 1100, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 1104 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Power component 1106 provides power to various components of device 1100.
  • Power component 1106 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 1100.
  • the multimedia component 1108 includes a screen between the device 1100 and the user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor can sense not only the boundaries of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
  • the multimedia component 1108 includes a front camera and/or a rear camera. When the device 1100 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 1112 is configured to output and/or input an audio signal.
  • the audio component 1112 includes a microphone (MIC) that is configured to receive an external audio signal when the device 1100 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 1104 or transmitted via communication component 1116.
  • the audio component 1112 also includes a speaker for outputting an audio signal.
  • the I/O interface 1112 provides an interface between the processing component 1102 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 1114 includes one or more sensors for providing a status assessment of various aspects to device 1100.
  • the sensor assembly 1114 can detect an open/closed state of the device 1100, the relative positioning of the components, such as a display and a keypad of the device 1100, and the sensor component 1114 can also detect a change in position of the device 1100 or a component of the device 1100, the user The presence or absence of contact with device 1100, device 1100 orientation or acceleration/deceleration and temperature change of device 1100.
  • Sensor assembly 1114 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 1114 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 1114 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 1116 is configured to facilitate wired or wireless communication between device 1100 and other devices.
  • the device 1100 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 1116 receives a broadcast signal or broadcast associated information from an external broadcast management system via a broadcast channel.
  • communication component 1116 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 1100 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the method described in the first aspect or the second aspect.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the method described in the first aspect or the second aspect.
  • a non-transitory computer readable storage medium comprising instructions, such as a memory 1104 comprising instructions, which when executed, processor 1120 of configurable device 1100 performs the first aspect described above Or the method described in the second aspect.
  • FIG. 12 is a block diagram of a beam selection device suitable for use in accordance with an exemplary embodiment.
  • Apparatus 1200 can be provided as a base station.
  • apparatus 1200 includes a processing component 1222, a wireless transmit/receive component 1224, an antenna component 1226, and a signal processing portion specific to the wireless interface.
  • the processing component 1222 can further include one or more processors.
  • One of the processing components 1222 can be configured to perform the method described in the first aspect or the second aspect above.
  • a non-transitory computer readable storage medium including instructions stored on a storage medium having computer instructions executed by the processor to implement the first aspect or the second aspect described above is also provided in the base station The method described.

Abstract

本公开是关于一种波束选择方法及装置。方法包括:确定设定传输周期内用于监听待传输数据的接收位置;在所述接收位置监听数据发送端通过不同波束发送的待传输数据,所述待传输数据能够指示对应的传输波束;基于监听结果,确定最优传输波束。本公开技术方案可以实现数据接收端在用户设备初始接入过程中通过两个以上的接收位置监听待传输数据,进而确定最优的用于通信的波束,避免了相关技术中在信道繁忙时用户设备无法在初始接入过程中确定最优波束的问题。

Description

波束选择方法及装置 技术领域
本公开涉及通信技术领域,尤其涉及一种波束选择方法及装置。
背景技术
随着无线通信技术的飞速发展,授权频谱上的频谱资源大多都被各种通信系统占用,因此为了扩大频率资源,提高波束选择速率和吞吐量,无线通信系统将工作频段扩展到了非授权频谱。对于信号传输特性比较好的频段,如低频段上,无线通信系统的部署已经比较拥挤,因此在第五代移动通信技术(5th Generation,简称为5G)系统的研究中,考虑在较高的频段上部署无线通信系统,并通过波束(beam)的方式在传输数据。
相关技术中,提出了通过授权辅助接入(LicenseAssisted Access,简称为LAA)的机制来使用非授权频段,也就是说,通过授权频段来辅助实现非授权频段的使用。为了保证与其他在非授权频段上工作的通信系统,如无线局域网络(WIreless-FIdelity,简称为WIFI)共存,在LAA中引入了采用先听后说(Listen-Before-Talk,简称为LBT)的信道竞争接入机制,发送端在有数据需要发送时需要检测信道是否空闲,并且只能有在信道处于空闲状态时,发送端才能发送数据。基站在不同的时间上可能采用不同的波束进行数据的传输,用户设备在初始接入过程中会与基站确定最优的传输波束和传输波束,由于在非授权频段上需要进行信道检测,因此可能导致在信道繁忙的情况下,用户设备无法在初始接入过程中确定最优波束,进而影响系统的性能。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种波束选择方法及装置,用以实现在用户设备初始接入过程中尽快地获取最优波束。
根据本公开实施例的第一方面,提供一种波束选择方法,应用在数据接收端上,所述方法包括:
确定设定传输周期内用于监听待传输数据的接收位置;
在所述接收位置监听数据发送端通过不同波束发送的待传输数据,所述待传输数据能够指示对应的传输波束;
基于监听结果,确定最优传输波束。
在一实施例中,所述确定设定传输周期内用于监听待传输数据的接收位置,包括:
接收基站通过RRC信令,或MAC CE,或物理层信令发送的位置参数;
基于所述位置参数确定所述接收位置,或者基于所述位置参数确定一个包含多个接收位置的接收窗口。
在一实施例中,所述确定设定传输周期内用于监听待传输数据的接收位置,包括:
基于系统约定,确定在设定传输周期内监听待传输数据的位置参数;
基于所述位置参数确定所述接收位置,或者基于所述位置参数确定一个包含多个接收位置的接收窗口。
在一实施例中,若数据接收端为用户设备,所述待传输数据为同步块信号;或者,
所述待传输数据为同步块信号,以及波束指示信令或者波束指示信号。
在一实施例中,所述波束指示信号为预先定义的导频序列,所述波束指示信令或者所述波束指示信号携带有数据传输波束的波束信息。
在一实施例中,若数据接收端为基站,所述待传输数据为随机接入前导码。
在一实施例中,所述基于监听结果,确定最优传输波束,包括:
将接收质量最高的待传输数据所对应的数据传输波束确定为最优传输波束。
根据本公开实施例的第二方面,提供一种波束选择方法,应用在数据发送端上,所述方法包括:
基于设定传输周期内待检测信道的信道状态以及设定的位置参数,确定针对每一个波束的目标发送位置;
在所述针对每一个波束的目标发送位置通过对应的传输波束发送所述待传输数据,用于所述数据接收端基于监听所述待传输数据的监听结果确定最优波束。
在一实施例中,所述基于设定传输周期内待检测信道的信道状态以及设定的位置参数,确定针对每一个波束的目标发送位置,包括:
基于所述设定的位置参数,确定针对每一个波束的可用于发送所述待传输数据的发送位置或者发送窗口;
将所述针对每一个波束的可用于发送待传输数据的发送位置中,信道状态为未占用状态的第一个发送位置或者所有发送位置确定为针对每一个波束的目标发送位置; 或者,
将所述可用于发送待传输数据的发送窗口中,信道状态为未占用状态的第一个位置或者所有位置确定为针对每一个波束的目标发送位置。
在一实施例中,所述设定的位置参数通过系统约定得到,或者,所述设定的位置参数通过基站设置。
在一实施例中,若所述数据发送端为基站,所述在所述针对每一个波束的目标发送位置通过对应的传输波束发送所述待传输数据,包括:
在所述目标发送位置中第一个用于发送同步块信号的位置通过对应的传输波束发送同步块信号;
若没有成功发送所述同步块信号,则在后面的其他目标发送位置通过对应的传输波束发送波束指示信令或者波束指示信号,或者同步块信号;
若成功发送所述同步块信号,则在后面的其他目标发送位置继续发送波束指示信令或者波束指示信号或者同步块信号,或者在后面的其他目标发送位置拒绝发送波束指示信令或者波束指示信号或者同步块信号。
在一实施例中,所述波束指示信号为预先定义的导频序列,所述波束指示信令或者所述波束指示信号携带有数据传输波束的波束信息。
在一实施例中,若所述数据发送端为用户设备,所述方法还包括:
接收基站通过RRC信令,或MAC CE,或物理层信令发送的设定的位置参数。
在一实施例中,所述在所述针对每一个波束的目标发送位置通过对应的传输波束发送所述待传输数据,包括:
在所述针对每一个波束的目标发送位置通过对应的传输波束发送随机接入前导码。
根据本公开实施例的第三方面,提供一种波束选择装置,应用在数据接收端上,所述装置包括:
第一确定模块,被配置为确定设定传输周期内用于监听待传输数据的接收位置;
监听模块,被配置为在所述接收位置监听数据发送端通过不同波束发送的待传输数据,所述待传输数据能够指示对应的传输波束;
第二确定模块,被配置为基于监听结果,确定最优传输波束。
在一实施例中,所述第一确定模块包括:
接收子模块,被配置为接收基站通过RRC信令,或MAC CE,或物理层信令发送的位置参数;
第一确定子模块,被配置为基于所述位置参数确定接收位置,或者基于所述位置参数确定一个包含多个接收位置的接收窗口。
在一实施例中,所述第一确定模块包括:
第二确定子模块,被配置为基于系统约定,确定在设定传输周期内监听待传输数据的位置参数;
第三确定子模块,被配置为基于所述位置参数确定接收位置,或者基于所述位置参数确定一个包含多个接收位置的接收窗口。
在一实施例中,若数据接收端为用户设备,所述待传输数据为同步块信号;或者,
所述待传输数据为同步块信号,以及波束指示信令或者波束指示信号。
在一实施例中,所述波束指示信号为预先定义的导频序列,所述波束指示信令或者所述波束指示信号携带有数据传输波束的波束信息。
在一实施例中,若数据接收端为基站,所述待传输数据为随机接入前导码。
在一实施例中,所述第二确定模块,被配置为将接收质量最高的待传输数据所对应的数据传输波束确定为最优传输波束。
根据本公开实施例的第四方面,提供一种波束选择装置,应用在数据发送端上,所述装置包括:
第三确定模块,被配置为基于设定传输周期内待检测信道的信道状态以及设定的位置参数,确定针对每一个波束的目标发送位置;
发送模块,被配置为在所述针对每一个波束的目标发送位置通过对应的传输波束发送所述待传输数据,用于所述数据接收端基于监听所述待传输数据的监听结果确定最优波束。
在一实施例中,所述第三确定模块包括:
第四确定子模块,被配置为基于所述设定的位置参数,确定针对每一个波束的可用于发送所述待传输数据的发送位置或者发送窗口;
第五确定子模块,被配置为第五确定子模块,被配置为将所述针对每一个波束的可用于发送待传输数据的发送位置中,信道状态为未占用状态的第一个发送位置或者所有发送位置确定为针对每一个波束的目标发送位置;或者,
第六确定子模块,被配置为将所述可用于发送待传输数据的发送窗口中,信道状态为未占用状态的第一个位置或者所有位置确定为针对每一个波束的目标发送位置。
在一实施例中,所述设定的位置参数通过系统约定得到,或者,所述设定的位 置参数通过基站设置。
在一实施例中,若所述数据发送端为基站,所述发送模块包括:
第一发送子模块,被配置为在所述目标发送位置中用于发送同步块信号的位置通过对应的传输波束发送同步块信号;
第二发送子模块,被配置为若没有成功发送所述同步块信号,则在后面的其他目标发送位置通过对应的传输波束发送波束指示信令或者波束指示信号,或者同步块信号;
第三发送子模块,被配置为若成功发送所述同步块信号,则在后面的其他目标发送位置继续发送波束指示信令或者波束指示信号或者同步块信号,或者在后面的其他目标发送位置拒绝发送波束指示信令或者波束指示信号或者同步块信号。
在一实施例中,所述波束指示信号为预先定义的导频序列,所述波束指示信令或者所述波束指示信号携带有数据传输波束的波束信息。
在一实施例中,若所述数据发送端为用户设备,所述装置还包括:
接收模块,被配置为接收基站通过RRC信令,或MAC CE,或物理层信令发送的设定的位置参数。
在一实施例中,所述发送模块,被配置为在所述针对每一个波束的目标发送位置通过对应的传输波束发送随机接入前导码。
根据本公开实施例的第五方面,提供一种数据接收端,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
确定设定传输周期内用于监听待传输数据的接收位置;
在所述接收位置监听数据发送端通过不同波束发送的待传输数据,所述待传输数据能够指示对应的传输波束;
基于监听结果,确定最优传输波束。
根据本公开实施例的第六方面,提供一种数据发送端,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
基于设定传输周期内待检测信道的信道状态以及设定的位置参数,确定针对每一个波束的目标发送位置;
在所述针对每一个波束的目标发送位置通过对应的传输波束发送所述待传输数据,用于所述数据接收端基于监听所述待传输数据的监听结果确定最优波束。
根据本公开实施例的第七方面,提供一种非临时计算机可读存储介质,所述存储介质上存储有计算机指令,所述指令被处理器执行时实现以下步骤:
确定设定传输周期内用于监听待传输数据的接收位置;
在所述接收位置监听数据发送端通过不同波束发送的待传输数据,所述待传输数据能够指示对应的传输波束;
基于监听结果,确定最优传输波束。
根据本公开实施例的第八方面,提供一种非临时计算机可读存储介质,所述存储介质上存储有计算机指令,所述指令被处理器执行时实现以下步骤:
基于设定传输周期内待检测信道的信道状态以及设定的位置参数,确定针对每一个波束的目标发送位置;
在所述针对每一个波束的目标发送位置通过对应的传输波束发送所述待传输数据,用于所述数据接收端基于监听所述待传输数据的监听结果确定最优波束。
本公开的实施例提供的技术方案可以包括以下有益效果:
数据接收端可在设定传输周期内的两个以上的接收位置监听待传输数据,例如,在一个同步块发送周期内的两个以上的接收位置监听同步块信号或者其他能够指示传输波束的信令或者信号,并根据监听结果确定最优传输波束。由此,本公开技术方案实现了数据接收端在用户设备初始接入过程中通过两个以上的接收位置监听待传输数据,进而确定最优的用于通信的波束,避免了相关技术中在信道繁忙时用户设备无法在初始接入过程中确定最优波束的问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1A是根据一示例性实施例示出的一种波束选择方法的流程图。
图1B是根据一示例性实施例示出的一种波束选择方法的场景图。
图1C是根据一示例性实施例示出的一种待传输数据通过不同的波束发送的示 意图一。
图1D是根据一示例性实施例示出的一种待传输数据通过不同的波束发送的示意图二。
图2是根据一示例性实施例示出的另一种波束选择方法中各个实体的交互流程图。
图3A是根据一示例性实施例示出的另一种波束选择方法中各个实体的交互流程图。
图3B是根据一示例性实施例示出的一种待传输数据通过不同的波束发送的示意图三。
图4是根据一示例性实施例示出的另一种波束选择方法中各个实体的交互流程图。
图5是根据一示例性实施例示出的一种波束选择方法的流程图。
图6是根据一示例性实施例示出的又一种波束选择方法的流程图。
图7是根据一示例性实施例示出的一种波束选择装置的框图。
图8是根据一示例性实施例示出的另一种波束选择装置的框图。
图9是根据一示例性实施例示出的一种波束选择装置的框图。
图10是根据一示例性实施例示出的另一种波束选择装置的框图。
图11是根据一示例性实施例示出的一种适用于波束选择装置的框图。
图12是根据一示例性实施例示出的一种适用于波束选择装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
本公开提供的技术方案适用于用户设备接入采用波束进行传输的系统的过程。
图1A是根据一示例性实施例示出的一种波束选择方法的流程图,图1B是根据一示例性实施例示出的一种波束选择方法的场景图,图1C是根据一示例性实施例示出的一种待传输数据通过不同的波束发送的示意图一,图1D是根据一示例性实施例示出的一种待传输数据通过不同的波束发送的示意图二;该波束选择方法可以应用在数据接收端,如用户设备和基站上,如图1A所示,该波束选择方法包括以下步骤 101-103:
在步骤101中,确定设定传输周期内用于监听待传输数据的接收位置。
在一实施例中,设定传输周期内用于监听待传输数据的接收位置可以由基站配置,如果用户设备为数据接收端,基站可通过RRC信令,MAC CE或是物理层信令将接收位置发送给用户设备;在一实施例中,设定传输周期内用于监听待传输数据的接收位置还可以由系统预先在协议中约定。
在一实施例中,设定传输周期内用于监听待传输数据的接收位置可以为设定传输周期内的时间点,如图1C中标记11-标记14所标记的时间点;在一实施例中,设定传输周期内用于监听待传输数据的接收位置可以为设定传输周期内的一个时间窗口,如图1D中标记15所标记的时间窗口,数据接收端可以在该时间窗口中持续监听待传输数据。
在一实施例中,在用户设备为数据接收端时,待传输数据可以为同步块信号,或者为同步块信号和其他能够指示传输波束的波束信息的信令或者信号,具体的数据发送和接收过程可分别参见图2和图3A所示实施例;在基站为数据接收端时,待传输数据可以为用户设备进行接入的随机接入前导码,具体的数据发送和接收过程可参见图4所示实施例。
在步骤102中,在接收位置监听数据发送端通过不同波束发送的待传输数据,待传输数据能够指示对应的传输波束。
在一实施例中,系统可以通过隐式规则预先建立待传输数据与对应的传输波束的对应关系,在通过一个传输波束发送数据时,即选择与该传输波束之间具有对应关系的待传输数据(如同步块信号、随机接入前导码)进行发送。
在一实施例中,待传输数据中可以显性地携带用于标识传输波束的波束信息,由此实现待传输数据能够指示对应的传输波束。
在步骤103中,基于监听结果,确定最优传输波束。
在一实施例中,数据接收端在设定传输周期内的所有接收位置完成监听操作之后,即可基于在每一个接收位置监听到的待传输数据,确定最优传输波束,可将接收质量最高的待传输数据所对应的数据传输波束确定为最优传输波束。例如,设定传输周期内共有4个接收位置,监听到了2个待传输数据,待传输数据1通过波束1,待传输数据2通过波束2传输,待传输数据1的信号接收质量高于待传输数据2的信号接收质量,则可确定波束1优于波束2,可将波束1确定为最优传输波束。
在一示例性场景中,如图1B所示,以移动网络为新一代网络(如5G网络) 并且基站为gNB为例进行示例性说明,但是本公开技术方案并不限定在新一代网络中使用,在图1B所示的场景中,包括gNB10、UE20,其中,UE20在进行初始接入过程中,可在设定传输周期(同步块信号传输周期)监听gNB10发送的同步块信号,或者其他的能够识别波束的信令或者信号,并基于在设定传输周期内的监听结果确定出最优传输波束;或者,gNB10也可在设定传输周期内监听UE20发送的随机接入前导码,并基于在设定传输周期内的监听结果确定出最优传输波束。
本实施例中,通过上述步骤101-103,数据接收端可在设定传输周期内的两个以上的接收位置监听待传输数据,例如,在一个同步块发送周期内的两个以上的接收位置监听同步块信号或者其他能够指示传输波束的信令或者信号,并根据监听结果确定最优传输波束。由此,本公开技术方案实现了数据接收端在用户设备初始接入过程中通过两个以上的接收位置监听待传输数据,进而确定最优的用于通信的波束,避免了相关技术中在信道繁忙时用户设备无法在初始接入过程中确定最优波束的问题。
下面以具体实施例来说明本公开实施例提供的技术方案。
图2是根据一示例性实施例示出的另一种波束选择方法中各个实体的交互流程图;本实施例利用本公开实施例提供的上述方法,以基站为数据发送端、用户设备为数据接收端、待传输数据为同步块信号为例进行示例性说明,基站可在进行信道检测失败导致无法传输同步块信号时执行本实施例的技术方案。如图2所示,包括如下步骤:
在步骤201中,基站基于设定传输周期内待检测信道的信道状态以及设定的位置参数,确定针对每一个波束的目标发送位置。
在一实施例中,设定的位置参数可以为多个发送位置的位置集合,参见图1B中标记11-14所标记的,一个同步块信号传输周期内可以设定有四个发送位置,标记11和标记13为针对波束1的发送位置,标记12和标记14为针对波束2的发送位置;在一实施例中,参见图1C中标记15所标记的,一个同步块信号传输周期内可以设定有一个用于发送同步块信号的发送窗口,发送窗口中可以由针对每一个波束的多个发送位置。
在一实施例中,设定的位置参数可以由系统协议约定;在一实施例中,设定的位置参数可以由基站设定,并且通过RRC信令,或MAC CE,或物理层信令将设定的位置参数发送给用户设备。
在一实施例中,基站可在基于设定的位置参数确定的多个发送位置上使用不同的波束发送同步块信号,但是由于基站要利用非授权频谱资源发送数据时,需要测量信道的信号能量,进而基于信道的信号能量确定出信道是否为空闲,如果不空闲,则 基站不能在信道上使用对应的波束发送数据,因此用于发送同步块信号的发送位置需要为信道状态为空闲并且为基于设定的位置参数确定到的资源。
在步骤202中,基站在针对每一个波束的目标发送位置通过对应的传输波束发送同步块信号。
在一实施例中,参见图1B中标记11-14所标记的,一个同步块信号传输周期内可以设定有四个发送位置,在标记11和标记13所标记的发送位置通过波束1发送同步块信号,在标记12和标记14所标记的发送位置通过波束2发送同步块信号,如果标记11所标记的发送位置,信道检测为信道检测失败,则可检测标记13所标记的发送位置,进行信道检测,并且在信道检测成功时,在标记13所标记的发送位置通过波束1发送同步块信号。
在一实施例中,针对每一个波束,若在一个同步块信号传输周期内确定出多个信道为未占用状态的发送位置,可将第一个信道为未占用状态的发送位置确定为目标发送位置,也即,针对每一个波束,目标发送位置只有一个位置;在一实施例中,针对每一个波束,若在一个同步块信号传输周期内确定出多个信道为未占用状态的发送位置,可将所有信道为未占用状态的发送位置确定为目标发送位置,也即,针对每一个波束,目标发送位置可以有多个。
在一实施例中,参见图1C中标记15所标记的,一个同步块信号传输周期内可以设定有一个用于发送同步块信号的发送窗口,在该发送窗口中,基站可持续检测信道的信道状态,并且在信道检测成功时,使用每一个的波束在信道检测成功的第一个位置或者所有位置发送同步块信号。
在步骤203中,用户设备确定设定传输周期内用于监听同步块信号的接收位置,并在接收位置监听数据发送端通过不同波束发送的同步块信号,同步块信号能够指示对应的传输波束。
在一实施例中,用户设备也可通过设定的位置参数确定设定传输周期内用于监听同步块信号的接收位置。
在一实施例中,系统可以通过隐式规则预先建立同步块信号与对应的传输波束的对应关系,在通过一个传输波束发送数据时,即选择与该传输波束之间具有对应关系的同步块信号(如同步块信号、随机接入前导码)进行发送。
在一实施例中,同步块信号中可以显性地携带用于标识传输波束的波束信息,由此实现同步块信号能够指示对应的传输波束。
在步骤204中,基于监听结果,确定最优传输波束。
在一实施例中,步骤204的描述可参见图1A所示实施例的步骤103的描述,这里不再详述。
本实施例中,公开了一种用户设备初始接入过程中确定最优传输波束的实现方式,基站可在一个设定传输周期内的多个发送位置使用不同的波束发送同步块信号,进而使得用户设备在初始接入过程中确定最优的用于通信的波束,避免了相关技术中在信道繁忙时用户设备无法在初始接入过程中确定最优波束的问题。
图3A是根据一示例性实施例示出的另一种波束选择方法中各个实体的交互流程图,图3B是根据一示例性实施例示出的一种待传输数据通过不同的波束发送的示意图三;本实施例利用本公开实施例提供的上述方法,以基站为数据发送端、用户设备为数据接收端、待传输数据为同步块信号和其他能够识别波束的信令或者信号为例进行示例性说明,基站可在进行信道检测失败导致无法传输同步块信号时执行本实施例的技术方案。如图3A所示,包括如下步骤:
在步骤301中,基站基于设定传输周期内待检测信道的信道状态以及设定的位置参数,确定针对每一个波束的目标发送位置。
在一实施例中,基站可在基于设定的位置参数确定的多个发送位置上使用不同的波束发送同步块信号或是波束指示信令或者波束指示信号,但是由于基站要利用非授权频谱资源发送数据时,需要测量信道的信号能量,进而基于信道的信号能量确定出信道是否为空闲,如果不空闲,则基站不能在信道上使用对应的波束发送数据,因此用于发送同步块信号波束指示信令或者波束指示信号的发送位置需要为信道状态为空闲并且为基于设定的位置参数确定到的资源。
在一实施例中,参见图3B中标记31-34所标记的,一个同步块信号传输周期内可以为每一个波束设定的目标发送位置可以包括一个以上的发送位置,其中对于同步块信号的发送,可以为每一个波束预先配置一个发送同步块信号的发送位置,而其它的发送位置用于发送波束指示信令或者波束指示信号;例如,在标记31所标记的发送位置通过波束1发送同步块信号,在标记32所标记的发送位置通过波束2发送同步块信号,而在随后的发送位置可以使用波束指示信令或者波束指示信号,如果标记33所标记的发送位置通过波束1发送波束指示信令或者波束指示信号,在标记34所标记的发送位置通过波束2发送波束指示信令或者波束指示信号。
在一实施例中,如果在一个设定传输周期内通过波束1成功发送了同步块信号,则在随后的发送位置,可以使用波束1发送波束指示信令或者波束指示信号,也可以不使用波束1再次发送波束指示信令或者波束指示信号。
在一实施例中,参见图1C中标记15所标记的,一个同步块信号传输周期内可以设定有一个用于发送同步块信号的发送窗口,发送窗口中可以有多个可用于发送待传输数据的位置,针对每一个波束,若在发送窗口内确定出多个信道为未占用状态的位置,可将第一个信道为未占用状态的位置确定为目标发送位置,也即,针对每一个波束,目标发送位置只有一个位置;在一实施例中,针对每一个波束,若在一个发送窗口内确定出多个信道为未占用状态的位置,可将所有信道为未占用状态的位置确定为目标发送位置,也即,针对每一个波束,目标发送位置可以有多个。
在一实施例中,设定的位置参数可以由系统协议约定;在一实施例中,设定的位置参数可以由基站设定,并且通过RRC信令,或MAC CE,或物理层信令将设定的位置参数发送给用户设备。
在步骤302中,在目标发送位置中第一个用于发送同步块信号的位置通过对应的传输波束发送同步块信号,执行步骤303或者步骤304。
在步骤303中,若没有成功发送同步块信号,则在后面的其他目标发送位置通过对应的传输波束发送波束指示信令或者波束指示信号,执行步骤305。
在一实施例中,波束指示信令或者波束指示信号可以标识传输波束的波束信息。其中,波束指示信号可以为一个预先定义的导频序列,波束指示信令可以为一个用于指示传输波束的专署信令,也可以为一个已有信令,通过在已有信令中携带标识传输波束的波束信息来确保数据接收端能够识别波束指示信令的传输波束。
在一实施例中,本领域技术人员可以理解的是,波束指示信令可以为一个承载在某个信道上的、具有一定的传输格式的信令,信令的内容中需要携带标识传输波束的波束信息,信令其他部分的内容并不做限定。
在步骤304中,若成功发送同步块信号,则在后面的其他目标发送位置继续发送波束指示信令或者波束指示信号,或者在后面的其他目标发送位置拒绝发送波束指示信令或者波束指示信号。
在步骤305中,用户设备确定设定传输周期内用于监听同步块信号的接收位置,并在接收位置监听数据发送端传输的待传输数据。
在一实施例中,系统可以通过隐式规则预先建立同步块信号与对应的传输波束的对应关系,在通过一个传输波束发送数据时,即选择与该传输波束之间具有对应关系的待传输数据(如同步块信号、随机接入前导码)进行发送。
在一实施例中,同步块信号中可以显性地携带用于标识传输波束的波束信息,由此实现待传输数据能够指示对应的传输波束。
在步骤306中,用户设备基于监听结果,确定最优传输波束。
在一实施例中,步骤306的描述可参见图1A所示实施例的步骤103的描述,这里不再详述。
本实施例中,公开了一种用户设备初始接入过程中确定最优传输波束的实现方式,基站在一个设定传输周期内由于信道检测失败造成无法使用一个波束传输同步块信号时,在设定传输周期内的其他发送位置发送波束指示信令或者波束指示信号,进而实现用户设备尽快地获取最优传输波束,避免了相关技术中在信道繁忙时用户设备无法在初始接入过程中确定最优波束的问题。
图4是根据一示例性实施例示出的另一种波束选择方法中各个实体的交互流程图;本实施例利用本公开实施例提供的上述方法,以用户设备为数据发送端、基站为数据接收端、待传输数据为随机接入前导码为例进行示例性说明。如图4所示,包括如下步骤:
在步骤401中,用户设备基于设定传输周期内待检测信道的信道状态以及设定的位置参数,确定针对每一个波束的目标发送位置。
在一实施例中,用户设备可基站通过RRC信令,或MAC CE,或物理层信令发送的位置参数;基于位置参数确定接收位置,或者基于位置参数确定一个包含多个接收位置的接收窗口。
在一实施例中,用户设备可基于系统约定,确定在设定传输周期内监听待传输数据的位置参数,基于位置参数确定接收位置,或者基于位置参数确定一个包含多个接收位置的接收窗口。
在步骤402中,用户设备在针对每一个波束的目标发送位置通过对应的传输波束发送待传输数据,用于数据接收端基于监听待传输数据的监听结果确定最优波束。
在步骤403中,基站确定设定传输周期内用于监听待传输数据的接收位置,在接收位置监听数据发送端通过不同波束发送的待传输数据,待传输数据能够指示对应的传输波束。
在步骤404中,基站基于监听结果,确定最优传输波束。
在一实施例中,步骤403和步骤404的操作步骤可参见图2所实施例的步骤203和步骤204的描述,这里不再详述。
在一实施例中,基站在确定最优传输波束之后,可向用户设备发送用于指示最优传输波束的消息,例如,基站基于监听随机接入前导码的监听结果确定出波束3为信号质量最好的波束,则可指示用户设备,波束3为信号质量最好的波束,由此用户设备在后续向基站发送数据时,可优先使用波束3发送数据。
本实施例中,公开了一种用户设备初始接入过程中确定最优传输波束的实现方式,用户设备可在一个随机接入过程中通过不同的波束在多个发送位置发送随机接入前导码,进而使得基站在初始接入过程中确定最优的用于通信的波束,避免了相关技术中在信道繁忙时用户设备无法在初始接入过程中确定最优波束的问题。
图5是根据一示例性实施例示出的一种波束选择方法的流程图;该波束选择方法可以应用在数据发送端,如用户设备和基站上,如图5所示,该波束选择方法包括以下步骤501-502:
在步骤501中,基于设定传输周期内待检测信道的信道状态以及设定的位置参数,确定针对每一个波束的目标发送位置。
在一实施例中,确定目标发送位置的实现方式可参见图6所示实施例,这里先不详述。
在一实施例中,设定的位置参数可以由基站设定,也可由系统通过协议约定。
在一实施例中,确定目标发送位置的实现方式可参见图2所示实施例的步骤201的描述,或者参见图4所示实施例的步骤401的描述,这里不再详述。
在步骤502中,在针对每一个波束的目标发送位置通过对应的传输波束发送待传输数据,用于数据接收端基于监听待传输数据的监听结果确定最优波束。
在一实施例中,若用户设备为数据发送端,则用户设备可在目标发送位置通过对应的传输波束发送随机接入前导码;在一实施例中,若基站为数据发送端,则基站可在目标发送位置通过对应的传输波束发送同步块信号,或者同步块信号和波束指示信令或波束指示信号。
在一实施例中,若基站为数据发送端,则可通过图2和图3A所示实施例描述的方式实现待传输数据的发送和接收,这里不再详述。
在一实施例中,若用户设备为数据发送端,则可通过图4所示实施例描述的方式实现待传输数据的发送和接收,这里不再详述。
本实施例中,公开了一种用户设备初始接入过程中确定最优传输波束的实现方式,数据发送端可以基于设定的位置参数确定出多个发送位置,并且基于信道状态从多个发送位置中选择目标发送位置,进而实现用户设备尽快地获取最优传输波束。
图6是根据一示例性实施例示出的又一种波束选择方法的流程图;本实施例利用本公开实施例提供的上述方法,以数据发送端如何确定目标发送位置为例进行示例性说明。如图6所示,包括如下步骤:
在步骤601中,基于设定的位置参数,确定针对每一个波束的可用于发送待传 输数据的发送位置或者发送窗口。
在一实施例中,设定的位置参数可以为多个发送位置的位置集合;在一实施例中,设定的位置参数还可以为一个用于发送同步块信号的发送窗口。
在步骤602中,将针对每一个波束的可用于发送待传输数据的发送位置中,信道状态为未占用状态的第一个发送位置或者所有发送位置确定为针对每一个波束的目标发送位置;或者,将可用于发送待传输数据的发送窗口中,信道状态为未占用状态的第一个位置或者所有位置确定为针对每一个波束的目标发送位置。
在一实施例中,对于非授权频谱资源,数据发送端在可用于发送待传输数据的发送位置或者发送窗口发送数据之前,先进行信道检测,如果信道检测为信道状态为未占用状态,则可将可用于发送待传输数据的发送位置或者发送窗口确定为目标发送位置。在一实施例中,针对每一个波束,可将信道状态为非占用状态的所有发送位置均确定为目标发送位置;在一实施例中,针对每一个波束,也可以只将信道状态为非占用状态的第一个发送位置确定目标发送位置。
本实施例中,通过设定的位置参数确定出可用于发送待传输数据的发送位置或者发送窗口后,可进一步通过信道检测确定出目标发送位置,进而实现数据的发送。
图7是根据一示例性实施例示出的一种波束选择装置的框图,该波束选择装置应用在数据接收端上,如图7所示,波束选择装置包括:
第一确定模块71,被配置为确定设定传输周期内用于监听待传输数据的接收位置;
监听模块72,被配置为在接收位置监听数据发送端通过不同波束发送的待传输数据,待传输数据能够指示对应的传输波束;
第二确定模块73,被配置为基于监听结果,确定最优传输波束。
图8是根据一示例性实施例示出的另一种波束选择装置的框图,如图8所示,在上述图7所示实施例的基础上,在一实施例中,第一确定模块71包括:
接收子模块711,被配置为接收基站通过RRC信令,或MAC CE,或物理层信令发送的位置参数;
第一确定子模块712,被配置为基于位置参数确定接收位置,或者基于位置参数确定一个包含多个接收位置的接收窗口;或者,
第二确定子模块713,被配置为基于系统约定,确定在设定传输周期内监听待传输数据的位置参数;
第三确定子模块714,被配置为基于位置参数确定接收位置,或者基于位置参 数确定一个包含多个接收位置的接收窗口。
在一实施例中,若数据接收端为用户设备,待传输数据为同步块信号;或者,
待传输数据为同步块信号,以及波束指示信令或者波束指示信号。
在一实施例中,波束指示信号为预先定义的导频序列,波束指示信令或者波束指示信号携带有数据传输波束的波束信息。
在一实施例中,若数据接收端为基站,待传输数据为随机接入前导码。
在一实施例中,第二确定模块73,被配置为将接收质量最高的待传输数据所对应的数据传输波束确定为最优传输波束。
图9是根据一示例性实施例示出的一种波束选择装置的框图,该波束选择装置应用在数据发送端上,如图9所示,波束选择装置包括:
第三确定模块91,被配置为基于设定传输周期内待检测信道的信道状态以及设定的位置参数,确定针对每一个波束的目标发送位置;
发送模块92,被配置为在针对每一个波束的目标发送位置通过对应的传输波束发送待传输数据,用于数据接收端基于监听待传输数据的监听结果确定最优波束。
图10是根据一示例性实施例示出的另一种波束选择装置的框图,如图10所示,在上述图9所示实施例的基础上,在一实施例中,第三确定模块91包括:
第四确定子模块911,被配置为基于设定的位置参数,确定针对每一个波束的可用于发送待传输数据的发送位置或者发送窗口;
第五确定子模块912,被配置为将针对每一个波束的可用于发送待传输数据的发送位置中,信道状态为未占用状态的发送位置确定为针对每一个波束的目标发送位置;或者,
第六确定子模块913,被配置为将可用于发送待传输数据的发送窗口中,信道状态为未占用状态的位置确定为针对每一个波束的目标发送位置。
在一实施例中,设定的位置参数通过系统约定得到,或者,设定的位置参数通过基站设置。
在一实施例中,若数据发送端为基站,发送模块92包括:
第一发送子模块921,被配置为在目标发送位置中第一个用于发送同步块信号的位置通过对应的传输波束发送同步块信号;
第二发送子模块922,被配置为若没有成功发送同步块信号,则在后面的其他目标发送位置通过对应的传输波束发送波束指示信令或者波束指示信号,或者同步块信号;
第三发送子模块923,被配置为若成功发送同步块信号,则在后面的其他目标发送位置继续发送波束指示信令或者波束指示信号或者同步块信号,或者在后面的其他目标发送位置拒绝发送波束指示信令或者波束指示信号或者同步块信号。
在一实施例中,波束指示信号为预先定义的导频序列,波束指示信令或者波束指示信号携带有数据传输波束的波束信息。
在一实施例中,若数据发送端为用户设备,装置还包括:
接收模块93,被配置为接收基站通过RRC信令,或MAC CE,或物理层信令发送的设定的位置参数。
在一实施例中,发送模块,被配置为在针对每一个波束的目标发送位置通过对应的传输波束发送随机接入前导码。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开实施例提供的数据接收端可以为图11所示的用户设备,也可以为图12所示的基站;本公开实施例提供的数据发送端可以为图11所示的用户设备,也可以为图12所示的基站。
图11是根据一示例性实施例示出的一种适用于波束选择装置的框图。例如,装置1100可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等用户设备。
参照图11,装置1100可以包括以下一个或多个组件:处理组件1102,存储器1104,电源组件1106,多媒体组件1108,音频组件1112,输入/输出(I/O)的接口1112,传感器组件1114,以及通信组件1116。
处理组件1102通常控制装置1100的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理元件1102可以包括一个或多个处理器1120来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1102可以包括一个或多个模块,便于处理组件1102和其他组件之间的交互。例如,处理部件1102可以包括多媒体模块,以方便多媒体组件1108和处理组件1102之间的交互。
存储器1104被配置为存储各种类型的数据以支持在设备1100的操作。这些数据的示例包括用于在装置1100上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器 (PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件1106为装置1100的各种组件提供电力。电力组件1106可以包括电源管理系统,一个或多个电源,及其他与为装置1100生成、管理和分配电力相关联的组件。
多媒体组件1108包括在装置1100和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1108包括一个前置摄像头和/或后置摄像头。当设备1100处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1112被配置为输出和/或输入音频信号。例如,音频组件1112包括一个麦克风(MIC),当装置1100处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1104或经由通信组件1116发送。在一些实施例中,音频组件1112还包括一个扬声器,用于输出音频信号。
I/O接口1112为处理组件1102和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1114包括一个或多个传感器,用于为装置1100提供各个方面的状态评估。例如,传感器组件1114可以检测到设备1100的打开/关闭状态,组件的相对定位,例如组件为装置1100的显示器和小键盘,传感器组件1114还可以检测装置1100或装置1100一个组件的位置改变,用户与装置1100接触的存在或不存在,装置1100方位或加速/减速和装置1100的温度变化。传感器组件1114可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1114还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1114还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1116被配置为便于装置1100和其他设备之间有线或无线方式的通信。 装置1100可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信部件1116经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信部件1116还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1100可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行第一方面或者第二方面描述的方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1104,上述指令在被执行时可配置装置1100的处理器1120执行上述第一方面或者第二方面所描述的方法。
图12是根据一示例性实施例示出的一种适用于波束选择装置的框图。装置1200可以被提供为一基站。参照图12,装置1200包括处理组件1222、无线发射/接收组件1224、天线组件1226、以及无线接口特有的信号处理部分,处理组件1222可进一步包括一个或多个处理器。
处理组件1222中的其中一个处理器可以被配置为执行上述第一方面或者第二方面所描述的方法。
在示例性实施例中,基站中还提供了一种包括指令的非临时性计算机可读存储介质,存储介质上存储有计算机指令,指令被处理器执行时实现上述第一方面或者第二方面所描述的方法。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本请求旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (32)

  1. 一种波束选择方法,其特征在于,应用在数据接收端上,所述方法包括:
    确定设定传输周期内用于监听待传输数据的接收位置;
    在所述接收位置监听数据发送端通过不同波束发送的待传输数据,所述待传输数据能够指示对应的传输波束;
    基于监听结果,确定最优传输波束。
  2. 根据权利要求1所述的方法,其特征在于,所述确定设定传输周期内用于监听待传输数据的接收位置,包括:
    接收基站通过RRC信令,或MAC CE,或物理层信令发送的位置参数;
    基于所述位置参数确定所述接收位置,或者基于所述位置参数确定一个包含多个接收位置的接收窗口。
  3. 根据权利要求1所述的方法,其特征在于,所述确定设定传输周期内用于监听待传输数据的接收位置,包括:
    基于系统约定,确定在设定传输周期内监听待传输数据的位置参数;
    基于所述位置参数确定所述接收位置,或者基于所述位置参数确定一个包含多个接收位置的接收窗口。
  4. 根据权利要求1所述的方法,其特征在于,若数据接收端为用户设备,所述待传输数据为同步块信号;或者,
    所述待传输数据为同步块信号,以及波束指示信令或者波束指示信号。
  5. 根据权利要求4所述的方法,其特征在于,所述波束指示信号为预先定义的导频序列,所述波束指示信令或者所述波束指示信号携带有数据传输波束的波束信息。
  6. 根据权利要求1所述的方法,其特征在于,若数据接收端为基站,所述待传输数据为随机接入前导码。
  7. 根据权利要求1所述的方法,其特征在于,所述基于监听结果,确定最优传输波束,包括:
    将接收质量最高的待传输数据所对应的数据传输波束确定为最优传输波束。
  8. 一种波束选择方法,其特征在于,应用在数据发送端上,所述方法包括:
    基于设定传输周期内待检测信道的信道状态以及设定的位置参数,确定针对每一个波束的目标发送位置;
    在所述针对每一个波束的目标发送位置通过对应的传输波束发送所述待传输数据,用于所述数据接收端基于监听所述待传输数据的监听结果确定最优波束。
  9. 根据权利要求8所述的方法,其特征在于,所述基于设定传输周期内待检测信道的信道状态以及设定的位置参数,确定针对每一个波束的目标发送位置,包括:
    基于所述设定的位置参数,确定针对每一个波束的可用于发送所述待传输数据的发送位置或者发送窗口;
    将所述针对每一个波束的可用于发送待传输数据的发送位置中,信道状态为未占用状态的第一个发送位置或者所有发送位置确定为针对每一个波束的目标发送位置;或者,
    将所述可用于发送待传输数据的发送窗口中,信道状态为未占用状态的第一个位置或者所有位置确定为针对每一个波束的目标发送位置。
  10. 根据权利要求8所述的方法,其特征在于,所述设定的位置参数通过系统约定得到,或者,所述设定的位置参数通过基站设置。
  11. 根据权利要求8所述的方法,其特征在于,若所述数据发送端为基站,所述在所述针对每一个波束的目标发送位置通过对应的传输波束发送所述待传输数据,包括:
    在所述目标发送位置中第一个用于发送同步块信号的位置通过对应的传输波束发送同步块信号;
    若没有成功发送所述同步块信号,则在后面的其他目标发送位置通过对应的传输波束发送波束指示信令或者波束指示信号,或者同步块信号;
    若成功发送所述同步块信号,则在后面的其他目标发送位置继续发送波束指示信令或者波束指示信号或者同步块信号,或者在后面的其他目标发送位置拒绝发送波束指示信令或者波束指示信号或者同步块信号。
  12. 根据权利要求11所述的方法,其特征在于,所述波束指示信号为预先定义的导频序列,所述波束指示信令或者所述波束指示信号携带有数据传输波束的波束信息。
  13. 根据权利要求8所述的方法,其特征在于,若所述数据发送端为用户设备,所述方法还包括:
    接收基站通过RRC信令,或MAC CE,或物理层信令发送的设定的位置参数。
  14. 根据权利要求13所述的方法,其特征在于,所述在所述针对每一个波束的目标发送位置通过对应的传输波束发送所述待传输数据,包括:
    在所述针对每一个波束的目标发送位置通过对应的传输波束发送随机接入前导码。
  15. 一种波束选择装置,其特征在于,应用在数据接收端上,所述装置包括:
    第一确定模块,被配置为确定设定传输周期内用于监听待传输数据的接收位置;
    监听模块,被配置为在所述接收位置监听数据发送端通过不同波束发送的待传输数据,所述待传输数据能够指示对应的传输波束;
    第二确定模块,被配置为基于监听结果,确定最优传输波束。
  16. 根据权利要求15所述的装置,其特征在于,所述第一确定模块包括:
    接收子模块,被配置为接收基站通过RRC信令,或MAC CE,或物理层信令发送的位置参数;
    第一确定子模块,被配置为基于所述位置参数确定所述接收位置,或者基于所述位置参数确定一个包含多个接收位置的接收窗口。
  17. 根据权利要求15所述的装置,其特征在于,所述第一确定模块包括:
    第二确定子模块,被配置为基于系统约定,确定在设定传输周期内监听待传输数据的位置参数;
    第三确定子模块,被配置为基于所述位置参数确定所述接收位置,或者基于所述位置参数确定一个包含多个接收位置的接收窗口。
  18. 根据权利要求15所述的装置,其特征在于,若数据接收端为用户设备,所述待传输数据为同步块信号;或者,
    所述待传输数据为同步块信号,以及波束指示信令或者波束指示信号。
  19. 根据权利要求18所述的装置,其特征在于,所述波束指示信号为预先定义的导频序列,所述波束指示信令或者所述波束指示信号携带有数据传输波束的波束信息。
  20. 根据权利要求15所述的装置,其特征在于,若数据接收端为基站,所述待传输数据为随机接入前导码。
  21. 根据权利要求15所述的装置,其特征在于,所述第二确定模块,被配置为将接收质量最高的待传输数据所对应的数据传输波束确定为最优传输波束。
  22. 一种波束选择装置,其特征在于,应用在数据发送端上,所述装置包括:
    第三确定模块,被配置为基于设定传输周期内待检测信道的信道状态以及设定的位置参数,确定针对每一个波束的目标发送位置;
    发送模块,被配置为在所述针对每一个波束的目标发送位置通过对应的传输波束发送所述待传输数据,用于所述数据接收端基于监听所述待传输数据的监听结果确定最优波束。
  23. 根据权利要求22所述的装置,其特征在于,所述第三确定模块包括:
    第四确定子模块,被配置为基于所述设定的位置参数,确定针对每一个波束的可用于发送所述待传输数据的发送位置或者发送窗口;
    第五确定子模块,被配置为将所述针对每一个波束的可用于发送待传输数据的发送位置中,信道状态为未占用状态的第一个发送位置或者所有发送位置确定为针对每一个波束的目标发送位置;或者,
    第六确定子模块,被配置为将所述可用于发送待传输数据的发送窗口中,信道状态为未占用状态的第一个位置或者所有位置确定为针对每一个波束的目标发送位置。
  24. 根据权利要求22所述的装置,其特征在于,所述设定的位置参数通过系统约定得到,或者,所述设定的位置参数通过基站设置。
  25. 根据权利要求22所述的装置,其特征在于,若所述数据发送端为基站,所述发送模块包括:
    第一发送子模块,被配置为在所述目标发送位置中第一个用于发送同步块信号的位置通过对应的传输波束发送同步块信号;
    第二发送子模块,被配置为若没有成功发送所述同步块信号,则在后面的其他目标发送位置通过对应的传输波束发送波束指示信令或者波束指示信号,或者同步块信号;
    第三发送子模块,被配置为若成功发送所述同步块信号,则在后面的其他目标发送位置继续发送波束指示信令或者波束指示信号或者同步块信号,或者在后面的其他目标发送位置拒绝发送波束指示信令或者波束指示信号或者同步块信号。
  26. 根据权利要求25所述的装置,其特征在于,所述波束指示信号为预先定义的导频序列,所述波束指示信令或者所述波束指示信号携带有数据传输波束的波束信息。
  27. 根据权利要求22所述的装置,其特征在于,若所述数据发送端为用户设备,所述装置还包括:
    接收模块,被配置为接收基站通过RRC信令,或MAC CE,或物理层信令发送的设定的位置参数。
  28. 根据权利要求27所述的装置,其特征在于,所述发送模块,被配置为在所述针对每一个波束的目标发送位置通过对应的传输波束发送随机接入前导码。
  29. 一种数据接收端,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    确定设定传输周期内用于监听待传输数据的接收位置;
    在所述接收位置监听数据发送端通过不同波束发送的待传输数据,所述待传输数 据能够指示对应的传输波束;
    基于监听结果,确定最优传输波束。
  30. 一种数据发送端,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    基于设定传输周期内待检测信道的信道状态以及设定的位置参数,确定针对每一个波束的目标发送位置;
    在所述针对每一个波束的目标发送位置通过对应的传输波束发送所述待传输数据,用于所述数据接收端基于监听所述待传输数据的监听结果确定最优波束。
  31. 一种非临时计算机可读存储介质,所述存储介质上存储有计算机指令,其特征在于,所述指令被处理器执行时实现以下步骤:
    确定设定传输周期内用于监听待传输数据的接收位置;
    在所述接收位置监听数据发送端通过不同波束发送的待传输数据,所述待传输数据能够指示对应的传输波束;
    基于监听结果,确定最优传输波束。
  32. 一种非临时计算机可读存储介质,所述存储介质上存储有计算机指令,其特征在于,所述指令被处理器执行时实现以下步骤:
    基于设定传输周期内待检测信道的信道状态以及设定的位置参数,确定针对每一个波束的目标发送位置;
    在所述针对每一个波束的目标发送位置通过对应的传输波束发送所述待传输数据,用于所述数据接收端基于监听所述待传输数据的监听结果确定最优波束。
PCT/CN2018/081399 2018-03-30 2018-03-30 波束选择方法及装置 WO2019183940A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2018/081399 WO2019183940A1 (zh) 2018-03-30 2018-03-30 波束选择方法及装置
EP18911750.0A EP3771269A4 (en) 2018-03-30 2018-03-30 BEAM SELECTION PROCESS AND DEVICE
CN201880000376.9A CN109451869B (zh) 2018-03-30 2018-03-30 波束选择方法及装置
US17/011,454 US11516805B2 (en) 2018-03-30 2020-09-03 Method and device for selecting beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/081399 WO2019183940A1 (zh) 2018-03-30 2018-03-30 波束选择方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/011,454 Continuation US11516805B2 (en) 2018-03-30 2020-09-03 Method and device for selecting beam

Publications (1)

Publication Number Publication Date
WO2019183940A1 true WO2019183940A1 (zh) 2019-10-03

Family

ID=65540314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081399 WO2019183940A1 (zh) 2018-03-30 2018-03-30 波束选择方法及装置

Country Status (4)

Country Link
US (1) US11516805B2 (zh)
EP (1) EP3771269A4 (zh)
CN (1) CN109451869B (zh)
WO (1) WO2019183940A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7270765B2 (ja) * 2019-03-26 2023-05-10 ノキア テクノロジーズ オサケユイチア オンデマンド位置参照信号伝送の測定
CN116195346A (zh) * 2021-09-28 2023-05-30 北京小米移动软件有限公司 信息上报、波束切换方法及装置、存储介质
CN115915399A (zh) * 2021-09-29 2023-04-04 维沃软件技术有限公司 波束指示方法、装置及终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130329820A1 (en) * 2012-06-11 2013-12-12 Magnolia Broadband Inc. Implementing transmit rdn architectures in uplink mimo systems
CN105122664A (zh) * 2012-11-28 2015-12-02 英特尔公司 在无线网络中使用具有波束赋型辅助的多频带
CN106953673A (zh) * 2015-12-09 2017-07-14 谷歌公司 Ieee 802.11ad网络中的回程优化的波束形成
CN107223361A (zh) * 2017-05-05 2017-09-29 北京小米移动软件有限公司 控制随机接入网络的方法、用户设备及基站
CN107852351A (zh) * 2015-08-06 2018-03-27 瑞典爱立信有限公司 基于监听的传输的方法和装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130125903A (ko) 2012-05-10 2013-11-20 삼성전자주식회사 통신시스템에서 빔포밍을 수행하는 방법 및 장치
US20140161018A1 (en) * 2014-02-18 2014-06-12 Juo-Yu Lee Multi-user mimo via frequency re-use in smart antennas
EP3328152B1 (en) 2015-01-26 2020-12-02 ASUSTek Computer Inc. Method and apparatus for beam detection in a wireless communication system
CN104639289B (zh) * 2015-01-28 2018-01-30 西安电子科技大学 一种wlan中空闲节点辅助的定向接入控制方法
RU2688273C1 (ru) 2015-05-30 2019-05-21 Хуавэй Текнолоджиз Ко., Лтд. Способ связи, базовая станция и пользовательское оборудование
CN106255206A (zh) * 2015-06-09 2016-12-21 中国移动通信集团公司 使用非授权频谱进行通信的方法、装置及系统
CN106470062B (zh) * 2015-08-14 2021-11-16 中兴通讯股份有限公司 一种数据传输方法及系统
CN105338640B (zh) * 2015-09-25 2018-12-25 宇龙计算机通信科技(深圳)有限公司 一种基于上行复用的数据传输方法及装置
US10638484B2 (en) * 2016-07-21 2020-04-28 Lg Electronics Inc. Method for transmitting or receiving downlink control information in wireless communication system and device therefor
KR20180017909A (ko) * 2016-08-11 2018-02-21 삼성전자주식회사 차세대 이동통신 시스템에서 하향링크 빔의 특성에 따라 랜덤 엑세스 과정을 선택하는 방법 및 장치
CN106797625B (zh) * 2016-09-26 2020-06-02 北京小米移动软件有限公司 数据传输同步方法及装置
WO2018056785A1 (en) 2016-09-26 2018-03-29 Samsung Electronics Co., Ltd. Method and apparatus for communication in next-generation mobile communication system
CN116321235A (zh) * 2016-09-29 2023-06-23 华为技术有限公司 无线资源选择方法及装置
WO2018079969A1 (ko) * 2016-10-26 2018-05-03 엘지전자(주) 무선 통신 시스템에서 빔 관리를 수행하는 방법 및 이를 위한 장치
CN106385710A (zh) * 2016-11-14 2017-02-08 宇龙计算机通信科技(深圳)有限公司 系统信息的传输方法及传输装置
CN106455040B (zh) * 2016-11-30 2019-12-10 宇龙计算机通信科技(深圳)有限公司 一种传输信息的方法、基站及终端
CN110431901B (zh) * 2017-03-23 2023-08-04 夏普株式会社 终端装置、基站装置、通信方法以及集成电路
US11109416B2 (en) * 2017-03-27 2021-08-31 Lg Electronics Inc. Method and user equipment for transmitting random access channel, and method and base station for receiving random access channel
KR20200017474A (ko) * 2017-06-15 2020-02-18 콘비다 와이어리스, 엘엘씨 빔 기반 다운링크 제어 시그널링
US11330457B2 (en) * 2017-07-25 2022-05-10 Mediatek Inc. Method for beam management with beam indication in wireless communication systems with beamforming
EP3713363B1 (en) * 2017-11-16 2023-10-11 NTT DoCoMo, Inc. User equipment and preamble transmission method
US10791579B2 (en) * 2018-01-12 2020-09-29 Qualcomm Incorporated Random access response (RAR) monitoring for multiple preamble transmissions in multi-beam operation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130329820A1 (en) * 2012-06-11 2013-12-12 Magnolia Broadband Inc. Implementing transmit rdn architectures in uplink mimo systems
CN105122664A (zh) * 2012-11-28 2015-12-02 英特尔公司 在无线网络中使用具有波束赋型辅助的多频带
CN107852351A (zh) * 2015-08-06 2018-03-27 瑞典爱立信有限公司 基于监听的传输的方法和装置
CN106953673A (zh) * 2015-12-09 2017-07-14 谷歌公司 Ieee 802.11ad网络中的回程优化的波束形成
CN107223361A (zh) * 2017-05-05 2017-09-29 北京小米移动软件有限公司 控制随机接入网络的方法、用户设备及基站

Also Published As

Publication number Publication date
US20200404642A1 (en) 2020-12-24
EP3771269A4 (en) 2021-11-24
CN109451869B (zh) 2023-10-13
US11516805B2 (en) 2022-11-29
EP3771269A1 (en) 2021-01-27
CN109451869A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
US11057853B2 (en) Methods and apparatus for indicating and determining synchronization block, and base station and user equipment
US11350394B2 (en) Resource configuration method, apparatus, user equipment, and base station
WO2019191948A1 (zh) 下行控制信息格式大小的确定方法及装置
US20210409159A1 (en) Hybrid automatic repeat request feedback method and device
US11382055B2 (en) Paging synchronization method and apparatus
US20220022243A1 (en) Data transmission method and device and computer-readable storage medium
US11665733B2 (en) Preamble and scheduling request transmitting method and device
EP3809772A1 (en) Method and device for determining uplink and downlink switching points
WO2020191631A1 (zh) 时隙格式指示方法及装置
WO2019183940A1 (zh) 波束选择方法及装置
US11722283B2 (en) Information transmission method, device, system, and storage medium
US11310694B2 (en) Method and device for receiving downlink data during RRC inactive state
US11856571B2 (en) Information feedback method and apparatus
CN110506430B (zh) 信道占用时间的起始位置确定方法、装置、设备和介质
US11665586B2 (en) Method and apparatus for data transmission, electronic device and computer readable storage medium
US11071137B2 (en) Data transmission method and device, and computer-readable storage medium
WO2020191633A1 (zh) 数据传输方法及装置
US11641674B2 (en) Random access method and device, user equipment and computer-readable storage medium
US11601934B2 (en) Data transmission method and device
US20220053473A1 (en) Method and device for indicating resource occupation state, and method and device for determining resource occupation state
CN109792619B (zh) 信令检测的实现方法、装置、用户设备及基站
US20220070893A1 (en) Data scheduling method and apparatus, and data transmission method and apparatus
US11950254B2 (en) Method and device for configuring data transmission mode, and method and device for data transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911750

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018911750

Country of ref document: EP

Effective date: 20201020