WO2017166234A1 - 信号传输方法、信号传输控制方法、用户设备及基站 - Google Patents

信号传输方法、信号传输控制方法、用户设备及基站 Download PDF

Info

Publication number
WO2017166234A1
WO2017166234A1 PCT/CN2016/078196 CN2016078196W WO2017166234A1 WO 2017166234 A1 WO2017166234 A1 WO 2017166234A1 CN 2016078196 W CN2016078196 W CN 2016078196W WO 2017166234 A1 WO2017166234 A1 WO 2017166234A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
subframe
uplink data
configuration information
srs configuration
Prior art date
Application number
PCT/CN2016/078196
Other languages
English (en)
French (fr)
Inventor
徐凯
李晓翠
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020187026358A priority Critical patent/KR102225167B1/ko
Priority to US16/088,231 priority patent/US10645723B2/en
Priority to PCT/CN2016/078196 priority patent/WO2017166234A1/zh
Priority to CN201680080534.7A priority patent/CN108605315B/zh
Publication of WO2017166234A1 publication Critical patent/WO2017166234A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA

Definitions

  • the present invention relates to communication technologies, and in particular, to a signal transmission method, a signal transmission control method, a user equipment, and a base station.
  • LAA-LTE uses the licensed spectrum as the primary carrier (PCC) and the unlicensed spectrum as the secondary carrier (SCC, Secondary).
  • Component Carrier offloads the data traffic on the licensed spectrum, thereby effectively increasing the data transmission rate and achieving hotspot coverage.
  • the channel access mechanism is used by the Listening Before Talk (LBT) channel access mechanism, that is, the transmitting node performs Clear Channel Assessment (CCA) before transmitting the signal, and only detects The channel transmission signal can be occupied only after the channel is idle.
  • LBT Listening Before Talk
  • CCA Clear Channel Assessment
  • the Sounding Reference Signal (SRS) of the uplink transmission is used to estimate the uplink channel quality of different frequencies.
  • the estimated channel quality can be used for scheduling of uplink transmission, and resource blocks with better channel state are allocated to uplink transmission, and are used for selecting different transmission parameters, such as instantaneous data rate.
  • the SRS transmission mechanism in the original LTE system is not perfect and cannot meet the signal transmission requirements of the LAA-LTE system.
  • the invention provides a signal transmission method, a signal transmission control method, a user equipment and a base station, which are used for meeting the requirements of the LAA-LTE system for signal transmission.
  • a first aspect of the present invention provides a signal transmission method, including:
  • the UE performs a channel detection process. If the channel detection result is that the channel is not occupied, the UE starts to send uplink data, the uplink data includes one or more subframes, and at least one subframe includes an SRS, where the SRS is located. The starting position of the sub-frame. UE uses this method The SRS is carried in the uplink data sent after the channel detection is performed, and the SRS is located at the beginning of the uplink data subframe, which can significantly improve the channel utilization.
  • the UE first receives the SRS configuration information sent by the base station before sending the uplink data.
  • the SRS is determined by the base station, and the base station sends the SRS configuration information to the UE by using a specific message, so that the UE can send the SRS according to the SRS configuration message, so that the base station can uniformly manage the SRS transmission policy of the UE.
  • a second aspect of the present invention provides a signal transmission control method, including:
  • the base station sends the sounding reference signal SRS configuration information to the user equipment UE through the radio resource control signaling RRC or the physical downlink control signaling DCI, and the information may enable the UE to send the SRS according to the configuration requirement of the information. That is, the SRS transmission policy is determined by the base station, which facilitates the base station to uniformly manage the SRS transmission policy of the UE.
  • a third aspect of the present invention provides a user equipment, including:
  • a processing module configured to perform channel detection
  • a sending module configured to send uplink data when the channel detection result is that the channel is not occupied, where the uplink data includes one or more subframes, where at least one of the subframes includes a sounding reference signal SRS, the SRS Located at the beginning of the subframe.
  • the foregoing user equipment further includes:
  • the receiving module is configured to receive SRS configuration information sent by the base station.
  • a fourth aspect of the present invention provides a base station, including:
  • the sending module is configured to send the sounding reference signal SRS configuration information to the user equipment UE by using the radio resource control signaling RRC or the physical downlink control signaling DCI, so that the UE sends the SRS according to the SRS configuration information.
  • a fifth aspect of the present invention provides a user equipment, including: a memory and a processor.
  • the memory is used to store program instructions, and the processor is used to call program instructions in the memory to perform the following methods:
  • the uplink data is sent, and the uplink data includes one or more subframes, where at least one of the subframes includes a sounding reference signal SRS, and the SRS is located in the subframe. Starting position.
  • the processor is configured to receive SRS configuration information sent by the base station.
  • a sixth aspect of the present invention provides a base station, including: a memory and a processor.
  • the memory is used to store program instructions, and the processor is used to call program instructions in the memory to perform the following methods:
  • the SRS configuration information is sent to the UE through RRC or DCI, so that the UE transmits the SRS according to the SRS configuration information.
  • the SRS is located in a first subframe of the uplink data, where the first subframe is a subframe that does not send physical uplink shared channel PUSCH data, and the SRS is set in The transmission is performed at the beginning of the first subframe of the uplink data of the CCA, which enables the UE to quickly access the channel, improve channel utilization, and also save uplink transmission channel resources.
  • the SRS is located in the first subframe of the uplink data and the subframe in the intermediate position of the uplink data.
  • the uplink data sent by the UE at one time is large. If the SRS is set only at the start position or the end position of the first subframe of the uplink data, there may be a problem that the channel frequency estimation is inaccurate. Therefore, in this embodiment, the uplink is in the uplink.
  • the SRS is set in the first subframe of the data and the start position or the end position of the middle subframe, and it is ensured that the channel frequency is accurately estimated when the uplink data is large.
  • the SRS is located in each subframe of the uplink data.
  • the uplink data transmitted by the UE at one time is particularly large, and one SRS is added in each subframe of the uplink data, which can maximize the channel estimation frequency.
  • the SRS employs a discrete occupied bandwidth mode in the frequency domain.
  • the SRS configuration information is a periodic SRS configuration
  • the SRS configuration information includes SRS transmission period information and offset information of a subframe in each SRS transmission period;
  • the SRS configuration information includes location information of the SRS sent by the UE, where location information of the SRS is used to indicate a location of the SRS in the uplink data. .
  • the SRS occupies at least one single carrier frequency division multiple access SC-FDMA symbol in the subframe.
  • the solution provided by the embodiment of the present invention can significantly improve the utilization of the channel.
  • FIG. 1 is an interaction flowchart of Embodiment 1 of a signal transmission and control method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an SRS located in a first subframe of uplink data
  • FIG. 3 is a schematic diagram of a subframe in which an SRS is located in a first subframe of uplink data and an intermediate position of uplink data;
  • Figure 5 is a schematic diagram showing the distribution of SRS in the frequency domain
  • FIG. 6 is a block diagram of a first embodiment of a user equipment according to an embodiment of the present disclosure.
  • FIG. 7 is a block diagram of a second embodiment of a user equipment according to an embodiment of the present disclosure.
  • FIG. 8 is a block diagram of a third embodiment of a user equipment according to an embodiment of the present disclosure.
  • FIG. 9 is a block diagram of a first embodiment of a base station according to an embodiment of the present disclosure.
  • FIG. 10 is a block diagram of a second embodiment of a base station according to an embodiment of the present disclosure.
  • FIG. 1 is an interaction flowchart of a first embodiment of a signal transmission and control method according to an embodiment of the present invention.
  • the method is used for interaction between a user equipment (User Equipment, UE for short) and a base station.
  • the interaction process is:
  • the base station sends the SRS configuration information to the UE by using the Radio Resource Control (RRC) signaling or the Downlink Control Information (DCI), so that the UE sends the SRS according to the SRS configuration information.
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the SRS configuration information may be a periodic SRS configuration or an aperiodic SRS configuration.
  • the SRS configuration information includes an SRS transmission period and offset information of the subframes in each SRS transmission period.
  • the SRS configuration information is determined by the base station based on current network conditions. For example, the base station may configure the SRS transmission period to be 100 ms, that is, the UE sends the SRS once every 100 ms (100 subframes), and configures the offset into 2 subframes, that is, offsets 2 subframes in each SRS transmission period. Add SRS to the location.
  • the SRS configuration information includes location information of the SRS sent by the UE, where the location information is used to indicate the location of the SRS in the uplink data.
  • the base station sends the foregoing SRS configuration information to the UE, so that the UE sends the SRS according to the configuration information. That is, the base station uses the foregoing SRS configuration information to control information such as the frequency, location, and the like of the SRS transmitted by the UE.
  • the base station sends the configuration information by using a Physical Downlink Control Channel (PDCCH).
  • PDCH Physical Downlink Control Channel
  • the UE receives SRS configuration information sent by the base station.
  • the SRS configuration information may be configured for a periodic SRS or an aperiodic SRS configuration.
  • the SRS configuration information received by the UE is a periodic SRS configuration
  • the SRS configuration information includes an SRS transmission period and offset information of the subframes in each SRS transmission period.
  • the SRS configuration information received by the UE is a non-periodic SRS configuration
  • the SRS configuration information includes location information of the SRS sent by the UE, where the location information is used to indicate the location of the SRS in the uplink data.
  • the UE performs channel detection.
  • the UE may perform a Clear Channel Assessment (CCA) to determine whether an available idle channel is available.
  • CCA Clear Channel Assessment
  • the UE sends uplink data, where the uplink data includes one or more subframes, where at least one subframe includes an SRS, where the SRS is located at a starting position of the subframe.
  • the UE starts to use the unoccupied channel to transmit uplink data, where the uplink data includes the SRS, that is, the SRS is sent after the idle channel detection. And, the SRS is located at the start position in the subframe of the uplink data.
  • the subframe in which the SRS is located is determined by the UE according to the periodic SRS sent by the base station and the configuration information of the aperiodic SRS.
  • the configuration information sent by the base station indicates that the UE carries the SRS in the first subframe of each uplink data, and the SRS sent by the UE is located at the beginning of the first subframe of the uplink data.
  • the uplink data carried by the UE after performing the channel detection carries the SRS, and the SRS is located at the beginning of the uplink data subframe, which can improve the channel utilization.
  • the present embodiment relates to the location of the subframe in which the SRS is located. That is, the SRS is located in the first subframe of the uplink data, where the first subframe is a subframe that does not transmit Physical Uplink Shared Channel (PUSCH) data.
  • PUSCH Physical Uplink Shared Channel
  • FIG. 2 is a schematic diagram of the SRS being located in the first subframe of the uplink data.
  • the SRS is located immediately after the CCA. The start position of the first subframe of the burst, and the remaining subframes of the burst do not contain the SRS.
  • the SRS is set to be transmitted at the beginning of the first subframe of the uplink data of the CCA, which enables the UE to quickly access the channel, improve channel utilization, and save uplink transmission channel resources.
  • the present embodiment relates to the location of the subframe in which the SRS is located. That is, the SRS is located in the first subframe of the uplink data and the subframe in the middle of the uplink data.
  • the first subframe is a subframe in which the PUSCH data is not transmitted, and the subframe in the intermediate position of the uplink data may be a subframe in which PUSCH data is transmitted, or may be a subframe in which PUSCH data is not transmitted.
  • FIG. 3 is a schematic diagram of a subframe in which the SRS is located in the first subframe of the uplink data and the intermediate location of the uplink data.
  • the uplink data sent by the UE at one time that is, one burst contains five subframes.
  • the burst includes two SRSs, which are respectively located at the start position of the subframe 1 of the burst immediately after the CCA, and at the start position of the intermediate subframe 3.
  • the SRS may also be located at the end of the above two subframes.
  • the uplink data sent by the UE at one time is large. If the SRS is set only at the start position or the end position of the first subframe of the uplink data, there may be a problem that the channel frequency estimation is inaccurate. Therefore, in this embodiment, the uplink is in the uplink.
  • the SRS is set in the first subframe of the data and the start position or the end position of the middle subframe, and it is ensured that the channel frequency is accurately estimated when the uplink data is large.
  • an SRS may be added to one uplink data according to the actual situation of the network, and the SRS may be located at a start position of any one subframe of the uplink data, or two (2) in one uplink data. SRS, the two SRSs can be located in the upstream data. The starting position of any two sub-frames to maximize the channel estimation frequency. These subframes may be subframes that transmit PUSCH data, or subframes that do not transmit PUSCH data.
  • the present embodiment relates to the location of the subframe in which the SRS is located. That is, the SRS is located in each subframe of the uplink data.
  • FIG. 4 is a schematic diagram of each subframe in which the SRS is located in the uplink data.
  • the uplink data sent by the UE at one time that is, one burst contains five subframes
  • the start of each subframe in the burst is performed.
  • the location contains an SRS.
  • the subframe in which the SRS is located may be a subframe in which PUSCH data is transmitted, or may be a subframe in which PUSCH data is not transmitted.
  • the uplink data transmitted by the UE at one time is particularly large, and one SRS is added in each subframe of the uplink data, which can maximize the channel estimation frequency.
  • the SRS employs a discrete occupied bandwidth mode in the frequency domain.
  • FIG. 5 is a schematic diagram of the distribution of SRS in the frequency domain.
  • the SRS does not occupy the full bandwidth in the frequency domain, but can multiplex the bandwidth with other SRSs.
  • the SRS can implement frequency division multiplexing in the SRS Comb mode, and the bandwidth occupied by each SRS through the discrete occupied bandwidth mode is greater than or equal to 80% of the full bandwidth.
  • the foregoing SRS occupies at least one single-carrier frequency-division multiple access (SC-FDMA) symbol in the subframe in which it is located.
  • SC-FDMA single-carrier frequency-division multiple access
  • each SRS occupies one or two SC-FDMA symbols at the beginning of the subframe in the subframe in which it is located.
  • FIG. 6 is a block diagram of a first embodiment of a user equipment according to an embodiment of the present invention. As shown in Figure 6, the user equipment includes:
  • the processing module 601 is configured to perform channel detection.
  • the sending module 602 is configured to send uplink data when the channel detection result is that the channel is not occupied, where the uplink data includes one or more subframes, where at least one subframe includes an SRS, where the SRS is located in the subframe. Starting position.
  • the user equipment is used to implement the foregoing method embodiments, and the implementation principles and technical effects are similar, and details are not described herein again.
  • the SRS is located in a first subframe of the uplink data, where the first subframe is a subframe that does not transmit PUSCH data.
  • the SRS is located in a subframe of the first subframe of the uplink data and a subframe at an intermediate position of the uplink data.
  • the SRS is located in each subframe of the uplink data.
  • the above SRS adopts a discrete occupied bandwidth mode in the frequency domain.
  • FIG. 7 is a block diagram of a second embodiment of a user equipment according to an embodiment of the present disclosure. As shown in FIG. 7, the user equipment further includes:
  • the receiving module 603 is configured to receive SRS configuration information sent by the base station.
  • the SRS configuration information is a periodic SRS configuration
  • the SRS configuration information includes SRS transmission period information and offset information of a subframe in each SRS transmission period;
  • the SRS configuration information is a non-periodic SRS configuration
  • the SRS configuration information includes location information that the UE sends the SRS, and the location information of the SRS is used to indicate the location of the SRS in the uplink data.
  • the foregoing SRS occupies at least one SC-FDMA symbol in the foregoing subframe.
  • FIG. 8 is a block diagram of a third embodiment of a user equipment according to an embodiment of the present invention. As shown in FIG. 8, the user equipment includes a memory 801 and a processor 802.
  • the memory 801 is used to store program instructions, and the processor 802 is configured to call program instructions in the memory 801 to perform the following methods:
  • the uplink data is sent, and the uplink data includes one or more subframes, where at least one of the subframes includes a sounding reference signal SRS, and the SRS is located in the subframe. Starting position.
  • the SRS is located in a first subframe of the uplink data, where the first subframe is a subframe that does not transmit PUSCH data.
  • the SRS is located in the first subframe of the uplink data and the subframe in the intermediate position of the uplink data.
  • the SRS is located in each subframe of the uplink data.
  • the above SRS adopts a discrete occupied bandwidth mode in the frequency domain.
  • the processor 802 is configured to receive SRS configuration information sent by the base station.
  • the SRS configuration information is a periodic SRS configuration
  • the SRS configuration information includes SRS transmission period information and offset information of a subframe in each SRS transmission period;
  • the foregoing SRS configuration information includes the UE.
  • the location information of the SRS is sent, and the location information of the SRS is used to indicate the location of the SRS in the uplink data.
  • the foregoing SRS occupies at least one SC-FDMA symbol in the foregoing subframe.
  • FIG. 9 is a block diagram of a first embodiment of a base station according to an embodiment of the present invention. As shown in FIG. 9, the base station includes:
  • the sending module 901 is configured to send the sounding reference signal SRS configuration information to the UE by using the RRC or the DCI, so that the UE sends the SRS according to the SRS configuration information.
  • the base station is used to implement the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the SRS configuration information is a periodic SRS configuration
  • the SRS configuration information includes SRS transmission period information and offset information of a subframe in each SRS transmission period;
  • the SRS configuration information is an aperiodic SRS configuration
  • the SRS configuration information includes location information of the SRS sent by the UE, and the location information of the SRS is used to indicate a location of the SRS in the uplink data.
  • the base station includes a memory 1001 and a processor 1002.
  • the memory 1001 is configured to store program instructions, and the processor 1002 is configured to call program instructions in the memory 1001 to perform the following methods:
  • the SRS configuration information is sent to the UE through RRC or DCI, so that the UE transmits the SRS according to the SRS configuration information.
  • the SRS configuration information is a periodic SRS configuration
  • the SRS configuration information includes SRS transmission period information and offset information of a subframe in each SRS transmission period;
  • the SRS configuration information is an aperiodic SRS configuration
  • the SRS configuration information includes location information of the SRS sent by the UE, and the location information of the SRS is used to indicate a location of the SRS in the uplink data.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

本发明实施例提供一种信号传输方法、信号传输控制方法、用户设备及基站,该信号传输方法包括:用户设备UE执行信道检测;若所述信道检测的结果为信道未被占用,则所述UE发送上行数据,所述上行数据中包括一个或者多个子帧,其中,至少一个所述子帧中包括探测参考信号SRS,所述SRS位于所述子帧的起始位置。该信号传输控制方法包括:基站通过无线资源控制信令RRC或者物理下行控制信令DCI向用户设备UE发送探测参考信号SRS配置信息,以使所述UE根据所述SRS配置信息发送所述SRS。该方法能够显著提高信道的利用率。

Description

信号传输方法、信号传输控制方法、用户设备及基站 技术领域
本发明涉及通信技术,尤其涉及一种信号传输方法、信号传输控制方法、用户设备及基站。
背景技术
授权辅助接入的长期演进(Licensed-Assisted Access using LTE,简称LAA-LTE)通过载波聚合技术,将授权频谱作为主载波(PCC,Primary Component Carrier),将非授权频谱作为辅载波(SCC,Secondary Component Carrier)分流授权频谱上的数据业务,从而有效提高数据传输速率,实现热点覆盖。LAA-LTE系统中通过先听后发(Listen Before Talk,简称LBT)的信道接入机制使用信道资源,即发送节点在发送信号之前先执行空闲信道评测(Clear Channel Assessment,简称CCA),只有检测到信道空闲后才能占用信道发送信号。
在信号发送过程中,上行传输的探测参考信号(Sounding Reference Signal,简称SRS)用于估计不同频率的上行信道质量。估计出来的信道质量可以被用于上行传输的调度,将信道状态较好的资源块分配给上行传输,同时用于选择不同的传输参数,如瞬时数据速率等。
但是,原有LTE系统中的SRS传输机制并不完善,不能满足LAA-LTE系统的信号传输要求。
发明内容
本发明提供一种信号传输方法、信号传输控制方法、用户设备及基站,用于满足LAA-LTE系统对信号传输的要求。
本发明第一方面提供一种信号传输方法,包括:
UE执行信道检测过程,如果信道检测的结果为信道未被占用,则UE开始发送上行数据,该上行数据中包括了一个或者多个子帧,并且,至少一个子帧中包括SRS,该SRS位于该子帧的起始位置处。UE使用该方法 在执行完信道检测后所发送的上行数据中携带SRS,并且该SRS位于上行数据子帧的起始位置,能够显著提高信道的利用率。
在一种可能的设计中,UE在发送上行数据之前,会首先接收基站发送的SRS配置信息。SRS如何进行发送由基站来决定,基站通过特定的消息将SRS配置信息发送给UE,可以使得UE根据该SRS配置消息来发送SRS,便于基站对UE的SRS发送策略进行统一管理。
本发明第二方面提供一种信号传输控制方法,包括:
基站通过无线资源控制信令RRC或者物理下行控制信令DCI向用户设备UE发送探测参考信号SRS配置信息,该信息可以使得UE按照该信息的配置要求来发送SRS。即SRS的发送策略由基站来决定,便于基站对UE的SRS发送策略进行统一管理。
本发明第三方面提供一种用户设备,包括:
处理模块,用于执行信道检测;
发送模块,用于在信道检测的结果为信道未被占用时发送上行数据,所述上行数据中包括一个或者多个子帧,其中,至少一个所述子帧中包括探测参考信号SRS,所述SRS位于所述子帧的起始位置。
在一种可能的设计中,上述用户设备还包括:
接收模块,用于接收基站发送的SRS配置信息。
本发明第四方面提供一种基站,包括:
发送模块,用于通过无线资源控制信令RRC或者物理下行控制信令DCI向用户设备UE发送探测参考信号SRS配置信息,以使所述UE根据所述SRS配置信息发送所述SRS。
本发明第五方面提供一种用户设备,包括:存储器和处理器。
存储器用于存储程序指令,处理器用于调用存储器中的程序指令,执行下述方法:
执行信道检测;
若上述信道检测的结果为信道未被占用,则发送上行数据,上述上行数据中包括一个或者多个子帧,其中,至少一个上述子帧中包括探测参考信号SRS,上述SRS位于上述子帧的起始位置。
在一种可能的设计中,处理器用于接收基站发送的SRS配置信息。
本发明第六方面提供一种基站,包括:存储器和处理器。
存储器用于存储程序指令,处理器用于调用存储器中的程序指令,执行下述方法:
通过RRC或者DCI向UE发送SRS配置信息,以使UE根据SRS配置信息发送SRS。
在一种可能的设计中,所述SRS位于所述上行数据的第一个子帧中,其中,所述第一个子帧为不发送物理上行共享信道PUSCH数据的子帧,将SRS设置在紧跟CCA的上行数据的第一个子帧的起始位置上来传输,能够使得UE快速接入信道,提升信道利用率,同时,也可以节省上行传输信道资源。
在一种可能的设计中,所述SRS位于所述上行数据的第一个子帧及所述上行数据中间位置的所述子帧中。此时UE一次发送的上行数据较大,如果仅在上行数据的第一个子帧开始位置或者结束位置设置SRS,可能会存在信道频率估计不准的问题,因此,本实施例中,在上行数据的第一个子帧以及中间一个子帧的起始位置或者结束位置上都设置SRS,能够保证在上行数据较大时准确地估计信道频率。
在一种可能的设计中,所述SRS位于所述上行数据的每个子帧中。此时UE一次传输的上行数据特别大,在上行数据的每个子帧中都增加一个SRS,能够最大限度提升信道估计频率。
在一种可能的设计中,所述SRS在频域采用离散占用带宽模式。
在一种可能的设计中,若所述SRS配置信息为周期SRS配置,则所述SRS配置信息包括SRS发送周期信息以及每个SRS发送周期内子帧的偏移量信息;或者,
若所述SRS配置信息为非周期SRS配置,则所述SRS配置信息包括所述UE发送所述SRS的位置信息,所述SRS的位置信息用于指示所述SRS在所述上行数据中的位置。
在一种可能的设计中,所述SRS占用所述子帧中的至少一个单载波频分多址SC-FDMA符号。
相较于现有技术,本发明实施例所提供的方案,能够显著提高信道的利用率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的信号传输及控制方法实施例一的交互流程图;
图2为SRS位于上行数据第一个子帧的示意图;
图3为SRS位于上行数据的第一个子帧及上行数据中间位置的子帧的示意图;
图4为SRS位于上行数据的每个子帧的示意图;
图5为SRS在频域上的分布示意图;
图6为本发明实施例提供的用户设备实施例一的模块结构图;
图7为本发明实施例提供的用户设备实施例二的模块结构图;
图8为本发明实施例提供的用户设备实施例三的模块结构图;
图9为本发明实施例提供的基站实施例一的模块结构图;
图10为本发明实施例提供的基站实施例二的模块结构图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明实施例提供的信号传输及控制方法实施例一的交互流程图,该方法用于用户设备(User Equipment,简称UE)和基站之间的交互,该交互过程为:
S101、基站通过无线资源控制(Radio Resource Control,简称RRC)信令或者下行控制信息(Downlink Control Information,简称DCI)向UE发送SRS配置信息,以使UE根据该SRS配置信息发送SRS。
其中,SRS配置信息可以为周期SRS配置,也可以为非周期SRS配置。
对于周期SRS配置,SRS配置信息中包括SRS发送周期以及每个SRS发送周期内子帧的偏移量信息。该SRS配置信息由基站根据当前网络状况来确定。例如,基站可以将SRS的发送周期配置为100ms,即UE每隔100ms(100个子帧)发送一次SRS,将偏移量配置为2个子帧,即每个SRS发送周期内在偏移2个子帧的位置上加入SRS。
对于非周期SRS配置,SRS配置信息中包括UE发送SRS的位置信息,该位置信息用于指示SRS在上行数据中的位置。
基站将上述SRS配置信息发送给UE,以使UE根据这些配置信息来发送SRS。即基站利用上述SRS配置信息来控制UE发送SRS的频率、位置等信息。
可选地,基站通过物理下行控制信道(Physical Downlink Control Channel,简称PDCCH)来发送该配置信息。
S102、UE接收基站发送的SRS配置信息。
如前所述,SRS配置信息可以为周期SRS配置,也可以为非周期SRS配置。
如果UE接收的SRS配置信息为周期SRS配置,则SRS配置信息中包括SRS发送周期以及每个SRS发送周期内子帧的偏移量信息。
如果UE接收的SRS配置信息为非周期SRS配置,则SRS配置信息中包括UE发送SRS的位置信息,该位置信息用于指示SRS在上行数据中的位置。
S103、UE执行信道检测。
优选地,UE可以执行空闲信道评测(Clear Channel Assessment,简称CCA),用来确定是否有可用的空闲信道。
S104、若信道检测的结果为信道未被占用,则UE发送上行数据,该上行数据中包括一个或者多个子帧,其中,至少一个子帧中包括SRS,该SRS位于子帧的起始位置。
当信道检测结果为有信道未被占用时,则UE开始利用未被占用的信道发送上行数据,该上行数据中包含SRS,即SRS是在空闲信道检测之后发送。并且,SRS位于上行数据的子帧中的起始位置。而SRS位于哪个子帧中,则由UE根据基站发送的周期性SRS以及非周期SRS的配置信息来确定。例如, 基站发送的配置信息中指示UE在每个上行数据的第一个子帧中携带SRS,则UE所发送的SRS就位于上行数据的第一个子帧的起始位置。
本实施例中,UE在执行完信道检测后所发送的上行数据中携带SRS,并且该SRS位于上行数据子帧的起始位置,能够提高信道的利用率。
在上述实施例的基础上,本实施例涉及SRS所处的子帧的的位置。即,SRS位于上行数据的第一个子帧中,其中,该第一个子帧为不发送物理上行共享信道(Physical Uplink Shared Channel,简称PUSCH)数据的子帧。
具体地,图2为SRS位于上行数据第一个子帧的示意图,如图2所示,假设UE一次发送的上行数据,即一个burst中包含3个子帧,则SRS位于紧跟CCA之后的该burst的第一个子帧的起始位置处,而该burst的其余子帧中不包含SRS。
将SRS设置在紧跟CCA的上行数据的第一个子帧的起始位置上来传输,能够使得UE快速接入信道,提升信道利用率,同时,也可以节省上行传输信道资源。
在上述实施例的基础上,本实施例涉及SRS所处的子帧的的位置。即,SRS位于上行数据的第一个子帧及上行数据中间位置的子帧中。
其中,第一个子帧为不发送PUSCH数据的子帧,上行数据中间位置的子帧可以为发送PUSCH数据的子帧,也可以为不发送PUSCH数据的子帧。
具体地,图3为SRS位于上行数据的第一个子帧及上行数据中间位置的子帧的示意图,如图3所示,假设UE一次发送的上行数据,即一个burst中包含5个子帧,则该burst中包含2个SRS,分别位于紧跟CCA之后的该burst的子帧1的起始位置处,以及中间子帧3的起始位置处。
另外,SRS也可以位于上述两个子帧的结束位置。
此时UE一次发送的上行数据较大,如果仅在上行数据的第一个子帧开始位置或者结束位置设置SRS,可能会存在信道频率估计不准的问题,因此,本实施例中,在上行数据的第一个子帧以及中间一个子帧的起始位置或者结束位置上都设置SRS,能够保证在上行数据较大时准确地估计信道频率。
进一步地,除了上述方法,还可以根据网络的实际情况,在一次上行数据中增加一个SRS,该SRS可以位于上行数据的任意一个子帧的起始位置,或者,在一次上行数据中增加两个SRS,这个两个SRS可以位于上行数据的 任意两个子帧的起始位置,以最大限度提升信道估计频率。这些子帧可以为发送PUSCH数据的子帧,也可以为不发送PUSCH数据的子帧。
在上述实施例的基础上,本实施例涉及SRS所处的子帧的的位置。即,SRS位于上行数据的每个子帧中。
具体地,图4为SRS位于上行数据的每个子帧的示意图,如图4所示,假设UE一次发送的上行数据,即一个burst中包含5个子帧,则该burst中每个子帧的起始位置都包含一个SRS。
其中,SRS所在的子帧可以为发送PUSCH数据的子帧,也可以为不发送PUSCH数据的子帧。
此时UE一次传输的上行数据特别大,在上行数据的每个子帧中都增加一个SRS,能够最大限度提升信道估计频率。
另一实施例中,SRS在频域上采用离散占用带宽模式。
图5为SRS在频域上的分布示意图,如图5所示,SRS在频域上并不是占满全带宽,而是可以和其他SRS复用带宽。具体地,SRS可以采用SRS Comb模式实现频分复用,可以使得每个SRS通过离散占用带宽的模式所占用的带宽大于等于全带宽的80%。
在前述实施例的基础上,前述的SRS在其所在的子帧中占用至少一个单载波频分多址(Single-carrier Frequency-Division Multiple Access,简称SC-FDMA)符号。优选地,每个SRS在其所在的子帧中占用该子帧最开始的一个或两个SC-FDMA符号。
图6为本发明实施例提供的用户设备实施例一的模块结构图,如图6所示,该用户设备包括:
处理模块601,用于执行信道检测。
发送模块602,用于在信道检测的结果为信道未被占用时发送上行数据,该上行数据中包括一个或者多个子帧,其中,至少一个子帧中包括SRS,该SRS位于该子帧的起始位置。
该用户设备用于实现前述的方法实施例,其实现原理和技术效果类似,此处不再赘述。
进一步地,上述SRS位于上述上行数据的第一个子帧中,其中,该第一个子帧为不发送PUSCH数据的子帧。
进一步地,上述SRS位于上述上行数据的第一个子帧及上述上行数据中间位置的子帧中。
进一步地,上述SRS位于上述上行数据的每个子帧中。
进一步地,上述SRS在频域采用离散占用带宽模式。
图7为本发明实施例提供的用户设备实施例二的模块结构图,如图7所示,在图6的基础上,该用户设备还包括:
接收模块603,用于接收基站发送的SRS配置信息。
进一步地,若该SRS配置信息为周期SRS配置,则该SRS配置信息包括SRS发送周期信息以及每个SRS发送周期内子帧的偏移量信息;或者,
若该SRS配置信息为非周期SRS配置,则该SRS配置信息包括UE发送该SRS的位置信息,该SRS的位置信息用于指示SRS在上行数据中的位置。
进一步地,上述SRS占用上述子帧中的至少一个SC-FDMA符号。
图8为本发明实施例提供的用户设备实施例三的模块结构图,如图8所示,该用户设备包括存储器801和处理器802。
存储器801用于存储程序指令,处理器802用于调用存储器801中的程序指令,执行下述方法:
执行信道检测;
若上述信道检测的结果为信道未被占用,则发送上行数据,上述上行数据中包括一个或者多个子帧,其中,至少一个上述子帧中包括探测参考信号SRS,上述SRS位于上述子帧的起始位置。
进一步地,上述SRS位于上述上行数据的第一个子帧中,其中,上述第一个子帧为不发送PUSCH数据的子帧。
进一步地,上述SRS位于上述上行数据的第一个子帧及上述上行数据中间位置的上述子帧中。
进一步地,上述SRS位于上述上行数据的每个子帧中。
进一步地,上述SRS在频域采用离散占用带宽模式。
进一步地,处理器802用于接收基站发送的SRS配置信息。
进一步地,若上述SRS配置信息为周期SRS配置,则上述SRS配置信息包括SRS发送周期信息以及每个SRS发送周期内子帧的偏移量信息;或者,
若上述SRS配置信息为非周期SRS配置,则上述SRS配置信息包括UE 发送SRS的位置信息,上述SRS的位置信息用于指示SRS在上述上行数据中的位置。
进一步地,上述SRS占用上述子帧中的至少一个SC-FDMA符号。
图9为本发明实施例提供的基站实施例一的模块结构图,如图9所示,该基站包括:
发送模块901,用于通过RRC或者DCI向UE发送探测参考信号SRS配置信息,以使该UE根据该SRS配置信息发送SRS。
该基站用于实现前述的方法实施例,其实现原理和技术效果类似,此处不再赘述。
进一步地,若上述SRS配置信息为周期SRS配置,则上述SRS配置信息包括SRS发送周期信息以及每个SRS发送周期内子帧的偏移量信息;或者,
若上述SRS配置信息为非周期SRS配置,则上述SRS配置信息包括UE发送SRS的位置信息,上述SRS的位置信息用于指示SRS在上述上行数据中的位置。
图10为本发明实施例提供的基站实施例二的模块结构图,如图10所示,该基站包括:存储器1001和处理器1002。
存储器1001用于存储程序指令,处理器1002用于调用存储器1001中的程序指令,执行下述方法:
通过RRC或者DCI向UE发送SRS配置信息,以使UE根据SRS配置信息发送SRS。
进一步地,若上述SRS配置信息为周期SRS配置,则上述SRS配置信息包括SRS发送周期信息以及每个SRS发送周期内子帧的偏移量信息;或者,
若上述SRS配置信息为非周期SRS配置,则上述SRS配置信息包括UE发送SRS的位置信息,上述SRS的位置信息用于指示SRS在上述上行数据中的位置。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (18)

  1. 一种信号传输方法,其特征在于,包括:
    用户设备UE执行信道检测;
    若所述信道检测的结果为信道未被占用,则所述UE发送上行数据,所述上行数据中包括一个或者多个子帧,其中,至少一个所述子帧中包括探测参考信号SRS,所述SRS位于所述子帧的起始位置。
  2. 根据权利要求1所述的方法,其特征在于,所述SRS位于所述上行数据的第一个子帧中,其中,所述第一个子帧为不发送物理上行共享信道PUSCH数据的子帧。
  3. 根据权利要求1所述的方法,其特征在于,所述SRS位于所述上行数据的第一个子帧及所述上行数据中间位置的所述子帧中。
  4. 根据权利要求1所述的方法,其特征在于,所述SRS位于所述上行数据的每个子帧中。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述SRS在频域采用离散占用带宽模式。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述UE发送上行数据之前,还包括:
    所述UE接收基站发送的SRS配置信息。
  7. 根据权利要求6所述的方法,其特征在于,若所述SRS配置信息为周期SRS配置,则所述SRS配置信息包括SRS发送周期信息以及每个SRS发送周期内子帧的偏移量信息;或者,
    若所述SRS配置信息为非周期SRS配置,则所述SRS配置信息包括所述UE发送所述SRS的位置信息,所述SRS的位置信息用于指示所述SRS在所述上行数据中的位置。
  8. 一种信号传输控制方法,其特征在于,包括:
    基站通过无线资源控制信令RRC或者物理下行控制信令DCI向用户设备UE发送探测参考信号SRS配置信息,以使所述UE根据所述SRS配置信息发送所述SRS。
  9. 根据权利要求8所述的方法,其特征在于,若所述SRS配置信息为周期SRS配置,则所述SRS配置信息包括SRS发送周期信息以及每个SRS 发送周期内子帧的偏移量信息;或者,
    若所述SRS配置信息为非周期SRS配置,则所述SRS配置信息包括所述UE发送所述SRS的位置信息,所述SRS的位置信息用于指示所述SRS在所述上行数据中的位置。
  10. 一种用户设备,其特征在于,包括:
    处理模块,用于执行信道检测;
    发送模块,用于在所述信道检测的结果为信道未被占用时发送上行数据,所述上行数据中包括一个或者多个子帧,其中,至少一个所述子帧中包括探测参考信号SRS,所述SRS位于所述子帧的起始位置。
  11. 根据权利要求10所述的用户设备,其特征在于,所述SRS位于所述上行数据的第一个子帧中,其中,所述第一个子帧为不发送物理上行共享信道PUSCH数据的子帧。
  12. 根据权利要求10所述的用户设备,其特征在于,所述SRS位于所述上行数据的第一个子帧及所述上行数据中间位置的所述子帧中。
  13. 根据权利要求10所述的用户设备,其特征在于,所述SRS位于所述上行数据的每个子帧中。
  14. 根据权利要求10-13任一项所述的用户设备,其特征在于,所述SRS在频域采用离散占用带宽模式。
  15. 根据权利要求10-14任一项所述的用户设备,其特征在于,还包括:
    接收模块,用于接收基站发送的SRS配置信息。
  16. 根据权利要求15所述的用户设备,其特征在于,若所述SRS配置信息为周期SRS配置,则所述SRS配置信息包括SRS发送周期信息以及每个SRS发送周期内子帧的偏移量信息;或者,
    若所述SRS配置信息为非周期SRS配置,则所述SRS配置信息包括所述UE发送所述SRS的位置信息,所述SRS的位置信息用于指示所述SRS在所述上行数据中的位置。
  17. 一种基站,其特征在于,包括:
    发送模块,用于通过无线资源控制信令RRC或者物理下行控制信令DCI向用户设备UE发送探测参考信号SRS配置信息,以使所述UE根据所述SRS配置信息发送所述SRS。
  18. 根据权利要求17所述的基站,其特征在于,若所述SRS配置信息为周期SRS配置,则所述SRS配置信息包括SRS发送周期信息以及每个SRS发送周期内子帧的偏移量信息;或者,
    若所述SRS配置信息为非周期SRS配置,则所述SRS配置信息包括所述UE发送所述SRS的位置信息,所述SRS的位置信息用于指示所述SRS在所述上行数据中的位置。
PCT/CN2016/078196 2016-03-31 2016-03-31 信号传输方法、信号传输控制方法、用户设备及基站 WO2017166234A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187026358A KR102225167B1 (ko) 2016-03-31 2016-03-31 신호 전송 방법, 신호 전송 제어 방법, 사용자 디바이스, 및 기지국
US16/088,231 US10645723B2 (en) 2016-03-31 2016-03-31 Signal transmission method, signal transmission control method, user equipment, and base station
PCT/CN2016/078196 WO2017166234A1 (zh) 2016-03-31 2016-03-31 信号传输方法、信号传输控制方法、用户设备及基站
CN201680080534.7A CN108605315B (zh) 2016-03-31 2016-03-31 信号传输方法、信号传输控制方法、用户设备及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/078196 WO2017166234A1 (zh) 2016-03-31 2016-03-31 信号传输方法、信号传输控制方法、用户设备及基站

Publications (1)

Publication Number Publication Date
WO2017166234A1 true WO2017166234A1 (zh) 2017-10-05

Family

ID=59962411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078196 WO2017166234A1 (zh) 2016-03-31 2016-03-31 信号传输方法、信号传输控制方法、用户设备及基站

Country Status (4)

Country Link
US (1) US10645723B2 (zh)
KR (1) KR102225167B1 (zh)
CN (1) CN108605315B (zh)
WO (1) WO2017166234A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11064510B2 (en) 2018-05-30 2021-07-13 Qualcomm Incorporated Ranging between a user equipment and a fixed reference node
US11751159B2 (en) 2018-05-30 2023-09-05 Qualcomm Incorporated Ranging between a user equipment and a fixed reference node
US11956103B2 (en) 2018-10-31 2024-04-09 Lg Electronics Inc. Method for transmitting and receiving SRS in wireless communication system, and device for same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547022A (zh) * 2008-03-26 2009-09-30 三星电子株式会社 Lte tdd系统中发送srs的方法和装置
CN102083219A (zh) * 2010-03-31 2011-06-01 大唐移动通信设备有限公司 非周期srs的传输方法和设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101253204B1 (ko) * 2009-03-22 2013-04-10 엘지전자 주식회사 복수 안테나를 이용한 채널 사운딩 방법 및 이를 위한 장치
CN101808409B (zh) * 2010-04-01 2015-03-25 中兴通讯股份有限公司 一种lte-a系统中测量参考信号的配置方法和系统
JP6082121B2 (ja) 2012-11-02 2017-02-15 華為技術有限公司Huawei Technologies Co.,Ltd. 情報送信方法、ユーザ装置及び基地局
CN104754709A (zh) * 2013-12-31 2015-07-01 华为技术有限公司 传输控制信号的方法、用户设备和基站

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547022A (zh) * 2008-03-26 2009-09-30 三星电子株式会社 Lte tdd系统中发送srs的方法和装置
CN102083219A (zh) * 2010-03-31 2011-06-01 大唐移动通信设备有限公司 非周期srs的传输方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "SRS transmission for eLAA", 3GPPTSG RAN WG1 MEETING #84 R1-160301, 19 February 2016 (2016-02-19), XP051053641 *

Also Published As

Publication number Publication date
KR102225167B1 (ko) 2021-03-09
KR20180114129A (ko) 2018-10-17
CN108605315A (zh) 2018-09-28
US20190320460A1 (en) 2019-10-17
CN108605315B (zh) 2021-06-01
US10645723B2 (en) 2020-05-05

Similar Documents

Publication Publication Date Title
US11337228B2 (en) Coverage transition indicator for device-to-device communication
US20220303082A1 (en) Methods and apparatus for dual connectivity operation in a wireless communication network
US10638440B2 (en) Method for determining measurement gap length and network device
WO2018127001A1 (zh) 干扰消除方法及装置
WO2022028450A1 (zh) Ai网络模型支持能力上报、接收方法及装置、存储介质、用户设备、基站
KR102488413B1 (ko) 뉴 라디오에서의 사이클릭 프리픽스 관리
WO2017012346A1 (zh) 信道状态信息测量反馈方法、基站、终端、计算机存储介质
CN106797569B (zh) 用于执行传输的方法和设备
US20180279347A1 (en) Uplink transmission resource scheduling method an device, and uplink transmission method and device
JP2017520149A (ja) ライセンスド周波数帯タイミングを有するアンライセンスド周波数帯
JP6350836B2 (ja) 情報伝送方法、基地局、およびユーザ機器
WO2011097998A1 (zh) 非竞争随机接入的调度及前导码发送方法、系统和设备
US20190158339A1 (en) Reference signal for pi/2 binary phase shift keying (bpsk) modulation
CN105991256B (zh) 一种上行数据传输控制、传输方法及装置
WO2020023475A1 (en) A multi-operator shared spectrum structure compatible with frame-based equipment
WO2011098042A1 (zh) 一种通信系统中的资源协调方法与装置
AU2014399600B2 (en) User equipment and power allocation method
JP6729976B2 (ja) リソース判定方法、関連デバイスおよびシステム
CN107005942B (zh) 功率分配方法和通信设备
WO2017132964A1 (zh) 一种上行数据传输方法及相关设备
WO2018177115A1 (zh) 一种免调度传输的方法及装置
WO2017113206A1 (zh) 一种数据通信的方法、终端设备及网络设备
WO2017166234A1 (zh) 信号传输方法、信号传输控制方法、用户设备及基站
WO2018028675A1 (zh) 随机接入信号配置方法、装置、设备、系统和存储介质
CN111345094A (zh) 用于上行链路调度的方法和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020187026358

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896014

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896014

Country of ref document: EP

Kind code of ref document: A1