WO2022140907A1 - 一种数据发送方法及装置 - Google Patents

一种数据发送方法及装置 Download PDF

Info

Publication number
WO2022140907A1
WO2022140907A1 PCT/CN2020/140132 CN2020140132W WO2022140907A1 WO 2022140907 A1 WO2022140907 A1 WO 2022140907A1 CN 2020140132 W CN2020140132 W CN 2020140132W WO 2022140907 A1 WO2022140907 A1 WO 2022140907A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency
resource
modulation symbols
frequency domain
Prior art date
Application number
PCT/CN2020/140132
Other languages
English (en)
French (fr)
Inventor
张云昊
谭志远
祝慧颖
吴艺群
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080108114.1A priority Critical patent/CN116671208A/zh
Priority to PCT/CN2020/140132 priority patent/WO2022140907A1/zh
Publication of WO2022140907A1 publication Critical patent/WO2022140907A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a data sending method and apparatus.
  • UE user equipment
  • terminal equipment Gradually showing the characteristics of large numbers and multiple forms.
  • terminal equipment can be divided into broadband terminal equipment and narrowband terminal equipment. wearable devices, etc.
  • the continuous service of the broadband terminal equipment is mostly, and compared with the narrowband terminal equipment, the data packet of the broadband terminal equipment is larger.
  • the data packets of the narrowband terminal equipment are relatively small, and the transmission time of the data packets is uncertain.
  • narrowband terminal equipment and broadband terminal equipment often share some time-frequency resources.
  • the present application provides a data sending method and apparatus, which can reduce the number of data blocks interfered by a terminal device (eg, a broadband terminal device).
  • a terminal device eg, a broadband terminal device.
  • an embodiment of the present application provides a data sending method, the method is applied to a communication device, and the method includes:
  • the first mapping manner includes: the modulation symbols corresponding to the multiple data blocks are mapped in the time-frequency resource in the order of the time domain first and then the frequency domain.
  • the first mapping manner includes: the first complex modulation symbols are mapped in the first time-frequency resource in the order of frequency domain first and then the time domain, and the second complex modulation symbols are mapped in the second time-frequency resource in the order of time first Sequential mapping in the frequency domain after the domain, the first complex number of modulation symbols and the second complex number of modulation symbols are both included in the modulation symbols corresponding to the plurality of data blocks.
  • the first mapping manner includes: the third complex modulation symbols are mapped in the first time-frequency resource in the order of the time domain first and then the frequency domain, and the fourth complex modulation symbols are mapped in the second time-frequency resource in accordance with the frequency first
  • the third complex modulation symbols and the fourth complex modulation symbols are both included in the modulation symbols corresponding to the plurality of data blocks.
  • the first mapping manner includes: the third complex modulation symbols are mapped in the first time-frequency resource in the order of frequency domain first and then the time domain, and the fourth complex modulation symbols are mapped in the second time-frequency resource in accordance with the frequency first
  • the third complex modulation symbols and the fourth complex modulation symbols are both included in the modulation symbols corresponding to the plurality of data blocks.
  • the first time-frequency resource and the second time-frequency resource are respectively part of the time-frequency resource in the time-frequency resource, and the first time-frequency resource and the second time-frequency resource are in the frequency domain do not overlap, and the time domain resources in the first time-frequency resource are the same as the time domain resources in the time-frequency resource.
  • the communication apparatus may include an access network device and a terminal device. That is, the above technical solutions can be applied to access network equipment, whereby the access network equipment can send modulation symbols corresponding to multiple data blocks to the terminal equipment on time-frequency resources. Alternatively, the above technical solution can also be applied to a terminal device, whereby the terminal device can send modulation symbols corresponding to multiple data blocks to the access network device on time-frequency resources.
  • the second mapping method that is, the modulation symbols corresponding to multiple data blocks are mapped in the time-frequency resource in the order of frequency domain first and then time domain
  • the second mapping method is based on the order of first frequency domain and then time domain Therefore, the number of data blocks corresponding to the modulation symbols mapped in the first time-frequency resource is large (as shown in FIG. 4 below).
  • the number of data blocks corresponding to the modulation symbols mapped in the first time-frequency resource will be small, thereby reducing the number of data blocks interfered with by the terminal device , and can also improve the interference of other terminal equipment to the terminal equipment.
  • the sequential mapping in the time domain and then the frequency domain includes: starting from a preset orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) on the i-th frequency domain resource From the beginning of the symbol, the modulation symbols are mapped one by one OFDM symbol until the preset ending OFDM symbol, and then the modulation symbols are mapped from the preset starting OFDM symbol to the preset starting OFDM symbol on the i+1th frequency domain resource until the preset
  • the end OFDM symbol the i is a positive integer
  • the preset starting OFDM symbol is the starting position of the time domain resource in the time-frequency resource (ie the starting OFDM symbol)
  • the preset ending OFDM symbol The symbol is the end position of the time domain resource in the time-frequency resource (ie, the end OFDM symbol).
  • the i th frequency domain resource and the i+1 th frequency domain resource are two adjacent frequency domain resources among the frequency domain resources in the time-frequency resources.
  • the first mapping method includes that the modulation symbols corresponding to the multiple data blocks are mapped in the time-frequency resource in the order of the time domain first and then the frequency domain, and the ith frequency domain resource and the i+1 th frequency domain resource are: Two adjacent frequency domain resources in the frequency domain resources in the time-frequency resources.
  • mapping modulation symbols corresponding to multiple data blocks to time-frequency resources reference may be made to the methods shown in FIG. 5a to FIG. 5f.
  • the communication device may sequentially map modulation symbols to time-frequency resources in ascending order of modulation symbol numbers.
  • the i th frequency domain resource and the i+1 th frequency domain resource are two adjacent frequency domain resources in the frequency domain resources in the first time-frequency resource .
  • the i th frequency domain resource and the i+1 th frequency domain resource are two adjacent frequency domain resources in the frequency domain resources in the second time-frequency resource .
  • the first mapping method includes that the modulation symbols corresponding to the multiple data blocks are mapped in the time-frequency resource in the order of the time domain first and then the frequency domain, and the i-th frequency domain resource and the i+1-th frequency domain resource are: Two adjacent frequency domain resources in the first time-frequency resource, or, the i th frequency domain resource and the i+1 th frequency domain resource are two adjacent frequency domain resources in the second time frequency resource.
  • mapping modulation symbols corresponding to multiple data blocks to time-frequency resources reference may be made to the method shown in FIG. 6b.
  • the communication device may divide the modulation symbols corresponding to the data blocks into two parts, one part of the modulation symbols is mapped to the first time-frequency resource, and the other part of the modulation symbols is mapped to the second time-frequency resource, so that the first part of the modulation symbols is mapped to the second time-frequency resource independently.
  • the time-frequency resource and the second time-frequency resource perform modulation symbol mapping.
  • the i th frequency domain resource and the i+1 th frequency domain resource shown above are only examples, and do not represent a specific frequency domain resource.
  • the i-th frequency domain resource and the i+1-th frequency domain resource may be two adjacent frequency domain resources in the first time-frequency resource. domain resources.
  • the i-th frequency domain resource and the i+1-th frequency domain resource can be two adjacent frequency-domain resources in the second time-frequency resource .
  • the size of the i th frequency domain resource is the same as the size of the i+1 th frequency domain resource.
  • the communication apparatus facilitates symbol mapping when performing modulation symbol mapping, and the implementation is simple.
  • the size of the ith frequency domain resource is a resource element (resource element, RE) as a granularity, or the size of the ith frequency domain resource is a resource block (esource block, RB) is the granularity.
  • the size of the ith frequency domain resource is 1RE, or the size of the ith frequency domain resource is 6RB.
  • the sequential mapping in the frequency domain and then in the time domain includes: mapping modulation symbols sub-carrier by sub-carrier starting from a preset starting sub-carrier on the i-th OFDM symbol Up to the preset end subcarrier, and then map modulation symbols on the i+1th OFDM symbol from the preset start subcarrier to the preset end subcarrier, the i is a positive integer, the The i-th OFDM symbol and the i+1-th OFDM symbol are two adjacent time-domain resources in the time-domain resources of the time-frequency resources.
  • the preset starting subcarrier is the starting position of the frequency domain resource in the first time-frequency resource
  • the preset ending subcarrier is the first time-frequency resource. The end position of the frequency domain resource in the frequency resource.
  • the preset starting subcarrier is the starting position of the frequency domain resource in the second time-frequency resource
  • the preset ending subcarrier is the second time-frequency resource. The end position of the frequency domain resource in the frequency resource.
  • the first plurality of modulation symbols are mapped in the first time-frequency resource in the order of first frequency domain and then the time domain
  • the second plurality of modulation symbols are mapped in the second time-frequency resource in the order of first time domain and then frequency domain. map.
  • mapping modulation symbols corresponding to multiple data blocks to time-frequency resources reference may be made to the methods shown in FIG. 6a and FIG. 6d .
  • the third plurality of modulation symbols are arranged in the first time-frequency resource in a manner of first in the time domain and then in the frequency domain, and the fourth plurality of modulation symbols are arranged in the second time-frequency resource in an order of first in the frequency domain and then in the time domain. arranged in a manner.
  • mapping modulation symbols corresponding to multiple data blocks to time-frequency resources reference may be made to the method shown in FIG. 7a.
  • the third plurality of modulation symbols are arranged in the first time-frequency resource in the frequency domain followed by the time domain, and the fourth plurality of modulation symbols are arranged in the second time-frequency resource in the frequency domain followed by the time domain. arranged in a manner.
  • mapping modulation symbols corresponding to multiple data blocks to time-frequency resources reference may be made to the methods shown in FIG. 7b and FIG. 7c.
  • the communication apparatus may divide the modulation symbol corresponding to the data block into two parts, so that the modulation symbol mapping is performed independently on the first time-frequency resource and the second time-frequency resource.
  • the situation where the modulation symbol corresponding to a certain data block is mapped to both the first time-frequency resource and the second time-frequency resource is improved, thereby further reducing the number of data blocks interfered by the terminal device.
  • the multiple data blocks include a first data block, and the first data block includes information encoded according to one or more second data blocks.
  • the first data block may be a data block obtained by the communication device according to network coding, such as forward error correction (forward error correction, FEC), etc., and the first data block includes one or more Information obtained by encoding the second data block. Therefore, even if one or more second data blocks carried by the first time-frequency resource are received in error, other communication apparatuses can still decode correct data blocks according to the first data blocks.
  • the technical solutions provided by the embodiments of the present application can effectively provide reliability of data block transmission, and at the same time improve network spectrum efficiency. It can be understood that the above-mentioned multiple data blocks may include one first data block, or may include multiple first data blocks.
  • the communication apparatus includes a terminal device, and before generating multiple data blocks, the method further includes: receiving first indication information, where the first indication information is used to indicate the first indication information a mapping method.
  • receiving the first indication information includes: the terminal device receives the first indication information from the access network device.
  • the communication apparatus includes an access network device, and the method further includes: sending first indication information, where the first indication information is used to indicate the first mapping manner.
  • the first indication information includes indication information for indicating the one or more first data blocks.
  • the first indication information includes indication information for indicating a frequency domain resource of the first time-frequency resource.
  • the terminal device by indicating the frequency domain resource of the first time-frequency resource, the terminal device can independently determine the data block (eg, the first data block) carried in the first time-frequency resource.
  • the terminal device by simultaneously indicating the first mapping mode and the frequency domain resources of the first time domain resources through the first indication information, the terminal device can obtain the first mapping mode and the frequency domain resources of the first time domain resources at the same time, so as to facilitate timely Get the mapping mode of the data block.
  • the indication information for indicating the frequency domain resource of the first time-frequency resource includes a start position of the frequency domain resource of the first time-frequency resource and the first time-frequency resource. The size of the frequency domain resource of the frequency resource.
  • the first indication information is included in any one of the following: radio resource control RRC (radio resource control, RRC) signaling, downlink control information DCI (downlink control information, DCI) in , in the signaling of a media access control (media Access control, MAC) control element (control element, CE).
  • RRC radio resource control
  • DCI downlink control information
  • CE control element
  • the communication apparatus includes a terminal device, and before generating the multiple data blocks, the method further includes: receiving second indication information, where the second indication information includes instructions for indicating the Indication information of one or more first data blocks.
  • the access network device indicates the first mapping mode and the first data block by means of the first indication information and the second indication information, respectively, so that when the first mapping mode does not need to be updated, the access network device Only one or more first data blocks may be indicated, whereby signaling overhead may be saved.
  • the communication apparatus includes an access network device, and the method further includes: sending second indication information, where the second indication information includes an indication of the one or more first data Instructions for the block.
  • the second indication information may be included in RRC signaling, DCI or MAC CE signaling.
  • the first indication information may be included in RRC signaling
  • the second indication information may be included in DCI, etc., which is not limited in this embodiment of the present application.
  • the communication apparatus includes a terminal device, and before generating the multiple data blocks, the method further includes: receiving third indication information, where the third indication information includes instructions for indicating the Indication information of the frequency domain resource of the first time-frequency resource.
  • the frequency domain resources of the first time-frequency resource do not change frequently. Therefore, the first mapping mode and the frequency domain resources of the first time-frequency resource are carried by two different indication information, which can save signaling overhead. Effect.
  • the communication apparatus includes an access network device, and the method further includes: sending third indication information, where the third indication information includes a frequency used to indicate the first time-frequency resource Indicative information for the domain resource.
  • the third indication information may be included in RRC signaling, DCI or MAC CE signaling.
  • the first indication information and the third indication information may be respectively included in RRC signaling, etc., which are not limited in this embodiment of the present application.
  • the data block includes: a code block (code block, CB) or a code block group (code block group, CBG).
  • an embodiment of the present application provides a data sending method, the method is applied to a communication device, and the method includes:
  • a first mapping manner is determined, and modulation symbols corresponding to multiple data blocks are received on the time-frequency resource according to the first mapping manner.
  • the first mapping manner includes: the modulation symbols corresponding to the multiple data blocks are mapped in the time-frequency resource in the order of the time domain first and then the frequency domain; or, the first mapping manner includes: a first The plurality of modulation symbols are mapped in the first time-frequency resource in the order of the frequency domain first and then the time domain, and the second plurality of modulation symbols are mapped in the order of the time domain first and then the frequency domain in the second time-frequency resource.
  • the first mapping manner includes: the third plurality of modulation symbols are in the first time-frequency resource It is mapped in the order of time domain first and then frequency domain, and the fourth complex modulation symbols are mapped in the second time-frequency resource in the order of first frequency domain and then time domain, the third complex modulation symbols and the fourth The plurality of modulation symbols are all included in the modulation symbols corresponding to the plurality of data blocks; or, the first mapping manner includes: the first mapping manner includes: the third plurality of modulation symbols are included in the first time-frequency resource Map in the order of frequency domain first and then time domain, and the fourth complex number of modulation symbols are mapped in the second time-frequency resource in the order of frequency domain first and then time domain, the third complex number of modulation symbols and the fourth complex number of modulation symbols Each of the modulation symbols is included in the modulation symbols corresponding to the plurality of data blocks.
  • the first time-frequency resource and the second time-frequency resource are respectively part of the time-frequency resource in the time-frequency resource, and the first time-frequency resource and the second time-frequency resource are in the frequency domain do not overlap, and the time domain resources in the first time-frequency resource are the same as the time domain resources in the time-frequency resource.
  • the communication apparatus may include an access network device and a terminal device. That is, the above technical solution can be applied to the access network device, whereby the access network device receives modulation symbols corresponding to multiple data blocks on the time-frequency resource according to the first mapping manner. The above technical solution can also be applied to a terminal device, whereby the terminal device can receive modulation symbols corresponding to multiple data blocks on the time-frequency resource according to the first mapping manner.
  • the sequential mapping in the time domain and then in the frequency domain includes: starting from a preset starting OFDM symbol, and mapping modulation by OFDM symbols on the i-th frequency domain resource symbol until the preset end OFDM symbol, and then map modulation symbols on the i+1th frequency domain resource starting from the preset start OFDM symbol by OFDM symbol until the preset end OFDM symbol, the i is a positive integer, the preset starting OFDM symbol is the starting position of the time-domain resources in the time-frequency resources, and the preset ending OFDM symbol is the end of the time-domain resources in the time-frequency resources Location.
  • the i th frequency domain resource and the i+1 th frequency domain resource are two adjacent frequency domain resources among the frequency domain resources in the time-frequency resources; or , the i th frequency domain resource and the i+1 th frequency domain resource are two adjacent frequency domain resources in the frequency domain resources in the first time-frequency resource; or, the i th frequency domain resource The frequency domain resource and the i+1 th frequency domain resource are two adjacent frequency domain resources among the frequency domain resources in the second time-frequency resource.
  • the sequential mapping in the frequency domain and then in the time domain includes: mapping modulation symbols sub-carrier by sub-carrier starting from a preset starting sub-carrier on the i-th OFDM symbol Up to the preset end subcarrier, and then on the i+1th OFDM symbol, the modulation symbols are mapped subcarrier by subcarrier from the preset start subcarrier to the preset end subcarrier, the i is a positive integer, and the The i-th OFDM symbol and the i+1-th OFDM symbol are two adjacent time-domain resources in the time-domain resources of the time-frequency resources.
  • the preset starting subcarrier is the starting position of the frequency domain resource in the first time-frequency resource
  • the preset ending subcarrier is the first time-frequency resource. the end position of the frequency domain resource in the frequency resource;
  • the preset starting subcarrier is the starting position of the frequency domain resource in the second time-frequency resource
  • the preset ending subcarrier is the end of the frequency domain resource in the second time-frequency resource Location.
  • the multiple data blocks include a first data block, and the first data block includes information encoded according to one or more second data blocks.
  • the communication apparatus includes a terminal device, and before generating multiple data blocks, the method further includes: receiving first indication information, where the first indication information is used to indicate the first indication information a mapping method.
  • the terminal device may determine the first mapping manner according to the first indication information. It can be understood that, when the communication apparatus is an access network device, the access network device can independently determine the first mapping manner.
  • the communication apparatus includes an access network device, and the method further includes: sending first indication information, where the first indication information is used to indicate the first mapping manner.
  • the first indication information includes indication information for indicating the one or more first data blocks.
  • the first indication information includes indication information for indicating a frequency domain resource of the first time-frequency resource.
  • the indication information for indicating the frequency domain resource of the first time-frequency resource includes a start position of the frequency domain resource of the first time-frequency resource and the first time-frequency resource. The size of the frequency domain resource of the frequency resource.
  • the first indication information is included in any one of the following: radio resource control RRC (radio resource control, RRC) signaling, downlink control information DCI (downlink control information, DCI) in , in the signaling of a media access control (media Access control, MAC) control element (control element, CE).
  • RRC radio resource control
  • DCI downlink control information
  • CE control element
  • the communication apparatus includes a terminal device, and before generating the multiple data blocks, the method further includes: receiving second indication information, where the second indication information includes instructions for indicating the Indication information of one or more first data blocks.
  • the communication apparatus includes an access network device, and the method further includes: sending second indication information, where the second indication information includes an indication of the one or more first data Instructions for the block.
  • the communication apparatus includes a terminal device, and before generating the multiple data blocks, the method further includes: receiving second indication information, where the second indication information includes instructions for indicating the Indication information of one or more third data blocks.
  • the communication apparatus includes a terminal device, and before generating the multiple data blocks, the method further includes: receiving third indication information, where the third indication information includes instructions for indicating the Indication information of the frequency domain resource of the first time-frequency resource.
  • the communication apparatus includes an access network device, and the method further includes: sending third indication information, where the third indication information includes a frequency used to indicate the first time-frequency resource Indicative information for the domain resource.
  • the data block includes: a code block (code block, CB) or a code block group (code block group, CBG).
  • the communication device shown in the first aspect when the communication device shown in the first aspect is a terminal device, the communication device shown in the second aspect may be an access network device. Alternatively, when the communication device shown in the first aspect is an access network device, the communication device shown in the second aspect may be a terminal device.
  • an embodiment of the present application provides a communication apparatus for executing the method in the first aspect or any possible implementation manner of the first aspect; or, for executing the second aspect or any possible implementation manner of the second aspect method in the implementation.
  • the communication apparatus includes corresponding means for performing the method of the first aspect or any possible implementation of the first aspect.
  • the communication apparatus includes corresponding means for performing the method of the second aspect or any possible implementation of the second aspect.
  • the communication device may include a transceiving unit and a processing unit.
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, configured to execute the method shown in the first aspect or any possible implementation manner of the first aspect; or, configured to execute the above The method shown in the second aspect or any possible implementation of the second aspect.
  • the process of sending information (such as sending modulation symbols corresponding to multiple data blocks) or receiving information (such as receiving modulation symbols corresponding to multiple data blocks) in the above method can be understood as a process performed by the processor
  • the processor When outputting the above-mentioned information, the processor outputs the above-mentioned information to the transceiver for transmission by the transceiver. After the above-mentioned information is output by the processor, other processing may be required before reaching the transceiver.
  • the transceiver receives the above-mentioned information and inputs it into the processor. Furthermore, after the transceiver receives the above-mentioned information, the above-mentioned information may need to perform other processing before being input to the processor.
  • the modulation symbols corresponding to the transmitted data blocks mentioned in the foregoing method can be understood as the modulation symbols corresponding to the data blocks output by the processor.
  • the modulation symbol corresponding to the received data block may be understood as the modulation symbol corresponding to the input data block to the processor.
  • the above-mentioned processor may be a processor specially used to execute these methods, or may be a processor that executes computer instructions in a memory to execute these methods, such as a general-purpose processor.
  • the above-mentioned memory can be a non-transitory (non-transitory) memory, such as a read-only memory (read only memory, ROM), which can be integrated with the processor on the same chip, or can be set on different chips respectively.
  • ROM read-only memory
  • the memory is located outside the communication device.
  • the memory is located within the communication device.
  • the processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the communication apparatus further includes a transceiver for receiving and/or transmitting signals.
  • the transceiver may be configured to transmit modulation symbols corresponding to a plurality of data blocks obtained from the processor.
  • the transceiver may be configured to receive modulation symbols corresponding to multiple data blocks from other devices, and the like.
  • an embodiment of the present application provides a communication device, the communication device includes a logic circuit and an interface, the logic circuit and the interface are coupled, the logic circuit is configured to generate a plurality of data blocks, and In the mapping mode, the modulation symbols corresponding to the multiple data blocks are mapped to time-frequency resources; the interface is used for outputting the modulation symbols corresponding to the data blocks.
  • an embodiment of the present application provides a communication device, the communication device includes a logic circuit and an interface, the logic circuit and the interface are coupled, and the logic circuit is used to determine a first mapping mode; the interface, Used to input modulation symbols corresponding to multiple data blocks.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium is used to store a computer program, which, when running on a computer, enables the above-mentioned first aspect or any possible possibility of the first aspect
  • the method shown in the implementation is performed; or, the method shown in the second aspect or any possible implementation of the second aspect is caused to be performed.
  • an embodiment of the present application provides a computer program product, the computer program product includes a computer program or computer code, when it is run on a computer, the above-mentioned first aspect or any possible implementation manner of the first aspect is The method shown is executed; or, the method shown in the second aspect or any possible implementation manner of the second aspect is caused to be executed.
  • an embodiment of the present application provides a computer program, when the computer program runs on a computer, the method shown in the first aspect or any possible implementation manner of the first aspect is executed; or, the second aspect above Or the method shown in any possible implementation manner of the second aspect is performed.
  • FIG. 1 is a schematic structural diagram of a time-frequency resource provided by an embodiment of the present application
  • FIG. 2a is a schematic diagram of a method of a second mapping manner provided by an embodiment of the present application.
  • FIG. 2b and 2c are schematic diagrams of a network coding provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a method of a second mapping manner provided by an embodiment of the present application.
  • 5a to 5f are schematic diagrams of a method of a first mapping manner provided by an embodiment of the present application.
  • 6a to 6d are schematic diagrams of a method of a first mapping manner provided by an embodiment of the present application.
  • FIGS. 7a to 7c are schematic diagrams of a method of a first mapping manner provided by an embodiment of the present application.
  • FIG. 8a and 8b are schematic flowcharts of a data sending method provided by an embodiment of the present application.
  • 9 to 11 are schematic structural diagrams of a communication device provided by an embodiment of the present application.
  • At least one (item) means one or more
  • plural means two or more
  • at least two (item) means two or three and three
  • “and/or” is used to describe the relationship of related objects, indicating that there can be three kinds of relationships, for example, "A and/or B” can mean: only A exists, only B exists, and both A and B exist three a situation.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one of the following” or similar expressions refers to any combination of these items. For example, at least one (a) of a, b or c, can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ".
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • IoT Internet of Things
  • NB-IoT narrowband Internet of Things
  • WiFi wireless fidelity
  • 5G 5th generation
  • NR new radio
  • the terminal device in this application is a device with wireless transceiver function.
  • a terminal device can communicate with an access network device (or also referred to as an access device) in a radio access network (RAN).
  • RAN radio access network
  • Terminal equipment may also be referred to as user equipment (UE), access terminal, terminal, subscriber unit, subscriber station, mobile station, remote station, remote terminal, mobile device, user terminal, user agent or user device, etc.
  • UE user equipment
  • terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a handheld device with a wireless communication function, a vehicle-mounted device, a wearable device, a sensor, a terminal in the Internet of Things, a terminal in the Internet of Vehicles, a fifth generation (5th generation, 5G) ) network and any form of terminal equipment in the future network, etc., which are not limited in this application.
  • D2D device to device
  • V2X vehicle-to-everything
  • machine to machine machine to machine
  • Terminal equipment can be divided into narrowband terminal equipment and broadband terminal equipment.
  • the narrowband terminal device may have the following characteristics: long data packet interval, relatively few data packets, uncertain data packets, or small data packets. That is, the narrowband terminal equipment does not have a high demand for bandwidth, nor a high demand for data rate, and consumes less energy.
  • the broadband terminal equipment may have the following characteristics: there are many continuous services and larger data packets. That is, the broadband terminal equipment has higher requirements for bandwidth, higher requirements for data rate, and higher reliability requirements for data transmission.
  • narrowband terminal equipment and broadband terminal equipment can also be distinguished in other ways, which are not limited in this application.
  • the access network device in this application may be a device deployed in a wireless access network to provide wireless communication services for terminal devices.
  • the access network device may also be referred to as an access device or (R)AN device or the like.
  • the access network equipment may include but is not limited to: next generation node basestation (gNB) in 5G system, evolved node B (eNB) in LTE system, radio network controller (radio network controller) , RNC), node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (home evolved nodeB, or home node B, HNB), Base band unit (BBU), transmitting and receiving point (TRP), transmitting point (TP), small base station equipment (pico), mobile switching center, or network equipment in future networks, etc.
  • the access network device may also be a device carrying base station functions in D2D, V2X, or M2M, etc.
  • the specific type of the access network device is not limited in this application. In systems with different wireless access technologies, the names of devices with access network device functions may be different.
  • the access network device may include a centralized unit (centralized unit, CU), a distributed unit (distributed unit, DU), and the like.
  • the CU can also be divided into CU-control plane (control plane, CP) and CU-user plane (user plan, UP).
  • the access network device may also be an open radio access network (open radio access network, ORAN) architecture, etc. This application does not limit the specific deployment mode of the access network device.
  • FIG. 1 shows a resource block (resource block) composed of 7 orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols (symbols) and 12 subcarriers, RB).
  • a resource element (RE) in FIG. 1 can be represented as one OFDM symbol in the time domain and one subcarrier in the frequency domain.
  • the time-frequency resources shown in FIG. 1 are only examples, and the time-domain units and frequency-domain units constituting the time-frequency resources may change with the evolution of communication technologies.
  • ) in the RB may be composed of only 12 subcarriers, etc., which is not limited in this application.
  • one RE can carry one modulation symbol (modulation symbol).
  • the modulation symbol can use quadrature phase shift keying (QPSK) (corresponding to one RE carrying 2-bit data), 16 quadrature Amplitude modulation (quadrature amplitude modulation, QAM) (corresponding to one RE carrying 4-bit data) or 64QAM (corresponding to one RE carrying 6-bit data), or higher-order QAM modulation, etc.
  • QPSK quadrature phase shift keying
  • QAM quadrature Amplitude modulation
  • QAM quadrature amplitude modulation
  • 64QAM corresponding to one RE carrying 6-bit data
  • the modulation symbol shown here can be understood as data carried on one RE, and the above-mentioned OFDM symbol can be understood as a concept in the time domain, for example, an OFDM symbol can be used as a time unit.
  • the second mapping manner includes: mapping the modulation symbols corresponding to the data blocks in the time-frequency resources in the order of the frequency domain first and the time domain later.
  • the modulation symbols corresponding to the data blocks shown here are mapped in the time-frequency resources according to the mapping method of the frequency domain first and then the time domain, which can also be understood as: the modulation symbols with smaller numbers are mapped first, and then the modulation symbols with larger numbers are mapped; , on the i-th time-domain resource, map modulation symbols sub-carrier by sub-carrier from the start sub-carrier until the end sub-carrier; and then map modulation symbols from the start sub-carrier on the i+1-th time-domain resource sub-carrier by sub-carrier until End subcarrier.
  • the i-th time domain resource and the i+1-th time-domain resource shown here may be the time-domain resources corresponding to the data blocks, and the number of the i-th time-domain resource is smaller than the number of the i+1-th time-domain resource.
  • the starting subcarrier is the starting subcarrier of the frequency domain resource in the above-mentioned time-frequency resources
  • the ending subcarrier is the ending subcarrier of the frequency domain resource in the above-mentioned time-frequency resource.
  • the positions of the multiple mapped modulation symbols in the allocated time-frequency resources are arranged in a manner of first in the frequency domain and then in the time domain.
  • a data block is a coding block (coding block, CB), and a time domain unit is an orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbol as an example.
  • FIG. 2a shows a schematic diagram of a scene of the second mapping manner. It can be understood that the symbols in FIG. 2a can be understood as OFDM symbols, f can be understood as frequency domain resources in frequency domain resources, and t can be understood as time domain resources in time domain resources.
  • the modulation symbols are mapped sub-carrier by sub-carrier from the start sub-carrier to the end sub-carrier, and then on OFDM symbol 2 from the start sub-carrier Start subcarrier-by-subcarrier mapping of modulation symbols to end subcarriers.
  • the modulation symbols corresponding to the data blocks can be mapped to the time-frequency resources, and the time-frequency resources shown here can be understood as the time-frequency resources allocated by the access network equipment to the terminal equipment.
  • a hybrid automatic request (HARQ) mechanism can support retransmission at the code block group (CBG) or transport block (TB) level.
  • CBG code block group
  • TB transport block
  • One TB may include multiple CBGs
  • one CBG may include multiple code blocks (code blocks, CBs).
  • MCS adaptive modulation and coding scheme
  • network coding techniques such as forward error correction (FEC) technology or backward error correction (BEC), by performing network coding on the original data packets and adding redundancy in advance to achieve
  • FEC forward error correction
  • BEC backward error correction
  • network coding is a technique of encoding an original data packet through an encoding coefficient matrix to obtain an encoded data packet (also referred to as an encoded packet).
  • the coefficients in the encoding coefficient matrix may be randomly selected in a finite field, eg, the finite field may include a Galois field (GF).
  • GF Galois field
  • the rightmost X K ⁇ 1 shown in Figure 2b can be understood as being formed by K original data packets, including a column vector of K rows and 1 column, and the middle A (K+ R) ⁇ K can be understood as a coding coefficient matrix
  • the coding coefficient matrix includes K+R rows and K columns, and the leftmost Y (K+R) ⁇ 1 shown in FIG.
  • the column vector can represent K+R encoded data packets obtained by encoding K original data packets and the encoding coefficient matrix. That is to say, by performing network coding on K original data packets, K+R encoded data packets can be obtained, and the corresponding code rate can be expressed as K/(K+R).
  • the transmitting end can send the K+R coded data packets, and when the receiving end receives K linearly independent coded packets, it can correctly decode and restore the K original data packets.
  • K and R are positive integers. It can be understood that each small square shown on the far right of FIG. 2b may represent one original data packet, and FIG.
  • FIG. 2b exemplarily shows 6 original data packets of the same size.
  • Each small square shown in the middle of Fig. 2b may represent a coefficient, and Fig. 2b exemplarily shows a coefficient matrix with 6 rows and 8 columns.
  • Each small square shown on the far right of Fig. 2b may represent one encoded data packet, and Fig. 2b exemplarily shows 8 encoded data packets of the same size.
  • the sender can obtain 7 encoded data packets by performing network coding on 6 original data packets of the same size (Fig. 2c is shown with encoded packets).
  • the 7 coded data packets can be understood as 6 original data packets and one redundant coded packet (also referred to as a redundant packet), and the one redundant coded packet can be obtained by encoding the above-mentioned 6 original data packets.
  • the redundant encoding packet even if one or more data packets in the TB are received incorrectly, the receiving end can still correctly decode the above-mentioned six original data packets by receiving the correct encoding packet and a redundant encoding packet. That is, through the network coding technology, the sender does not need to perform HARQ retransmission or CBG retransmission, etc., which ensures a higher MCS value and improves performance loss or low spectral efficiency.
  • H shown in FIG. 2c is the header (heade, H) information of each encoded packet.
  • the network coding method shown in FIG. 2c is only an example, and in a specific implementation, other forms of coded data packets can also be generated by using the network coding technology.
  • the above-mentioned one redundant encoding packet may also be obtained by encoding one original data packet among the above-mentioned six original data packets, and so on. That is, redundant encoded packets can be obtained from one or more encodings in the original data packets.
  • a CB may include one or more encoded data packets.
  • 7 coded data packets may be included in 7 CBs, or, 7 coded data packets may also be included in less than 7 CBs.
  • the redundant encoded packet generated according to the original data packet may be sent along with the original data packet when the transmitting end sends the original data packet.
  • the redundant coding packet may also be generated based on feedback from the receiving end, etc., which is not limited in this application.
  • the redundant encoded packet shown in this application may be generated directly by the sender without feedback, or the sender may also generate the redundant encoded packet based on feedback information from the receiver. The feedback information is used to feedback whether one or more data packets are received correctly.
  • the interference of the narrowband terminal equipment to the broadband terminal equipment may exist in multiple CBs. Since each CB performs network coding independently, broadband terminal equipment may not be able to add redundant information more accurately, making it difficult for broadband terminal equipment to improve spectral efficiency through network coding. At the same time, adding too much redundancy will not only fail to improve spectral efficiency, but may also reduce spectral efficiency.
  • FIG. 3 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system includes access network equipment, and the access network equipment in FIG. 3 is shown by taking a base station as an example.
  • the communication system may further include a terminal device, and the terminal device in FIG. 3 is illustrated by taking a smart phone, a smart glasses, a smart bracelet and a smart watch as an example.
  • smart phones and smart glasses can be understood as broadband terminal devices
  • smart watches and smart bracelets can be understood as narrow-band terminal devices.
  • the access network device may be used to perform the sending step in step 801 shown in FIG. 8a, and the receiving step in step 804 shown in FIG. 8a ;
  • the terminal device can be used to execute step 802 and step 803 shown in FIG. 8a.
  • the access network device can be used to perform the sending step in step 811 shown in FIG. 8b, the step 813 shown in FIG. 8b, and the sending step in step 814 shown in FIG. 8b; Step 812 shown in Figure 8b, and the receiving step in Step 814 shown in Figure 8b.
  • the narrowband terminal equipment and the broadband terminal equipment can simultaneously access the access network equipment.
  • the time-frequency resources of the narrowband terminal equipment and the broadband terminal equipment may overlap.
  • the narrowband terminal device is prevented from compressing the available time-frequency resources of the broadband terminal device.
  • the data packets of the narrowband terminal equipment are uncertain or small, if the narrowband terminal equipment does not overlap the time-frequency resources of the bandwidth terminal equipment, there will often be no data transmission on the time-frequency resources of the narrowband terminal equipment. Therefore, by ensuring that the time-frequency resources of the narrowband terminal equipment and the broadband terminal equipment overlap, the situation of resource waste is also effectively improved.
  • the overlapping time-frequency resources can be understood as the time-frequency resources used by the narrowband terminal equipment, and can also be understood as the overlapping time-frequency resources between the narrowband terminal equipment and the broadband terminal equipment. frequency resources. It can be seen from FIG. 4 that when the broadband terminal device adopts the second mapping mode, the interference of the narrowband terminal device to the broadband terminal device exists in CB2, CB5, and CB7.
  • the interference of the narrowband terminal equipment to the broadband terminal equipment often exists in multiple CBs. Further, since interference often exists in multiple CBs, when the multiple CBs are received incorrectly, the broadband terminal device needs to retransmit the entire TB or multiple CBGs, etc., which affects the spectral efficiency.
  • the present application provides a data transmission method, which can improve the interference of narrowband terminal equipment to broadband terminal equipment, and reduce the number of data blocks interfered by broadband terminal equipment. Further, the situation that the broadband terminal equipment retransmits the entire TB or multiple CBGs can be improved, and the spectral efficiency can be improved.
  • the broadband terminal device can also encode the original data packet according to the network encoding method shown above, which further improves the situation of HARQ retransmission or CBG retransmission, and improves the spectral efficiency.
  • one or more redundant coded packets can be included in the CB with large interference, and the original data packet can be included in the CB with less interference received, so as to ensure that the original data packet is received correctly to the greatest extent possible.
  • redundant coded packets may be included in a CB with little interference, and one or more original data packets may be included in a CB with large interference, so as to ensure that the redundant coded packets are correctly received.
  • the erroneously received data packet can still be recovered from the redundant encoded packet.
  • FIG. 5a to FIG. 5e a unified description of FIG. 5a to FIG. 5e , FIG. 6a , FIG. 6b , FIG. 6d , and FIG. 7a to FIG. 7c is as follows:
  • the largest rectangle in the figure represents the time-frequency resource configured by the access network device for the terminal device for transmitting TB.
  • the frequency domain resource of the time domain resource includes a start subcarrier (or called a start subcarrier, etc.) and an end subcarrier (or called a stop subcarrier, a stop subcarrier, etc.), and the time domain resource of the time domain resource includes the start subcarrier. Start symbol (as shown in the start OFDM symbol) and end symbol (as shown in the end OFDM symbol).
  • the time-frequency resource is divided into a first time-frequency resource and a second time-frequency resource.
  • the dotted line part represents the time-frequency resource overlapping the terminal device and other terminal devices, that is, the first time-frequency resource.
  • the terminal device may be a broadband terminal device, and other terminal devices may be narrowband terminal devices, and the dotted line part may be the time-frequency resources overlapping the narrowband terminal device and the broadband terminal device.
  • the first time-frequency resource is the same as the time-domain resource of the time-frequency resource.
  • the part of the largest rectangle other than the dotted line part may be called the second time-frequency resource, and the second time-frequency resource is the same as the time-domain resource of the time-frequency resource.
  • the frequency domain resources of the second time-frequency resource and the first time-frequency resource do not overlap, that is, the second time-frequency resource and the first time-frequency resource do not overlap in the frequency domain.
  • the horizontal axis represents time domain resources, that is, the side of the large box in the horizontal axis direction can be used to represent time domain resources in time-frequency resources.
  • the vertical axis represents the frequency domain resources, that is, the side of the large box in the direction of the short axis can be used to represent the frequency domain resources in the time-frequency resources, and the vertical axis represents from low frequency to high frequency from top to bottom.
  • CB1 shown in the figure can be understood as the modulation symbol corresponding to CB1
  • CB2 can be understood as the modulation symbol corresponding to CB2, and so on. It can be understood that the following is illustrated by taking the data block as CB as an example, and the description that the data block is CBG may correspond to the description that the data block is CB, which will not be repeated in this embodiment of the present application.
  • the numbers of the modulation symbols shown below are to indicate the order of the modulation symbols, for example, the numbers of the modulation symbols may also be referred to as the index of the modulation symbols.
  • the modulation symbols may also be numbered.
  • the number of the modulation symbol may be obtained when the information bits are encoded. It is understandable that the embodiment of the present application does not limit the manner of determining the serial number of the modulation symbol.
  • the first mapping method includes:
  • Map modulation symbols with smaller numbers first, and then map modulation symbols with larger numbers
  • the i-th frequency domain resource and the i+1-th frequency-domain resource are two adjacent frequency-domain resources in the frequency-domain resources of the allocated time-frequency resource, and the number of the i-th frequency-domain resource is less than the number of the i+th frequency domain resource 1 frequency domain resource.
  • the size of the i th frequency domain resource and the i+1 th frequency domain resource may be the same.
  • N OFDM symbols are the number of OFDM symbols of time domain resources in the allocated time-frequency resources.
  • the positions of the multiple mapped modulation symbols in the allocated time-frequency resources are arranged in a manner of first in the time domain and then in the frequency domain.
  • the modulation symbols are mapped from the starting OFDM symbol to the end OFDM symbol according to the time domain sequence;
  • the OFDM symbol begins to map modulation symbols OFDM symbol by OFDM symbol until the end of the OFDM symbol.
  • the first frequency domain resource can carry the modulation symbols corresponding to CB1 and some modulation symbols corresponding to CB2; the second frequency domain resource can carry the modulation symbols corresponding to CB1. Part of the modulation symbols corresponding to CB2 and part of the modulation symbols corresponding to CB3 are carried; the third frequency domain resource can carry part of the modulation symbols corresponding to CB3, and modulation symbols corresponding to CB4, etc.
  • the modulation symbols when the modulation symbols are mapped on the allocated time domain resources, the modulation symbols may not be mapped on the REs that are unavailable in the allocated time domain resources.
  • the unavailable RE can be used to carry a reference signal sequence, such as a demodulation reference signal (demodulation reference signal, DMRS) sequence, and the like.
  • DMRS demodulation reference signal
  • Figures 5a to 5f, Figures 6a to 6d, and Figure 7a to Figure 7c shown in this application are all described by taking as an example that modulation symbols can be mapped on the allocated time domain resources, but the allocated time Modulation symbols may not be mapped on REs that are not available in the domain resources.
  • the size of the frequency domain resource of the first time-frequency resource may be an integer multiple of the size of the ith frequency domain resource, as shown in FIGS. 5 a to 5 c .
  • the size of the ith frequency domain resource may be a fixed value, as shown in FIG. 5d.
  • the size of the ith frequency domain resource is equal to the size of the frequency domain resource of the first time-frequency resource.
  • the size of the ith frequency domain resource may also be larger than the size of the frequency domain resource of the first time-frequency resource.
  • the size of the ith frequency domain resource is greater than or equal to the size of the frequency domain resource of the first time-frequency resource, which can minimize the number of interfered CBs.
  • the size of the ith frequency domain resource may be half the size of the frequency domain resource of the first time-frequency resource, that is, the size of the frequency domain resource of the first time-frequency resource is the size of the ith frequency domain resource. 2 times the size of the domain resource.
  • the i-th frequency domain resource may be in units of REs, or may be in units of RBs, etc., which is not limited in this application.
  • the size of the ith frequency domain resource (such as the first frequency domain resource or the second frequency domain resource, etc.) in FIGS. 5a to 5c is 1 RE
  • the description of FIGS. 5a to 5c may also refer to A description of Figure 5e follows.
  • the size of the i-th frequency domain resource in FIGS. 5a to 5c is not 1 RE, such as greater than 1 RE, for the description of FIGS. 5a to 5c, reference may also be made to the description of FIG. 5d below.
  • the size of the ith frequency domain resource is greater than 1 RE, which may include that the size of the ith frequency domain resource is multiple REs, or multiple RBs (eg, 6RBs), and the like.
  • FIG. 5e is a schematic diagram of another mapping manner provided by an embodiment of the present application.
  • the size of the ith frequency domain resource is 1 RE, and the size of the ith+1 th frequency domain resource is also 1 RE.
  • the size of the first frequency domain resource to the fifth frequency domain resource is 1 RE (only an example, the allocated time domain resources may also include more frequency domain resources). It can be seen from FIG. 5e that, on the first sub-carrier, from the start of the OFDM symbol to the end of the OFDM symbol is mapped to the partial modulation symbols corresponding to CB1.
  • the modulation symbol corresponding to CB1 can be mapped from the starting OFDM symbol on the second subcarrier until The modulation symbols corresponding to CB1 are mapped.
  • the modulation symbols of CB2 are mapped on the second subcarrier from the mapping end position of the modulation symbols corresponding to CB1 until the end of the OFDM symbol, and so on, the modulation symbols corresponding to multiple data blocks can be mapped to the allocated time frequency resources.
  • FIG. 5d is a schematic diagram of another mapping manner provided by an embodiment of the present application.
  • the size of the ith frequency domain resource may be the size of the frequency domain resource corresponding to 6 RBs (or referred to as the size of the ith frequency domain resource being 6 RBs).
  • the size of the ith frequency domain resource being 6 RBs.
  • the first mapping method may be: on the first 6RB, map modulation symbols one by one OFDM symbol by OFDM symbol in ascending order of time domain from the starting OFDM symbol to the end OFDM symbol; and then on the second 6RB, according to In an ascending order in the time domain, the modulation symbols are mapped one by one from the starting OFDM symbol to the ending OFDM symbol, and so on, until the modulation symbols corresponding to multiple data blocks are all mapped to the allocated time-frequency resources.
  • the modulation symbols are mapped sub-carrier by sub-carrier in the frequency domain, and then the modulation symbols are mapped by OFDM symbols until the N OFDM symbols on the 6 RBs are mapped. After the upper average (N is the number of time-domain symbols in the time-frequency resource) is mapped to full modulation symbols, N OFDM symbols on the next 6RB are mapped, and so on.
  • the 6RB shown here is only an example, and the size of the i-th frequency domain resource may also be other values, which are not limited in this application.
  • the manner shown in FIG. 5d can also be understood as: on the first OFDM symbol, the modulation symbols are mapped sub-carrier by sub-carrier according to the frequency-domain order (ascending order) until the end sub-carrier corresponding to the preset number of frequency-domain resources, and then On the second OFDM symbol, the modulation symbols are mapped sub-carrier by sub-carrier in a frequency-domain sequence until the end sub-carrier corresponding to a preset number of frequency-domain resources.
  • the first OFDM symbol and the second OFDM symbol are adjacent OFDM symbols corresponding to the data block.
  • the preset number of frequency domain resources shown here can be understood as the frequency domain resources corresponding to the above-mentioned 6RBs.
  • the modulation symbols are mapped subcarrier-by-subcarrier according to the frequency domain order of the ith frequency domain resource until the end subcarrier of the ith frequency domain resource, and then on the second OFDM symbol, The modulation symbols are mapped subcarrier-by-subcarrier according to the frequency domain sequence of the ith frequency domain resource until the end subcarrier of the ith frequency domain resource.
  • Fig. 5f shows the time-frequency resource of the modulation symbol corresponding to CB1 in the first frequency domain resource in Fig. 5d. It can be understood that in FIG. 5f, it is shown as an example that the modulation symbol corresponding to CB1 occupies 7 OFDM symbols, but this should not be construed as a limitation on the embodiment of the present application. For example, on OFDM symbol 1, start from the starting subcarrier of the 6RB in the frequency domain sequence of the 6RB, and map the modulation symbol corresponding to CB1 subcarrier by subcarrier until the end subcarrier of the 6RB (as shown by arrow 1 in Figure 5f). ).
  • the modulation symbol corresponding to CB1 can be mapped to the corresponding time-frequency resource (as shown in FIG. 5f , the time-frequency resource corresponding to CB1 ).
  • the arrow 3 in FIG. 5f is only for illustrating the mapping direction of the modulation symbol corresponding to CB1 from OFDM symbol 1 to OFDM symbol 2.
  • the OFDM symbol 1 shown in FIG. 5f is only an example, and the starting OFDM symbol of the allocated time-frequency resources may also be other numbers, which are not limited in this application.
  • the size of the ith frequency domain resource can be configured, that is, the size of the ith frequency domain resource can be flexibly configured, so that the access network device can not only more flexibly indicate the ith frequency domain resource
  • the size of the frequency domain resource; and the access network device may also set the size of the i-th frequency domain resource according to the terminal device's time delay requirement for the data block.
  • the terminal device has relatively high requirements on the delay of certain data blocks (such as CB1 in FIG. 5d ).
  • the delay of receiving the certain data blocks may be appropriately compressed. That is, the size of the i-th frequency domain resource can be relatively large, so that the time domain resource occupied by one CB is relatively small, thereby reducing the time delay for the terminal device to receive the CB.
  • the size of the frequency domain resource of the first time-frequency resource is related to the size of the 6RB, which is not limited in this embodiment of the present application.
  • the size of the frequency domain resource of the first time-frequency resource may be smaller than 6RB, may be larger than 6RB, or may be equal to 6RB.
  • the modulation symbol numbers may be numbered from small to small.
  • the modulation symbols are sequentially mapped to the time-frequency resources in the largest order.
  • the communication apparatus may map modulation symbols corresponding to the data blocks to the first time-frequency resource or the second time-frequency resource, respectively. That is, the first time-frequency resource and the second time-frequency resource can be independently mapped to modulation symbols corresponding to the data block.
  • the first mapping method includes:
  • the modulation symbol with the smaller number is mapped first, and then the modulation symbol with the larger number is mapped;
  • the first plurality of modulation symbols are mapped in the first time-frequency resource according to a mapping manner in which the frequency domain is first followed by the time domain;
  • the second plurality of modulation symbols are mapped in the second time-frequency resource according to a mapping manner in which the time domain is first followed by the frequency domain.
  • the first mapping manner includes:
  • the modulation symbol with the smaller number is mapped first, and then the modulation symbol with the larger number is mapped;
  • the first plurality of modulation symbols are mapped in the first time-frequency resource according to a mapping method in the first time domain and then the frequency domain;
  • the second plurality of modulation symbols are mapped in the second time-frequency resource according to a mapping manner in which the time domain is first followed by the frequency domain.
  • the positions of the second plurality of modulation symbols after mapping in the second time-frequency resource are arranged in a manner of first in the time domain and then in the frequency domain.
  • the first mapping mode can also make the positions of the first plurality of modulation symbols after mapping in the first time-frequency resource to be arranged according to the mode of first time domain and then frequency domain;
  • the positions of the first plurality of modulation symbols in the first time-frequency resource are arranged in a manner of first in the frequency domain and then in the time domain.
  • the modulation symbol corresponding to one data block may be mapped to both the first time-frequency resource and the second time-frequency resource.
  • the modulation symbol corresponding to CB6 is mapped to both the first time-frequency resource and the second time-frequency resource.
  • the modulation symbol corresponding to CB6 and the modulation symbol corresponding to CB7 are mapped to both the first time-frequency resource and the second time-frequency resource.
  • the modulation symbols corresponding to a certain data block can be is independently mapped to the first time-frequency resource, or independently mapped to the second time-frequency resource. It effectively improves the situation that the modulation symbol corresponding to a certain data block may be mapped to both the first time-frequency resource and the second time-frequency resource.
  • the number of data blocks can further reduce the number of interfered data blocks of the broadband terminal equipment. It can be understood that, for the specific description about the time domain first and then the frequency domain or the frequency domain first and then the time domain, reference may be made to the above description, which will not be repeated here.
  • the modulation symbols corresponding to CB8 are the above-mentioned first complex modulation symbols
  • the modulation symbols corresponding to CB1 to CB7 are the above-mentioned second complex modulation symbols.
  • the size of the ith frequency domain resource is greater than 1RE as an example, for example, the size of the ith frequency domain resource may be 6RB.
  • Fig. 6a shows that the first plurality of modulation symbols in the first time-frequency resource are arranged according to the mapping method of the frequency domain first and then the time domain. For the mapping method of the frequency domain first and then the time domain, please refer to the above description about Fig.
  • Fig. 6b shows that the first plurality of modulation symbols in the first time-frequency resource are arranged according to the mapping method of the time domain first and then the frequency domain. description, which will not be described in detail here. It can be understood that when the first plurality of modulation symbols in the first time-frequency resource are arranged according to the mapping method in the time domain and then the frequency domain, the mapping method in the first time-frequency resource can be mapped in units of REs (as shown in FIG. 5e ). ); or, the mapping manner in the first time-frequency resource may also be mapped in units of RBs (as shown in FIG. 5d ).
  • the mapping method on the fourth frequency domain resource is described in detail here.
  • the fourth frequency domain resource does not include the frequency domain resource in the first time-frequency resource, that is, the fourth frequency domain resource does not include the frequency domain resource occupied by the CB8.
  • the fourth frequency domain resource can be used to carry part of the modulation symbols corresponding to CB5 and CB6 Corresponding partial modulation symbols.
  • the starting OFDM symbol such as OFDM symbol 1
  • start from the starting subcarrier of the fourth frequency domain resource in the frequency domain sequence and map modulation symbols subcarrier by subcarrier until the fourth frequency domain resource the ending subcarrier.
  • OFDM symbol 2 starting from the starting subcarrier of the fourth frequency domain resource in the frequency domain sequence, the modulation symbols are mapped subcarrier by subcarrier until the ending subcarrier of the fourth frequency domain resource.
  • the sum of the size of the part of the frequency domain resources of the fourth frequency domain resource and the size of another part of the frequency domain resources of the fourth frequency domain resource may be 6RB.
  • the fourth frequency domain resource does not overlap the frequency domain resource of the first time-frequency resource. That is to say, when the modulation symbols are mapped subcarrier-by-subcarrier from the starting subcarrier of the fourth frequency domain resource to the ending subcarrier of the fourth frequency domain resource, the frequency of the first time-frequency resource can be skipped. domain resources. That is, the fourth frequency domain resource does not include the frequency domain resource of the first time-frequency resource.
  • the communication apparatus may perform modulation symbol mapping on the first time-frequency resource and the second time-frequency resource independently.
  • the communication apparatus may skip the first time-frequency resource first, and map the second plurality of time-frequency resources to the second time-frequency resource in a time-domain first and then frequency-domain manner.
  • the first plurality of modulation symbols may be mapped to the first time-frequency resource in a manner of first in the time domain and then in the frequency domain, or in a manner of first in the frequency domain and then in the time domain. That is, the modulation symbols can be arranged independently in the first time-frequency resource.
  • the communication apparatus may first map the first plurality of modulation symbols to the first time-frequency resource, and then map the second plurality of modulation symbols to the second time-frequency resource.
  • CB8 in the first time-frequency resource shown in FIG. 6a and FIG. 6b is only an example, and the first time-frequency resource can also carry the modulation symbol corresponding to the CB with the smallest number (such as the modulation symbol corresponding to CB1); Alternatively, the first time-frequency resource may also carry the modulation symbol corresponding to the CB with the largest number, and the modulation symbol corresponding to the CB with the largest number is not shown in FIG. 6a and FIG. 6b.
  • the size of the ith frequency domain resource may also be 1 RE, and the size of the i+1 th frequency domain resource may also be 1 RE.
  • each of the first frequency domain resource to the fifth frequency domain resource may be one RE.
  • modulation symbols may be mapped symbol by symbol from the start OFDM symbol until the end OFDM symbol.
  • the modulation symbols are mapped symbol by symbol starting from the starting OFDM symbol until the ending OFDM symbol.
  • FIG. 6d reference may be made to the above description about FIG. 5e or FIG. 6a or FIG. 6b , etc., which will not be described in detail here.
  • the first mapping method includes:
  • the modulation symbol with the smaller number is mapped first, and then the modulation symbol with the larger number is mapped;
  • the third plurality of modulation symbols are mapped in the first time-frequency resource according to a mapping manner in which the frequency domain is first followed by the time domain;
  • the fourth complex modulation symbols are mapped in the second time-frequency resource according to a mapping manner in which the frequency domain is first followed by the time domain.
  • the first mapping manner includes:
  • the modulation symbol with the smaller number is mapped first, and then the modulation symbol with the larger number is mapped;
  • the third plurality of modulation symbols are mapped in the first time-frequency resource according to a mapping method in which the time domain is first followed by the frequency domain;
  • the fourth complex modulation symbols are mapped in the second time-frequency resource according to a mapping manner in which the frequency domain is first followed by the time domain.
  • the positions of the mapped fourth plurality of modulation symbols in the second time-frequency resource are arranged in a manner of first in the frequency domain and then in the time domain.
  • the first mapping mode can also make the positions of the mapped third plurality of modulation symbols in the first time-frequency resource arranged according to the time-frequency first and then the frequency domain mode; or, the first mapping mode can also make the mapped
  • the positions of the third plurality of modulation symbols in the first time-frequency resource are arranged in a manner of first in the frequency domain and then in the time domain.
  • the mapping manner of the fourth plurality of modulation symbols in the second time-frequency resource includes: on the i-th time-domain resource, starting from the starting subcarrier of the second time-frequency resource, subcarrier-by-subcarrier mapping the modulation symbols to the second time-frequency resource the ending subcarrier. Then, on the i+1 th time-domain resource, the modulation symbols are mapped sub-carrier by sub-carrier from the start sub-carrier of the second time-frequency resource to the end sub-carrier of the second time-frequency resource. It can be understood that for the mapping method of the second time-frequency resource, reference may also be made to the relevant description of FIG. 2a above, and the mapping method of the first time-frequency resource may also refer to the relevant description of FIG.
  • the frequency domain resources of the first time-frequency resource may be skipped, and the time-frequency resources other than the first time-frequency resource in the time-frequency resources are mapped in a manner of first frequency domain and then time domain.
  • the modulation symbol corresponding to CB6 may be understood as the above-mentioned third complex modulation symbols, and CB1 to CB5 may be understood as the above-mentioned fourth complex modulation symbols.
  • the size of the i-th time-domain resource may be one OFDM symbol, and the size of the i+1-th time-domain resource may also be one OFDM symbol. It can be understood that the starting OFDM symbol shown in FIG. 7a and FIG. 7b is OFDM symbol 1 is only an example.
  • the communication apparatus in the process of mapping modulation symbols to time-frequency resources, may also perform modulation symbol mapping on the first time-frequency resource and the second time-frequency resource independently.
  • the access network device maps the modulation symbols corresponding to multiple data blocks to time-frequency resources by using the mapping method shown in FIG. 7a or FIG. 7b, and sends the modulation symbols corresponding to the multiple data blocks
  • the terminal device can demodulate or decode part of the data blocks in the first OFDM symbol (and the second OFDM symbol, etc.). That is, by implementing the mapping method shown in the third mode, the terminal device can receive part of the data block on the first OFDM symbol and receive part of the data block on the second OFDM symbol without receiving all the time-domain resources of the time-domain resources. Data blocks, etc., reduce the delay for terminal equipment to receive data blocks. It can be understood that this description is also applicable to the embodiment in which the terminal device sends modulation symbols corresponding to multiple data blocks, and the access network device receives the modulation symbols corresponding to the multiple data blocks.
  • Fig. 6a to Fig. 6d, and Fig. 7a and Fig. 7b are shown by taking the second time-frequency resource divided into two parts by the first time-frequency resource as an example, but the first time-frequency resource may also be located in the allocated time-frequency resource. the edge of the resource. As shown in FIG. 7c, the second time-frequency resource is not divided into two parts by the first time-frequency resource.
  • the data sending method provided by the present application will be described below in conjunction with the first mapping manner shown above.
  • the data sending method provided by the present application may be applied to a terminal device, or the data sending method provided by the embodiment of the present application may also be applied to an access network device.
  • Fig. 8a is a schematic flowchart of a data sending method provided by an embodiment of the present application. As shown in Fig. 8a, the method includes:
  • step 802 or step 803 the method shown in FIG. 8a further includes:
  • the access network device sends first indication information to the terminal device, and correspondingly, the terminal device receives the first indication information, where the first indication information is used to indicate the first mapping mode.
  • the first indication information may be included in radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • the first indication information may be included in a common (RRC-common) signaling in the RRC signaling.
  • a mapping pattern (MappingPattern) is added to the common configuration (PUSCH-configcommon) signaling of a physical uplink shared channel (PUSCH), and the mapping pattern is the first indication information.
  • the configured PUSCH mapping mode can be indicated by adding the mapping type.
  • the format of the RRC signaling may be as follows:
  • TypeA represents the second mapping method
  • TypeB represents the first mapping method
  • CB-MappingTypeB-RB represents the size of the i-th frequency domain resource in the first mapping mode, for example, the range of RB is any integer within the range of 1 to 8.
  • the Interferenced-CBs represent the identification (identification, ID) of the first complex modulation symbols (or the third complex modulation symbols), or the frequency domain resources of the first time-frequency resources.
  • ID identification
  • the specific mapping manner corresponding to the typeB may be predefined.
  • the typeB may correspond to any one of the above three implementation manners.
  • the first mapping manner may also be classified into typeB-1 (corresponding to the first implementation manner above), typeB-2 (corresponding to the foregoing implementation manner 2), or typeB-3 (corresponding to the foregoing implementation manner 3).
  • the RRC signaling may include Interferenced-CBs (Frequency Range).
  • the RRC signaling does not include CB-MappingTypeB-RB, that is, the size of the ith frequency domain resource is not indicated, it means that the mapping type is the second mapping mode by default. That is, in this way, the second mapping mode can be implicitly indicated.
  • the RRC signaling does not include CB-MappingTypeB-RB, the size of the i-th frequency domain resource may be 1RE by default, and the mapping type may be the first mapping mode.
  • the RRC signaling may include Interferenced-CBs (Frequency Range) and CB-MappingTypeB-RB.
  • the mapping type may be the first mapping manner by default.
  • the RRC signaling may include MappingPattern (typeB), Interferenced-CBs (Frequency Range) and CB-MappingTypeB-RB.
  • the RRC signaling explicitly indicates that the mapping type is the first mapping mode.
  • the RRC signaling may also include Interferenced-CBs (CB-ID), thus, the CB-ID parameter indicates the CB or the third complex number corresponding to the first complex number of modulation symbols CB corresponding to each modulation symbol.
  • CB-ID Interferenced-CBs
  • the RRC signaling may include MappingPattern (typeA).
  • the mapping type indicated by the RRC signaling is the second mapping manner, the RRC signaling does not include CB-MappingTypeB-RB and Interferenced-CBs.
  • the first indication information may be included in dedicated (RRC-dedicated) signaling in the RRC signaling.
  • RRC-dedicated dedicated
  • the UE-specific signaling UE-specific
  • MappingPattern the UE-specific signaling may further include the size of the i-th frequency domain resource in the first mapping manner, and the like.
  • the first indication information may also be included in downlink control information (downlink control information, DCI).
  • DCI downlink control information
  • an indication field is newly added in the common signaling or UE-specific DCI of DCI format 0_0/0_1, and the indication field indicates the first mapping mode of the PUSCH scheduled by the DCI.
  • the first indication information may also be included in the MAC CE signaling, for example, the MAC CE signaling carrying the above-mentioned first indication information may be transmitted through a logical channel reserved in a related protocol.
  • the data block carried in the first time-frequency resource is referred to as the first data block
  • the data block carried in the second time-frequency resource is referred to as the second data block.
  • the CB corresponding to the first plurality of modulation symbols may be referred to as the first data block
  • the CB corresponding to the second plurality of modulation symbols may be referred to as the second data block.
  • the CB corresponding to the third plurality of modulation symbols may also be referred to as the first data block
  • the CB corresponding to the fourth plurality of modulation symbols may also be referred to as the second data block.
  • CB6 is hereinafter referred to as the first data block.
  • CB6 and CB7 shown in FIG. 5b may be referred to as the first data block
  • CB5 to CB7 shown in FIG. 5c may be referred to as the first data block
  • CB6 to CB8 shown in FIG. 5d may be referred to as the first data block
  • CB4 shown in FIG. 5e may be called the first data block
  • CB8 shown in FIG. 6b may be called the first data block.
  • the embodiments of the present application further provide the following methods for indicating one or more first data blocks or frequency domain resources of the first time-frequency resources.
  • the above-mentioned first indication information includes indication information for indicating the above-mentioned one or more first data blocks.
  • the first indication information includes identifiers of one or more first data blocks, or includes serial numbers of one or more first data blocks, and the like.
  • the first indication information may include an identifier 6 and an identifier 7 .
  • the first indication information may include an identifier 6.
  • the implementation by carrying the first mapping mode and the first data block in one indication information, the implementation is not only simple, but also explicitly indicates one or more first data blocks, and the terminal device can clearly know the one or more first data blocks. The first data block is greatly disturbed.
  • the access network device sends second indication information to the terminal device, and correspondingly, the terminal device receives the second indication information, where the second indication information is used to indicate one or more first data blocks.
  • the second indication information may be included in RRC signaling, DCI or MAC CE signaling and the like.
  • the first indication information may be included in RRC signaling
  • the second indication information may be included in DCI.
  • the access network device indicates the first mapping mode and the first data block by means of the first indication information and the second indication information, respectively, so that when the first mapping mode does not need to be updated, the access network device It is only necessary to indicate one or more first data blocks, which can save signaling overhead.
  • the above-mentioned first indication information includes indication information for indicating frequency domain resources of the first time-frequency resources.
  • the terminal device can determine to carry some data blocks on the first time-frequency resource according to the indication information.
  • the first indication information may include the starting position of the frequency domain resource of the first time-frequency resource (such as the starting subcarrier) and the size of the frequency domain resource of the first time-frequency resource (such as the frequency domain resource). length).
  • the starting position and size of the frequency domain resource of the first time-frequency resource may be jointly indicated by a table, such as a table defined in a protocol, or a table preconfigured by the access network device for the broadband terminal device, For example, a table configured through RRC signaling is shown in Table 1.
  • the start position and size of the first time-frequency resource may be indicated by means of separate indication, as shown in Table 2.
  • Table 1 and Table 2 use the first indication information included in the DCI as an example to illustrate the indication manner of the starting position and size. It is understandable that the interfered frequency band in Table 2 is the frequency domain resource of the first time-frequency resource in the embodiment of the present application.
  • Frequency domain indication information X Indicates a row in the frequency domain resource table in RRC
  • the terminal device can independently determine the data block (eg, the first data block) carried in the first time-frequency resource.
  • the terminal device can simultaneously obtain the first mapping mode and the frequency domain resources of the first time domain resources.
  • the access network device sends third indication information to the terminal device, and correspondingly, the terminal device receives the third indication information, where the third indication information is used to indicate the frequency domain resources of the first time-frequency resources.
  • the first indication information can be referred to adaptively, which is not described in detail here.
  • the access network device can save the first mapping mode and the frequency domain resources of the first time-frequency resource by indicating the first mapping mode and the first time-frequency resource respectively.
  • the effect of signaling overhead can be saved.
  • the terminal device generates multiple data blocks.
  • one transport block may include multiple code block groups (code block groups, CBG), and one CBG may include multiple code blocks (code block, CB). Therefore, the multiple data blocks in the embodiments of the present application may be understood as multiple data blocks obtained from TBs (eg, one TB or multiple TBs), and the data blocks may include CBs or CBGs. For example, one TB can be divided into multiple CBs, or one TB can be divided into multiple CBGs.
  • the method for the terminal device to generate multiple data blocks is as follows: the terminal device generates multiple encoded data packets according to multiple original data packets, and the multiple encoded data packets include one or more redundant data packets. encoding package.
  • the plurality of coded data packets are included in the above-mentioned plurality of data blocks, for example, one data block may include one or more coded data packets.
  • the terminal device may sequentially map multiple encoded data packets into multiple data blocks.
  • whether the data block sent in the first time-frequency resource includes redundant coding packets is not limited in this embodiment of the present application.
  • the terminal device may sequentially map the original data packet and the redundant encoded packet into multiple data blocks.
  • the original data packet may be contained in a data block with a smaller number
  • the redundant encoded packet may be contained in a data block with a larger number.
  • the terminal device may sequentially map the redundant encoded packet and the original data packet into multiple data blocks.
  • redundant coded packets may be included in data blocks with smaller numbers
  • original data packets may be included in data blocks with larger numbers.
  • the terminal device only needs to map multiple encoded data packets into multiple data blocks in sequence, which is simple to implement. At the same time, even if the access network device receives a certain data block by mistake, or even if the access network device receives a data packet in the data block by mistake, the access network device can still recover the error reception according to the redundant coding packet. the data package.
  • the terminal device may map one or more redundant coded packets into one or more first data blocks, and map the original data packets into one or more second data blocks. That is, the terminal device may map one or more redundant coded packets to the first time-frequency resource, and map one or more original data packets to the second time-frequency resource.
  • the second time-frequency resource can be guaranteed to the greatest extent possible. The original data packets transmitted on the network are received correctly.
  • the reliability of the transmission of the second data block is improved, the situation of retransmission of TB or CBG is improved, and the spectral efficiency is improved.
  • the relationship between the original data packet and the redundant encoding packet may be as shown below, which will not be described in detail here.
  • the access network device can map the redundant coded packet to the one or more first data blocks.
  • the terminal device can map the redundant encoded packet obtained by encoding into a certain data block, and then map the certain data block on the first time-frequency resource.
  • the terminal device may map the original data packet into one or more first data blocks, and map one or more redundant encoded packets into one or more second data blocks. That is, the terminal device may map one or more original data packets to the first time-frequency resource, and map one or more redundant coded packets to the second time-frequency resource. In this case, even if the original data packet is received by mistake, the terminal device can still recover the data packet received by mistake according to the redundant coded packet. In other words, even if the first data block is erroneously received, the terminal device can still recover the erroneously received first data block according to the redundant encoded packets included in the second data block.
  • the terminal device can map one or more original data packets (including some original data packets) to the terminal device. in one or more first data blocks.
  • the terminal device may map one or more original data packets into a certain data block, and then map the certain data block on the first time-frequency resource.
  • Redundant encoded packets may include information encoded from one or more original data packets.
  • redundant encoded packets may include information encoded from all original data packets.
  • the redundant encoded packet may include information encoded according to a part of the original data packets among all the original data packets. All the original data packets shown here can be understood as data packets that need to be included in the above-mentioned multiple data blocks.
  • the redundant coded packet may include information obtained by coding according to the 6 original data packets.
  • the redundant encoded packet may include information encoded according to an original data packet.
  • the redundant encoded packet may include information obtained by encoding according to two original data packets, and the like.
  • the first data block may only include one or more redundant encoded packets obtained by encoding all original data packets.
  • the first data block may only include one or more redundant encoded packets obtained by encoding part of the original data packets.
  • only original data packets may be included in the first data block.
  • the first data block may include one or more redundant coded packets obtained by encoding part of the original data packets, and the part of the original data packets.
  • the size of the first data block may be equal to the size of one or more redundant encoding packets, and the one or more redundant encoding packets include information encoded according to all original data packets; or, the one or more redundant encoding packets Redundant coded packets include information encoded from parts of the original data packets.
  • the size of the first data block may be equal to the size of a portion of the original data packet.
  • the size of the first data block may be equal to the sum of the sizes of a part of the original data packet and one or more redundant encoding packets, where the one or more redundant encoding packets include information encoded according to the part of the original data packet.
  • the terminal device maps modulation symbols corresponding to multiple data blocks to time-frequency resources according to the first mapping manner.
  • the modulation symbols corresponding to the above-mentioned multiple data blocks may be obtained by modulation such as QPSK, 16QAM, 64QAM, or 256QAM.
  • modulation mode of the data block is not limited in this embodiment of the present application.
  • the above-mentioned time-frequency resources are the time-frequency resources configured by the access network equipment for the terminal equipment to transmit TBs.
  • one RE in the time-frequency resource may be used to carry one modulation symbol.
  • the access network device may configure time-frequency resources for the terminal device in a dynamic scheduling manner, or may also configure time-frequency resources for the terminal device based on a configuration grant (configured grant, CG) manner, and the like. This is not limited.
  • the terminal device sends modulation symbols corresponding to multiple data blocks on the time-frequency resource.
  • the access network device may receive modulation symbols corresponding to the multiple data blocks on the time-frequency resource according to the first mapping manner.
  • step 804 it can also be understood that: the terminal device sends a PUSCH, where the PUSCH is used to carry time-frequency resources, and the time-frequency resources carry modulation symbols corresponding to multiple data blocks.
  • the terminal device maps modulation symbols corresponding to multiple data blocks to time-frequency resources by using the first mapping manner shown in FIG. 5d .
  • the access network device may receive the modulation symbols corresponding to the multiple data blocks through the first mapping manner shown in FIG. 5d .
  • the first frequency domain resource first receive the OFDM symbol 1 in the frequency domain order (that is, from the start subcarrier of the first frequency domain resource to the end of the end subcarrier of the first frequency domain resource). Modulation symbols; then receive the modulation symbols on OFDM symbol 2 in frequency domain sequence until the modulation symbols on the end OFDM symbol are received.
  • the modulation symbols on OFDM symbol 1 are firstly received in the frequency domain sequence; the modulation symbols on OFDM symbol 2 are received in the frequency domain sequence until the modulation symbols on the end OFDM symbol are received.
  • the access network device can acquire the modulation symbols carried in the time-frequency resources.
  • the terminal device maps modulation symbols corresponding to multiple data blocks to time-frequency resources by using the first mapping manner shown in FIG. 5e.
  • the access network device may receive modulation symbols one by one OFDM symbol from the starting subcarrier of the time-frequency resource. For example, starting from the first subcarrier, the modulation symbols are received one by one OFDM symbol from the starting OFDM symbol of the time-frequency resource until the modulation symbols on the ending OFDM symbol are received. Starting from the second subcarrier, the modulation symbols are received one by one OFDM symbol from the starting OFDM symbol of the time-frequency resource until the modulation symbols on the ending OFDM symbol are received.
  • the access network device shown here receives modulation symbols according to the methods shown in FIG. 5d and FIG. 5e only as an example, and the access network device can also follow the methods shown in FIGS. 6a to 6d and 7a to 7c.
  • the method receives modulation symbols, etc., which will not be described in detail here.
  • the terminal device maps modulation symbols corresponding to multiple data blocks to time-frequency resources by using the first mapping method, as shown in FIGS. 5a to 5f , 6a to 6d , and 7a to 7c respectively. . Therefore, compared to mapping modulation symbols corresponding to multiple data blocks to time-frequency resources according to the second mapping method, the technical solutions provided by the embodiments of the present application can effectively improve the interference of other terminal equipment on the terminal equipment, and reduce the The number of the interfered data blocks of the terminal equipment improves the data transmission efficiency of the terminal equipment.
  • FIG. 8b is a schematic flowchart of another data sending method provided by an embodiment of the present application. As shown in FIG. 8b, the method includes:
  • step 812 the method shown in FIG. 8b further includes:
  • the access network device sends first indication information to the terminal device, and correspondingly, the terminal device receives the first indication information, where the first indication information is used to indicate the first mapping mode.
  • step 811 it can be understood that for the specific description of step 811, reference may be made to step 801 shown above, which will not be described in detail here.
  • the terminal device determines a first mapping mode.
  • the terminal device may determine the first mapping manner according to the foregoing step 811 .
  • the first mapping manner may also be predefined by a protocol, or preset by an access network device, or the like.
  • the first mapping mode preset by the access network device includes: the first mapping mode may be configured by the access network device when the terminal device accesses the access network device, and the like. This embodiment of the present application does not limit how the terminal device learns the first mapping manner.
  • the access network device maps the modulation symbols corresponding to the multiple data blocks to the time-frequency resource according to the first mapping manner.
  • the access network device may also generate multiple data blocks.
  • the access network device may also generate multiple data blocks.
  • the access network device sends modulation symbols corresponding to multiple data blocks on the time-frequency resource.
  • the terminal device receives modulation symbols corresponding to multiple data blocks on the time-frequency resource according to the first mapping manner.
  • step 814 it can also be understood that: the terminal device receives the PDSCH, the PDSCH is used to carry time-frequency resources, and the time-frequency resources carry modulation symbols corresponding to multiple data blocks.
  • step 812 and step 813 is not limited in this embodiment of the present application.
  • FIG. 8b reference may also be made to FIG. 8a
  • the technical solutions provided by the embodiments of the present application map modulation symbols corresponding to multiple data blocks to time-frequency resources through the first mapping method, which can effectively improve the relationship between other terminal equipment (such as narrowband terminal equipment) and terminal equipment (broadband terminal equipment)
  • the interference of the terminal equipment reduces the number of data blocks interfered with by the terminal equipment, and improves the data transmission efficiency of the terminal equipment.
  • the present application divides the communication device into functional modules according to the above method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that the division of modules in this application is schematic, and is only a logical function division, and other division methods may be used in actual implementation.
  • the communication device according to the embodiment of the present application will be described in detail below with reference to FIG. 9 to FIG. 11 .
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device includes a processing unit 901 and a transceiver unit 902 .
  • the communication apparatus may be the access network device shown above or a chip in the access network device.
  • the processing unit 901 is configured to generate multiple data blocks, and then map the modulation symbols corresponding to the multiple data blocks to time-frequency resources according to the first mapping manner; the transceiver unit 902 is configured to perform mapping on the time-frequency resources Output modulation symbols corresponding to multiple data blocks.
  • the transceiver unit 902 is specifically configured to send modulation symbols corresponding to multiple data blocks to the terminal device on the time-frequency resource.
  • the transceiver unit 902 is further configured to output the first indication information.
  • the transceiver unit 902 is further configured to output the second indication information.
  • the transceiver unit 902 is further configured to output third indication information.
  • the transceiver unit 902 may be configured to perform the sending step in step 811 shown in FIG. 8b and the sending step in step 814 shown in FIG. 8b.
  • the processing unit 901 may be configured to perform step 813 shown in FIG. 8b.
  • an embodiment of the present application further provides a communication device.
  • the communication device includes a processing unit 901 and a transceiver unit 902 .
  • the communication apparatus may be the terminal equipment shown above or a chip in the terminal equipment.
  • the processing unit 901 is configured to determine a first mapping manner; the transceiver unit 902 is configured to input modulation symbols corresponding to multiple data blocks on the time-frequency resource according to the first mapping manner.
  • the transceiver unit 902 is specifically configured to receive modulation symbols corresponding to multiple data blocks from a terminal device on the time-frequency resource according to the first mapping manner.
  • the transceiver unit 902 is further configured to input the first indication information.
  • the transceiver unit 902 is further configured to input the second indication information.
  • the transceiver unit 902 is further configured to input third indication information.
  • the transceiver unit 902 may be configured to perform the receiving step in step 811 shown in FIG. 8b and the receiving step in step 814 shown in FIG. 8b.
  • the processing unit 901 may be used to perform step 812 shown in FIG. 8b.
  • an embodiment of the present application further provides a communication device.
  • the communication device includes a processing unit 901 and a transceiver unit 902 .
  • the communication apparatus may be the terminal equipment shown above or a chip in the terminal equipment.
  • the processing unit 901 is configured to generate multiple data blocks, and then map the modulation symbols corresponding to the multiple data blocks to time-frequency resources according to the first mapping manner; the transceiver unit 902 is configured to perform mapping on the time-frequency resources Output modulation symbols corresponding to multiple data blocks.
  • the transceiver unit 902 is specifically configured to send modulation symbols corresponding to multiple data blocks to the access network device on the time-frequency resource.
  • the transceiver unit 902 is further configured to input the first indication information.
  • the transceiver unit 902 is further configured to input the second indication information.
  • the transceiver unit 902 is further configured to input third indication information.
  • the transceiver unit 902 may be configured to perform the receiving step in step 801 shown in FIG. 8a and the sending step in step 804 shown in FIG. 8a.
  • the processing unit 901 may be used to perform steps 802 and 803 shown in FIG. 8a.
  • an embodiment of the present application further provides a communication device.
  • the communication device includes a processing unit 901 and a transceiver unit 902 .
  • the communication apparatus may be the access network device shown above or a chip in the access network device.
  • the processing unit 901 is configured to determine a first mapping manner; the transceiver unit 902 is configured to input modulation symbols corresponding to multiple data blocks on the time-frequency resource according to the first mapping manner.
  • the determination of the first mapping manner shown in the embodiment of the present application may be understood as: the processing unit needs to determine the first mapping manner from the different mapping manners shown in the embodiment of the present application. However, if the first mapping manner is one of the above-mentioned different mapping manners and a predefined mapping manner, the processing unit may not need to determine the first mapping manner. In this case, the transceiver unit may directly input modulation symbols corresponding to multiple data blocks on the time-frequency resource according to the first mapping manner.
  • the transceiver unit 902 is specifically configured to receive modulation symbols corresponding to multiple data blocks from a terminal device on the time-frequency resource according to the first mapping manner.
  • the transceiver unit 902 is further configured to output the first indication information.
  • the transceiver unit 902 is further configured to output the second indication information.
  • the transceiver unit 902 is further configured to output third indication information.
  • the transceiver unit 902 may be configured to perform the sending step in step 801 shown in FIG. 8a and the receiving step in step 804 shown in FIG. 8a.
  • the first time-frequency resource, the second time-frequency resource, the first indication information, the second indication information, and the third indication information, etc. reference may also be made to the above method embodiments.
  • the introduction in will not be detailed here.
  • FIG. 5a to FIG. 5f reference may be made to FIG. 6a to FIG. 6d, or to FIG. 7a to FIG. 7c, and so on.
  • transceiver unit and the processing unit shown in the embodiments of the present application are only examples.
  • specific functions or execution steps of the transceiver unit and the processing unit reference may be made to the above method embodiments, which will not be described in detail here.
  • the processing unit 901 may be one or more processors
  • the transceiver unit 902 may be a transceiver, or the transceiver unit 902 may also be a sending unit and a receiving unit
  • the sending unit may be a transmitter
  • the receiving unit may be a receiver
  • the sending unit and the receiving unit are integrated into one device, such as a transceiver.
  • the processor and the transceiver may be coupled, etc., and the connection manner of the processor and the transceiver is not limited in the embodiment of the present application.
  • the communication device 100 includes one or more processors 1020 and a transceiver 1010 .
  • the processor 1020 is configured to generate multiple data blocks, and then map modulation symbols corresponding to the multiple data blocks to time-frequency resources according to the first mapping manner; the transceiver 1010 is configured to The modulation symbols corresponding to the multiple data blocks are output on the time-frequency resource.
  • the processor 1020 is configured to determine a first mapping mode; the transceiver 1010 is configured to input a plurality of data blocks corresponding to the time-frequency resources according to the first mapping mode modulation symbol.
  • a transceiver may include a receiver for performing the function (or operation) of receiving and a transmitter for performing the function (or operation) of transmitting ). And transceivers are used to communicate with other devices/devices over the transmission medium.
  • the communication apparatus 100 may further include one or more memories 1030 for storing program instructions and/or data.
  • Memory 1030 is coupled to processor 1020 .
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1020 may cooperate with the memory 1030 .
  • the processor 1020 may execute program instructions stored in the memory 1030 .
  • at least one of the above-mentioned one or more memories may be included in the processor.
  • the specific connection medium between the transceiver 1010, the processor 1020, and the memory 1030 is not limited in the embodiments of the present application.
  • the memory 1030, the processor 1020, and the transceiver 1010 are connected through a bus 1040 in FIG. 10.
  • the bus is represented by a thick line in FIG. 10, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, etc.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as being executed by a hardware processor, or executed by a combination of hardware and software modules in the processor, or the like.
  • the memory may include, but is not limited to, a non-volatile memory such as a hard disk drive (HDD) or a solid-state drive (SSD), a random access memory (Random Access Memory, RAM), Erasable Programmable Read-Only Memory (Erasable Programmable ROM, EPROM), Read-Only Memory (Read-Only Memory, ROM) or Portable Read-Only Memory (Compact Disc Read-Only Memory, CD-ROM) and so on.
  • a memory is any storage medium that can be used to carry or store program codes in the form of instructions or data structures, and can be read and/or written by a computer (such as the communication devices shown in this application, etc.), but is not limited thereto.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • the processor 1020 is mainly used to process the communication protocol and communication data, and to control the entire communication device, execute software programs, process software program data.
  • the memory 1030 is mainly used to store software programs and data.
  • the transceiver 1010 may include a control circuit and an antenna, and the control circuit is mainly used for converting baseband signals to radio frequency signals and processing radio frequency signals. Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves. Input and output devices, such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor 1020 can read the software program in the memory 1030, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 1020 performs baseband processing on the data to be sent, and outputs a baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1020, and the processor 1020 converts the baseband signal into data and processes the data. deal with.
  • the radio frequency circuit and antenna can be provided independently of the processor that performs baseband processing.
  • the radio frequency circuit and antenna can be arranged remotely from the communication device. .
  • the communication device shown in the embodiment of the present application may also have more components and the like than those shown in FIG. 10 , which is not limited in the embodiment of the present application.
  • the method performed by the processor and the transceiver shown above is only an example, and for the specific steps performed by the processor and the transceiver, reference may be made to the method described above.
  • the processing unit 901 may be one or more logic circuits, and the transceiver unit 902 may be an input and output interface, or a communication interface, or an interface circuit , or interfaces, etc.
  • the transceiver unit 902 may also be a sending unit and a receiving unit, the sending unit may be an output interface, and the receiving unit may be an input interface, the sending unit and the receiving unit are integrated into one unit, such as an input and output interface.
  • the communication device shown in FIG. 11 includes a logic circuit 1101 and an interface 1102 .
  • the above-mentioned processing unit 901 can be implemented by the logic circuit 1101
  • the transceiver unit 902 can be implemented by the interface 1102 .
  • the logic circuit 1101 may be a chip, a processing circuit, an integrated circuit, or a system on chip (SoC) chip, etc.
  • the interface 1102 may be a communication interface, an input/output interface, or the like.
  • the logic circuit and the interface may also be coupled to each other.
  • the specific connection manner of the logic circuit and the interface is not limited in the embodiment of the present application.
  • the logic circuit 1101 is configured to generate multiple data blocks, and then map the modulation symbols corresponding to the multiple data blocks to time-frequency resources according to the first mapping manner; the receiving interface 1102 is configured to The modulation symbols corresponding to the multiple data blocks are output on the time-frequency resource.
  • the logic circuit 1101 is used to determine the first mapping method; the interface 1102 is used to input the corresponding data blocks of multiple data blocks on the time-frequency resource according to the first mapping method. modulation symbol.
  • the communication apparatus provided in the embodiment of the present application may include a memory, or the communication apparatus provided in the embodiment of the present application may also not include the memory, which is not limited in the embodiment of the present application.
  • An embodiment of the present application further provides a wireless communication system, where the wireless communication system includes an access network device and a terminal device, and the access network device and the terminal device can be used to execute the method in any of the foregoing embodiments.
  • the present application also provides a computer program for implementing the operations and/or processing performed by the access network device in the method provided by the present application.
  • the present application also provides a computer program for implementing the operations and/or processing performed by the terminal device in the method provided by the present application.
  • the present application also provides a computer-readable storage medium, where computer codes are stored in the computer-readable storage medium, and when the computer codes are executed on the computer, the computer executes the operations performed by the access network device in the method provided by the present application. and/or processing.
  • the present application also provides a computer-readable storage medium, where computer codes are stored in the computer-readable storage medium, and when the computer codes are run on the computer, the computer is made to perform the operations performed by the terminal device in the method provided by the present application and/or the terminal device. or processing.
  • the present application also provides a computer program product, the computer program product includes computer code or computer program, when the computer code or computer program is run on a computer, the operations performed by the access network device in the method provided by the present application and / or processing is executed.
  • the present application also provides a computer program product, the computer program product includes computer code or computer program, when the computer code or computer program is run on a computer, the operation performed by the terminal device in the method provided by the present application and/or Processing is executed.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the technical effects of the solutions provided in the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • a computer-readable storage medium includes several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned readable storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk, etc. that can store program codes medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

本申请公开了一种数据发送方法及装置,该方法包括: 生成多个数据块; 根据第一映射方式,将该多个数据块对应的调制符号映射至时频资源上; 在该时频资源上发送该多个数据块对应的调制符号。该第一映射方式包括: 多个数据块对应的调制符号在时频资源中按照先时域后频域的顺序映射; 或者,第一映射方式包括: 第一复数个调制符号在第一时频资源中按照先频域后时域的顺序映射,第二复数个调制符号在第二时频资源中按照先时域后频域的顺序映射等。第一时频资源和第二时频资源在频域上不重叠,且均属于上述时频资源中的部分时频资源。本申请提供的方法,能够有效减少通信装置受干扰的数据块的数量。

Description

一种数据发送方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种数据发送方法及装置。
背景技术
随着物联网和海量机器类通信(massive machine-type communications,mMTC)技术的发展,在家庭、工业、公共场所等各应用场景中,用户终端(user equipment,UE)(也可以称为终端设备)逐渐呈现大数量、多形态等特征。例如,终端设备可以分为宽带终端设备和窄带终端设备,宽带终端设备如可以包括手机、增强现实(augmented reality,AR)设备或虚拟现实(virtual reality,)设备等,窄带终端设备可以包括传感器、穿戴式设备等。
一般的,带宽终端设备的连续性业务居多,且相对于窄带终端设备来说,宽带终端设备的数据包较大。同时,窄带终端设备的数据包相对较小,且数据包的传输时间不确定。为了避免资源浪费,以及避免窄带终端设备压缩宽带终端设备可使用的时频资源,因此窄带终端设备与宽带终端设备往往会共享部分时频资源。
在上述情况下,宽带终端设备如何发送数据块亟待解决。
发明内容
本申请提供一种数据发送方法及装置,能够减少终端设备(如宽带终端设备)受干扰的数据块的数量。
第一方面,本申请实施例提供一种数据发送方法,所述方法应用于通信装置,所述方法包括:
生成多个数据块;根据第一映射方式,将所述多个数据块对应的调制符号映射至时频资源;在所述时频资源上发送所述多个数据块对应的调制符号。
其中,所述第一映射方式包括:所述多个数据块对应的调制符号在所述时频资源中按照先时域后频域的顺序映射。或者,所述第一映射方式包括:第一复数个调制符号在第一时频资源中按照先频域后时域的顺序映射,第二复数个调制符号在第二时频资源中按照先时域后频域的顺序映射,所述第一复数个调制符号和所述第二复数个调制符号均包含于所述多个数据块对应的调制符号中。或者,所述第一映射方式包括:第三复数个调制符号在第一时频资源中按照先时域后频域的顺序映射,第四复数个调制符号在第二时频资源中按照先频域后时域的顺序映射,所述第三复数个调制符号和所述第四复数个调制符号均包含于所述多个数据块对应的调制符号中。或者,所述第一映射方式包括:第三复数个调制符号在第一时频资源中按照先频域后时域的顺序映射,第四复数个调制符号在第二时频资源中按照先频域后时域的顺序映射,所述第三复数个调制符号和所述第四复数个调制符号均包含于所述多个数据块对应的调制符号中。
其中,所述第一时频资源和所述第二时频资源分别为所述时频资源中的部分时频资源,所述第一时频资源与所述第二时频资源在频域上不重叠,以及所述第一时频资源中的时域资源与所述时频资源中的时域资源相同。
本申请实施例中,通信装置可以包括接入网设备和终端设备。即上述技术方案既可以 应用于接入网设备,由此接入网设备可以在时频资源上向终端设备发送多个数据块对应的调制符号。或者,上述技术方案还可以应用于终端设备,由此终端设备可以在时频资源上向接入网设备发送多个数据块对应的调制符号。相对于第二映射方式(即多个数据块对应的调制符号在时频资源中按照先频域后时域的顺序映射)来说,由于第二映射方式是通过先频域后时域的顺序映射,因此第一时频资源中所映射的调制符号所对应的数据块的数量较多(如下文示出的图4)。然而,通过本申请实施例提供的上述第一映射方式,第一时频资源中所映射的调制符号所对应的数据块的数量会较小,从而可以减少了终端设备受干扰的数据块的数量,同时还可以改善其他终端设备对该终端设备的干扰。
在一种可能的实现方式中,所述先时域后频域的顺序映射包括:在第i个频域资源上从预设的起始正交频分复用(orthogonal frequency division multiplexing,OFDM)符号开始逐OFDM符号映射调制符号直至预设的结束OFDM符号,再在第i+1个频域资源上从所述预设的起始OFDM符号开始逐OFDM符号映射调制符号直至所述预设的结束OFDM符号,所述i为正整数,所述预设的起始OFDM符号为所述时频资源中的时域资源的起始位置(即起始OFDM符号),所述预设的结束OFDM符号为所述时频资源中的时域资源的结束位置(即结束OFDM符号)。
在一种可能的实现方式中,所述第i个频域资源与所述第i+1个频域资源为所述时频资源中的频域资源中相邻的两个频域资源。
示例性的,第一映射方式包括多个数据块对应的调制符号在时频资源中按照先时域后频域的顺序映射,且第i个频域资源于第i+1个频域资源为时频资源中的频域资源中相邻的两个频域资源。该情况下,将多个数据块对应的调制符号映射于时频资源的结果可以参考图5a至图5f所示的方法。
本申请实施例中,通信装置在将多个数据块对应的调制符号映射至时频资源时,可以按照调制符号编号从小到大的顺序依次将调制符号映射至时频资源。通过上述实现方式,不仅可以减少终端设备受干扰的数据块的数量,改善其他终端设备(如窄带终端设备)对该终端设备(如宽带终端设备)的干扰,而且该种实现方式实施简单,即通信装置只需要按照调制编码从小到大的顺序依次将调制符号映射至时频资源即可。
在一种可能的实现方式中,所述第i个频域资源与所述第i+1个频域资源为所述第一时频资源中的频域资源中相邻的两个频域资源。
在一种可能的实现方式中,所述第i个频域资源与所述第i+1个频域资源为所述第二时频资源中的频域资源中相邻的两个频域资源。
示例性的,第一映射方式包括多个数据块对应的调制符号在时频资源中按照先时域后频域的顺序映射,且第i个频域资源与第i+1个频域资源为第一时频资源中相邻的两个频域资源,或者,第i个频域资源与第i+1个频域资源为第二时频资源中相邻的两个频域资源。该情况下,将多个数据块对应的调制符号映射于时频资源的结果可以参考图6b所示的方法。
本申请实施例中,通信装置可以将数据块对应的调制符号划分为两部分,一部分调制符号映射于第一时频资源,另一部分调制符号映射于第二时频资源,从而单独对该第一时频资源和该第二时频资源进行调制符号的映射。上述两种实现方式中,由于是将第一时频资源和第二时频资源单独进行数据块对应的调制符号的映射,因此改善了某个数据块对应的调制符号既被映射于第一时频资源,又被映射于第二时频资源的情况,从而进一步减少 了终端设备受干扰的数据块的数量。
可理解,以上所示的第i个频域资源和第i+1个频域资源仅为示例,并不代表某一个特定的频域资源。示例性的,在第一时频资源中进行调制符号的映射时,该第i个频域资源和该第i+1个频域资源可以为该第一时频资源中相邻的两个频域资源。而在第二时频资源中进行调制符号的映射时,该第i个频域资源和该第i+1个频域资源即可以为该第二时频资源中相邻的两个频域资源。
在一种可能的实现方式中,所述第i个频域资源的大小与所述第i+1个频域资源的大小相同。
该种实现方式中,通过保证第i个频域资源的大小与第i+1个频域资源的大小相同,通信装置在进行调制符号的映射时,方便其进行符号映射,实施简单。
在一种可能的实现方式中,所述第i个频域资源的大小以资源元素(resource element,RE)为粒度,或者,所述第i个频域资源的大小以资源块(esource block,RB)为粒度。
在一种可能的实现方式中,所述第i个频域资源的大小为1RE,或者,所述第i个频域资源的大小为6RB。
在一种可能的实现方式中,所述先频域后时域的顺序映射包括:在第i个正交频分复用OFDM符号上从预设的起始子载波开始逐子载波映射调制符号直至预设的结束子载波,再在第i+1个OFDM符号上从预设的起始子载波开始逐子载波映射调制符号直至预设的结束子载波,所述i为正整数,所述第i个OFDM符号和所述第i+1个OFDM符号为所述时频资源的时域资源中相邻的两个时域资源。
在一种可能的实现方式中,所述预设的起始子载波为所述第一时频资源中的频域资源的起始位置,所述预设的结束子载波为所述第一时频资源中的频域资源的结束位置。
在一种可能的实现方式中,所述预设的起始子载波为所述第二时频资源中的频域资源的起始位置,所述预设的结束子载波为所述第二时频资源中的频域资源的结束位置。
示例性的,第一复数个调制符号在第一时频资源中按照先频域后时域的顺序映射,第二复数个调制符号在第二时频资源中按照先时域后频域的顺序映射。该情况下,将多个数据块对应的调制符号映射于时频资源的结果可以参考图6a和图6d所示的方法。
示例性的,第三复数个调制符号在第一时频资源中按照先时域后频域的方式排列,以及第四复数个调制符号在第二时频资源中按照先频域后时域的方式排列。该情况下,将多个数据块对应的调制符号映射于时频资源的结果可以参考图7a所示的方法。
示例性的,第三复数个调制符号在第一时频资源中按照先频域后时域的方式排列,以及第四复数个调制符号在第二时频资源中按照先频域后时域的方式排列。该情况下,将多个数据块对应的调制符号映射于时频资源的结果可以参考图7b和图7c所示的方法。
本申请实施例中,通信装置可以将数据块对应的调制符号划分为两部分,从而在第一时频资源和第二时频资源单独进行调制符号的映射。改善了某个数据块对应的调制符号既被映射于第一时频资源,又被映射于第二时频资源的情况,从而进一步减少了终端设备受干扰的数据块的数量。
在一种可能的实现方式中,所述多个数据块中包括第一数据块,所述第一数据块包括根据一个或多个第二数据块编码得到的信息。
本申请实施例中,第一数据块可以是通信装置根据网络编码如前向纠错网络编码(orward error correction,FEC)等得到的数据块,且该第一数据块中包括根据一个或多个 第二数据块编码得到的信息。由此,即使第一时频资源承载的一个或多个第二数据块被错误接收,其他通信装置仍可以根据该第一数据块译码出正确的数据块。本申请实施例提供的技术方案,能够有效提供数据块传输的可靠性,同时提高了网络频谱效率。可理解,上述多个数据块中可以包括一个第一数据块,也可以包括多个第一数据块。
在一种可能的实现方式中,所述通信装置包括终端设备,所述生成多个数据块之前,所述方法还包括:接收第一指示信息,所述第一指示信息用于指示所述第一映射方式。
即接收第一指示信息包括:终端设备接收来自接入网设备的第一指示信息。
在一种可能的实现方式中,所述通信装置包括接入网设备,所述方法还包括:发送第一指示信息,所述第一指示信息用于指示所述第一映射方式。
在一种可能的实现方式中,所述第一指示信息包括用于指示所述一个或多个第一数据块的指示信息。
在一种可能的实现方式中,所述第一指示信息包括用于指示所述第一时频资源的频域资源的指示信息。
本申请实施例中,通过指示第一时频资源的频域资源,可以使得终端设备能够自主决定承载于第一时频资源中的数据块(如第一数据块)。另外,通过第一指示信息同时指示第一映射方式和第一时域资源的频域资源,可使得终端设备能够同时获得该第一映射方式和第一时域资源的频域资源,以便于及时获得数据块的映射方式。
在一种可能的实现方式中,所述用于指示所述第一时频资源的频域资源的指示信息包括所述第一时频资源的频域资源的起始位置和所述第一时频资源的频域资源的大小。
在一种可能的实现方式中,所述第一指示信息包含于以下任一项中:无线资源控制RRC(radio resource control,RRC)信令中、下行控制信息DCI(downlink control information,DCI)中、媒体接入控制(media Access control,MAC)控制元素(control element,CE)信令中。
在一种可能的实现方式中,所述通信装置包括终端设备,所述生成多个数据块之前,所述方法还包括:接收第二指示信息,所述第二指示信息包括用于指示所述一个或多个第一数据块的指示信息。
本申请实施例中,接入网设备分别通过第一指示信息和第二指示信息的方式指示第一映射方式和第一数据块,由此在第一映射方式不需要更新时,接入网设备可以仅指示一个或多个第一数据块,由此可以节省信令开销。
在一种可能的实现方式中,所述通信装置包括接入网设备,所述方法还包括:发送第二指示信息,所述第二指示信息包括用于指示所述一个或多个第一数据块的指示信息。
本申请实施例中,第二指示信息可以包含于RRC信令、DCI或MAC CE信令中。可选的,第一指示信息可以包含于RRC信令中,第二指示信息可以包含于DCI中等,本申请实施例对此不作限定。
在一种可能的实现方式中,所述通信装置包括终端设备,所述生成多个数据块之前,所述方法还包括:接收第三指示信息,所述第三指示信息包括用于指示所述第一时频资源的频域资源的指示信息。
一般的,第一时频资源的频域资源不会经常发生变化,因此将第一映射方式和第一时频资源的频域资源分别通过两个不同的指示信息承载,可以达到节省信令开销的效果。
在一种可能的实现方式中,所述通信装置包括接入网设备,所述方法还包括:发送第 三指示信息,所述第三指示信息包括用于指示所述第一时频资源的频域资源的指示信息。
本申请实施例中,第三指示信息可以包含于RRC信令、DCI或MAC CE信令中。可选的,第一指示信息和第三指示信息可以分别包含于RRC信令中等,本申请实施例对此不作限定。
在一种可能的实现方式中,所述数据块包括:编码块(code block,CB)或编码块组(code block group,CBG)。
第二方面,本申请实施例提供一种数据发送方法,所述方法应用于通信装置,所述方法包括:
确定第一映射方式,根据所述第一映射方式在时频资源上接收多个数据块对应的调制符号。
其中,所述第一映射方式包括:所述多个数据块对应的调制符号在所述时频资源中按照先时域后频域的顺序映射;或者,所述第一映射方式包括:第一复数个调制符号在第一时频资源中按照先频域后时域的顺序映射,第二复数个调制符号在第二时频资源中按照先时域后频域的顺序映射,所述第一复数个调制符号和所述第二复数个调制符号均包含于所述多个数据块对应的调制符号中;或者,所述第一映射方式包括:第三复数个调制符号在第一时频资源中按照先时域后频域的顺序映射,以及第四复数个调制符号在第二时频资源中按照先频域后时域的顺序映射,所述第三复数个调制符号和所述第四复数个调制符号均包含于所述多个数据块对应的调制符号中;或者,所述第一映射方式包括:所述第一映射方式包括:第三复数个调制符号在第一时频资源中按照先频域后时域的顺序映射,以及第四复数个调制符号在第二时频资源中按照先频域后时域的顺序映射,所述第三复数个调制符号和所述第四复数个调制符号均包含于所述多个数据块对应的调制符号中。
其中,所述第一时频资源和所述第二时频资源分别为所述时频资源中的部分时频资源,所述第一时频资源与所述第二时频资源在频域上不重叠,以及所述第一时频资源中的时域资源与所述时频资源中的时域资源相同。
本申请实施例中,通信装置可以包括接入网设备和终端设备。即上述技术方案既可以应用于接入网设备,由此接入网设备根据第一映射方式在时频资源上接收多个数据块对应的调制符号。上述技术方案还可以应用于终端设备,由此终端设备可以根据该第一映射方式在时频资源上接收多个数据块对应的调制符号。
在一种可能的实现方式中,所述先时域后频域的顺序映射包括:在第i个频域资源上从预设的起始正交频分复用OFDM符号开始逐OFDM符号映射调制符号直至预设的结束OFDM符号,再在第i+1个频域资源上从所述预设的起始OFDM符号开始逐OFDM符号映射调制符号直至所述预设的结束OFDM符号,所述i为正整数,所述预设的起始OFDM符号为所述时频资源中的时域资源的起始位置,所述预设的结束OFDM符号为所述时频资源中的时域资源的结束位置。
在一种可能的实现方式中,所述第i个频域资源与所述第i+1个频域资源为所述时频资源中的频域资源中相邻的两个频域资源;或者,所述第i个频域资源与所述第i+1个频域资源为所述第一时频资源中的频域资源中相邻的两个频域资源;或者,所述第i个频域资源与所述第i+1个频域资源为所述第二时频资源中的频域资源中相邻的两个频域资源。
在一种可能的实现方式中,所述先频域后时域的顺序映射包括:在第i个正交频分复用OFDM符号上从预设的起始子载波开始逐子载波映射调制符号直至预设的结束子载波, 再在第i+1个OFDM符号上从预设的起始子载波开始逐子载波映射调制符号直至预设的结束子载波,所述i为正整数,所述第i个OFDM符号和所述第i+1个OFDM符号为所述时频资源的时域资源中相邻的两个时域资源。
在一种可能的实现方式中,所述预设的起始子载波为所述第一时频资源中的频域资源的起始位置,所述预设的结束子载波为所述第一时频资源中的频域资源的结束位置;或者
所述预设的起始子载波为所述第二时频资源中的频域资源的起始位置,所述预设的结束子载波为所述第二时频资源中的频域资源的结束位置。
在一种可能的实现方式中,所述多个数据块中包括第一数据块,所述第一数据块包括根据一个或多个第二数据块编码得到的信息。
在一种可能的实现方式中,所述通信装置包括终端设备,所述生成多个数据块之前,所述方法还包括:接收第一指示信息,所述第一指示信息用于指示所述第一映射方式。
即终端设备可以根据第一指示信息确定第一映射方式。可理解,对于通信装置为接入网设备来说,该接入网设备可以自主确定第一映射方式。
在一种可能的实现方式中,所述通信装置包括接入网设备,所述方法还包括:发送第一指示信息,所述第一指示信息用于指示所述第一映射方式。
在一种可能的实现方式中,所述第一指示信息包括用于指示所述一个或多个第一数据块的指示信息。
在一种可能的实现方式中,所述第一指示信息包括用于指示所述第一时频资源的频域资源的指示信息。
在一种可能的实现方式中,所述用于指示所述第一时频资源的频域资源的指示信息包括所述第一时频资源的频域资源的起始位置和所述第一时频资源的频域资源的大小。
在一种可能的实现方式中,所述第一指示信息包含于以下任一项中:无线资源控制RRC(radio resource control,RRC)信令中、下行控制信息DCI(downlink control information,DCI)中、媒体接入控制(media Access control,MAC)控制元素(control element,CE)信令中。
在一种可能的实现方式中,所述通信装置包括终端设备,所述生成多个数据块之前,所述方法还包括:接收第二指示信息,所述第二指示信息包括用于指示所述一个或多个第一数据块的指示信息。
在一种可能的实现方式中,所述通信装置包括接入网设备,所述方法还包括:发送第二指示信息,所述第二指示信息包括用于指示所述一个或多个第一数据块的指示信息。
在一种可能的实现方式中,所述通信装置包括终端设备,所述生成多个数据块之前,所述方法还包括:接收第二指示信息,所述第二指示信息包括用于指示所述一个或多个第三数据块的指示信息。
在一种可能的实现方式中,所述通信装置包括终端设备,所述生成多个数据块之前,所述方法还包括:接收第三指示信息,所述第三指示信息包括用于指示所述第一时频资源的频域资源的指示信息。
在一种可能的实现方式中,所述通信装置包括接入网设备,所述方法还包括:发送第三指示信息,所述第三指示信息包括用于指示所述第一时频资源的频域资源的指示信息。
在一种可能的实现方式中,所述数据块包括:编码块(code block,CB)或编码块组(code block group,CBG)。
第二方面的有益效果可参见第一方面的有益效果,在此不赘述。
可理解,在第一方面所示的通信装置为终端设备时,第二方面所示的通信装置可以为接入网设备。或者,在第一方面所示的通信装置为接入网设备时,第二方面所示的通信装置可以为终端设备。
第三方面,本申请实施例提供一种通信装置,用于执行第一方面或第一方面的任意可能的实现方式中的方法;或者,用于执行第二方面或第二方面的任意可能的实现方式中的方法。
该通信装置包括具有执行第一方面或第一方面的任意可能的实现方式中的方法的相应单元。或者,该通信装置包括具有执行第二方面或第二方面的任意可能的实现方式中的方法的相应单元。
例如,该通信装置可以包括收发单元和处理单元。
第四方面,本申请实施例提供一种通信装置,所述通信装置包括处理器,用于执行上述第一方面或第一方面的任意可能的实现方式所示的方法;或者,用于执行上述第二方面或第二方面的任意可能的实现方式所示的方法。
在执行上述方法的过程中,上述方法中有关发送信息(如发送多个数据块对应的调制符号)或接收信息(如接收多个数据块对应的调制符号)的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入的上述信息的过程。在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
基于上述原理,举例来说,前述方法中提及的发送数据块对应的调制符号可以理解为处理器输出数据块对应的调制符号。或者,接收数据块对应的调制符号可以理解为处理器输入数据块对应的调制符号。
对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
在一种可能的实现方式中,存储器位于所述通信装置之外。
在一种可能的实现方式中,存储器位于所述通信装置之内。
本申请实施例中,处理器和存储器还可能集成于一个器件中,即处理器和存储器还可以被集成在一起。
在一种可能的实现方式中,所述通信装置还包括收发器,所述收发器,用于接收信号和/或发送信号。
例如,收发器可以用于发送从处理器获取到的多个数据块对应的调制符号。或者,收发器可以用于从其他设备接收多个数据块对应的调制符号等。
第五方面,本申请实施例提供一种通信装置,该通信装置包括逻辑电路和接口,所述逻辑电路和所述接口耦合,所述逻辑电路,用于生成多个数据块,以及根据第一映射方式,将所述多个数据块对应的调制符号映射至时频资源;所述接口,用于输出所述数据块对应的调制符号。
第六方面,本申请实施例提供一种通信装置,该通信装置包括逻辑电路和接口,所述逻辑电路和所述接口耦合,所述逻辑电路,用于确定第一映射方式;所述接口,用于输入多个数据块对应的调制符号。
可理解,关于第一映射方式等的说明可以参考第一方面或第二方面的描述,这里不再详述。
第七方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第一方面或第一方面的任意可能的实现方式所示的方法被执行;或者,使得上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第八方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第一方面或第一方面的任意可能的实现方式所示的方法被执行;或者,使得上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第九方面,本申请实施例提供一种计算机程序,该计算机程序在计算机上运行时,上述第一方面或第一方面的任意可能的实现方式所示的方法被执行;或者,上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
附图说明
图1是本申请实施例提供的一种时频资源的结构示意图;
图2a是本申请实施例提供的一种第二映射方式的方法示意图;
图2b和图2c是本申请实施例提供的一种网络编码示意图;
图3是本申请实施例提供的一种通信系统的架构示意图;
图4是本申请实施例提供的一种第二映射方式的方法示意图;
图5a至图5f是本申请实施例提供的一种第一映射方式的方法示意图;
图6a至图6d是本申请实施例提供的一种第一映射方式的方法示意图;
图7a至图7c是本申请实施例提供的一种第一映射方式的方法示意图;
图8a和图8b是本申请实施例提供的一种数据发送方法的流程示意图;
图9至图11是本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没 有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”。
本申请提供的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、物联网(internet of things,IoT)系统、窄带物联网系统(narrow band-internet of things,NB-IoT)、无线保真(wireless fidelity,WiFi)、第五代(5th generation,5G)通信系统或新无线(new radio,NR)以及未来的其他通信系统等。进一步的,该通信系统中包括接入网设备和终端设备,终端设备可以在接入网设备的覆盖范围内。该通信系统中终端设备和接入网设备可以交互,如终端设备向接入网设备发送上行信号,接入网设备向终端设备发送下行信号。
以下详细介绍本申请涉及的术语。
1、终端设备
本申请中的终端设备是一种具有无线收发功能的装置。终端设备可以与无线接入网(radio access network,RAN)中的接入网设备(或者也可以称为接入设备)进行通信。
终端设备也可以称为用户设备(user equipment,UE)、接入终端、终端(terminal)、用户单元(subscriber unit)、用户站、移动站、远方站、远程终端、移动设备、用户终端、用户代理或用户装置等。在一种可能的实现方式中,终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。在一种可能的实现方式中,终端设备可以是具有无线通信功能的手持设备、车载设备、可穿戴设备、传感器、物联网中的终端、车联网中的终端、第五代(5th generation,5G)网络以及未来网络中的任意形态的终端设备等,本申请对此不作限定。
可理解,本申请示出的终端设备与终端设备之间还可以通过设备到设备(device to device,D2D)、车与任何事物(vehicle-to-everything,V2X)或机器到机器(machine to machine,M2M)等技术进行通信,本申请对于终端设备与终端设备之间的通信方法不作限定。
2、窄带终端设备和宽带终端设备
终端设备可以分为窄带终端设备和宽带终端设备。示例性的,窄带终端设备可以有如下特点:数据包间隔长、数据包相对较少、数据包不确定、或数据包较小等。即窄带终端设备对带宽需求不高、对数据的速率需求也不高,能耗较低。相对于窄带终端设备来说, 宽带终端设备可以有如下特点:连续性业务居多、数据包较大。即宽带终端设备对带宽需求较高、对数据的速率需求较高、传输数据的可靠性要求也较高等。
可理解,以上所示的窄带终端设备和宽带终端设备的区分仅为示例,在具体实现中,还可以通过其他方式区分窄带终端设备和宽带终端设备,本申请对此不作限定。
3、接入网设备
本申请中的接入网设备可以是一种部署在无线接入网中,为终端设备提供无线通信服务的装置。该接入网设备也可以称为接入设备或(R)AN设备等。
该接入网设备可以包括但不限于:5G系统中的下一代基站(next generation node basestation,gNB)、LTE系统中的演进型基站(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved nodeB,或home node B,HNB)、基带单元(base band unit,BBU)、传输接收点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、小基站设备(pico)、移动交换中心,或者未来网络中的网络设备等。该接入网设备还可以为D2D、V2X或M2M中承载基站功能的设备等,本申请对接入网设备的具体类型不作限定。在不同的无线接入技术的系统中,具备接入网设备功能的设备的名称可能会有所不同。
可选的,在接入网设备的一些部署中,接入网设备可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)等。在接入网设备的另一些部署中,CU还可以划分为CU-控制面(control plane,CP)和CU-用户面(user plan,UP)等。在接入网设备的又一些部署中,接入网设备还可以是开放的无线接入网(openradioaccessnetwork,ORAN)架构等,本申请对于接入网设备的具体部署方式不作限定。
4、时频资源
示例性的,如图1所示,图1示出的是由7个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号(symbol)和12个子载波构成的一个资源块(resource block,RB)。图1中的资源单位(resource element,RE)可以表示为时间域上的一个OFDM符号和频率域上的一个子载波。可理解,图1所示的时频资源仅为示例,对于组成时频资源的时域单位和频域单位可能会随着通信技术的演进而发生变化,例如,在新无线(new radio,NR)中RB可以仅由12个子载波构成等,对此,本申请不作限定。
其中,一个RE可承载一个调制符号(modulation symbol),示例性的,该调制符号可通过正交相移键控(quadrature phase shift keying,QPSK)(对应一个RE承载2比特数据)、16正交振幅调制(quadrature amplitude modulation,QAM)(对应一个RE承载4比特数据)或64QAM(对应一个RE承载6比特数据),或更高阶的QAM调制得到等。
这里所示的调制符号可以理解为承载于一个RE上的数据,而上述OFDM符号可以理解为时域上的概念,如OFDM符号可以作为时间单位。
5、第二映射方式
第二映射方式包括:数据块对应的调制符号在时频资源中按照先频域后时域的顺序进行映射。这里所示的数据块对应的调制符号在时频资源中按照先频域后时域的映射方式,也可以理解为:先映射编号较小的调制符号,再映射编号较大的调制符号;同时,在第i个时域资源上从起始子载波开始逐子载波映射调制符号直至结束子载波;再在第i+1个时域资源上从起始子载波开始逐子载波映射调制符号直至结束子载波。这里所示的第i个时域资 源和第i+1个时域资源可以为数据块对应的时域资源,且第i个时域资源的编号小于第i+1个时域资源的编号。起始子载波为上述时频资源中的频域资源的起始子载波,结束子载波为上述时频资源中的频域资源的结束子载波。
换句话说,第二映射方式使得映射后的多个调制符号在分配的时频资源中的位置是按照先频域后时域的方式排列的。
示例性的,如以数据块为编码块(coding block,CB),时域单元为正交频分复用(orthogonal frequency division multiplexing,OFDM)符号为例。图2a示出的是第二映射方式的场景示意图。可理解,图2a中的符号可以理解为OFDM符号,f可以理解为频域资源中的频域资源,t可以理解为时域资源中的时域资源。如图2a所示,按照调制符号的编号从小到大的顺序,在OFDM符号1上从起始子载波开始逐子载波映射调制符号至结束子载波,再在OFDM符号2上从起始子载波开始逐子载波映射调制符号至结束子载波。依次类推,便可以数据块对应的调制符号映射至时频资源中,这里所示的时频资源即可以理解为接入网设备为终端设备分配的时频资源。
6、网络编码
一般的,混合自动请求重传(hybrid automatic request,HARQ)机制可以支持编码块组(code block group,CBG)或传输块(transimit block,TB)级别的重传。其中,一个TB可以包括多个CBG,一个CBG可以包括多个编码块(code block,CB)。
然而,在一些场景中,错误的TB中可能仅有少数CB发生错误,该情况下,如果进行CBG或TB级别的重传,则不仅会增加传输开销,而且还浪费资源。或者,在另一些场景中,即使重传了整个TB,可能该TB还会发生错误。该情况下,系统会判断此时的信道条件差,通过自适应调制编码(modulation and coding scheme,MCS)方案控制(adaptive MCS control,AMC)选择更加保守的MCS值。在干扰结束之后,MCS不会立马恢复到一个较高的阶数,而是一个渐进增长的趋势,该过程中保守的MCS参数会导致较低的数据速率,信道容量未能充分利用,因此自干扰之后一段较长时间内,系统的吞吐量和频谱效率偏低。
为了改善上述问题,网络编码技术如前向纠错编码(forward error correction,FEC)技术或后向纠错编码(backward error correction,BEC),通过对原始数据包进行网络编码并预先增加冗余达到了对抗干扰或噪声的目的,从而可以改善无线传输中的丢包、性能损失或频谱效率低下等问题。
示例性的,网络编码是一种通过编码系数矩阵对原始数据包进行编码得到编码数据包(也可以称为编码包)的技术。该编码系数矩阵中的系数可以在有限域中随机选取,如该有限域可以包括伽罗华域(galoisfield,GF)。如图2b所示,图2b示出的最右边的X K×1可以理解为由K个原始数据包形成的,包括K行1列的列向量,图2b示出的中间的A (K+R)×K可以理解为编码系数矩阵,该编码系数矩阵包括K+R行,K列,图2b示出的最左边的Y (K+R)×1可以理解为包括K+R行1列的列向量,且该列向量可以表示是根据K原始数据包以及编码系数矩阵编码获得的K+R个编码数据包。也就是说,通过对K个原数据包进行网络编码,可以得到K+R个编码数据包,对应的码率则可以表示为K/(K+R)。由此,发送端可以发送该K+R个编码数据包,接收端接收到K个线性无关的编码包时,即可正确译码并恢复出K个原数据包。可理解,上述K、R为正整数。可理解,图2b最右边示出的每个小方格可以表示一个原始数据包,图2b示例性地示出了6个大小相同的原始数据包。图2b中间示出的每个小方格可以表示一个系数,图2b示例性地示出了6行8列的系数矩阵。图2b最右边示出的每个 小方格可以表示一个编码数据包,图2b示例性地示出了8个大小相同的编码数据包。
如图2c所示,示例性的,发送端通过对6个大小相同的原始数据包进行网络编码,可以获得7个编码数据包(图2c是以编码包示出的)。该7个编码数据包可以理解为6个原始数据包和一个冗余编码包(也可以称为冗余包),该一个冗余编码包可以根据上述6个原始数据包编码得到。通过该一个冗余编码包,即使TB中有一个或多个数据包被接收错误,接收端仍可以通过接收正确的编码包以及一个冗余编码包,正确译码出上述6个原始数据包。即通过网络编码技术,发送端无需进行HARQ重传或者CBG重传等,保证了更高的MCS值,改善了性能损失或频谱效率低下等问题。
可理解,图2c示出的H即为每个编码包的头(heade,H)信息。
可理解,图2c所示的根据6个原始数据包编码生成7个编码数据包仅为示例,在具体实现中,还可以根据6个原始数据包编码生成8个编码数据包或9个编码数据包等,本申请实施例对此不作限定。
可理解,图2c所示的网络编码方法仅是一种示例,在具体实现中,通过网络编码技术,还可以生成其他形式的编码数据包。示例性的,上述一个冗余编码包还可以根据上述6个原始数据包中的一个原始数据包编码得到等。也就是说,冗余编码包可以根据原始数据包中的一个或多个编码得到。
可理解,在发送端生成7个编码数据包之后,该发送端还可以将该7个编码数据包承载于TB对应的CB中。示例性的,一个CB中可以包括一个或多个编码数据包。如以图2c为例,7个编码数据包可以包含于7个CB中,或者,7个编码数据包也可以包含于小于7个CB中。
本申请中,根据原始数据包生成的冗余编码包,可以在发送端发送该原始数据包时,随着该原始数据包一起被发送出去。或者,该冗余编码包还可以基于接收端的反馈生成等,本申请对此不作限定。换句话说,本申请示出的冗余编码包可以在无反馈的情况下,发送端直接生成该冗余编码包,或者,发送端还可以基于接收端的反馈信息生成该冗余编码包。该反馈信息用于反馈一个或多个数据包是否被正确接收。
结合第二映射方式,窄带终端设备对宽带终端设备的干扰,可能存在于多个CB中。由于每个CB是独立进行网络编码的,因此宽带终端设备可能会无法更准确的添加冗余信息,使得宽带终端设备难以通过网络编码提升频谱效率。同时,过多添加冗余,不仅无法提升频谱效率,而且还可能会降低频谱效率。
作为示例,图3是本申请实施例提供的一种通信系统的架构示意图。如图3所示,该通信系统包括接入网设备,图3中的接入网设备是以基站为例示出的。以及该通信系统还可以包括终端设备,图3中的终端设备是以智能手机、智能眼镜、智能手环以及智能手表为例示出的。其中,智能手机和智能眼镜可以理解为宽带终端设备,智能手表和智能手环可以理解为窄带终端设备。
可理解,图3示出的接入网设备覆盖范围内的终端设备的个数仅为示例。对于终端设备和接入网设备的具体说明,可参考上文,这里不再详述。
结合下文示出的方法实施例,图3所示的通信系统中,接入网设备可以用于执行图8a所示的步骤801中的发送步骤,以及图8a所示的步骤804中的接收步骤;终端设备可以用于执行图8a所示的步骤802和步骤803。或者,接入网设备可以用于执行图8b所示的步骤811中的发送步骤,图8b所示的步骤813,以及图8b所示的步骤814中的发送步骤;终端设备可 以用于执行图8b所示的步骤812,以及图8b所示的步骤814中的接收步骤。
基于图3所示的系统架构,窄带终端设备和宽带终端设备可以同时接入到接入网设备,该情况下,窄带终端设备和宽带终端设备的时频资源可以有重叠。由此,避免了窄带终端设备压缩宽带终端设备的可用时频资源。另外,由于窄带终端设备的数据包不确定,或数据包较小,因此如果窄带终端设备不与带宽终端设备的时频资源重叠,那么该窄带终端设备的时频资源上会经常没有数据传输。因此,通过保证窄带终端设备和宽带终端设备的时频资源重叠,还有效改善了资源浪费的情况。
但是,窄带终端设备和宽带终端设备的时频资源有重叠时,窄带终端设备会对宽带终端设备造成干扰。如以上文示出的第二映射方式为例,如图4所示,重叠的时频资源可以理解为窄带终端设备使用的时频资源,也可以理解为窄带终端设备与宽带终端设备重叠的时频资源。从图4可以看出,当宽带终端设备采用第二映射方式时,窄带终端设备对宽带终端设备的干扰存在于CB2、CB5以及CB7中等。
换句话说,根据第二映射方式,窄带终端设备对宽带终端设备的干扰往往会存在于多个CB中。进一步的,由于干扰往往存在于多个CB中,导致该多个CB被错误接收时,宽带终端设备需要重传整个TB或多个CBG等,影响频谱效率。
鉴于此,本申请提供了一种数据发送方法,该方法可以改善窄带终端设备对宽带终端设备的干扰,减少宽带终端设备受干扰的数据块的数量。进一步地,还能够改善宽带终端设备重传整个TB或多个CBG的情况,提高频谱效率。另外,该宽带终端设备还可以根据以上所示的网络编码方法对原始数据包进行编码,进一步改善了进行HARQ重传或CBG重传的情况,提高频谱效率。同时,一个或多个冗余编码包可以包含于受干扰大的CB中,以及原始数据包可以包含于收干扰小的CB中,从而可以尽最大程度地保证原始数据包被正确接收。或者,冗余编码包可以包含于受干扰小的CB中,一个或多个原始数据包包含于受干扰大的CB中,从而保证冗余编码包被正确接收。该情况下,即使原始数据包被错误接收,仍可以根据冗余编码包恢复出被错误接收的数据包。通过上述实现方式,可以提高数据块传输的可靠性以及网络频谱效率。可理解,本申请提供的方法不仅仅可以应用于窄带终端设备与宽带终端设备,还可以应用于时频资源存在重叠的其他类型的终端设备等,这里不再详述。
在介绍本申请提供的方法之前,以下先详细介绍本申请提供的第一映射方式。
在介绍第一映射方式之前,先对图5a至图5e、图6a、图6b、图6d、图7a至图7c统一说明,分别如下所示:
1、图中最大的矩形(即图中的大方框)表示接入网设备为终端设备配置的用于传输TB的时频资源。该时域资源的频域资源包括起始子载波(或称为起点子载波等)和结束子载波(或称为截止子载波、终止子载波等),该时域资源的时域资源包括起始符号(如图中的起始OFDM符号)和结束符号(如图中的结束OFDM符号)。
2、时频资源被划分为第一时频资源和第二时频资源。其中,虚线部分表示终端设备与其他终端设备重叠的时频资源,即第一时频资源。例如,终端设备可以为宽带终端设备,其他终端设备可以为窄带终端设备,则虚线部分可以为窄带终端设备与宽带终端设备重叠的时频资源。该第一时频资源与时频资源的时域资源相同。
3、最大的矩形除虚线部分之外的部分可以称为第二时频资源,该第二时频资源与时频资源的时域资源相同。同时,第二时频资源与第一时频资源的频域资源不重叠,即第二 时频资源与第一时频资源在频域上不重叠。
4、横轴表示时域资源,即大方框在横轴方向的边可以用于表示时频资源中的时域资源。纵轴表示频域资源,即大方框在短轴方向的边可以用于表示时频资源中的频域资源,且纵轴从上向下表示的是从低频到高频。
5、图中示出的CB1可以理解为CB1对应的调制符号,CB2可以理解为CB2对应的调制符号,以此类推。可理解,以下是以数据块为CB为例示出的,对于数据块为CBG的说明,可对应参考数据块为CB的说明,对此,本申请实施例不作赘述。
可理解,下文所示的调制符号的编号是为了表示调制符号的先后顺序,如该调制符号的编号也可以称为调制符号的索引等。一般的,组成数据块的信息比特之间会有编号,因此,在将信息比特映射成调制符号时,该调制符号也可以有编号。如该调制符号的编号可以是在对信息比特进行编码处理时获得的。可理解,本申请实施例对于该调制符号的编号的确定方式不作限定。
以下将结合附图详细介绍本申请提供的第一映射方式。
实现方式一、
第一映射方式包括:
先映射编号较小的调制符号,再映射编号较大的调制符号;
在第i个频域资源上从起始OFDM符号开始逐OFDM符号映射调制符号直至结束OFDM符号,再在第i+1个频域资源上从起始OFDM符号开始逐OFDM符号映射调制符号直至结束OFDM符号。该第i个频域资源与该第i+1个频域资源为分配的时频资源的频域资源中相邻的两个频域资源,且第i个频域资源的编号小于第i+1个频域资源。该第i个频域资源和该第i+1个频域资源的大小可以相同。
或者,先映射第i个频域资源上从起始OFDM符号开始的N个OFDM符号,再映射第i+1个频域资源上从所述起始OFDM符号开始的N个OFDM符号。该N个OFDM符号即为分配的时频资源中的时域资源的OFDM符号的数量。
换句话说,第一映射方式使得映射后的多个调制符号在分配的时频资源中的位置是按照先时域后频域的方式排列的。如在第i个频域资源上按照时域先后顺序从起始OFDM符号开始逐OFDM符号映射调制符号直至结束OFDM符号;再在第i+1个频域资源上按照时域先后顺序从起始OFDM符号开始逐OFDM符号映射调制符号直至结束OFDM符号。
示例性的,如图5a所示,按照调制符号从小到大的顺序,第1个频域资源上可以承载CB1对应的调制符号,以及CB2对应的部分调制符号;第2个频域资源上可以承载CB2对应的部分调制符号,以及CB3对应的部分调制符号;第3个频域资源上可以承载CB3对应的部分调制符号,以及CB4对应的调制符号等。
可理解,在分配的时域资源上映射调制符号时,该分配的时域资源中不可用的RE上可以不映射调制符号。该不可用的RE可以用于承载参考信号序列,如解调参考信号(demodulation reference signal,DMRS)序列等。为便于描述,本申请示出的图5a至图5f、图6a至图6d、图7a至图7c均是以分配的时域资源上均可以映射调制符号为例描述的,但是该分配的时域资源中不可用的RE上也可以不映射调制符号。
作为示例,第一时频资源的频域资源的大小可以为第i个频域资源的大小的整数倍,如图5a至图5c所示。或者,第i个频域资源的大小可以为固定值,如图5d。
例如,如图5a所示,第i个频域资源的大小等于第一时频资源的频域资源的大小。
又例如,如图5b所示,第i个频域资源的大小还可以大于第一时频资源的频域资源的大小。
从图5a或图5b中可以看出,第i个频域资源的大小大于或等于第一时频资源的频域资源的大小,可以最大程度减少受干扰的CB数量。
又例如,如图5c所示,第i个频域资源的大小可以为第一时频资源的频域资源的大小的一半,即第一时频资源的频域资源的大小为第i个频域资源的大小的2倍。
作为示例,该第i个频域资源可以以RE为单位,也可以以RB为单位等,本申请对此不作限定。当图5a至图5c中的第i个频域资源(如第1个频域资源或第2个频域资源等)的大小为1个RE时,对于图5a至图5c的说明还可以参考下文对图5e的描述。当图5a至图5c中的第i个频域资源的大小不为1个RE,如大于1个RE时,对于图5a至图5c的说明还可以参考下文对图5d的描述。其中,第i个频域资源的大小大于1RE可以包括该第i个频域资源的大小为多个RE,或多个RB(如为6RB)等。
图5e是本申请实施例提供的另一种映射方式示意图。如图5e所示,第i个频域资源的大小为1个RE,第i+1个频域资源的大小也为1个RE。如图5e中的第1个频域资源的大小至第5个频域资源的大小均为1个RE(仅为示例,分配的时域资源中还可以包括更多的频域资源)。从图5e可以看出,在第1个子载波上从起始OFDM符号开始直至结束OFDM符号映射的均为CB1对应的部分调制符号。即在第1个子载波上从起始OFDM符号映射至结束OFDM符号之后,CB1对应的调制符号仍有剩余,则可以再在第2个子载波上从起始OFDM符号开始映射CB1对应的调制符号直至将CB1对应的调制符号映射完。接着,在第2个子载波上从CB1对应的调制符号的映射结束位置开始映射CB2的调制符号直至结束OFDM符号,以此类推,则可以将多个数据块对应的调制符号依次映射至分配的时频资源上。
图5d是本申请实施例提供的又一种映射方式示意图。如图5d所示,第i个频域资源的大小可以为6个RB对应的频域资源的大小(或者称为第i个频域资源的大小为6RB)。如图5d所示,第一映射方式可以为:在第一个6RB上,按照时域升序从起始OFDM符号开始逐OFDM符号映射调制符号直至结束OFDM符号;再在第二个6RB上,按照时域升序从起始OFDM符号开始逐OFDM符号映射调制符号直至结束OFDM符号,以此类推,直到将多个数据块对应的调制符号均映射至分配的时频资源上。或者,图5d所示的方式还可以理解为:在第一个6RB上,先频域逐子载波映射调制符号,然后再逐OFDM符号映射调制符号,直至该6个RB上的N个OFDM符号上均(N为时频资源中的时域符号数量)映射满调制符号后,再映射下一个6RB上的N个OFDM符号,以此类推。这里所示的6RB仅为示例,该第i个频域资源的大小还可以为其他值等,本申请对此不作限定。
或者,图5d所示的方式还可以理解为:在第一OFDM符号上,按照频域顺序(升序)逐子载波映射调制符号,直至预设数量的频域资源所对应的结束子载波,再在第二OFDM符号上按照频域顺序逐子载波映射调制符号,直至预设数量的频域资源所对应的结束子载波。该第一OFDM符号和第二OFDM符号为数据块对应的相邻的OFDM符号。
可理解,这里所示的预设数量的频域资源可以理解为上述6RB对应的频域资源。换句话说,在第一OFDM符号上,按照第i个频域资源的频域顺序逐子载波映射调制符号,直至该第i个频域资源的结束子载波,再在第二OFDM符号上,按照第i个频域资源的频域顺序逐子载波映射调制符号,直至该第i个频域资源的结束子载波。
图5f示出的是图5d中第1个频域资源中CB1对应的调制符号的时频资源。可理解,图5f 中是以CB1对应的调制符号占用7个OFDM符号为例示出的,但是,不应将其理解为对本申请实施例的限定。如在OFDM符号1上,按照6RB的频域顺序从该6RB的起始子载波开始,逐子载波映射CB1对应的调制符号,直至该6RB的结束子载波(如图5f中的箭头1所示)。接着,在OFDM符号2上,按照6RB的频域顺序从该6RB的起始子载波开始,逐子载波映射CB1对应的调制符号,直至该6RB的结束子载波(如图5f中的箭头2所示)。根据该映射方式,便可以将CB1对应的调制符号映射至对应的时频资源上(如图5f中示出的CB1对应的时频资源)。可理解,图5f中的箭头3仅仅是为了说明CB1对应的调制符号,从OFDM符号1至OFDM符号2的映射方向。可理解,图5f中示出的OFDM符号1仅为示例,分配的时频资源的起始OFDM符号还可能为其他编号等,本申请对此不作限定。
本申请实施例中,第i个频域资源的大小是可以被配置的,即该第i个频域资源的大小可以被灵活的配置,从而接入网设备不仅能够更灵活的指示该第i个频域资源的大小;而且接入网设备还可以根据终端设备对数据块的时延要求设置该第i个频域资源的大小。例如,终端设备对某些数据块(如图5d中的CB1)的时延要求较高,该情况下,可以适当压缩该某些数据块被接收的时延。即第i个频域资源的大小可以相对较大,由此一个CB占用的时域资源就相对较小,从而可以减少终端设备接收CB的时延。
可理解,由于第一时频资源是由接入网设备为终端设备配置的,因此第一时频资源的频域资源的大小与该6RB的大小关系,本申请实施例不作限定。例如,第一时频资源的频域资源的大小可以小于6RB,也可以大于6RB,也可以等于6RB。
图5a至图5e中,尽管分别示出了第一时频资源和第二时频资源,但是通信装置在将多个数据块对应的调制符号映射至时频资源时,可以按照调制符号编号从小到大的顺序依次将调制符号映射至时频资源。
然而,下文示出的图6a、图6b、图6d、图7a至图7c中,通信装置可以分别将数据块对应的调制符号映射至第一时频资源或第二时频资源。即第一时频资源和第二时频资源可以单独进行数据块对应的调制符号的映射。
实现方式二、
第一映射方式包括:
在第二时频资源中先映射编号较小的调制符号,再映射编号较大的调制符号;
第一复数个调制符号在第一时频资源中按照先频域后时域的映射方式;
以及第二复数个调制符号在第二时频资源中按照先时域后频域的映射方式。
或者,第一映射方式包括:
在第二时频资源中先映射编号较小的调制符号,再映射编号较大的调制符号;
第一复数个调制符号在第一时频资源中按照先时域后频域的映射方式;
以及第二复数个调制符号在第二时频资源中按照先时域后频域的映射方式。
换句话说,第一映射方式使得映射后的第二复数个调制符号在第二时频资源中的位置是按照先时域后频域的方式排列的。以及第一映射方式还可以使得映射后的第一复数个调制符号在第一时频资源中的位置是按照先时域后频域的方式排列的;或者,第一映射方式还可以使得映射后的第一复数个调制符号在第一时频资源中的位置是按照先频域后时域的方式排列的。
对于实现方式一来说,可能存在一个数据块(或多个数据块)对应的调制符号既被映射于第一时频资源,又被映射于第二时频资源。举例来说,如图5a所示,CB6对应的调制 符号既被映射于第一时频资源,又被映射于第二时频资源中。又如图5d所示,CB6对应的调制符号,以及CB7对应的调制符号既被映射于第一时频资源,又被映射于第二时频资源。然而,该实现方式二中,由于第一时频资源和第二时频资源可以单独地进行数据块对应的调制符号的映射,因此,该种实现方式中,某个数据块对应的调制符号可以被单独映射于第一时频资源,或者,被单独映射于第二时频资源。有效改善了某个数据块对应的调制符号可能既会被映射于第一时频资源,又会被映射于第二时频资源的情况,因此,通过实现方式二,还能够进一步改善受干扰的数据块数量,如可以进一步减少宽带终端设备受干扰的数据块的数量。可理解,关于先时域后频域或先频域后时域的具体说明,可参考上文的描述,这里不再赘述。
如图6a和图6b所示,CB8对应的调制符号即为上述第一复数个调制符号,CB1至CB7对应的调制符号即为上述第二复数个调制符号。同时,图6a和图6b中是以第i个频域资源的大小大于1RE为例示出的,例如,第i个频域资源的大小可以为6RB。图6a是以第一时频资源中第一复数个调制符号按照先频域后时域的映射方式排列的,对于先频域后时域的映射方式,可以参考上文关于图2a的描述,这里不再详述。图6b是以第一时频资源中第一复数个调制符号按照先时域后频域的映射方式排列的,对于先时域后频域的映射方式,可以参考上文图5a至图5f的描述,这里不再详述。可理解,在第一时频资源中第一复数个调制符号按照先时域后频域的映射方式排列时,该第一时频资源中的映射方式可以以RE为单位进行映射(如图5e);或者,该第一时频资源中的映射方式还可以以RB为单位进行映射(如图5d)。
示例性的,如图6a所示,对于图6a示出的第1个频域资源至第3个频域资源以及第5个频域资源等的映射方式,可以参考图5d的相关描述,这里不再赘述。这里详细介绍第4个频域资源上的映射方式。该第4个频域资源中不包括第一时频资源中的频域资源,即第4个频域资源中不包括CB8占用的频域资源。
如图6a所示,在按照调制符号的编号从小到大的顺序将调制符号映射至第4个频域资源时,该第4个频域资源可以用于承载CB5对应的部分调制符号,以及CB6对应的部分调制符号。如图6c所示,在起始OFDM符号(如OFDM符号1)上,按照频域顺序从第4个频域资源的起始子载波开始,逐子载波映射调制符号直至第4个频域资源的结束子载波。然后,在OFDM符号2上,按照频域顺序从第4个频域资源的起始子载波开始,逐子载波映射调制符号,直至第4个频域资源的结束子载波。如图6c所示,第4个频域资源的部分频域资源的大小与第4个频域资源的另一部分频域资源的大小的和可以为6RB。换句话说,第4个频域资源与第一时频资源的频域资源不重叠。也就是说,按照频域顺序从第4个频域资源的起始子载波开始逐子载波映射调制符号直至第4个频域资源的结束子载波时,可以跳过第一时频资源的频域资源。即该第4个频域资源中是不包括第一时频资源的频域资源的。
从图6a和图6b中可以看出:通信装置在将调制符号映射至时频资源的过程中,可以将第一时频资源和第二时频资源单独进行调制符号的映射。示例性的,通信装置可以先跳过第一时频资源,将该第一时频资源之外的时频资源以先时域后频域的方式将第二复数个映射至第二时频资源。然后在第一时频资源中,可以以先时域后频域的方式,或者先频域后时域的方式将第一复数个调制符号映射至第一时频资源中。即第一时频资源内可以单独进行调制符号的排列。示例性的,通信装置还可以先将第一复数个调制符号映射至第一时频资源,然后再将第二复数个调制符号映射至第二时频资源。
可理解,图6a和图6b所示的第一时频资源中的CB8仅为示例,该第一时频资源中还可以承载编号最小的CB对应的调制符号(如CB1对应的调制符号);或者,该第一时频资源还可以承载编号最大的CB对应的调制符号,该编号最大的CB对应的调制符号未在图6a和图6b中示出。
示例性的,第i个频域资源的大小还可以为1个RE,第i+1个频域资源也可以为1个RE。如图6d所示,第1个频域资源至第5个频域资源均可以为1个RE。该情况下,如仍以第4个频域资源为例,在第4个频域资源上,可以从起始OFDM符号开始逐符号映射调制符号直至结束OFDM符号。接着,再在第5个频域资源上,从起始OFDM符号开始逐符号映射调制符号直至结束OFDM符号。
可理解,对于图6d的说明可以参考上文关于图5e或图6a或图6b的描述等,这里不再详述。
实现方式三、
第一映射方式包括:
在第二时频资源中先映射编号较小的调制符号,再映射编号较大的调制符号;
第三复数个调制符号在第一时频资源中按照先频域后时域的映射方式;
以及第四复数个调制符号在第二时频资源中按照先频域后时域的映射方式。
或者,第一映射方式包括:
在第二时频资源中先映射编号较小的调制符号,再映射编号较大的调制符号;
第三复数个调制符号在第一时频资源中按照先时域后频域的映射方式;
以及第四复数个调制符号在第二时频资源中按照先频域后时域的映射方式。
换句话说,第一映射方式使得映射后的第四复数个调制符号在第二时频资源中的位置是按照先频域后时域的方式排列的。以及第一映射方式还可以使得映射后的第三复数个调制符号在第一时频资源中的位置是按照先时频后频域的方式排列的;或者,第一映射方式还可以使得映射后的第三复数个调制符号在第一时频资源中的位置是按照先频域后时域的方式排列的。
第四复数个调制符号在第二时频资源中的映射方式包括:在第i个时域资源上从第二时频资源的起始子载波开始逐子载波映射调制符号直至第二时频资源的结束子载波。再在第i+1个时域资源上从第二时频资源的起始子载波开始逐子载波映射调制符号直至第二时频资源的结束子载波。可理解,关于第二时频资源的映射方式还可以参考上文图2a的相关描述,关于第一时频资源的映射方式还可以参考上文图6a至图6d的相关描述,这里不再详述。需要说明的是,在将第四复数个调制符号按照先频域后时域的顺序,依次从第二时频资源的起始子载波映射至第二时频资源的结束子载波的过程中,可以跳过第一时频资源的频域资源,将时频资源中除第一时频资源之外的时频资源按照先频域后时域的方式映射。
如图7a和图7b所示,CB6对应的调制符号可以理解为上述第三复数个调制符号,CB1至CB5可以理解为上述第四复数个调制符号。第i个时域资源的大小可以为1个OFDM符号,第i+1个时域资源的大小也可以为1个OFDM符号。可理解,图7a和图7b中示出的起始OFDM符号为OFDM符号1仅为示例。
本申请实施例中,通信装置在将调制符号映射至时频资源的过程中,也可以将第一时频资源和第二时频资源单独进行调制符号的映射。
对于实现方式三来说,如接入网设备通过图7a或图7b所示的映射方式,将多个数据块 对应的调制符号映射至时频资源,并发送该多个数据块对应的调制符号之后,终端设备在第1个OFDM符号(以及第2个OFDM符号等)就可以对部分数据块进行解调或译码等。即通过实现方式三所示的映射方式,终端设备无需把时域资源的时域资源均接收后,就可以在第1个OFDM符号上接收部分数据块,以及在第2个OFDM符号上接收部分数据块等,降低了终端设备接收数据块的时延。可理解,对于该说明,同样适用于终端设备发送多个数据块对应的调制符号,接入网设备接收该多个数据块对应的调制符号的实施例。
可理解,图6a至图6d,以及图7a和图7b是以第二时频资源被第一时频资源划分为两部分为例示出的,但是第一时频资源还可以位于分配的时频资源的边缘。如图7c所示,第二时频资源未被第一时频资源划分为两部分。
以下将结合上文示出的第一映射方式,说明本申请提供的数据发送方法。本申请提供的数据发送方法可以应用于终端设备,或者,本申请实施例提供的数据发送方法还可以应用于接入网设备。
以下先以终端设备为例说明本申请实施例提供的数据发送方法。图8a是本申请实施例提供的一种数据发送方法的流程示意图,如图8a所示,该方法包括:
在一种可能的实现方式中,步骤802或步骤803之前,图8a所示的方法还包括:
801、接入网设备向终端设备发送第一指示信息,对应的,终端设备接收该第一指示信息,该第一指示信息用于指示第一映射方式。
可选的,该第一指示信息可以包含于无线资源控制(radio resource control,RRC)信令中。
例如,在RRC信令中的通用(RRC-common)信令中可以包括该第一指示信息。如在物理上行共享信道(physical uplink shared channel,PUSCH)的通用配置(PUSCH-configcommon)信令中增加映射类型(MappingPattern),该映射类型即为第一指示信息。通过增加映射类型可以指示配置的PUSCH的映射方式。
示例性的,RRC信令的格式可以如下所示:
PUSCH-ConfigCommon::=SEQUENCE{
MappingPattern ENUMERATED{TypeA,TypeB}
CB-MappingTypeB-RB INTEGER{1..8}
Interferenced-CBs CB-ID(or Frequency Range)
}
上述TypeA表示第二映射方式,TypeB表示第一映射方式。CB-MappingTypeB-RB表示第一映射方式时的第i个频域资源的大小,如RB的范围为1至8之内的任意整数。Interferenced-CBs表示第一复数个调制符号(或第三复数个调制符号)的标识(identifiy,ID),或第一时频资源的频域资源。可理解,该typeB所对应的具体映射方式,可以预先定义。例如,该typeB可以对应上述三种实现方式中的任一项。或者,该第一映射方式还可以分为typeB-1(对应上述实现方式一)、typeB-2(对应上述实现方式二)或typeB-3(对应上述实现方式三)等。
示例性的,该RRC信令中可以包括Interferenced-CBs(Frequency Range)。该情况下, 由于该RRC信令中不包括CB-MappingTypeB-RB,即未指示第i个频域资源的大小,则表示映射类型默认为第二映射方式。即通过该种方式,可以隐含的指示第二映射方式。或者,该情况下,尽管RRC信令中不包括CB-MappingTypeB-RB,也可以默认第i个频域资源的大小为1RE,以及映射类型为第一映射方式。
示例性的,该RRC信令中可以包括Interferenced-CBs(Frequency Range)和CB-MappingTypeB-RB。该情况下,由于RRC信令不仅包括第一时频资源的频域资源,而且还包括第i个频域资源的大小,因此,映射类型可以默认为第一映射方式。
示例性的,该RRC信令中可以包括MappingPattern(typeB)、Interferenced-CBs(Frequency Range)和CB-MappingTypeB-RB。该情况下,RRC信令明确指示映射类型为第一映射方式。
可理解,以上示出的各个例子中,RRC信令中还可以包括Interferenced-CBs(CB-ID),由此,通过该CB-ID参数指示第一复数个调制符号对应的CB或第三复数个调制符号对应的CB。
示例性的,该RRC信令中可以包括MappingPattern(typeA)。该情况下,由于RRC信令指示的映射类型为第二映射方式,因此,该RRC信令中不包括CB-MappingTypeB-RB和Interferenced-CBs。
又例如,在RRC信令中的专用(RRC-dedicated)信令中可以包括该第一指示信息。如在RRC-dedicated信令中的PUSCH配置(PUSCH-Config)信令中配置UE专用信令(UE-specific)增加映射类型(MappingPattern)。或者,UE-specific信令中还可以包括第一映射方式的第i个频域资源的大小等。
可选的,第一指示信息还可以包含于下行控制信息(downlink control information,DCI)中。例如,在DCI format 0_0/0_1的通用(common)信令或UE-specific DCI中新增加指示域,通过该指示域指示该DCI调度的PUSCH的第一映射方式。
可选的,第一指示信息还可以包含于MAC CE信令中,例如可以通过相关协议中保留的逻辑信道传输携带上述第一指示信息的MAC CE信令。
为便于描述,下文将第一时频资源中承载的数据块称为第一数据块,将第二时频资源中承载的数据块称为第二数据块。结合上文提供的方法,如第一复数个调制符号对应的CB可以称为第一数据块,第二复数个调制符号对应的CB可以称为第二数据块。又如第三复数个调制符号对应的CB也可以称为第一数据块,第四复数个调制符号对应的CB也可以称为第二数据块。又如图5a示出的CB7可以称为第一数据块,CB1至CB5可以称为第二数据块,至于CB6属于第一数据块还是第二数据块,本申请实施例不作限定。为便于描述,下文将CB6称为第一数据块。同样的,图5b示出的CB6和CB7可以称为第一数据块,图5c示出的CB5至CB7可以称为第一数据块,图5d示出的CB6至CB8可以称为第一数据块,图5e示出的CB4可以称为第一数据块,图6b示出的CB8可以称为第一数据块。
本申请实施例还提供了以下几种方法指示一个或多个第一数据块或第一时频资源的频域资源。
实现方式一、
上述第一指示信息中包括用于指示上述一个或多个第一数据块的指示信息。例如,该第一指示信息中包括一个或多个第一数据块的标识,或者,包括一个或多个第一数据块的序号等。
如以图5a为例,第一指示信息中可以包括标识6和标识7。如以图7a为例,第一指示信 息中可以包括标识6。
该实现方式一中,通过将第一映射方式和第一数据块承载于一个指示信息中,不仅实现简单,而且明式指示一个或多个第一数据块,终端设备可以明确获知该一个或多个第一数据块受干扰较大。
实现方式二、
接入网设备向终端设备发送第二指示信息,对应的,终端设备接收该第二指示信息,该第二指示信息用于指示一个或多个第一数据块。
该第二指示信息可以包含于RRC信令、DCI或MAC CE信令中等。例如,第一指示信息可以包含于RRC信令中,第二指示信息可以包含于DCI中。
该实现方式二中,接入网设备分别通过第一指示信息和第二指示信息的方式指示第一映射方式和第一数据块,由此在第一映射方式不需要更新时,接入网设备仅指示一个或多个第一数据块即可,可以节省信令开销。
实现方式三、
上述第一指示信息中包括用于指示第一时频资源的频域资源的指示信息。
该实现方式三中,通过指示第一时频资源的频域资源,终端设备可以根据该指示信息确定将某些数据块承载于该第一时频资源。
示例性的,该第一指示信息中可以包括第一时频资源的频域资源的起始位置(如起始子载波)和该第一时频资源的频域资源的大小(如频域资源的长度)。示例性的,第一时频资源的频域资源的起始位置和大小可以通过一个表格联合指示出,例如一张协议中定义的表格,或接入网设备为宽带终端设备预配置的表格,例如通过RRC信令配置的表格,如表1所示。或者,第一时频资源的起始位置和大小可以通过分别指示的方式指示,如表2所示。如表1和表2是以DCI中包括第一指示信息为例说明起始位置和大小的指示方式的。可理解,表2中受干扰频段即为本申请实施例中的第一时频资源的频域资源。
表1
DCI字段 比特数 含义
频域指示信息 X 指示RRC中频域资源表格中的一行
表2
Figure PCTCN2020140132-appb-000001
可理解,表1和表2仅为示例,不应理解为对本申请实施例的限定。
该实现方式三中,通过指示第一时频资源的频域资源,可以使得终端设备能够自主决定承载于第一时频资源中的数据块(如第一数据块)。另外,通过第一指示信息同时指示第一映射方式和第一时域资源的频域资源,可使得终端设备能够同时获得该第一映射方式 和第一时域资源的频域资源。
实现方式四、
接入网设备向终端设备发送第三指示信息,对应的,终端设备接收该第三指示信息,该第三指示信息用于指示第一时频资源的频域资源。
可理解,对于该第三指示信息的具体说明可适应性参考第一指示信息,这里不再详述。
一般的,第一时频资源的频域资源不会经常发生变化,因此该实现方式四中,接入网设备通过分别指示第一映射方式和第一时频资源的频域资源,可以达到节省信令开销的效果。
802、终端设备生成多个数据块。
一般的,一个传输块(transmit block,TB)可以包括多个编码块组(code block group,CBG),一个CBG可以包括多个编码块(code block,CB)。因此,本申请实施例中的多个数据块可以理解为由TB(如一个TB或多个TB)得到的多个数据块,该数据块可以包括CB或CBG。例如,一个TB可以划分为多个CB,或者,一个TB可以划分为多个CBG。
结合上文示出的网络编码方法,终端设备生成多个数据块的方法如:终端设备根据多个原始数据包生成多个编码数据包,该多个编码数据包中包括一个或多个冗余编码包。该多个编码数据包包含于上述多个数据块中,如一个数据块中可以包括一个或多个编码数据包。
在一种可能的实现方式中,终端设备可以依次将多个编码数据包映射于多个数据块中。该情况下,第一时频资源中发送的数据块是否包括冗余编码包,本申请实施例不作限定。示例性的,终端设备可以依次将原始数据包和冗余编码包映射于多个数据块中。该情况下,原始数据包可以包含于编号较小的数据块中,而冗余编码包可以包含于编号较大的数据块中。示例性的,终端设备可以依次将冗余编码包和原始数据包映射于多个数据块中。该情况下,冗余编码包可以包含于编号较小的数据块中,原始数据包可以包含于编号较大的数据块中。
对于该种实现方式来说,终端设备只需要将多个编码数据包依次映射于多个数据块中,实施简单。同时,即使接入网设备错误接收了某个数据块,或者,即使接入网设备错误接收了数据块中的某个数据包,该接入网设备仍可以根据冗余编码包恢复出错误接收的数据包。
在另一种可能的实现方式中,终端设备可以将一个或多个冗余编码包映射于一个或多个第一数据块中,原始数据包映射于一个或多个第二数据块中。也就是说,终端设备可以将一个或多个冗余编码包映射于第一时频资源上,将一个或多个原始数据包映射于第二时频资源上。该情况下,由于原始数据包映射于第二时频资源上,而第一时频资源为终端设备与其他终端设备重叠的时频资源,由此,能够尽最大程度地保证第二时频资源上传输的原始数据包被正确接收。从而提高了第二数据块被传输的可靠性,改善了重传TB或CBG的情况,提高了频谱效率。本申请实施例中,关于原始数据包与冗余编码包的关系可以如下文所示,这里先不详述。
结合上述示出的实现方式二,接入网设备通过向终端设备指示一个或多个第一数据块,该终端设备便可以将冗余编码包映射于该一个或多个第一数据块中。而当接入网设备未向终端设备指示该一个或多个第一数据块时,该终端设备可以将编码得到的冗余编码包映射于某个数据块中,然后将该某个数据块映射于第一时频资源上。
在又一种可能的实现方式中,终端设备可以将原始数据包映射于一个或多个第一数据块中,一个或多个冗余编码包映射于一个或多个第二数据块中。也就是说,终端设备可以将一个或多个原始数据包映射于第一时频资源上,将一个或多个冗余编码包映射于第二时频资源上。该情况下,即使原始数据包被错误接收,终端设备仍可以根据冗余编码包恢复出被错误接收的数据包。换句话说,即使第一数据块被错误接收,终端设备仍可以根据第二数据块中包括的冗余编码包恢复出该被错误接收的第一数据块。
结合上述示出的实现方式二,接入网设备通过向终端设备指示一个或多个第一数据块,该终端设备便可以将一个或多个原始数据包(包括部分原始数据包)映射于该一个或多个第一数据块中。而当接入网设备未向终端设备指示该一个或多个第一数据块时,该终端设备可以将一个或多个原始数据包映射于某个数据块中,然后将该某个数据块映射于第一时频资源上。
冗余编码包与原始数据包的关系可以如下所示:
冗余编码包可以包括根据一个或多个原始数据包编码得到的信息。换句话说,冗余编码包可以包括根据全部原始数据包编码得到的信息。或者,冗余编码包可以包括根据全部原始数据包中的部分原始数据包编码得到的信息。这里所示的全部原始数据包可以理解为需要包含于上述多个数据块中的数据包。
示例性的,以6个原始数据包为例,该冗余编码包可以包括根据该6个原始数据包编码得到的信息。又如,冗余编码包可以包括根据一个原始数据包编码得到的信息。又如,冗余编码包可以包括根据两个原始数据包编码得到的信息等。
结合上文所示的方法,第一数据块中可以仅包括根据全部原始数据包编码得到的一个或多个冗余编码包。
或者,第一数据块中可以仅包括根据部分原始数据包编码得到的一个或多个冗余编码包。
或者,第一数据块中可以仅包括原始数据包。
或者,第一数据块中可以包括根据部分原始数据包编码得到的一个或多个冗余编码包,以及所述部分原始数据包。
换句话说,第一数据块的大小可以等于一个或多个冗余编码包的大小,该一个或多个冗余编码包包括根据全部原始数据包编码得到的信息;或者,该一个或多个冗余编码包包括根据部分原始数据包编码得到的信息。或者,第一数据块的大小可以等于部分原始数据包的大小。或者,第一数据块的大小可以等于部分原始数据包和一个或多个冗余编码包的大小之和,该一个或多个冗余编码包包括根据所述部分原始数据包编码得到的信息。
803、终端设备根据第一映射方式,将多个数据块对应的调制符号映射至时频资源。
示例性的,上述多个数据块对应的调制符号可以通过QPSK、16QAM、64QAM或256QAM等调制得到。对于数据块的调制方式,本申请实施例不作限定。
上述时频资源是接入网设备为终端设备配置的用于传输TB的时频资源。示例性的,时频资源中的一个RE可以用于承载一个调制符号。对于调制符号与时频资源的关系可参考上文介绍,这里不再详述。示例性的,接入网设备可以通过动态调度的方式为终端设备配置时频资源,或者,也可以基于配置授权(configured grant,CG)的方式为终端设备配置时频资源等,本申请实施例对此不作限定。
对于第一映射方式的具体说明,可以参考上文,这里不再详述。
804、终端设备在时频资源上发送多个数据块对应的调制符号,对应的,接入网设备可以根据第一映射方式在时频资源上接收多个数据块对应的调制符号。
对于步骤804,还可以理解为:终端设备发送PUSCH,该PUSCH用于承载时频资源,且该时频资源上承载有多个数据块对应的调制符号。
示例性的,终端设备通过图5d所示的第一映射方式将多个数据块对应的调制符号映射至时频资源上。该情况下,接入网设备可以通过图5d所示的第一映射方式接收该多个数据块对应的调制符号。如在第1个频域资源中,先按照频域顺序(即从第1个频域资源的起始子载波开始到该第1个频域资源的结束子载波结束)接收OFDM符号1上的调制符号;然后按照频域顺序接收OFDM符号2上的调制符号,直至接收到结束OFDM符号上的调制符号。再在第2个频域资源中,先按照频域顺序接收OFDM符号1上的调制符号;再按照频域顺序接收OFDM符号2上的调制符号,直至接收到结束OFDM符号上的调制符号。按照该种方式,接入网设备可以获取到时频资源中承载的调制符号。
示例性的,终端设备通过图5e所示的第一映射方式将多个数据块对应的调制符号映射至时频资源上。该情况下,接入网设备可以从时频资源的起始子载波开始逐OFDM符号接收调制符号。如从第1个子载波开始,从时频资源的起始OFDM符号开始逐OFDM符号接收调制符号,直至接收到结束OFDM符号上的调制符号。再从第2个子载波开始,从时频资源的起始OFDM符号开始逐OFDM符号接收调制符号,直至接收到结束OFDM符号上的调制符号。
可理解,这里所示的接入网设备按照图5d和图5e所示的方法接收调制符号仅为示例,该接入网设备还可以按照图6a至图6d、图7a至图7c所示的方法接收调制符号等,这里不再详述。
本申请实施例中,终端设备通过第一映射方式将多个数据块对应的调制符号映射至时频资源上,分别如图5a至图5f、图6a至图6d以及图7a至图7c所示。由此,相对于根据第二映射方式将多个数据块对应的调制符号映射至时频资源上来说,本申请实施例提供的技术方案,能够有效改善其他终端设备对终端设备的干扰,减少了该终端设备受干扰的数据块的数量,提高终端设备的数据传输效率。
图8b是本申请实施例提供的另一种数据发送方法的流程示意图,如图8b所示,该方法包括:
在一种可能的实现方式中,步骤812之前,图8b所示的方法还包括:
811、接入网设备向终端设备发送第一指示信息,对应的,终端设备接收该第一指示信息,该第一指示信息用于指示第一映射方式。
可理解,关于步骤811的具体说明可以参考上文示出的步骤801,这里不再一一详述。
812、终端设备确定第一映射方式。
终端设备可以根据上述步骤811确定第一映射方式。或者,第一映射方式还可以由协议预定义,或者由接入网设备预先设置等。第一映射方式由接入网设备预先设置包括:第一映射方式可以在终端设备接入该接入网设备时,由该接入网设备配置等。本申请实施例对于终端设备如何获知第一映射方式不作限定。
813、接入网设备根据第一映射方式,将多个数据块对应的调制符号映射至时频资源上。
可理解,步骤813中,接入网设备在将多个数据块对应的调制符号映射至时频资源上之前,该接入网设备还可以生成多个数据块。关于接入网设备生成多个数据块的描述可以参考上文图8a的说明,这里不再赘述。
814、接入网设备在时频资源上发送多个数据块对应的调制符号。对应的,终端设备根据第一映射方式,在时频资源上接收多个数据块对应的调制符号。
对于步骤814,还可以理解为:终端设备接收PDSCH,该PDSCH用于承载时频资源,且该时频资源上承载有多个数据块对应的调制符号。
可理解,对于上述步骤812与步骤813的先后顺序,本申请实施例不作限定。
可理解,关于图8b的具体说明还可以参考图8a,以及对于第一映射方式的具体说明还可以参考上文示出的图5a至图5f、图6a至图6d以及图7a至图7c等,这里不再一一赘述。
本申请实施例提供的技术方案,通过第一映射方式将多个数据块对应的调制符号映射至时频资源上,能够有效改善其他终端设备(如窄带终端设备)对终端设备(宽带终端设备)的干扰,减少了该终端设备受干扰的数据块的数量,提高终端设备的数据传输效率。
可理解,以上仅仅是以窄带终端设备和宽带终端设备为例示出的,然而,本申请实施例提供的方法还可以应用于其他场景。例如,两个终端设备存在时频资源重叠的场景等,这里不再赘述。又例如,两个通信设备(不限于终端设备)存在时频资源重叠的场景等。
可理解,以上各个实施例中,其中一个实施例中未详细描述的实现方式,可以参考其他实施例等。
以下将介绍本申请实施例提供的通信装置。
本申请根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面将结合图9至图11详细描述本申请实施例的通信装置。
图9是本申请实施例提供的一种通信装置的结构示意图,如图9所示,该通信装置包括处理单元901和收发单元902。通信装置可以是上文示出的接入网设备或接入网设备中的芯片。
示例性的,处理单元901,用于生成多个数据块,然后根据第一映射方式,将该多个数据块对应的调制符号映射至时频资源;收发单元902,用于在时频资源上输出多个数据块对应的调制符号。
本申请实施例中,收发单元902,具体用于在时频资源上向终端设备发送多个数据块对应的调制符号。
在一种可能的实现方式中,收发单元902,还用于输出第一指示信息。
在一种可能的实现方式中,收发单元902,还用于输出第二指示信息。
在一种可能的实现方式中,收发单元902,还用于输出第三指示信息。
可理解,以上示出的收发单元和处理单元的具体说明,还可以参考上述方法实施例中由接入网设备执行的步骤。示例性的,收发单元902可以用于执行图8b所示的步骤811中的发送步骤,以及图8b所示的步骤814中的发送步骤。处理单元901可以用于执行图8b所示的步骤813。
复用图9,本申请实施例还提供了一种通信装置,如图9所示,该通信装置包括处理单元901和收发单元902。该通信装置可以是上文示出的终端设备或终端设备中的芯片。
示例性的,处理单元901,用于确定第一映射方式;收发单元902,用于根据该第一映射方式在时频资源上输入多个数据块对应的调制符号。
本申请实施例中,收发单元902,具体用于根据第一映射方式在时频资源上接收来自终端设备的多个数据块对应的调制符号。
在一种可能的实现方式中,收发单元902,还用于输入第一指示信息。
在一种可能的实现方式中,收发单元902,还用于输入第二指示信息。
在一种可能的实现方式中,收发单元902,还用于输入第三指示信息。
可理解,以上示出的收发单元和处理单元的具体说明,还可以参考上述方法实施例中由终端设备执行的步骤。示例性的,收发单元902可以用于执行图8b所示的步骤811中的接收步骤,以及图8b所示的步骤814中的接收步骤。处理单元901可以用于执行图8b所示的步骤812。
复用图9,本申请实施例还提供了一种通信装置,如图9所示,该通信装置包括处理单元901和收发单元902。该通信装置可以是上文示出的终端设备或终端设备中的芯片。
示例性的,处理单元901,用于生成多个数据块,然后根据第一映射方式,将该多个数据块对应的调制符号映射至时频资源;收发单元902,用于在时频资源上输出多个数据块对应的调制符号。
本申请实施例中,收发单元902,具体用于在时频资源上向接入网设备发送多个数据块对应的调制符号。
在一种可能的实现方式中,收发单元902,还用于输入第一指示信息。
在一种可能的实现方式中,收发单元902,还用于输入第二指示信息。
在一种可能的实现方式中,收发单元902,还用于输入第三指示信息。
可理解,以上示出的收发单元和处理单元的具体说明,还可以参考上述方法实施例中由终端设备执行的步骤。示例性的,收发单元902可以用于执行图8a所示的步骤801中的接收步骤,以及图8a所示的步骤804中的发送步骤。处理单元901可以用于执行图8a所示的步骤802和步骤803。
复用图9,本申请实施例还提供了一种通信装置,如图9所示,该通信装置包括处理单元901和收发单元902。该通信装置可以是上文示出的接入网设备或接入网设备中的芯片。
示例性的,处理单元901,用于确定第一映射方式;收发单元902,用于根据该第一映射方式在时频资源上输入多个数据块对应的调制符号。
可理解,本申请实施例所示的确定第一映射方式可以理解为:处理单元需要从本申请实施例示出的不同映射方式中确定第一映射方式。而若第一映射方式为上述不同映射方式中,且预先定义的一种映射方式时,处理单元可以不需要确定第一映射方式。该情况下,收发单元可以直接根据第一映射方式在时频资源上输入多个数据块对应的调制符号。
本申请实施例中,收发单元902,具体用于根据第一映射方式在时频资源上接收来自终端设备的多个数据块对应的调制符号。
在一种可能的实现方式中,收发单元902,还用于输出第一指示信息。
在一种可能的实现方式中,收发单元902,还用于输出第二指示信息。
在一种可能的实现方式中,收发单元902,还用于输出第三指示信息。
可理解,以上示出的收发单元和处理单元的具体说明,还可以参考上述方法实施例中由接入网设备执行的步骤。示例性的,收发单元902可以用于执行图8a所示的步骤801中的发送步骤,以及图8a所示的步骤804中的接收步骤。
以上各个装置实施例中,关于第一映射方式、第一时频资源、第二时频资源、第一指示信息、第二指示信息和第三指示信息等的说明还可以参考上文方法实施例中的介绍,这里不再一一详述。例如,关于第一映射方式的说明可以参考图5a至图5f,或者参考图6a至图6d,或者参考图7a至图7c等。
可理解,本申请实施例示出的收发单元和处理单元的具体说明仅为示例,对于收发单元和处理单元的具体功能或执行的步骤等,可以参考上述方法实施例,这里不再详述。
以上介绍了本申请实施例的接入网设备和终端设备,以下介绍所述接入网设备和终端设备可能的产品形态。应理解,但凡具备上述图9所述的接入网设备的功能的任何形态的产品,或者,但凡具备上述图9所述的终端设备的功能的任何形态的产品,都落入本申请实施例的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的接入网设备和终端设备的产品形态仅限于此。
在一种可能的实现方式中,图9所示的通信装置中,处理单元901可以是一个或多个处理器,收发单元902可以是收发器,或者收发单元902还可以是发送单元和接收单元,发送单元可以是发送器,接收单元可以是接收器,该发送单元和接收单元集成于一个器件,例如收发器。本申请实施例中,处理器和收发器可以被耦合等,对于处理器和收发器的连接方式,本申请实施例不作限定。
如图10所示,该通信装置100包括一个或多个处理器1020和收发器1010。
在本申请的一些实施例中,处理器1020,用于生成多个数据块,然后根据第一映射方式,将该多个数据块对应的调制符号映射至时频资源;收发器1010,用于在时频资源上输出多个数据块对应的调制符号。
复用图10,在本申请的另一些实施例中,处理器1020,用于确定第一映射方式;收发器1010,用于根据该第一映射方式在时频资源上输入多个数据块对应的调制符号。
可理解,对于处理器和收发器的具体说明还可以参考图9所示的处理单元和收发单元的介绍,这里不再赘述。
在图10所示的通信装置的各个实现方式中,收发器可以包括接收机和发射机,该接收机用于执行接收的功能(或操作),该发射机用于执行发射的功能(或操作)。以及收发器用于通过传输介质和其他设备/装置进行通信。
可选的,通信装置100还可以包括一个或多个存储器1030,用于存储程序指令和/或数据。存储器1030和处理器1020耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1020可能和存储器1030协同操作。处理器1020可可以执行存储器1030中存储的程序指令。可选的,上述一个或多个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述收发器1010、处理器1020以及存储器1030之间的具体连接介质。本申请实施例在图10中以存储器1030、处理器1020以及收发器1010之间通过总线1040连接,总线在图10中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示, 图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成等。
本申请实施例中,存储器可包括但不限于硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等非易失性存储器,随机存储记忆体(Random Access Memory,RAM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、只读存储器(Read-Only Memory,ROM)或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)等等。存储器是能够用于携带或存储具有指令或数据结构形式的程序代码,并能够由计算机(如本申请示出的通信装置等)读和/或写的任何存储介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
可理解,当图10所示的通信装置用于执行终端设备执行的步骤或功能,处理器1020主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器1030主要用于存储软件程序和数据。收发器1010可以包括控制电路和天线,控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当通信装置开机后,处理器1020可以读取存储器1030中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器1020对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1020,处理器1020将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
可理解,本申请实施例示出的通信装置还可以具有比图10更多的元器件等,本申请实施例对此不作限定。以上所示的处理器和收发器所执行的方法仅为示例,对于该处理器和收发器具体所执行的步骤可参照上文介绍的方法。
在另一种可能的实现方式中,图9所示的通信装置中,处理单元901可以是一个或多个逻辑电路,收发单元902可以是输入输出接口,又或者称为通信接口,或者接口电路,或接口等等。或者收发单元902还可以是发送单元和接收单元,发送单元可以是输出接口,接收单元可以是输入接口,该发送单元和接收单元集成于一个单元,例如输入输出接口。如图11所示,图11所示的通信装置包括逻辑电路1101和接口1102。即上述处理单元901可以用逻辑电路1101实现,收发单元902可以用接口1102实现。其中,该逻辑电路1101可以为芯片、处理电路、集成电路或片上系统(system on chip,SoC)芯片等,接口1102可以为通信接口、输入输出接口等。本申请实施例中,逻辑电路和接口还可以相互耦合。对于逻辑 电路和接口的具体连接方式,本申请实施例不作限定。
在本申请的一些实施例中,逻辑电路1101,用于生成多个数据块,然后根据第一映射方式,将该多个数据块对应的调制符号映射至时频资源;收接口1102,用于在时频资源上输出多个数据块对应的调制符号。
复用图11,在本申请的另一些实施例中,逻辑电路1101,用于确定第一映射方式;接口1102,用于根据该第一映射方式在时频资源上输入多个数据块对应的调制符号。
对于图11所示的各个实施例的具体实现方式,还可以参考上述各个实施例,这里不再详述。示例性的,逻辑电路的描述可以参考上述处理单元的说明,接口的描述可以参考上述收发单元的说明,这里不再一一详述。
可理解,本申请实施例提供的通信装置可以包括存储器,或者,本申请实施例提供的通信装置也可以不包括存储器,本申请实施例对此不作限定。
本申请实施例还提供了一种无线通信系统,该无线通信系统包括接入网设备和终端设备,该接入网设备和该终端设备可以用于执行前述任一实施例中的方法。
或者,该接入网设备和该终端设备的具体实现方式还可以参考图9至图11所示的通信装置等,这里不再详述。
此外,本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由接入网设备执行的操作和/或处理。
本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由终端设备执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由接入网设备执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由终端设备执行的操作和/或处理。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由接入网设备执行的操作和/或处理被执行。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由终端设备执行的操作和/或处理被执行。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例提供的方 案的技术效果。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (47)

  1. 一种数据发送方法,其特征在于,所述方法应用于通信装置,所述方法包括:
    生成多个数据块;
    根据第一映射方式,将所述多个数据块对应的调制符号映射至时频资源,所述第一映射方式包括:所述多个数据块对应的调制符号在所述时频资源中按照先时域后频域的顺序映射;或者,
    所述第一映射方式包括:第一复数个调制符号在第一时频资源中按照先频域后时域的顺序映射,第二复数个调制符号在第二时频资源中按照先时域后频域的顺序映射,所述第一复数个调制符号和所述第二复数个调制符号均包含于所述多个数据块对应的调制符号中;或者,
    所述第一映射方式包括:第三复数个调制符号在第一时频资源中按照先时域后频域的顺序映射,以及第四复数个调制符号在第二时频资源中按照先频域后时域的顺序映射,所述第三复数个调制符号和所述第四复数个调制符号均包含于所述多个数据块对应的调制符号中;或者,
    所述第一映射方式包括:第三复数个调制符号在第一时频资源中按照先频域后时域的顺序映射,以及第四复数个调制符号在第二时频资源中按照先频域后时域的顺序映射,所述第三复数个调制符号和所述第四复数个调制符号均包含于所述多个数据块对应的调制符号中;
    其中,所述第一时频资源和所述第二时频资源分别为所述时频资源中的部分时频资源,所述第一时频资源与所述第二时频资源在频域上不重叠,以及所述第一时频资源中的时域资源与所述时频资源中的时域资源相同;
    在所述时频资源上发送所述多个数据块对应的调制符号。
  2. 根据权利要求1所述的方法,其特征在于,所述先时域后频域的顺序映射包括:
    在第i个频域资源上从预设的起始正交频分复用OFDM符号开始逐OFDM符号映射调制符号直至预设的结束OFDM符号,再在第i+1个频域资源上从所述预设的起始OFDM符号开始逐OFDM符号映射调制符号直至所述预设的结束OFDM符号,所述i为正整数,所述预设的起始OFDM符号为所述时频资源中的时域资源的起始位置,所述预设的结束OFDM符号为所述时频资源中的时域资源的结束位置。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第i个频域资源与所述第i+1个频域资源为所述时频资源中的频域资源中相邻的两个频域资源;或者,
    所述第i个频域资源与所述第i+1个频域资源为所述第一时频资源中的频域资源中相邻的两个频域资源;或者,
    所述第i个频域资源与所述第i+1个频域资源为所述第二时频资源中的频域资源中相邻的两个频域资源。
  4. 根据权利要求1所述的方法,其特征在于,所述先频域后时域的顺序映射包括:
    在第i个正交频分复用OFDM符号上从预设的起始子载波开始逐子载波映射调制符号直至预设的结束子载波,再在第i+1个OFDM符号上从预设的起始子载波开始逐子载波映射调制符号直至预设的结束子载波,所述i为正整数,所述第i个OFDM符号和所述第i+1 个OFDM符号为所述时频资源的时域资源中相邻的两个时域资源。
  5. 根据权利要求4所述的方法,其特征在于,
    所述预设的起始子载波为所述第一时频资源中的频域资源的起始位置,所述预设的结束子载波为所述第一时频资源中的频域资源的结束位置;或者
    所述预设的起始子载波为所述第二时频资源中的频域资源的起始位置,所述预设的结束子载波为所述第二时频资源中的频域资源的结束位置。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述多个数据块中包括第一数据块,所述第一数据块包括根据一个或多个第二数据块编码得到的信息。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述通信装置包括终端设备,所述生成多个数据块之前,所述方法还包括:
    接收第一指示信息,所述第一指示信息用于指示所述第一映射方式。
  8. 根据权利要求1-6任一项所述的方法,其特征在于,所述通信装置包括接入网设备,所述方法还包括:
    发送第一指示信息,所述第一指示信息用于指示所述第一映射方式。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第一指示信息包括用于指示所述第一时频资源的频域资源的指示信息。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,所述第一指示信息包含于以下任一项中:
    无线资源控制RRC信令中、下行控制信息DCI中、媒体接入控制MAC控制元素CE信令中。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述数据块包括:编码块CB或编码块组CBG。
  12. 一种数据发送方法,其特征在于,所述方法应用于通信装置,所述方法包括:
    确定第一映射方式,所述第一映射方式包括:多个数据块对应的调制符号在时频资源中按照先时域后频域的顺序映射;或者,所述第一映射方式包括:第一复数个调制符号在第一时频资源中按照先频域后时域的顺序映射,第二复数个调制符号在第二时频资源中按照先时域后频域的顺序映射,所述第一复数个调制符号和所述第二复数个调制符号均包含于所述多个数据块对应的调制符号中;或者,所述第一映射方式包括:第三复数个调制符号在第一时频资源中按照先时域后频域的顺序映射,以及第四复数个调制符号在第二时频资源中按照先频域后时域的顺序映射,所述第三复数个调制符号和所述第四复数个调制符号均包含于所述多个数据块对应的调制符号中;或者,所述第一映射方式包括:所述第一映射方式包括:第三复数个调制符号在第一时频资源中按照先频域后时域的顺序映射,以及第四复数个调制符号在第二时频资源中按照先频域后时域的顺序映射,所述第三复数个调制符号和所述第四复数个调制符号均包含于所述多个数据块对应的调制符号中;其中,所述第一时频资源和所述第二时频资源分别为所述时频资源中的部分时频资源,所述第一时频资源与所述第二时频资源在频域上不重叠,以及所述第一时频资源中的时域资源与所述时频资源中的时域资源相同;
    根据所述第一映射方式在所述时频资源上接收所述多个数据块对应的调制符号。
  13. 根据权利要求12所述的方法,其特征在于,所述先时域后频域的顺序映射包括:
    在第i个频域资源上从预设的起始正交频分复用OFDM符号开始逐OFDM符号映射 调制符号直至预设的结束OFDM符号,再在第i+1个频域资源上从所述预设的起始OFDM符号开始逐OFDM符号映射调制符号直至所述预设的结束OFDM符号,所述i为正整数,所述预设的起始OFDM符号为所述时频资源中的时域资源的起始位置,所述预设的结束OFDM符号为所述时频资源中的时域资源的结束位置。
  14. 根据权利要求13所述的方法,其特征在于,所述第i个频域资源与所述第i+1个频域资源为所述时频资源中的频域资源中相邻的两个频域资源;或者,
    所述第i个频域资源与所述第i+1个频域资源为所述第一时频资源中的频域资源中相邻的两个频域资源;或者,
    所述第i个频域资源与所述第i+1个频域资源为所述第二时频资源中的频域资源中相邻的两个频域资源。
  15. 根据权利要求12所述的方法,其特征在于,所述先频域后时域的顺序映射包括:
    在第i个正交频分复用OFDM符号上从预设的起始子载波开始逐子载波映射调制符号直至预设的结束子载波,再在第i+1个OFDM符号上从预设的起始子载波开始逐子载波映射调制符号直至预设的结束子载波,所述i为正整数,所述第i个OFDM符号和所述第i+1个OFDM符号为所述时频资源的时域资源中相邻的两个时域资源。
  16. 根据权利要求15所述的方法,其特征在于,所述预设的起始子载波为所述第一时频资源中的频域资源的起始位置,所述预设的结束子载波为所述第一时频资源中的频域资源的结束位置;或者
    所述预设的起始子载波为所述第二时频资源中的频域资源的起始位置,所述预设的结束子载波为所述第二时频资源中的频域资源的结束位置。
  17. 根据权利要求12-16任一项所述的方法,其特征在于,所述多个数据块中包括第一数据块,所述第一数据块包括根据一个或多个第二数据块编码得到的信息。
  18. 根据权利要求12-17任一项所述的方法,其特征在于,所述通信装置包括终端设备,所述确定第一映射方式包括:
    接收第一指示信息,所述第一指示信息用于指示所述第一映射方式;
    根据所述第一指示信息确定所述第一映射方式。
  19. 根据权利要求12-17任一项所述的方法,其特征在于,所述通信装置包括接入网设备,所述方法还包括:
    发送第一指示信息,所述第一指示信息用于指示所述第一映射方式。
  20. 根据权利要求18或19所述的方法,其特征在于,所述第一指示信息包括用于指示所述第一时频资源的频域资源的指示信息。
  21. 根据权利要求18-20任一项所述的方法,其特征在于,所述第一指示信息包含于以下任一项中:
    无线资源控制RRC信令中、下行控制信息DCI中、媒体接入控制MAC控制元素CE信令中。
  22. 根据权利要求12-21任一项所述的方法,其特征在于,所述数据块包括:编码块CB或编码块组CBG。
  23. 一种通信装置,其特征在于,包括:
    处理单元,用于生成多个数据块;
    所述处理单元,还用于根据第一映射方式,将所述多个数据块对应的调制符号映射至 时频资源,所述第一映射方式包括:所述多个数据块对应的调制符号在所述时频资源中按照先时域后频域的顺序映射;或者,所述第一映射方式包括:第一复数个调制符号在第一时频资源中按照先频域后时域的顺序映射,第二复数个调制符号在第二时频资源中按照先时域后频域的顺序映射,所述第一复数个调制符号和所述第二复数个调制符号均包含于所述多个数据块对应的调制符号中;或者,所述第一映射方式包括:第三复数个调制符号在第一时频资源中按照先时域后频域的顺序映射,以及第四复数个调制符号在第二时频资源中按照先频域后时域的顺序映射,所述第三复数个调制符号和所述第四复数个调制符号均包含于所述多个数据块对应的调制符号中;或者,所述第一映射方式包括:第三复数个调制符号在第一时频资源中按照先频域后时域的顺序映射,以及第四复数个调制符号在第二时频资源中按照先频域后时域的顺序映射,所述第三复数个调制符号和所述第四复数个调制符号均包含于所述多个数据块对应的调制符号中;其中,所述第一时频资源和所述第二时频资源分别为所述时频资源中的部分时频资源,所述第一时频资源与所述第二时频资源在频域上不重叠,以及所述第一时频资源中的时域资源与所述时频资源中的时域资源相同;
    收发单元,用于在所述时频资源上发送所述多个数据块对应的调制符号。
  24. 根据权利要求23所述的装置,其特征在于,所述先时域后频域的顺序映射包括:
    在第i个频域资源上从预设的起始正交频分复用OFDM符号开始逐OFDM符号映射调制符号直至预设的结束OFDM符号,再在第i+1个频域资源上从所述预设的起始OFDM符号开始逐OFDM符号映射调制符号直至所述预设的结束OFDM符号,所述i为正整数,所述预设的起始OFDM符号为所述时频资源中的时域资源的起始位置,所述预设的结束OFDM符号为所述时频资源中的时域资源的结束位置。
  25. 根据权利要求24所述的装置,其特征在于,
    所述第i个频域资源与所述第i+1个频域资源为所述时频资源中的频域资源中相邻的两个频域资源;或者,
    所述第i个频域资源与所述第i+1个频域资源为所述第一时频资源中的频域资源中相邻的两个频域资源;或者,
    所述第i个频域资源与所述第i+1个频域资源为所述第二时频资源中的频域资源中相邻的两个频域资源。
  26. 根据权利要求23所述的装置,其特征在于,所述先频域后时域的顺序映射包括:
    在第i个正交频分复用OFDM符号上从预设的起始子载波开始逐子载波映射调制符号直至预设的结束子载波,再在第i+1个OFDM符号上从预设的起始子载波开始逐子载波映射调制符号直至预设的结束子载波,所述i为正整数,所述第i个OFDM符号和所述第i+1个OFDM符号为所述时频资源的时域资源中相邻的两个时域资源。
  27. 根据权利要求26所述的装置,其特征在于,
    所述预设的起始子载波为所述第一时频资源中的频域资源的起始位置,所述预设的结束子载波为所述第一时频资源中的频域资源的结束位置;或者
    所述预设的起始子载波为所述第二时频资源中的频域资源的起始位置,所述预设的结束子载波为所述第二时频资源中的频域资源的结束位置。
  28. 根据权利要求23-27任一项所述的装置,其特征在于,所述多个数据块中包括第一数据块,所述第一数据块包括根据一个或多个第二数据块编码得到的信息。
  29. 根据权利要求23-28任一项所述的装置,其特征在于,所述通信装置为终端设备,
    所述收发单元,还用于接收第一指示信息,所述第一指示信息用于指示所述第一映射方式。
  30. 根据权利要求23-28任一项所述的装置,其特征在于,所述通信装置为接入网设备,所述收发单元,还用于发送第一指示信息,所述第一指示信息用于指示所述第一映射方式。
  31. 根据权利要求29或30所述的装置,其特征在于,所述第一指示信息包括用于指示所述第一时频资源的频域资源的指示信息。
  32. 根据权利要求29-31任一项所述的装置,其特征在于,所述第一指示信息包含于以下任一项中:
    无线资源控制RRC信令中、下行控制信息DCI中、媒体接入控制MAC控制元素CE信令中。
  33. 根据权利要求23-32任一项所述的装置,其特征在于,所述数据块包括:编码块CB或编码块组CBG。
  34. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一映射方式,所述第一映射方式包括:多个数据块对应的调制符号在时频资源中按照先时域后频域的顺序映射;或者,所述第一映射方式包括:第一复数个调制符号在第一时频资源中按照先频域后时域的顺序映射,第二复数个调制符号在第二时频资源中按照先时域后频域的顺序映射,所述第一复数个调制符号和所述第二复数个调制符号均包含于所述多个数据块对应的调制符号中;或者,所述第一映射方式包括:第三复数个调制符号在第一时频资源中按照先时域后频域的顺序映射,以及第四复数个调制符号在第二时频资源中按照先频域后时域的顺序映射,所述第三复数个调制符号和所述第四复数个调制符号均包含于所述多个数据块对应的调制符号中;或者,所述第一映射方式包括:所述第一映射方式包括:第三复数个调制符号在第一时频资源中按照先频域后时域的顺序映射,以及第四复数个调制符号在第二时频资源中按照先频域后时域的顺序映射,所述第三复数个调制符号和所述第四复数个调制符号均包含于所述多个数据块对应的调制符号中;其中,所述第一时频资源和所述第二时频资源分别为所述时频资源中的部分时频资源,所述第一时频资源与所述第二时频资源在频域上不重叠,以及所述第一时频资源中的时域资源与所述时频资源中的时域资源相同;
    收发单元,用于根据所述第一映射方式在所述时频资源上接收所述多个数据块对应的调制符号。
  35. 根据权利要求34所述的装置,其特征在于,所述先时域后频域的顺序映射包括:
    在第i个频域资源上从预设的起始正交频分复用OFDM符号开始逐OFDM符号映射调制符号直至预设的结束OFDM符号,再在第i+1个频域资源上从所述预设的起始OFDM符号开始逐OFDM符号映射调制符号直至所述预设的结束OFDM符号,所述i为正整数,所述预设的起始OFDM符号为所述时频资源中的时域资源的起始位置,所述预设的结束OFDM符号为所述时频资源中的时域资源的结束位置。
  36. 根据权利要求35所述的装置,其特征在于,所述第i个频域资源与所述第i+1个频域资源为所述时频资源中的频域资源中相邻的两个频域资源;或者,
    所述第i个频域资源与所述第i+1个频域资源为所述第一时频资源中的频域资源中相邻的两个频域资源;或者,
    所述第i个频域资源与所述第i+1个频域资源为所述第二时频资源中的频域资源中相邻的两个频域资源。
  37. 根据权利要求36所述的装置,其特征在于,所述先频域后时域的顺序映射包括:
    在第i个正交频分复用OFDM符号上从预设的起始子载波开始逐子载波映射调制符号直至预设的结束子载波,再在第i+1个OFDM符号上从预设的起始子载波开始逐子载波映射调制符号直至预设的结束子载波,所述i为正整数,所述第i个OFDM符号和所述第i+1个OFDM符号为所述时频资源的时域资源中相邻的两个时域资源。
  38. 根据权利要求37所述的装置,其特征在于,所述预设的起始子载波为所述第一时频资源中的频域资源的起始位置,所述预设的结束子载波为所述第一时频资源中的频域资源的结束位置;或者
    所述预设的起始子载波为所述第二时频资源中的频域资源的起始位置,所述预设的结束子载波为所述第二时频资源中的频域资源的结束位置。
  39. 根据权利要求34-38任一项所述的装置,其特征在于,所述多个数据块中包括第一数据块,所述第一数据块包括根据一个或多个第二数据块编码得到的信息。
  40. 根据权利要求34-39任一项所述的装置,其特征在于,所述通信装置为终端设备,
    所述处理单元,具体用于根据接收到的第一指示信息确定所述第一映射方式,所述第一指示信息用于指示所述第一映射方式。
  41. 根据权利要求34-39任一项所述的装置,其特征在于,所述通信装置为接入网设备,所述收发单元,还用于发送第一指示信息,所述第一指示信息用于指示所述第一映射方式。
  42. 根据权利要求40或41所述的装置,其特征在于,所述第一指示信息包括用于指示所述第一时频资源的频域资源的指示信息。
  43. 根据权利要求40-42任一项所述的装置,其特征在于,所述第一指示信息包含于以下任一项中:
    无线资源控制RRC信令中、下行控制信息DCI中、媒体接入控制MAC控制元素CE信令中。
  44. 根据权利要求34-43任一项所述的装置,其特征在于,所述数据块包括:编码块CB或编码块组CBG。
  45. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储计算机执行指令;
    所述处理器用于执行所述存储器所存储的所述计算机执行指令,以使权利要求1-12任一项所述的方法被执行;或者,
    所述处理器用于执行所述存储器所存储的所述计算机执行指令,以使权利要求13-22任一项所述的方法被执行。
  46. 一种通信装置,其特征在于,包括逻辑电路和接口,所述逻辑电路和所述接口耦合;
    所述接口用于输入和/或输出代码指令,所述逻辑电路用于执行所述代码指令,以使权利要求1-12任一项所述的方法被执行;或者,以使权利要求13-22任一项所述的方法被执行。
  47. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算 机程序,
    当所述计算机程序被执行时,如权利要求1-12任一项所述的方法被执行;或者,
    当所述计算机程序被执行时,如权利要求13-22任一项所述的方法被执行。
PCT/CN2020/140132 2020-12-28 2020-12-28 一种数据发送方法及装置 WO2022140907A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080108114.1A CN116671208A (zh) 2020-12-28 2020-12-28 一种数据发送方法及装置
PCT/CN2020/140132 WO2022140907A1 (zh) 2020-12-28 2020-12-28 一种数据发送方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/140132 WO2022140907A1 (zh) 2020-12-28 2020-12-28 一种数据发送方法及装置

Publications (1)

Publication Number Publication Date
WO2022140907A1 true WO2022140907A1 (zh) 2022-07-07

Family

ID=82258688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140132 WO2022140907A1 (zh) 2020-12-28 2020-12-28 一种数据发送方法及装置

Country Status (2)

Country Link
CN (1) CN116671208A (zh)
WO (1) WO2022140907A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024061111A1 (zh) * 2022-09-22 2024-03-28 维沃移动通信有限公司 资源处理方法、装置及通信设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103684675A (zh) * 2012-09-24 2014-03-26 夏普株式会社 针对窄带用户设备的下行链路控制信息发送/接收方法
CN107889067A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 信息发送和接收方法及装置
EP3403454A1 (en) * 2016-01-11 2018-11-21 Nokia Solutions and Networks Oy Control channel design and use for narrow band communication
CN109152051A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 一种发送和接收数据的方法和装置
CN110463095A (zh) * 2017-03-24 2019-11-15 摩托罗拉移动有限责任公司 将数据映射到ofdm符号

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103684675A (zh) * 2012-09-24 2014-03-26 夏普株式会社 针对窄带用户设备的下行链路控制信息发送/接收方法
EP3403454A1 (en) * 2016-01-11 2018-11-21 Nokia Solutions and Networks Oy Control channel design and use for narrow band communication
CN107889067A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 信息发送和接收方法及装置
CN110463095A (zh) * 2017-03-24 2019-11-15 摩托罗拉移动有限责任公司 将数据映射到ofdm符号
CN109152051A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 一种发送和接收数据的方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024061111A1 (zh) * 2022-09-22 2024-03-28 维沃移动通信有限公司 资源处理方法、装置及通信设备

Also Published As

Publication number Publication date
CN116671208A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
CN108781140B (zh) 用于针对缩短的tti确定harq-ack传输定时的系统和方法
CN108476103B (zh) 利用laa上行链路传输进行uci报告的系统和方法
EP2606617B1 (en) Transmission of reference signals
JP7331204B2 (ja) 端末及び通信方法
WO2017000291A1 (zh) 传输上行数据的方法和设备
WO2018126960A1 (zh) 通信方法、网络侧设备和终端设备
WO2017092632A1 (zh) 无线通信的方法和装置
WO2021204300A1 (zh) 控制信息传输方法
WO2021135853A1 (zh) 一种直通链路控制信令资源映射方法及终端
US11923982B2 (en) Transmission device, reception device, transmission method, and reception method
WO2018228596A1 (zh) 一种数据处理方法及数据处理装置
WO2018228522A1 (zh) 发送参考信号的方法、接收参考信号的方法和通信装置
JP2023099023A (ja) 基地局、通信方法及び集積回路
JPWO2018203438A1 (ja) 端末及び通信方法
WO2022140907A1 (zh) 一种数据发送方法及装置
CN110050429B (zh) 用于确定帧结构和关联定时的系统和方法
WO2022110086A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2020063837A1 (zh) 通信方法、装置、设备、系统及存储介质
WO2018137130A1 (zh) Harq进程的配置方法、装置及设备
WO2022237675A1 (zh) 信息发送的方法和装置
WO2023048015A1 (en) Methods of collision resolution between multiple high priority harq-acks and a high priority pusch
WO2022199607A1 (zh) 数据传输方法及装置
US20210136763A1 (en) Data sending method, data receiving method, apparatus, and system
WO2022126648A1 (zh) 一种信息传输方法及其装置
WO2024011483A1 (zh) 通信方法、终端设备及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967259

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080108114.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967259

Country of ref document: EP

Kind code of ref document: A1