WO2018126960A1 - 通信方法、网络侧设备和终端设备 - Google Patents

通信方法、网络侧设备和终端设备 Download PDF

Info

Publication number
WO2018126960A1
WO2018126960A1 PCT/CN2017/118918 CN2017118918W WO2018126960A1 WO 2018126960 A1 WO2018126960 A1 WO 2018126960A1 CN 2017118918 W CN2017118918 W CN 2017118918W WO 2018126960 A1 WO2018126960 A1 WO 2018126960A1
Authority
WO
WIPO (PCT)
Prior art keywords
scheduling
minimum time
transport blocks
rule
network side
Prior art date
Application number
PCT/CN2017/118918
Other languages
English (en)
French (fr)
Inventor
彭金磷
董朋朋
王龙保
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112019013790A priority Critical patent/BR112019013790A2/pt
Priority to EP17889939.9A priority patent/EP3550911B1/en
Publication of WO2018126960A1 publication Critical patent/WO2018126960A1/zh
Priority to US16/504,189 priority patent/US11044724B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the embodiments of the present application relate to the field of communications technologies, and more specifically, to a communication method, a network side device, and a terminal device.
  • a transport block corresponds to a data block containing a MAC protocol data unit (PDU), which is sent within a transmission time interval (TTI).
  • TTI is also a unit of hybrid automatic repeat request (HARQ) retransmission.
  • HARQ hybrid automatic repeat request
  • mapping relationship between the transport block and the minimum scheduling unit specified by the current protocol is not applicable to all scenarios. Therefore, a scheduling scheme is needed so that the mapping relationship between the transport block and the minimum scheduling unit can be flexibly applied to various scenarios.
  • the embodiment of the present application provides a communication method, a network side device, and a terminal device, and can select an appropriate scheduling rule to adapt to different scenarios.
  • the embodiment of the present application provides a communication method, where the method includes: the minimum time scheduling unit number of one time scheduled by the network side device is S, and the network side device and the terminal device use the first transmission mode for data transmission.
  • the network side device determines a target scheduling rule from the N scheduling rules, where the scheduling rule includes the number of transport blocks T of the primary scheduling and the mapping of the T transport blocks and the S minimum time scheduling units of the primary scheduling. At least one of the relationships, N is an integer greater than or equal to 2, T is an integer greater than or equal to 1, and S is an integer greater than or equal to 1, the first transmission mode being a single antenna transmission scheme or a multi-antenna transmission scheme;
  • the network side device communicates with the terminal device according to the target scheduling rule.
  • each minimum time scheduling unit can also carry multiple transport blocks in the frequency domain.
  • the foregoing technical solution can also meet the requirements of flexible resource multiplexing of the transport block. For example, retransmission uses less resources, usually avoids resource waste, improves spectrum efficiency, or retransmits more resources to ensure delay and reliability.
  • the network side device determines the target scheduling rule from the N scheduling rules, including: the network side device according to the correspondence between the parameter information and the scheduling rule, Determining, in the N scheduling rules, the scheduling rule corresponding to the determined parameter information is the target scheduling rule, where the parameter information includes a subcarrier spacing and a minimum time scheduling unit used by the network side device to communicate with the terminal device. At least one of the number of symbols.
  • the target scheduling rule determined by the network side device and the parameter information used by the network side device to communicate with the terminal device correspond to the network environment in which the terminal device is located.
  • the network side device determines the radio resource information, and the network side device determines, according to the correspondence between the radio resource information and the scheduling rule, the N scheduling rules.
  • the scheduling rule corresponding to the determined radio resource information is the target scheduling rule.
  • the target scheduling rule determined by the network side device corresponds to the current radio resource information, so that the scheduling rule is more suitable for the current radio resource utilization situation.
  • the network side device determines an operating state of the terminal device, and the network side device determines, according to a corresponding relationship between a working state of the terminal device and a scheduling rule,
  • the scheduling rule corresponding to the determined working state of the terminal device among the N scheduling rules is the target scheduling rule.
  • the target scheduling rule determined by the network side device corresponds to the working state of the terminal device, so that the scheduling rule is more adapted to the working state of the terminal device.
  • the network side device determines the wireless environment information, and the network side device determines, according to the correspondence between the wireless environment information and the scheduling rule, the N scheduling rules.
  • the scheduling rule corresponding to the determined wireless environment information is the target scheduling rule.
  • the target scheduling rule determined by the network side device corresponds to the wireless environment, so that the scheduling rule is more adapted to the current wireless environment.
  • the mapping relationship between the transport block and the minimum scheduling unit in the foregoing technical solution is determined according to certain rules.
  • the network side device and the terminal device can save or predefine the rule.
  • the scheduling rule may include only the number of transport blocks in one scheduling, and the minimum number of scheduling units of a corresponding transport block map may be obtained by combining the above rules, or the scheduling rule may include only the minimum number of scheduling units of one transport block mapping.
  • the number of transport blocks in the corresponding one-time scheduling can be obtained in combination with the above rules.
  • the mapping relationship between the transport block and the minimum scheduling unit in the foregoing technical solution is determined according to certain rules.
  • the network side device and the terminal device can save or predefine the rule.
  • the scheduling rule may include only the number of transport blocks in one scheduling, and the minimum number of scheduling units of a corresponding transport block map may be obtained by combining the above rules, or the scheduling rule may include only the minimum number of scheduling units of one transport block mapping.
  • the number of transport blocks in the corresponding one-time scheduling can be obtained in combination with the above rules.
  • the method further includes: the network side device transmitting the target scheduling rule indication information to the terminal device, where the target scheduling rule indication information is used to indicate the target scheduling rule determined by the network side device.
  • the network side device can indicate the determined target scheduling rule to the terminal device, so that the terminal device determines the scheduling rule that needs to be used.
  • the target scheduling rule indication information includes at least one of the following: a subcarrier interval, a symbol occupied by a minimum time scheduling unit Number, downlink control information format, modulation and coding strategy, cyclic redundancy check code, and number of allocated resource blocks.
  • the network side device may implicitly indicate the target scheduling rule to the terminal device, so that it is not necessary to introduce a new field indication or change the content carried by the indication field specified in the existing rule.
  • the target scheduling rule indication information is carried by the control signaling.
  • the network side device may explicitly indicate the target scheduling rule to the terminal device, so that the scheduling rule that the terminal device needs to use may be more clearly notified.
  • the embodiment of the present application provides a communication method, where the method includes: the terminal device and the network side device use the first transmission mode for data transmission, and the number of minimum time scheduling units scheduled by the network side device at one time is S.
  • the terminal device determines a target scheduling rule, where the target scheduling rule is one of the N scheduling rules, where the scheduling rule includes the number of transport blocks T of the primary scheduling and the T scheduled one time.
  • At least one of a mapping relationship between the transport block and the S minimum time scheduling units N being a positive integer greater than or equal to 2, T being a positive integer greater than or equal to 1, and S being a positive integer greater than or equal to 1, the first
  • the transmission mode is a single antenna transmission scheme or a multi-antenna transmission scheme; the terminal device communicates with the network side device according to the target scheduling rule.
  • the above technical solution can select an appropriate scheduling rule to adapt to different scenarios.
  • each minimum time scheduling unit can also carry multiple transport blocks in the frequency domain.
  • the foregoing technical solution can also meet the requirements of flexible resource multiplexing of the transport block. For example, retransmission uses less resources, usually avoids resource waste, improves spectrum efficiency, or retransmits more resources to ensure delay and reliability.
  • the determining, by the terminal device, the target scheduling rule includes: determining, by the terminal device, the target scheduling rule as parameter information used when communicating with the network side device Corresponding scheduling rule, wherein the parameter information includes at least one of a subcarrier spacing used by the network side device to communicate with the terminal device and a number of symbols occupied by each minimum time scheduling unit.
  • the target scheduling rule determined by the network side device and the parameter information used by the network side device to communicate with the terminal device correspond to the network environment in which the terminal device is located.
  • the determining, by the terminal device, the target scheduling rule, The target scheduling rule indication information wherein the target scheduling rule indication information is used to indicate a scheduling rule determined by the network side device; the terminal device determines that the target scheduling rule is a scheduling rule indicated by the target scheduling rule indication information.
  • the terminal device may determine, according to an indication of the network side device, a scheduling rule used when communicating with the network side device, so that the network side device may be used to communicate by using a suitable scheduling rule.
  • the target scheduling rule indication information includes at least one of the following: a subcarrier interval, a symbol occupied by a minimum time scheduling unit Number, downlink control information format, modulation and coding strategy, cyclic redundancy check code, and number of allocated resource blocks.
  • the network side device may implicitly indicate the target scheduling rule to the terminal device, so that the content carried by the indication field specified in the existing rule does not need to be changed.
  • the terminal device determines that the target scheduling rule is a scheduling rule that is indicated by the target scheduling rule indication information, and includes: The terminal device determines, according to the mapping relationship between the target scheduling rule indication information and the scheduling rule, the scheduling rule corresponding to the target scheduling rule indication information from the N scheduling rules as the target scheduling rule. Based on the foregoing technical solution, the network side device may implicitly indicate the target scheduling rule to the terminal device, so that the content carried by the indication field specified in the existing rule does not need to be changed.
  • the terminal device acquires the target scheduling rule indication information sent by the network side device, including: receiving, by the terminal device Obtaining the target scheduling rule indication information in the control signaling sent by the network side device.
  • the network side device may explicitly indicate the target scheduling rule to the terminal device, so that the scheduling rule that the terminal device needs to use may be more clearly notified.
  • the mapping relationship between the transport block and the minimum scheduling unit in the foregoing technical solution is determined according to certain rules.
  • the network side device and the terminal device can save or predefine the rule.
  • the scheduling rule may include only the number of transport blocks in one scheduling, and the minimum number of scheduling units of a corresponding transport block map may be obtained by combining the above rules, or the scheduling rule may include only the minimum number of scheduling units of one transport block mapping.
  • the number of transport blocks in the corresponding one-time scheduling can be obtained in combination with the above rules.
  • the mapping relationship between the transport block and the minimum scheduling unit in the foregoing technical solution is determined according to certain rules.
  • the network side device and the terminal device can save or predefine the rule.
  • the scheduling rule may include only the number of transport blocks in one scheduling, and the minimum number of scheduling units of a corresponding transport block map may be obtained by combining the above rules, or the scheduling rule may include only the minimum number of scheduling units of one transport block mapping.
  • the number of transport blocks in the corresponding one-time scheduling can be obtained in combination with the above rules.
  • an embodiment of the present application provides a network side device, where the network side device includes a unit for performing the first aspect or various possible implementation manners of the first aspect.
  • an embodiment of the present application provides a terminal device, where the terminal device includes a unit for performing various possible implementations of the second aspect or the second aspect.
  • the embodiment of the present application provides a network side device.
  • the network side device includes a processor, a memory, and a transceiver.
  • the memory is for storing instructions to implement the method of the first aspect and any of the possible implementations of the first aspect.
  • the processor executes the instructions stored in the memory, in conjunction with the communication interface, to implement the method of the first aspect or any of the possible implementations of the first aspect.
  • the embodiment of the present application provides a terminal device.
  • the terminal device includes a processor, a memory, and a transceiver.
  • the memory is for storing instructions to implement the method of the second aspect and any of the possible implementations of the second aspect.
  • the processor executes the instructions stored in the memory, in conjunction with the communication interface, to implement the method of any of the possible implementations of the second aspect or the second aspect.
  • FIG. 1 is a schematic flowchart of a communication method according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of scheduling rule switching in a transmission process
  • FIG. 3 is a schematic diagram of another scheduling rule switching in a transmission process
  • FIG. 4 is a schematic diagram of mapping a plurality of transport blocks scheduled at a time to a minimum time scheduling unit
  • FIG. 5 is a schematic diagram of another time-scheduled plurality of transport blocks mapped to a minimum time scheduling unit
  • FIG. 6 is a schematic diagram of mapping a plurality of transport blocks scheduled at a time to a plurality of minimum time scheduling units
  • FIG. 7 is a schematic diagram of another scheduled transport block mapped to a plurality of minimum time scheduling units
  • FIG. 8 is a schematic diagram of a combination of time division multiplexing and frequency division multiplexing
  • FIG. 9 is a schematic diagram of a combination of time division multiplexing and frequency division multiplexing
  • 10 is a schematic diagram of transmitting an initial transmission block and a retransmission transmission block by frequency division multiplexing
  • FIG. 11 is a structural block diagram of a network side device according to an embodiment of the present application.
  • FIG. 12 is a structural block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 13 is a structural block diagram of a network side device according to an embodiment of the present application.
  • FIG. 14 is a structural block diagram of a terminal device according to an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • 5G fifth generation
  • NR new air interface
  • the terminal device referred to in the technical solution of the embodiment of the present application may also be referred to as an access terminal, a user equipment (UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a mobile device.
  • UE user equipment
  • the terminal device can communicate with one or more core networks via a radio access network (RAN), or can access the distributed network in an ad hoc or unlicensed manner, and the terminal device can also access through other means.
  • RAN radio access network
  • the wireless network communicates, and the terminal device can directly perform wireless communication with other terminal devices. This embodiment of the present application does not limit this.
  • the network side device may be a base station (node B), an evolved base station (evolutional node B, eNB), a base station in a communication system, a base station or a network device in a future communication system, or the like.
  • node B node B
  • eNB evolved base station
  • a base station in a communication system a base station or a network device in a future communication system, or the like.
  • the data transmission method provided by the embodiment of the present application can be applied to downlink data transmission, and can also be applied to uplink data transmission, and can also be applied to device to device (D2D) data transmission.
  • D2D device to device
  • the sending device is a network side device
  • the corresponding receiving device is a terminal device.
  • the sending device is a terminal device
  • the corresponding receiving device is a network side device.
  • the transmitting device is a terminal device, and the corresponding receiving device is also a terminal device.
  • the embodiment of the present application does not limit this.
  • the transmitting device and the receiving device in the embodiments of the present application may be deployed on land, including indoors or outdoors, handheld or on-board; or may be deployed on the water; or may be deployed on aircraft, balloons, and satellites in the air.
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal.
  • Equipment wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security ( A wireless terminal in a transportation safety, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • the embodiment of the present application does not limit the application scenario.
  • FIG. 1 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • the network-side device determines the target scheduling rule from the N scheduling rules, where the network-side device and the terminal device use the first transmission mode for data transmission, where the network-side device and the terminal device use the first transmission mode for data transmission, where the network-side device determines the target scheduling rule from the N scheduling rules, where
  • the scheduling rule includes at least one of the number of transport blocks T of the primary scheduling and the mapping relationship between the T transport blocks and the S minimum time scheduling units of the primary scheduling, where N is a positive integer greater than or equal to 2, where T is A positive integer greater than or equal to 1, S is a positive integer greater than or equal to 1, and the first transmission mode is a single antenna transmission scheme or a multi-antenna transmission scheme.
  • the multi-antenna transmission scheme may be a transmit diversity transmission scheme, a spatial multiplexing transmission scheme, a multiple-input multiple-output (MIMO) transmission scheme, or a coordinated multiple points transmission/reception (CoMP). Or beamforming transmission schemes, etc., can also be various antenna port, layer, stream or rank configurations.
  • the first transmission mode is a transmission mode determined by the network side device.
  • the first transmission mode may be any one of the transmission modes (TM) 1 to 10 defined in the LTE system, or may be another transmission mode (for example, 5G, etc.), and the embodiment of the present application is This is not limited.
  • the following embodiments take a single antenna transmission scheme or a non-space division multiplexing transmission scheme as an example, and a multi-antenna transmission scheme or a space division multiplexing transmission scheme can be similarly obtained.
  • the transport block here may be a transport block (TB) as referred to in the LTE protocol, or may be a transport unit having the same function in other communication systems (for example, 5G, etc.).
  • the minimum time scheduling unit herein may be a transmission time interval (TTI), a slot, a time domain symbol, or a mini slot composed of one or more time domain symbols.
  • the time domain symbol may be an orthogonal frequency division multiplexing (OFDM) symbol, or may be a single carrier frequency division multiple access (SC-FDMA) symbol.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDMA single carrier frequency division multiple access
  • the terminal device determines a target scheduling rule.
  • the network side device and the terminal device communicate according to the target scheduling rule.
  • the communication here may be uplink communication or downlink communication.
  • a transport block requires multiple bits of control information, such as new data indicator (NDI), redundancy version (RV), hybrid automatic repeat request (HARQ) feedback.
  • NDI new data indicator
  • RV redundancy version
  • HARQ hybrid automatic repeat request
  • Information instructions etc. Therefore, the fewer the number of transport blocks, the less the number of bits of control information required, and the less overhead of the corresponding control information.
  • TTI transmission time interval
  • the transport block size (TBS) may be larger. In other words, the TBS can be proportional to the data of the minimum time scheduling unit.
  • a larger TBS can achieve higher coding gain.
  • the longer the TTI the fewer the number of HARQ processes required to maintain continuous transmission.
  • the more the number of transport blocks transmitted in the same time the shorter the TTI of each transport block, and the smaller the one-way delay. In some scenarios (such as high-speed mobile scenes, burst interference, etc.), this scheduling is selected. Rules can improve data transmission efficiency. Therefore, according to the method shown in FIG.
  • each minimum time scheduling unit can also carry multiple transport blocks in the frequency domain.
  • the flexible resource multiplexing of the transport block can also be met. For example, retransmission uses less resources, usually avoids resource waste, improves spectrum efficiency, or retransmits more resources to ensure delay and reliability. Sex.
  • the scheduling rule includes the number T of transport blocks scheduled at one time
  • the number of transport blocks T of one scheduling included in different scheduling rules of the N scheduling rules is different.
  • the proportional relationship between the number of transport blocks scheduled for one time and the number of minimum time scheduling units determined according to different scheduling rules may be different.
  • the scheduling rule includes a mapping relationship between the T transport blocks and the S minimum time scheduling units
  • the different scheduling rules of the N scheduling rules indicate the number of transport blocks and the minimum time scheduling unit scheduled at one time. The proportional relationship of the numbers can also be different.
  • the ratio of the number of transport blocks and the number of minimum time scheduling units determined according to the N scheduling rules may be any of the following two types: 1:1, 1:P, Q:P, or Q:1, where , P and Q are both positive integers, and P is not equal to Q.
  • the scheduling rule may further include: a number of transport blocks T scheduled once, a mapping relationship between T transport blocks and S minimum time scheduling units in one scheduling, and one of one scheduling At least one of the minimum number of time scheduling units of the transport block map.
  • N scheduling rules are shown by Table 1 below. In the embodiment shown in Table 1, it is assumed that the number of minimum time scheduling units for one scheduling is four.
  • Scheduling rule number Number of transport blocks Mapping relationship between transport block and minimum time scheduling unit 1 1 T 1 ⁇ (S 1 ,S 2 ,S 3 ,S 4 ) 2 2 T 1 ⁇ (S 1 , S 2 ), T 2 ⁇ (S 3 , S 4 ) 3 4 T 1 to (S 1 ), T 2 to (S 2 ), T 3 to (S 3 ), T 4 to (S 4 )
  • the scheduling rule shown in Table 1 includes the number of transport blocks scheduled once and the mapping relationship between the T transport blocks and the S minimum time scheduling units, where T t ⁇ (S s ) represents T transport blocks.
  • the tth transport block is mapped to the sth smallest time scheduling unit of the S minimum time scheduling units.
  • T 1 to (S 1 ) indicate that the first one of the four transport blocks is mapped to the first one of the four minimum time scheduling units.
  • T 2 to (S 3 , S 4 ) indicate that the second one of the two transport blocks is mapped to the third minimum time scheduling unit and the third of the four minimum time scheduling units.
  • the scheduling rules as shown in Table 1 may also have other manifestations. For example, the number of transport blocks in one scheduling may be included or only the mapping relationship between T transport blocks and S minimum time scheduling units in one scheduling may be included.
  • Table 2 is an illustration of another scheduling rule.
  • Table 3 is an illustration of another scheduling rule.
  • the scheduling rules as shown in Tables 2 and 3 include the number of minimum time scheduling units for each transport block mapping of T transport blocks scheduled at one time.
  • the mapping relationship between the number of transport blocks T currently scheduled and the T transport blocks scheduled at one time and the S minimum time scheduling units may be determined. For example, if the scheduling rule is 2 and the minimum number of scheduling units S of the primary scheduling is 4, it can be known that the number of transport blocks T currently scheduled is 2, and 2 TBs are mapped to the 1st and 2nd respectively. On the 3rd and 4th minimum time scheduling units.
  • the scheduling rule is only for helping a person skilled in the art to better understand the meaning of the scheduling rule, and is not limited to the scheduling rule.
  • the scheduling rule may be a subset or extension or modification of the rules in the above table.
  • the network side device may determine parameter information used when communicating with the terminal device, and then determine, according to the correspondence between the parameter information and the scheduling rule, the determined parameter information in the N scheduling rules.
  • the corresponding scheduling rule is the target scheduling rule.
  • the parameter information may be a subcarrier spacing used by the network side device to communicate with the communication device.
  • the parameter information may also be the number of symbols occupied by the minimum time scheduling unit used by the network side device to communicate with the communication device.
  • the parameter information may also be a subcarrier spacing used by the network side device when communicating with the terminal device and a number of symbols occupied by the minimum time scheduling unit.
  • Table 4 is a schematic diagram of the correspondence between parameter information and scheduling rules.
  • the parameter information in Table 4 is the subcarrier spacing.
  • the scheduling rules indicated by the scheduling rule number shown in Table 4 are the same as the scheduling rules indicated by the same sequence number shown in Table 1.
  • the scheduling rule with the scheduling rule number 3 in Table 4 is the scheduling rule with the scheduling rule number 3 in Table 1, that is, the number of transport blocks is 4, and T 1 ⁇ (S 1 ), T 2 ⁇ (S 2 ) , T 3 to (S 3 ), and T 4 to (S 4 ).
  • Table 5 is the correspondence between another parameter information and a scheduling rule.
  • the parameter information in Table 5 is the subcarrier spacing, and the scheduling rule is the number of minimum time scheduling units of one transport block mapping.
  • Table 5 shows a number of embodiments in the form of a table.
  • the number of minimum time scheduling units for one transport block mapping is 1, and in the case where the subcarrier spacing is 60 kHz, one transport block map minimum time scheduling unit The number is 2.
  • the number of minimum time scheduling units of one transport block mapping is 2, and in the case where the subcarrier spacing is 60 kHz, the number of minimum time scheduling units of one transport block mapping is 4, and so on.
  • Table 6 is an illustration of the correspondence between another parameter information and a scheduling rule.
  • the elaboration information in Table 6 is the number of symbols of a minimum time scheduling unit.
  • the scheduling rule indicated by the scheduling rule number shown in Table 6 is the same as the scheduling rule indicated by the same sequence number shown in Table 1.
  • Table 7 is an illustration of the correspondence between another parameter information and a scheduling rule.
  • the transmission information in Table 7 is the subcarrier spacing and the number of symbols of a minimum time scheduling unit.
  • the scheduling rule indicated by the scheduling rule number shown in Table 7 is the same as the scheduling rule indicated by the same sequence number shown in Table 1.
  • Table 8 is an illustration of the correspondence between another parameter information and a scheduling rule.
  • the transmission information in Table 8 is the subcarrier spacing and the number of symbols of a minimum time scheduling unit.
  • Table 8 shows a plurality of embodiments in the form of a table.
  • the scheduling rules are only for helping the person skilled in the art to better understand the meaning of the scheduling rules, and are not limited to the scheduling rules.
  • the scheduling rules may be a subset or extension or modification of the rules in the above table.
  • the subcarrier spacing in 5G/NR can also be 3.75kHz, 7.5kHz, 120kHz, 240kHz, 480kHz, 960kHz
  • the minimum time scheduling unit symbol number can also be 1, 2, 3, 4, etc., and the minimum time of one scheduling.
  • the terminal device may only support one subcarrier spacing and the minimum time scheduling unit symbol number. In this case, the terminal device may determine that the target scheduling rule is a scheduling rule corresponding to the subcarrier spacing and/or the minimum time scheduling unit symbol number supported by the terminal.
  • the shorter the duration of a minimum time scheduling unit the more the minimum time scheduling unit of one transport block mapping.
  • a minimum time scheduling unit duration is 1 ms, and the number of minimum time scheduling units of one transport block mapping is 1.
  • the fewer TTIs a transport block maps to the minimum time scheduling unit the shorter the TTI of a transport block.
  • the shorter the TTI of each transport block the smaller the one-way delay. In this way, delay problems caused by excessive TTI can be avoided, such as satisfying the one-way delay requirement of 5G eMBB 4ms.
  • a minimum time scheduling unit duration is 0.125 ms
  • the number of minimum time scheduling units of one transport block mapping may be 4. The more TDU is mapped to a minimum time scheduling unit, the longer the TTI of a transport block. This helps to increase the coverage distance of the transport block.
  • a transport block is mapped to multiple minimum time scheduling units, a larger transport block can be transmitted, and a larger TBS can obtain a higher coding gain.
  • the processing delays of the transmitting end and the receiving end are the same, the longer the TTI, the less the same processing delay and the transmission delay, the fewer the number of HARQ processes required to maintain continuous transmission.
  • the fewer transport blocks scheduled in the same time the MAC layer and RLC layer header overhead and CRC overhead can be reduced, and the control overhead (such as downlink control and HARQ feedback overhead) can be reduced.
  • the network side device may also determine radio resource information.
  • the network side device determines, according to the correspondence between the radio resource information and the scheduling rule, that the scheduling rule corresponding to the determined radio resource information in the N scheduling rules is the target scheduling rule.
  • the radio resource information may be the number of resource blocks (RBs) currently available to the network side device or the number of layers allocated by the codeword when multiple-input multiple-output (MIMO) communication is used.
  • MIMO multiple-input multiple-output
  • 5G/4.5G considering that it is possible to use smaller scheduling units (such as the minimum time scheduling unit symbol number may be 1 or 2), in order to transmit a larger TB, 1 TB is required to be mapped to multiple minimum time scheduling units.
  • the limited power spectral density and the allocated resource blocks are small, and one transport block can be mapped to multiple minimum time scheduling units to implement coverage enhancement and transmit a larger transport block.
  • the target scheduling rule may be a scheduling rule with a scheduling rule number of 1, that is, one transport block is mapped to four minimum time scheduling units. Mapping one transport block to multiple minimum time scheduling units when the number of RBs is small can make the TBS large, the large TBS can obtain higher coding gain, and reduce the MAC layer and RLC layer header overhead and CRC overhead.
  • the target scheduling rule may be a scheduling rule with a scheduling rule number of 3, that is, one transport block is mapped to a minimum time schedule. unit.
  • the network side device may also determine an operating state of the terminal device.
  • the network side device determines, according to the correspondence between the working state of the terminal device and the scheduling rule, that the scheduling rule corresponding to the determined working state of the terminal device in the N scheduling rules is the target scheduling rule.
  • the working status of the terminal device may include location information of the terminal device, for example, the terminal device is located at a cell edge or a cell center, and the coverage is limited.
  • the working state of the terminal device may further include a moving speed of the terminal device, for example, the terminal device is in a high speed moving state, a low speed moving state, and the like.
  • the working status of the terminal device may be reported by the terminal device to the network side device, or may be measured by the network side device.
  • the target scheduling rule may be a scheduling rule with a scheduling rule number of 1, that is, one transport block is mapped to four minimum time scheduling units. In this way, the coverage of the terminal device can be improved. Further, in some embodiments, the terminal device is in a high-speed mobile state or is located in a cell center or a non-coverage restricted scenario, and the target scheduling rule may be a scheduling rule with a scheduling rule number of 3, that is, a transport block is mapped to a minimum. Time scheduling unit.
  • the network side device may also determine wireless environment information.
  • the network side device determines, according to the correspondence between the wireless environment information and the scheduling rule, that the scheduling rule corresponding to the determined wireless environment information in the N scheduling rules is the target scheduling rule.
  • the wireless environment information may be channel-related measurement information, or may be current network configuration or scheduling related information. For example, whether there is sudden interference in the neighboring cell, whether ultra-reliable low latency communication (URLLC) is affected (such as resource preemption, punching, etc.), for example, a common method is to increase the system bandwidth.
  • URLLC ultra-reliable low latency communication
  • the scheduling rule with sequence number 3 or a transport block shown in Table 1 can be mapped to a minimum time scheduling unit, so that the URLLC impact can be better.
  • the target scheduling rule may be a scheduling rule with a scheduling rule number of 3, that is, one transport block is mapped to a minimum time scheduling unit.
  • the target scheduling rule may be a scheduling rule with a scheduling rule number of 1, that is, one transport block is mapped to four minimum time scheduling units.
  • neighbor cell burst interference or URLLC impact neighbor cell burst interference or URLLC interference may only affect data on one minimum time scheduling unit.
  • the plurality of minimum time scheduling units have only one corresponding feedback information. Therefore, it is possible that the data on all the minimum time units of the scheduling needs to be retransmitted. And if a transport block is mapped to a minimum time scheduling unit, each minimum time scheduling unit has control information and feedback information. In this way, only the data on the affected minimum time unit needs to be retransmitted, there is a spectral efficiency performance gain, and better link performance can be obtained. In addition, if each transport block is only scheduled to one minimum scheduling time unit, collision collision between eMBB and URLLC can be avoided by scheduling.
  • the network side device may also select an appropriate target scheduling rule according to other parameters or scenarios that may reflect channel quality.
  • the network side device may further determine the target scheduling rule from the N scheduling rules according to two or more pieces of information in the foregoing information. For example, in the case of satisfying latency requirements and no interference, one transport block can be mapped to multiple minimum scheduling units even in a cell center user or a non-coverage restricted scenario.
  • the network side device may further send target scheduling rule indication information to the terminal device, where the target scheduling rule indication information is used to indicate the target scheduling determined by the network side device.
  • the determining, by the terminal device, the target scheduling rule includes: determining, by the terminal device, the target scheduling rule according to the received target scheduling rule indication information.
  • the target scheduling rule determined by the network side device is a target scheduling rule supported by the terminal device.
  • the terminal device may send the scheduling rule information to the network side device, where the scheduling rule information is used to indicate the scheduling rule supported by the terminal device of the network side device.
  • the network side device may send the target scheduling rule indication information to the terminal device in an implicit or display manner.
  • the target scheduling rule indication information includes at least one of: a subcarrier spacing, a number of symbols occupied by a minimum time scheduling unit, a downlink control information (DCI) format, and a modulation.
  • DCI downlink control information
  • MCS modulation and coding scheme
  • a cyclic redundancy check code a cyclic redundancy check code
  • the terminal device can save or pre-define or generate a corresponding relationship of subcarrier spacing and scheduling rules as shown in Table 4.
  • the determined target scheduling rule is a scheduling rule with sequence number 3.
  • the network side device may display or implicitly instruct the terminal device to use a subcarrier spacing of 15 kHz.
  • the display notification includes control signaling notification (such as broadcast channel, high layer signaling, physical layer signaling, etc.); the implicit notification includes the user blindly detecting the broadcast channel or the synchronization channel to determine the subcarrier spacing.
  • the terminal device may determine that the scheduling rule with the scheduling rule number 3 is the target scheduling rule according to the correspondence between the subcarrier spacing and the scheduling rule.
  • the terminal device may save or pre-define or generate a correspondence between the number of symbols occupied by the minimum time scheduling unit and the scheduling rule as shown in Table 6. If the number of symbols used by the network-side device or the minimum time scheduling unit is 14, the determined target scheduling rule is a scheduling rule with sequence number 3.
  • the network-side device may indicate that the terminal device uses the minimum time scheduling unit. The number of symbols is 14.
  • the terminal device may determine, according to the correspondence between the number of symbols occupied by the minimum time scheduling unit and the scheduling rule, that the scheduling rule with the scheduling rule number 3 is the target scheduling rule.
  • the terminal device can save or pre-define or generate a correspondence as shown in Table 7. If the network side device currently configures or uses the subcarrier spacing of 15 kHz and the number of symbols occupied by the minimum time scheduling unit is 14, the determined target scheduling rule is a scheduling rule with sequence number 3. The network side device may indicate that the terminal device uses The subcarrier spacing is 15 kHz and the number of symbols occupied by the minimum time scheduling unit is 14. In this case, the terminal device may determine, according to the correspondence between the number of symbols occupied by the minimum time scheduling unit and the scheduling rule, that the scheduling rule with the scheduling rule number 3 is the target scheduling rule.
  • the network side device and the terminal device may save or pre-define or generate a correspondence between the DCI format and the scheduling rule as shown in Table 9.
  • A, B, and C shown in Table 9 indicate different DCI formats. If the target scheduling rule determined by the network side device is a scheduling rule with sequence number 3, the network side device may use the DCI format as A. In this case, the terminal device may determine, according to the correspondence between the detected DCI format and the scheduling rule, that the scheduling rule with the scheduling rule number 3 is the target scheduling rule.
  • the network side device and the terminal device may save or pre-define or generate a correspondence between the MCS and the scheduling rule as shown in Table 10.
  • MCS index Scheduling rule number MCS 1 to MCS 2 3 MCS 3 to MCS 4 2 MCS 5 to MCS 6 1
  • MCS 1 to MCS 6 in Table 10 indicate different MCS indexes. If the network side device configures or uses the MCS between MCS 1 and MCS 2 , the determined target scheduling rule is the scheduling rule with sequence number 3. The network side device may indicate that the MCS used by the terminal device is MCS 1 to MCS. The value of 2 . In this case, the terminal device may determine, according to the correspondence between the MCS and the scheduling rule, that the scheduling rule with the scheduling rule number 3 is the target scheduling rule.
  • the network side device and the terminal device may save or pre-define or generate a correspondence between the CRC and the scheduling rule as shown in Table 11.
  • CRC 1 , CRC 2 and CRC 3 in Table 11 represent three different CRCs. If the target scheduling rule determined by the network side device is a scheduling rule with sequence number 3, the network side device may add a CRC of CRC 1 to the DCI. In this case, after determining the CRC, the terminal device may determine, according to the correspondence between the CRC and the scheduling rule, that the scheduling rule with the scheduling rule number 3 is the target scheduling rule.
  • the network side device and the terminal device may save or pre-define or generate a correspondence between the number of RBs and the scheduling rule as shown in Table 12.
  • the network side device may indicate the number RB of the terminal device used is less than Or equal to RB 1 .
  • the terminal device may determine, according to the correspondence between the number of RBs and the scheduling rule, that the scheduling rule with the scheduling rule number 3 is the target scheduling rule.
  • the target scheduling rule information may correspond to a search space location where the DCI is located. It can be understood that since the search space where the DCI is located is only the common search space and the user search space, only two scheduling rules can be indicated by the search space where the DCI is located. For example, if the network side device determines that the target scheduling rule is a scheduling rule with sequence number 3, the DCI may be carried in a common search space. If the network side device determines that the target scheduling rule is a scheduling rule with sequence number 1, the DCI may be used. Hosted in the user search space. The terminal device may determine the target scheduling rule according to the detected location of the DCI.
  • scheduling rules can be indicated in consideration of the search space in which the DCI is used, and the remaining scheduling rules may be optionally indicated in other manners.
  • CRC CRC, RB number, and the like are utilized.
  • the target scheduling rule information may correspond to a resource location where the DCI is located. It can be understood that the terminal device can determine the target scheduling rule according to the detected resource location (such as the RB number, or the sub-band number, or the CCE number) of the DCI.
  • the network side device may send the target scheduling rule indication information to the terminal device in a display manner.
  • the network side device may send the target scheduling rule indication information to the terminal device by using some field on the control signaling.
  • the control signaling may be MAC layer control signaling or physical layer control signaling.
  • a field for indicating a target scheduling rule may be a new field on the control signaling.
  • the target scheduling rule indication field can be added to the DCI.
  • the network side device may set the value of the target scheduling rule indication field to a value corresponding to the target scheduling rule.
  • the terminal device may determine the target scheduling rule according to the value of the target scheduling rule indication field in the DCI.
  • high-level signaling such as a MAC layer or a radio resource control (RRC) layer may be used to indicate a target scheduling rule.
  • the scheduling rule may include only the number of transport blocks T that are scheduled once.
  • the number of transport blocks T scheduled once can divide S.
  • the minimum number of time scheduling units in a single schedule is four. If the target scheduling rule includes the number of transport blocks in one scheduling being 2, the first one of the two transport blocks is mapped to the first minimum time scheduling unit and the second minimum time scheduling unit, and the two The second transport block in the transport block maps to the third minimum time scheduling unit and the fourth minimum time scheduling unit. If the target scheduling rule determined by the terminal device includes the number of transport blocks in one scheduling is 4, the terminal device may determine that the four transport blocks are respectively mapped to the four minimum time scheduling units.
  • the network side device may save or pre-define or generate a mapping relationship between the T transport blocks and the S minimum time scheduling unit in the one-time scheduling.
  • the network side device may be configured according to the number of transport blocks in one scheduling included in the target scheduling rule and the T transport blocks and the S minimum time scheduling unit in the one-time scheduling saved or predefined by the network side device.
  • the mapping relationship determines the minimum time scheduling unit for each transport block mapping.
  • the terminal device may also save or pre-define or generate a mapping relationship between the T transport blocks and the S minimum time scheduling unit in the one-time scheduling.
  • the terminal device may determine, according to the mapping relationship between the number of transport blocks in one scheduling included in the target scheduling rule and the T transport blocks and the S minimum time scheduling unit in the one-time scheduling saved or predefined by the terminal device.
  • each of the N scheduling rules may include only the minimum number of time scheduling units of one transport block mapping scheduled once.
  • the minimum time scheduling unit of one transport block mapping of one scheduling included in each scheduling rule can be divisible by S.
  • the minimum number of time scheduling units in a single schedule is four. If the target scheduling rule includes the minimum number of scheduling units of one transport block mapping in the primary scheduling is 2, the number of transporting blocks in the primary scheduling is 2, and the first transporting block in the two transporting blocks is mapped to The first minimum time scheduling unit and the second minimum time scheduling unit, the second one of the two transport blocks is mapped to the third minimum time scheduling unit and the fourth minimum time scheduling unit. If the target scheduling rule includes the minimum number of scheduling units of one transport block mapping in the primary scheduling is 4, and the number of transporting blocks in the primary scheduling is 1, the terminal device may determine that one transporting block is mapped to 4 respectively. Minimum time scheduling unit.
  • the network side device may save or pre-define or generate a mapping relationship between the T transport blocks and the S minimum time scheduling unit of the primary scheduling. In this way, the network side device may use the minimum time scheduling unit of one transport block mapping in one scheduling included in the target scheduling rule and the T transport blocks in the one scheduling saved or predefined by the network side device.
  • the mapping relationship of the S minimum time scheduling unit determines the number of transport blocks in one scheduling and the minimum time scheduling unit for each transport block mapping.
  • the terminal device may also save or pre-define or generate a mapping relationship between the T transport blocks and the S minimum time scheduling unit of the primary scheduling.
  • the terminal device may allocate a minimum time scheduling unit of one transport block mapping according to one scheduling included in the target scheduling rule, and T transport blocks and S minimum time scheduling units in the one-time scheduling saved or predefined by the terminal device.
  • the mapping relationship determines the number of transport blocks in a schedule and the minimum time scheduling unit for each transport block map.
  • each of the N scheduling rules may include only the number of transport blocks T scheduled once.
  • the number of transport blocks T scheduled at one time may be divisible by S or not.
  • the T transport blocks and the S minimum time scheduling units that are scheduled at one time have the following mapping relationship: each transport block in the T transport blocks is mapped to one of the S minimum time scheduling units.
  • each of the T transport blocks is mapped to the S minimum time scheduling units; or, if the S/T is greater than 1 and less than a positive integer of S, then each of the T transport blocks
  • the minimum number of time scheduling units in a single schedule is four. If the target scheduling rule includes the number of transport blocks in one scheduling being 2, the first one of the two transport blocks is mapped to the first minimum time scheduling unit and the second minimum time scheduling unit, and the two transmissions The second transport block in the block maps to the third minimum time scheduling unit and the fourth minimum time scheduling unit. If the target scheduling rule includes the number of transport blocks in one scheduling being 3, the first one of the three transport blocks is mapped to the first minimum time scheduling unit and the second minimum time scheduling unit, and the three transport blocks are in the three transport blocks. The second transport block and the third transport block are mapped to a third minimum time scheduling unit and a fourth minimum time scheduling unit, respectively.
  • the network side device may save or pre-define or generate a mapping relationship between the T transport blocks and the S minimum time scheduling unit of the primary scheduling. In this way, the network side device may map the number of the transport blocks that are scheduled in the target scheduling rule to the T transport blocks and the S minimum time scheduling unit that are saved or predefined or generated by the network side device. Determine the minimum time scheduling unit for each transport block mapping.
  • the terminal device may also save or pre-define or generate a mapping relationship between the T transport blocks and the S minimum time scheduling unit of the primary scheduling.
  • the terminal device may determine, according to the mapping relationship between the number of the first scheduled transport blocks included in the target scheduling rule and the T transport blocks and the S minimum time scheduling unit that are saved or predefined or generated by the terminal device, The minimum time scheduling unit for transport block mapping.
  • each of the N scheduling rules may include only the number of transport blocks T in one scheduling.
  • the number of transport blocks T in one scheduling may be divisible by S or not.
  • the T transport blocks and the S minimum time scheduling units in one scheduling have the following mapping relationship: each transport block in the T transport blocks is mapped to a minimum time in the S minimum time scheduling units.
  • the minimum number of time scheduling units in a single schedule is four. If the target scheduling rule includes the number of transport blocks in one scheduling being 2, the first one of the two transport blocks is mapped to the first minimum time scheduling unit and the second minimum time scheduling unit, and the two transmissions The second transport block in the block maps to the third minimum time scheduling unit and the fourth minimum time scheduling unit. If the target scheduling rule includes the number of transport blocks in one scheduling being 3, the third transport block of the three transport blocks is mapped to the third minimum time scheduling unit and the fourth minimum time scheduling unit, and three transport blocks are The first transport block and the second transport block are mapped to the first minimum time scheduling unit and the second minimum time scheduling unit, respectively.
  • the network side device may save or pre-define or generate a mapping relationship between the T transport blocks and the S minimum time scheduling unit in the one-time scheduling.
  • the network side device may be configured according to the number of transport blocks in one scheduling included in the target scheduling rule and the T transport blocks and the S minimum time scheduling unit in the one-time scheduling saved or predefined by the network side device.
  • the mapping relationship determines the minimum time scheduling unit for each transport block mapping.
  • the terminal device may also save or pre-define or generate a mapping relationship between the T transport blocks and the S minimum time scheduling unit in the one-time scheduling.
  • the terminal device may determine, according to the mapping relationship between the number of transport blocks in one scheduling included in the target scheduling rule and the T transport blocks and the S minimum time scheduling unit in the one-time scheduling saved or predefined by the terminal device.
  • each of the N scheduling rules may include only the number of transport blocks T scheduled once.
  • the number of transport blocks T scheduled at one time may be divisible by S or not.
  • the T transport blocks and the S minimum time scheduling units that are scheduled at one time have the following mapping relationship: each transport block in the T transport blocks is mapped to one of the S minimum time scheduling units.
  • the target scheduling rule includes the number of transport blocks in one scheduling is 5
  • the first one of the 5 transport blocks is mapped to the first minimum time scheduling unit to the third minimum time scheduling unit
  • 5 transport blocks are The second to fourth transport blocks are respectively mapped to the fourth minimum time scheduling unit to the sixth minimum time scheduling unit
  • the fifth one of the five transport blocks is mapped to the seventh minimum time scheduling Unit and eighth minimum time scheduling unit.
  • the network side device may save or pre-define or generate a mapping relationship between the T transport blocks and the S minimum time scheduling unit in the one-time scheduling. In this way, the network side device may map the number of transport blocks in one scheduling included in the target scheduling rule to the T transport blocks and the S minimum time scheduling unit of the primary scheduling saved or predefined or generated by the network side device. Relationship, determining the minimum time scheduling unit for each transport block mapping.
  • the terminal device may also save or pre-define or generate a mapping relationship between the T transport blocks and the S minimum time scheduling unit in the one-time scheduling.
  • the terminal device may determine, according to the mapping relationship between the number of transport blocks in one scheduling included in the target scheduling rule and the T transport blocks and the S minimum time scheduling unit that are saved or predefined or generated by the terminal device.
  • the scheduling rule in the above several embodiments may include only the number of transmission blocks T in one scheduling or the minimum number of scheduling units in one transmission block mapping in one scheduling, the scheduling rule may also include T transmissions scheduled once.
  • the mapping relationship between the block and the S minimum time scheduling units It can be understood that, in the case that the scheduling rule includes the mapping relationship between the T transport blocks and the S minimum time scheduling units, the terminal device and the network side device may pre-store or pre-define the scheduled T transmissions.
  • the mapping relationship between the block and the S minimum time scheduling units may not be saved or predefined. The mapping relationship between the T transport blocks and the S minimum time scheduling units.
  • each of the N scheduling rules may also include only the mapping relationship of the T scheduled transport blocks and the S minimum time scheduling units.
  • the terminal device can directly determine the mapping relationship between the T transport blocks and the S minimum time scheduling units according to the target transmission rule, without saving or pre-defining or generating mappings of T transport blocks and S minimum time scheduling units.
  • the relationship determines the minimum time scheduling unit of each transport block map according to the number of one scheduled transport blocks included in the received target scheduling rule and/or the minimum number of time scheduling units of one transport block map scheduled at one time.
  • the minimum time scheduling unit number of each transport block mapping may be the same or different, and the minimum time scheduling unit of each transport block mapping may be determined as needed.
  • the scheduling rule includes a mapping relationship between the T transport blocks scheduled to be scheduled and the S minimum time scheduling units.
  • Table 13 is an illustration of another scheduling rule.
  • the number of minimum time scheduling units assumed to be scheduled once in Table 13 is 4.
  • one transport block can be mapped to two minimum time scheduling units, or to three minimum time scheduling units or one minimum time scheduling unit.
  • the scheduling rule may include the number of transport blocks T scheduled once and the mapping relationship between the T transport blocks and the S minimum time scheduling units. Or only the mapping relationship between the T transport blocks and the S minimum time scheduling units scheduled once.
  • the target scheduling rule indication information may simultaneously indicate all the information included in the target scheduling rule.
  • the terminal device and the network side device may save or pre-define or generate N scheduling rules, and each scheduling rule has a corresponding scheduling rule sequence number.
  • the network side device only needs to indicate the scheduling rule sequence number of the target scheduling rule of the terminal device, and the terminal device may determine the specific information of the scheduling rule according to the scheduling rule sequence number. It can be understood that the correspondence between the sequence number of the scheduling rule and the scheduling rule saved or pre-defined or generated by the network side device and the terminal device is the same.
  • the terminal device and the network side device can save or pre-define or generate the correspondence between the scheduling rule sequence number and the scheduling rule as shown in Table 13.
  • the target scheduling rule indication information only needs to indicate the scheduling rule number corresponding to the target scheduling rule.
  • the scheduling rule includes the number of transport blocks T in one scheduling, the minimum number of time scheduling units in one transport block mapping, and T transport blocks and S minimum time scheduling units. Mapping at least two pieces of information in the relationship, the target scheduling rule indication information may separately indicate the at least two pieces of information.
  • the network side device may use specified control information (ie, subcarrier spacing, number of symbols occupied by each minimum time scheduling unit, DCI format, MCS, cyclic redundancy check code, and number of allocated resource blocks, etc.)
  • specified control information ie, subcarrier spacing, number of symbols occupied by each minimum time scheduling unit, DCI format, MCS, cyclic redundancy check code, and number of allocated resource blocks, etc.
  • the number of transport blocks in a schedule uses other fields to indicate the mapping relationship between the transport block and the minimum time scheduling unit.
  • the network side device may add some dedicated fields in the control signaling to indicate a mapping relationship between the transport block and the minimum time scheduling unit, and the network side device may also use some redundant fields in the control signaling to indicate the transmission.
  • the mapping relationship between the block and the minimum time scheduling unit may be used by the control signaling to indicate the transmission.
  • some fields in the DCI have a corresponding field for each transport block.
  • the number of traversable transport blocks in a scheduling is X and the number of transport blocks scheduled in the target scheduling rule is Y (X is greater than Y and X and Y are both positive integers)
  • the corresponding fields of the XY transport blocks are Redundant field.
  • the field corresponding to the X-Y transport blocks may be utilized to indicate the target scheduling rule.
  • the maximum number of transport blocks that can be scheduled in a single schedule is four. If the number of transport blocks scheduled in one scheduling is 2, the fields corresponding to the remaining 2 unscheduled transport blocks may be used to indicate the mapping relationship between the transport block and the minimum time scheduling unit. If the number of transport blocks scheduled in the target scheduling rule is 4, the mapping relationship between the transport block and the minimum time scheduling unit may be determined as a default mapping relationship, that is, a transport block and a minimum time scheduling unit are mapped.
  • the number of scheduling units mapped per transport block may be related to attributes of the transport block.
  • the attribute of the transport block refers to whether the transport block is an initial transmission block or a retransmission transport block.
  • the flexible time domain resource allocation of each transport block can cause each transport block to schedule the number of resources according to the required, thereby obtaining performance gain.
  • the mapping rule of the retransmission transport block is: each retransmission transport block is mapped to a minimum time scheduling unit.
  • Each initial transmission block can be mapped to one or more minimum time scheduling units.
  • at most one initial transmission block may be included in the T transport blocks. In this way, by retransmitting with fewer resources, resource waste can be avoided to gain throughput and spectral efficiency gains.
  • each transport block is mapped to a minimum time scheduling unit.
  • T the T-1 retransmission transport blocks and the first of the S minimum time scheduling units
  • the initial transmission block is mapped to the remaining transport blocks of the S minimum time scheduling units.
  • T is equal to 1 and the T transport blocks are mapped onto the S transport blocks.
  • the T transport blocks may include one initial transmission block, and the initial transmission block is mapped to the S minimum time scheduling units.
  • the T transport blocks may include one initial transmission block and one retransmission transport block.
  • the retransmission transport block is mapped to a first minimum time scheduling unit of the S minimum time scheduling units
  • the initial transmission transport block is mapped to second to fourth minimum time scheduling units of the S minimum time scheduling units.
  • the T transport blocks may include one initial transmission block and two retransmission transport blocks.
  • the first retransmission transport block is mapped to the first minimum time scheduling unit of the S minimum time scheduling units
  • the second retransmission transport block is mapped to the second minimum time scheduling of the S minimum time scheduling units a unit
  • the initial transmission block is mapped to the third minimum time scheduling unit and the fourth minimum time scheduling unit of the S minimum time scheduling units.
  • the T transport blocks may include one initial transport block and three retransmission transport blocks, or the T transport blocks may also include four retransmission transmissions.
  • the first transport block includes one retransmission transport block
  • the first retransmission transport block is mapped to the first minimum time scheduling unit of the S minimum time scheduling units
  • Two retransmission transport blocks are mapped to a second minimum time scheduling unit of the S minimum time scheduling units
  • a third retransmission transport block is mapped to a third minimum time scheduling unit of the S minimum time scheduling units
  • the initial transmission block is mapped to the fourth minimum time scheduling unit of the S minimum time scheduling units.
  • the first retransmission transport block is mapped to the first minimum time scheduling unit of the S minimum time scheduling units
  • the second retransmission transport block is mapped to a second minimum time scheduling unit of the S minimum time scheduling units
  • a third retransmission transport block mapped to a third minimum time scheduling unit of the S minimum time scheduling units
  • the network side device may utilize a field corresponding to each transport block to indicate an attribute of the terminal device transport block.
  • the terminal device may determine a mapping relationship between the transport block and the minimum time scheduling unit according to the attributes of the transport block. Specifically, there may be T bits of NDI in the DCI, and each bit is used to indicate whether one transport block is a retransmitted transport block. For example, if the bit value is 1 or 0 or a flip occurs (depending on the protocol, the following example assumes that the bit value is 1 for initial transmission and the bit value is 0 for retransmission), indicating that the corresponding transport block is the initial transmission block. Otherwise, it indicates that the corresponding transport block is a retransmission transport block.
  • the terminal device may determine an attribute of each transport block according to the T bits, and determine a minimum time scheduling unit for each transport block mapping according to an attribute of each transport block.
  • the terminal device may determine that the first one of the four transport blocks and the second transport block are retransmitted transport blocks, and the third transport block is an initial transport block. In this way, the terminal device can determine that the first two minimum time scheduling units of the S minimum time scheduling units are the minimum time scheduling units mapped by the two retransmission transport blocks, and the minimum time remaining in the S minimum time scheduling units.
  • the scheduling unit is the minimum time scheduling unit of the initial transmission block mapping.
  • FIG. 2 is a schematic diagram of scheduling rule switching during transmission.
  • Figure 2 shows six consecutive schedules. S1 to S24 shown in Fig. 2 represent 24 minimum time scheduling units. The number of minimum time scheduling units for one scheduling shown in FIG. 2 is 4.
  • the transport block or process in the first five schedulings is the initial transmission, and the number of transport blocks in each scheduling is 1, that is, the scheduling rule 1 in Table 1 (or the scheduling rule 4 in Table 2) ).
  • process 0 is mapped to minimum time scheduling units S1 to S4
  • process 1 is mapped to minimum time scheduling units S5 to S8
  • process 2 is mapped to minimum time scheduling units S9 to S12
  • process 3 is mapped to minimum time scheduling units S13 to S16
  • the process 4 maps to the minimum time scheduling units S17 to S20, wherein each of the processes 0 to 4 is an initial transmission block.
  • the transmitting device After receiving the negative (non-acknowledgment, NACK) indication sent by the receiving device, the transmitting device determines that a process or a transport block needs to be retransmitted. As shown in FIG. 2, four transport blocks are scheduled at a time in the sixth scheduling, that is, scheduling rule 3 in Table 1 (or scheduling rule 1 in Table 2).
  • the four transport blocks may be four retransmission processes (or retransmission transport blocks), and the data of the four retransmission processes are respectively mapped to four minimum time scheduling units.
  • each of the four retransmission processes in the sixth scheduling is mapped to only one minimum time scheduling unit.
  • the four transport blocks in the sixth scheduling may also include a retransmission transport block and an initial transmission block.
  • one retransmission transport block is mapped to the minimum time scheduling unit S21, and three initial transmission transport blocks are mapped to the minimum time scheduling units S22 to S24, respectively.
  • the four transport blocks in the sixth scheduling may all be initial transmission blocks.
  • retransmission transport blocks may also be present in the first 5 schedules. Note that the minimum number of time scheduling units per scheduling can be dynamically changed, not limited to 4.
  • FIG. 3 is a schematic diagram of another scheduling rule switching in a transmission process.
  • Figure 3 shows six consecutive schedules. S1 to S24 shown in Fig. 3 represent 24 minimum time scheduling units. The number of minimum time scheduling units for one scheduling shown in FIG. 3 is 4.
  • the transport block in the first five schedulings is the initial transmission block, and the number of transport blocks in each scheduling is 1, that is, the scheduling rule 1 in Table 1 (or the scheduling rule 8 in Table 13) ).
  • process 0 is mapped to minimum time scheduling units S1 to S4
  • process 1 is mapped to minimum time scheduling units S5 to S8
  • process 2 is mapped to minimum time scheduling units S9 to S12
  • process 3 is mapped to minimum time scheduling units S13 to S16
  • the process 4 maps to the minimum time scheduling units S17 to S20, wherein each of the processes 0 to 4 is an initial transmission block.
  • the transmitting device After receiving the NACK indication sent by the receiving device, the transmitting device determines that a process or a transport block needs to be retransmitted. In this case, two transport blocks are scheduled at a time in the sixth scheduling, that is, scheduling rule 3 in Table 13.
  • the two transport blocks may be two retransmission processes (or retransmission transport blocks), and the first one of the two retransmission processes is mapped to one minimum time scheduling unit S21, and the other retransmission process map Up to three minimum time scheduling units S22 to S24.
  • the two transport blocks in the sixth scheduling may also include a retransmission transport block and an initial transmission transport block.
  • one retransmission transport block is mapped to the minimum time scheduling unit S21
  • one initial transmission transport block is mapped to the minimum time scheduling units S22 to S24.
  • the two transport blocks in the sixth scheduling may all be initial transmission blocks.
  • retransmission transport blocks may also be present in the first 5 schedules. Note that the minimum number of time scheduling units per scheduling can be dynamically changed, not limited to 4.
  • the mapping rule of the retransmission transport block is that the retransmission transport block can map the minimum number of time scheduling units more than the initial transmission block mapping minimum time scheduling unit number. This can reduce the communication delay and ensure the communication reliability, so that the transport block can be successfully decoded as soon as possible.
  • the mapping rule of the retransmission transport block is that the number of minimum time scheduling units that the retransmission transport block can map is the same as the minimum number of time scheduling units of the initial transport block map.
  • the network side device can support the mapping rules of the above three retransmission transport blocks, and switch between the two as needed.
  • the foregoing technical solution can adjust the minimum time scheduling unit number of the retransmission transport block mapping and the minimum time scheduling unit number of the initial transmission transport block mapping as needed, so that the performance gain can be obtained.
  • the present application can also carry data of multiple transport blocks on one minimum time scheduling unit to achieve large bandwidth communication.
  • the data of one transport block can be carried on one or more sub-bands.
  • scheduling multiple transport blocks through one DCI can save signaling overhead.
  • many domains can be shared by all transport blocks, and some domains can be specific for each transport block.
  • an NDI domain or the like can be a specific domain of each transport block.
  • MCS can have a value.
  • Each transport block determines the MCS value of the transport block based on the MCS and the MCS offset value specific to the transport block.
  • the number of transport blocks T in one scheduling may be greater than the minimum number of scheduling units to save control overhead.
  • FIG. 4 is a schematic diagram of mapping a plurality of transport blocks scheduled at a time to a minimum time scheduling unit.
  • the primary schedule shown in Figure 4 includes a minimum time scheduling unit S1 and four transport blocks.
  • the four transport blocks scheduled at one time are respectively mapped to four frequency domain resources of a minimum time scheduling unit in the frequency domain.
  • the four frequency domain resources may be continuous or discontinuous, and the four frequency domain resources may be the same or different in size.
  • FIG. 5 is a schematic diagram of another time-scheduled plurality of transport blocks mapped to a minimum time scheduling unit.
  • the primary schedule shown in Figure 5 includes a minimum time scheduling unit S1 and two transport blocks. Each of the two transport blocks scheduled at a time is mapped to two frequency domain resources of a minimum time scheduling unit in the frequency domain.
  • the four frequency domain resources may be continuous or discontinuous, and the four frequency domain resources may be the same or different in size.
  • time division multiplexing For convenience of description, the case where a minimum time scheduling unit carries at most one transport block data is called time division multiplexing, that is, all the embodiments described above are time division multiplexing scenarios; one minimum time scheduling unit carries two or two.
  • frequency division multiplexing The case of more than one transport block data is called frequency division multiplexing.
  • the specific embodiment of frequency division multiplexing is similar to the above embodiment of time division multiplexing, and need not be described here.
  • time division multiplexing In order to facilitate understanding of the difference between frequency division multiplexing and time division multiplexing, time division multiplexing will be described below with reference to FIGS. 6 and 7.
  • FIG. 6 is a schematic diagram of a plurality of transport blocks scheduled at one time mapped to a plurality of minimum time scheduling units.
  • the one-time scheduling as shown in FIG. 6 includes four minimum time scheduling units S1 to S4 and four transmission blocks, and four transmission blocks are respectively mapped on four minimum time scheduling units.
  • the one-time scheduling as shown in FIG. 7 includes four minimum time scheduling units S1 to S4 and two transport blocks. Two transport blocks are mapped in four minimum time scheduling units. Specifically, the first one of the two transport blocks is mapped to the minimum time scheduling units S1 and S2, and the second of the two transport blocks is mapped to the minimum time scheduling units S3 and S4.
  • time division multiplexing and frequency division multiplexing may be combined.
  • FIG. 8 is a schematic diagram of a combination of time division multiplexing and frequency division multiplexing.
  • the primary schedule shown in Figure 8 includes two minimum time scheduling units S1 and S2 and two transport blocks.
  • the two transport blocks scheduled at one time are respectively mapped in different frequency domains of the two minimum time scheduling units. It can be seen that in the embodiment shown in FIG. 4, each of the two transport blocks scheduled at a time is mapped to the two minimum time scheduling units of one schedule.
  • the primary schedule shown in FIG. 9 includes three minimum time scheduling units S1 to S3 and four transport blocks.
  • the transport block 1 and the transport block 2 of the four transport blocks are respectively mapped in different frequency domains of the minimum time scheduling unit S1.
  • the transport block 3 is mapped to the minimum time scheduling units S2 and S3 and the frequency domain resources of the minimum time scheduling unit mapped by transport block 3 are the same as the frequency domain resources of the minimum time scheduling unit mapped by transport block 1.
  • transport block 4 is mapped to minimum time scheduling units S2 and S3 and the frequency domain resources of the minimum time scheduling unit mapped by transport block 4 are the same as the frequency domain resources of the minimum time scheduling unit mapped by transport block 2.
  • the two minimum time scheduling units mapped by transport block 3 are the same minimum time scheduling unit as the two minimum time scheduling units mapped by transport block 4.
  • the frequency domain resources in which the transport block 3 is mapped in the two minimum time scheduling units are different from the frequency domain resources in which the transport block 4 is mapped in the two minimum time scheduling units.
  • mapping relationship between one scheduled T transport block and the S minimum time scheduling units of each frequency domain resource and one scheduled T in the time division multiplexing scenario is the same, and need not be described here.
  • the initial transmission block may be in a time division multiplexing manner
  • the retransmission transmission block may be in a frequency division multiplexing manner
  • FIG. 10 is a diagram showing the transmission of an initial transmission block and a retransmission transmission block by frequency division multiplexing.
  • S1 to S6 shown in Fig. 10 represent six minimum time scheduling units.
  • the transport blocks in the first five schedulings are all initial transmission blocks and each transport block is mapped to one minimum time scheduling unit, which may be defined as scheduling rule 1.
  • process 0 is mapped to the minimum time scheduling unit S1
  • process 1 is mapped to the minimum time scheduling unit S2
  • process 2 is mapped to the minimum time scheduling unit S3
  • process 3 is mapped to the minimum time scheduling unit S4
  • process 4 is mapped to the minimum time scheduling unit
  • the unit S5, wherein each of the processes 0 to 4 is an initial transmission block.
  • the sending device After receiving the NACK indication sent by the receiving device, the sending device determines that the process or the transport block needs to be retransmitted.
  • two transport blocks can be scheduled in the sixth scheduling, which can be defined as scheduling rule 2.
  • the two transmissions may include a retransmission process (or a retransmission transport block), and the two retransmission processes are mapped to a minimum time scheduling unit S6 by means of frequency division multiplexing.
  • the two transport blocks included in the sixth scheduling may be a retransmission transport block and an initial transmission transport block, respectively.
  • the retransmission transport block and the initial transmission transport block are mapped to a minimum time scheduling unit S6 by means of frequency division multiplexing.
  • both transport blocks are initial transmission blocks.
  • retransmission transport blocks may also be present in the first 5 schedules. Note that the minimum number of time scheduling units per scheduling can be dynamically changed, not limited to one.
  • non-space division multiplexing scenario that is, the number of transport blocks scheduled at one time is a configuration scenario for data carrying only one codeword or one transport block on one time-frequency resource.
  • multiple transport blocks scheduled at one time may be mapped to multiple minimum time scheduling units by means of time division multiplexing, or multiple transport blocks scheduled at one time may be mapped to a minimum time by frequency division multiplexing.
  • Scheduling unit
  • the transmission mode determined by the network side device is a non-space division multiplexed transmission mode. That is to say, the mapping relationship between the T transport blocks that are once scheduled in the foregoing embodiment and the S minimum time scheduling units, the number of transport blocks that are once scheduled, and the like are all for the non-space division multiplexing scenario.
  • the transmission mode of the non-space division multiplexing is a transmission method of data carrying only one codeword or one transport block on one time-frequency resource.
  • the transmission mode determined by the network side device is a space division multiplexing transmission mode
  • data of N c code words or N c transmission blocks is carried on one time-frequency resource, where N c is greater than or equal to 2 A positive integer
  • N c is greater than or equal to 2 A positive integer
  • the present application refers to the transmission mode scenario as N c codewords or N c flow scenarios, and Nc is the number of codewords or processes or the number of transmission blocks of space division multiplexing on one time-frequency resource.
  • the total number of transport blocks scheduled at one time is N c *T, wherein each of the N c code words or N c streams or the number of one scheduled transport blocks per stream is T.
  • the minimum number of time scheduling units scheduled for the next time in the scenario is S.
  • the mapping relationship between the once scheduled N c *T transport blocks and the S minimum time scheduling units is one of the N c code words or N c streams in one scheduling. Or the mapping relationship between T transport blocks and S minimum time scheduling units of each stream. Mapping relationship between one scheduled T transport block and S minimum time scheduling units on each codeword or each stream and T transport blocks and S minimum time scheduling units in one non-space division multiplexing scenario The mapping relationship is the same. Or, in other words, the mapping relationship between the T transport blocks and the S minimum time scheduling units in a non-space division multiplexing scenario is one codeword or each stream scheduled once in the space division multiplexing scenario. The mapping relationship between the T transport blocks and the S minimum time scheduling units.
  • the number of transport blocks T of one scheduling in the non-space division multiplexing scenario is the number of transport blocks T for each codeword or one stream of each stream scheduled in the space division multiplexing scenario. Therefore, the specific embodiment of the mapping relationship between each codeword or the T transport blocks on the first time and the S minimum time scheduling units may refer to all the foregoing embodiments for non-space division multiplexing. The specific embodiment of the mapping relationship between the T transport blocks and the S minimum time scheduling units is not necessary herein.
  • any two codewords scheduled in a space division multiplexing scenario or T transport blocks of two streams are the same as the mapping relationship of S minimum time scheduling units.
  • the method for determining the target scheduling rule in the space division multiplexing scenario and the method for indicating the target scheduling rule are the same as those in the non-space division multiplexing scenario.
  • the DCI sent by the network side device to the terminal device includes a transport block process domain, where the transport block process domain is used to indicate a process number of each of the T transport blocks.
  • the transport block process domain has a length of w bits, the w bit can indicate T*2 w process numbers, and T represents the number of transport blocks in one schedule.
  • a 1-bit transport block process domain may be included in the DCI.
  • the terminal device can determine the process number in the following manner:
  • the terminal device can determine the process number of each transport block in each schedule using Equation 1.1.
  • the length of the indication field for indicating the process number can be shortened from 3 bits to 1 bit, so that the DCI overhead can be saved.
  • the above-mentioned embodiments are only intended to help those skilled in the art to better understand the technical solutions of the embodiments of the present application, and are not intended to limit the technical solutions of the embodiments of the present application.
  • the number of code words, the number of layers of the codeword mapping, the number of streams, the antenna configuration, the transmission mode, etc. can all be changed, and this document is not limited.
  • the scenario discussed in the foregoing embodiment is a scenario in which a network side device communicates with a terminal device.
  • the above technical solution can also be applied to device to device (D2D) communication.
  • D2D device to device
  • the D2D communication includes D2D communication controlled by the network side device (hereinafter referred to as the first type D2D communication) and D2D communication not controlled by the network side device (hereinafter referred to as the second type D2D communication).
  • the network side device may be responsible for determining a target scheduling rule from the N scheduling rules, and indicating the target scheduling rule to the terminal device performing D2D communication.
  • the manner in which the network side device determines the target scheduling rule is the same as the manner in which the network side device determines the target scheduling rule in the scenario in which the network side device communicates with the terminal device.
  • the manner in which the network side device indicates the target scheduling rule is the same as the manner in which the network side device indicates the target scheduling rule in the scenario in which the network side device communicates with the terminal device, and details are not described herein.
  • the terminal device performing D2D communication can perform communication according to the target scheduling rule indicated by the network side device.
  • a terminal device that performs D2D communication may include a master terminal device.
  • the master terminal device is responsible for determining a target scheduling rule from the N scheduling rules and directing the target scheduling rule to other D2D communication devices.
  • the manner in which the primary terminal device determines the target scheduling rule is the same as the manner in which the network side device determines the target scheduling rule in the scenario in which the network side device communicates with the terminal device.
  • the primary The manner in which the terminal device indicates the target scheduling rule is the same as the manner in which the network side device indicates the target scheduling rule in the scenario in which the network side device communicates with the terminal device, and details are not described herein.
  • the terminal device performing D2D communication can perform communication according to the target scheduling rule indicated by the master terminal device.
  • FIG. 11 is a structural block diagram of a network side device according to an embodiment of the present application.
  • the network side device 1100 includes a processing unit 1101 and a communication unit 1102.
  • the processing unit 1101 is configured to: when the network side device 1100 and the terminal device use the first transmission mode for data transmission, determine the target scheduling from the N scheduling rules. a rule, where the scheduling rule includes at least one of a number of transport blocks T of the primary scheduling and a mapping relationship between the T transport blocks and the S minimum time scheduling units of the primary scheduling, where N is an integer greater than or equal to 2, T is an integer greater than or equal to 1, and S is an integer greater than or equal to 1.
  • the first transmission mode is a single antenna transmission scheme or a multi-antenna transmission scheme.
  • the communication unit 1102 is configured to communicate with the terminal device according to the target scheduling rule.
  • Processing unit 1101 may be implemented by a processor, and communication unit 1102 may be implemented by a transceiver.
  • FIG. 12 is a structural block diagram of a terminal device according to an embodiment of the present application. As shown in FIG. 12, the terminal device 1200 includes a processing unit 1201 and a communication unit 1202.
  • the processing unit 1201 is configured to: when the terminal device and the network side device 1200 perform data transmission by using the first transmission mode, and the number of minimum time scheduling units that are scheduled by the network side device at one time is S, the terminal device determines a target scheduling rule, where The target scheduling rule is one of the N scheduling rules, where the scheduling rule includes the number of transport blocks T of the primary scheduling and the mapping of the T transport blocks and the S minimum time scheduling units of the primary scheduling. At least one of the relationships, N is a positive integer greater than or equal to 2, T is a positive integer greater than or equal to 1, and S is a positive integer greater than or equal to 1, the first transmission mode being a single antenna transmission scheme or multiple antenna transmission Program.
  • the communication unit 1202 is configured to communicate with the network side device according to the target scheduling rule.
  • Processing unit 1201 may be implemented by a processor, and communication unit 1202 may be implemented by a transceiver.
  • FIG. 13 is a structural block diagram of a network side device according to an embodiment of the present application.
  • the network side device 1300 shown in FIG. 13 includes a processor 1301, a memory 1302, and a transceiver 1303.
  • the various components in the network side device 1300 communicate with one another via internal connection paths, passing control and/or data signals.
  • the method disclosed in the foregoing embodiment of the present application may be applied to the processor 1301 or implemented by the processor 1301.
  • the processor 1301 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1301 or an instruction in a form of software.
  • the processor 1301 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a random access memory (RAM), a flash memory, a read-only memory (ROM), a programmable read only memory or an electrically erasable programmable memory, a register, etc. In the storage medium.
  • the storage medium is located in the memory 1302.
  • the processor 1301 reads the instructions in the memory 1302, and combines the hardware of the transceiver 1303 to complete the steps performed by the network side device in the above method.
  • the network side device 1300 should include some necessary devices, such as an antenna, a cyclic prefix remover, and a fast Fourier transform, in addition to the processor 1301, the memory 1302, and the transceiver 1303 as shown in FIG. Processor, etc. In order to avoid redundancy, the above device is not shown in FIG.
  • FIG. 14 is a structural block diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 1400 shown in FIG. 14 includes a processor 1401, a memory 1402, and a transceiver 1403.
  • terminal device 1400 communicate with one another via internal connection paths, passing control and/or data signals.
  • the method disclosed in the foregoing embodiment of the present application may be applied to the processor 1401 or implemented by the processor 1401.
  • the processor 1401 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1401 or an instruction in a form of software.
  • the processor 1401 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a random access memory (RAM), a flash memory, a read-only memory (ROM), a programmable read only memory or an electrically erasable programmable memory, a register, etc. In the storage medium.
  • the storage medium is located in the memory 1402.
  • the processor 1401 reads the instructions in the memory 1402 and combines the hardware of the transceiver 1403 to perform the steps performed by the terminal device in the above method.
  • the terminal device 1400 should include some necessary devices, such as an antenna, a display, an input device, etc., in addition to the processor 1401, the memory 1402, and the transceiver 1403 as shown in FIG. In order to avoid redundancy, the above device is not shown in FIG.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network side device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Abstract

本申请实施例提供一种通信方法、网络侧设备和终端设备,该方法包括:在网络侧设备一次调度的最小时间调度单元数目为S,该网络侧设备与终端设备采用第一传输模式进行数据传输的情况下,该网络侧设备从N个调度规则中确定目标调度规则,其中,该调度规则包括该一次调度的传输块个数T和该一次调度的T个传输块和S个最小时间调度单元的映射关系中的至少一个,该第一传输模式为单天线传输方案或多天线传输方案;该网络侧设备根据该目标调度规则与该终端设备通信。上述技术方案可以选择合适的调度规则来适应不同的场景。

Description

通信方法、网络侧设备和终端设备
本申请要求于2017年1月5日提交中国专利局、申请号为201710007992.4、申请名称为“通信方法、网络侧设备和终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,并且更具体地,涉及通信方法、网络侧设备和终端设备。
背景技术
长期演进(long term evolution,LTE)协议中,从媒体访问控制(medium access control,MAC)层发往物理层的数据是以传输块(transport block,TB)的形式组织的。一个传输块对应包含一个MAC协议数据单元(protocol data unit,PDU)的数据块,这个数据块会在一个传输时间间隔(transmission time interval,TTI)内发送。TTI也是混合自动重传请求(hybrid automatic repeat request,HARQ)重传的单位。每个HARQ进程在一个TTI只处理一个传输块。
目前协议规定的传输块与最小调度单元之间的映射关系并不适用于所有场景。因此,需要一种调度方案,使得传输块与最小调度单元之间的映射关系能够灵活应用于各种场景。
发明内容
本申请实施例提供一种通信方法、网络侧设备和终端设备,可以选择合适的调度规则来适应不同的场景。
第一方面,本申请实施例提供一种通信方法,该方法包括:在网络侧设备一次调度的最小时间调度单元数目为S,该网络侧设备与终端设备采用第一传输模式进行数据传输的情况下,该网络侧设备从N个调度规则中确定目标调度规则,其中,该调度规则包括该一次调度的传输块个数T和该一次调度的T个传输块和S个最小时间调度单元的映射关系中的至少一个,N为大于或等于2的整数,T为大于或等于1的整数,S为大于或等于1的整数,该第一传输模式为单天线传输方案或多天线传输方案;该网络侧设备根据该目标调度规则与该终端设备通信。上述技术方案可以选择合适的调度规则来适应不同的场景。此外,每个最小时间调度单元在频域上还可以承载多个的传输块。上述技术方案还可以满足传输块灵活资源复用的需求,例如重传使用更少的资源通常可以避免资源浪费提升频谱效率,或者重传使用更多的资源可以保证时延和可靠性。
结合第一方面,在第一方面的第一种可能的实现方式中,该网络侧设备从N个调度规则中确定目标调度规则,包括:该网络侧设备根据参数信息和调度规则的对应关系,确定 该N个调度规则中与确定的参数信息对应的调度规则为该目标调度规则,其中,该参数信息包括该网络侧设备与该终端设备通信时使用的子载波间隔和最小时间调度单元占用的符号数目中的至少一个。根据上述技术方案,该网络侧设备所确定的目标调度规则和该网络侧设备与该终端设备通信时使用的参数信息相对应,从而使得该调度规则更适应该终端设备所处的网络环境。
结合第一方面,在第一方面的第二种可能的实现方式中,该网络侧设备确定无线资源信息;该网络侧设备根据无线资源信息和调度规则的对应关系,确定该N个调度规则中与确定的无线资源信息对应的调度规则为该目标调度规则。根据上述技术方案,该网络侧设备所确定的目标调度规则和当前的无线资源信息相对应,从而使得该调度规则更适应当前的无线资源利用情况。
结合第一方面,在第一方面的第三种可能的实现方式中,该网络侧设备确定该终端设备的工作状态;该网络侧设备根据终端设备的工作状态和调度规则的对应关系,确定该N个调度规则中与确定的该终端设备的工作状态对应的调度规则为该目标调度规则。根据上述技术方案,该网络侧设备所确定的目标调度规则和该终端设备的工作状态相对应,从而使得该调度规则更适应该终端设备的工作状态。
结合第一方面,在第一方面的第四种可能的实现方式中,该网络侧设备确定无线环境信息;该网络侧设备根据无线环境信息和调度规则的对应关系,确定该N个调度规则中与确定的无线环境信息对应的调度规则为该目标调度规则。根据上述技术方案,该网络侧设备所确定的目标调度规则和无线环境相对应,从而使得该调度规则更适应当前无线环境。
结合第一方面或第一方面的上述任一种可能的实现方式,在第一方面的第五种可能的实现方式中,该一次调度的T个传输块和S个最小时间调度单元的映射关系为:该T个传输块中的每个传输块映射到该S个最小时间调度单元中的一个最小时间调度单元;或者该T个传输块中的每个传输块映射到该S个最小时间调度单元;或者该T个传输块中的每个传输块映射到该S个最小时间调度单元中连续的S t个最小时间调度单元,其中,S=S t*T,S t为大于1且小于S的整数。上述技术方案中传输块和最小调度单元的映射关系是根据一定规则确定的。网络侧设备和终端设备可以保存或预定义该规则。这样,该调度规则可以仅包括一次调度中的传输块数目,相应的一个传输块映射的最小调度单元数目可以结合以上规则得到,或者该调度规则可以仅包括一个传输块映射的最小调度单元数目,相应的一次调度中的传输块数目可以结合以上规则得到。
结合第一方面或第一方面的上述任一种可能的实现方式,在第一方面的第六种可能的实现方式中,该一次调度中的T个传输块和S个最小时间调度单元的映射关系为:该T个传输块中的第一个传输块映射到a+b个最小时间调度单元,该T个传输块中除该第一个传输块以外的每一个传输块映射到a个最小时间调度单元,其中,a和b均为正整数,b小于T,且S=a*T+b;或者该T个传输块中的第T个传输块映射到a+b个最小时间调度单元,该T个传输块中除该第T个传输块以外的每一个传输块映射到a个最小时间调度单元,其中,a和b均为正整数,b小于T,且S=a*T+b。上述技术方案中传输块和最小调度单元的映射关系是根据一定规则确定的。网络侧设备和终端设备可以保存或预定义该规则。这样,该调度规则可以仅包括一次调度中的传输块数目,相应的一个传输块映射的最小调度单元数目可以结合以上规则得到,或者该调度规则可以仅包括一个传输块映射的最小调 度单元数目,相应的一次调度中的传输块数目可以结合以上规则得到。
结合第一方面或第一方面的上述任一种可能的实现方式,在第一方面的第七种可能的实现方式中,在该网络侧设备根据该目标调度规则与该终端设备通信之前,该方法还包括:该网络侧设备向该终端设备发送目标调度规则指示信息,该目标调度规则指示信息用于指示该网络侧设备确定的该目标调度规则。这样,该网络侧设备可以将确定的目标调度规则指示给该终端设备,以便于该终端设备确定需要使用的调度规则。
结合第一方面的第七种可能的实现方式,在第一方面的第八种可能的实现方式中,该目标调度规则指示信息包括以下至少一种:子载波间隔、最小时间调度单元占用的符号数目、下行控制信息格式、调制与编码策略、循环冗余校验码,和分配的资源块数。基于上述技术方案,该网络侧设备可以将该目标调度规则隐式地指示给该终端设备,从而无需引入新的字段指示或者改变现有规则中所规定的指示字段携带的内容。
结合第一方面的第七种可能的实现方式,在第一方面的第九种可能的实现方式中,该目标调度规则指示信息由控制信令承载。基于上述技术方案,该网络侧设备可以将该目标调度规则显式地指示给该终端设备,从而可以更明确地通知该终端设备需要使用的调度规则。
第二方面,本申请实施例提供一种通信方法,该方法包括:在终端设备与网络侧设备采用第一传输模式进行数据传输,且该网络侧设备一次调度的最小时间调度单元数目为S的情况下,该终端设备确定目标调度规则,其中,该目标调度规则为N个调度规则中的一个调度规则,其中,该调度规则包括该一次调度的传输块个数T和该一次调度的T个传输块和S个最小时间调度单元的映射关系中的至少一个,N为大于或等于2的正整数,T为大于或等于1的正整数,S为大于或等于1的正整数,该第一传输模式为单天线传输方案或多天线传输方案;该终端设备根据该目标调度规则与该网络侧设备通信。上述技术方案可以选择合适的调度规则来适应不同的场景。此外,每个最小时间调度单元在频域上还可以承载多个的传输块。上述技术方案还可以满足传输块灵活资源复用的需求,例如重传使用更少的资源通常可以避免资源浪费提升频谱效率,或者重传使用更多的资源可以保证时延和可靠性。
结合第二方面,在第二方面的第一种可能的实现方式中,该终端设备确定目标调度规则,包括:该终端设备确定该目标调度规则为与该网络侧设备进行通信时使用的参数信息对应的调度规则,其中该参数信息包括该网络侧设备与该终端设备通信时使用的子载波间隔和每个最小时间调度单元占用的符号数目中的至少一个。根据上述技术方案,该网络侧设备所确定的目标调度规则和该网络侧设备与该终端设备通信时使用的参数信息相对应,从而使得该调度规则更适应该终端设备所处的网络环境。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,该终端设备确定目标调度规则,包括:该终端设备获取该网络侧设备发送的目标调度规则指示信息,其中,该目标调度规则指示信息用于指示该网络侧设备确定的调度规则;该终端设备确定该目标调度规则为该目标调度规则指示信息所指示的调度规则。根据上述技术方案,该终端设备可以根据网络侧设备的指示,确定出与该网络侧设备进行通信时使用的调度规则,从而可以使用合适的调度规则与该网络侧设备进行通信
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,该 目标调度规则指示信息包括以下至少一种:子载波间隔、最小时间调度单元占用的符号数目、下行控制信息格式、调制与编码策略、循环冗余校验码,和分配的资源块数。基于上述技术方案,该网络侧设备可以将该目标调度规则隐式地指示给该终端设备,从而无需改变现有规则中所规定的指示字段携带的内容。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,该终端设备确定该目标调度规则为该目标调度规则指示信息所指示的调度规则,包括:该终端设备根据目标调度规则指示信息与调度规则的对应关系,从该N个调度规则中确定出与该目标调度规则指示信息对应的调度规则为该目标调度规则。基于上述技术方案,该网络侧设备可以将该目标调度规则隐式地指示给该终端设备,从而无需改变现有规则中所规定的指示字段携带的内容。
结合第二方面的第二种可能的实现方式,在第二方面的第五种可能的实现方式中,该终端设备获取该网络侧设备发送的目标调度规则指示信息,包括:该终端设备从接收到的该网络侧设备发送的控制信令中获取该目标调度规则指示信息。基于上述技术方案,该网络侧设备可以将该目标调度规则显式地指示给该终端设备,从而可以更明确地通知该终端设备需要使用的调度规则。
结合第二方面或第二方面的上述任一种可能的实现方式,在第二方面的第六种可能的实现方式中,该一次调度的T个传输块和S个最小时间调度单元的映射关系为:该T个传输块中的每个传输块映射到该S个最小时间调度单元中的一个最小时间调度单元;或者该T个传输块中的每个传输块映射到该S个最小时间调度单元;或者该T个传输块中的每个传输块映射到该S个最小时间调度单元中连续的S t个最小时间调度单元,其中,S=S t*T,S t为大于1且小于S的整数。上述技术方案中传输块和最小调度单元的映射关系是根据一定规则确定的。网络侧设备和终端设备可以保存或预定义该规则。这样,该调度规则可以仅包括一次调度中的传输块数目,相应的一个传输块映射的最小调度单元数目可以结合以上规则得到,或者该调度规则可以仅包括一个传输块映射的最小调度单元数目,相应的一次调度中的传输块数目可以结合以上规则得到。
结合第二方面或第二方面的上述任一种可能的实现方式,在第二方面的第七种可能的实现方式中,该一次调度中的T个传输块和S个最小时间调度单元的映射关系为:该T个传输块中的第一个传输块映射到a+b个最小时间调度单元,该T个传输块中除该第一个传输块以外的每一个传输块映射到a个最小时间调度单元,其中,a和b均为正整数,b小于T,且S=a*T+b;或者该T个传输块中的第T个传输块映射到a+b个最小时间调度单元,该T个传输块中除该第T个传输块以外的每一个传输块映射到a个最小时间调度单元,其中,a和b均为正整数,b小于T,且S=a*T+b。上述技术方案中传输块和最小调度单元的映射关系是根据一定规则确定的。网络侧设备和终端设备可以保存或预定义该规则。这样,该调度规则可以仅包括一次调度中的传输块数目,相应的一个传输块映射的最小调度单元数目可以结合以上规则得到,或者该调度规则可以仅包括一个传输块映射的最小调度单元数目,相应的一次调度中的传输块数目可以结合以上规则得到。
第三方面,本申请实施例提供一种网络侧设备,该网络侧设备包括用于执行第一方面或第一方面的各种可能的实现方式的单元。
第四方面,本申请实施例提供一种终端设备,该终端设备包括用于执行第二方面或第 二方面的各种可能的实现方式的单元。
第五方面,本申请实施例提供网络侧设备。该网络侧设备包括处理器、存储器和收发器。存储器用于存储实现第一方面以及第一方面的任一种可能的实现方式的方法的指令。处理器执行存储器存储的指令,结合通信接口实现第一方面或第一方面任一种可能的实现方式的方法。
第六方面,本申请实施例提供终端设备。该终端设备包括处理器、存储器和收发器。存储器用于存储实现第二方面以及第二方面的任一种可能的实现方式的方法的指令。处理器执行存储器存储的指令,结合通信接口实现第二方面或第二方面任一种可能的实现方式的方法。
附图说明
图1是根据本申请实施例提供的通信方法的示意性流程图;
图2是一种传输过程中调度规则切换的示意图;
图3是另一种传输过程中调度规则切换的示意图;
图4是一次调度的多个传输块映射到一个最小时间调度单元的示意图;
图5是另一个一次调度的多个传输块映射到一个最小时间调度单元的示意图;
图6是一次调度的多个传输块映射在多个最小时间调度单元的示意图;
图7是另一次调度的多个传输块映射在多个最小时间调度单元的示意图;
图8是时分复用和频分复用结合的示意图;
图9是时分复用和频分复用结合的示意图;
图10是一个利用频分复用传输初传传输块和重传传输块的示意图;
图11是根据本申请实施例提供的一种网络侧设备的结构框图;
图12是根据本申请实施例提供的一种终端设备的结构框图;
图13是根据本申请实施例提供的网络侧设备的结构框图;
图14是根据本申请实施例提供的终端设备的结构框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第4.5(4.5 th generation,4.5G)代网络、第五代(5 th generation,5G)网络、新空口(new radio,NR)等。
本申请实施例的技术方案中所称的终端设备也可以称为接入终端、用户设备(user equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备。终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,或者可以通过自组织或免授权的方式接入分布式网络,终端设备还可以通过其它方式接入无线网络进行通信,终端设备也可以与其它终端设备直接进行无线 通信,本申请的实施例对此不作限定。
网络侧设备可以基站(node B)、演进型基站(evolutional node B,eNB)、通信系统中的基站、未来通信系统中的基站或网络设备等。
本申请的实施例所提供的数据传输方法可以适用于下行数据传输,也可以适用于上行数据传输,还可以适用于设备到设备(device to device,D2D)的数据传输。对于下行数据传输,发送设备是网络侧设备,对应的接收设备是终端设备。对于上行数据传输,发送设备是终端设备,对应的接收设备是网络侧设备。对于D2D的数据传输,发送设备是终端设备,对应的接收设备也是终端设备。本申请的实施例对此不做限定。
本申请的实施例中的发送设备和接收设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
图1是根据本申请实施例提供的通信方法的示意性流程图。
101,在网络侧设备一次调度的最小时间调度单元数目为S,该网络侧设备与终端设备采用第一传输模式进行数据传输时,该网络侧设备从N个调度规则中确定目标调度规则,其中,该调度规则包括该一次调度的传输块个数T和该一次调度的T个传输块和S个最小时间调度单元的映射关系中的至少一个,N为大于或等于2的正整数,T为大于或等于1的正整数,S为大于或等于1的正整数,该第一传输模式为单天线传输方案或多天线传输方案。
该多天线传输方案可以是发射分集传输方案、空间复用传输方案、多用户多入多出(multiple-input multiple-output,MIMO)传输方案,协作多点传输(coordinated multiple points transmission/reception,CoMP)或波束成型传输方案等,也可以是各种天线端口、层、流或秩配置。该第一传输模式是该网络侧设备确定的一种传输模式。该第一传输模式可以是LTE系统中定义的传输模式(transmission mode,TM)1到10中的任一种传输模式,也可以是其他(例如5G等)的传输模式,本申请的实施例对此不作限定。后文的实施例以单天线传输方案或非空分复用传输方案为例,多天线传输方案或空分复用传输方案可类似得到。
这里的传输块可以是LTE协议中所称的传输块(transport block,TB),也可以是其他通信系统(例如5G等)中的具有同样功能的传输单元。
这里的最小时间调度单元可以是传输时间间隔(transmission time interval,TTI)、时隙(slot)、时域符号或由一个或多个时域符号组成的迷你时隙(mini slot)。其中,时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是单载波频分多址接入(single carrier frequency division multiple access,SC-FDMA)符号。以下将时域符号简称为符号。
102,终端设备确定目标调度规则。
103,网络侧设备和终端设备根据该目标调度规则进行通信。这里的通信可以是上行通信也可以是下行通信。
通常一个传输块需要多个比特的控制信息,例如,新数据指示符(new data indicator,NDI)、冗余版本(redundancy version,RV)、混合自动重传请求(hybrid automatic repeat request,HARQ)反馈信息指示等。因此,传输块的数目越少,需要的控制信息的比特数就越少,对应的控制信息的开销就越小。此外,一个传输块映射到最小时间调度单元越多时,一个传输块的传输时间间隔(transmission time interval,TTI)越长,越有助于提升终端设备的上行覆盖范围。可选地,在一个传输块映射到多个最小时间调度单元的情况下,传输块大小(transport block size,TBS)可以更大。换句话说,TBS可以正比于最小时间调度单元的数据。更大的TBS可以获得更高的编码增益。在发送端和接收端的处理时延相同的情况下,TTI越长,保持连续传输所需要的HARQ进程数就越少。相同的时间内传输的传输块数目越少,媒体访问控制(medium access control,MAC)层和无线链路控制(radio link control,RLC)层头开销和循环冗余校验(cyclic redundancy check,CRC)开销就越小。相反,相同的时间内传输的传输块数目越多,每个传输块的TTI越短,单向延迟越小,在某些场景下(比如高速移动场景,突发干扰等场景)选择这种调度规则,能够提升数据传输效率。因此,根据图1所示的方法可以选择合适的调度规则来适应不同的场景。此外,每个最小时间调度单元在频域上还可以承载多个的传输块。根据图1所示的方法还可以满足传输块灵活资源复用的需求,例如重传使用更少的资源通常可以避免资源浪费提升频谱效率,或者重传使用更多的资源可以保证时延和可靠性。
在调度规则包括一次调度的传输块个数T的情况下,该N个调度规则中不同的调度规则包括的一次调度的传输块个数T是不同的。换句话说,根据不同的调度规则确定的一次调度的传输块个数和最小时间调度单元个数的比例关系可以是不同的。在调度规则包括一次调度的T个传输块和S个最小时间调度单元的映射关系的情况下,该N个调度规则中的不同的调度规则所指示一次调度的传输块个数和最小时间调度单元个数的比例关系也可以是不同的。综上所述,根据N个调度规则确定的传输块个数和最小时间调度单元个数的比例关系可以是以下任意两种:1:1,1:P,Q:P或Q:1,其中,P与Q均为正整数,且P不等于Q。
可选的,在一些实施例中,该调度规则还可以包括:一次调度的传输块数T、一次调度中的T个传输块和S个最小时间调度单元的映射关系,和一次调度中的一个传输块映射的最小时间调度单元数中的至少一个。
为了帮助本领域技术人员更好地理解本申请的技术方案,下面通过表1示出N个调度规则。表1所示实施例中,假设一次调度的最小时间调度单元数目为4。
调度规则序号 传输块数目 传输块与最小时间调度单元的映射关系
1 1 T 1~(S 1,S 2,S 3,S 4)
2 2 T 1~(S 1,S 2),T 2~(S 3,S 4)
3 4 T 1~(S 1),T 2~(S 2),T 3~(S 3),T 4~(S 4)
表1
如表1所示的调度规则中包括一次调度的传输块数目和一次调度T个传输块与S个最小时间调度单元的映射关系,其中,T t~(S s)表示T个传输块中的第t个传输块映射到S个 最小时间调度单元中的第s个最小时间调度单元。例如,上述调度规则3中,T 1~(S 1)表示4个传输块中的第一个传输块映射到4个最小时间调度单元中的第一个最小时间调度单元。再如,上述调度规则2中,T 2~(S 3,S 4)表示2个传输块中的第二个传输块映射到4个最小时间调度单元中的第三个最小时间调度单元和第四个最小时间调度单元。如表1所示的调度规则还可以有其他的表现形式,例如可以只包括一次调度中的传输块数目或只包括一次调度中T个传输块与S个最小时间调度单元的映射关系。
表2是另一个调度规则的示意。
Figure PCTCN2017118918-appb-000001
表2
表3是另一个调度规则的示意。
Figure PCTCN2017118918-appb-000002
表3
如表2和表3所示的调度规则包括一次调度的T个传输块的每一个传输块映射最小时间调度单元的数。根据以上规则和一次调度的最小时间调度单元数S可以确定当前一次调度的传输块个数T和一次调度的T个传输块与S个最小时间调度单元的映射关系。比如假设采用调度规则为2,且一次调度的最小时间调度单元数S为4,则可知道当前一次调度的传输块个数T为2,且2个TB分别映射到第1、第2个和第3、第4个最小时间调度单元上。
可以理解的是,上述调度规则仅是为了帮助本领域技术人员更好地理解调度规则的意义,而并非对调度规则的限制,比如调度规则可以是以上表格中规则的子集或者扩展或者修改,例如实际系统中可以只存在表1中的2种调度规则,1种为S个最小调度时间单元上1个传输块(调度规则1),另一种为S个最小调度时间单元上S个传输块(调度规则3)。
可选的,在一些实施例中,网络侧设备可以确定与该终端设备进行通信时使用的参数 信息,然后根据参数信息与调度规则的对应关系,确定该N个调度规则中与确定的参数信息对应的调度规则为该目标调度规则。该参数信息可以是该网络侧设备与该通信设备通信时使用的子载波间隔。该参数信息也可以是该网络侧设备与该通信设备通信时使用的最小时间调度单元占用的符号数目。该参数信息也可以是该网络侧设备与该终端设备通信时使用的子载波间隔和最小时间调度单元占用的符号个数。
表4是一个参数信息与调度规则的对应关系的示意。表4中的参数信息为子载波间隔。
子载波间隔 调度规则序号
15kHz 3
30kHz 2
60kHz 1
表4
表4中所示的调度规则序号表示的调度规则与表1中所示的相同序号表示的调度规则相同。例如,表4中调度规则序号为3的调度规则为表1中调度规则序号为3的调度规则,即传输块的数目为4,且T 1~(S 1),T 2~(S 2),T 3~(S 3),T 4~(S 4)。
表5是另一参数信息与调度规则的对应关系。表5中的参数信息为子载波间隔,调度规则为一个传输块映射最小时间调度单元的数目。
Figure PCTCN2017118918-appb-000003
表5
为了避免冗余,表5以一张表的形式表示了多个实施例。例如,在一个实施例中,在子载波间隔为30kHz的情况下,一个传输块映射最小时间调度单元的数目为1,且在子载波间隔为60kHz的情况下,一个传输块映射最小时间调度单元数目为2。在另一些实施例中,在子载波间隔为30kHz的情况下,一个传输块映射最小时间调度单元的数目为2,且在子载波间隔为60kHz的情况下,一个传输块映射最小时间调度单元数目为4,以此类推。
表6是另一个参数信息与调度规则的对应关系的示意。表6中的阐述信息为一个最小时间调度单元的符号数目。
Figure PCTCN2017118918-appb-000004
表6
与表4类似,表6中所示的调度规则序号表示的调度规则与表1中所示的相同序号表示的调度规则相同。
表7是另一个参数信息与调度规则的对应关系的示意。表7中的传输信息为子载波间隔和一个最小时间调度单元的符号数目。
Figure PCTCN2017118918-appb-000005
表7
与表4和表6类似,表7中所示的调度规则序号表示的调度规则与表1中所示的相同序号表示的调度规则相同。
表8是另一个参数信息与调度规则的对应关系的示意。表8中的传输信息为子载波间隔和一个最小时间调度单元的符号数目。
Figure PCTCN2017118918-appb-000006
表8
与表5类似,为了避免冗余,表8以一张表的形式表示了多个实施例。
可以理解的是,上述调度规则仅是为了帮助本领域技术人员更好地理解调度规则的意义,而并非对调度规则的限制,比如调度规则可以是以上表格中规则的子集或者扩展或者修改。又比如5G/NR里子载波间隔还可以是3.75kHz,7.5kHz,120kHz,240kHz,480kHz,960kHz,最小时间调度单元符号数目也可以是1,2,3,4等,又比如一次调度的最小时间单元数并非限定在表1中的S=4,可以是任意一个正整数值,比如S=1,2,3,5,6,7或者8等等。对于这些配置可以定义或规定类似的调度的规则,本文不再赘述。
进一步,在一些实施例中,该终端设备可能只支持一种子载波间隔和最小时间调度单元符号数目。在此情况下,该终端设备可以确定该目标调度规则为该终端支持的子载波间隔和/或最小时间调度单元符号数目对应的调度规则。
可选的,在一些实施例中,一个最小时间调度单元时长越短,一个传输块映射的最小时间调度单元越多。例如,在子载波间隔为15KHz且一个最小时间调度单元占用的OFDM符号数目为14的情况下,一个最小时间调度单元时长为1ms,一个传输块映射的最小时间调度单元的个数为1。一个传输块映射到最小时间调度单元越少时,一个传输块的TTI越短。每个传输块的TTI越短,单向延迟越小。这样,可以避免过长的TTI导致的时延问题,比如满足5G eMBB 4ms的单向时延要求。再如,在子载波间隔为60kHz且一个最小时间调度单元占用的OFDM符号数目为7的情况下,一个最小时间调度单元时长为0.125ms,一个传输块映射的最小时间调度单元的个数可以为4。将一个传输块映射到最小时间调度单元越多时,一个传输块的TTI越长。这样有助于提升该传输块的覆盖距离。一 个传输块映射到多个最小时间调度单元时,可以传输更大的传输块,更大的TBS可以获得更高的编码增益。在发送端和接收端的处理时延相同的情况下,TTI越长,相同处理时延和传输时延前提下,保持连续传输所需要的HARQ进程数就越少。此外,相同时间内调度的传输块越少,可以降低MAC层和RLC层头开销和CRC开销,还可以降低控制开销(比如下行控制和HARQ反馈开销)。
可选的,在另一些实施例中,网络侧设备还可以确定无线资源信息。网络侧设备根据无线资源信息和调度规则的对应关系,确定该N个调度规则中与确定的无线资源信息对应的调度规则为该目标调度规则。该无线资源信息可以是该网络侧设备当前可用的资源块(resource block,RB)数量或者在使用多入多出(multiple-input multiple-output,MIMO)通信时码字分配的层数。例如对于5G/4.5G,考虑到可能使用更小的调度单元(比如最小时间调度单元符号数可能为1或者2),为了传输更大的TB,则需要1TB映射到多个最小时间调度单元。又比如对于小区边缘用户,受限功率谱密度,分配的资源块少,可以通过1个传输块映射到多个最小时间调度单元实现覆盖提升、传输更大的传输块。
假设此时该N个调度规则如表1所示的3个调度规则。若该当前可用的RB数量小于第一预设RB数量阈值,则该目标调度规则可以是调度规则序号为1的调度规则,即一个传输块映射到四个最小时间调度单元。在RB数较少时将一个传输块映射到多个最小时间调度单元可以使得TBS大,大TBS可以获得更高的编码增益,降低MAC层和RLC层头开销和CRC开销。进一步,在一些实施例中,若该当前可用的RB数量大于第一预设RB数量阈值,则该目标调度规则可以是调度规则序号为3的调度规则,即一个传输块映射到一个最小时间调度单元。
可选的,在另一些实施例中,网络侧设备还可以确定该终端设备的工作状态。网络侧设备根据终端设备的工作状态和调度规则的对应关系,确定该N个调度规则中与确定的该终端设备的工作状态对应的调度规则为该目标调度规则。该终端设备的工作状态可以包括该终端设备的位置信息,例如该终端设备位于小区边缘或小区中心,是否覆盖受限。该终端设备的工作状态还可以包括该终端设备的移动速度,例如该终端设备处于高速移动状态、低速移动状态等。该终端设备的工作状态可以是该终端设备上报给该网络侧设备的,也可以是该网络侧设备测量得到的。
假设此时该N个调度规则如表1所示的3个调度规则。若该终端设备处于低速移动状态或位于小区边缘位置或覆盖受限场景,则该目标调度规则可以是调度规则序号为1的调度规则,即一个传输块映射到四个最小时间调度单元。这样,可以提升终端设备的覆盖范围。进一步,在一些实施例中,该终端设备处于高速移动状态或位于小区中心或非覆盖受限场景,则该目标调度规则可以是调度规则序号为3的调度规则,即一个传输块映射到一个最小时间调度单元。
可选的,在另一些实施例中,网络侧设备还可以确定无线环境信息。网络侧设备根据无线环境信息和调度规则的对应关系,确定该N个调度规则中与确定的无线环境信息对应的调度规则为该目标调度规则。该无线环境信息可以是与信道相关的测量信息,也可以是当前网络配置或调度相关的信息。例如是否发生邻小区突发干扰,是否发生超高可靠低时延通信(ultrao-reliable low latency communication,URLLC)影响(比如资源抢占,打孔等)等,例如一种常用的做法是将系统带宽划分为两部分:仅增强移动宽带通信(enhanced  mobile broadband,eMBB)业务区域,该区域不会出现URLLC业务的影响;eMBB和URLLC共存区,该区域eMBB业务可能受到URLLC业务的影响。对于eMBB和URLLC共存区可以如表1所示的调度规则序号为3的调度规则或一个传输块映射到一个最小时间调度单元,从而能更好的对抗URLLC影响。
假设此时该N个调度规则如表1所示的3个调度规则。在发生邻小区突发干扰或URLLC影响的情况下,该目标调度规则可以是调度规则序号为3的调度规则,即一个传输块映射到一个最小时间调度单元。在未发生邻小区突发干扰或URLLC影响的情况下,该目标调度规则可以是调度规则序号为1的调度规则,即一个传输块映射到四个最小时间调度单元。在发生邻小区突发干扰或URLLC影响的情况下,邻小区突发干扰或URLLC干扰可能仅影响一个最小时间调度单元上的数据。在一个传输块映射到多个最小时间调度单元的情况下,该多个最小时间调度单元仅有一个对应的反馈信息。因此,可能造成所述调度的所有最小时间单元上的数据需要重传。而若一个传输块映射到一个最小时间调度单元,则每个最小时间调度单元都有控制信息和反馈信息。这样,仅受影响的最小时间单元上的数据需要重传,存在频谱效率性能增益,可以获得更好的链路性能。此外,如果每个传输块仅调度到一个最小调度时间单元上,则可通过调度方式避免eMBB和URLLC的碰撞冲突。
除了根据是否发生邻小区干扰或URLLC干扰来确定该目标调度规则外,该网络侧设备还可以根据其他可以反映信道质量的参数或场景来选择合适的目标调度规则。信道变化越快或者不同符号或子带上信道之间偏差越大,一个传输块映射的最小时间调度单元数目越少,信道变化越小或者不同符号或子带上信道之间偏差越小,一个传输块映射的最小时间调度单元数目越多。
当然,在另一些实施例中,网络侧设备还可以根据上述信息中的两个或两个以上信息,从该N个调度规则中确定该目标调度规则。例如,在满足时延需求和未发生干扰的情况下,即使在小区中心用户或非覆盖受限场景中,一个传输块也可以映射到多个最小调度单元。
可选的,在一些实施例中,在步骤102之前,该网络侧设备还可以向该终端设备发送目标调度规则指示信息,该目标调度规则指示信息用于指示该网络侧设备确定的该目标调度规则。该终端设备确定目标调度规则,包括:该终端设备根据接收到的目标调度规则指示信息,确定该目标调度规则。
可以理解的是,该网络侧设备所确定的目标调度规则为该终端设备支持的目标调度规则。
可选的,在一些实施例中,在步骤101之前,该终端设备可以向该网络侧设备发送调度规则信息,所述调度规则信息用于指示该网络侧设备该终端设备支持的调度规则。
可选的,该网络侧设备可以通过隐式或显示的方式将该目标调度规则指示信息发送至该终端设备。
可选的,在一些实施例中,该目标调度规则指示信息包括以下中的至少一种:子载波间隔、最小时间调度单元占用的符号数目、下行控制信息(downlink control information,DCI)格式、调制预编码方案(modulation and coding scheme,MCS)、循环冗余校验码,和分配的资源块数。
例如,该终端设备可以保存或预定义或生成如表4所示的子载波间隔和调度规则的对 应关系。若该网络侧设备当前配置或使用15kHz的子载波间隔,则确定的目标调度规则为序号为3的调度规则,该网络侧设备可以显示或隐式地指示该终端设备使用15kHz的子载波间隔,显示通知包括控制信令通知(比如广播信道,高层信令,物理层信令等);隐式通知包括,用户盲检测广播信道或同步信道等确定子载波间隔。在此情况下,该终端设备可以根据子载波间隔和调度规则的对应关系,确定调度规则序号为3的调度规则为该目标调度规则。
再如,该终端设备可以保存或预定义或生成如表6所示的最小时间调度单元占用的符号数目与调度规则的对应关系。若该网络侧设备当前配置或使用最小时间调度单元占用的符号数目为14,则确定的目标调度规则为序号为3的调度规则,该网络侧设备可以指示该终端设备使用最小时间调度单元占用的符号数目为14。在此情况下,该终端设备可以根据最小时间调度单元占用的符号数目和调度规则的对应关系,确定调度规则序号为3的调度规则为该目标调度规则。
又如,该终端设备可以保存或预定义或生成如表7所示的对应关系。若该网络侧设备当前配置或使用子载波间隔为15kHz且最小时间调度单元占用的符号数目为14,则确定的目标调度规则为序号为3的调度规则,该网络侧设备可以指示该终端设备使用子载波间隔为15kHz且最小时间调度单元占用的符号数目为14。在此情况下,该终端设备可以根据最小时间调度单元占用的符号数目和调度规则的对应关系,确定调度规则序号为3的调度规则为该目标调度规则。
又如,该网络侧设备和该终端设备可以保存或预定义或生成如表9所示的DCI格式与调度规则的对应关系。
DCI格式 调度规则序号
A 3
B 2
C 1
表9
表9所示的A、B、C表示不同的DCI格式。若该网络侧设备确定的目标调度规则为序号为3的调度规则,则该网络侧设备可以使用DCI格式为A。在此情况下,该终端设备可以根据检测到的DCI格式与调度规则的对应关系,确定调度规则序号为3的调度规则为该目标调度规则。
又如,该网络侧设备和该终端设备可以保存或预定义或生成如表10所示的MCS与调度规则的对应关系。
MCS索引 调度规则序号
MCS 1~MCS 2 3
MCS 3~MCS 4 2
MCS 5~MCS 6 1
表10
表10中MCS 1~MCS 6表示不同的MCS索引。若该网络侧设备配置或使用MCS 1~MCS 2之间的MCS,则确定的目标调度规则为序号为3的调度规则,则该网络侧设备可以指示该终端设备使用的MCS为MCS 1~MCS 2的值。在此情况下,该终端设备可以根据 MCS与调度规则的对应关系,确定调度规则序号为3的调度规则为该目标调度规则。
又如,该网络侧设备和该终端设备可以保存或预定义或生成如表11所示的CRC与调度规则的对应关系。
CRC 调度规则序号
CRC 1 3
CRC 2 2
CRC 3 1
表11
表11中CRC 1、CRC 2和CRC 3表示三种不同的CRC。若该网络侧设备确定的目标调度规则为序号为3的调度规则,则该网络侧设备可以为DCI加上CRC 1的CRC。在此情况下,该终端设备在确定出CRC后,可以根据CRC与调度规则的对应关系,确定使用调度规则序号为3的调度规则为该目标调度规则。
又如,该网络侧设备和该终端设备可以保存或预定义或生成如表12所示的RB数与调度规则的对应关系。
RB数 调度规则序号
RB≤RB 1 3
RB I<RB<RB 2 2
RB≥RB 2 1
表12
如表12所示,若该网络侧设备配置或使用RB数目小于或等于RB 1,则确定的目标调度规则为序号为3的调度规则,该网络侧设备可以指示该终端设备使用的RB数目小于或等于RB 1。在此情况下,该终端设备可以根据RB数与调度规则的对应关系,确定调度规则序号为3的调度规则为该目标调度规则。
可以理解的是,上述所有表格和对应关系仅是为了帮助本领域技术人员更好地理解,而并非对对应关系的限制,比如对应关系可以是以上表格中对应关系的子集或者扩展或者修改。例如以上实施例都是以表1的调度规则举例,若采用表2或表3的调度规则类似,在此不再赘述。
可选的,在一些实施例中,该目标调度规则信息可以与DCI所在的搜索空间位置相对应。可以理解的是,由于DCI所在的搜索空间仅为公共搜索空间和用户搜索空间,因此仅能够通过DCI所在的搜索空间指示两种调度规则。例如,若网络侧设备确定该目标调度规则为序号为3的调度规则,则可以将DCI承载在公共搜索空间,若网络侧设备确定该目标调度规则为序号为1的调度规则,则可以将DCI承载在用户搜索空间。该终端设备可以根据检测出的DCI所在的位置,确定该目标调度规则。
可以理解的是,在一些实施例中,考虑到利用DCI所在的搜索空间仅能够指示两种调度规则,可选的可以利用其它方式指示剩余的调度规则。例如,利用CRC、RB数等。
可选的,在一些实施例中,该目标调度规则信息可以与DCI所在的资源位置相对应。可以理解的是,终端设备可以根据检测出的DCI所在的资源位置(比如RB编号,或者子带编号,或者CCE编号),确定该目标调度规则。
可选的,在另一些实施例中,该网络侧设备可以采用显示的方式将该目标调度规则指 示信息发送至该终端设备。具体地,该网络侧设备可以利用控制信令上的一些字段将该目标调度规则指示信息发送至该终端设备。该控制信令可以是MAC层控制信令、也可以是物理层控制信令。
可选的,在一些实施例中,用于指示目标调度规则的字段(以下简称:目标调度规则指示字段)可以是控制信令上的新增的字段。以DCI为例,可以在DCI上增加目标调度规则指示字段。该网络侧设备在确定了该目标调度规则之后,可以将该目标调度规则指示字段的值设置为与该目标调度规则对应的值。该终端设备在接收到该DCI后,可以根据该DCI中的目标调度规则指示字段的值确定出该目标调度规则。除此之外,也可以采用MAC层或无线资源控制(radio resource control,RRC)层等高层信令指示目标调度规则。
可选的,在一些实施例中,调度规则可以仅包括一次调度的传输块个数T。同时,一次调度的传输块个数T能整除S。在此情况下,一次调度的T个传输块和S最小时间调度单元的映射关系为:该T个传输块中的每个传输块映射到S个最小时间调度单元中的一个最小时间调度单元;或者,T个传输块中的每个传输块映射到该S个最小时间调度单元;或者,该T个传输块中的每个传输块映射到该S个最小时间调度单元中连续的S t个最小时间调度单元,其中,S=S t*T,S t为大于1且小于S的正整数。更进一步,该T个传输块中的每个传输块映射到该S个最小时间调度单元中连续的S t个最小时间调度单元,包括:该T个传输块中的第t个传输块映射到该S个最小时间调度单元中的第(t-1)*S t+1个最小时间调度单元至第t*S t个最小时间调度单元,其中t=1,…,T,S t=S/T,*表示乘号。
例如,假设一次调度中的最小时间调度单元数目为4。若该目标调度规则包括一次调度中的传输块数目为2,则该2个传输块中的第一个传输块映射到第一个最小时间调度单元和第二个最小时间调度单元,该2个传输块中的第二个传输块映射到第三个最小时间调度单元和第四个最小时间调度单元。若该终端设备确定的目标调度规则包括一次调度中的传输块数目为4,则该终端设备可以确定4个传输块分别映射到4个最小时间调度单元。
该网络侧设备可以保存或预定义或生成该一次调度中的T个传输块和S最小时间调度单元的映射关系。这样,该网络侧设备可以根据目标调度规则中包括的一次调度中的传输块个数和该网络侧设备保存或预定义或生成的该一次调度中的T个传输块和S最小时间调度单元的映射关系,确定出每个传输块映射的最小时间调度单元。
类似的,该终端设备也可以保存或预定义或生成该一次调度中的T个传输块和S最小时间调度单元的映射关系。该终端设备可以根据目标调度规则中包括的一次调度中的传输块个数和该终端设备保存或预定义或生成的该一次调度中的T个传输块和S最小时间调度单元的映射关系,确定出每个传输块映射的最小时间调度单元。
可选的,在另一些实施例中,该N个调度规则中的每个调度规则可以仅包括一次调度的一个传输块映射的最小时间调度单元数。同时,该每个调度规则包括的一次调度的一个传输块映射的最小时间调度单元数能被S整除。在此情况下,一次调度的T个传输块和S最小时间调度单元的映射关系为:该T个传输块中的每个传输块映射到S个最小时间调度单元中的一个最小时间调度单元;或者,T个传输块中的每个传输块映射到该S个最小时间调度单元;或者,该T个传输块中的每个传输块映射到该S个最小时间调度单元中连续的S t个最小时间调度单元,其中,S=S t*T,S t为大于1且小于S的正整数。更进一步,该T个传输块中的每个传输块映射到该S个最小时间调度单元中连续的S t个最小时间调度单 元,包括:该T个传输块中的第t个传输块映射到该S个最小时间调度单元中的第(t-1)*S t+1个最小时间调度单元至第t*S t个最小时间调度单元,其中t=1,…,T,S t=S/T。
例如,假设一次调度中的最小时间调度单元数目为4。若该目标调度规则包括该一次调度中的一个传输块映射的最小时间调度单元数为2,则该一次调度中的传输块数目为2,该2个传输块中的第一个传输块映射到第一个最小时间调度单元和第二个最小时间调度单元,该2个传输块中的第二个传输块映射到第三个最小时间调度单元和第四个最小时间调度单元。若该目标调度规则包括该一次调度中的一个传输块映射的最小时间调度单元数为4,则该一次调度中的传输块数目为1,则该终端设备可以确定1个传输块分别映射到4个最小时间调度单元。
该网络侧设备可以保存或预定义或生成该一次调度的T个传输块和S最小时间调度单元的映射关系。这样,该网络侧设备可以根据目标调度规则中包括的一次调度中的一个传输块映射的最小时间调度单元数和该网络侧设备保存或预定义或生成的该一次调度中的T个传输块和S最小时间调度单元的映射关系,确定出一次调度中的传输块数以及每个传输块映射的最小时间调度单元。
类似的,该终端设备也可以保存或预定义或生成该一次调度的T个传输块和S最小时间调度单元的映射关系。该终端设备可以根据目标调度规则中包括的一次调度的一个传输块映射的最小时间调度单元数和该终端设备保存或预定义或生成的该一次调度中的T个传输块和S最小时间调度单元的映射关系,确定出一次调度中的传输块数以及每个传输块映射的最小时间调度单元。
可选的,在一些实施例中,该N个调度规则中的每个调度规则可以仅包括一次调度的传输块个数T。在这些实施例中,一次调度的传输块个数T可以整除S也可以不整除S。同时,在这些实施例中,一次调度的T个传输块和S个最小时间调度单元有如下映射关系:该T个传输块中的每个传输块映射到S个最小时间调度单元中的一个最小时间调度单元;或者,T个传输块中的每个传输块映射到该S个最小时间调度单元;或者,若S/T大于1且小于S的正整数,则该T个传输块中的每个传输块映射到该S个最小时间调度单元中连续的S t个最小时间调度单元,其中,S=S t*T,S t为大于1且小于S的整数;若S/T不为正整数,则该T个传输块中的第一个传输块映射到a+b个最小时间调度单元,该T个传输块中除该第一个传输块以外的每一个传输块映射到a个最小时间调度单元,其中,a和b均为正整数,b小于T,且S=a*T+b。
更进一步,该T个传输块中的每个传输块映射到该S个最小时间调度单元中连续的S t个最小时间调度单元,包括:该T个传输块中的第t个传输块映射到该S个最小时间调度单元中的第(t-1)*S t+1个最小时间调度单元至第t*S t个最小时间调度单元,其中t=1,…,T,S t=S/T。
例如,假设一次调度中的最小时间调度单元数目为4。若目标调度规则包括一次调度中的传输块数目为2,则该2个传输块中的第一个传输块映射到第一个最小时间调度单元和第二个最小时间调度单元,该2个传输块中的第二个传输块映射到第三个最小时间调度单元和第四个最小时间调度单元。若目标调度规则包括一次调度中的传输块数目为3,则3个传输块中的第一个传输块映射到第一个最小时间调度单元和第二个最小时间调度单元,3个传输块中的第二个传输块和第三个传输块分别映射到第三个最小时间调度单元和 第四个最小时间调度单元。
该网络侧设备可以保存或预定义或生成该一次调度的T个传输块和S最小时间调度单元的映射关系。这样,该网络侧设备可以根据目标调度规则中包括的一次调度的传输块个数和该网络侧设备保存或预定义或生成的该一次调度的T个传输块和S最小时间调度单元的映射关系,确定出每个传输块映射的最小时间调度单元。
类似的,该终端设备也可以保存或预定义或生成该一次调度的T个传输块和S最小时间调度单元的映射关系。该终端设备可以根据目标调度规则中包括的一次调度的传输块个数和该终端设备保存或预定义或生成的该一次调度的T个传输块和S最小时间调度单元的映射关系,确定出每个传输块映射的最小时间调度单元。
可选的,在一些实施例中,该N个调度规则中的每个调度规则可以仅包括一次调度中的传输块个数T。在这些实施例中,一次调度中传输块个数T可以整除S也可以不整除S。同时,在这些实施例中,一次调度中的T个传输块和S个最小时间调度单元有如下映射关系T个传输块中的每个传输块映射到S个最小时间调度单元中的一个最小时间调度单元;或者,T个传输块中的每个传输块映射到该S个最小时间调度单元;或者,若S/T大于1且小于S的正整数,则该T个传输块中的每个传输块映射到该S个最小时间调度单元中连续的S t个最小时间调度单元,其中,S=S t*T,S t为大于1且小于S的整数;若S/T不为正整数,则该T个传输块中的第T个传输块映射到a+b个最小时间调度单元,该T个传输块中除该第T个传输块以外的每一个传输块映射到a个最小时间调度单元,其中,a和b均为正整数,b小于T,且S=a*T+b。
更进一步,该T个传输块中的每个传输块映射到该S个最小时间调度单元中连续的S t个最小时间调度单元,包括:该T个传输块中的第t个传输块映射到该S个最小时间调度单元中的第(t-1)*S t+1个最小时间调度单元至第t*S t个最小时间调度单元,其中t=1,…,T,S t=S/T。
例如,假设一次调度中的最小时间调度单元数目为4。若目标调度规则包括一次调度中的传输块数目为2,则该2个传输块中的第一个传输块映射到第一个最小时间调度单元和第二个最小时间调度单元,该2个传输块中的第二个传输块映射到第三个最小时间调度单元和第四个最小时间调度单元。若目标调度规则包括一次调度中的传输块数目为3,则3个传输块中的第三个传输块映射到第三个最小时间调度单元和第四个最小时间调度单元,3个传输块中的第一个传输块和第二个传输块分别映射到第一个最小时间调度单元和第二个最小时间调度单元。
该网络侧设备可以保存或预定义或生成该一次调度中的T个传输块和S最小时间调度单元的映射关系。这样,该网络侧设备可以根据目标调度规则中包括的一次调度中的传输块个数和该网络侧设备保存或预定义或生成的该一次调度中的T个传输块和S最小时间调度单元的映射关系,确定出每个传输块映射的最小时间调度单元。
类似的,该终端设备也可以保存或预定义或生成该一次调度中的T个传输块和S最小时间调度单元的映射关系。该终端设备可以根据目标调度规则中包括的一次调度中的传输块个数和该终端设备保存或预定义或生成的该一次调度中的T个传输块和S最小时间调度单元的映射关系,确定出每个传输块映射的最小时间调度单元。
可选的,在另一些实施例中,该N个调度规则中的每个调度规则可以仅包括一次调度 的传输块个数T。在这些实施例中,一次调度的传输块个数T可以整除S也可以不整除S。在这些实施例中,一次调度的T个传输块和S个最小时间调度单元有如下映射关系:该T个传输块中的每个传输块映射到S个最小时间调度单元中的一个最小时间调度单元;或者,T个传输块中的每个传输块映射到该S个最小时间调度单元;或者,若S/T大于1且小于S的正整数,则该T个传输块中的每个传输块映射到该S个最小时间调度单元中连续的S t个最小时间调度单元,其中,S=S t*T,S t为大于1且小于S的整数;若S/T不为正整数,则该T个传输块中的第一个传输块映射到a+b个最小时间调度单元,该T个传输块中的第T个传输块映射到a+c个最小时间调度单元,该T个传输块中除该第一个传输块和该第T个传输块以外的每一个传输块映射到a个最小时间调度单元,其中,a、b和c均为正整数,b+c小于T,且S=a*T+b+c。更进一步,若(S-a*T)能够被2整除,则b与c相等。若(S-a*T)不够被2整除,则该预设规则还可以包括b=c+1,或者该预设调度规则还可以包括c=b+1。
例如,假设一次调度中的最小时间调度单元数目为8。若目标调度规则包括一次调度中的传输块数目为4,则4个传输块中的每个传输块映射到两个最小时间调度单元。若目标调度规则包括一次调度中的传输块数目为3,则3个传输块中的第一个传输块映射到第一个最小时间调度单元至第三个最小时间调度单元,3个传输块中的第二个传输块映射到第四个最小时间调度单元和第五个最小时间调度单元,3个传输块中的第三个传输块映射到第六个最小时间调度单元至第8个最小时间调度单元。假设该预设调度规则包括:若(S-a*T)不够被2整除,则b=c+1。若目标调度规则包括一次调度中的传输块数目为5,则5个传输块中的第一个传输块映射到第一个最小时间调度单元至第三个最小时间调度单元,5个传输块中的第二个传输块至第四个传输块分别映射到第四个最小时间调度单元至第六个最小时间调度单元,5个传输块中的第五个传输块映射到第七个最小时间调度单元和第八个最小时间调度单元。假设该预设规则包括:若(S-a*T)不能够被2整除,则c=b+1,则5个传输块中的第一个传输块映射到第一个最小时间调度单元和第二个最小时间调度单元,5个传输块中的第二个传输块至第四个传输块分别映射到第二个最小时间调度单元至第五个最小时间调度单元,5个传输块中的第五个传输块映射到第六个最小时间调度单元至第八个最小时间调度单元。
该网络侧设备可以保存或预定义或生成该一次调度中的T个传输块和S最小时间调度单元的映射关系。这样,该网络侧设备可以根据目标调度规则中包括的一次调度中的传输块个数和该网络侧设备保存或预定义或生成的该一次调度的T个传输块和S最小时间调度单元的映射关系,确定出每个传输块映射的最小时间调度单元。
类似的,该终端设备也可以保存或预定义或生成该一次调度中的T个传输块和S最小时间调度单元的映射关系。该终端设备可以根据目标调度规则中包括的一次调度中的传输块个数和该终端设备保存或预定义或生成的该一次调度的T个传输块和S最小时间调度单元的映射关系,确定出每个传输块映射的最小时间调度单元。
虽然在上述几个实施例中的调度规则可以仅包括一次调度中的传输块数T或一次调度中的一个传输块映射的最小时间调度单元数,该调度规则也可以包括一次调度的T个传输块和S个最小时间调度单元的映射关系。可以理解的是,在调度规则包括一次调度的T个传输块和S个最小时间调度单元的映射关系的情况下,该终端设备和该网络侧设备可以 预先保存或预定义一次调度的T个传输块和S个最小时间调度单元的映射关系,也可以不保存或预定义一次调度的T个传输块和S个最小时间调度单元的映射关系。
此外,在一些实施例中,该N个调度规则中的每个调度规则也可以仅包括一次调度的T个传输块和S个最小时间调度单元的映射关系。这样,该终端设备可以直接根据该目标传输规则确定出T个传输块和S个最小时间调度单元的映射关系,而无需保存或预定义或生成T个传输块和S个最小时间调度单元的映射关系并根据接收到的目标调度规则中包括的一次调度的传输块数和/或一次调度的一个传输块映射的最小时间调度单元数确定出每个传输块映射的最小时间调度单元。
可选的,在另一些实施例中,每个传输块映射的最小时间调度单元数目可以相同也可以不同,且可以根据需要确定出每个传输块映射的最小时间调度单元。这时,该调度规则包括一次调度的T个传输块和S个最小时间调度单元的映射关系。
例如,表13是另一个调度规则的示意。表13中假设一次调度的最小时间调度单元数目为4。
Figure PCTCN2017118918-appb-000007
表13
如表13所示,在传输块数目为2的情况下,一个传输块可以映射到两个最小时间调度单元,也可以映射到三个最小时间调度单元或者一个最小时间调度单元。
在此情况下,该调度规则可以包括一次调度的传输块数目T以及一次调度的T个传输块和S个最小时间调度单元的映射关系。或只包括一次调度的T个传输块和S个最小时间调度单元的映射关系。
可选的,在一些实施例中,若该调度规则包括一次调度的传输块个数T、一次调度的一个传输块映射的最小时间调度单元数目,和一次调度的T个传输块和S个最小时间调度单元的映射关系中的一个或多个信息的情况下,该目标调度规则指示信息可以同时指示该目标调度规则包括的所有信息。
具体地,该终端设备和该网络侧设备可以保存或预定义或生成N个调度规则,每个调度规则有一个对应的调度规则序号。在此情况下,该网络侧设备仅需要指示该终端设备该目标调度规则的调度规则序号,该终端设备可以根据该调度规则序号确定该调度规则的具体信息。可以理解的是,该网络侧设备和该终端设备所保存或预定义或生成的调度规则序号和调度规则的对应关系是相同的。
例如,以表13为例,该终端设备和该网络侧设备都可以保存或预定义或生成如表13 所示的调度规则序号和调度规则的对应关系。该目标调度规则指示信息只需要指示目标调度规则对应的调度规则序号即可。
可选的,在另一些实施例中,若该调度规则包括一次调度中的传输块个数T、一个传输块映射的最小时间调度单元数目,和T个传输块和S个最小时间调度单元的映射关系中的至少两个信息,该目标调度规则指示信息可以分开指示该至少两个信息。
例如,该网络侧设备可以利用指定的控制信息(即子载波间隔、每个最小时间调度单元占用的符号数目、DCI格式、MCS、循环冗余校验码,和分配的资源块数目等)指示一次调度中的传输块数目,然后利用其它字段指示传输块与最小时间调度单元的映射关系。例如,该网络侧设备可以在控制信令中增加一些专用字段来指示传输块与最小时间调度单元的映射关系,该网络侧设备还可以利用控制信令中的与一些冗余字段来指示该传输块与最小时间调度单元的映射关系。
例如,以DCI为例,DCI中的有些域每个传输块都有一个对应的字段。假设一次调度中可调度的传输块数目为X且该目标调度规则中调度的传输块数目为Y(X大于Y且X与Y均为正整数),则有X-Y个传输块的对应的字段是冗余字段。在此情况下,可以利用该X-Y个传输块对应的字段来指示该目标调度规则。此外,可以理解的是,在可用的传输块数目与该目标调度规则中的传输块数目相等的情况下,没有冗余的传输块。在此情况下,可以有一个默认的传输块与最小时间调度单元的映射关系。如果该目标调度规则中的传输块数目等于该可用的传输块数目,则该传输块与最小时间调度单元的映射关系为该默认的映射关系。
假设一次调度中最多可调度的传输块数目为4。若一次调度中调度的传输块数目为2,则可以利用剩余2个未调度的传输块对应的字段来指示传输块与最小时间调度单元的映射关系。若该目标调度规则中一次调度的传输块数目为4,则可以确定传输块与最小时间调度单元的映射关系为默认的映射关系,即一个传输块与一个最小时间调度单元映射。
可选的,在一些实施例中,每个传输块映射的调度单元数目可以与传输块的属性相关。该传输块的属性是指该传输块是初传传输块还是重传传输块。各传输块灵活时域资源分配可以使得各传输块根据所需调度资源个数,进而获得性能增益。
可选的,在一些实施例中,重传传输块的映射规则为:每个重传传输块映射到一个最小时间调度单元。每个初传传输块可以映射到一个或多个最小时间调度单元。此外,该T个传输块中最多可以包括一个初传传输块。这样,通过重传采用更少的资源,可以避免资源浪费以获得吞吐量和频谱效率的增益。
假设该T个传输块均为重传传输块,则每个传输块映射到一个最小时间调度单元。假设该T个传输块中包括1个初传传输块和T-1个重传传输块(T不等于1),则该T-1个重传传输块与S个最小时间调度单元中的前T-1个最小时间调度单元一一对应,即该T-1个重传传输块中的第t个重传传输块映射到该S个最小时间调度单元中的第t个最小时间调度单元,其中t=1,…,T-1。该初传传输块映射到该S个最小时间调度单元剩余的传输块。假设该T个传输块中不包括重传传输块,则T等于1且该T个传输块映射到该S个传输块上。
例如,若T=1且S=4,则该T个传输块中可以包括1个初传传输块,该初传传输块映射到该S个最小时间调度单元。
再如,若T=2且S=4,则该T个传输块中可以包括1个初传传输块和1个重传传输块。该重传传输块映射到该S个最小时间调度单元中的第一个最小时间调度单元,该初传传输块映射到该S个最小时间调度单元的第二至第四个最小时间调度单元。
又如,若T=3且S=4,则该T个传输块中可以包括1个初传传输块和2个重传传输块。第一个重传传输块映射到该S个最小时间调度单元中的第一个最小时间调度单元,第二个重传传输块映射到该S个最小时间调度单元中的第二个最小时间调度单元,该初传传输块映射到该S个最小时间调度单元第三个最小时间调度单元和第四个最小时间调度单元。
又如,若T=4且S=4,则该T个传输块中可以包括1个初传传输块和3个重传传输块,或者,该T个传输块也可以包括4个重传传输块。若该T个传输块中包括1个初传传输块可3个重传传输块,则第一个重传传输块映射到该S个最小时间调度单元中的第一个最小时间调度单元,第二个重传传输块映射到该S个最小时间调度单元中的第二个最小时间调度单元,第三个重传传输块映射到该S个最小时间调度单元中的第三个最小时间调度单元,该初传传输块映射到该S个最小时间调度单元第四个最小时间调度单元。若该T个传输块包括4个重传传输块,则第一个重传传输块映射到该S个最小时间调度单元中的第一个最小时间调度单元,第二个重传传输块映射到该S个最小时间调度单元中的第二个最小时间调度单元,第三个重传传输块映射到该S个最小时间调度单元中的第三个最小时间调度单元,第四个重传传输块映射到该S个最小时间调度单元中的第四个最小时间调度单元。
该网络侧设备可以利用与每个传输块对应的字段来指示该终端设备传输块的属性。该终端设备可以根据传输块的属性确定出传输块和最小时间调度单元的映射关系。具体地,DCI中可以有T个比特的NDI,每个比特用于指示一个传输块是否为重传传输块。例如,比特值为1或者0或出现了翻转(取决于协议规定,下面例子中假设比特值为1代表初传,比特值为0代表重传),则表示对应的传输块为初传传输块,否则表示对应的传输块为重传传输块。该终端设备可以根据该T个bit确定出每个传输块的属性,并根据每个传输块的属性确定出每个传输块映射的最小时间调度单元。
例如,若T=4且T个比特为001x,其中x表示该位比特的值可以为1也可以为0。该终端设备在读取到该T个比特后,可以确定出四个传输块中的第一个传输块和第2个传输块为重传传输块,第3个传输块为初传传输块。这样,该终端设备可以确定出S个最小时间调度单元的前两个最小时间调度单元分别为该两个重传传输块映射的最小时间调度单元,该S个最小时间调度单元中剩余的最小时间调度单元为该初传传输块映射的最小时间调度单元。
图2是一种传输过程中调度规则切换的示意图。图2示出了连续的六次调度。图2所示的S1至S24表示24个最小时间调度单元。图2所示的一次调度的最小时间调度单元数目为4。在连续的六次调度中,前五次调度中的传输块或进程为初传,每次调度中的传输块数目为1,即表1中的调度规则1(或表2中的调度规则4)。具体地,进程0映射到最小时间调度单元S1至S4,进程1映射到最小时间调度单元S5至S8,进程2映射到最小时间调度单元S9至S12,进程3映射到最小时间调度单元S13至S16,进程4映射到最小时间调度单元S17至S20,其中,进程0至进程4中的每个进程为一个初传传输块。发送端设备在接收到接收端设备发送的否定(non acknowledgment,NACK)指示后,确定 有进程或传输块需要重传。如图2所示,在第六次调度中一次调度4个传输块,即表1中调度规则3(或表2中的调度规则1)。该4个传输块可以为四个重传进程(或称重传传输块),该四个重传进程的数据分别映射到四个最小时间调度单元。换句话说,在第六次调度中的四个重传进程中的每个进程或传输块仅映射到一个最小时间调度单元。当然,在另一些实施例中,第六次调度中4个传输块也可以包括重传传输块和初传传输块。例如,一个重传传输块映射到最小时间调度单元S21,三个初传传输块分别映射到最小时间调度单元S22至S24。在另一些实施例中,第六次调度中4个传输块可以都是初传传输块。在另一些实施例中,前5次调度中也可以存在重传传输块。注意每次调度的最小时间调度单元数目可以动态变化,不限定为4。
图3是另一种传输过程中调度规则切换的示意图。图3示出了连续的六次调度。图3所示的S1至S24表示24个最小时间调度单元。图3所示的一次调度的最小时间调度单元数目为4。在连续的六次调度中,前五次调度中的传输块为初传传输块,每次调度中的传输块数目为1,即表1中的调度规则1(或表13中的调度规则8)。具体地,进程0映射到最小时间调度单元S1至S4,进程1映射到最小时间调度单元S5至S8,进程2映射到最小时间调度单元S9至S12,进程3映射到最小时间调度单元S13至S16,进程4映射到最小时间调度单元S17至S20,其中,进程0至进程4中的每个进程为一个初传传输块。发送端设备在接收到接收端设备发送的NACK指示后,确定有一个进程或传输块需要重传。在此情况下,在第六次调度中一次调度2个传输块,即表13中调度规则3。该2个传输块可以是两个重传进程(或称重传传输块),该两个重传进程中的第一个重传进程映射到一个最小时间调度单元S21,另一个重传进程映射到三个最小时间调度单元S22至S24。当然,在另一些实施例中,第六次调度中2个传输块也可以包括重传传输块和初传传输块。例如,一个重传传输块映射到最小时间调度单元S21,一个初传传输块映射到最小时间调度单元S22至S24。在另一些实施例中,第六次调度中2个传输块可以都是初传传输块。在另一些实施例中,前5次调度中也可以存在重传传输块。注意每次调度的最小时间调度单元数目可以动态变化,不限定为4。
可选的,作为另一些实施例,重传传输块的映射规则为:重传传输块可以映射的最小时间调度单元数目多于初传传输块映射的最小时间调度单元数目。这样可以降低通信时延,保证通信可靠性,使得传输块可以尽快被译码成功。
可选的,作为另一些实施例,重传传输块的映射规则为:重传传输块可以映射的最小时间调度单元数目和初传传输块映射的最小时间调度单元数目相同。
网络侧设备可以支持上述三种重传传输块的映射规则,并且根据需要在两者之间进行切换。上述技术方案可以根据需要调整重传传输块映射的最小时间调度单元数目和初传传输块映射的在最小时间调度单元数目,这样可以获得性能增益。
虽然以上所有实施例都是以1个最小时间调度单元最多只承载1个传输块数据的情况举例。考虑到5G带宽(比如80MHz或者更大)和快速傅里叶变换采样数限制(比如2048),本申请也可以通过1个最小时间调度单元上承载多个传输块的数据以实现大带宽通信。1个传输块的数据可以承载在1个或多个子带上。同样的,通过1个DCI调度多个传输块,可以节省信令开销,比如许多域可以所有传输块共享,有些域可以每个传输块特定。例如NDI域等可以为每个传输块的特定域。再如,MCS可以一个值。每个传输块根据该MCS 和该传输块特定的MCS偏移值确定该传输块的MCS值。综上所述,一次调度中的传输块数目T可以大于最小时间调度单元数目,以节省控制开销。
图4是一次调度的多个传输块映射到一个最小时间调度单元的示意图。如图4所示的一次调度包括一个最小时间调度单元S1和四个传输块。一次调度的4个传输块分别映射到一个最小时间调度单元在频域上的四个频域资源。这四个频域资源可以是连续的也可以是不连续的,四个频域资源大小可以相同也可以不同。
图5是另一个一次调度的多个传输块映射到一个最小时间调度单元的示意图。如图5所示的一次调度包括一个最小时间调度单元S1和两个传输块。一次调度的两个传输块中的每个传输块映射到一个最小时间调度单元在频域上的两个频域资源。这四个频域资源可以是连续的也可以是不连续的,四个频域资源大小可以相同也可以不同。
为方便描述,以下将一个最小时间调度单元最多承载一个传输块数据的情况称为时分复用,即前文所述所有实施例都是时分复用场景;将一个最小时间调度单元承载两个或两个以上传输块数据的情况称为频分复用。频分复用的具体实施例与上述时分复用的实施例类似,在此就不必赘述。
为了便于理解频分复用和时分复用的区别,下面将结合图6和图7对时分复用进行描述。
图6是一次调度的多个传输块映射在多个最小时间调度单元的示意图。如图6所示的一次调度包括四个最小时间调度单元S1至S4和四个传输块,四个传输块分别映射在四个最小时间调度单元上。
图7是另一次调度的多个传输块映射在多个最小时间调度单元的示意图。如图7所示的一次调度包括四个最小时间调度单元S1至S4和两个传输块。两个传输块映射在四个最小时间调度单元。具体地,两个传输块中的第一个传输块映射在最小时间调度单元S1和S2,两个传输块中的第二个传输块映射在最小时间调度单元S3和S4。
在一些实施例中,可以将时分复用和频分复用结合。
图8是时分复用和频分复用结合的示意图。如图8所示的一次调度包括两个最小时间调度单元S1和S2和两个传输块。一次调度的两个传输块分别映射在两个最小时间调度单元的不同频域。可以看出,图4所示的实施例中,一次调度的两个传输块中的每个传输块都映射到了一次调度的两个最小时间调度单元。
图9是时分复用和频分复用结合的示意图。如图9所示的一次调度包括三个最小时间调度单元S1至S3和四个传输块。四个传输块中的传输块1和传输块2分别映射在最小时间调度单元S1的不同频域。传输块3映射在最小时间调度单元S2和S3且传输块3映射的最小时间调度单元的频域资源与传输块1映射的最小时间调度单元的频域资源相同。类似的,传输块4映射在最小时间调度单元S2和S3且传输块4映射的最小时间调度单元的频域资源与传输块2映射的最小时间调度单元的频域资源相同。同时,传输块3映射的两个最小时间调度单元与传输块4映射的两个最小时间调度单元是相同的最小时间调度单元。传输块3映射在这两个最小时间调度单元的频域资源与传输块4映射在这两个最小时间调度单元的频域资源是不同的。
此外,在频分复用和时分复用结合的情况下,每个频域资源的一次调度的T个传输块和S个最小时间调度单元的映射关系与时分复用场景中的一次调度的T个传输块和最小时 间调度单元的映射关系相同,在此就不必赘述。
可选的,在另一些实施例中,初传传输块可以采用时分复用的方式,重传传输块可以采用频分复用的方式。
图10是一个利用频分复用传输初传传输块和重传传输块的示意图。图10所示的S1至S6表示6个最小时间调度单元。如图10所示,在连续的六次调度中,前五次调度中的传输块均为初传传输块且每个传输块映射到1个最小时间调度单元,可定义为调度规则1。具体地,进程0映射到最小时间调度单元S1,进程1映射到最小时间调度单元S2,进程2映射到最小时间调度单元S3,进程3映射到最小时间调度单元S4,进程4映射到最小时间调度单元S5,其中,进程0至进程4中的每个进程为一个初传传输块。发送端设备在接收到接收端设备发送的NACK指示后,确定进程或传输块需要重传。在此情况下,在第六次调度中可以调度2个传输块,可定义为调度规则2。所述2个传输可以包括重传进程(或称重传传输块),该两个重传进程采用频分复用的方式映射到一个最小时间调度单元S6。当然,在另一些实施例中,第六次调度包括的两个传输块可以分别为重传传输块和初传传输块。重传传输块和初传传输块采用频分复用的方式映射到一个最小时间调度单元S6。或者两个传输块都为初传传输块。在另一些实施例中,前5次调度中也可以存在重传传输块。注意每次调度的最小时间调度单元数目可以动态变化,不限定为1。
为了方便描述图2至图10所示的实施例中仅示出了传输块占用的资源,并非示出控制信号占用的资源。
注意:本文至此的所有实施例考虑的都是非空分复用场景,即一次调度的传输块数是针对1个时频资源上只承载1个码字或者1个传输块的数据的配置场景。在此场景下,一次调度的多个传输块可以采用时分复用的方式映射到多个最小时间调度单元,或者,一次调度的多个传输块可以采用频分复用的方式映射到一个最小时间调度单元。
此外,以上所有实施例是网络侧设备确定的传输模式为非空分复用的传输模式的实施例。也就是说,以上实施例中的一次调度的T个传输块与S个最小时间调度单元的映射关系、一次调度的传输块数目等都是针对非空分复用场景而言。所谓非空分复用的传输模式为1个时频资源上只承载1个码字或者1个传输块的数据的传输方式。
在网络侧设备确定的传输模式为空分复用传输模式的情况下,假设1个时频资源上承载N c个码字或者N c个传输块的数据,其中N c为大于或等于2的正整数(在此,本申请简称该传输模式场景为N c个码字或N c条流场景,Nc为1个时频资源上空分复用的码字数或进程数或传输块数)。在此情况下,一次调度的总的传输块个数为N c*T,其中N c个码字或N c条流中的每个码字或每条流的一次调度的传输块个数为T。相同的,该场景下一次调度的最小时间调度单元个数为S。
在上述空分复用场景中,一次调度的N c*T个传输块和S个最小时间调度单元的映射关系即为一次调度的N c个码字或N c条流中的每个码字或每条流的T个传输块和S个最小时间调度单元的映射关系。每个码字或每条流上的一次调度的T个传输块与S个最小时间调度单元的映射关系与非空分复用场景中一次调度的T个传输块与S个最小时间调度单元的映射关系相同。或者,换句话说,在非空分复用场景中的一次调度的T个传输块与S个最小时间调度单元的映射关系为空分复用场景中一次调度的每个码字或每条流上的T个传输块与S个最小时间调度单元的映射关系。在非空分复用该场景中的一次调度的传输 块数目T为空分复用场景中一次调度的每个码字或每条流的传输块数目T。因此,该一次调度的每个码字或每条流上的T个传输块与S个最小时间调度单元的映射关系的具体实施例可以参照前文所有实施例非空分复用该场景中一次调度的T个传输块与S个最小时间调度单元的映射关系的具体实施例,在此就不必赘述。
此外,空分复用场景中一次调度的任意两个码字或两条流的T个传输块与S个最小时间调度单元的映射关系相同。
空分复用场景中确定目标调度规则的方法以及指示目标调度规则的方法与非空分复用场景中相同,具体可以参见上述实施例,在此就不必赘述。
此外,在一些实施例中,网络侧设备向该终端设备发送的DCI包括传输块进程域,该传输块进程域用于指示所述T个传输块中每个传输块的进程号。该传输块进程域的长度为w比特,该w比特可以指示T*2 w个进程号,T表示一次调度中的传输块数目。
例如,在一个传输块映射到1个最小时间调度单元的情况下,假设一次调度中有4个最小时间调度单元,则处理反馈的时延也为4个最小时间调度单元。在此情况下,需要8个进程。该DCI中可以包括1比特传输块进程域。该终端设备可以通过以下方式确定进程号:
P_Num=i*T+j,(公式1.1)
其中,P_Num表示进程号,i表示该传输块进程域的取值,T表示一次调度中的传输块数目,j=1,…,T,在第一次调度中i=0,在第二次调度中i=1。这样,该终端设备可以利用公式1.1确定出每次调度中的每个传输块的进程号。利用上述技术方案,在需要指示8个进程的情况下,可以将用于指示进程号的指示字段长度从3比特缩短为1比特,从而可以节省DCI开销。
上述实施例仅是为了帮助本领域技术人员更好地理解本申请实施例的技术方案,而并非是对本申请实施例技术方案的限定。具体实施过程中进程数、帧格式、一次调度的最小时间调度单元数目、重传传输块和初传传输块需要的资源数,频域资源是否连续,每次调度的频域资源数、层数、码字数、码字映射的层数、流数、天线配置、传输模式等都可以变化,本文不做限定。
进一步,上述实施例所讨论的场景是网络侧设备与终端设备通信的场景。上述技术方案还可以应用于终端到终端(device to device,D2D)的通信。
D2D通信包括由网络侧设备控制的D2D通信(以下简称第一类D2D通信)和不受网络侧设备控制的D2D通信(以下简称第二类D2D通信)。
在第一类D2D通信场景中,网络侧设备可以负责从N个调度规则中确定目标调度规则,并将该目标调度规则指示给进行D2D通信的终端设备。在第一类D2D通信场景中,网络侧设备确定该目标调度规则的方式与网络侧设备与终端设备通信的场景中网络侧设备确定目标调度规则的方式相同,在第一类D2D通信场景中,网络侧设备指示该目标调度规则的方式与网络侧设备与终端设备通信的场景中网络侧设备指示目标调度规则的方式相同在此就不必赘述。进行D2D通信的终端设备可以根据该网络侧设备指示的目标调度规则进行通信。
在第二类D2D通信场景中,进行D2D通信的终端设备中可以包括一个主终端设备。该主终端设备负责从N个调度规则中确定目标调度规则,并将该目标调度规则指示给其他 D2D通信设备。第二类D2D通信场景中,主终端设备确定该目标调度规则的方式与网络侧设备与终端设备通信的场景中网络侧设备确定目标调度规则的方式相同,在第二类D2D通信场景中,主终端设备指示该目标调度规则的方式与网络侧设备与终端设备通信的场景中网络侧设备指示目标调度规则的方式相同在此就不必赘述。进行D2D通信的终端设备可以根据该主终端设备指示的目标调度规则进行通信。
图11是根据本申请实施例提供的一种网络侧设备的结构框图。如图11所示,网络侧设备1100包括处理单元1101和通信单元1102。
处理单元1101,用于在网络侧设备1100一次调度的最小时间调度单元数目为S,网络侧设备1100与终端设备采用第一传输模式进行数据传输的情况下,从N个调度规则中确定目标调度规则,其中,该调度规则包括该一次调度的传输块个数T和该一次调度的T个传输块和S个最小时间调度单元的映射关系中的至少一个,N为大于或等于2的整数,T为大于或等于1的整数,S为大于或等于1的整数,该第一传输模式为单天线传输方案或多天线传输方案。
通信单元1102,用于根据该目标调度规则与所述终端设备通信。
网络侧设备1100的处理单元1101和通信单元1102的操作和功能可以参考上述方法中的描述,为了避免重复,在此不再赘述。
处理单元1101可以由处理器实现,通信单元1102可以由收发器实现。
图12是根据本申请实施例提供的一种终端设备的结构框图。如图12所示,终端设备1200包括处理单元1201和通信单元1202。
处理单元1201,用于在终端设备与网络侧设备1200采用第一传输模式进行数据传输,且该网络侧设备一次调度的最小时间调度单元数目为S的情况下,该终端设备确定目标调度规则,其中,该目标调度规则为N个调度规则中的一个调度规则,其中,该调度规则包括该一次调度的传输块个数T和该一次调度的T个传输块和S个最小时间调度单元的映射关系中的至少一个,N为大于或等于2的正整数,T为大于或等于1的正整数,S为大于或等于1的正整数,该第一传输模式为单天线传输方案或多天线传输方案。
通信单元1202,用于根据该目标调度规则与该网络侧设备通信。
终端设备1200的处理单元1201和通信单元1202的操作和功能可以参考上述方法中的描述,为了避免重复,在此不再赘述。
处理单元1201可以由处理器实现,通信单元1202可以由收发器实现。
图13是根据本申请实施例提供的网络侧设备的结构框图。图13所示的网络侧设备1300包括:处理器1301、存储器1302和收发器1303。
网络侧设备1300中的各个组件通过内部连接通路互相通信,传递控制和/或数据信号。
上述本申请实施例揭示的方法可以应用于处理器1301中,或者由处理器1301实现。处理器1301可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1301中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1301可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通 用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1302,处理器1301读取存储器1302中的指令,结合收发器1303硬件完成上述方法中网络侧设备执行的步骤。
可以理解的是,网络侧设备1300除了如图13中所示的处理器1301、存储器1302和收发器1303外,还应包括一些必要的装置,例如天线、循环前缀去除器、快速傅里叶变换处理器等。为了避免冗余,图13中并未示出上述装置。
图14是根据本申请实施例提供的终端设备的结构框图。图14所示的终端设备1400包括:处理器1401、存储器1402和收发器1403。
终端设备1400中的各个组件通过内部连接通路互相通信,传递控制和/或数据信号。
上述本申请实施例揭示的方法可以应用于处理器1401中,或者由处理器1401实现。处理器1401可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1401中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1401可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1402,处理器1401读取存储器1402中的指令,结合收发器1403硬件完成上述方法中终端设备执行的步骤。
可以理解的是,终端设备1400除了如图14中所示的处理器1401、存储器1402和收发器1403外,还应包括一些必要的装置,例如天线、显示器、输入装置等。为了避免冗余,图14中并未示出上述装置。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的 划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络侧设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (32)

  1. 一种通信方法,其特征在于,所述方法包括:
    在网络侧设备一次调度的最小时间调度单元数目为S,所述网络侧设备与终端设备采用第一传输模式进行数据传输的情况下,所述网络侧设备从N个调度规则中确定目标调度规则,其中,所述调度规则包括所述一次调度的传输块个数T和所述一次调度的T个传输块和S个最小时间调度单元的映射关系中的至少一个,N为大于或等于2的整数,T为大于或等于1的整数,S为大于或等于1的整数,所述第一传输模式为单天线传输方案或多天线传输方案;
    所述网络侧设备根据所述目标调度规则与所述终端设备通信。
  2. 如权利要求1所述的方法,其特征在于,所述网络侧设备从N个调度规则中确定目标调度规则,包括:
    所述网络侧设备根据参数信息和调度规则的对应关系,确定所述N个调度规则中与确定的参数信息对应的调度规则为所述目标调度规则,其中,所述参数信息包括所述网络侧设备与所述终端设备通信时使用的子载波间隔和最小时间调度单元占用的符号数目中的至少一个。
  3. 如权利要求1或2所述的方法,其特征在于,所述一次调度的T个传输块和S个最小时间调度单元的映射关系为:
    所述T个传输块中的每个传输块映射到所述S个最小时间调度单元中的一个最小时间调度单元;或者
    所述T个传输块中的每个传输块映射到所述S个最小时间调度单元;或者
    所述T个传输块中的每个传输块映射到所述S个最小时间调度单元中连续的S t个最小时间调度单元,其中,S=S t*T,S t为大于1且小于S的整数。
  4. 如权利要求1或2所述的方法,其特征在于,所述一次调度中的T个传输块和S个最小时间调度单元的映射关系为:
    所述T个传输块中的第一个传输块映射到a+b个最小时间调度单元,所述T个传输块中除所述第一个传输块以外的每一个传输块映射到a个最小时间调度单元,其中,a和b均为正整数,b小于T,且S=a*T+b;或者
    所述T个传输块中的第T个传输块映射到a+b个最小时间调度单元,所述T个传输块中除所述第T个传输块以外的每一个传输块映射到a个最小时间调度单元,其中,a和b均为正整数,b小于T,且S=a*T+b。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,在所述网络侧设备根据所述目标调度规则与所述终端设备通信之前,所述方法还包括:
    所述网络侧设备向所述终端设备发送目标调度规则指示信息,所述目标调度规则指示信息用于指示所述网络侧设备确定的所述目标调度规则。
  6. 如权利要求5所述的方法,其特征在于,所述目标调度规则指示信息包括以下至少一种:子载波间隔、最小时间调度单元占用的符号数目、下行控制信息格式、调制与编码策略、循环冗余校验码,和分配的资源块数。
  7. 如权利要求5所述的方法,其特征在于,所述目标调度规则指示信息由控制信令承载。
  8. 一种通信方法,其特征在于,所述方法包括:
    在终端设备与网络侧设备采用第一传输模式进行数据传输,且所述网络侧设备一次调度的最小时间调度单元数目为S的情况下,所述终端设备确定目标调度规则,其中,所述目标调度规则为N个调度规则中的一个调度规则,其中,所述调度规则包括所述一次调度的传输块个数T和所述一次调度的T个传输块和S个最小时间调度单元的映射关系中的至少一个,N为大于或等于2的正整数,T为大于或等于1的正整数,S为大于或等于1的正整数,所述第一传输模式为单天线传输方案或多天线传输方案;
    所述终端设备根据所述目标调度规则与所述网络侧设备通信。
  9. 如权利要求8所述的方法,其特征在于,所述终端设备确定目标调度规则,包括:
    所述终端设备确定所述目标调度规则为与所述网络侧设备进行通信时使用的参数信息对应的调度规则,其中所述参数信息包括所述网络侧设备与所述终端设备通信时使用的子载波间隔和每个最小时间调度单元占用的符号数目中的至少一个。
  10. 如权利要求8所述的方法,其特征在于,所述终端设备确定目标调度规则,包括:
    所述终端设备获取所述网络侧设备发送的目标调度规则指示信息,其中,所述目标调度规则指示信息用于指示所述网络侧设备确定的调度规则;
    所述终端设备确定所述目标调度规则为所述目标调度规则指示信息所指示的调度规则。
  11. 如权利要求10所述的方法,其特征在于,所述目标调度规则指示信息包括以下至少一种:子载波间隔、最小时间调度单元占用的符号数目、下行控制信息格式、调制与编码策略、循环冗余校验码,和分配的资源块数。
  12. 如权利要求11所述的方法,其特征在于,所述终端设备确定所述目标调度规则为所述目标调度规则指示信息所指示的调度规则,包括:
    所述终端设备根据目标调度规则指示信息与调度规则的对应关系,从所述N个调度规则中确定出与所述目标调度规则指示信息对应的调度规则为所述目标调度规则。
  13. 如权利要求10所述的方法,其特征在于,所述终端设备获取所述网络侧设备发送的目标调度规则指示信息,包括:
    所述终端设备从接收到的所述网络侧设备发送的控制信令中获取所述目标调度规则指示信息。
  14. 如权利要求8至13中任一项所述的方法,其特征在于,所述一次调度的T个传输块和S个最小时间调度单元的映射关系为:
    所述T个传输块中的每个传输块映射到所述S个最小时间调度单元中的一个最小时间调度单元;或者
    所述T个传输块中的每个传输块映射到所述S个最小时间调度单元;或者
    所述T个传输块中的每个传输块映射到所述S个最小时间调度单元中连续的S t个最小时间调度单元,其中,S=S t*T,S t为大于1且小于S的整数。
  15. 如权利要求8至13中任一项所述的方法,其特征在于,所述一次调度中的T个传输块和S个最小时间调度单元的映射关系为:
    所述T个传输块中的第一个传输块映射到a+b个最小时间调度单元,所述T个传输块中除所述第一个传输块以外的每一个传输块映射到a个最小时间调度单元,其中,a和b均为正整数,b小于T,且S=a*T+b;或者
    所述T个传输块中的第T个传输块映射到a+b个最小时间调度单元,所述T个传输块中除所述第T个传输块以外的每一个传输块映射到a个最小时间调度单元,其中,a和b均为正整数,b小于T,且S=a*T+b。
  16. 一种网络侧设备,其特征在于,所述网络侧设备一次调度的最小时间调度单元数目为S,所述网络侧设备与终端设备采用第一传输模式进行数据传输,所述网络侧设备包括:
    处理单元,用于从N个调度规则中确定目标调度规则,其中,所述调度规则包括所述一次调度的传输块个数T和所述一次调度的T个传输块和S个最小时间调度单元的映射关系中的至少一个,N为大于或等于2的正整数,T为大于或等于1的正整数,S为大于或等于1的正整数,所述第一传输模式为单天线传输方案或多天线传输方案;
    通信单元,用于根据所述目标调度规则与所述终端设备通信。
  17. 如权利要求16所述的网络侧设备,其特征在于,所述处理单元,具体用于所述网络侧设备根据参数信息和调度规则的对应关系,确定所述N个调度规则中与确定的参数信息对应的调度规则为所述目标调度规则,其中,所述参数信息包括所述网络侧设备与所述终端设备通信时使用的子载波间隔和最小时间调度单元占用的符号数目中的至少一个。
  18. 如权利要求16或17所述的网络侧设备,其特征在于,所述一次调度的T个传输块和S个最小时间调度单元的映射关系为:
    所述T个传输块中的每个传输块映射到所述S个最小时间调度单元中的一个最小时间调度单元;或者
    所述T个传输块中的每个传输块映射到所述S个最小时间调度单元;或者
    所述T个传输块中的每个传输块映射到所述S个最小时间调度单元中连续的S t个最小时间调度单元,其中,S=S t*T,S t为大于1且小于S的整数。
  19. 如权利要求16或17所述的网络侧设备,其特征在于,所述一次调度中的T个传输块和S个最小时间调度单元的映射关系为:
    所述T个传输块中的第一个传输块映射到a+b个最小时间调度单元,所述T个传输块中除所述第一个传输块以外的每一个传输块映射到a个最小时间调度单元,其中,a和b均为正整数,b小于T,且S=a*T+b;或者
    所述T个传输块中的第T个传输块映射到a+b个最小时间调度单元,所述T个传输块中除所述第T个传输块以外的每一个传输块映射到a个最小时间调度单元,其中,a和b均为正整数,b小于T,且S=a*T+b。
  20. 如权利要求16至19中任一项所述的网络侧设备,其特征在于,所述通信单元,还用于向所述终端设备发送目标调度规则指示信息,所述目标调度规则指示信息用于指示所述网络侧设备确定的所述目标调度规则。
  21. 如权利要求20所述的网络侧设备,其特征在于,所述目标调度规则指示信息包括以下至少一种:子载波间隔、最小时间调度单元占用的符号数目、下行控制信息格式、调制与编码策略、循环冗余校验码,和分配的资源块数。
  22. 如权利要求20所述的网络侧设备,其特征在于,所述目标调度规则指示信息由控制信令承载。
  23. 一种通信终端设备,其特征在于,所述终端设备与网络侧设备采用第一传输模式进行数据传输,且所述网络侧设备一次调度的最小时间调度单元数目为S,所述终端设备包括:
    处理单元,用于确定目标调度规则,其中,所述目标调度规则为N个调度规则中的一个调度规则,其中,所述调度规则包括所述一次调度的传输块个数T和所述一次调度的T个传输块和S个最小时间调度单元的映射关系中的至少一个,N为大于或等于2的正整数,T为大于或等于1的正整数,S为大于或等于1的正整数,所述第一传输模式为单天线传输方案或多天线传输方案;
    通信单元,用于根据所述目标调度规则与所述网络侧设备通信。
  24. 如权利要求23所述的终端设备,其特征在于,所述处理单元,具体用于确定所述目标调度规则为与所述网络侧设备进行通信时使用的参数信息对应的调度规则,其中所述参数信息包括所述网络侧设备与所述终端设备通信时使用的子载波间隔和每个最小时间调度单元占用的符号数目中的至少一个。
  25. 如权利要求23所述的终端设备,其特征在于,所述处理单元,还用于获取所述网络侧设备发送的目标调度规则指示信息,其中,所述目标调度规则指示信息用于指示所述网络侧设备确定的调度规则;
    所述处理单元,具体用于确定所述目标调度规则为所述目标调度规则指示信息所指示的调度规则。
  26. 如权利要求25所述的终端设备,其特征在于,所述目标调度规则指示信息包括以下至少一种:子载波间隔、最小时间调度单元占用的符号数目、下行控制信息格式、调制与编码策略、循环冗余校验码,和分配的资源块数。
  27. 如权利要求26所述的终端设备,其特征在于,所述处理单元,具体用于根据目标调度规则指示信息与调度规则的对应关系,从所述N个调度规则中确定出与所述目标调度规则指示信息对应的调度规则为所述目标调度规则。
  28. 如权利要求25所述的终端设备,其特征在于,所述处理单元,具体用于从所述通信单元接收到的所述网络侧设备发送的控制信令中获取所述目标调度规则指示信息。
  29. 如权利要求23至28中任一项所述的终端设备,其特征在于,所述一次调度的T个传输块和S个最小时间调度单元的映射关系为:
    所述T个传输块中的每个传输块映射到所述S个最小时间调度单元中的一个最小时间调度单元;或者
    所述T个传输块中的每个传输块映射到所述S个最小时间调度单元;或者
    所述T个传输块中的每个传输块映射到所述S个最小时间调度单元中连续的S t个最小时间调度单元,其中,S=S t*T,S t为大于1且小于S的整数。
  30. 如权利要求23至28中任一项所述的终端设备,其特征在于,所述一次调度中的T个传输块和S个最小时间调度单元的映射关系为:
    所述T个传输块中的第一个传输块映射到a+b个最小时间调度单元,所述T个传输块中除所述第一个传输块以外的每一个传输块映射到a个最小时间调度单元,其中,a和b 均为正整数,b小于T,且S=a*T+b;或者
    所述T个传输块中的第T个传输块映射到a+b个最小时间调度单元,所述T个传输块中除所述第T个传输块以外的每一个传输块映射到a个最小时间调度单元,其中,a和b均为正整数,b小于T,且S=a*T+b。
  31. 一种计算机可读存储介质,其特征在于,用于存储计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得计算机执行权利要求1至7或8至15任一项所述的方法。
  32. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行如权利要求1至7或8至15任一项所述的方法。
PCT/CN2017/118918 2017-01-05 2017-12-27 通信方法、网络侧设备和终端设备 WO2018126960A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112019013790A BR112019013790A2 (pt) 2017-01-05 2017-12-27 método de comunicação, dispositivo de rede, dispositivo terminal de comunicações, sistema de comunicações e produto de programa de computador
EP17889939.9A EP3550911B1 (en) 2017-01-05 2017-12-27 Communication method, network side device and terminal device
US16/504,189 US11044724B2 (en) 2017-01-05 2019-07-05 Communication method, network side device, and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710007992.4A CN108282864B (zh) 2017-01-05 2017-01-05 通信方法、网络侧设备和终端设备
CN201710007992.4 2017-01-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/504,189 Continuation US11044724B2 (en) 2017-01-05 2019-07-05 Communication method, network side device, and terminal device

Publications (1)

Publication Number Publication Date
WO2018126960A1 true WO2018126960A1 (zh) 2018-07-12

Family

ID=62789042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118918 WO2018126960A1 (zh) 2017-01-05 2017-12-27 通信方法、网络侧设备和终端设备

Country Status (5)

Country Link
US (1) US11044724B2 (zh)
EP (1) EP3550911B1 (zh)
CN (1) CN108282864B (zh)
BR (1) BR112019013790A2 (zh)
WO (1) WO2018126960A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3917255A4 (en) * 2019-02-15 2022-03-09 Huawei Technologies Co., Ltd. DATA TRANSFER METHOD AND DATA TRANSFER DEVICE

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110830210B (zh) * 2018-08-10 2022-08-19 中兴通讯股份有限公司 一种下行控制信息传输方法及装置
WO2020164149A1 (zh) * 2019-02-15 2020-08-20 华为技术有限公司 一种数据传输方法和设备
WO2020164134A1 (zh) * 2019-02-15 2020-08-20 华为技术有限公司 通信方法、装置及系统
CN113692761A (zh) * 2019-03-29 2021-11-23 华为技术有限公司 一种数据传输方法和设备
CN111769911B (zh) * 2019-04-02 2023-01-06 华为技术有限公司 数据的重复传输方法
BR112021022134A2 (pt) * 2019-05-09 2022-01-04 Beijing Xiaomi Mobile Software Co Ltd Método e aparelho para transmitir solicitações de repetição automática híbrida, e, meio de armazenamento
US20210105084A1 (en) * 2019-10-02 2021-04-08 Qualcomm Incorporated Selection of modulation and coding schemes for control information multiplexed with data

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102685914A (zh) * 2012-04-23 2012-09-19 华为技术有限公司 一种逻辑信道调度复用方法及装置
CN104144029A (zh) * 2013-05-09 2014-11-12 中兴通讯股份有限公司 一种确定传输块大小的方法、基站和终端
CN105517053A (zh) * 2016-02-01 2016-04-20 京信通信技术(广州)有限公司 减少无线链路控制层协议数据单元重分段的方法及系统
CN105792359A (zh) * 2014-12-22 2016-07-20 华为技术有限公司 资源分配方法、数据映射方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7599698B2 (en) * 2003-12-29 2009-10-06 Telefonaktiebolaget Lm Ericsson (Publ) Network controlled channel information reporting
KR100640516B1 (ko) * 2004-02-27 2006-10-30 삼성전자주식회사 직교주파수분할다중화 통신 시스템에서 채널품질 정보의전송방법 및 장치
CN106899398B (zh) * 2006-10-02 2020-10-23 Lg电子株式会社 传输下行链路控制信号的方法
US7853853B2 (en) 2007-10-02 2010-12-14 Intel Corporation Device, system, and method of multi-level feedback
CN103733675B (zh) * 2011-06-17 2017-12-12 瑞典爱立信有限公司 在异构网络中改善无线设备性能
US8934436B2 (en) * 2011-12-31 2015-01-13 Ofinno Technologies, L.L.C. Special subframe configuration in wireless networks
CN103580822B (zh) * 2012-07-26 2018-06-19 中兴通讯股份有限公司 一种数据传输方法及系统
US9042938B2 (en) * 2012-12-27 2015-05-26 Google Technology Holdings LLC Method and apparatus for device-to-device communication
US9521661B1 (en) * 2014-03-13 2016-12-13 Sprint Spectrum L.P. Method of scheduling communication in a wireless communication network
US10412749B2 (en) * 2015-05-21 2019-09-10 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling in license assisted access
US10367677B2 (en) * 2016-05-13 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102685914A (zh) * 2012-04-23 2012-09-19 华为技术有限公司 一种逻辑信道调度复用方法及装置
CN104144029A (zh) * 2013-05-09 2014-11-12 中兴通讯股份有限公司 一种确定传输块大小的方法、基站和终端
CN105792359A (zh) * 2014-12-22 2016-07-20 华为技术有限公司 资源分配方法、数据映射方法及装置
CN105517053A (zh) * 2016-02-01 2016-04-20 京信通信技术(广州)有限公司 减少无线链路控制层协议数据单元重分段的方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS ET AL.: "Discussions on Uplink Design for NB-IoT", 3GPP TSG RAN WG1 MEETING #83 R1-156884, 22 November 2015 (2015-11-22), XP051003238 *
See also references of EP3550911A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3917255A4 (en) * 2019-02-15 2022-03-09 Huawei Technologies Co., Ltd. DATA TRANSFER METHOD AND DATA TRANSFER DEVICE

Also Published As

Publication number Publication date
EP3550911A4 (en) 2019-12-18
EP3550911A1 (en) 2019-10-09
US11044724B2 (en) 2021-06-22
CN108282864A (zh) 2018-07-13
BR112019013790A2 (pt) 2020-01-21
US20190335457A1 (en) 2019-10-31
EP3550911B1 (en) 2021-07-28
CN108282864B (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
US11683828B2 (en) System and method for coexistence of low latency and latency tolerant communications
WO2018126960A1 (zh) 通信方法、网络侧设备和终端设备
CN109392152B (zh) 通信方法和通信装置
US11212036B2 (en) Data communication method, device, and system
CN108365922B (zh) 用于反馈的方法、设备和系统
US11337186B2 (en) Method and apparatus for control information searching and data information transmission in a communication system
KR20190095326A (ko) 데이터 전송을 위한 방법 및 장치
CN110972303B (zh) 通信方法、装置、设备、系统及存储介质
US20200068556A1 (en) Communication system
WO2021027518A1 (zh) 处理数据的方法和通信装置
CN110447283B (zh) 无线通信网络中的网络节点和方法
WO2013178187A2 (zh) 信息的处理方法及装置
US20230057836A1 (en) Apparatus and method for transmitting or receiving signal in wireless communication system
CN114424475A (zh) 电子设备、无线通信方法和计算机可读存储介质
US11785607B2 (en) Method and apparatus for transmitting control information in wireless cellular communication system
US20230058037A1 (en) Method and device for transmitting and receiving control information and data in wireless communication system
WO2023011542A1 (zh) 控制信息的传输方法和装置
CN112187401A (zh) 多时间单元传输方法及相关装置
WO2022140907A1 (zh) 一种数据发送方法及装置
CN113498179B (zh) 一种被用于无线通信的节点中的方法和装置
CN115104271A (zh) 无线通信系统中用于反馈harq-ack的方法和装置
WO2020063837A1 (zh) 通信方法、装置、设备、系统及存储介质
CN115004828A (zh) 通信方法和通信装置
WO2019047874A1 (zh) 数据发送的方法及装置
US20240032056A1 (en) Method and apparatus for transmitting control information in wireless cellular communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017889939

Country of ref document: EP

Effective date: 20190702

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019013790

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019013790

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190703