WO2023011542A1 - 控制信息的传输方法和装置 - Google Patents

控制信息的传输方法和装置 Download PDF

Info

Publication number
WO2023011542A1
WO2023011542A1 PCT/CN2022/110025 CN2022110025W WO2023011542A1 WO 2023011542 A1 WO2023011542 A1 WO 2023011542A1 CN 2022110025 W CN2022110025 W CN 2022110025W WO 2023011542 A1 WO2023011542 A1 WO 2023011542A1
Authority
WO
WIPO (PCT)
Prior art keywords
ucis
csi
feedback information
harq feedback
harq
Prior art date
Application number
PCT/CN2022/110025
Other languages
English (en)
French (fr)
Inventor
丁洋
李锐杰
李胜钰
官磊
苏桐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023011542A1 publication Critical patent/WO2023011542A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1806Go-back-N protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a method and device for transmitting control information.
  • the International Telecommunication Union will enhance mobile broadband (eMBB), massive machine type communication (massive machine type communication, mMTC) and ultra-reliable and low latency communication (ultra-reliable and low latency communication, URLLC) is defined as the three typical services of 5G.
  • ITU International Telecommunication Union
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC ultra-reliable and low latency communication
  • URLLC is one of the three typical services of 5G. Its main application scenarios include unmanned driving and telemedicine. These application scenarios put forward stricter requirements in terms of reliability and delay.
  • the specific requirements of the URLLC service include: data transmission reliability of 99.999%, transmission delay of less than 1ms, and reducing instruction overhead as much as possible while meeting the requirements of high reliability and low delay.
  • low-latency services can be defined as high-priority services
  • latency-tolerant services can be defined as low-priority services.
  • the data of the low-priority services will be discarded to ensure that the high-priority services are not affected.
  • the data of the low-priority service is discarded, which reduces the data transmission performance of the low-priority service, and affects the normal communication of the low-priority service.
  • the present application provides a control information transmission method and device, which are used to reduce the impact on the transmission of low-priority services.
  • a method for transmitting control information is provided.
  • the method can be executed by a terminal, or by an apparatus for a terminal, such as a chip.
  • the method includes mapping M UCIs among N pieces of uplink control information (uplink control information, UCI) to resources of a physical uplink shared channel (PUSCH).
  • N UCIs include UCIs with different priorities, M UCIs satisfy the first condition, N is an integer greater than 1; M is an integer greater than or equal to 1, M is less than or equal to the first threshold and less than or equal to N, the first threshold Less than N; send PUSCH.
  • the terminal can select M UCIs for transmission according to the sorting of N UCIs. Therefore, the terminal can transmit UCI of some relatively important low-priority services without affecting the transmission of high-priority services, which can reduce the time domain resources of UCI of high-priority services and the time domain of UCI of low-priority services In case of resource conflict, the impact on the transmission of low-priority services caused by discarding the UCI of low-priority services.
  • the M UCIs may include low priority (low priority, LP) hybrid automatic repeat request (hybrid automatic repeat request, HARQ) feedback information, and the LP HARQ feedback information may be among the M UCIs.
  • the first resource Before mapping the M UCIs to the resources of the PUSCH, the first resource may be reserved. Or, when mapping the LP HARQ feedback information to the resources of the PUSCH, the first resource may be reserved. Wherein, the first resource may be a part of PUSCH resources.
  • the M UCIs may also include high priority (high priority, HP) HARQ feedback information, and the number of bits of the HP HARQ feedback information may be less than or equal to the specified number of bits.
  • the second resource Before mapping the M UCIs to the resources of the PUSCH, the second resource may be reserved. Wherein, the second resource may be a part of PUSCH resources; the second resource may not overlap with the first resource.
  • the resource of the PUSCH includes one or more resource elements (resource element, RE), and correspondingly, the first resource or the second resource includes a part of the one or more REs.
  • resource element resource element
  • the UCIs of high-priority services are mapped to PUSCH resources except the first resource other resources.
  • the M UCIs when the M UCIs also include UCIs of low-priority services that are different from the priority of the HP HARQ feedback information, the UCIs of the low-priority services are mapped to the resources of the PUSCH except the second resource other resources.
  • UCI is any of the following information: HP HARQ feedback information, the first part of channel state information (channel state information, CSI) of high-priority services HP CSI part1, HP CSI part2, LP HARQ Feedback information, LP CSI part1 and LP CSI part2.
  • HP HARQ feedback information the first part of channel state information (channel state information, CSI) of high-priority services HP CSI part1, HP CSI part2, LP HARQ Feedback information, LP CSI part1 and LP CSI part2.
  • the N UCIs may include UCIs of services with different priorities, and the terminal may select M UCIs for services with different priorities for transmission.
  • the first condition includes that the M UCIs are the top M UCIs among the N UCIs.
  • the terminal can select the top M UCIs. Since the N UCIs are sorted according to their importance to service transmission, the terminal can transmit M UCIs that are more important to service transmission to ensure service went smoothly.
  • the N UCIs may include HP HARQ-ACK, and the HP HARQ-ACK is the first in the N UCIs.
  • HP HARQ-ACK since HARQ-ACK is more important to service transmission, and UCI of high-priority services is more important than UCI of low-priority services, HP HARQ-ACK always has the highest priority, which can improve The transmission efficiency of high-priority services reduces the delay caused by HP HARQ-ACK abnormal transmission.
  • the N UCIs may include LP CSI part2, and the LP CSI part2 is the last position in the N UCIs.
  • CSI part 1 represents channel information
  • terminal devices and network devices can learn through CSI part 1 Channel status, and then business transmission, so the information represented by CSI part 2 is less important.
  • Ranking LP CSI part 2 at the bottom can reduce the impact on the transmission of high-priority services and low-priority services.
  • the sorting of N UCIs may satisfy one of the following:
  • HP HARQ feedback information > HP CSI part1 > HP CSI part2 > LP HARQ feedback information > LP CSI part1 > LP CSI part2; or,
  • HP HARQ feedback information > HP CSI part1 > LP HARQ feedback information > HP CSI part2 > LP CSI part1 > LP CSI part2; or,
  • HP HARQ feedback information > LP HARQ feedback information > HP CSI part1 > HP CSI part2 > LP CSI part1 > LP CSI part2; or,
  • HP HARQ feedback information > HP CSI part1 > LP HARQ feedback information > LP CSI part1 > HP CSI part2 > LP CSI part2; or,
  • HP HARQ feedback information > LP HARQ feedback information > HP CSI part1 > LP CSI part1 > HP CSI part2 > LP CSI part2.
  • the ordering of N UCIs can balance the transmission of UCIs of high-priority services and UCIs of low-priority services, and can transmit some relatively important low-priority services without affecting the transmission of high-priority services
  • the UCI can reduce the impact on the transmission of low-priority services when relevant information of high-priority services and low-priority services collides in the time domain.
  • a method for transmitting control information is provided.
  • the method may be executed by a network device, or by an apparatus for the network device, such as a chip.
  • the method includes receiving a PUSCH; wherein, the PUSCH includes M UCIs, the M UCIs are UCIs that meet the first condition among the N UCIs, and the N UCIs include UCIs with different priorities, and N is an integer greater than 1; M is an integer greater than 1, M is less than or equal to the first threshold and less than or equal to N, and the first threshold is less than N.
  • the first threshold may be predefined or determined according to a capability reported by the terminal device.
  • UCI can be any of the following information: HP HARQ feedback information, HP CSI part1, HP CSI part2, LP HARQ feedback information, LP CSI part1, and the second part of CSI for low-priority services LP CSI part2.
  • the first condition includes that the M UCIs are the top M UCIs among the N UCIs.
  • the N UCIs may include HP HARQ-ACK, and the HP HARQ-ACK is the first in the N UCIs.
  • the N UCIs may include LP CSI part2, and the LP CSI part2 is the last position in the N UCIs.
  • the ordering of N UCIs satisfies one of the following:
  • HP HARQ feedback information > HP CSI part1 > HP CSI part2 > LP HARQ feedback information > LP CSI part1 > LP CSI part2; or,
  • HP HARQ feedback information > HP CSI part1 > LP HARQ feedback information > HP CSI part2 > LP CSI part1 > LP CSI part2; or,
  • HP HARQ feedback information > LP HARQ feedback information > HP CSI part1 > HP CSI part2 > LP CSI part1 > LP CSI part2; or,
  • HP HARQ feedback information > HP CSI part1 > LP HARQ feedback information > LP CSI part1 > HP CSI part2 > LP CSI part2; or,
  • HP HARQ feedback information > LP HARQ feedback information > HP CSI part1 > LP CSI part1 > HP CSI part2 > LP CSI part2.
  • a communication device configured to be a terminal device or a chip.
  • the communication device includes a processing unit and a transceiver unit.
  • a processing unit configured to map M UCIs among the N UCIs to PUSCH resources; the N UCIs include UCIs with different priorities, and the M UCIs satisfy the first condition, and N is an integer greater than 1; M is greater than or an integer equal to 1, M is less than or equal to the first threshold and less than or equal to N, and the first threshold is less than N; a transceiver unit, configured to send the PUSCH.
  • the M UCIs include LP HARQ feedback information
  • the LP HARQ feedback information is the non-prime UCI among the M UCIs, and the number of bits of the LP HARQ feedback information is less than or equal to the specified number of bits
  • the processing unit also Used to: reserve the first resource before mapping the M UCIs to the resources of the PUSCH; or, when mapping the LP HARQ feedback information to the resources of the PUSCH, reserve the first resource; the first resource is the resource of the PUSCH Part of a resource.
  • the M UCIs also include HP HARQ feedback information, and the number of bits of the HP HARQ feedback information is less than or equal to the specified number of bits, and the processing unit is also used for: before mapping the M UCIs to PUSCH resources , reserve a second resource; the second resource is a part of the PUSCH resource; the second resource does not overlap with the first resource.
  • the UCIs of high-priority services are mapped to resources other than the first resource in the PUSCH resources superior.
  • the UCIs of low-priority services are mapped to resources other than the second resource in the PUSCH resources superior.
  • the first threshold is predefined or determined according to capabilities reported by the communication device.
  • UCI is any of the following information: HP HARQ feedback information, HP CSI part1, HP CSI part2, LP HARQ feedback information, LP CSI part1, and LP CSI part2.
  • the first condition includes that the M UCIs are the top M UCIs among the N UCIs.
  • the N UCIs include HP HARQ feedback information, and the HP HARQ feedback information is ranked first among the N UCIs.
  • N UCIs include LP CSI part2, and LP CSI part2 is the last one in the N UCIs.
  • the ordering of N UCIs satisfies one of the following:
  • HP HARQ feedback information > HP CSI part1 > HP CSI part2 > LP HARQ feedback information > LP CSI part1 > LP CSI part2; or,
  • HP HARQ feedback information > HP CSI part1 > LP HARQ feedback information > HP CSI part2 > LP CSI part1 > LP CSI part2; or,
  • HP HARQ feedback information > LP HARQ feedback information > HP CSI part1 > HP CSI part2 > LP CSI part1 > LP CSI part2; or,
  • HP HARQ feedback information > HP CSI part1 > LP HARQ feedback information > LP CSI part1 > HP CSI part2 > LP CSI part2; or,
  • HP HARQ feedback information > LP HARQ feedback information > HP CSI part1 > LP CSI part1 > HP CSI part2 > LP CSI part2.
  • a communication device configured to be a network device or a chip.
  • the communication device includes a processing unit and a transceiver unit.
  • a transceiver unit configured to receive PUSCH; wherein, the PUSCH includes M uplink control information UCIs, the M UCIs are UCIs that meet the first condition among the N UCIs, the N UCIs include UCIs with different priorities, and N is greater than 1 Integer; M is an integer greater than 1, M is less than or equal to a first threshold and less than or equal to N, and the first threshold is less than N; a processing unit, configured to acquire M UCIs.
  • the first threshold is predefined or determined according to capabilities reported by the communication device.
  • UCI is any of the following information: HP HARQ feedback information, HP CSI part1, HP CSI part2, LP HARQ feedback information, LP CSI part1, and LP CSI part2.
  • the first condition includes that the M UCIs are the top M UCIs among the N UCIs.
  • the N UCIs include HP HARQ feedback information, and the HP HARQ feedback information is ranked first among the N UCIs.
  • N UCIs include LP CSI part2, and LP CSI part2 is the last position in the N UCIs.
  • the ordering of N UCIs satisfies one of the following:
  • HP HARQ feedback information > HP CSI part1 > HP CSI part2 > LP HARQ feedback information > LP CSI part1 > LP CSI part2; or,
  • HP HARQ feedback information > HP CSI part1 > LP HARQ feedback information > HP CSI part2 > LP CSI part1 > LP CSI part2; or,
  • HP HARQ feedback information > LP HARQ feedback information > HP CSI part1 > HP CSI part2 > LP CSI part1 > LP CSI part2; or,
  • HP HARQ feedback information > HP CSI part1 > LP HARQ feedback information > LP CSI part1 > HP CSI part2 > LP CSI part2; or,
  • HP HARQ feedback information > LP HARQ feedback information > HP CSI part1 > LP CSI part1 > HP CSI part2 > LP CSI part2.
  • a communication device including a processor, the processor is coupled to a memory, the memory is used to store computer programs or instructions, and the processor is used to execute the computer programs or instructions to perform any implementation method of any of the above aspects.
  • the memory may be located within the device or external to the device.
  • the number of the processors is one or more.
  • the present application provides a communication device, including: a processor and an interface circuit, the interface circuit is used for communicating with other devices, and the processor is used for implementing any method of any of the above aspects.
  • a communication device in a seventh aspect, includes a logic circuit and an input and output interface.
  • the logic circuit is used to map M UCIs among the N uplink control information UCIs to the resources of the physical uplink shared channel PUSCH; the N UCIs include UCIs with different priorities, and the M UCIs
  • the first condition is met, N is an integer greater than 1; M is an integer greater than or equal to 1, M is less than or equal to a first threshold and less than or equal to N, and the first threshold is less than N; the input and output interface is used to output the PUSCH.
  • the input and output interface is used to input PUSCH.
  • the PUSCH includes M uplink control information UCIs, the M UCIs are UCIs that meet the first condition among the N UCIs, and the N UCIs include UCIs with different priorities, and N is an integer greater than 1; M is An integer greater than 1, M is less than or equal to a first threshold and less than or equal to N, and the first threshold is less than N.
  • a logic circuit is used to obtain the M UCIs.
  • the present application provides a communication system, including: a terminal device configured to execute the implementation methods of the first aspect above, and a network device configured to execute the implementation methods of the second aspect above.
  • the present application further provides a chip system, including: a processor, configured to execute each implementation method of the first aspect and the second aspect above.
  • the present application further provides a computer program product, including computer-executable instructions, which, when the computer-executable instructions are run on a computer, enable any implementation method of any of the above-mentioned aspects to be executed.
  • the present application also provides a computer-readable storage medium, in which computer programs or instructions are stored, and when the instructions are run on a computer, any implementation method of any of the above-mentioned aspects can be realized.
  • beneficial effects of the second aspect to the eleventh aspect can refer to the beneficial effects shown in the first aspect.
  • FIG. 1 is a communication system provided by an embodiment of the present application
  • Figure 2 is a schematic diagram of the coding chain on the PUSCH
  • FIG. 3 is an exemplary flow chart of a method for transmitting control information provided in an embodiment of the present application
  • FIG. 4 is one of the schematic diagrams of UCI mapping to PUSCH resources provided by the embodiment of the present application.
  • FIG. 5 is the second schematic diagram of UCI mapping to PUSCH resources provided by the embodiment of the present application.
  • FIG. 6 is the third schematic diagram of UCI mapping to PUSCH resources provided by the embodiment of the present application.
  • FIG. 7 is a fourth schematic diagram of UCI mapping to PUSCH resources provided by the embodiment of the present application.
  • FIG. 8 is the fifth schematic diagram of UCI mapping to PUSCH resources provided by the embodiment of the present application.
  • FIG. 9 is a sixth schematic diagram of UCI mapping to PUSCH resources provided by the embodiment of the present application.
  • FIG. 10 is the seventh schematic diagram of UCI mapping to PUSCH resources provided by the embodiment of the present application.
  • FIG. 11 is one of the schematic diagrams of the communication device provided by the embodiment of the present application.
  • FIG. 12 is a second schematic diagram of a communication device provided by an embodiment of the present application.
  • Time domain resources and frequency domain resources refers to resources including time domain resources and frequency domain resources, which can be used to carry data or signaling during uplink communication or downlink communication.
  • time domain resources and frequency domain resources may be synthesized into "time-frequency resources".
  • the unit of the time domain resource may be a time domain symbol, and the unit of the frequency domain resource may be a subcarrier.
  • RE Resource element
  • RB resource block
  • Independent encoding which can be understood as the original bits corresponding to UCI (bits before encoding), passing through the encoder independently, or independently adopting an encoding chain to obtain encoded bits, and mapping them on PUSCH resources. There cannot be any two UCI's that are concatenated together. That is to say, no two original bits corresponding to UCI can be encoded by one encoder or only one encoding chain is used to obtain an encoded bit, which is mapped on the PUSCH resource.
  • the two jointly coded UCIs are regarded as an independently coded UCI.
  • the above HARQ-ACK and CSI part 1 can be considered as an independently coded UCI.
  • FIG. 1 is a schematic structural diagram of a communication system 1000 applied in an embodiment of the present application.
  • the communication system includes a radio access network 100 and a core network 200 , and optionally, the communication system 1000 may also include the Internet 300 .
  • the radio access network 100 may include at least one radio access network device (such as 110a and 110b in FIG. 1 ), and may also include at least one terminal (such as 120a-120j in FIG. 1 ).
  • the terminal is connected to the wireless access network device in a wireless manner, and the wireless access network device is connected to the core network in a wireless or wired manner.
  • the core network equipment and the wireless access network equipment can be independent and different physical equipment, or the functions of the core network equipment and the logical functions of the wireless access network equipment can be integrated on the same physical equipment, or it can be a physical equipment It integrates some functions of core network equipment and some functions of wireless access network equipment. Terminals and wireless access network devices may be connected to each other in a wired or wireless manner.
  • FIG. 1 is only a schematic diagram.
  • the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • Wireless access network equipment can also be called network equipment, which can be base station (base station), evolved base station (evolved NodeB, eNodeB), transmission reception point (transmission reception point, TRP), fifth generation (5th generation, 5G)
  • base station base station
  • evolved base station evolved NodeB, eNodeB
  • transmission reception point transmission reception point
  • TRP transmission reception point
  • 5th generation, 5G The next generation base station (next generation NodeB, gNB) in the mobile communication system, the next generation base station in the sixth generation (6th generation, 6G) mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.
  • It can also be a module or unit that completes some functions of the base station, for example, it can be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the CU here completes the functions of the radio resource control protocol and the packet data convergence protocol (PDCP) of the base station, and also completes the function of the service data adaptation protocol (SDAP); the DU completes the functions of the base station
  • the functions of the radio link control layer and the medium access control (medium access control, MAC) layer can also complete the functions of part of the physical layer or all of the physical layer.
  • 3rd generation partnership project, 3GPP third generation partnership project
  • the radio access network device may be a macro base station (as shown in 110a in Figure 1), a micro base station or an indoor station (as shown in 110b in Figure 1), or a relay node or a donor node.
  • the embodiment of the present application does not limit the specific technology and specific equipment form adopted by the radio access network equipment.
  • a base station is used as an example of a radio access network device for description below.
  • a terminal may also be called terminal equipment, user equipment (user equipment, UE), mobile station, mobile terminal, and so on.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things, IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wearables, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal.
  • Base stations and terminals can be fixed or mobile. Base stations and terminals can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and artificial satellites in the air. The embodiments of the present application do not limit the application scenarios of the base station and the terminal.
  • the helicopter or UAV 120i in FIG. base station for base station 110a, 120i is a terminal, that is, communication between 110a and 120i is performed through a wireless air interface protocol.
  • communication between 110a and 120i may also be performed through an interface protocol between base stations.
  • 120i compared to 110a, 120i is also a base station. Therefore, both the base station and the terminal can be collectively referred to as a communication device, 110a and 110b in FIG. 1 can be referred to as a communication device with a base station function, and 120a-120j in FIG. 1 can be referred to as a communication device with a terminal function.
  • the communication between the base station and the terminal, between the base station and the base station, and between the terminal and the terminal can be carried out through the licensed spectrum, the communication can also be carried out through the unlicensed spectrum, and the communication can also be carried out through the licensed spectrum and the unlicensed spectrum at the same time; Communications may be performed on frequency spectrums below megahertz (gigahertz, GHz), or may be performed on frequency spectrums above 6 GHz, or may be performed on both frequency spectrums below 6 GHz and frequency spectrums above 6 GHz.
  • the embodiments of the present application do not limit spectrum resources used in wireless communication.
  • the functions of the base station may also be performed by modules (such as chips) in the base station, or may be performed by a control subsystem including the functions of the base station.
  • the control subsystem including base station functions here may be the control center in the above application scenarios such as smart grid, industrial control, intelligent transportation, and smart city.
  • the functions of the terminal may also be performed by a module (such as a chip or a modem) in the terminal, or may be performed by a device including the terminal function.
  • the base station sends a downlink signal or downlink information to the terminal, and the downlink information is carried on the downlink channel;
  • the terminal sends an uplink signal or uplink information to the base station, and the uplink information is carried on the uplink channel.
  • the terminal needs to establish a wireless connection with the cell controlled by the base station.
  • a cell with which a terminal has established a wireless connection is called a serving cell of the terminal.
  • the terminal communicates with the serving cell, it will also be interfered by signals from neighboring cells.
  • the time-domain symbols may be Orthogonal Frequency Division Multiplexing (OFDM) symbols, or Discrete Fourier Transform-spread-OFDM (Discrete Fourier Transform-spread-OFDM, DFT -s-OFDM) symbol.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Discrete Fourier Transform-spread-OFDM Discrete Fourier Transform-spread-OFDM, DFT -s-OFDM
  • the symbols in the embodiments of the present application refer to time-domain symbols.
  • a physical downlink shared channel (physical downlink shared channel, PDSCH), a physical downlink control channel (physical downlink control channel, PDCCH), a physical uplink control channel (physical uplink control channel, PUCCH) and PUSCH are just examples of downlink data channels, downlink control channels, uplink control channels and uplink data channels.
  • data channels and control channels may have different names. This is not limited.
  • signals may include data channels, control channels and reference signals.
  • the transmission of the signal may be uplink transmission, that is, sent from the terminal to the base station; it may also be downlink transmission, that is, sent from the base station to the terminal. When transmit is used as a verb, transmit can be used interchangeably with send/receive.
  • UCI includes scheduling request (scheduling request, SR), hybrid automatic repeat request (hybrid automatic repeat request, HARQ) feedback information, CSI and other types.
  • HARQ is an efficient transmission mechanism.
  • the reliability of downlink data transmission can be greatly improved through retransmission.
  • the terminal can feed back HARQ positive acknowledgment (acknowledgment, ACK) or negative acknowledgment (negative acknowledgment, NACK).
  • ACK acknowledgement
  • NACK negative acknowledgment
  • the base station needs to retransmit, which reduces the overall resource consumption of data transmission.
  • the HARQ feedback information in this application may also be called HARQ-ACK, and may include ACK and NACK.
  • CSI may include precoding matrix indication (precoding matrix indication, PMI), rank indication (rank indicator, RI), layer indication (layer indicator, LI), channel quality information (channel quality indicator, CQI), channel state information reference signal ( Reference signal (RS) resource indication (CSI-RS resource indicator, CRI), reference signal received power (reference signal received power, RSRP) and signal to interference plus noise ratio (signal to interference plus noise ratio, SINR), etc.
  • precoding matrix indication precoding matrix indication
  • PMI rank indication
  • rank indicator, RI rank indication
  • layer indication layer indicator
  • CQI channel quality information
  • Reference signal (RS) resource indication CSI-RS resource indicator, CRI
  • reference signal received power reference signal received power
  • SINR signal to interference plus noise ratio
  • SINR signal to interference plus noise ratio
  • the HARQ-ACK of URLLC can be regarded as the HARQ-ACK of high-priority services
  • the HARQ-ACK of eMBB can be regarded as the HARQ-ACK of low-priority services.
  • the UCI involved in the embodiment of the present application includes but is not limited to the following types: HARQ feedback information (HP HARQ feedback information) of high-priority services, CIS part 1 (HP CSI part1) of high-priority services, high-priority services CSI part2 (HP CSI part2), low priority service HARQ feedback information (LP HARQ feedback information), low priority service CSI part1 (LP CSI part1) and low priority service CSI part 2 (LP CSI part2 ).
  • the high-priority service is not limited to the URLLC service, and the high-priority service may also include other services with higher requirements on delay.
  • low-latency services are not limited to eMBB services, and low-priority services may also include other services with lower latency requirements.
  • the UCI of the low-priority service When a time-domain conflict occurs between the UCI transmission of the high-priority service and the low-priority service, the UCI of the low-priority service will be discarded, so as to ensure that the high-priority service transmission is not affected.
  • the time domain conflict can be understood as that the time domain resources for transmitting high priority UCI and the time domain resources for transmitting low priority service UCI are partially or fully overlapped. However, this will also affect the normal operation of low-priority services. Based on this, when a time-domain conflict occurs in the transmission of services of different priorities, the UCIs of services of different priorities can be multiplexed and transmitted.
  • an independent encoding method can be used, that is, high priority UCI bits and low priority UCI bits will not be concatenated for encoding, but high priority UCI bits use an encoding chain alone, and low-priority UCI bits use an encoding chain alone.
  • the maximum number of independently coded UCIs that the terminal device can support does not exceed the current capability of the terminal device. For example, the maximum number of independently coded UCIs transmitted on the PUSCH supported by the terminal is 3.
  • the PUCCH can support up to two coding chains, and the original bits of the three UCIs of the predefined HARQ-ACK, SR and CSI part 1 are concatenated together and encoded through the first coding chain. That is, the three UCIs of HARQ-ACK, SR and CSI part 1 are jointly coded.
  • the predefined CSI part 2 is encoded through the second encoding chain.
  • PUSCH can support up to three coding chains, SR is not mapped on PUSCH for transmission, HARQ-ACK is coded through the first coding chain, CSI part 1 is coded through the second coding chain, CSI part 2 Encoding is carried out through the third coding chain.
  • the processing order of the encoding chain is mainly reflected in the mapping link.
  • the mapping order on the PUSCH is that the HARQ-ACK of the first encoding chain is first mapped to the resources of the PUSCH, and the CSI part 1 of the second encoding chain is mapped to the resources of the PUSCH.
  • the CSI part 2 of the third coding chain is finally mapped to the resources of the PUSCH.
  • the three coding chains may be performed simultaneously, or may be performed sequentially starting from the first coding chain, which is not specifically limited in this application.
  • An embodiment of the present application provides a method for transmitting control information.
  • this method when multiple UCIs with different priorities are transmitted on the PUSCH, and the number of UCIs exceeds the maximum number of independently coded UCIs that can be transmitted on the PUSCH supported by the terminal, multiple UCIs that can meet the requirements of independent coding can be selected.
  • the maximum number of UCIs in the UCI can be transmitted on the PUSCH, so that the UCI multiplexing transmission of high and low priority services can be realized, so as to reduce the impact on the transmission of low priority services and improve the transmission of relevant information of low priority services performance.
  • the maximum number of independently coded UCIs that can be transmitted on the PUSCH is determined according to the capability of the terminal. For example, 1, 2, or 3 etc. may be used.
  • FIG. 3 it is an exemplary flowchart of a method for transmitting control information provided by an embodiment of the present application.
  • the following will introduce the transmission method proposed in this application by taking the terminal and the base station as execution subjects. It can be understood that the transmission method proposed in this application may also be executed by a device for a terminal or a device for a base station, such as a chip.
  • the method may include the following operations.
  • S301 The terminal maps M UCIs among the N UCIs to PUSCH resources.
  • the resources of the PUSCH may include one or more REs.
  • the N UCIs can include UCIs with different priorities, that is, the N UCIs can include UCIs for low-priority services, such as UCIs for eMBB services, and the N UCIs can also include UCIs for high-priority services, such as URLLC services.
  • the UCI can include UCIs with different priorities, that is, the N UCIs can include UCIs for low-priority services, such as UCIs for eMBB services, and the N UCIs can also include UCIs for high-priority services, such as URLLC services.
  • the UCI can include UCIs with different priorities, that is, the N UCIs can include UCIs for low-priority services, such as UCIs for eMBB services, and the N UCIs can also include UCIs for high-priority services, such as URLLC services.
  • the UCI can include UCIs with different priorities, that is, the N UCIs can include UCIs for low-priority services,
  • the above N UCIs may be indicated by the base station.
  • the following operations S300A-S300C may also be included before S301.
  • the base station sends the first information to the terminal, and the corresponding terminal receives the first information.
  • the first information may be used to configure or instruct the PUSCH to be sent on the first time domain resource, and the PUSCH may carry uplink data information. That is to say, the base station indicates to the terminal that the time domain resource of the PUSCH is the first time domain resource through the first information.
  • the first time domain resource may be one or more time slots or one or more symbols.
  • the base station may send the first information to the terminal through radio resource control (radio resource control, RRC) signaling, or may send the first information to the terminal through dynamic downlink control information (downlink control information, DCI).
  • radio resource control radio resource control
  • DCI dynamic downlink control information
  • the time slot may be a time slot with 14 symbols, or may also be a sub-slot (subslot) with 2 symbols or 7 symbols.
  • the base station sends the second information to the terminal, and the corresponding terminal receives the second information.
  • the second information is used to configure or indicate that the UCI of the high-priority service is sent on the above-mentioned first time domain resource.
  • the base station may send the above second information to the terminal through RRC signaling, or may send the above second information to the terminal through dynamic DCI.
  • the foregoing second information may be multiple pieces of second information, and each second information indicates that a UCI of a high-priority service is sent on the first time domain resource.
  • the foregoing second information may configure or indicate downlink data transmission of high-priority services, and may also indicate that HARQ feedback information is sent on the foregoing first time domain resource.
  • the above-mentioned second information may also be configured or reported on the above-mentioned first time-domain resource of the CSI indicating the high-priority service.
  • the base station sends the third information to the terminal, and the corresponding terminal receives the third information.
  • the third information is used to configure or indicate that the UCI of the low-priority service is sent on the above-mentioned first time domain resource.
  • the base station may send the third information to the terminal through RRC signaling, or may send the third information to the terminal through dynamic DCI.
  • the foregoing third information may be a plurality of third information, and each third information indicates that a UCI of a low-priority service is sent on the first time domain resource.
  • the foregoing third information may configure or indicate downlink data transmission of low-priority services, and may also indicate that HARQ feedback information is sent on the foregoing first time domain resource.
  • the above-mentioned third information may also be a CSI report for configuring or indicating a low-priority service.
  • the base station can send the first information to the third information to the terminal in any order, or the base station can send the above-mentioned first information to the third information to the terminal at the same time , which is not specifically limited in this application.
  • the terminal may determine to send N UCIs on the resources of the PUSCH.
  • UCI is transmitted on PUSCH when any one of the following conditions is met:
  • some types of UCI itself stipulate that it can only be transmitted on PUSCH, and cannot be transmitted on PUCCH.
  • This category of UCI includes aperiodic CSI.
  • the aperiodic CSI reporting may be triggered by DCI, that is to say, the base station may trigger the transmission of aperiodic CSI to the terminal through the DCI.
  • the above aperiodic CSI can only be transmitted on the PUSCH.
  • the second is that the PUCCH and PUSCH carrying UCI overlap in the time domain. For example, in a single carrier scenario, the PUCCH and PUSCH cannot be transmitted at the same time, so the UCI originally carried on the PUCCH can be transmitted using the PUSCH.
  • N UCIs are encoded independently. Even if two UCIs are concatenated and then encoded, in this application, the two UCIs encoded after the concatenation are regarded as an independently encoded UCI.
  • N is an integer greater than 1, and N is greater than the first threshold.
  • the first threshold here may be predefined or determined according to the capability reported by the terminal.
  • the capability reported by the terminal may be the maximum number of independently coded UCIs transmitted on the PUSCH supported by the terminal, for example, the first threshold may be 3.
  • the base station indicates to the terminal that the sent N UCIs exceed the maximum number of independently coded UCIs that can be transmitted on the PUSCH supported by the terminal. Therefore, the terminal may select M UCIs from the N UCIs and map them to PUSCH resources, where M is an integer greater than or equal to 1, and M may be less than or equal to the first threshold. For example, when the first threshold is 3, M may be less than or equal to 3.
  • the M UCIs selected by the terminal may satisfy the first condition.
  • the first condition may include: the selected M UCIs are the top M UCIs among the above N UCIs. That is to say, the terminal can select the top M UCIs in the N UCIs according to the ranking of the UCIs to be mapped on the PUSCH resources.
  • the ordering of the N UCIs may also be referred to as the mapping order of the N UCIs, which may be preset or indicated by the base station.
  • the sorting of the above N UCIs may be sorted according to the importance of the UCIs.
  • the N UCIs may be sorted according to their importance to service transmission.
  • HARQ-ACK can be considered to be more important to service transmission, so HARQ-ACK can be ranked first in the ranking of N UCIs.
  • the sorting of the above N UCIs can also be sorted in combination with the priorities of services. For example, the UCI of the high priority service is more important than the UCI of the low priority service, and the UCI of the high priority service may be ranked before the UCI of the low priority service.
  • S302 The terminal sends the PUSCH, and the corresponding base station receives the PUSCH.
  • the resources of the above PUSCH can carry M UCIs selected by the terminal.
  • the base station After acquiring the UCI carried by the PUSCH, the base station can communicate with the terminal according to the UCI. For example, if the M UCIs include HARQ-ACK, the base station can determine whether to retransmit the corresponding data according to the HARQ-ACK. If the base station receives a NACK, the base station may determine that data corresponding to the NACK needs to be retransmitted.
  • the terminal can select M UCIs for transmission according to the sorting of N UCIs. Since the ordering of N UCIs balances the UCIs of high-priority services and UCIs of low-priority services, it is possible to transmit some relatively important UCIs of low-priority services on the premise of ensuring the transmission of high-priority services. When the relevant information of high and low priority services collides in the time domain, the impact on the transmission of low priority services.
  • the N UCIs may include any two or more of high-priority service UCIs and low-priority service UCIs.
  • the UCI of the high-priority service may include HP HARQ-ACK, HP CSI part1 and HP CSI part2
  • the UCI of the low-priority service may include LP HARQ-ACK, LP CSI part1 and LP CSI part2.
  • LP CSI part 2 is less important to service transmission and can be replaced by CSI of high-priority services, or it can also be replaced by LP CSI part 1, so LP CSI part 2 can be the last in the ranking of N UCIs .
  • each type of UCI is arranged from left to right according to the priority order of being mapped to PUSCH, and the UCI on the left side of the symbol ">" has a higher priority than the UCI on the right side of the symbol ">”.
  • the UCI priority order the first from the left indicates the first UCI selected to be mapped to the PUSCH, and the second from the left indicates the second UCI selected to be mapped to the PUSCH, and details will not be repeated.
  • LP CSI part 1 and LP CSI part 2 are in the last two positions. This is because considering that the importance of low-priority CSI is relatively low, it can be replaced by high-priority CSI CSI instead.
  • the remaining HP CSI and LP HARQ-ACK may be different in order. If the UCI of high-priority services is more important to service transmission, then HP CSI is ranked before LP HARQ-ACK, or if HARQ-ACK is right The importance of service transmission is higher, so LP HARQ-ACK is ranked before HP CSI.
  • HP HARQ-ACK is considered to be the most important and ranks first. Then the importance of CSI part 2 of the two priorities is low, because in general, the channel state can be determined according to CSI part 1, so that service transmission can be guaranteed, so the information represented by CSI part 2 is of low importance.
  • LP HARQ-ACK and HP CSI part 1 may be different in order. If the UCI of high-priority services is more important to service transmission, then HP CSI is ranked in LP HARQ-ACK Before, or if HARQ-ACK is more important for traffic transmission, then LP HARQ-ACK is ranked before HP CSI. Then LP CSI part 1 ranks last among the three UCIs.
  • the terminal may select M UCIs from the N UCIs according to one of the above-mentioned cases 1 to 5, and map them to PUSCH resources.
  • the above cases 1 to 5 are just examples of the ordering of various types of UCIs that may be transmitted, and it does not mean that the N UCIs to be transmitted must include all of the above types of UCIs, that is, the actual UCIs to be transmitted
  • the N UCIs may only contain some of the above types of UCIs, and the N UCIs may be sorted according to the above-mentioned rule 1-rule 5.
  • the N UCIs include HP HARQ-ACK, HP CSI part 1, HP CSI part 2, and LP HARQ-ACK, which are four types of UCIs, that is, the four types of UCIs are transmitted on the PUSCH as an example.
  • M takes a value of 3.
  • HP HARQ-ACK > HP CSI part1 > HP CSI part2 > LP HARQ-ACK the terminal can select HP HARQ-ACK, HP CSI part 1 and HP CSI part 2 from the above four UCIs, And mapped on the resource of PUSCH.
  • HP HARQ-ACK>HP CSI part1>LP HARQ-ACK>HP CSI part2 the terminal can select HP HARQ-ACK, HP CSI part 1 and LP HARQ-ACK from the above four UCIs, And mapped on the resource of PUSCH.
  • the terminal can select HP HARQ-ACK, LP HARQ-ACK and HP CSI part 1 from the above four UCIs, and map them on the PUSCH resources.
  • the terminal may also select 3 UCIs from the 4 UCIs according to the order of the above case 4 or 5, and map them on the PUSCH resources.
  • N UCIs including HP CSI part 1, HP CSI part 2, LP HARQ-ACK and LP CSI part 1 are used as an example to illustrate the transmission of the 4 types of UCIs on the PUSCH.
  • M takes a value of 3.
  • HP CSI part1 > HP CSI part2 > LP HARQ-ACK > LP CSI part1 the terminal can select HP CSI part 1, HP CSI part 2 and LP HARQ-ACK from the above four UCIs, and Mapped on the resource of PUSCH.
  • HP CSI part1 > LP HARQ-ACK > HP CSI part2 > LP CSI part1 the terminal can select HP CSI part 1, LP HARQ-ACK and HP CSI part 2 from the above four UCIs, and Mapped on the resource of PUSCH.
  • the terminal can also select 3 UCIs from the 4 UCIs according to the order of the above cases 3-5, and map them on the PUSCH resources. For example, if the selection is made according to the sorting in the above case 4, the terminal can select HP CSI part1, LP HARQ-ACK and LP CSI part1 from the above four UCIs, and map them on the PUSCH resources.
  • the M UCIs selected above correspond to the order of the encoding chain. For example, take N UCIs including HP HARQ-ACK, HP CSI part 1, HP CSI part 2, and LP HARQ-ACK 4 types of UCIs, that is, the 4 types of UCIs are transmitted on the PUSCH as an example for illustration. If the three UCIs selected by the terminal are HP HARQ-ACK, HP CSI part 1 and HP CSI part 2, then HP HARQ-ACK is encoded through the first encoding chain, HP CSI part 2 is encoded through the second encoding chain, and LP HARQ - ACK is coded through the third coding chain, and the coded bits are mapped to PUSCH resources.
  • HP HARQ-ACK is encoded through the first encoding chain
  • HP CSI part 1 is encoded through the second encoding chain
  • LP HARQ - ACK is coded through the third coding chain, and the coded bits are mapped to PUSCH resources.
  • the terminal may select M UCIs for transmission on the PUSCH according to the ranking of the UCIs. Since the ordering of the N UCIs balances UCIs of high-priority services and UCIs of low-priority services, the terminal can transmit some UCIs of low-priority services that are more important to service transmission while ensuring the transmission of high-priority services.
  • mapping manner of UCI transmitted on the PUSCH is introduced.
  • a mapping manner in which UCIs of the same priority are mapped and transmitted on the PUSCH is taken as an example for description.
  • the terminal needs to transmit HARQ-ACK, CSI part 1, CSI part2 and uplink shared channel (uplink shared channel, UL-SCH) on PUSCH at the same time.
  • the UL-SCH can be understood as the uplink data that the terminal needs to transmit.
  • the horizontal direction is the time domain and the unit of the time domain is a symbol
  • the vertical direction is the frequency domain and the unit of the frequency domain is a subcarrier
  • each square represents an RE.
  • Step (step) 1 mapping HARQ-ACK.
  • the demodulation reference signal (demodulation reference signal, DMRS ) symbol after the first UCI available symbol and reserve a part of PUSCH resources as a reserved region (reserved region).
  • the RE index corresponding to the first UCI available symbol after the DMRS symbol in the PUSCH is given by Map from small to large or from large to small. If the HARQ-ACK can occupy all the REs corresponding to the first UCI available symbol, then occupy all the REs corresponding to this symbol, and then occupy one or more REs corresponding to the next symbol. If the HARQ-ACK is not enough to occupy all the REs corresponding to the first UCI available symbol, the HARQ-ACK can be mapped to the REs corresponding to the symbol at equal intervals.
  • Step2 Map CSI part 1.
  • CSI part 1 maps REs on PUSCH except DMRS symbols and REs corresponding to symbols occupied by the reserved area or HARQ-ACK according to the RE index from small to large or from large to small.
  • Step1 reserves a reserved area for HARQ-ACK, then CSI part 1 can be mapped to REs outside the reserved area, so that CSI part 1 will not conflict with HARQ-ACK.
  • Step 1 if Step 1 does not reserve a reserved area for HARQ-ACK, then CSI part 1 needs to start from other REs other than the RE occupied by HARQ-ACK according to the RE index from small to large or from large to small to map.
  • Step3 Map CSI part 2.
  • CSI part 2 maps REs on PUSCH from small to large or from large to small on REs other than the REs occupied by DMRS symbols, HARQ-ACK and CSI part 1 in Step2.
  • Step1 reserves a reserved area for HARQ-ACK
  • CSI part 2 can be mapped to REs outside the reserved area.
  • CSI part 2 can be mapped from the reserved area and REs other than the RE occupied by CSI part 1 in Step2.
  • CSI part 2 can be mapped from the RE on the first symbol after the symbol occupied by CSI part 1.
  • Step4 Map UL-SCH.
  • the UL-SCH is mapped on the REs on the PUSCH except the REs occupied by DMRS symbols, HARQ-ACK, CSI part 1 and CSI part 2 according to the RE index from small to large or from large to small. If a reserved area is generated when mapping the HARQ-ACK in Step 1, the UL-SCH can be mapped to the reserved area.
  • UL-SCH can be mapped on the RE of the first symbol after the symbol occupied by CSI part 2.
  • UL-SCH can be mapped on the RE of the first symbol after the symbol occupied by CSI part 2.
  • Step5 If the number of bits of the HARQ-ACK is 0, 1 or 2 bits, map the HARQ-ACK in the reserved area.
  • HARQ-ACK must be remapped on the reserved area in Step5, thereby covering Step3 and/or Step4 The content mapped in the reserved area. This also causes the HARQ-ACK to puncture the UCI or UL-SCH in Step3 and/or Step4.
  • HARQ-ACK may include HP HARQ-ACK and LP HARQ-ACK, when the bits of HP HARQ-ACK and LP HARQ-ACK are both less than 2 bits, two HARQ-ACKs with different priorities define reserved areas.
  • M UCIs contain LP HARQ-ACK and the bits of LP HARQ-ACK are less than or equal to 2 bits, and if LP HARQ-ACK is not ranked first when mapping, then M UCIs can be mapped to LP HARQ -ACK divides the reserved area, or may also divide the reserved area when mapping LP HARQ-ACK.
  • LP HARQ-ACK divides the reserved area, or may also divide the reserved area when mapping LP HARQ-ACK.
  • Solution 1 Divide reserved areas for LP HARQ-ACK before mapping M UCIs.
  • the M UCIs can be coded through different coding chains and mapped to PUSCH resources. Among them, if M UCIs contain LP HARQ-ACK, and the bits of LP HARQ-ACK are less than or equal to 2 bits, the terminal can reserve the first resource. If the resources of the PUSCH include one or more REs, the first resource may be some of the one or more REs.
  • the terminal can reserve the first resource for LP HARQ-ACK before mapping the M UCIs to the PUSCH resources, that is, reserve some REs in the PUSCH resources.
  • the terminal can map HP CSI part1 and HP CSI part2 to PUSCH resources respectively.
  • the terminal can map bits of LP HARQ-ACK on the first resource.
  • HP UCI can include HP HARQ-ACK, HP CSI part 1 and HP CSI part 2.
  • HP CSI part2 when HP CSI part2 is mapped to PUSCH resources, it can be mapped to REs other than the first resource.
  • the M UCIs selected by the terminal include HP HARQ-ACK, HP CSI part 1 and LP HARQ-ACK as an example for illustration.
  • LP HARQ-ACK is ranked third among M UCIs and is less than or equal to 2 bits, and HP HARQ-ACK and HP CSI part 1 are both greater than 2 bits, the mapping method is shown in Figure 7.
  • the detailed mapping sequence is that the terminal first allocates the first resource for LP HARQ-ACK, and the first resource of LP HARQ-ACK occupies the RE corresponding to the first available symbol after the DMRS symbol. Then the terminal maps the HP HARQ-ACK, and the HP HARQ-ACK also occupies the available RE in the RE corresponding to the symbol after the DMRS symbol. What is shown in Figure 7 is that the first resource of the LP HARQ-ACK occupies the first resource after the DMRS symbol. If the first 5 REs of a symbol are used, then HP HARQ-ACK will continue to occupy the remaining REs of this symbol and the REs on the symbols after this symbol until the encoded bits of HP HARQ-ACK are mapped.
  • the terminal maps HP CSI part 1 again, and HP CSI part 1 starts mapping from the first symbol after DMRS, and maps to REs other than REs already occupied by the first resource, HP HARQ-ACK and DMRS.
  • the follow-up is HP data mapping, and finally the bits of LP HARQ-ACK are mapped to the reserved area.
  • the terminal can map M UCIs except HP HARQ-ACK and LP HARQ-ACK before other UCIs, the second resource is reserved for HP HARQ-ACK, and the first resource is reserved for LP HARQ-ACK.
  • the first resource may include one or more REs
  • the second resource may include one or more REs.
  • the M UCIs selected by the terminal include HP HARQ-ACK, HP CSI part 1 and LP HARQ-ACK as an example for illustration. Assuming that LP HARQ-ACK ranks third among M UCIs and is less than 2 bits, and that HP HARQ-ACK ranks first among M UCIs is also less than 2 bits.
  • the terminal can divide reserved areas for both HP HARQ-ACK and LP HARQ-ACK.
  • the terminal can define all reserved areas of HARQ-ACK before mapping the M UCIs. Among them, the terminal can first define the reserved area of HP HARQ-ACK.
  • the reserved area of HP HARQ-ACK is defined from the first symbol after the DMRS symbol, and then the reserved area of LP HARQ-ACK is defined.
  • the reserved area of LP HARQ-ACK is determined from the available RE after the DMRS symbol.
  • Figure 8 shows that the reserved area of HP HARQ-ACK occupies the first 5 REs of the first symbol after the DMRS symbol, then the reserved area of LP HARQ-ACK will continue to occupy the remaining REs and RE on symbols after this symbol, until the reserved area of LP HARQ-ACK is divided.
  • the terminal maps HP CSI part 1 again.
  • HP CSI part 1 is mapped from the first symbol to other REs other than the REs already occupied by the first resource, the second resource and the DMRS.
  • the follow-up is HP data mapping, and finally the bits of LP HARQ-ACK are mapped to the first resource, and the bits of HP HARQ-ACK are mapped to the second resource.
  • the terminal maps the HP HARQ-ACK bits to the second resource and maps the LP HARQ-ACK bits to the first resource
  • the specific sequence is not limited.
  • the terminal may first map the bits of the HP HARQ-ACK to the second resource, and then map the bits of the LP HARQ-ACK to the first resource.
  • the terminal in order to prevent HP HARQ-ACK from being covered by LP-HARQ-ACK, that is, to prevent HP HARQ-ACK from being punctured or preempted, the terminal can also first map the bits of LP HARQ-ACK to the first resource , and then map the HP HARQ-ACK to the second resource.
  • LP UCI may include LP HARQ-ACK, LP CSI part 1 and LP CSI part 2.
  • Solution 2 Divide the reserved area when mapping LP HARQ-ACK.
  • the M UCIs can be coded through different coding chains and mapped to REs of the PUSCH. Among them, if M UCIs contain LP HARQ-ACK, and the bits of LP HARQ-ACK are less than or equal to 2 bits, the terminal can reserve the first LP HARQ-ACK for LP HARQ-ACK when mapping LP HARQ-ACK to PUSCH RE. a resource.
  • the terminal can map HP CSI part 1 on the REs other than the REs occupied by the DMRS on the PUSCH. Afterwards, the terminal may reserve the first resource for LP HARQ-ACK. Among them, if HP CSI part1 occupies all REs on a symbol, then the terminal can reserve the first resource for LP HARQ-ACK on the first symbol after the symbol occupied by HP CSI part 1.
  • the terminal can use the remaining REs on symbols occupied by HP CSI part 1 except the REs already occupied by HP CSI part 1, and the remaining REs occupied by HP CSI part 1 Among the REs on symbols after the symbol, the first resource is reserved for LP HARQ-ACK. After that, the terminal can map HP CSI part 2 on REs other than the REs already occupied by DMRS, the first resource and HP CSI part 1 on the PUSCH. Finally, the terminal can map bits of LP HARQ-ACK on the first resource.
  • the LP HARQ-ACK is less than or equal to 2 bits, a reserved area (first resource) is defined, then the subsequent re-mapped HP UCI and HP data must be mapped to this reserved area outside the RE.
  • the HP UCI here can include HP HARQ-ACK, HP CSI part 1 and HP CSI part 2.
  • HP CSI part2 when the HP CSI part2 is mapped to the RE of the PUSCH, it can be mapped to REs other than the first resource.
  • the terminal can map M UCIs except HP HARQ-ACK and LP HARQ-ACK Before other UCIs, reserve the second resource for HP HARQ-ACK, and reserve the first resource for LP HARQ-ACK when mapping LP HARQ-ACK.
  • the M UCIs selected by the terminal include HP HARQ-ACK, HP CSI part 1 and LP HARQ-ACK as an example for illustration. Assume that LP HARQ-ACK is ranked third among M UCIs and the number of bits is less than 2 bits, and HP HARQ-ACK is ranked first among M UCIs and the number of bits is less than 2 bits.
  • the mapping process is that the terminal first defines the reserved area of HP HARQ-ACK (that is, the second resource).
  • the second resource is defined from the first symbol after the DMRS symbol, and then the terminal maps HP CSI part 1.
  • HP CSI part 1 is mapped from the first symbol to REs other than REs already occupied by the second resource and DMRS.
  • the terminal can divide the reserved area of LP HARQ-ACK.
  • the terminal can map the HP data to the PUSCH resource, and finally the terminal maps the bits of the HP HARQ-ACK to the second resource, and then maps the bits of the LP HARQ-ACK to the first resource.
  • the terminal maps the HP HARQ-ACK bits to the second resource and maps the LP HARQ-ACK bits to the first resource
  • the specific order is not limited.
  • the terminal may first map the bits of the HP HARQ-ACK to the second resource, and then map the bits of the LP HARQ-ACK to the first resource.
  • the terminal may first map the bits of the LP HARQ-ACK to the first resource, and then map the HP HARQ-ACK to the second resource.
  • LP UCI may include LP HARQ-ACK, LP CSI part 1 and LP CSI part 2.
  • the reserved area for HP HARQ-ACK can be bypassed, which can prevent HP HARQ-ACK from blocking UCIs of low-priority services. hole, thereby affecting the transmission of the UCI of the low-priority service, which can reduce the impact on the transmission of the low-priority service.
  • the base station and the terminal include hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software with reference to the units and method steps of the examples described in the embodiments disclosed in the present application. Whether a certain function is executed by hardware or computer software drives the hardware depends on the specific application scenario and design constraints of the technical solution.
  • FIG. 11 and FIG. 12 are schematic structural diagrams of possible communication devices provided by the embodiments of the present application. These communication devices can be used to implement the functions of the terminal or the base station in the above method embodiments, and therefore can also realize the beneficial effects of the above method embodiments.
  • the communication device may be one of the terminals 120a-120j shown in FIG. 2, or the base station 120a or 120b shown in FIG. 2, or a terminal or a base station Modules (such as chips).
  • a communication device 1100 includes a processing unit 1110 and a transceiver unit 1120 .
  • the communication device 1100 is configured to implement functions of a terminal or a base station in the method embodiment shown in FIG. 6 above.
  • the processing unit 1110 is used to map M UCIs among the N UCIs to PUSCH resources.
  • the transceiver unit 1120 is used for sending PUSCH.
  • the transceiver unit 1120 is used to receive the PUSCH.
  • the processing unit 1110 is configured to obtain N UCIs.
  • processing unit 1110 and the transceiver unit 1120 can be directly obtained by referring to related descriptions in the method embodiment shown in FIG. 3 , and details are not repeated here.
  • a communication device 1200 includes a processor 1210 and an interface circuit 1220 .
  • the processor 1210 and the interface circuit 1220 are coupled to each other.
  • the interface circuit 1220 may be a transceiver or an input/output interface.
  • the communication device 1200 may further include a memory 1230 for storing instructions executed by the processor 1210 or storing input data required by the processor 1210 to execute the instructions or storing data generated after the processor 1210 executes the instructions.
  • the processor 1210 is used to implement the functions of the above-mentioned processing unit 1110
  • the interface circuit 1220 is used to implement the functions of the above-mentioned transceiver unit 1120 .
  • the terminal chip implements the functions of the terminal in the above method embodiment.
  • the terminal chip receives information from other modules in the terminal (such as radio frequency modules or antennas), and the information is sent to the terminal by the base station; or, the terminal chip sends information to other modules in the terminal (such as radio frequency modules or antennas), and the The information is sent by the terminal to the base station.
  • the base station module implements the functions of the base station in the above method embodiment.
  • the base station module receives information from other modules in the base station (such as radio frequency modules or antennas), and the information is sent to the base station by the terminal; or, the base station module sends information to other modules in the base station (such as radio frequency modules or antennas), the The information is sent by the base station to the terminal.
  • the base station module here may be a baseband chip of the base station, or a DU or other modules, and the DU here may be a DU under an open radio access network (O-RAN) architecture.
  • OF-RAN open radio access network
  • the processor in the embodiments of the present application can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by means of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only Memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in the base station or the terminal.
  • the processor and the storage medium may also exist in the base station or the terminal as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disk; and it may also be a semiconductor medium, such as a solid state disk.
  • the computer readable storage medium may be a volatile or a nonvolatile storage medium, or may include both volatile and nonvolatile types of storage media.
  • “at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship; in the formulas of this application, the character “/” indicates that the contextual objects are a “division” Relationship.
  • “Including at least one of A, B and C” may mean: including A; including B; including C; including A and B; including A and C; including B and C; including A, B and C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供控制信息的传输方法和装置,可以在高优先级业务的UCI的时域资源和低优先级业务的UCI的时域资源冲突时,终端在PUSCH的资源上传输N个UCI中排序靠前的M个UCI。另外,如果UCI包含LP HARQ-ACK和HP HARQ-ACK,且LP HARQ-ACK的比特和HP HARQ-ACK的比特不大于2比特时,定义了终端为HP HARQ-ACK和LP HARQ-ACK划分预留区域的方式。基于上述方案,终端可以在不影响高优先级业务的传输的前提下,传输一些相对重要的低优先级业务的UCI,可以减少对低优先级业务传输的影响。

Description

控制信息的传输方法和装置
相关申请的交叉引用
本申请要求在2021年08月06日提交中国国家知识产权局、申请号为202110900708.2、申请名称为“控制信息的传输方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种控制信息的传输方法和装置。
背景技术
第五代移动通信技术(5 th generation mobile communication technology,5G)系统相比于前几代移动通信系统对传输速率、时延和功耗等方面提出了更高的要求。国际电信联盟(international telecommunication union,ITU)将增强型移动宽带(enhanced mobile broadband,eMBB),海量机器类型通信(massive machine type communication,mMTC)和超可靠低延迟通信(ultra-reliable and low latency communication,URLLC)定义为5G的三大典型业务。
URLLC作为5G的三大典型业务之一,主要应用场景包括无人驾驶和远程医疗等,这些应用场景在可靠性及时延方面提出了更加严格的需求。URLLC业务具体的需求包括:数据传输可靠性达到99.999%,传输时延低于1ms,以及在满足高可靠性及低时延要求下,尽可能减小指令开销。
为了满足例如URLLC业务等低时延业务的传输可靠性及时延要求,可以定义低时延业务为高优先级业务,时延容忍(latency-tolerant)业务为低优先级业务。当高优先级业务与低优先级业务传输发生时域冲突时,低优先级业务的数据会被丢弃,以保证高优先级业务不受影响。然而,低优先级业务的数据被丢弃,降低了低优先级业务的数据传输性能,导致低优先级业务的正常通信受到影响。
发明内容
本申请提供一种控制信息的传输方法和装置,用来降低对低优先级业务传输的影响。
第一方面,提供了控制信息的传输方法。该方法可以由终端执行,或者由用于终端的装置,例如芯片执行。该方法中包括,将N个上行控制信息(uplink control information,UCI)中的M个UCI,映射至物理上行共享信道(physical uplink shared channel,PUSCH)的资源上。N个UCI包括优先级不同的UCI,M个UCI满足第一条件,N是大于1的整数;M是大于或等于1的整数,M小于或等于第一阈值且小于或等于N,第一阈值小于N;发送PUSCH。
基于上述方案,示出了终端可以根据N个UCI的排序,选择M个UCI进行传输。因此终端可以在不影响高优先级业务的传输的前提下,传输一些相对重要的低优先级业务的UCI,可以减少高优先级业务的UCI的时域资源和低优先级业务的UCI的时域资源冲突时,由于丢弃低优先级业务的UCI导致的对低优先级业务传输的影响。
在一种可能的实现方式中,M个UCI中可以包括低优先级(low priority,LP)混合自动重传请求(hybrid automatic repeat request,HARQ)反馈信息,LP HARQ反馈信息可以是M个UCI中排序在非首位的UCI,且LP HARQ反馈信息的比特数可以小于或等于指定比特数。在将M个UCI映射至PUSCH的资源上之前,可以预留第一资源。或者,在将LP HARQ反馈信息映射至PUSCH的资源上时,可以预留第一资源。其中,第一资源可以是PUSCH的资源中的部分资源。
基于上述方案,在LP HARQ-ACK的比特小于或等于2比特时,明确了终端将M个UCI映射至PUSCH的资源上的顺序,以及明确了终端为LP HARQ-ACK预留第一资源的顺序。
在一种可能的实现方式中,M个UCI中还可以包括高优先级(high priority,HP)HARQ反馈信息,且HP HARQ反馈信息的比特数可以小于或等于指定比特数。在将M个UCI映射至PUSCH的资源上之前,可以预留第二资源。其中,第二资源可以是PUSCH的资源中的部分资源;第二资源可以与第一资源不重叠。
可选地,所述PUSCH的资源包括一个或多个资源单元(resource element,RE),相应地,所述第一资源或所述第二资源包括所述一个或多个RE中的部分RE。
基于上述方案,在HP HARQ-ACK的比特小于或等于2比特时,明确了终端将M个UCI映射至PUSCH的资源上的顺序,以及明确了终端为HP HARQ-ACK预留第一资源的顺序。
在一种可能的实现方式中,在M个UCI中还包括与LP HARQ反馈信息的优先级不同的高优先级业务的UCI时,高优先级业务的UCI映射至PUSCH的资源中除第一资源以外的资源上。
基于上述方案,与LP HARQ-ACK的优先级不同的UCI映射至PUSCH的资源上时,映射至为LP HARQ-ACK划分的预留区域之外的资源上,可以避免LP HARQ-ACK将高优先级业务的UCI打孔,从而减少对高优先级业务传输的影响。
在一种可能的实现方式中,在M个UCI中还包括与HP HARQ反馈信息的优先级不同的低优先级业务的UCI时,低优先级业务的UCI映射至PUSCH的资源中除第二资源以外的资源上。
基于上述方案,与HP HARQ-ACK的优先级不同的UCI映射至PUSCH的资源上时,映射至为HP HARQ-ACK划分的预留区域之外的资源上,可以避免HP HARQ-ACK将低优先级业务的UCI打孔,从而影响低优先级业务的UCI的传输,可以减少对低优先级业务传输的影响。
在一种可能的实现方式中,UCI是以下任意一种信息:HP HARQ反馈信息、高优先级业务的信道状态信息(channel state information,CSI)的第一部分HP CSI part1、HP CSI part2、LP HARQ反馈信息、LP CSI part1和LP CSI part2。
基于上述方案,N个UCI中可以包括优先级不同的业务的UCI,终端可以优先级不同的业务UCI中选择M个进行传输。
在一种可能的实现方式中,第一条件包括M个UCI是N个UCI中排序靠前的M个UCI。
基于上述方案,终端可以选择排序靠前的M个UCI,由于N个UCI的排序是按照对业务传输的重要性进行排序的,因此终端可以传输对业务传输较为重要的M个UCI,以保 证业务的顺利进行。
在一种可能的实现方式中,N个UCI中可以包括HP HARQ-ACK,HP HARQ-ACK是N个UCI中排序的首位。
基于上述方案,由于HARQ-ACK对业务传输的重要性较高,且高优先级业务的UCI的重要性高于低优先级业务的UCI,因此HP HARQ-ACK总是有最高优先级,可以提高高优先级业务的传输效率,减少因为HP HARQ-ACK未正常传输而造成的时延问题。
在一种可能的实现方式中,N个UCI中可以包括LP CSI part2,LP CSI part2是N个UCI中排序的末位。
基于上述方案,由于低优先级的CSI重要性相对较低,可以由高优先级的CSI代替,并且一般情况下由CSI part 1表示信道信息,终端设备和网络设备通过CSI part 1就能够了解到信道状态,进而进行业务传输,所以CSI part 2表示的信息重要性较低。将LP CSI part 2排在末位,可以减少对高优先级业务和低优先级业务传输的影响。
在一种可能的实现方式中,N个UCI的排序可以满足以下中的一种:
HP HARQ反馈信息>HP CSI part1>HP CSI part2>LP HARQ反馈信息>LP CSI part1>LP CSI part2;或者,
HP HARQ反馈信息>HP CSI part1>LP HARQ反馈信息>HP CSI part2>LP CSI part1>LP CSI part2;或者,
HP HARQ反馈信息>LP HARQ反馈信息>HP CSI part1>HP CSI part2>LP CSI part1>LP CSI part2;或者,
HP HARQ反馈信息>HP CSI part1>LP HARQ反馈信息>LP CSI part1>HP CSI part2>LP CSI part2;或者,
HP HARQ反馈信息>LP HARQ反馈信息>HP CSI part1>LP CSI part1>HP CSI part2>LP CSI part2。
基于上述方案,N个UCI的排序可以平衡高优先级业务的UCI和低优先级业务的UCI的传输,可以在不影响高优先级业务的传输的前提下,传输一些相对重要的低优先级业务的UCI,可以减少在高低优先级业务的相关信息时域冲突时,对低优先级业务传输的影响。
第二方面,提供了控制信息的传输方法。该方法可以由网络设备执行,或者用于网络设备的装置,例如芯片执行。该方法中包括,接收PUSCH;其中,PUSCH中包括M个UCI,M个UCI是N个UCI中满足第一条件的UCI,N个UCI包括优先级不同的UCI,N是大于1的整数;M是大于1的整数,M小于或等于第一阈值且小于或等于N,第一阈值小于N。
在一种可能的实现方式中,第一阈值可以是预定义的或者是根据终端设备上报的能力决定的。
在一种可能的实现方式中,UCI可以是以下任意一种信息:HP HARQ反馈信息、HP CSI part1、HP CSI part2、LP HARQ反馈信息、LP CSI part1和低优先级业务的CSI的第二部分LP CSI part2。
在一种可能的实现方式中,第一条件包括M个UCI是N个UCI中排序靠前的M个UCI。
在一种可能的实现方式中,N个UCI中可以包括HP HARQ-ACK,HP HARQ-ACK是 N个UCI中排序的首位。
在一种可能的实现方式中,N个UCI中可以包括LP CSI part2,LP CSI part2是N个UCI中排序的末位。
在一种可能的实现方式中,N个UCI的排序满足以下中的一种:
HP HARQ反馈信息>HP CSI part1>HP CSI part2>LP HARQ反馈信息>LP CSI part1>LP CSI part2;或者,
HP HARQ反馈信息>HP CSI part1>LP HARQ反馈信息>HP CSI part2>LP CSI part1>LP CSI part2;或者,
HP HARQ反馈信息>LP HARQ反馈信息>HP CSI part1>HP CSI part2>LP CSI part1>LP CSI part2;或者,
HP HARQ反馈信息>HP CSI part1>LP HARQ反馈信息>LP CSI part1>HP CSI part2>LP CSI part2;或者,
HP HARQ反馈信息>LP HARQ反馈信息>HP CSI part1>LP CSI part1>HP CSI part2>LP CSI part2。
第三方面,提供一种通信装置。该通信装置可以是终端设备或者芯片。通信装置包括处理单元和收发单元。处理单元,用于将N个UCI中的M个UCI,映射至PUSCH的资源上;N个UCI包括优先级不同的UCI,M个UCI满足第一条件,N是大于1的整数;M是大于或等于1的整数,M小于或等于第一阈值且小于或等于N,第一阈值小于N;收发单元,用于发送PUSCH。
在一种设计中,M个UCI中包括LP HARQ反馈信息,LP HARQ反馈信息是M个UCI中排序在非首位的UCI,且LP HARQ反馈信息的比特数小于或等于指定比特数;处理单元还用于:在将M个UCI映射至PUSCH的资源上之前,预留第一资源;或者,在将LP HARQ反馈信息映射至PUSCH的资源上时,预留第一资源;第一资源是PUSCH的资源中的部分资源。
在一种设计中,M个UCI中还包括HP HARQ反馈信息,且HP HARQ反馈信息的比特数小于或等于指定比特数,处理单元还用于:在将M个UCI映射至PUSCH的资源上之前,预留第二资源;第二资源是PUSCH的资源中的部分资源;第二资源与第一资源不重叠。
在一种设计中,在M个UCI中还包括与LP HARQ反馈信息的优先级不同的高优先级业务的UCI时,高优先级业务的UCI映射至PUSCH的资源中除第一资源以外的资源上。
在一种设计中,在M个UCI中还包括与HP HARQ反馈信息的优先级不同的低优先级业务的UCI时,低优先级业务的UCI映射至PUSCH的资源中除第二资源以外的资源上。
在一种设计中,第一阈值是预定义的或者是根据通信装置上报的能力决定的。
在一种设计中,UCI是以下任意一种信息:HP HARQ反馈信息、HP CSI part1、HP CSI part2、LP HARQ反馈信息、LP CSI part1和LP CSI part2。
在一种设计中,第一条件包括M个UCI是N个UCI中排序靠前的M个UCI。
在一种设计中,N个UCI中包括HP HARQ反馈信息,HP HARQ反馈信息是N个UCI中排序的首位。
在一种设计中,N个UCI中包括LP CSI part2,LP CSI part2是N个UCI中排序的末 位。
在一种设计中,N个UCI的排序满足以下中的一种:
HP HARQ反馈信息>HP CSI part1>HP CSI part2>LP HARQ反馈信息>LP CSI part1>LP CSI part2;或者,
HP HARQ反馈信息>HP CSI part1>LP HARQ反馈信息>HP CSI part2>LP CSI part1>LP CSI part2;或者,
HP HARQ反馈信息>LP HARQ反馈信息>HP CSI part1>HP CSI part2>LP CSI part1>LP CSI part2;或者,
HP HARQ反馈信息>HP CSI part1>LP HARQ反馈信息>LP CSI part1>HP CSI part2>LP CSI part2;或者,
HP HARQ反馈信息>LP HARQ反馈信息>HP CSI part1>LP CSI part1>HP CSI part2>LP CSI part2。
第四方面,提供一种通信装置。该装置可以是网络设备或者芯片。通信装置包括处理单元和收发单元。收发单元,用于接收PUSCH;其中,PUSCH中包括M个上行控制信息UCI,M个UCI是N个UCI中满足第一条件的UCI,N个UCI包括优先级不同的UCI,N是大于1的整数;M是大于1的整数,M小于或等于第一阈值且小于或等于N,第一阈值小于N;处理单元,用于获取M个UCI。
在一种设计中,第一阈值是预定义的或者是根据通信装置上报的能力决定的。
在一种设计中,UCI是以下任意一种信息:HP HARQ反馈信息、HP CSI part1、HP CSI part2、LP HARQ反馈信息、LP CSI part1和LP CSI part2。
在一种设计中,第一条件包括M个UCI是N个UCI中排序靠前的M个UCI。
在一种设计中,N个UCI中包括HP HARQ反馈信息,HP HARQ反馈信息是N个UCI中排序的首位。
在一种设计中,N个UCI中包括LP CSI part2,LP CSI part2是N个UCI中排序的末位。
在一种设计中,N个UCI的排序满足以下中的一种:
HP HARQ反馈信息>HP CSI part1>HP CSI part2>LP HARQ反馈信息>LP CSI part1>LP CSI part2;或者,
HP HARQ反馈信息>HP CSI part1>LP HARQ反馈信息>HP CSI part2>LP CSI part1>LP CSI part2;或者,
HP HARQ反馈信息>LP HARQ反馈信息>HP CSI part1>HP CSI part2>LP CSI part1>LP CSI part2;或者,
HP HARQ反馈信息>HP CSI part1>LP HARQ反馈信息>LP CSI part1>HP CSI part2>LP CSI part2;或者,
HP HARQ反馈信息>LP HARQ反馈信息>HP CSI part1>LP CSI part1>HP CSI part2>LP CSI part2。
第五方面,提供一种通信装置,包括处理器,处理器和存储器耦合,存储器用于存储计算机程序或指令,处理器用于执行计算机程序或指令,以执行上述任一方面的任一实现 方法。该存储器可以位于该装置之内,也可以位于该装置之外。该处理器的数量为一个或多个。
第六方面,本申请提供一种通信装置,包括:处理器和接口电路,接口电路用于与其它装置通信,处理器用于上述任一方面的任一实现方法。
第七方面,提供了一种通信装置。该装置包括逻辑电路和输入输出接口。
在一个示例中,逻辑电路用于将N个上行控制信息UCI中的M个UCI,映射至物理上行共享信道PUSCH的资源上;所述N个UCI包括优先级不同的UCI,所述M个UCI满足第一条件,N是大于1的整数;M是大于或等于1的整数,M小于或等于第一阈值且小于或等于N,所述第一阈值小于N;输入输出接口用于输出所述PUSCH。
另一个示例中,输入输出接口用于输入PUSCH。其中,所述PUSCH中包括M个上行控制信息UCI,所述M个UCI是N个UCI中满足第一条件的UCI,N个UCI包括优先级不同的UCI,N是大于1的整数;M是大于1的整数,M小于或等于第一阈值且小于或等于N,所述第一阈值小于N。可选的,逻辑电路用于获取所述M个UCI。
第八方面,本申请提供一种通信系统,包括:用于执行上述第一方面各实现方法的终端设备,和用于执行上述第二方面各实现方法的网络设备。
第九方面,本申请还提供一种芯片系统,包括:处理器,用于执行上述第一方面和第二方面的各实现方法。
第十方面,本申请还提供一种计算程序产品,包括计算机执行指令,当计算机执行指令在计算机上运行时,使得上述任一方面的任一实现方法被执行。
第十一方面,本申请还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当指令在计算机上运行时,实现上述任一方面的任一实现方法。
另外,第二方面至第十一方面的有益效果可以参见如第一方面所示的有益效果。
附图说明
图1为本申请实施例提供的通信系统;
图2为PUSCH上编码链的示意图;
图3为本申请实施例提供的控制信息的传输方法的示例性流程图;
图4为本申请实施例提供的UCI映射至PUSCH的资源上的示意图之一;
图5为本申请实施例提供的UCI映射至PUSCH的资源上的示意图之二;
图6为本申请实施例提供的UCI映射至PUSCH的资源上的示意图之三;
图7为本申请实施例提供的UCI映射至PUSCH的资源上的示意图之四;
图8为本申请实施例提供的UCI映射至PUSCH的资源上的示意图之五;
图9为本申请实施例提供的UCI映射至PUSCH的资源上的示意图之六;
图10为本申请实施例提供的UCI映射至PUSCH的资源上的示意图之七;
图11为本申请实施例提供的通信装置的示意图之一;
图12为本申请实施例提供的通信装置的示意图之二。
具体实施方式
为了便于理解本申请实施例提供的技术方案,以下对本申请实施例涉及的技术术语进 行解释。
1)资源,本申请中所述的资源如无特别说明,是指包括时域资源与频域资源在内的资源,可以用于在上行通信过程或者下行通信过程中承载数据或信令。其中,时域资源与频域资源可以合成为“时频资源”。本申请中,时域资源的单位可以是时域符号,频域资源的单位可以是子载波。
2)资源单元(resource element,RE)与资源块(resource block,RB),RE是一种时频资源的单位,每个RE由一个时域符号以及该时域符号上的一个子载波组成。一般地,一个时域符号对应频域上的12个子载波,因此,可以认为一个时域符号上有12个RE。
3)独立编码,可以理解为UCI对应的原始比特(编码前的比特),独立经过编码器,或者是独立采用一个编码链,得到编码后的比特,并且映射在PUSCH的资源上。不能有任何两个UCI的是级联在一起编码。也就是说,不能有任何两个UCI对应的原始比特通过一个编码器或者只采用了一个编码链进行编码得到一份编码后的比特,映射在PUSCH的资源上。
4)联合编码,或者可以称为级联在一起编码。假设HARQ-ACK的原始比特和CSI part 1的原始比特先进行级联,组合成一个原始比特,然后对这个组合后的原始比特按照编码规则进行编码,采用第一编码链,得到一个编码后的比特,然后映射在PUSCH的资源上。那么可以认为HARQ-ACK和CSI part 1联合编码的UCI。
在本申请中,将该联合编码的两个UCI认为是一个独立编码的UCI。例如,可以认为上述HARQ-ACK和CSI part 1认为是一个独立编码的UCI。
图1是本申请的实施例应用的通信系统1000的架构示意图。如图1所示,该通信系统包括无线接入网100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至少一个无线接入网设备(如图1中的110a和110b),还可以包括至少一个终端(如图1中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。
无线接入网设备又可以称为网络设备,可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。无线接入网设备可以是 宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为无线接入网设备的例子进行描述。
终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时采用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所采用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
在本申请中,基站向终端发送下行信号或下行信息,下行信息承载在下行信道上;终端向基站发送上行信号或上行信息,上行信息承载在上行信道上。终端为了与基站进行通信,需要与基站控制的小区建立无线连接。与终端建立了无线连接的小区称为该终端的服务小区。当终端与该服务小区进行通信的时候,还会受到来自邻区的信号的干扰。
在本申请的实施例中,时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是离散傅里叶变换扩频OFDM(Discrete Fourier Transform-spread-OFDM,DFT-s-OFDM)符号。如果没有特别说明,本申请实施例中的符号均指时域符号。
可以理解的是,本申请的实施例中,物理下行共享信道(physical downlink shared channel,PDSCH)、物理下行控制信道(physical downlink control channel,PDCCH)、物理上行控制信道(physical uplink control channel,PUCCH)和PUSCH只是作为下行数据信 道、下行控制信道、上行控制信道上行数据信道的一种举例,在不同的系统和不同的场景中,数据信道和控制信道可能有不同的名称,本申请的实施例对此并不做限定。在本申请中,信号可以包括数据信道、控制信道和参考信号。信号的传输可以是上行传输,即终端发给基站的;也可以是下行传输,即基站发给终端的。当传输作为动词的时候,传输可以与发送/接收互换。
为了便于理解本申请实施例提供的技术方案,以下介绍UCI的各个类型。
本申请中,UCI包括调度请求(scheduling request,SR)、混合自动重传请求(hybrid automatic repeat request,HARQ)反馈信息、CSI等类型。
其中,HARQ是一种高效的传输机制。一方面,通过重传可以极大提高下行数据传输的可靠性。另一方面,终端可以反馈HARQ的肯定应答(acknowledgement,ACK)或否定应答(negative acknowledgement,NACK),在UE反馈NACK时,基站才需要进行重传,降低了数据传输的整体资源消耗。本申请中的HARQ反馈信息也可以称为HARQ-ACK,可以包括ACK和NACK。在终端准确接收下行数据时,终端可以反馈ACK,在终端未准确接收下行数据时,终端可以反馈NACK。
CSI可以包括预编码矩阵指示(precoding matrix indication,PMI)、秩指示(rank indicator,RI)、层指示(layer indicator,LI)、信道质量信息(channel quality indicator,CQI)、信道状态信息参考信号(reference signal,RS)资源指示(CSI-RS resource indicator,CRI)、参考信号接收功率(reference signal received power,RSRP)和信号干扰噪声比(signal to interference plus noise ratio,SINR)等。在这些CSI中,可以将某些CSI级联起来,称为第一部分CSI(CSI part 1)或者第二部分CSI(CSI part 2)。其中,CSI part 1可以包括CRI、RI、第一个传输块(transport block,TB)的宽带CSI,以及第一个TB的子带差分CQI等。第二部分CSI(CSI part 2)可以包括第二个TB的宽带CQI,LI等。
以传输时延要求的不同作为依据之一,可以对不同业务定义不同的优先级,以优先传输高优先级的业务。以低时延业务为URLLC业务,且时延容忍业务为eMBB业务为例,针对eMBB和URLLC两种业务,可以定义URLLC为高优先级,eMBB业务为低优先级。因此,可以认为eMBB的UCI为低优先级业务的UCI,URLLC的UCI为高优先级业务的UCI。例如,URLLC的HARQ-ACK可以认为是高优先级业务的HARQ-ACK,eMBB的HARQ-ACK可以认为是低优先级业务的HARQ-ACK。基于此,本申请实施例涉及的UCI包括但不限于以下类型:高优先级业务的HARQ反馈信息(HP HARQ反馈信息),高优先级业务的CIS part 1(HP CSI part1)、高优先级业务的CSI part2(HP CSI part2)、低优先级业务的HARQ反馈信息(LP HARQ反馈信息)、低优先级业务的CSI part1(LP CSI part1)和低优先级业务的CSI的part 2(LP CSI part2)。
需要说明的是,高优先级业务并不仅限于URLLC业务,高优先级业务还可以包含其他对时延要求较高的业务。类似地,低时延业务并不仅限于eMBB业务,低优先级业务还可以包含其他对时延要求较低的业务。
由于当高优先级业务与低优先级业务的UCI传输发生时域冲突时,低优先级业务的UCI会被丢弃,以保证高优先级的业务传输不受影响。其中,时域冲突可以理解为传输高优先级UCI的时域资源与传输低优先级业务UCI的时域资源部分重叠或全部重叠。但这也会影响低优先级业务的正常进行。基于此,当不同优先级的业务传输发生时域冲突时,可以将不同优先级业务的UCI复用传输。为了实现高优先级的UCI与低优先级的UCI复用 传输,可以采用独立编码方式,也就是高优先级UCI比特和低优先级UCI比特不会级联在一起进行编码,而是高优先级UCI比特单独采用一条编码链(encoding chain),低优先级UCI比特单独采用一条编码链。在高优先级的UCI与低优先级的UCI复用传输时,终端设备可以支持的独立编码的UCI的最大数目不超过终端设备的现有能力。例如,终端支持的在PUSCH上传输的独立编码的UCI的最大数目是3个。
以下,介绍编码链的概念。
参阅图2,UCI的原始比特a 0,a 1…a A-1产生后,需要经历编码,速率匹配过程得到编码后的比特g 0,g 1…g G-1,编码后的比特再根据映射方式,映射到PUCCH或者PUSCH上。整个编码、速率匹配和映射三个过程组合起来,称为一个编码链。也就是说,编码链之间都是独立编码的,编码链内部的多个UCI级联可以看做是联合编码的。其中,如果是PUCCH上传输UCI,PUCCH最多可以支持两个编码链,并且预定义HARQ-ACK、SR和CSI part 1这3个UCI的原始比特级联在一起,通过第一编码链进行编码,即HARQ-ACK、SR和CSI part 1这3个UCI是联合编码。另外,预定义CSI part 2通过第二编码链进行编码。如果是PUSCH上传输UCI,PUSCH最多可以支持三个编码链,SR不映射在PUSCH上进行发送,HARQ-ACK通过第一编码链进行编码,CSI part 1通过第二编码链进行编码,CSI part 2通过第三编码链进行编码。编码链的处理顺序主要体现在映射的环节上,PUSCH上的映射顺序是第一编码链的HARQ-ACK先映射到PUSCH的资源上,第二编码链的CSI part 1再映射PUSCH的资源上,第三编码链的CSI part 2最后映射到PUSCH的资源上。
需要说明的是,三个编码链可以同时进行,也可以按照顺序从第一编码链开始进行,本申请不做具体限定。
由于高优先级的UCI与低优先级的UCI复用传输时,PUSCH上传输的独立编码的UCI的最大数目不超过终端的现有能力,那么如果多个优先级不同的UCI复用,如何保留不超过终端的现有能力的个数的独立编码的UCI的问题需要被解决。例如,如何确定HP HARQ-ACK、LP HARQ-ACK、HP CSI part 1、HP CSI part 2同时复用在HP PUSCH上的传输方式。
本申请实施例提供一种控制信息的传输方法。该方法中,当多个不同优先级的UCI在PUSCH上传输时,UCI数目超过了终端支持的PUSCH上可传输的独立编码的UCI的最大数目时,可以在多个UCI中选择能够满足独立编码的UCI的最大数目的UCI,并在PUSCH上传输,从而可以实现高低优先级业务的UCI复用传输,以减少对低优先级的业务传输的影响,提高低优先级的业务的相关信息的传输性能。其中,PUSCH上可传输独立编码的UCI的最大数目是根据终端的能力决定的。例如,可以是1个、2个或3个等。
参阅图3,为本申请实施例提供的控制信息的传输方法的示例性流程图。以下将以终端以及基站为执行主体对本申请提出的传输方法进行介绍。可以理解,本申请提出的传输方法也可以由用于终端的装置或用于基站的装置,例如芯片执行。
该方法可以包括以下操作。S301:终端将N个UCI中的M个UCI,映射至PUSCH的资源上。
其中,所述PUSCH的资源可以包括一个或多个RE。
N个UCI中可以包括优先级不同的UCI,也就是N个UCI中可以包括低优先级业务 的UCI,如eMBB业务的UCI,N个UCI中还可以包括高优先级业务的UCI,如URLLC业务的UCI。
上述N个UCI可以是基站指示的。可选的,在S301之前还可以包括以下操作S300A~S300C。
S300A:基站向终端发送第一信息,相应的终端接收第一信息。
其中,该第一信息可以用于配置或者指示PUSCH在第一时域资源上进行发送,PUSCH上可以承载上行数据信息。也就是说,基站通过第一信息向终端指示PUSCH的时域资源为第一时域资源。第一时域资源可以是一个或多个时隙或者也可以是一个或多个符号。
基站可以通过无线资源控制(radio resource control,RRC)信令向终端发送第一信息,也可以通过动态下行控制信息(downlink control information,DCI)向终端发送第一信息。
本申请实施例中,时隙可以是具有14个符号的时隙,或者也可以是具有2个符号或者7个符号的子时隙(subslot)。
S300B:基站向终端发送第二信息,相应的终端接收第二信息。
其中,该第二信息用于配置或者指示高优先级业务的UCI在上述第一时域资源上发送。
应理解,基站可以通过RRC信令向终端发送上述第二信息,也可以通过动态DCI向终端发送上述第二信息。上述第二信息可以是多个第二信息,每个第二信息指示了一个高优先级业务的UCI在第一时域资源上发送。
需要说明的是,上述第二信息可以配置或者指示高优先级业务的下行数据传输,并且还可以指示在上述第一时域资源上发送HARQ反馈信息。或者,上述第二信息也可以是配置或者指示高优先级业务的CSI的在上述第一时域资源上上报。
S300C:基站向终端发送第三信息,相应的终端接收第三信息。
其中,该第三信息用于配置或者指示低优先级业务的UCI在上述第一时域资源上发送。
应理解,基站可以通过RRC信令向终端发送上述第三信息,也可以通过动态DCI向终端发送上述第三信息。上述第三信息可以是多个第三信息,每个第三信息指示一个低优先级业务的UCI在第一时域资源上发送。
需要说明的是,上述第三信息可以配置或者指示低优先级业务的下行数据传输,并且还可以指示在上述第一时域资源上发送HARQ反馈信息。或者,上述第三信息也可以是配置或者指示低优先级业务的CSI的上报。
需要说明的是,上述S300A~S300C并无先后顺序的区分,也就是说基站可以按任意顺序向终端发送第一信息至第三信息,或者基站可以同时向终端发送上述第一信息至第三信息,本申请不做具体限定。
基于上述S300A~S300C,终端可以确定在PUSCH的资源上发送N个UCI。可选地,当满足如下任意一种条件时,UCI在PUSCH传输:一是某些类型的UCI本身规定只能在PUSCH上传输,不能在PUCCH上传输。这一类的UCI包括非周期CSI。其中,非周期CSI上报可以由DCI触发,也就是说基站可以通过DCI向终端触发非周期CSI的传输。上述非周期CSI只能在PUSCH上传输。二是,承载UCI的PUCCH与PUSCH在时域上重叠,例如单载波的场景,PUCCH和PUSCH不能同时传输,因此可以采用PUSCH传输原先承载在PUCCH上的UCI。
需要说明的是,上述N个UCI是独立编码的。即使出现两个UCI级联然后进行编码的情况,在本申请中,将该级联后编码的两个UCI认为是一个独立编码的UCI。
其中,N是大于1的整数,且N大于第一阈值。这里的第一阈值可以是预定义的或者是根据终端上报的能力决定的。终端上报的能力可以是终端支持的在PUSCH上传输的独立编码的UCI的最大数目,例如第一阈值可以是3。换句话说,基站向终端指示发送的N个UCI超过了终端支持的PUSCH上可传输的独立编码的UCI的最大数目。因此,终端可以在该N个UCI中选择M个UCI,映射至PUSCH的资源上,其中,M是大于或等于1的整数,且M可以小于或等于第一阈值。例如,当第一阈值是3时,M可以小于或等于3。
在一种可能的实现方式中,终端选择的M个UCI可以满足第一条件。其中,第一条件可以包括:该选择的M个UCI是上述N个UCI中排序靠前的M个UCI。也就是说,终端可以在N个UCI中,按照UCI的排序选择排序靠前的M个UCI映射在PUSCH的资源上。其中,N个UCI的排序也可以称为N个UCI的映射顺序,可以是预设的或者也可以是基站指示的。
上述N个UCI的排序可以是按照UCI的重要程度进行排序的。例如,可以按照UCI对业务传输的重要性,对N个UCI进行排序。举例来说,HARQ-ACK可以认为对业务传输的重要性较高,因此N个UCI的排序中HARQ-ACK可以排在首位。上述N个UCI的排序也可以结合业务的优先级进行排序。例如,高优先级业务的UCI的重要性比低优先级业务的UCI的重要性要高,高优先级业务的UCI的排序可以在低优先级业务的UCI的前面。
S302:终端发送PUSCH,相应的基站接收PUSCH。
上述PUSCH的资源上可以承载终端选择的M个UCI。
基站获取PUSCH承载的UCI后,可以根据UCI与终端进行通信。举例来说,如果M个UCI中包括HARQ-ACK,那么基站可以根据HARQ-ACK确定是否需要重传对应的数据。如果基站接收到NACK,那么基站可以确定需要重传该NACK对应的数据。
基于上述方案,示出了终端可以根据N个UCI的排序,选择M个UCI进行传输。由于N个UCI的排序平衡了高优先级业务的UCI和低优先级业务的UCI,可以在保证高优先级业务的传输的前提下,传输一些相对重要的低优先级业务的UCI,可以减少在高低优先级业务的相关信息时域冲突时,对低优先级业务传输的影响。
以下,对N个UCI的排序进行解释和说明。这N个UCI可以包括高优先及业务的UCI和低优先级业务的UCI中的任意两种或两种以上。其中,高优先级业务的UCI可以包括HP HARQ-ACK、HP CSI part1和HP CSI part2,低优先级业务的UCI可以包括LP HARQ-ACK、LP CSI part1和LP CSI part2。
由于HARQ-ACK对业务传输的重要性较高,且高优先级业务的UCI的重要性高于低优先级业务的UCI,因此HP HARQ-ACK总是有最高优先级,在N个UCI的排序中的第一顺位上。而LP CSI part 2对业务传输的重要性较低,可以由高优先级业务的CSI代替,或者也可以由LP CSI part 1代替,因此LP CSI part 2可以在N个UCI的排序中的末位。
以下,举例介绍N个UCI的排序的各个情况。
情况1、HP HARQ-ACK>HP CSI part1>HP CSI part2>LP HARQ-ACK>LP CSI part1>LP CSI part2。
情况2、HP HARQ-ACK>HP CSI part1>LP HARQ-ACK>HP CSI part2>LP CSI part1>LP CSI part2。
情况3、HP HARQ-ACK>LP HARQ-ACK>HP CSI part1>HP CSI part2>LP CSI part1 >LP CSI part2。
情况4、HP HARQ-ACK>HP CSI part1>LP HARQ-ACK>LP CSI part1>HP CSI part2>LP CSI part2。
情况5、HP HARQ-ACK>LP HARQ-ACK>HP CSI part1>LP CSI part1>HP CSI part2>LP CSI part2。
以上情况1-情况5中,各个类型的UCI均是按照被选择映射到PUSCH的优先顺序从左至右排列的,符号“>”左侧的UCI的优先顺序高于符号“>”右侧的UCI的优先顺序,排在左起首位表示首个被选择映射到PUSCH的UCI,排在左起第二位表示第二个被选择映射到PUSCH的UCI,不做赘述。
前三种排序(情况1-情况3)中,LP CSI part 1和LP CSI part 2位于最后两个顺位,这是因为考虑到低优先级的CSI重要性相对较低,可以由高优先级的CSI代替。剩下HP CSI和LP HARQ-ACK可能存在顺位上的不同,如果高优先级业务的UCI对业务传输的重要性更高,那么HP CSI排在LP HARQ-ACK之前,或者如果HARQ-ACK对业务传输的重要性更高,那么LP HARQ-ACK排在HP CSI之前。
后面情况4和情况5中,首先是认为HP HARQ-ACK最重要,排在首位。然后两个优先级的CSI part 2的重要性较低,因为一般情况下根据CSI part 1就能够确定信道状态,从而可以保证业务传输,因此CSI part 2表示的信息重要性较低。剩下的三个UCI中,LP HARQ-ACK和HP CSI part 1可以存在顺位上的不同,如果高优先级业务的UCI对业务传输的重要性更高,那么HP CSI排在LP HARQ-ACK之前,或者如果HARQ-ACK对业务传输的重要性更高,那么LP HARQ-ACK排在HP CSI之前。然后LP CSI part 1在这三个UCI中排最后。
终端可以按照上述情况1-情况5中的一种排序,从N个UCI中选择M个UCI,映射至PUSCH的资源上。可以理解,上述情况1-情况5只是对可能被传输的各个类型的UCI的排序的举例,并不意味着待传输N个UCI必须包含所有上述这些类型的UCI,也就是说,实际待传输的N个UCI可以只包含上述这些类型的UCI中的部分类型,且N个UCI可以按照上述规则1-规则5排序。
以下,以所述N个UCI包括HP HARQ-ACK,HP CSI part 1,HP CSI part 2,LP HARQ-ACK这4种类型的UCI,即该4种类型的UCI在PUSCH上传输为例进行说明。其中,可以假设M取值为3。
如果按照上述情况1的排序,HP HARQ-ACK>HP CSI part1>HP CSI part2>LP HARQ-ACK,终端可以从上述4个UCI中选择HP HARQ-ACK,HP CSI part 1和HP CSI part 2,并映射在PUSCH的资源上。如果按照上述情况2的排序,HP HARQ-ACK>HP CSI part1>LP HARQ-ACK>HP CSI part2,终端可以从上述4个UCI中选择HP HARQ-ACK,HP CSI part 1和LP HARQ-ACK,并映射在PUSCH的资源上。如果按照上述情况3的排序进行选择,终端可以从上述4个UCI中选择HP HARQ-ACK,LP HARQ-ACK和HP CSI part 1,并映射在PUSCH的资源上。以此类推,终端也可以按照上述情况4或情况5的排序,从4个UCI中选择3个UCI,并映射在PUSCH的资源上。
以下,再以N个UCI包括HP CSI part 1,HP CSI part 2,LP HARQ-ACK和LP CSI part 1这4种类型的UCI,即该4中类型的UCI在PUSCH上传输为例进行说明。其中,可以假设M取值为3。
如果按照上述情况1的排序,HP CSI part1>HP CSI part2>LP HARQ-ACK>LP CSI part1,终端可以从上述4个UCI中选择HP CSI part 1,HP CSI part 2和LP HARQ-ACK,并映射在PUSCH的资源上。如果按照上述情况2的排序,HP CSI part1>LP HARQ-ACK>HP CSI part2>LP CSI part1,终端可以从上述4个UCI中选择HP CSI part 1,LP HARQ-ACK和HP CSI part 2,并映射在PUSCH的资源上。以此类推,终端也可以按照上述情况3-情况5的排序,从4个UCI中选择3个UCI,并映射在PUSCH的资源上。例如,如果按照上述情况4中的排序进行选择,终端可以从上述4个UCI中选择HP CSI part1、LP HARQ-ACK和LP CSI part1,并映射在PUSCH的资源上。
上述选择的M个UCI,对应了编码链的顺序。举例来说,以N个UCI包括HP HARQ-ACK,HP CSI part 1,HP CSI part 2,LP HARQ-ACK 4种类型的UCI,即该4中类型的UCI在PUSCH上传输为例进行说明。如果终端选择的3个UCI为HP HARQ-ACK,HP CSI part 1和HP CSI part 2,那么HP HARQ-ACK通过第一编码链进行编码,HP CSI part 2通过第二编码链进行编码,LP HARQ-ACK通过第三编码链进行编码,并将编码后的比特映射至PUSCH的资源上。如果终端选择的3个UCI为HP HARQ-ACK,HP CSI part 1和LP HARQ-ACK,那么HP HARQ-ACK通过第一编码链进行编码,HP CSI part 1通过第二编码链进行编码,LP HARQ-ACK通过第三编码链进行编码,并将编码后的比特映射至PUSCH的资源上。
基于上述方案,终端可以在基站指示的N个UCI大于终端支持在PUSCH上传输的独立编码的UCI的最大数目时,按照UCI的排序选择M个UCI在PUSCH上传输。由于N个UCI的排序平衡了高优先级业务的UCI和低优先级业务的UCI,因此终端可以在保障高优先级业务的传输同时,传输一些对业务传输较为重要的低优先级业务的UCI。
以下,对UCI在PUSCH上传输的映射方式进行介绍。其中,以相同优先级的UCI映射在PUSCH上传输的映射方式为例进行说明。假设终端需要同时在PUSCH上传输HARQ-ACK、CSI part 1、CSI part2和上行共享信道(uplink shared channel,UL-SCH)。其中,UL-SCH可以理解为终端需要传输的上行数据。
需要说明的是,以下图4-图9中横向为时域且时域单位为符号,纵向为频域且频域单位为子载波,每个方格代表一个RE。
Step(步骤)1:映射HARQ-ACK。
参阅图4中的a,如果HARQ-ACK的比特数(或者说,比特长度)是0,1或2比特,那么按照2比特的大小,在PUSCH中的解调参考信号(demodulation reference signal,DMRS)符号之后的第一个UCI可用符号开始,预留一部分PUSCH资源作为预留区域(reserved region)。
参阅图5中的a,如果HARQ-ACK的比特数大于2比特,那么按照HARQ-ACK比特的实际大小,在PUSCH中的DMRS符号之后的第一个UCI可用符号对应的RE上按RE索引由小到大或者由大到小进行映射。如果HARQ-ACK可以占用上述第一个UCI可用符号对应的所有RE,则占用该符号对应的所有RE,再占用下一个符号对应的一个或多个RE。如果HARQ-ACK不足以占用上述第一个UCI可用符号对应的所有RE,则HARQ-ACK可以等间隔映射在该符号对应的RE上。
Step2:映射CSI part 1。
CSI part 1在PUSCH上的除DMRS符号,以及预留区域或者HARQ-ACK占用的符号 对应的RE之外的RE上按RE索引由小到大或者由大到小进行映射。参阅图4中的b,如果Step1为HARQ-ACK预留了预留区域,那么可以将CSI part 1映射到该预留区域之外的RE上,使得CSI part 1不会与HARQ-ACK冲突。
参阅图5中的b,如果Step1没有为HARQ-ACK预留预留区域,那么CSI part 1需要从HARQ-ACK占用的RE之外的其他RE上按RE索引由小到大或者由大到小进行映射。
Step3:映射CSI part 2。
CSI part 2在PUSCH上的除DMRS符号、HARQ-ACK占用的RE和Step2中CSI part 1所占用的RE之外的RE上按RE索引由小到大或者由大到小进行映射。参阅图4中的c,如果Step1为HARQ-ACK预留了预留区域,CSI part 2可以映射到该预留区域之外的RE上。CSI part 2可以从预留区域和Step2中CSI part 1所占用的RE之外的RE上进行映射。参阅图5中的c,CSI part 2可以从CSI part 1所占用的符号之后的第一个符号上的RE上进行映射。
Step4:映射UL-SCH。
UL-SCH在PUSCH上除DMRS符号、HARQ-ACK、CSI part 1和CSI part 2所占用的RE之外的RE上按RE索引由小到大或者由大到小进行映射。如果Step1中映射HARQ-ACK时有产生预留区域,UL-SCH可以映射至该预留区域上。
参阅图4中的d,由于CSI part 2占用了预留区域,所以UL-SCH可以在CSI part 2占用的符号之后的第一个符号的RE上进行映射。参阅图5中的d,UL-SCH可以在CSI part 2占用的符号之后的第一个符号的RE上进行映射。
Step5:如果HARQ-ACK的比特数是0,1或2比特,在预留区域中映射HARQ-ACK。
参阅图4中的e,不论在Step3和Step4中预留区域上是否映射了UCI或UL-SCH,都要在Step5中在该预留区域上重新映射HARQ-ACK,从而覆盖掉Step3和/或Step4在该预留区域中映射的内容。这也就造成了HARQ-ACK对Step3和/或Step4中的UCI或UL-SCH的打孔。
由于本申请实施例提供的技术方案中,HARQ-ACK可能包括HP HARQ-ACK和LP HARQ-ACK,在HP HARQ-ACK的比特和LP HARQ-ACK的比特均小于2比特时,可以给两个优先级不同的HARQ-ACK划定预留区域。
其中,如果M个UCI中包含LP HARQ-ACK且LP HARQ-ACK的比特小于或等于2比特,如果LP HARQ-ACK在映射时,并不是排序在首位,那么可以映射M个UCI前为LP HARQ-ACK划分预留区域,或者也可以在映射LP HARQ-ACK时划分预留区域。以下,分别对上述两种方案进行具体介绍。
方案一、在映射M个UCI前为LP HARQ-ACK划分预留区域。
终端从N个UCI中选择M个UCI之后,M个UCI可以分别通过不同的编码链进行编码,并映射至PUSCH的资源上。其中,如果M个UCI中包含LP HARQ-ACK,且LP HARQ-ACK的比特小于或等于2比特,终端可以在将M个UCI映射至PUSCH的资源上之前,为LP HARQ-ACK预留第一资源。若PUSCH的资源包括一个或多个RE,则第一资源可以是该一个或多个RE中的部分RE。
参阅图6,如果终端选择的M个UCI的顺序为HP CSI part1、LP HARQ-ACK和HP CSI part2。那么终端可以在将M个UCI映射至PUSCH的资源之前,为LP HARQ-ACK预留第一资源,即预留PUSCH资源中的部分RE。其次,终端可以分别将HP CSI part1和HP CSI  part2映射至PUSCH资源上。最后,终端可以在第一资源上映射LP HARQ-ACK的比特。
基于上述方案,在LP HARQ-ACK的比特小于或等于2比特时,明确了终端将M个UCI映射至PUSCH的资源上的顺序,以及不同优先级的UCI的映射方式。
可选的,如果LP HARQ-ACK小于或等于2比特的情况下,划定了一个预留区域(即第一资源),那么后续再映射的HP UCI和HP数据都要映射至这个预留区域之外的RE上。这里的HP UCI可以包括HP HARQ-ACK、HP CSI part 1和HP CSI part 2。例如,参阅图6,HP CSI part2在映射至PUSCH资源上时,可以映射到第一资源以外的RE上。
基于上述方案,与LP HARQ-ACK的优先级不同的UCI映射至PUSCH的资源上时,映射至为LP HARQ-ACK划分的预留区域之外的资源上,可以避免LP HARQ-ACK将高优先级业务的UCI打孔,从而减少对高优先级业务传输的影响。
具体的,以终端选择的M个UCI包括HP HARQ-ACK、HP CSI part 1和LP HARQ-ACK为例进行说明。假设LP HARQ-ACK排序在M个UCI中的第三顺位并且小于或等于2比特,HP HARQ-ACK和HP CSI part 1都是大于2比特的,则映射方式如图7所示。
参阅图7,详细的映射顺序是,终端首先为LP HARQ-ACK划定第一资源,LP HARQ-ACK的第一资源占用了DMRS符号之后的第一个可用符号对应的RE。然后终端映射HP HARQ-ACK,HP HARQ-ACK也占用DMRS符号之后的符号对应的RE中的可用RE,图7中示出的是LP HARQ-ACK的第一资源占用了DMRS符号之后的第一个符号的前5个RE,那么HP HARQ-ACK会继续占用这个符号剩下的RE和该符号之后的符号上的RE,直到HP HARQ-ACK的编码后比特都映射完毕。之后终端再映射HP CSI part 1,HP CSI part 1从DMRS之后的第一个符号开始映射,映射至已经被第一资源、HP HARQ-ACK和DMRS占用的RE之外的RE上。后续是HP数据映射,最后将LP HARQ-ACK的比特映射至预留区域内。
如果终端选择的M个UCI中还包含HP HARQ-ACK,且HP HARQ-ACK的比特小于或等于2比特,那么终端可以在映射M个UCI中除HP HARQ-ACK和LP HARQ-ACK之外的其他UCI之前,分别为HP HARQ-ACK预留第二资源,以及为LP HARQ-ACK预留第一资源。其中,所述第一资源可以包括一个或多个RE,所述第二资源可以包括一个或多个RE。
以终端选择的M个UCI包括HP HARQ-ACK、HP CSI part 1和LP HARQ-ACK为例进行说明。假设LP HARQ-ACK排序在M个UCI中的第三顺位并且小于2bit,HP HARQ-ACK排序在M个UCI中的第一顺位也是小于2比特。
参阅图8,终端可以为HP HARQ-ACK和LP HARQ-ACK都划分预留区域。终端可以在映射M个UCI之前划定好所有HARQ-ACK的预留区域。其中,终端可以先划定HP HARQ-ACK的预留区域。HP HARQ-ACK的预留区域从DMRS符号之后的第一个符号开始划定,再划定LP HARQ-ACK的预留区域。LP HARQ-ACK的预留区域从DMRS符号之后的可用RE开始确定。图8中示出的是HP HARQ-ACK的预留区域占用了DMRS符号之后的第一个符号的前5个RE,那么LP HARQ-ACK的预留区域会继续占用这个符号剩下的RE和该符号之后的符号上的RE,直到划分完LP HARQ-ACK的预留区域。之后终端再映射HP CSI part 1。HP CSI part 1从第一个符号开始映射,映射至已经被第一资源、第二资源和DMRS占用的RE之外的其他RE上。后续是HP数据映射,最后将LP HARQ-ACK的比特映射至第一资源上,将HP HARQ-ACK的比特映射至第二资源上。
需要说明的是,终端在将映射HP HARQ-ACK的比特映射至第二资源和将LP HARQ-ACK的比特映射至第一资源时,并不限定具体顺序。例如,终端可以先将HP HARQ-ACK的比特映射至第二资源上,再将LP HARQ-ACK的比特映射至第一资源上。或者,为了避免HP HARQ-ACK被LP-HARQ-ACK覆盖,也就是避免HP HARQ-ACK被打孔(puncture)或者说被抢占,终端也可以先将LP HARQ-ACK的比特映射至第一资源上,再将HP HARQ-ACK映射至第二资源上。
可选的,如果HP HARQ-ACK小于或等于2比特的情况下,划定了一个预留区域(第二资源),那么后续再映射的LP UCI和LP data都要映射这个预留区域之外的RE上。其中,LP UCI可以包括LP HARQ-ACK、LP CSI part 1和LP CSI part 2。
基于上述方案,与HP HARQ-ACK的优先级不同的UCI映射至PUSCH的资源上时,映射至为HP HARQ-ACK划分的预留区域之外的资源上,可以避免HP HARQ-ACK将低优先级业务的UCI打孔,从而影响低优先级业务的UCI的传输,可以减少对低优先级业务传输的影响。
方案二、在映射LP HARQ-ACK时划分预留区域。
终端从N个UCI中选择M个UCI之后,M个UCI可以分别通过不同的编码链进行编码,并映射至PUSCH的RE上。其中,如果M个UCI中包含LP HARQ-ACK,且LP HARQ-ACK的比特小于或等于2比特,终端可以在将LP HARQ-ACK映射至PUSCH的RE上时,为LP HARQ-ACK预留第一资源。
参阅图9,如果终端选择的M个UCI的顺序为HP CSI part 1、LP HARQ-ACK和HP CSI part2。终端可以在PUSCH上的除DMRS占用的RE以外的RE上,映射HP CSI part 1。之后,终端可以为LP HARQ-ACK预留第一资源。其中,如果HP CSI part1占用了一个符号上的所有RE,那么终端可以在HP CSI part 1所占用的符号之后的第一个符号上为LP HARQ-ACK预留第一资源。如果HP CSI part1没有占用一个符号上的所有RE,那么终端可以在HP CSI part 1所占用的符号上除了已经被HP CSI part 1占用的RE以外的剩余的RE,以及HP CSI part 1所占用的符号之后的符号上的RE中,为LP HARQ-ACK预留第一资源。之后终端可以在PUSCH上的除了已经被DMRS、第一资源和HP CSI part 1占用的RE以外的RE上映射HP CSI part 2。最后,终端可以在第一资源上映射LP HARQ-ACK的比特。
基于上述方案,在LP HARQ-ACK的比特小于或等于2比特时,明确了终端将M个UCI映射至PUSCH的资源上的顺序,以及不同优先级的UCI的映射方式。
可选的,如果LP HARQ-ACK小于或等于2比特的情况下,划定了一个预留区域(第一资源),那么后续再映射的HP UCI和HP数据都要映射至这个预留区域之外的RE上。这里的HP UCI可以包括HP HARQ-ACK、HP CSI part 1和HP CSI part 2。例如,参阅图6,HP CSI part2在映射至PUSCH的RE上时,可以映射至第一资源之外的RE上。
如果终端选择的M个UCI中还包含HP HARQ-ACK,且HP HARQ-ACK的比特小于或等于2比特,那么终端可以在映射M个UCI中除HP HARQ-ACK和LP HARQ-ACK之外的其他UCI之前,为HP HARQ-ACK预留第二资源,并在映射LP HARQ-ACK时,为LP HARQ-ACK预留第一资源。
以终端选择的M个UCI包括HP HARQ-ACK、HP CSI part 1和LP HARQ-ACK为例进行说明。假设LP HARQ-ACK排序在M个UCI中的第三顺位并且比特数小于2bit,HP  HARQ-ACK排序在M个UCI中的第一顺位且比特数小于2比特。
参阅图10,由于LP HARQ-ACK的映射顺位在最后,所以映射的过程是,终端先划定HP HARQ-ACK的预留区域(即第二资源)。第二资源从DMRS符号之后的第一个符号开始划定,然后终端映射HP CSI part 1。HP CSI part 1从第一个符号开始映射,映射至已经被第二资源和DMRS占用的RE之外的RE上。此时,轮到LP HARQ-ACK的顺位,终端可以划分LP HARQ-ACK的预留区域。之后终端可以将HP数据映射至PUSCH的资源上,最后终端将HP HARQ-ACK的比特映射到第二资源上,再将LP HARQ-ACK的比特映射到第一资源上。
需要说明的是,终端将HP HARQ-ACK的比特映射至第二资源和将LP HARQ-ACK的比特映射至第一资源时,并不限定具体顺序。例如,终端可以先将HP HARQ-ACK的比特映射至第二资源上,再将LP HARQ-ACK的比特映射至第一资源上。或者,为了避免HP HARQ-ACK被打孔,终端也可以先将LP HARQ-ACK的比特映射至第一资源上,再将HP HARQ-ACK映射至第二资源上。
可选的,如果HP HARQ-ACK小于或等于2比特的情况下,划定了一个预留区域(第二资源),那么后续再映射的LP UCI和LP数据都要映射这个预留区域之外的RE上。其中,LP UCI可以包括LP HARQ-ACK、LP CSI part 1和LP CSI part 2。
基于上述方案,与HP HARQ-ACK的优先级不同的UCI映射至PUSCH的资源上时,绕开为HP HARQ-ACK划分的预留区域,可以避免HP HARQ-ACK将低优先级业务的UCI打孔,从而影响低优先级业务的UCI的传输,可以减少对低优先级业务传输的影响。
可以理解的是,为了实现上述实施例中功能,基站和终端包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图11和图12为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端或基站的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图2所示的终端120a-120j中的一个,也可以是如图2所示的基站120a或120b,还可以是应用于终端或基站的模块(如芯片)。
如图11所示,通信装置1100包括处理单元1110和收发单元1120。通信装置1100用于实现上述图6中所示的方法实施例中终端或基站的功能。
当通信装置1100用于实现图3所示的方法实施例中终端的功能时:处理单元1110用于将N个UCI中的M个UCI映射至PUSCH的资源上。收发单元1120用于发送PUSCH。
当通信装置1100用于实现图3所示的方法实施例中基站的功能时:收发单元1120用于接收PUSCH。处理单元1110用于获取N个UCI。
有关上述处理单元1110和收发单元1120更详细的描述可以直接参考图3所示的方法实施例中相关描述直接得到,这里不加赘述。
如图12所示,通信装置1200包括处理器1210和接口电路1220。处理器1210和接口电路1220之间相互耦合。可以理解的是,接口电路1220可以为收发器或输入输出接口。 可选的,通信装置1200还可以包括存储器1230,用于存储处理器1210执行的指令或存储处理器1210运行指令所需要的输入数据或存储处理器1210运行指令后产生的数据。
当通信装置1200用于实现图6所示的方法时,处理器1210用于实现上述处理单元1110的功能,接口电路1220用于实现上述收发单元1120的功能。
当上述通信装置为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能。该终端芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是基站发送给终端的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给基站的。
当上述通信装置为应用于基站的模块时,该基站模块实现上述方法实施例中基站的功能。该基站模块从基站中的其它模块(如射频模块或天线)接收信息,该信息是终端发送给基站的;或者,该基站模块向基站中的其它模块(如射频模块或天线)发送信息,该信息是基站发送给终端的。这里的基站模块可以是基站的基带芯片,也可以是DU或其他模块,这里的DU可以是开放式无线接入网(open radio access network,O-RAN)架构下的DU。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。当然,处理器和存储介质也可以作为分立组件存在于基站或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且实施例之间可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“包括A,B和C中的至少一个”可以表示:包括A;包括B;包括C;包括A和B;包括A和C;包括B和C;包括A、B和C。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (28)

  1. 一种控制信息的传输方法,其特征在于,所述方法用于终端设备,所述方法包括:
    将N个上行控制信息UCI中的M个UCI,映射至物理上行共享信道PUSCH的资源上;所述N个UCI包括优先级不同的UCI,所述M个UCI满足第一条件,N是大于1的整数;M是大于或等于1的整数,M小于或等于第一阈值且小于或等于N,所述第一阈值小于N;
    发送所述PUSCH。
  2. 根据权利要求1所述的方法,其特征在于,所述M个UCI中包括低优先级业务的混合自动重传请求HARQ反馈信息LP HARQ反馈信息,所述LP HARQ反馈信息是所述M个UCI中排序在非首位的UCI,且所述LP HARQ反馈信息的比特数小于或等于指定比特数;
    所述方法还包括:
    在将所述M个UCI映射至PUSCH的资源上之前,预留第一资源;或者,在将所述LP HARQ反馈信息映射至PUSCH的资源上时,预留第一资源;所述第一资源是所述PUSCH的资源中的部分资源。
  3. 根据权利要求2所述的方法,其特征在于,所述M个UCI中还包括高优先级业务的HARQ反馈信息HP HARQ反馈信息,且所述HP HARQ反馈信息的比特数小于或等于指定比特数,
    所述方法还包括:
    在将所述M个UCI映射至所述PUSCH的资源上之前,预留第二资源;所述第二资源是所述PUSCH的资源中的部分资源;所述第二资源与所述第一资源不重叠。
  4. 根据权利要求3所述的方法,其特征在于,所述HP HARQ反馈信息的比特数小于或等于指定比特数。
  5. 根据权利要求2所述的方法,其特征在于,在所述M个UCI中还包括与所述LP HARQ反馈信息的优先级不同的高优先级业务的UCI时,所述高优先级业务的UCI映射至所述PUSCH的资源中除所述第一资源以外的资源上。
  6. 根据权利要求5所述的方法,其特征在于,在所述M个UCI中还包括与所述HP HARQ反馈信息的优先级不同的低优先级业务的UCI时,所述低优先级业务的UCI映射至PUSCH的资源中除所述第二资源以外的资源上。
  7. 一种控制信息的传输方法,其特征在于,所述方法用于网络设备,所述方法包括:
    接收物理上行共享信道PUSCH;
    其中,所述PUSCH中包括M个上行控制信息UCI,所述M个UCI是N个UCI中满足第一条件的UCI,N个UCI包括优先级不同的UCI,N是大于1的整数;M是大于1的整数,M小于或等于第一阈值且小于或等于N,所述第一阈值小于N。
  8. 根据权利要求1~7任一所述的方法,其特征在于,所述第一阈值是预定义的或者是根据终端设备上报的能力决定的。
  9. 根据权利要求1~8任一所述的方法,其特征在于,所述UCI是以下任意一种信息:
    HP HARQ反馈信息、高优先级业务的信道状态信息的第一部分HP CSI part1、高优先级业务的状态信道信息的第二部分HP CSI part2、LP HARQ反馈信息、低优先级业务的CSI的第一部分LP CSI part1和低优先级业务的CSI的第二部分LP CSI part2。
  10. 根据权利要求1~9任一所述的方法,其特征在于,所述第一条件包括所述M个UCI是所述N个UCI中排序靠前的M个UCI。
  11. 根据权利要求1~10任一所述的方法,其特征在于,所述N个UCI中包括HP HARQ-ACK,所述HP HARQ-ACK是所述N个UCI中排序的首位。
  12. 根据权利要求1~11任一所述的方法,其特征在于,所述N个UCI中包括LP CSI part2,所述LP CSI part2是所述N个UCI中排序的末位。
  13. 根据权利要求1~12任一所述的方法,其特征在于,所述N个UCI的排序满足以下中的一种:
    HP HARQ反馈信息>HP CSI part1>HP CSI part2>LP HARQ反馈信息>LP CSI part1>LP CSI part2;或者,
    HP HARQ反馈信息>HP CSI part1>LP HARQ反馈信息>HP CSI part2>LP CSI part1>LP CSI part2;或者,
    HP HARQ反馈信息>LP HARQ反馈信息>HP CSI part1>HP CSI part2>LP CSI part1>LP CSI part2;或者,
    HP HARQ反馈信息>HP CSI part1>LP HARQ反馈信息>LP CSI part1>HP CSI part2>LP CSI part2;或者,
    HP HARQ反馈信息>LP HARQ反馈信息>HP CSI part1>LP CSI part1>HP CSI part2>LP CSI part2。
  14. 一种通信装置,其特征在于,包括:处理单元和收发单元;
    所述处理单元,用于将N个上行控制信息UCI中的M个UCI,映射至物理上行共享信道PUSCH的资源上;所述N个UCI包括优先级不同的UCI,所述M个UCI满足第一条件,N是大于1的整数;M是大于或等于1的整数,M小于或等于第一阈值且小于或等于N,所述第一阈值小于N;
    所述收发单元,用于发送所述PUSCH。
  15. 根据权利要求14所述的通信装置,其特征在于,所述M个UCI中包括低优先级业务的混合自动重传请求LP HARQ反馈信息,所述LP HARQ反馈信息是所述M个UCI中排序在非首位的UCI,且所述LP HARQ反馈信息的比特数小于或等于指定比特数;
    所述处理单元还用于:
    在将所述M个UCI映射至PUSCH的资源上之前,预留第一资源;或者,在将所述LP HARQ反馈信息映射至PUSCH的资源上时,预留第一资源;所述第一资源是所述PUSCH的资源中的部分资源。
  16. 根据权利要求15所述的通信装置,其特征在于,所述M个UCI中还包括高优先级业务的HARQ反馈信息HP HARQ反馈信息,且所述HP HARQ反馈信息的比特数小于或等于指定比特数,
    所述处理单元还用于:
    在将所述M个UCI映射至所述PUSCH的资源上之前,预留第二资源;所述第二资源 是所述PUSCH的资源中的部分资源;所述第二资源与所述第一资源不重叠。
  17. 根据权利要求16所述的通信装置,其特征在于,所述HP HARQ反馈信息的比特数小于或等于指定比特数。
  18. 根据权利要求15所述的通信装置,其特征在于,在所述M个UCI中还包括与所述LP HARQ反馈信息的优先级不同的高优先级业务的UCI时,所述高优先级业务的UCI映射至所述PUSCH的资源中除所述第一资源以外的资源上。
  19. 根据权利要求18所述的通信装置,其特征在于,在所述M个UCI中还包括与所述HP HARQ反馈信息的优先级不同的低优先级业务的UCI时,所述低优先级业务的UCI映射至PUSCH的资源中除所述第二资源以外的资源上。
  20. 一种通信装置,其特征在于,包括:处理单元和收发单元;
    所述收发单元,用于接收物理上行共享信道PUSCH;
    其中,所述PUSCH中包括M个上行控制信息UCI,所述M个UCI是N个UCI中满足第一条件的UCI,N个UCI包括优先级不同的UCI,N是大于1的整数;M是大于1的整数,M小于或等于第一阈值且小于或等于N,所述第一阈值小于N;
    所述处理单元,用于获取所述M个UCI。
  21. 根据权利要求14~20任一所述的通信装置,其特征在于,所述第一阈值是预定义的或者是根据所述通信装置上报的能力决定的。
  22. 根据权利要求14~21任一所述的通信装置,其特征在于,所述UCI是以下任意一种信息:
    HP HARQ反馈信息、高优先级业务的信道状态信息的第一部分HP CSI part1、高优先级业务的信道状态信息的第二部分HP CSI part2、LP HARQ反馈信息、低优先级业务的CSI的第一部分LP CSI part1和低优先级业务的CSI的第二部分LP CSI part2。
  23. 根据权利要求14~22任一所述的通信装置,其特征在于,所述第一条件包括所述M个UCI是所述N个UCI中排序靠前的M个UCI。
  24. 根据权利要求14~23任一所述的通信装置,其特征在于,所述N个UCI中包括HP HARQ反馈信息,所述HP HARQ反馈信息是所述N个UCI中排序的首位。
  25. 根据权利要求14~24任一所述的通信装置,其特征在于,所述N个UCI中包括LP CSI part2,所述LP CSI part2是所述N个UCI中排序的末位。
  26. 根据权利要求14~25任一所述的通信装置,其特征在于,所述N个UCI的排序满足以下中的一种:
    HP HARQ反馈信息>HP CSI part1>HP CSI part2>LP HARQ反馈信息>LP CSI part1>LP CSI part2;或者,
    HP HARQ反馈信息>HP CSI part1>LP HARQ反馈信息>HP CSI part2>LP CSI part1>LP CSI part2;或者,
    HP HARQ反馈信息>LP HARQ反馈信息>HP CSI part1>HP CSI part2>LP CSI part1>LP CSI part2;或者,
    HP HARQ反馈信息>HP CSI part1>LP HARQ反馈信息>LP CSI part1>HP CSI part2>LP CSI part2;或者,
    HP HARQ反馈信息>LP HARQ反馈信息>HP CSI part1>LP CSI part1>HP CSI part2 >LP CSI part2。
  27. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1~6或8~13中任一项所述的方法或者用于实现如权利要求7~13中任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1~6或8~13中任一项所述的方法或者实现如权利要求7~13任一项所述的方法。
PCT/CN2022/110025 2021-08-06 2022-08-03 控制信息的传输方法和装置 WO2023011542A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110900708.2A CN115707136A (zh) 2021-08-06 2021-08-06 控制信息的传输方法和装置
CN202110900708.2 2021-08-06

Publications (1)

Publication Number Publication Date
WO2023011542A1 true WO2023011542A1 (zh) 2023-02-09

Family

ID=85155256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110025 WO2023011542A1 (zh) 2021-08-06 2022-08-03 控制信息的传输方法和装置

Country Status (2)

Country Link
CN (1) CN115707136A (zh)
WO (1) WO2023011542A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020025217A (ja) * 2018-08-08 2020-02-13 シャープ株式会社 端末装置、基地局装置、および、通信方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034852A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种通信方法及设备
CN111436128A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 传输上行信息的方法和通信装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034852A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种通信方法及设备
CN111436128A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 传输上行信息的方法和通信装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
APPLE INC.: "Views on Intra-UE Multiplexing/Prioritization", 3GPP DRAFT; R1-2103106, vol. RAN WG1, 7 April 2021 (2021-04-07), pages 1 - 32, XP052177907 *
HUAWEI, HISILICON: "Intra-UE multiplexing enhancements", 3GPP DRAFT; R1-2104264, vol. RAN WG1, 12 May 2021 (2021-05-12), pages 1 - 16, XP052010718 *
MODERATOR (OPPO): "Summary#1 of email thread [104b-e-NR-R17-IIoT_URLLC-04]", 3GPP DRAFT; R1-2106051, vol. RAN WG1, 19 May 2021 (2021-05-19), pages 1 - 74, XP052012460 *
QUALCOMM INCORPORATED: "Intra-UE multiplexing and prioritization for IOT and URLLC", 3GPP DRAFT; R1-2104666, vol. RAN WG1, 12 May 2021 (2021-05-12), pages 1 - 27, XP052010917 *

Also Published As

Publication number Publication date
CN115707136A (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
WO2020143839A1 (zh) 上行控制信息复用的方法和装置
EP3866364A1 (en) Method for sending data, apparatus for sending data, and terminal device
US10623150B2 (en) Control information transmission method, user equipment, and base station
US9686776B2 (en) Method and device for processing information
WO2020143428A1 (zh) 传输上行信息的方法和通信装置
US11044724B2 (en) Communication method, network side device, and terminal device
CN114531734B (zh) 信息传输方法及相关装置
WO2019233339A1 (zh) 传输信息的方法和通信设备
JP7451783B2 (ja) 物理アップリンク制御チャネルリソースの選択
CA3056266C (en) Uplink transmission method, apparatus, terminal device, access network device and system
CN113678558B (zh) 信息传输方法及相关装置
WO2021161861A1 (ja) 端末及び通信方法
WO2021017765A1 (zh) 通信方法和通信装置
CN114885431A (zh) 一种通信方法及装置
WO2023011542A1 (zh) 控制信息的传输方法和装置
WO2021159979A1 (zh) 混合自动重传请求确认码本的反馈方法及装置
CN114391230A (zh) 上行控制信息复用传输的方法和装置
CN114451017A (zh) 一种激活和释放非动态调度传输的方法及装置
US10728921B2 (en) Information processing method and device
WO2021056557A1 (zh) Harq反馈的方法和终端设备
EP4366430A1 (en) Communication method and apparatus
WO2022027643A1 (zh) 上行信息复用传输的方法和装置
WO2023134619A1 (zh) Harq-ack信息反馈方法和装置
WO2024032732A1 (zh) Harq-ack码本反馈方法和通信装置
WO2022121856A1 (zh) 半持续调度物理下行共享信道的码本生成方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE