WO2024032732A1 - Harq-ack码本反馈方法和通信装置 - Google Patents

Harq-ack码本反馈方法和通信装置 Download PDF

Info

Publication number
WO2024032732A1
WO2024032732A1 PCT/CN2023/112333 CN2023112333W WO2024032732A1 WO 2024032732 A1 WO2024032732 A1 WO 2024032732A1 CN 2023112333 W CN2023112333 W CN 2023112333W WO 2024032732 A1 WO2024032732 A1 WO 2024032732A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
feedback information
harq
data channels
scheduled
Prior art date
Application number
PCT/CN2023/112333
Other languages
English (en)
French (fr)
Inventor
黄秀璇
李新县
丁梦颖
彭金磷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211213951.8A external-priority patent/CN117675147A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024032732A1 publication Critical patent/WO2024032732A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to the field of wireless communications, and more specifically, to a HARQ-ACK codebook feedback method and communication device.
  • a downlink control information (downlink control Information, DCI) schedules data channels on multiple cells.
  • the data channel can be a physical downlink shared channel (PDSCH) or a physical uplink shared channel (PUSCH).
  • the hybrid automatic repeat request (HARQ) mechanism is a confirmation mechanism that combines forward error correction (FEC) technology and automatic repeat request (ARQ) technology.
  • the data receiving end can notify the data sending end whether the data has been successfully received by sending feedback information.
  • the current HARQ mechanism is designed for one DCI to schedule the data channels of one cell. When one DCI can schedule the data channels of multiple cells, the HARQ mechanism needs to be adaptively improved so that the receiving end and transmitting end of the data can Agree on whether the data was received correctly.
  • Embodiments of the present application provide a hybrid automatic repeat request confirmation HARQ-ACK codebook feedback method and communication device, which can improve HARQ-ACK codebook feedback and thereby improve the efficiency and reliability of data transmission.
  • a HARQ-ACK codebook feedback method is provided, which method can be executed by a terminal or a module (such as a chip) configured in (or used for) the terminal.
  • the following uses the terminal to execute this method as an example for explanation.
  • the method includes: a terminal receives first downlink control information (DCI) from a network device, where the first DCI includes scheduling information of N1 data channels on W cells and a first cumulative downlink allocation index (counter -downlink assignment index, C-DAI), where W and N1 are integers greater than 1, and W is less than or equal to N1.
  • the terminal sends feedback information including the first HARQ-ACK codebook to the network device.
  • the first HARQ-ACK codebook includes HARQ feedback information for N2 data channels.
  • N2 is an integer greater than 1.
  • the N2 data channels include the above N1 data channels scheduled by the first DCI, where the order of the HARQ feedback information of the N1 data channels in the first HARQ-ACK codebook is determined by the terminal based on the first C-DAI.
  • the multi-cell scheduling DCI (that is, the DCI that schedules multiple data channels on multiple cells) sent by the network device to the terminal includes C-DAI, and the terminal and the network device determine the HARQ feedback information of the data channel based on the C-DAI
  • the ordering in the HARQ-ACK codebook enables the terminal and the network device to have a consistent understanding of the HARQ-ACK codebook including the HARQ feedback information of multiple data channels scheduled by a DCI.
  • the terminal can determine the correct ordering of each data channel in the HARQ-ACK codebook based on C-DAI, thereby consistent with the network device's understanding of the HARQ-ACK codebook, improving HARQ -The transmission reliability of the ACK codebook, through the feedback of the reliable HARQ-ACK codebook, enables the network device to retransmit the data block in time when the terminal fails to receive the data block, thereby improving the transmission efficiency and reliability of the data block. sex.
  • a HARQ-ACK codebook feedback method is provided, which method can be executed by a network device or a module (such as a chip) configured in (or used for) the network device.
  • the following uses a network device to implement this method as an example for description.
  • the method includes: the network device sends a first DCI to the terminal, the first DCI includes scheduling information of N1 data channels on W cells and the first C-DAI, where W and N1 are integers greater than 1, and W Less than or equal to N1.
  • the network device receives feedback information from the terminal including the first HARQ-ACK codebook.
  • the first HARQ-ACK codebook includes HARQ feedback information for N2 data channels.
  • N2 is an integer greater than 1.
  • the N2 data channels Includes N1 data channels of the above-mentioned first DCI schedule.
  • the order in which the HARQ feedback information of the N1 data channels is arranged in the first HARQ-ACK codebook is determined by the network device according to the first C-DAI. Determined.
  • the first C-DAI indicates the cumulative count value of the first DCI in the DCI that schedules the N2 data channels, and the DCI that schedules the N2 data channels is The DCIs within the same listening opportunity are first accumulated and counted in order of the serving cell index of the cell in which they are located from small to large, and then the DCIs are counted sequentially in the time order of the listening opportunities to which the DCI belongs.
  • the first C-DAI indicates that up to the current serving cell (that is, the serving cell where the first DCI is located) and the current monitoring opportunity (that is, the first monitoring opportunity where the first DCI is located), first according to the serving cell index, the small The accumulated count value obtained by counting the (serving cell, PDCCH listening opportunity)-pairs in the order of the largest one and then according to the time sequence of the monitoring opportunities.
  • the C-DAI specifically indicates the cumulative count value of the first DCI up to the current listening opportunity, so that the terminal can determine, based on the cumulative count value of the first DCI, that the HARQ feedback information of the data channel scheduled by the first DCI is in the HARQ- Sorting in the ACK codebook results in the HARQ-ACK codebook.
  • the network device determines the HARQ feedback information of the data channel scheduled by the first DCI in the HARQ-ACK codebook based on the accumulated count value of the first DCI, thereby achieving consistent understanding of the HARQ-ACK codebook by the terminal and the network device, and improving HARQ -ACK codebook reliability.
  • the multiple DCIs are scheduled according to the reference data of each DCI.
  • the serving cell index of the cell where the channel is located is accumulated in order from small to large or from large to small.
  • the DCI scheduled reference data channel is the data channel with the smallest serving cell index of the cell where it is located among the DCI scheduled data channels.
  • the DCI-scheduled reference data channel is a data channel among the DCI-scheduled data channels used to determine a time unit for sending HARQ feedback information.
  • multiple multi-cell scheduled DCIs are at the same listening time and on the same cell, they can be sorted according to the serving cell index of the cell where the reference data channel is located, which reduces the inconsistency in understanding of sorting between terminals and network equipment.
  • the first C-DAI in the first DCI indicates a cumulative count value of scheduled data channels among N2 data channels as of the first DCI.
  • the N2 data channels are first accumulated and counted according to the serving cell index of the cell where the DCI of the scheduled data channel is located within the same listening opportunity in order from small to large, and then the data channels scheduled by the DCI are counted according to the listening time to which the scheduled DCI belongs. The data channels are counted sequentially in time sequence.
  • the first C-DAI indicates the carrier up to the current listening opportunity (i.e., the first listening opportunity where the first DCI is located) and the current DCI (i.e., the first DCI).
  • the cumulative count value obtained by counting obtained by counting (PDCCH monitoring timing, data channel)-pairs in order from small to large according to the index of the serving cell where the DCI is located.
  • C-DAI specifically indicates the maximum cumulative count value of the data channel that has been scheduled by the current DCI as of the current listening opportunity, so that the terminal can sort the HARQ feedback information of the data channel based on the cumulative count value of the data channel, as follows: HARQ-ACK codebook.
  • the network device determines the HARQ feedback information of each data channel in the HARQ-ACK codebook based on the cumulative count value of the data channel, achieving consistent understanding of the HARQ-ACK codebook by the terminal and the network device, and improving the performance of the HARQ-ACK codebook. reliability.
  • the first C-DAI indicates the cumulative count value of the data channel among the N1 data channels whose cell has the smallest serving cell index among the N2 data channels.
  • the above N2 data channels are first accumulated and counted in the order of the serving cell index of the cell in which they are located in the same listening opportunity, and then accumulated in order of the time of the listening opportunity to which the DCI of the scheduled data channel belongs. count.
  • C-DAI indicates the cumulative count value of the data channel with the smallest serving cell index among the DCI scheduled data channels where it is located.
  • the terminal can calculate the cumulative count value based on the number of data channels scheduled by the DCI and the cumulative count value indicated by C-DAI. Determine the cumulative count value of each data channel that has been scheduled, thereby determining the order of each data channel in the HARQ-ACK codebook, achieving consistency with the network device's understanding of the HARQ-ACK codebook.
  • the first DCI also includes a total-downlink assignment index (T-DAI).
  • T-DAI total-downlink assignment index
  • the T-DAI indicates the total value of scheduled data channels among the N2 data channels as of the first listening opportunity.
  • the first listening opportunity is the listening opportunity where the first DCI is located.
  • T-DAI indicates the total value of DCI scheduled for N2 data channels as of the first listening opportunity.
  • the multi-cell scheduling DCI including T-DAI can be used as the last step before the terminal detects the feedback HARQ-ACK codebook.
  • the latter DCI determine the total number of DCI or data channels actually sent by the network device, thereby determining the correct size of the HARQ-ACK codebook, and achieving consistent understanding of the HARQ-ACK codebook with the network device.
  • the DCI that schedules N2 data channels all schedules multiple data channels on multiple cells.
  • the HARQ feedback information of the data channel scheduled by DCI using multi-cell scheduling is carried in a HARQ-ACK codebook, that is, the C-DAI in multi-cell scheduling DCI is for multi-cell scheduling DCI or multi-cell scheduling DCI scheduling.
  • Cumulative counting of data channels can reduce the problem of mutual influence between multiple scheduling methods for cumulative counting and HARQ feedback, which increases the error probability of HARQ feedback.
  • the feedback information sent by the terminal also includes a second HARQ-ACK codebook.
  • the second HARQ-ACK codebook includes HARQ feedback information of N3 data channels. Scheduling The DCI of each of the N3 data channels schedules only one data channel.
  • the feedback information sent by the terminal also includes a third HARQ-ACK codebook.
  • the third HARQ-ACK codebook includes HARQ feedback information of N4 data channels. Scheduling The DCI of each of the N4 data channels schedules multiple data channels located in multiple time units.
  • the first HARQ-ACK codebook includes K HARQ feedback information groups, K is the number of DCIs scheduling N2 data channels, and one HARQ feedback information group includes L1 HARQ feedback information, and L1 HARQ feedback information includes HARQ feedback information of a DCI scheduled data channel, where L1 is the maximum number of data blocks scheduled by a DCI, L1 is greater than or equal to N1, and the data channel is used to carry At least one data block.
  • the number of HARQ feedback information corresponding to each DCI in the first HARQ-ACK codebook is determined according to the maximum number of data blocks that can be scheduled by each DCI, so that the terminal and network equipment can determine the size of the HARQ-ACK codebook Able to understand consistency. Even if the terminal misses detection of one or more DCIs, it can also determine the number of HARQ feedback information corresponding to the DCI in the HARQ-ACK codebook, which can reduce the inconsistency in the understanding of the HARQ-ACK codebook between the terminal and the network equipment due to the terminal missing DCI detection. The problem.
  • the first HARQ-ACK codebook includes K feedback information groups, one of the HARQ feedback information groups includes L2 HARQ feedback information, and the L2
  • the HARQ feedback information includes the HARQ feedback information of the data channel group to which a DCI scheduled data channel belongs.
  • L2 is less than or equal to N1, and L2 is the maximum number of a DCI scheduled data channel group.
  • the terminal groups multiple data channels scheduled by multi-cell DCI scheduling, and each data channel group feeds back one HARQ feedback information, which can reduce the feedback overhead of HARQ feedback information and improve resource utilization.
  • a communication device may include a module that performs one-to-one correspondence with the methods/operations/steps/actions described in the first aspect.
  • the module may be a hardware circuit, or However, software can also be implemented by hardware circuits combined with software.
  • the device includes: a transceiver unit configured to receive a first DCI from a network device, where the first DCI includes scheduling information of N1 data channels on W cells and a first cumulative downlink allocation index C-DAI, Among them, W and N1 are integers greater than 1, and W is less than or equal to N1.
  • a processing unit configured to determine feedback information including the first HARQ-ACK codebook, where the first HARQ-ACK codebook includes HARQ feedback information of N2 data channels, N2 is an integer greater than 1, and the N2 data channels include N1 data channels, and the order of the HARQ feedback information of the N1 data channels in the first HARQ-ACK codebook is determined based on the first C-DAI.
  • the transceiver unit is also used to send the feedback information to the network device.
  • the fourth aspect provides a communication device.
  • the device may include a module that performs one-to-one correspondence with the methods/operations/steps/actions described in the second aspect.
  • the module may be a hardware circuit, or However, software can also be implemented by hardware circuits combined with software.
  • the device includes: a transceiver unit configured to send a first DCI to the terminal, where the first DCI includes scheduling information of N1 data channels on W cells and a first cumulative downlink allocation index C-DAI, where, W and N1 are integers greater than 1, and W is less than or equal to N1.
  • the transceiver unit is also used to receive feedback information from the terminal.
  • the feedback information includes a first hybrid automatic repeat request confirmation HARQ-ACK codebook.
  • the first HARQ-ACK codebook includes HARQ feedback information of N2 data channels.
  • N2 is greater than An integer of 1
  • N2 data channels include N1 data channels.
  • a processing unit configured to determine the arrangement order of the HARQ feedback information of the N1 data channels in the first HARQ-ACK codebook according to the first C-DAI.
  • a communication device including a processor.
  • the processor can implement the method in the above first aspect and any possible implementation manner of the first aspect.
  • the communication device further includes a memory, and the processor is coupled to the memory and is available To execute the instructions in the memory to implement the above first aspect and the method in any possible implementation manner of the first aspect.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver, a pin, a circuit, a bus, a module, or other types of communication interfaces, and is not limited thereto.
  • the communication device is a terminal.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip configured in a terminal.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device including a processor.
  • the processor can implement the method in the above second aspect and any possible implementation manner of the second aspect.
  • the communication device further includes a memory, and the processor is coupled to the memory and can be used to execute instructions in the memory to implement the above second aspect and the method in any possible implementation manner of the second aspect.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication device is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip configured in a network device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a processor including: an input circuit, an output circuit and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the first aspect or the second aspect and the method in any possible implementation of the first aspect or the second aspect. .
  • the above-mentioned processor can be one or more chips
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop and various logic circuits, etc.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, the receiver, and the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by the transmitter, and the input circuit and the output A circuit may be the same circuit that functions as an input circuit and an output circuit at different times.
  • the embodiments of this application do not limit the specific implementation methods of the processor and various circuits.
  • a computer program product includes: a computer program (which can also be called a code, or an instruction).
  • a computer program which can also be called a code, or an instruction.
  • the computer program When the computer program is run, it causes the computer to execute the first aspect or the second aspect. and the method in any possible implementation manner of the first aspect or the second aspect.
  • a computer-readable storage medium stores a computer program (which may also be called a code, or an instruction), and when run on a computer, causes the computer to execute the above-mentioned first aspect or The second aspect and the method in any possible implementation manner of the first aspect or the second aspect.
  • a computer program which may also be called a code, or an instruction
  • a communication system including the aforementioned at least one terminal and at least one network device.
  • Figure 1 is a schematic architectural diagram of a communication system 1000 applied in an embodiment of the present application
  • FIG. 2 is a schematic diagram of PDCCH monitoring timing provided by the embodiment of the present application.
  • Figure 3 is a schematic diagram of the HARQ feedback timing relationship provided by the embodiment of the present application.
  • Figure 4 is a schematic flow chart of the HARQ-ACK codebook feedback method provided by the embodiment of the present application.
  • Figures 5 to 8 are schematic diagrams of the HARQ-ACK codebook feedback method provided by embodiments of the present application.
  • Figure 8A is a schematic diagram of the HARQ-ACK codebook feedback method based on carrier set provided by an embodiment of the present application
  • Figures 9 to 13 are schematic diagrams of the HARQ-ACK codebook feedback method provided by embodiments of the present application.
  • Figure 14 is a schematic diagram of the HARQ-ACK codebook provided by the embodiment of the present application.
  • Figure 15 is another schematic diagram of the HARQ-ACK codebook feedback method provided by the embodiment of the present application.
  • Figure 15A is a schematic diagram of the HARQ-ACK codebook feedback method based on the joint cumulative counting method provided by the embodiment of the present application;
  • Figure 16 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 17 is another schematic structural diagram of a communication device provided by an embodiment of the present application.
  • “/" can indicate that the related objects are in an "or” relationship.
  • A/B can indicate A or B;
  • and/or can be used to describe that there are three types of associated objects.
  • a relationship for example, A and/or B, can represent three situations: A exists alone, A and B exist simultaneously, and B exists alone, where A and B can be singular or plural.
  • words such as “first” and “second” may be used to distinguish technical features with the same or similar functions. The words “first”, “second” and other words do not limit the quantity and execution order, and the words “first” and “second” do not limit the number and execution order.
  • LTE long term evolution
  • 5G mobile communication systems 5G mobile communication systems
  • future mobile communication systems 6th generation, 6G Communication system
  • a system integrating multiple communication systems etc.
  • FIG. 1 is a schematic architectural diagram of a communication system 1000 applied in an embodiment of the present application.
  • the communication system includes a wireless access network 100 and a core network 200.
  • the communication system 1000 may also include the Internet 300.
  • the radio access network 100 may include at least one radio access network device (110a and 110b in Figure 1), and may also include at least one terminal (120a-120j in Figure 1).
  • the terminal is connected to the wireless access network equipment through wireless means, and the wireless access network equipment is connected to the core network through wireless or wired means.
  • the core network equipment and the radio access network equipment can be independent and different physical devices, or the functions of the core network equipment and the logical functions of the radio access network equipment can be integrated on the same physical device, or they can be one physical device.
  • Figure 1 is only a schematic diagram.
  • the communication system may also include other network equipment, such as wireless relay equipment and wireless backhaul equipment, which are not shown in Figure 1 .
  • Wireless access network equipment is access equipment for terminals to access the communication system through wireless means.
  • Wireless access network equipment can be a base station, an evolved base station (evolved NodeB, eNodeB), a transmission reception point (TRP), or a next generation base station (next generation NodeB, gNB) in the 5G mobile communication system.
  • the next generation base station in the 6G mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc. can also be a module or unit that completes some functions of the base station, for example, it can be a centralized unit , CU), or it can be a distributed unit (DU).
  • the CU here completes the functions of the base station's radio resource control protocol and packet data convergence protocol (PDCP), and can also complete the functions of the service data adaptation protocol (SDAP); DU completes the functions of the base station
  • the functions of the wireless link control layer and medium access control (MAC) layer can also complete some or all of the physical layer functions.
  • the wireless access network equipment may be a macro base station (110a in Figure 1), a micro base station or an indoor station (110b in Figure 1), or a relay node or donor node.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the wireless access network equipment.
  • the following description takes a base station as an example of a radio access network device.
  • the terminal is a device with wireless transceiver function that can send signals to the base station or receive signals from the base station.
  • the terminal can also be called terminal equipment, user equipment (UE), mobile station, mobile terminal, etc.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle to everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things (IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablets, computers with wireless transceiver functions, wearable devices, vehicles, airplanes, ships, robots, robotic arms, smart home devices, etc. The embodiments of this application do not limit the specific technology and specific equipment form used by the terminal.
  • Base stations and terminals can be fixed-location or mobile. Base stations and terminals can be deployed on land, indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites. The embodiments of this application do not limit the application scenarios of base stations and terminals.
  • the helicopter or drone 120i in Figure 1 may be configured as a mobile base station.
  • the terminal 120i is Base station; but for base station 110a, 120i is a terminal, that is, communication between 110a and 120i is through a wireless air interface protocol.
  • communication between 110a and 120i can also be carried out through an interface protocol between base stations.
  • relative to 110a, 120i is also a base station. Therefore, both base stations and terminals can be collectively called communication devices.
  • 110a and 110b in Figure 1 can be called communication devices with base station functions
  • 120a-120j in Figure 1 can be called communication devices with terminal functions.
  • Communication between base stations and terminals, between base stations and base stations, and between terminals can be carried out through licensed spectrum, or through free It can communicate through licensed spectrum, or it can communicate through licensed spectrum and unlicensed spectrum at the same time; it can communicate through spectrum below 6 gigahertz (GHz), it can also communicate through spectrum above 6GHz, and it can also use spectrum below 6GHz at the same time. spectrum and spectrum above 6GHz for communication.
  • the embodiments of the present application do not limit the spectrum resources used for wireless communication.
  • the functions of the base station may also be performed by modules (such as chips) in the base station, or may be performed by a control subsystem that includes the base station functions.
  • the control subsystem containing base station functions here can be the control center in the above application scenarios such as smart grid, industrial control, smart transportation, smart city, etc.
  • the functions of the terminal can also be performed by modules in the terminal (such as chips or modems), or by a device containing the terminal functions.
  • the base station sends downlink signals or downlink information to the terminal, and the downlink information is carried on the downlink channel;
  • the terminal sends uplink signals or uplink information to the base station, and the uplink information is carried on the uplink channel.
  • the terminal In order to communicate with the base station, the terminal needs to establish a wireless connection with the cell controlled by the base station.
  • the cell with which a terminal has established a wireless connection is called the serving cell of the terminal.
  • the serving cell When the terminal communicates with the serving cell, it will also be interfered by signals from neighboring cells.
  • the time domain symbol may be an orthogonal frequency division multiplexing (OFDM) symbol or a discrete Fourier transform-spread-OFDM (DFT) symbol. -s-OFDM) symbol. Unless otherwise specified, the symbols in the embodiments of this application all refer to time domain symbols.
  • OFDM orthogonal frequency division multiplexing
  • DFT discrete Fourier transform-spread-OFDM
  • the physical downlink shared channel (PDSCH), the physical downlink control channel (physical downlink control channel, PDCCH) and the physical uplink shared channel (PUSCH)
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • PUSCH physical uplink shared channel
  • a cell can be understood as the coverage area of a wireless signal identified by a network device identification code or a global cell identification code.
  • a cell is a unit that manages wireless communication resources.
  • the frequency domain resources of the cell include at least one carrier.
  • a carrier is a continuous frequency domain resource used to carry information.
  • the information in this application may include one or more of control information, service data and reference signals.
  • the carrier is characterized by carrier frequency and carrier bandwidth.
  • At least one carrier included in a cell includes one downlink carrier and one or more uplink carriers. Downlink carriers are used to carry wireless signals sent by network devices to terminals.
  • the uplink carrier is used to carry wireless signals sent by the terminal to the network.
  • duplex modes for example, when a cell adopts frequency division duplex (FDD) mode, the downlink carrier and uplink carrier of a cell can be different.
  • FDD frequency division duplex
  • TDD time division duplex
  • the downlink carrier and uplink carrier of a cell can be the same.
  • the carriers of a cell serve as frequency domain resources and time resources to form the time-frequency resources of the cell, or it can be understood that the carriers form time-frequency resources over time.
  • the information transmitted by network equipment and terminals in the cell is carried on the time-frequency resources of the cell.
  • downlink carriers and time resources constitute the downlink time-frequency resources of the cell
  • uplink carriers and time resources constitute the uplink time-frequency resources of the cell.
  • CA Carrier aggregation
  • a terminal can establish a communication connection with a cell, and the cell provides network services to the terminal.
  • a terminal can establish communication connections with multiple cells. These multiple cells serve as the terminal's serving cells to provide communication services for the terminal.
  • the carrier frequencies of the multiple cells are different, and the frequency domain resources of the carriers do not overlap, which can increase
  • the communication bandwidth between large network equipment and terminals can increase the data transmission rate.
  • PDCCH is used to carry DCI
  • PDCCH monitoring opportunity is the time unit used to monitor PDCCH.
  • the network device can configure a PDCCH listening opportunity for the terminal, and the network device can send DCI to the terminal on the PDCCH within a PDCCH listening opportunity.
  • the terminal detects the PDCCH within the PDCCH listening opportunity to obtain DCI.
  • the network device can configure the PDCCH monitoring period, PDCCH monitoring offset and PDCCH monitoring mode for the terminal, so that the terminal can determine the location of the PDCCH monitoring opportunity. If the PDCCH monitoring cycle is 2 time slots and the monitoring offset is 1, it can be determined that the monitoring opportunity is located in the second time slot of the 2 time slots in each PDCCH cycle. As shown in Figure 2, the terminal can determine that time slots 1, 3, 5, 7 and time slot 9 include PDCCH monitoring opportunities.
  • the PDCCH monitoring mode is to configure the starting symbol of the PDCCH search space in the time slot to be monitored through a 14-bit long bitmap. The 14 bits correspond to the 14 symbols of a time slot.
  • the highest bit corresponds to the first symbol of a timeslot
  • the lowest bit corresponds to the last symbol of the timeslot.
  • One of the 14 bits is used to indicate whether the corresponding symbol is the starting symbol of the PDCCH search space. For example, the 14 bits are "1000000000000", indicating that the first symbol in a time slot that needs to be monitored for the PDCCH is the PDCCH. No. 1 in search space symbols, the terminal can search for PDCCH in the search space starting from the first symbol in each time slot that needs to monitor PDCCH.
  • the terminal can search for PDCCH in the search space starting from the second symbol in each time slot that needs to monitor the PDCCH.
  • the number of persistent symbols in the search space is configured through the duration field in the CORESET time domain length configuration. For example, this field can indicate 2, which means that the search space lasts for 2 OFDM symbols.
  • the network device sends DCI for scheduling PDSCH to the terminal, and the terminal receives data on the PDSCH according to the DCI from the network device.
  • the DCI includes a PDSCH-to-HARQ_feedback timing indicator (PDSCH-to-HARQ_feedback timing indicator), which is used to indicate the time interval K1 between the time unit for the terminal to send HARQ feedback information and the PDSCH scheduled by the DCI.
  • PDSCH-to-HARQ_feedback timing indicator a PDSCH-to-HARQ_feedback timing indicator
  • HARQ feedback information is a type of uplink control information (UCI).
  • the terminal sends the HARQ feedback information on the physical uplink control channel (PUCCH) of the time unit.
  • the terminal can also send the HARQ feedback information to the network device on the physical uplink shared channel (PUSCH) of the time unit.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • K1 indicated by different DCIs may be different, so that the HARQ feedback information of the PDSCH received by the terminal in different time units may be sent in the same time unit.
  • the HARQ feedback information of different PDSCHs sent within the same time unit constitutes a HARQ-ACK codebook.
  • the network device indicates that K1 is 8 time slots in the DCI of scheduling PDSCH1 in downlink time slot n.
  • the network equipment indicates that K1 is 6 time slots in the DCI of PDSCH 2 in scheduled downlink time slot n+2, and indicates that K1 is 3 time slots in the DCI of PDSCH 3 in scheduled downlink time slot n+5.
  • the terminal can
  • the HARQ feedback information that determines PDSCH 2 and PDSCH 3 is also sent in uplink time slot n+8.
  • the HARQ-ACK codebook sent by the terminal in the uplink time slot n+8 includes the HARQ feedback information of PDSCH 1, PDSCH 2 and PDSCH 3.
  • the time unit is a time slot as an example for explanation, but the application is not limited to this. In a specific implementation, the time unit may be a frame, a subframe, or a mini-slot. ), sub-slot and other time units.
  • the current HARQ mechanism is designed for one DCI to schedule the data channels of one cell.
  • the HARQ mechanism needs to be adaptively improved so that the data receiver and sender can Whether it is received correctly and understood consistently.
  • cell and carrier can be used interchangeably.
  • the data channel of the cell and the data channel on the carrier can be used interchangeably, and the cell index and carrier identifier can be used interchangeably. .
  • Embodiments of the present application provide a HARQ-ACK codebook feedback method.
  • the DCI sent by the network device to the terminal for scheduling multiple data channels on multiple carriers includes C-DAI.
  • the terminal determines the order in which the HARQ feedback information of the multiple data channels scheduled by the DCI is arranged in the HARQ-ACK codebook based on the C-DAI, and feeds back the obtained HARQ-ACK codebook to the network device.
  • the terminal feeds back the HARQ-ACK codebook to the network device according to the C-DAI indicated by the network device so that the terminal and the network device can understand and agree on the HARQ-ACK codebook including the HARQ feedback information of multiple data channels scheduled by a DCI.
  • Figure 4 is a schematic flow chart of the HARQ-ACK codebook feedback method 400 provided by the embodiment of the present application.
  • a network device and a terminal are used as examples for explanation.
  • the steps performed by the network device in the method 400 can be performed by the network device or a module applied to the network device to realize the corresponding function.
  • the steps performed by the network device in the method 400 can be performed by the terminal or a module applied to the terminal. Execute the steps performed by the terminal in method 400 to implement corresponding functions.
  • the method 400 includes but is not limited to the following steps:
  • the network device sends the first DCI to the terminal.
  • the first DCI includes the scheduling information and C-DAI of N1 data channels on W carriers, where W and N1 are integers greater than 1, and W is less than or equal to N1. .
  • the terminal receives the first DCI from the network device.
  • the listening opportunity when the terminal receives the first DCI may be recorded as the first listening opportunity.
  • the first DCI includes a first C-DAI.
  • the first C-DAI is used to determine the order of the HARQ feedback information of the N1 data channels in the first HARQ-ACK codebook sent in S402. For details, please refer to S402. description in.
  • the first DCI schedules N1 data channels on W carriers, and the first DCI schedules at least one data channel on each of the W carriers.
  • DCI that schedules multiple data channels on multiple carriers is called multi-carrier scheduling DCI.
  • the terminal receives the N1 data channels on the W carriers according to the first DCI.
  • the terminal generates HARQ feedback information for the N1 data channels based on whether the N1 data channels are correctly received, and sends it to the network device.
  • the terminal sends feedback information to the network device.
  • the feedback information includes the first HARQ-ACK codebook.
  • the first HARQ-ACK The codebook includes HARQ feedback information of N2 data channels.
  • the N2 data channels include the N1 data channels.
  • the order of the HARQ feedback information of the N1 data channels in the first HARQ-ACK codebook is according to the first C -DAI determined. Among them, N2 is an integer greater than or equal to N1.
  • the order of the HARQ feedback information of the N1 data channels in the first HARQ-ACK codebook is determined based on the first C-DAI, which means that the HARQ feedback information of the N1 data channels as a whole is in the first HARQ -The position in the ACK codebook is determined based on the first C-DAI. That is to say, the order in which the HARQ feedback information of the N1 data channels as a whole and the HARQ feedback information of other data channels in the first HARQ-ACK codebook are arranged in the first HARQ-ACK codebook is according to the first C -DAI determined.
  • the first DCI includes the above-mentioned timing indication of PDSCH to HARQ feedback (hereinafter referred to as "timing indication").
  • the terminal can determine the first time slot to send the HARQ feedback information of the N1 data channels based on the timing indication.
  • the terminal is in the The first time slot sends a first HARQ-ACK codebook, and the first HARQ-ACK codebook includes HARQ feedback information of the N1 data channels. If the terminal determines that feedback information of other data channels needs to be sent in the first time slot based on the received timing indications in other DCIs of the scheduled data channel, that is, N2 is greater than N1, a total of N2 data channels need to be sent in the first time slot. feedback information.
  • the terminal determines the arrangement order of the feedback information of the N2 data channels according to the C-DAI indicated by the DCI that schedules the N2 data channels, generates the first HARQ-ACK codebook, and sends the first HARQ-ACK code in the first time slot. Book.
  • the manner in which the first C-DAI indicates the cumulative count value may include but is not limited to Embodiment 1 to Embodiment 3. These three implementation methods are introduced below.
  • the first C-DAI indicates the cumulative count value of the first DCI in the DCI that schedules N2 data channels.
  • the DCI that schedules the N2 data channels is first calculated based on the DCI within the same listening opportunity according to the location of the serving cell.
  • the indexes are accumulated in order from small to large, and then the counts are accumulated in order of the time of the monitoring opportunities to which the DCI belongs.
  • the first C-DAI indicates that up to the current serving cell (that is, the serving cell where the first DCI is located) and the current monitoring opportunity (that is, the first monitoring opportunity where the first DCI is located), first according to the serving cell index, the small The accumulated count value obtained by counting the (serving cell, PDCCH listening opportunity)-pairs in the order of the largest one and then according to the time sequence of the monitoring opportunities.
  • cell and carrier can be used interchangeably, and cell index and carrier identifier can be used interchangeably.
  • the first C-DAI can also be understood as indicating that up to the current carrier (that is, the carrier where the first DCI is located) and the current monitoring opportunity (that is, the first monitoring opportunity where the first DCI is located), first according to the carrier identifier from small to large The larger order is then followed by the cumulative count value obtained by counting (carrier, PDCCH listening opportunity)-pairs in the time sequence of the monitoring opportunities.
  • the following uses carriers and carrier identifiers as examples to describe embodiments of the present application.
  • DCI has a one-to-one correspondence with the PDCCH that carries the DCI. Therefore, in this embodiment, it can also be called the first C-DAI indicating that the PDCCH that carries the first DCI is among the PDCCH that carries the DCI that schedules N2 data channels. Cumulative count value.
  • the following description takes the cumulative count value of the first C-DAI indicating the first DCI in the DCI scheduling N2 data channels as an example.
  • the cumulative count value of the first C-DAI indicating the PDCCH can be implemented with reference to the example below. In order to Briefly, I won’t go into details here.
  • network equipment and terminals communicate using carrier aggregation, and the network equipment can schedule PDSCH on multiple carriers through one DCI.
  • the network device sent DCI A on carrier 1 and DCI B on carrier 4 in listening opportunity n.
  • This DCI A schedules PDSCH 1, PDSCH 2 and PDSCH 3 located on carrier 1, carrier 2 and carrier 3 respectively.
  • This DCI B schedules PDSCH 4 and PDSCH 5 located on carrier 4 and carrier 5 respectively.
  • the network device can instruct the terminal to send the HARQ feedback information of the three PDSCHs scheduled by DCI A in the first time slot through the timing indication in DCI A, and the network device also instructs the terminal to send its HARQ feedback information in the first time slot through the timing indication in DCI B.
  • the DCI within the listening opportunity n is the earliest DCI in time indicating the HARQ feedback information for sending PDSCH in the first time slot.
  • the carrier identifier of the carrier where DCI A is located is 1, which is smaller than the carrier identifier of the carrier where DCI B is located. 4, therefore , the C-DAI in DCI A indicates that the cumulative count value of DCI is 1, and the C-DAI in DCI B indicates that the cumulative count value of DCI is 2.
  • the next DCI sent by the network device indicating that the HARQ feedback information of the PDSCH is sent in the first timeslot is the DCI C located on carrier 1 in the listening opportunity n+k, where k is a positive integer.
  • This DCI C schedules PDSCH 6 and PDSCH 7 located on carrier 1 and carrier 3 respectively.
  • the C-DAI in this DCI C indicates that the cumulative count of DCI is 3.
  • Carrier aggregation between terminals and network equipment may include but is not limited to carrier 1 to carrier as shown in Figure 5 5.
  • carrier 1 to carrier may include but is not limited to carrier 1 to carrier as shown in Figure 5 5.
  • it may also include carriers 0 and/or 6 and other carriers not shown in FIG. 5 .
  • the multiple DCIs are based on the carrier identifier of the carrier where the reference data channel scheduled by each DCI in the multiple DCIs is located, from small to large. Largest order or order from largest to smallest Cumulative count.
  • the DCI scheduled reference data channel may be the data channel with the smallest carrier identifier among the DCI scheduled data channels, or it may be the data channel with the largest carrier identifier among the DCI scheduled data channels.
  • the multiple DCIs are arranged in ascending order of the carrier identifiers of the reference carriers in the carriers where the scheduled data channels are located, or The counts are accumulated in order from large to small.
  • the reference carrier scheduled by DCI may be the data channel with the smallest carrier identifier among the multiple carriers scheduled by the DCI, or it may be the data channel with the largest carrier identifier among the multiple carriers scheduled by the DCI.
  • the network device sent DCI A and DCI B on carrier 0 of the same listening opportunity, and the timing indication in DCI A and the timing indication in DCI B both indicate that the HARQ feedback of the PDSCH is sent in the first timeslot. information.
  • DCI A schedules PDSCH 2 on carrier 1 and PDSCH 3 on carrier 2.
  • DCI B schedules PDSCH 1 on carrier 0 and PDSCH 4 on carrier 3.
  • the network equipment can determine that the PDSCH with the smallest carrier identifier of the carrier where the data channel scheduled by DCI A is located is PDSCH 2 on carrier 1, then the PDSCH 2 is the reference data channel scheduled by DCI A.
  • the network device can determine that the reference data channel for DCI B scheduling is PDSCH 1 on carrier 0.
  • the carrier identifier 0 of the carrier where PDSCH 1 is located is less than the carrier identifier 1 of the carrier where PDSCH 2 is located, then DCI B performs cumulative counting before DCI A.
  • C-DAI in DCI B indicates that the cumulative count value of DCI is y
  • C in DCI A -DAI indicates that the cumulative count value of DCI is y+1.
  • the DCI-scheduled reference data channel is a data channel among the DCI-scheduled data channels used to determine a time unit for sending HARQ feedback information.
  • the terminal determines the time slot in which the HARQ feedback information of the PDSCH is located based on the time slot of the PDSCH with the latest end time of DCI scheduling and the timing indication of the DCI indication.
  • PDSCH 3 scheduled by DCI A is located in time slot x
  • PDSCH 2 is located in time slot x+1
  • PDSCH 2 is the PDSCH with the latest end time among the PDSCHs scheduled by DCI A.
  • the terminal determines to send the HARQ feedback information of the PDSCH scheduled by DCI A in the first time slot according to the time slot x where PDSCH 2 is located and the timing indication in DCI A, then the PDSCH 2 is the reference data channel scheduled by DCI A.
  • the two PDSCHs scheduled by DCI B are both in time slot x, and the terminal determines to send the HARQ feedback information of the PDSCH scheduled by DCI B in the first time slot according to the timing indication in time slot x and DCI B.
  • the network equipment can determine that the reference data channel scheduled in DCI B is PDSCH 1 on carrier 0 based on the carrier identification of the carrier in PDSCH 1 and PDSCH 4 in time slot x scheduled by DCI B. After determining the reference data channels scheduled by DCI A and DCI B, the network device can then cumulatively count the DCI according to the carrier ID of the carrier where the reference data channel is located in ascending order.
  • the carrier ID of the carrier where PDSCH 1 scheduled by DCI B is located 0 is less than the carrier identifier 1 of the carrier where the reference data channel PDSCH 2 of DCI A is located, then the C-DAI in DCI B indicates that the cumulative count value of DCI is y, and the C-DAI in DCI A indicates that the cumulative count value of DCI is y+ 1.
  • the terminal arranges the HARQ feedback information of the PDSCH sent in the first time slot in ascending order according to the cumulative count value indicated by the C-DAI in the DCI to obtain the first HARQ-ACK codebook.
  • the order of the seven PDSCHs in the first HARQ-ACK codebook is determined based on the C-DAI indicated by the DCI that schedules the PDSCH.
  • the HARQ feedback of the three PDSCHs scheduled by DCI A The information is before the HARQ feedback information of the two PDSCHs scheduled by DCI B, and the HARQ feedback information of the two PDSCHs scheduled by DCI C is after the HARQ feedback information of the two PDSCHs scheduled by DCI B.
  • the order in which the HARQ feedback information of multiple PDSCHs scheduled by the same DCI is arranged in the first HARQ-ACK codebook can be arranged in ascending order according to the carrier identifiers of the carriers where the PDSCHs are located.
  • the order of the HARQ feedback information of the three PDSCHs scheduled by DCI A in the first HARQ-ACK codebook is the carrier
  • the HARQ feedback information of PDSCH 3 on carrier 3 is the carrier 3.
  • the order of the HARQ feedback information of the two PDSCHs scheduled by DCI B in the first HARQ-ACK codebook is the HARQ feedback information of PDSCH 4 on carrier 4, and the HARQ feedback information of PDSCH 5 on carrier 5.
  • the network device and the terminal have the same understanding of the order of the HARQ feedback information of the data channels in the first HARQ-ACK codebook, so that the network device can determine the HARQ feedback information of the N2 data channels after receiving the first HARQ-ACK codebook. position, so that based on the HARQ feedback information, it can be determined whether the terminal has correctly received the corresponding data channel.
  • the first HARQ-ACK codebook includes K HARQ feedback information groups, K is the number of DCIs scheduling N2 data channels, and one HARQ feedback information group includes L1 HARQ feedback information.
  • a HARQ feedback information group includes the HARQ feedback information of all data channels scheduled by a DCI.
  • L1 is greater than or equal to N1, where L1 is the maximum number of data blocks scheduled by a DCI.
  • the data channel is used to carry at least one data block.
  • the timing indication in the K DCI indicates that the HARQ feedback information of the scheduled data channel is sent in the first time slot
  • the first HARQ-ACK codebook sent by the terminal in the first time slot includes K HARQ Feedback information group
  • each HARQ feedback information group includes the maximum number of L1 pieces of feedback information that can be scheduled by a DCI.
  • the maximum number of PDSCHs that can be scheduled by one DCI is N max and the maximum number of data blocks that can be carried by one PDSCH is D, then the maximum number of data blocks that can be scheduled by one DCI is N max ⁇ D.
  • the data block may be a transport block (TB), a code block (CB), or a CB group (CB group).
  • TB transport block
  • CB code block
  • CB group CB group
  • the first HARQ-ACK codebook includes 3 HARQ feedback information groups, and each HARQ feedback information group includes 8 HARQ feedback information.
  • the first HARQ-ACK codebook includes 24 HARQ feedback information, and according to C in DCI - The cumulative count value indicated by DAI.
  • the first 8 HARQ feedback information in the first HARQ-ACK codebook is the feedback information corresponding to DCI A.
  • DCI A only schedules 3 PDSCHs, then the 8 pieces of HARQ feedback information
  • the first six pieces of HARQ feedback information are, in order, 2 pieces of HARQ feedback information of PDSCH 1, 2 pieces of HARQ feedback information of PDSCH 2, and 2 pieces of HARQ feedback information of PDSCH 3.
  • the middle 8 HARQ feedback information are feedback information corresponding to DCI B
  • the first 4 HARQ feedback information are 2 HARQ feedback information of PDSCH 4 and 2 HARQ feedback information of PDSCH 5 in order.
  • the last 8 pieces of HARQ feedback information are HARQ feedback information corresponding to DCI C.
  • the first 4 pieces of HARQ feedback information are 2 pieces of HARQ feedback information of PDSCH 6 and 2 pieces of HARQ feedback information of PDSCH 7.
  • One piece of HARQ feedback information may be 1 bit.
  • the 1 bit is used to indicate whether the TB corresponding to the 1 bit is successfully received by the terminal. For example, the 1 bit indicates "1" indicating that the TB corresponding to the 1 bit is successfully received, indicating " 0" indicates that the TB corresponding to this 1 bit was not successfully received.
  • the 8 bits of the HARQ feedback information group corresponding to the DCI include bits that do not correspond to the TB, and the bits that do not correspond to the TB can be set to a preset value, for example The default value can be "0".
  • PDSCH 1 and PDSCH 2 scheduled by DCI A both carry 2 TB
  • PDSCH 3 carries 1 TB, that is, DCI A schedules a total of 5 TB. If the terminal successfully receives the 5 TB, the first The first 8 bits in the HARQ-ACK codebook are "11111000", where the 1st and 2nd bits respectively indicate that the two TBs of PDSCH 1 were successfully received, and the 3rd and 4th bits respectively indicate that the two TBs of PDSCH 2 were successfully received. Received successfully. While PDSCH 3 carries 1 TB, the 5th bit indicates that a TB in PDSCH 3 was successfully received. If the other 3 bits do not correspond to the TB, the indication is the default value "0".
  • the network device can determine based on the 8 bits that the terminal successfully received the 5 TBs scheduled by DCI A. If the terminal does not successfully receive the second TB of PDSCH 2 and the bit corresponding to the second TB of PDSCH 2 indicates "0", then the 8 bits are "11101000", and the network device can respond based on the first HARQ feedback from the terminal. -The 8 bits in the ACK codebook determine that among the 5 TBs scheduled by DCI A, the terminal failed to successfully receive the second TB of PDSCH 2 and successfully received the other TBs.
  • the two PDSCHs scheduled by DCI B carry 2 TBs respectively, and DCI B schedules a total of 4 TBs, then the first 4 bits of the 8 bits of the HARQ feedback information group corresponding to DCI B correspond to the 4 TBs in sequence, The remaining 4 bits indicate the default value "0".
  • the first bit among the 8 bits of the HARQ feedback information group corresponding to DCI C indicates whether the 1 TB carried by PDSCH 6 has been successfully received by the terminal. , the second bit does not correspond to TB, then it indicates "0".
  • the third bit indicates whether 1 TB carried by PDSCH 7 is successfully received by the terminal. If the terminal successfully receives the 2 TB, the 8 bits are "10100000". If one or both TBs among the 2 TBs are not successfully received by the terminal, the corresponding bit indicates "0".
  • the 24 bits corresponding to the three DCIs in the first HARQ-ACK codebook are as shown in Figure 7 . If there is a TB that was not successfully received, the corresponding bit indicates "0".
  • the above description takes the data block as TB as an example.
  • the data block may also be CB or CBG.
  • the specific implementation can be implemented with reference to the above example of TB. For the sake of brevity, details will not be repeated here.
  • the number of feedback information in the HARQ feedback information group corresponding to each DCI contained in the first HARQ-ACK codebook is a fixed value, that is, L1, so that even if the terminal fails to successfully receive one or more of the DCI
  • the first HARQ-ACK codebook can be obtained according to C-DAI.
  • the terminal successfully receives DCI A and DCI C, but does not receive DCI B.
  • the terminal can determine based on the C-DAI indication 1 in DCI A and the C-DAI indication 3 in DCI C. A DCI with a cumulative count of 2 was not received.
  • the 8 bits corresponding to DCI A in the first HARQ-ACK codebook sent by the terminal include the 8 bits corresponding to DCI with a cumulative count value of 2 indicating all "0", followed by the 8 bits corresponding to DCI C. .
  • the transmission reliability of the HARQ-ACK codebook is improved. Through the feedback of the reliable HARQ-ACK codebook, the network device can retransmit the data block in time when the terminal fails to successfully receive the data block, thus improving the transmission of the data block. efficiency and reliability.
  • the first HARQ-ACK codebook includes K HARQ feedback information groups, one HARQ feedback information group includes L2 HARQ feedback information, and one HARQ feedback information group includes a data channel group to which all data channels scheduled by the DCI belong.
  • L2 is less than or equal to N1
  • L2 is the maximum number of data channel groups scheduled by a DCI.
  • the terminal groups the data channels scheduled by a DCI according to L2. For example, the terminal divides the N1 data channels scheduled by the first DCI into L2 data channel groups.
  • the L2 HARQ feedback information corresponds to the L2 data channel groups one by one.
  • One piece of HARQ feedback information in the HARQ feedback information indicates that the corresponding data channel group is successfully received or that at least one data channel in the corresponding data channel group is not successfully received.
  • L2 may be indicated by the network device to the terminal through signaling or may be predefined by the protocol.
  • the signaling may be a radio resource control (RRC) message and/or a radio access control (medium access control, MAC) control element (CE).
  • RRC radio resource control
  • MAC medium access control
  • the grouping method of dividing the N1 data channels into L2 data channel groups can be determined according to specific implementation requirements.
  • the data channel groups in the L2 data channel groups can include data channels, the last data channel group includes data channel.
  • the network device can configure L2 to 2 for the terminal through an RRC message.
  • DCI A schedules 3 PDSCHs, which are divided into two PDSCH groups.
  • the first PDSCH group includes PDSCH
  • the second PDSCH group includes 2 PDSCH. If the terminals are grouped in ascending order of the carrier ID of the carrier where the PDSCH is located, the first PDSCH group includes PDSCH 1, and the second PDSCH group includes PDSCH 2 and PDSCH 3.
  • the two PDSCHs scheduled by DCI B and DCI C are each a PDSCH group.
  • the first HARQ-ACK codebook includes 2 bits of HARQ feedback information for the 2 PDSCH groups scheduled by each DCI.
  • the first HARQ-ACK codebook includes 6 bits.
  • the first 2 bits can be determined.
  • the bits are the feedback information of the two PDSCH groups scheduled by DCI A.
  • the first bit is used to indicate whether the PDSCH group including only PDSCH 1 is successfully received by the terminal equipment, and the second bit is used to indicate whether the PDSCH group including PDSCH 2 and PDSCH is successfully received.
  • the 3rd and 4th bits are respectively the HARQ feedback information of the 2 PDSCHs scheduled by DCI B (that is, each is a PDSCH group).
  • the 5th and 6th bits are respectively the 2 PDSCHs scheduled by DCI C (that is, each is a PDSCH group). ) HARQ feedback information.
  • This solution can reduce the bit overhead of the HARQ-ACK codebook and improve resource utilization by grouping PDSCHs and feeding back one piece of HARQ feedback information to each group.
  • the network device configures L2 to 2 for the terminal through the RRC message.
  • the network device sends DCI A to the terminal at the listening opportunity n.
  • This DCI A schedules a total of 5 PDSCHs from PDSCH 1 to PDSCH 5 as shown in Figure 8.
  • the timing indication in the DCI A indicates that the HARQ feedback information of the PDSCH is sent in the first timeslot, and the C-DAI in the DCI A indicates 1.
  • the network device sends DCI B at the listening opportunity n+k.
  • the DCI B schedules a total of 4 PDSCHs from PDSCH 6 to PDSCH 9 as shown in Figure 8.
  • the timing indication in the DCI B also indicates that the HARQ feedback information of the PDSCH is sent in the first timeslot, and the C-DAI in the DCI B indicates 2.
  • the terminal can determine that the 5 PDSCHs scheduled by DCI A are divided into 3 PDSCH groups, where the first PDSCH group includes PDSCH, the second PDSCH group includes 3 PDSCHs, that is, PDSCH 1 and PDSCH 2 are PDSCH group 1, and PDSCH 3 to PDSCH 5 are PDSCH group 2.
  • the first 2 bits in the first HARQ-ACK codebook sent by the terminal in the first time slot respectively correspond to PDSCH groups 1 and 2 scheduled by DCI A, indicating whether all PDSCHs in the corresponding PDSCH group have been successfully received.
  • the terminal can determine the grouping of 4 PDSCHs scheduled by DCI B, and the terminal can determine that each group includes 2 PDSCHs based on N1 and L2.
  • the 3rd bit in the first HARQ-ACK codebook indicates whether PDSCH group 3 including PDSCH 6 and PDSCH 7 are all successfully received.
  • Received the 4th bit indicates whether PDSCH group 4 including PDSCH 8 and PDSCH 9 were all successfully received.
  • the 9 PDSCHs scheduled by DCI A and DCI B only require 4 HARQ feedback bits, which reduces the feedback overhead of the first HARQ-ACK codebook and improves resource utilization.
  • the network device can configure at least one carrier set for the terminal through the first configuration information, where one carrier set includes multiple carriers, and a multi-carrier scheduling DCI can schedule at least two carriers in one carrier set. data channel.
  • a multi-carrier scheduling DCI sent by a network device can only schedule data channels on at least two carriers in a carrier set. That is to say, the terminal does not expect one multi-carrier scheduling DCI to schedule data channels on carriers in multiple carrier sets, that is, the terminal does not expect one multi-carrier scheduling DCI to schedule data channels on carriers in different carrier sets.
  • the carrier set may be called a co-scheduled carrier set.
  • the W carriers where the N1 data channels scheduled by the first DCI are located are carriers in a carrier set.
  • the network device configures a total of eight carriers from carrier 0 to carrier 7 for the terminal through RRC messages.
  • the terminal can use the carrier aggregation communication method to communicate with the network device using the eight carriers.
  • the network device configures two carrier sets, carrier set 0 and carrier set 1, for the terminal through the first configuration information.
  • Carrier set 0 includes carriers 0 to 3
  • carrier set 1 includes carriers 4 to 7.
  • a multi-carrier scheduling DCI sent by the network device to the terminal can only schedule multiple carriers within a carrier set.
  • the DCI A sent by the network device on carrier 1 within the listening opportunity n schedules the PDSCH on 2 carriers in the carrier set 0, that is, the PDSCH 0 on carrier 0 and the PDSCH on carrier 1.
  • the network device also sent DCI B on carrier 4 within the listening opportunity n.
  • the network device sent a DCI C at listening opportunity n+k, which scheduled PDSCH on 2 carriers in carrier set 1, namely PDSCH 5 on carrier 5 and PDSCH 6 on carrier 6.
  • a multi-carrier scheduling DCI sent by the network device can only schedule PDSCH on multiple carriers in a carrier set.
  • the network device can also configure the maximum number of data blocks scheduled by a DCI on a carrier for the terminal through the second configuration information.
  • the number of data blocks scheduled by a DCI on a carrier is less than or equal to the number of data blocks configured by the network device on the carrier.
  • the maximum number of data blocks scheduled by a DCI is less than or equal to the number of data blocks configured by the network device on the carrier.
  • the above-mentioned first configuration information and second configuration information may be carried in an RRC message or other signaling.
  • the second configuration information may be called the maximum codeword scheduled by DCI (a codeword is another expression of a data block).
  • the second configuration information may be the maxNrofCodeWordsScheduledByDCI information element in the RRC message.
  • the first HARQ-ACK codebook includes K HARQ feedback information groups, the K HARQ feedback information groups correspond to K DCIs scheduling N2 data channels, and one HARQ feedback information group includes Li HARQ feedback information, the L i pieces of HARQ feedback information include feedback information of DCI scheduled data blocks corresponding to the HARQ feedback information group.
  • Li is the sum of the maximum number of data blocks scheduled by a DCI for carriers in the carrier set i configured by the network device.
  • the carrier set i is the carrier set in which the DCI scheduled data channel corresponding to the HARQ feedback information group is located.
  • the data block is TB.
  • the network device configures the terminal through the second configuration information to configure the maximum number of data blocks scheduled by one DCI on carrier 1, carrier 3 and carrier 7 to be 2.
  • the first HARQ-ACK codebook includes 3 HARQ feedback information groups corresponding to the 3 DCIs, including HARQ feedback information group A corresponding to DCI A, and the HARQ feedback information group A includes L 0 HARQ feedback Information
  • L 0 is the sum of the maximum number of data blocks scheduled by a DCI for carriers in carrier set 0 configured by the network device.
  • the six pieces of HARQ feedback information include one piece of HARQ feedback information corresponding to carrier 0, two pieces of HARQ feedback information corresponding to carrier 1, one piece of HARQ feedback information corresponding to carrier 2, and one piece of HARQ feedback information corresponding to carrier 3.
  • a piece of HARQ feedback information is 1 bit, and setting "1" indicates that the corresponding data block is successfully received, and setting "0" indicates that the corresponding data block is not successfully received, then the HARQ feedback information group A includes 6 bits.
  • the 6 bits in the HARQ feedback information group A are "111000", where the first The bit is the HARQ feedback information of a TB in PDSCH 0 on carrier 0.
  • the indication "1" indicates that a TB in PDSCH 0 was successfully received.
  • the 2nd and 3rd bits are 2 of PDSCH 1 on carrier 1 respectively.
  • HARQ feedback information of TB Both bits indicate "1" to indicate that both TBs in PDSCH 1 have been received.
  • the bit corresponding to the TB indicates "0".
  • DCI A does not schedule carrier 2 and carrier 3.
  • the 4th bit corresponding to carrier 2 and the 5th and 6th bits corresponding to carrier 3 both indicate "0".
  • the three HARQ feedback information groups also include the HARQ feedback information group B corresponding to DCI B.
  • the HARQ feedback information group B includes L 1 HARQ feedback information.
  • the 5 pieces of HARQ feedback information include 1 piece of HARQ feedback information corresponding to carrier 4, carrier 5 and carrier 6 respectively, and also includes 1 piece of HARQ feedback information corresponding to carrier 7. 2 pieces of HARQ feedback information. Since DCI B does not schedule PDSCH on carrier 6, the HARQ feedback information corresponding to carrier 6 indicates that the corresponding TB was not successfully received. The terminal determines the other 4 HARQ feedbacks based on whether the corresponding TB was successfully received. The message indicates successful or unsuccessful receipt of the corresponding TB.
  • the three HARQ feedback information groups also include the HARQ feedback information group C corresponding to DCI C. Since DCI C schedules the PDSCH on carrier set 1, the HARQ feedback information group C also includes L 1 pieces of HARQ feedback information, where If PDSCH is not scheduled on carrier 4 and carrier 7, then one piece of HARQ feedback information corresponding to carrier 4 and two pieces of HARQ feedback information corresponding to carrier 7 both indicate that the corresponding TB was not successfully received. The terminal determines whether carrier 5 and carrier 5 are successfully received. TB in the PDSCH on 6, determine the HARQ feedback information corresponding to each TB on carrier 5 and carrier 6.
  • the terminal determines the number of corresponding HARQ feedback information when the data channel on the carrier set is scheduled based on the sum of the maximum number of data blocks scheduled by a DCI for the carriers in the carrier set configured by the network device. This enables network equipment and terminals to reach a consensus on the size of feedback information. It can improve the transmission reliability of HARQ-ACK codebook.
  • the first DCI may also include a total downlink allocation index (total-DAI, T-DAI).
  • T-DAI total downlink allocation index
  • the network device indicates through DCI A, DCI B, DCI C and DCI D as shown in Figure 9 that the HARQ feedback information of the four DCI scheduled PDSCHs is fed back in the first time slot.
  • the comma before the comma in the parentheses below the DCI shown in Figure 9 indicates the cumulative count value indicated by C-DAI
  • the comma after the comma indicates the total value indicated by T-DAI.
  • the C-DAI of DCI A indicates that the cumulative count value of DCI is 1
  • the C-DAI of DCI B indicates that the cumulative count value of DCI is 2.
  • the terminal can determine that the DCI with C-DAI indication 4 has not been detected based on the total value of the T-DAI indication in the received DCI C until the listening time n+k is 4.
  • the terminal can still determine that the first HARQ-ACK codebook includes 4 HARQ feedback information groups, so that the terminal and the network device have a consistent understanding of the size of the first HARQ-ACK codebook. Even if the terminal does not detect DCI D, the network device The first HARQ-ACK codebook can be successfully decoded.
  • the first C-DAI indicates the cumulative count value of the scheduled data channels among the N2 data channels as of the first DCI, where the N2 data channels are first scheduled according to the N2 data channels within the same listening opportunity.
  • the data channels scheduled by the DCI are cumulatively counted in ascending order of the carrier identifiers of the carriers where the DCI of the data channel is located, and then the data channels are cumulatively counted in sequence according to the time order of the monitoring opportunities to which the DCI belongs.
  • the first C-DAI indicates the carrier up to the current listening opportunity (i.e., the first listening opportunity where the first DCI is located) and the current DCI (i.e., the first DCI).
  • the cumulative count value obtained by counting obtained by counting (PDCCH monitoring timing, data channel)-pairs in order from small to large according to the index of the serving cell where the DCI is located.
  • the network device sends DCI A and DCI B on carrier 1 and carrier 4 respectively in listening opportunity n.
  • DCI A schedules PDSCH 1 on carrier 2 and PDSCH 2 on carrier 3 across carriers.
  • This DCI B schedules PDSCH 3 and PDSCH 4 located on carrier 4 and carrier 5 respectively.
  • the timing indications in DCI A and DCI B both instruct the terminal to send the HARQ feedback information of the PDSCH in the first time slot.
  • n the DCI that appears earliest in time indicating the HARQ feedback information of sending the PDSCH in the first time slot
  • the PDSCH scheduled by the DCI with the smallest carrier identifier of the carrier where the DCI is located is cumulatively counted
  • the DCI If the carrier identifier of the carrier where A is located is 1, which is less than the carrier identifier of the carrier where DCI B is located, 4, then the two PDSCHs scheduled by DCI A are first counted cumulatively.
  • the count value of PDSCH 1 is 1, and the count value of PDSCH 2 is 2. Then the count value is cut off.
  • the cumulative count value of the scheduled PDSCH is 2.
  • the cumulative count value of the scheduled PDSCH is 2, then the C-DAI in the DCI A Instructions 2.
  • the cumulative count value of the scheduled PDSCH is 4, so the C-DAI in DCI B indicates 4.
  • the next DCI sent by the network device indicating that the HARQ feedback information of PDSCH is sent in the first timeslot is located in the listening opportunity n+k.
  • the terminal arranges the HARQ feedback information of the PDSCH sent in the first time slot in ascending order of the cumulative count value indicated by the C-DAI in the scheduled DCI, where the HARQ feedback information of multiple data channels scheduled by the same DCI is arranged according to the data
  • the carrier identifiers of the carrier where the channel is located are arranged in ascending order, thereby obtaining the first HARQ-ACK codebook.
  • the first DCI may also include T-DAI, which indicates the total value of scheduled data channels among the N2 data channels as of the first listening opportunity.
  • a total of 3 DCI instructions, DCI A, DCI B and DCI C are used to send HARQ feedback information of PDSCH in the first time slot.
  • 7 HARQ feedback information of PDSCH need to be sent.
  • the listening opportunity n the total number of scheduled PDSCHs among the 7 PDSCHs is 4, then the T-DAI in DCI A and DCI B indicates 4.
  • the 7 PDSCHs have been scheduled.
  • the total number of scheduled PDSCHs is 7, then the T-DAI in DCI C indicates 7.
  • the total number of PDSCHs scheduled by DCI (including DCI A and DCI B) indicating that the HARQ feedback information of PDSCH is sent in the first time slot is 4, then T- in DCI A and DCI B DCI both indicate 4.
  • the total number of PDSCHs scheduled by DCI (including DCI A, DCI B and DCI C) indicating that the HARQ feedback information of PDSCH is sent in the first time slot is 7, then T- in DCI C DAI instruction 7.
  • Embodiment 3 The first C-DAI indicates the cumulative count value of the data channel with the smallest carrier identifier among the N1 data channels among the N2 data channels, where the N2 data channels are first scheduled within the same listening opportunity.
  • the data channels are cumulatively counted in ascending order of the carrier ID of the carrier where they are located, and then are cumulatively counted in sequence according to the time order of the monitoring opportunities to which the DCI of the scheduled data channel belongs.
  • a total of 3 DCI instructions, DCI A, DCI B and DCI C, are used to send the HARQ feedback information of PDSCH in the first time slot.
  • the PDSCHs scheduled in the same listening opportunity are accumulated in the order of the carrier ID of the carrier in which they are located, and the PDSCHs scheduled by DCI A and DCI B in the listening opportunity n are accumulated in the order of the carrier ID of the carrier in which they are located.
  • the C-DAI in DCI A indicates the cumulative count value of the PDSCH with the smallest cumulative count value among the two PDSCHs scheduled by DCI A, That is, the cumulative count value of PDSCH 1 is 1.
  • the C-DAI in DCI A indicates the cumulative count value of the PDSCH with the smallest carrier identifier among the two PDSCHs, that is, C-DAI indicates 1.
  • C-DAI in DCI B indicates the cumulative count value of the PDSCH with the smallest cumulative count value, that is, the cumulative count value of PDSCH 3.
  • the DCI at listening time n+k modulates a total of 3 PSDCHs, and the counts are accumulated in order from small to large carrier identifiers. Then DCI C instructs it to schedule the smallest cumulative count value among the 3 PDSCHs. The cumulative count value is 5.
  • the terminal sorts the HARQ feedback information for sending the PDSCH in the first time slot in ascending order according to the cumulative count value indicated by the C-DAI in the scheduled DCI. Multiple data channels scheduled by the same DCI are arranged according to the carrier where the data channel is located. The carrier identifiers are arranged in ascending order, thereby obtaining the first HARQ-ACK codebook.
  • the first HARQ-ACK codebook obtained by the terminal may include K HARQ feedback information groups, and each HARQ feedback information group may include L1 feedback information or L2 feedback information.
  • K HARQ feedback information groups may include L1 feedback information or L2 feedback information.
  • the first DCI may also include T-DAI, which indicates the total value of scheduled data channels among the N2 data channels as of the first listening opportunity.
  • the T-DAI value indicated by each DCI is the same as the T-DAI value indicated by each DCI in the example shown in Figure 11.
  • the carrier where the data channel scheduled by the multi-carrier scheduling DCI in the embodiment of the present application belongs to a downlink carrier group
  • the downlink carrier group corresponds to an uplink control channel
  • the HARQ of the scheduled data channel on the downlink carrier group Feedback information is carried on the uplink control channel.
  • the multi-carrier scheduling DCI A, DCI B and DCI C shown in Figure 5 schedule the PDSCH on carriers 1 to 5.
  • the carriers 1 to 5 belong to the same downlink carrier group.
  • the terminal has uplink carrier aggregation capabilities, the downlink carriers can be grouped.
  • the HARQ feedback information of the PDSCH on the downlink carrier in each downlink carrier group is carried on a PUCCH on an uplink carrier, that is, each downlink carrier group corresponds to a A PUCCH on the uplink carrier, this PUCCH may be called a PUCCH group.
  • the terminal can generate a HARQ-ACK codebook according to the implementation method described above, and send it in the first time slot.
  • the downlink carrier group in corresponds to The HARQ-ACK codebook is sent upward on the PUCCH.
  • the number of bits of C-DAI in DCI And the number of bits of T-DAI (If the DCI includes T-DAI) it can be determined based on the maximum number of jointly scheduled PDSCHs.
  • C-DAI and T-DAI can each contain 3 bits to indicate the cumulative count value Y, that is Taking C-DAI/T-DAI to indicate the cumulative count value Y as an example, Table 1 shows an example of the value correspondence between C-DAI and T-DAI, where The leftmost bit of the C-DAI/T-DAI value in the table is the most significant bit, and the rightmost bit is the least significant bit.
  • the DCI that schedules N2 data channels all schedules data channels on multiple carriers.
  • a HARQ-ACK codebook is generated by the HARQ feedback information of the data channel scheduled by multi-carrier scheduling DCI. That is to say, the first HARQ-ACK codebook is a dedicated HARQ-ACK codebook that carries feedback information of the data channel scheduled by the multi-carrier scheduling DCI.
  • the feedback information sent by the terminal in S402 may also include a second HARQ-ACK codebook.
  • the second HARQ-ACK codebook includes HARQ feedback information of N3 data channels, and schedules the DCI of each data channel in the N3 data channels. Only one data channel is scheduled.
  • the N3 data channels are all data channels scheduled by single-carrier scheduling DCI.
  • Single-carrier scheduling DCI is a DCI that schedules one data channel on a carrier.
  • the DCI can be a self-carrier scheduling DCI, that is, the DCI and its scheduling The data channel is located on the same carrier, or DCI can be scheduled across carriers, that is, the DCI and its scheduled data channel are located on different carriers.
  • DCI A, DCI B in listening time n and DCI C in listening time n+k1 have a total of 3 multi-carrier scheduling DCI instructions to send the HARQ feedback information of PDSCH in the first time slot.
  • the 3 The C-DAI in the multi-carrier scheduling DCI can be cumulatively counted in one of the above-mentioned embodiments one to three.
  • Figure 13 is an example of three multi-carrier scheduling DCIs using the method provided in the above-mentioned embodiment one for cumulative counting.
  • the multi-carrier scheduling DCI may also include T-DAI, as shown in Figure 13.
  • the terminal sends feedback information in the first time slot.
  • the feedback information includes the first HARQ-ACK codebook.
  • the first HARQ-ACK codebook includes the three multi-carrier scheduling DCI schedules arranged according to the cumulative count value indicated by the C-DAI.
  • the HARQ feedback information of the 7 PDSCHs As shown in Figure 13, the network device also sent single-carrier scheduling DCI D and DCI E respectively in the listening opportunities n and n+k2, and both DCI D and DCI E instructed to send HARQ feedback information in the first time slot.
  • the C-DAI in the single-carrier scheduling DCI counts the single-carrier scheduling DCI cumulatively, and the single-carrier scheduling DCI may also include T-DAI.
  • the feedback information sent by the terminal in the first time slot also includes the second HARQ-ACK codebook.
  • the second HARQ-ACK codebook includes the HARQ feedback information of PDSCH0 and PDSCH 8 arranged according to the cumulative count value indicated by the C-DAI.
  • the order in which the first HARQ-ACK codebook and the second HARQ-ACK codebook are arranged in the feedback information may be predefined by the protocol or configured by the network device to the terminal through signaling. For example, it can be predefined that the HARQ-ACK codebook of PDSCH scheduled by single-carrier DCI scheduling is arranged before the HARQ-ACK codebook of PDSCH scheduled by multi-carrier scheduling DCI, then the second HARQ-ACK codebook in the feedback information is arranged first. Before HARQ-ACK codebook, as shown in Figure 14.
  • the feedback information can be called a HARQ-ACK codebook
  • the above-mentioned first HARQ-ACK codebook and the second HARQ-ACK codebook can be respectively in the HARQ-ACK codebook.
  • One sub-codebook such as the first HARQ-ACK sub-codebook and the second HARQ-ACK sub-codebook.
  • the feedback information sent by the terminal in S402 may also include a third HARQ-ACK codebook.
  • the third HARQ-ACK codebook includes HARQ feedback information of N4 data channels, and schedules the DCI of each data channel in the N4 data channels. are scheduled to be located in multiple Multiple data channels in time units. That is to say, the N3 data channels are all data channels scheduled by multi-time unit scheduling DCI, and the time unit may be but is not limited to a subframe, a time slot, a mini-slot or an OFDM symbol group.
  • Multi-time unit scheduling DCI is DCI that schedules multiple data channels in multiple time units.
  • the network device also sends DCI F in the listening opportunity n+k1, which schedules the DCI F in the two time units.
  • PDSCH 9 and PDSCH 10 and the DCI F indicates sending HARQ feedback information in the first time slot
  • the C-DAI in the DCI F indicates 1
  • the C-DAI in the multi-time unit scheduling DCI accumulates the multi-time unit DCI count.
  • the DCI F may also include T-DAI.
  • the feedback information sent by the terminal in the first time slot also includes a third HARQ-ACK codebook.
  • the third HARQ-ACK codebook includes HARQ feedback information of PDSCH 9 and PDSCH 10 scheduled by the multi-time unit DCI.
  • the order in which multiple HARQ-ACK codebooks are arranged in the feedback information can be predefined by the protocol or configured by the network device through communication signaling.
  • the three HARQ-ACK codebooks may be arranged in sequence in the order of the second HARQ-ACK codebook, the first HARQ-ACK codebook, and the third HARQ-ACK codebook.
  • the first HARQ-ACK codebook includes, in addition to the feedback information of the N2 data channels (that is, the feedback information of the N2 data channels of multi-carrier scheduling DCI scheduling), the first HARQ-ACK codebook
  • the codebook also includes HARQ feedback information of N4 data channels.
  • the DCI for scheduling each data channel in the N4 data channels schedules multiple data channels located in multiple time units. That is, the first HARQ-ACK codebook also includes Feedback information of N4 data channels scheduled by multi-time unit scheduling DCI.
  • the C-DAI in the multi-carrier scheduling DCI and the C-DAI in the multi-time unit scheduling DCI jointly and cumulatively count the multi-carrier scheduling DCI and the multi-time unit scheduling DCI.
  • the first C-DAI in the above-mentioned first DCI indicates the cumulative count value of the first DCI among G DCIs.
  • the G DCIs include DCIs for scheduling N2 data channels and DCIs for scheduling N4 data channels, where the G Each DCI is first accumulated and counted in order of the index of the serving cell in the same listening opportunity from small to large, and then accumulated and counted in order of the time of the listening opportunity to which the DCI belongs.
  • the network device sends DCI A on carrier 0 and DCI B on carrier 2 in listening opportunity n.
  • DCI A is a multi-time unit scheduling DCI, which schedules PDSCH 0 and PDSCH 1 located in different time units.
  • DCI B is multi-carrier scheduling DCI, which schedules PDSCH 2, PDSCH 3 and PDSCH 4 located on different carriers.
  • C-DAI jointly counts multi-carrier scheduling DCI and multi-slot scheduling DCI.
  • the HARQ timing indications in DCI A and DCI B both instruct the terminal to send the HARQ feedback information of the PDSCH scheduled by DCI A and DCI B in the first time slot, and the DCI within the listening opportunity n is the earliest indication in time that appears in the DCI that sends the HARQ feedback information of PDSCH in one time slot. Since the carrier ID of the carrier where DCI A is located is 0, which is smaller than the carrier ID of the carrier where DCI B is located, 2, therefore, the C-DAI in DCI A indicates that the cumulative count value of DCI is 1. The C-DAI in this DCI B indicates that the cumulative count value of DCI is 2.
  • the network device sent DCI C and DCI D in the listening opportunity n+k, where DCI C is multi-carrier scheduling DCI, which schedules PDSCH 5 and PDSCH 6 located on different carriers.
  • DCI D is multi-time unit scheduling DCI, which schedules PDSCH 7 and PDSCH 8 located in different time units.
  • the HARQ timing indications in DCI C and DCI D both instruct the terminal to send the HARQ feedback information of the PDSCH scheduled by DCI C and DCI D in the first time slot. Since the carrier identifier of the carrier where DCI C is located is 1, it is smaller than the carrier identifier of the carrier where DCI D is located. 4.
  • the C-DAI in this DCI C indicates that the cumulative count value of DCI is 3, and the C-DAI in this DCI D indicates that the cumulative count value of DCI is 4.
  • the multi-carrier scheduling DCI and the multi-time unit scheduling DCI also include T-DAI.
  • the T-DAI also jointly counts the multi-carrier scheduling DCI and the multi-time unit scheduling DCI.
  • the T-DAI indicates that the current monitoring time is up to The total value of DCI among the G DCI mentioned above.
  • the total value of the multi-carrier scheduling DCI and multi-time unit scheduling DCI sent by the network device in the first time slot of the scheduled PDSCH feedback information is 2, that is, including DCI A and DCI B, then the T-DAI in DCI A and DCI B indicates 2.
  • the total value of multi-carrier scheduling DCI and multi-time unit scheduling DCI sent by the network device in the first time slot of the scheduled PDSCH feedback information is 4, that is, including DCI A and DCI B , DCI C and DCI D, then monitor the T-DAI indication 4 of DCI C and DCI D in timing n+k.
  • the terminal device may determine the first HARQ-ACK codebook based on the C-DAI.
  • the first HARQ-ACK codebook includes G HARQ feedback information groups.
  • the G HARQ feedback information groups correspond to the G DCIs for scheduling the above-mentioned N2 data channels and the above-mentioned N4 data channels.
  • In one HARQ feedback information group Including L3 HARQ feedback information.
  • the L3 HARQ feedback information includes the HARQ feedback information of multiple data channels of DCI scheduling corresponding to the HARQ feedback information group, where L3 is the maximum value among L4 and L5, and L4 is a multi-carrier schedule.
  • L5 is the maximum number of data blocks scheduled by DCI for multi-time unit scheduling.
  • a multi-carrier scheduling DCI can schedule the maximum number of data blocks on multiple carriers. data channels, then the maximum number of data blocks that can be scheduled by a multi-carrier scheduling DCI
  • the network device sends DCI A, DCI B, DCI C and DCI D before the first time slot, the four multi-carrier scheduling DCI and multi-time unit scheduling DCI indications are in the first time slot.
  • the maximum value of C-DAI among the four DCIs is 4. If T-DAI is included, the maximum value of T-DAI is also 4.
  • the terminal sends the first HARQ-ACK feedback codebook in the first time slot.
  • the first HARQ-ACK feedback codebook includes 4 HARQ feedback information groups.
  • the 4 HARQ feedback information groups and the 4 DCI are according to the C-DAI
  • the sizes correspond in sequence, and each HARQ feedback information group includes 16 pieces of feedback information.
  • the HARQ feedback information group A among the four HARQ feedback information groups includes 16 HARQ feedback information corresponding to DCI A.
  • the 16 HARQ feedback information includes the HARQ feedback information of the TB in PDSCH 0 and PDSCH 1 scheduled by DCI A, such as PDSCH 0 and PDSCH 1 both include 2 TBs, then the 16 HARQ feedback information includes 4 HARQ feedback information of TBs in PDSCH 0 and PDSCH 1 scheduled by DCI A. If one HARQ feedback information is 1 bit, then The first 4 bits of the 16 HARQ feedback information may correspond to the 2 TBs of PDSCH 0 and the 2 TBs of PDSCH 1 in sequence. In the 16 pieces of HARQ feedback information, 12 bits except the first 4 bits are set to "0".
  • the four HARQ feedback information groups also include HARQ feedback information group B corresponding to DCI B, HARQ feedback information group C corresponding to DCI C, and HARQ feedback information group D corresponding to DCI D, 16 in each HARQ feedback information group
  • the feedback information all includes the HARQ feedback information of the TB in the corresponding DCI scheduled PDSCH.
  • C-DAI is used to jointly count multi-carrier scheduling DCI and multi-time unit scheduling DCI, so that the terminal device can learn the cumulative count of multi-carrier scheduling DCI and multi-time unit scheduling DCI sent by the network device, thereby based on C -DAI determines the size of the first HARQ-ACK codebook and the position of the HARQ feedback information in the codebook, so that the network device and the terminal device can determine the size of the first HARQ-ACK codebook and the position of the HARQ feedback information in the codebook.
  • C-DAI is used to jointly count multi-carrier scheduling DCI and multi-time unit scheduling DCI, so that the terminal device can learn the cumulative count of multi-carrier scheduling DCI and multi-time unit scheduling DCI sent by the network device, thereby based on C -DAI determines the size of the first HARQ-ACK codebook and the position of the HARQ feedback information in the codebook, so that the network device and the terminal device can determine the size of the first HARQ-ACK code
  • the terminal device when one or more data channels among multiple data channels scheduled by a multi-carrier scheduling DCI conflict with semi-statically configured uplink symbols or downlink symbols (ie, the multi-carrier scheduling DCI indicates that one or more If a data channel occupies a semi-statically configured uplink symbol or downlink symbol), the terminal device does not expect to receive the one or more data channels.
  • the HARQ feedback information of the one or more data channels indicates that the data blocks in the data channels were not successfully received.
  • the first DCI schedules multiple PDSCHs on multiple carriers, and PDSCH 1 among the multiple PDSCHs occupies symbols 2 to 7 in time slot s in the time domain, where symbol 7 is semi-statically configured.
  • the terminal does not receive the PDSCH 1.
  • the HARQ feedback information of PDSCH 1 in the first HARQ-ACK codebook indicates that the data block in PDSCH 1 was not successfully received.
  • the embodiment of the present application also provides a DCI for activating or deactivating semi-persistent scheduling (SPS) data channels on multiple carriers.
  • SPS data channel refers to a data channel that appears periodically at a certain time interval after activation.
  • Semi-persistent data channels can also be called semi-static scheduling (semi-static scheduling) data channels.
  • the network device may send a second DCI to the terminal, where the second DCI is used to activate the SPS data channel on P carriers, where P is an integer greater than 1.
  • the terminal may determine that the SPS data channels on the P carriers are activated according to the second DCI. For example, if the SPS data channel on the P carriers is PDSCH, the terminal can receive downlink data on the SPS data channel in each cycle on the P carriers. Or the SPS data channel on the P carriers is PUSCH, then the terminal can send uplink data on the SPS data channels on multiple carriers among the P carriers.
  • the DCI format of the second DCI may be the same as the DCI format of the first DCI.
  • the DCI format may include an indication field used to indicate that the DCI in the DCI format sent by the network device is a DCI that schedules data channels on multiple carriers or a DCI that activates SPS data channels on multiple carriers.
  • the network device may send a third DCI to the terminal, where the third DCI is used to deactivate SPS data channels on Q carriers, where Q is an integer greater than 1.
  • the terminal can determine based on the third DCI that the SPS data channels on the Q carriers are deactivated, that is, the SPS data channels indicated by the third DCI no longer appear periodically on the Q carriers.
  • the Q carriers may be part or all of the P carriers, or the Q carriers may include part of the P carriers and carriers other than the P carriers. or Alternatively, the Q carriers may be carriers other than the P carriers.
  • the DCI format of the third DCI may be the same as the DCI format of the first DCI.
  • the DCI format may include an indication field used to indicate that the DCI of the DCI format is a DCI for scheduling data channels on multiple carriers or a DCI for deactivating SPS data channels on multiple carriers.
  • the DCI formats of the first DCI, the second DCI, and the third DCI are all the same, and the DCI format includes an indication field 1.
  • the indication field 1 is used to indicate whether the DCI in the DCI format sent by the network device is used. DCI used for scheduling data channels on multiple carriers, or DCI used for activation or deactivation of SPS data channels on multiple carriers.
  • the indication field 1 may be 2 bits in the DCI.
  • the 2 bits indicate that the first value indicates that the DCI in the DCI format is used to schedule data channels on multiple carriers, and indicates that the second value indicates that the DCI in the DCI format is used. Used for activation of SPS data channels on multiple carriers, indicating that the third value indicates that the DCI in the DCI format is used for deactivation of SPS data channels on multiple carriers.
  • the indication domain 1 may reuse one or more indication domains in the current DCI.
  • the indication field 1 can include the frequency domain resource assignment (FDRA) indication field and the modulation and coding scheme (MCS) indication field.
  • FDRA frequency domain resource assignment
  • MCS modulation and coding scheme
  • the DCI For the deactivation of the semi-persistent data channel (that is, the third DCI); when the FDRA indication field is not all "0", and all the bits in the MCS indication field are not all "1", it can mean that the DCI is used for dynamic scheduling of multi-carriers data channel on.
  • the base station and the terminal include corresponding hardware structures and/or software modules that perform each function.
  • the units and method steps of each example described in conjunction with the embodiments disclosed in this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software driving the hardware depends on the specific application scenarios and design constraints of the technical solution.
  • Figures 16 and 17 are schematic structural diagrams of possible communication devices provided by embodiments of the present application. These communication devices can be used to implement the functions of the terminal or network device in the above method embodiments, and therefore can also achieve the beneficial effects of the above method embodiments.
  • the communication device may be one of the terminals 120a-120j as shown in Figure 1, or the network device 110a or 110b as shown in Figure 1, or may be applied to a terminal or network Modules of the device (such as chips).
  • the communication device 1600 includes a processing unit 1610 and a transceiver unit 1620.
  • the communication device 1600 is used to implement the functions of the terminal or network device in the above method embodiment shown in Figure 4.
  • the transceiver unit 1620 is used to receive the first DCI from the network device, where the first DCI includes the scheduling of N1 data channels on W cells. information and the first cumulative downstream allocation index C-DAI, where W and N1 are integers greater than 1, and W is less than or equal to N1.
  • the processing unit 1610 is used to determine feedback information including the first HARQ-ACK codebook, where the first HARQ-ACK codebook includes HARQ feedback information of N2 data channels, N2 is an integer greater than 1, and the N2 data channels include N1 data channels, and the order of the HARQ feedback information of the N1 data channels in the first HARQ-ACK codebook is determined based on the first C-DAI.
  • the transceiver unit 1620 is also used to send the feedback information to the network device.
  • the transceiver unit 1620 is used to send the first DCI to the terminal, where the first DCI includes scheduling information of N1 data channels on W cells. and the first cumulative downstream allocation index C-DAI, where W and N1 are integers greater than 1, and W is less than or equal to N1.
  • the transceiver unit 1620 is also configured to receive feedback information from the terminal, the feedback information includes the first hybrid automatic repeat request confirmation HARQ-ACK codebook, and the first HARQ-ACK codebook includes HARQ feedback information of N2 data channels, N2 is an integer greater than 1, and the N2 data channels include N1 data channels.
  • the processing unit 1610 is configured to determine the order of the HARQ feedback information of the N1 data channels in the first HARQ-ACK codebook according to the first C-DAI.
  • the communication device 1700 includes a processor 1710 and an interface circuit 1720 .
  • the processor 1710 and the interface circuit 1720 are coupled to each other.
  • the interface circuit 1720 may be a transceiver or an input-output interface.
  • the communication device 1700 may also include a memory 1730 for storing instructions executed by the processor 1710 or input data required for the processor 1710 to run the instructions or data generated after the processor 1710 executes the instructions.
  • the processor 1710 is used to implement the functions of the above-mentioned processing unit 1610
  • the interface circuit 1720 is used to implement the functions of the above-mentioned transceiver unit 1620.
  • the terminal chip implements the functions of the terminal in the above method embodiment.
  • the terminal chip receives information from other modules in the terminal (such as radio frequency modules or antennas), and the information is sent to the terminal by the network device; or, the terminal chip sends information to other modules in the terminal (such as radio frequency modules or antennas), This information is sent by the terminal to the network device.
  • the network device module implements the functions of the network device in the above method embodiment.
  • the network equipment module receives information from other modules in the network equipment (such as radio frequency modules or antennas), and the information is sent by the terminal to the network equipment; or, the network equipment module sends information to other modules in the network equipment (such as radio frequency modules or antennas) ) sends information, which is sent by the network device to the terminal.
  • the network equipment module here can be the baseband chip of the network equipment, or it can be a DU or other module.
  • the DU here can be a DU under the open radio access network (open radio access network, O-RAN) architecture.
  • the processor in the embodiment of the present application can be a central processing unit (Central Processing Unit, CPU), or other general-purpose processor, digital signal processor (Digital Signal Processor, DSP), or application specific integrated circuit. (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented in hardware or in software instructions that can be executed by a processor.
  • Software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory In memory, register, hard disk, mobile hard disk, CD-ROM or any other form of storage medium well known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and storage media may be located in an ASIC. Additionally, the ASIC can be located in a network device or terminal.
  • the processor and storage media may also exist as discrete components in a network device or terminal.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, a network device, a user equipment, or other programmable device.
  • the computer program or instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another.
  • the computer program or instructions may be transmitted from a website, computer, A server or data center transmits via wired or wireless means to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center that integrates one or more available media.
  • the available media may be magnetic media, such as floppy disks, hard disks, and tapes; optical media, such as digital video optical disks; or semiconductor media, such as solid-state hard drives.
  • the computer-readable storage medium may be volatile or nonvolatile storage media, or may include both volatile and nonvolatile types of storage media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种HARQ-ACK码本反馈方法和通信装置,该方法包括:网络设备向终端发送一个DCI,该DCI调度多个小区上的N1个数据信道,该DCI中包括累计下行分配索引C-DAI。终端根据该C-DAI确定该N1个数据信道的HARQ反馈信息在HARQ-ACK码本中的排列顺序,并向网络设备反馈该HARQ-ACK码本。该方案能够使得终端和网络设备对上述HARQ-ACK码本理解一致,从而提高了HARQ-ACK码本的传输可靠性。

Description

HARQ-ACK码本反馈方法和通信装置
本申请要求于2022年08月11日提交中国专利局、申请号为202210963819.2、申请名称为“HARQ-ACK码本反馈方法和通信装置”的中国专利申请的优先权,以及,本申请要求于2022年09月30日提交中国专利局、申请号为202211213951.8、申请名称为“HARQ-ACK码本反馈方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,并且更具体地,涉及一种HARQ-ACK码本反馈方法和通信装置。
背景技术
在第五代(5th generation,5G)移动通信系统中,为了减小控制信令开销提高调度效率,提出了在载波聚合(carrier aggregation,CA)通信方式中可以通过一个下行控制信息(downlink control information,DCI)调度多个小区上的数据信道,数据信道可以是物理下行共享信道(physical downlink shared channel,PDSCH)或物理上行共享信道(physical uplink shared channel,PUSCH)。
混合自动重传请求(hybrid automatic repeat request,HARQ)机制是一种结合前向纠错(forward error correction,FEC)技术与自动重传请求(automatic repeat request,ARQ)技术的确认机制。数据接收端可以通过发送反馈信息,通知数据发送端数据是否被成功接收到。然而,目前的HARQ机制是针对一个DCI调度一个小区的数据信道设计的,当一个DCI可以调度多个小区的数据信道时,HARQ机制还需要适应性地改进,以使数据的接收端和发送端对数据是否正确接收达成共识。
发明内容
本申请实施例提供一种混合自动重传请求确认HARQ-ACK码本反馈方法和通信装置,能够提高HARQ-ACK码本反馈进而提高了数据传输的效率及可靠性。
第一方面,提供了一种HARQ-ACK码本反馈方法,该方法可以由终端或配置于(或用于)终端的模块(如芯片)执行。以下以终端执行该方法为例进行说明。
该方法包括:终端接收来自网络设备的第一下行控制信息(downlink control information,DCI),该第一DCI包括W个小区上的N1个数据信道的调度信息和第一累计下行分配索引(counter-downlink assignment index,C-DAI),其中,W、N1为大于1的整数,且W小于或等于N1。终端向网络设备发送包括第一HARQ-ACK码本的反馈信息,该第一HARQ-ACK码本中包括N2个数据信道的HARQ反馈信息,N2为大于1的整数,该N2个数据信道包括上述第一DCI调度的N1个数据信道,其中,该N1个数据信道的HARQ反馈信息在该第一HARQ-ACK码本中的排列顺序是终端根据该第一C-DAI确定的。
根据上述方案,网络设备向终端发送的多小区调度DCI(即调度多个小区上的多个数据信道的DCI)中包括C-DAI,终端和网络设备基于C-DAI确定数据信道的HARQ反馈信息在HARQ-ACK码本中的排序,能够使得终端和网络设备对包括一个DCI调度的多个数据信道的HARQ反馈信息的HARQ-ACK码本理解一致。即使在终端漏检测DCI的情况下,终端也可以根据C-DAI确定每个数据信道在HARQ-ACK码本中的正确排序,从而与网络设备对HARQ-ACk码本的理解一致,提高了HARQ-ACK码本的传输可靠性,通过可靠的HARQ-ACK码本的反馈,使得网络设备能够在终端未成功接收到数据块时及时进行数据块重传,进而提高了数据块的传输效率以及可靠性。
第二方面,提供了一种HARQ-ACK码本反馈方法,该方法可以由网络设备或配置于(或用于)网络设备的模块(如芯片)执行。以下以网络设备执行该方法为例进行说明。
该方法包括:网络设备向终端发送第一DCI,该第一DCI包括W个小区上的N1个数据信道的调度信息和第一C-DAI,其中,W、N1为大于1的整数,且W小于或等于N1。网络设备向接收来自终端的包括第一HARQ-ACK码本的反馈信息,该第一HARQ-ACK码本中包括N2个数据信道的HARQ反馈信息,N2为大于1的整数,该N2个数据信道包括上述第一DCI调度的N1个数据信道。该N1个数据信道的HARQ反馈信息在该第一HARQ-ACK码本中的排列顺序是网络设备根据第一C-DAI确 定的。
在第一方面或第二方面的某些实现方式中,该第一C-DAI指示该第一DCI在调度该N2个数据信道的DCI中的累计计数值,调度该N2个数据信道的DCI是先对同一监听时机内的该DCI按照所在小区的服务小区索引由小到大的顺序依次累计计数,再按照该DCI所属的监听时机的时间先后顺序依次累计计数。
或者说,第一C-DAI指示的是截止到当前服务小区(即第一DCI所在的服务小区)和当前监听时机(即第一DCI所在的第一监听时机),先按照服务小区索引由小到大的顺序再按照监听时机的时间先后顺序对(服务小区,PDCCH监听时机)-对进行计数得到的累计计数值。
根据上述方案,C-DAI具体指示截止到当前监听时机的第一DCI的累计计数值,使得终端可以基于第一DCI的累计计数值,确定第一DCI调度的数据信道的HARQ反馈信息在HARQ-ACK码本中的排序,得到HARQ-ACK码本。相应地网络设备根据第一DCI的累计计数值确定HARQ-ACK码本中的第一DCI调度的数据信道的HARQ反馈信息,实现了终端与网络设备对HARQ-ACK码本理解一致,提高了HARQ-ACK码本的可靠性。
在第一方面或第二方面的某些实现方式中,若调度N2个数据信道的DCI中的多个DCI在同一监听时机且在同一小区上,该多个DCI按照每个DCI调度的参考数据信道所在的小区的服务小区索引由小到大的顺序或由大到小的顺序依次累计计数。
一个示例中,DCI调度的参考数据信道是DCI调度的数据信道中所在小区的服务小区索引最小的数据信道。
另一个示例中,DCI调度的参考数据信道是DCI调度的数据信道中用于确定发送HARQ反馈信息的时间单元的数据信道。
根据上述方案,若多个多小区调度DCI在同一监听时机且在同一小区上,可以按照参考数据信道所在小区的服务小区索引进行排序,减少了终端与网络设备之间对排序理解不一致的情况。
在第一方面或第二方面的某些实现方式中,第一DCI中的该第一C-DAI指示截止到该第一DCI,N2个数据信道中已被调度的数据信道的累计计数值。其中,N2个数据信道是先对同一监听时机内按照调度数据信道的DCI所在小区的服务小区索引由小到大的顺序对DCI调度的数据信道进行累计计数,再按照调度DCI所属的监听时机的时间先后顺序对数据信道依次累计计数。
或者说,第一C-DAI指示的是截止到当前监听时机(即第一DCI所在的第一监听时机)和当前DCI(即第一DCI)所在的载波,先按照监听时机的时间先后顺序,再按照DCI所在的服务小区的索引由小到大的顺序对(PDCCH监听时机,数据信道)-对进行计数得到的累计计数值。
根据上述方案,C-DAI具体指示截止到当前监听时机的当前DCI已被调度的数据信道的最大累计计数值,使得终端可以基于数据信道的累计计数值对数据信道的HARQ反馈信息进行排序,得到HARQ-ACK码本。相应地网络设备根据数据信道的累计计数值确定HARQ-ACK码本中的各个数据信道的HARQ反馈信息,实现了终端与网络设备对HARQ-ACK码本理解一致,提高了HARQ-ACK码本的可靠性。
在第一方面或第二方面的某些实现方式中,该第一C-DAI指示N1个数据信道中所在小区的服务小区索引最小的数据信道在该N2个数据信道中的累计计数值。上述N2个数据信道是先对同一监听时机内的数据信道按照所在的小区的服务小区索引由小到大的顺序依次累计计数,再按照调度数据信道的DCI所属的监听时机的时间先后顺序依次累计计数。
根据上述方案,C-DAI指示其所在的DCI调度的数据信道中所在服务小区索引最小的数据信道的累计计数值,终端可以根据该DCI调度的数据信道数以及C-DAI指示的累计计数值,确定已被调度的每个数据信道的累计计数值,从而确定每个数据信道在HARQ-ACK码本中的排序,实现与网络设备对HARQ-ACK码本理解一致。
在第一方面或第二方面的某些实现方式中,第一DCI还包括下行分配总索引(total-downlink assignment index,T-DAI)。
一个示例中,该T-DAI指示截止到第一监听时机,N2个数据信道中被调度的数据信道的总计数值。该第一监听时机为该第一DCI所在的监听时机。
另一个示例中,T-DAI指示截止到第一监听时机,调度N2个数据信道的DCI的总计数值。
根据上述方案,多小区调度DCI中包括T-DAI可以在终端未检测到反馈HARQ-ACK码本前的最 后一个DCI的情况下,确定网络设备实际发送的DCI或数据信道的总数,从而确定正确的HARQ-ACK码本的大小,实现与网络设备对HARQ-ACK码本理解一致。
在第一方面或第二方面的某些实现方式中,调度N2个数据信道的DCI均调度了多个小区上的多个数据信道。
根据上述方案,采用多小区调度方式的DCI调度的数据信道的HARQ反馈信息承载在一个HARQ-ACK码本中,即多小区调度DCI中的C-DAI针对多小区调度DCI或多小区调度DCI调度的数据信道进行累计计数,能够减小多种调度方式混合进行累计计数及HARQ反馈出现相互影响提高HARQ反馈出错概率的问题。
在第一方面或第二方面的某些实现方式中,终端发送的反馈信息中还包括第二HARQ-ACK码本,该第二HARQ-ACK码本包括N3个数据信道的HARQ反馈信息,调度N3个数据信道中每个数据信道的DCI仅调度了一个数据信道。
在第一方面或第二方面的某些实现方式中,终端发送的反馈信息中还包括第三HARQ-ACK码本,该第三HARQ-ACK码本包括N4个数据信道的HARQ反馈信息,调度N4个数据信道中每个数据信道的DCI均调度了位于多个时间单元的多个数据信道。
根据上述方案,针对不同调度方式分别进行累计计数,能够减少出现终端对一种调度方式的累计理解错误造成整体HARQ-ACK码本与网络设备理解不一致的问题。
在第一方面或第二方面的某些实现方式中,第一HARQ-ACK码本包括K个HARQ反馈信息组,K是调度N2个数据信道的DCI的个数,一个HARQ反馈信息组包括L1个HARQ反馈信息,且L1个HARQ反馈信息中包括一个DCI调度的数据信道的HARQ反馈信息,其中,L1是一个DCI调度的数据块的最大个数,L1大于或等于N1,数据信道用于承载至少一个数据块。
根据上述方案,根据每个DCI能够调度的数据块的最大个数确定第一HARQ-ACK码本中每个DCI对应的HARQ反馈信息的数量,使得终端与网络设备对HARQ-ACK码本的大小能够理解一致。即时终端漏检测一个或多个DCI,也能够确定该DCI在HARQ-ACK码本中对应的HARQ反馈信息的数量,能够减少因终端漏检测DCI出现终端与网络设备对HARQ-ACK码本理解不一致的问题。
在第一方面或第二方面的某些实现方式中,所述第一HARQ-ACK码本包括K个反馈信息组,一个所述HARQ反馈信息组包括L2个HARQ反馈信息,且所述L2个HARQ反馈信息中包括一个DCI调度的数据信道所属的数据信道组的HARQ反馈信息,L2小于或等于N1,L2是一个DCI调度的数据信道组的最大个数。
根据上述方案,终端对多小区调度DCI调度的多个数据信道进行分组,每个数据信道组反馈一个HARQ反馈信息,能够减小HARQ反馈信息的反馈开销,提高资源利用率。
第三方面,提供了一种通信装置,一种设计中,该装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置包括:收发单元,用于接收来自网络设备的第一DCI,第一DCI包括W个小区上的N1个数据信道的调度信息以及第一累计下行分配索引C-DAI,其中,W、N1为大于1的整数,且W小于或等于N1。处理单元,用于确定包括第一HARQ-ACK码本的反馈信息,其中,第一HARQ-ACK码本包括N2个数据信道的HARQ反馈信息,N2为大于1的整数,N2个数据信道包括N1个数据信道,N1个数据信道的HARQ反馈信息在第一HARQ-ACK码本中的排列顺序是根据第一C-DAI确定的。收发单元还用于向网络设备发送该反馈信息。
第四方面,提供了一种通信装置,一种设计中,该装置可以包括执行第二方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置包括:收发单元,用于向终端发送第一DCI,第一DCI包括W个小区上的N1个数据信道的调度信息以及第一累计下行分配索引C-DAI,其中,W、N1为大于1的整数,且W小于或等于N1。该收发单元还用于接收来自终端的反馈信息,反馈信息包括第一混合自动重传请求确认HARQ-ACK码本,第一HARQ-ACK码本包括N2个数据信道的HARQ反馈信息,N2为大于1的整数,N2个数据信道包括N1个数据信道。处理单元,用于根据第一C-DAI确定N1个数据信道的HARQ反馈信息在第一HARQ-ACK码本中的排列顺序。
第五方面,提供了一种通信装置,包括处理器。该处理器可以实现上述第一方面以及第一方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器,该处理器与该存储器耦合,可用 于执行存储器中的指令,以实现上述第一方面以及第一方面中任一种可能实现方式中的方法。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。本申请实施例中,通信接口可以是收发器、管脚、电路、总线、模块或其它类型的通信接口,不予限制。
在一种实现方式中,该通信装置为终端。当该通信装置为终端时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端中的芯片。当该通信装置为配置于终端中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第六方面,提供了一种通信装置,包括处理器。该处理器可以实现上述第二方面以及第二方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器,该处理器与该存储器耦合,可用于执行存储器中的指令,以实现上述第二方面以及第二方面中任一种可能实现方式中的方法。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片。当该通信装置为配置于第一网络设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第七方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。该处理电路用于通过该输入电路接收信号,并通过该输出电路发射信号,使得该处理器执行第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第八方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
第九方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
第十方面,提供了一种通信系统,包括前述的至少一个终端和至少一个网络设备。
附图说明
图1是本申请的实施例应用的通信系统1000的架构示意图;
图2是本申请实施例提供的PDCCH监听时机的一个示意图;
图3是本申请实施例提供的HARQ反馈时序关系的示意图;
图4是本申请实施例提供的HARQ-ACK码本反馈方法的一个示意性流程图;
图5至图8是本申请实施例提供的HARQ-ACK码本反馈方法的示意图;
图8A是本申请实施例提供的基于载波集合的HARQ-ACK码本反馈方法的示意图;
图9至图13是本申请实施例提供的HARQ-ACK码本反馈方法的示意图;
图14是本申请实施例提供的HARQ-ACK码本的示意图;
图15是本申请实施例提供的HARQ-ACK码本反馈方法的另一个示意图;
图15A是本申请实施例提供的基于联合累计计数方式的HARQ-ACK码本反馈方法的示意图;
图16是本申请实施例提供的通信装置的一个示意性结构图;
图17是本申请实施例提供的通信装置的另一个示意性结构图。
具体实施方式
在本申请实施例中,“/”可以表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;“和/或”可以用于描述关联对象存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。为了便于描述本申请实施例的技术方案,在本申请实施例中,可以采用“第一”、“第二”等字样对功能相同或相似的技术特征进行区分。该“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例的技术方案可以应用于各种移动通信系统,例如:长期演进(long term evolution,LTE)系统、5G移动通信系统以及未来的移动通信系统(如第六代(6th generation,6G)通信系统)、或者多种通信系统融合的系统等,本申请实施例不做限定。
图1是本申请的实施例应用的通信系统1000的架构示意图。如图1所示,该通信系统包括无线接入网100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至少一个无线接入网设备(如图1中的110a和110b),还可以包括至少一个终端(如图1中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。
无线接入网设备是终端通过无线方式接入到通信系统中的接入设备。无线接入网设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、6G移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。无线接入网设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为无线接入网设备的例子进行描述。
终端是具有无线收发功能的设备,可以向基站发送信号,或接收来自基站的信号。终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免 授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
在本申请中,基站向终端发送下行信号或下行信息,下行信息承载在下行信道上;终端向基站发送上行信号或上行信息,上行信息承载在上行信道上。终端为了与基站进行通信,需要与基站控制的小区建立无线连接。与终端建立了无线连接的小区称为该终端的服务小区。当终端与该服务小区进行通信的时候,还会受到来自邻区的信号的干扰。
在本申请的实施例中,时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是离散傅里叶变换扩频OFDM(Discrete Fourier Transform-spread-OFDM,DFT-s-OFDM)符号。如果没有特别说明,本申请实施例中的符号均指时域符号。
可以理解的是,本申请的实施例中,物理下行共享信道(physical downlink shared channel,PDSCH)、物理下行控制信道(physical downlink control channel,PDCCH)和物理上行共享信道(physical uplink shared channel,PUSCH)只是分别作为下行数据信道、下行控制信道和上行数据信道一种举例,在不同的系统和不同的场景中,数据信道和控制信道可能有不同的名称,本申请的实施例对此并不做限定。
为了更好地理解本申请实施例,下面对本文中涉及到的技术及术语做简单说明。
一、小区和载波
小区可以理解为通过网络设备识别码或全球小区识别码进行标识的无线信号的覆盖区域。小区是对无线通信资源进行管理的单元,小区的频域资源包括至少一个载波,载波是用来承载信息的一块连续的频域资源。本申请中的信息可以包括控制信息、业务数据和参考信号中的一种或多种。载波以载波频点和载波带宽来表征。一个小区包括的至少一个载波中包括一个下行载波和一个或多个上行载波。下行载波用于承载网络设备向终端发送的无线信号。上行载波用于承载终端向网络发送的无线信号。根据不同的双工方式,例如,小区采用频分双工(frequency division duplex,FDD)方式时,一个小区的下行载波和上行载波可以不同。小区采用时分双工(time division duplex,TDD)方式时,一个小区的下行载波和上行载波可以相同。
一个小区的载波作为频域资源与时间资源组成了该小区的时频资源,或者可以理解为载波随着时间的推移形成时频资源。网络设备与终端在该小区传输的信息承载在该小区的时频资源上。具体地,下行载波与时间资源组成该小区的下行时频资源,上行载波与时间资源组成了该小区的上行时频资源。
二、载波聚合(carrier aggregation,CA)
在非载波聚合场景中,终端可以与一个小区建立通信连接,由该小区为该终端提供网络服务。
在载波聚合场景中,终端可以与多个小区建立通信连接,该多个小区作为终端的服务小区为终端提供通信服务,该多个小区的载波频率不同,载波的频域资源不重叠,能够增大网络设备与终端的通信带宽,能够提升数据传输速率。
三、PDCCH监听时机(monitoring occasion)
PDCCH用于承载DCI,PDCCH监听时机是用于监听PDCCH的时间单元。网络设备可以为终端配置PDCCH监听时机,网络设备可以在一个PDCCH监听时机内的PDCCH上向终端发送DCI。终端在PDCCH监听时机内检测PDCCH以获取DCI。
网络设备可以为终端配置PDCCH监听周期、PDCCH监听偏移量和PDCCH监听模式,使得终端可以确定PDCCH监听时机的位置。如果PDCCH监听周期为2个时隙,监听偏移量为1,则可以确定监听时机位于每个PDCCH周期内的2个时隙中的第二个时隙。如图2所示,终端可以确定时隙1、3、5、7和时隙9包括PDCCH监听时机。PDCCH监听模式是通过14比特长的位图(bitmap)配置需要监听的时隙中PDCCH搜索空间的起始符号,该14比特与一个时隙的14个符号一一对应,其中,最高位(最左边比特)对应一个时隙的第一个符号,最低位(最右边比特)对应该时隙的最后一个符号。该14比特中的一个比特用于指示对应的符号是否是PDCCH的搜索空间的起始符号,例如,该14比特为“1000000000000”,表示需要监听PDCCH的一个时隙内的第一个符号为PDCCH搜索空间的第一 个符号,终端可以从每个需要监听PDCCH的时隙内的第一个符号开始的搜索空间内搜索PDCCH。再例如,该14比特为“0100000000000”,则表示终端可以从每个需要监听PDCCH的时隙内的第二个符号开始的搜索空间内搜索PDCCH。搜索空间的持续符号的个数在CORESET时域长度配置中通过持续时间(duration)字段配置,比如该字段可以指示2,则表示搜索空间持续2个OFDM符号。
四、混合自动重传请求(hybrid automatic repeat request,HARQ)-确认(acknowledge,ACK)码本
在移动通信系统中,网络设备向终端发送用于调度PDSCH的DCI,终端根据来自网络设备的该DCI在PDSCH上接收数据。该DCI中包括PDSCH至HARQ反馈的定时指示(PDSCH-to-HARQ_feedback timing indicator),用于指示终端发送HARQ反馈信息的时间单元与该DCI调度的PDSCH之间的时间间隔K1。使得终端可以根据PDSCH所在的时间单元和该时间间隔K1确定发送PDSCH的HARQ反馈信息的时间单元。HARQ反馈信息属于上行控制信息(uplink control information,UCI)中的一种,一般情况下终端在该时间单元的物理上行控制信道(physical uplink control channel,PUCCH)上发送该HARQ反馈信息。在满足一定条件时终端也可以在该时间单元的物理上行共享信道(physical uplink shared channel,PUSCH)上向网络设备发送该HARQ反馈信息。
不同DCI指示的K1可以不同,使得终端在不同时间单元内接收到的PDSCH的HARQ反馈信息可能在同一个时间单元内被发送。在同一个时间单元内发送的不同的PDSCH的HARQ反馈信息组成一个HARQ-ACK码本。如图3所示,以时间单元是时隙为例,网络设备在调度下行时隙n中的PDSCH1的DCI中指示K1为8个时隙,终端可以根据该PDSCH 1所在时隙n和K1=8,确定在上行时隙n+8发送该PDSCH 1的HARQ反馈信息。网络设备在调度下行时隙n+2中的PDSCH 2的DCI中指示K1为6个时隙,在调度下行时隙n+5中的PDSCH 3的DCI中指示K1为3个时隙,终端可以确定PDSCH 2和PDSCH 3的HARQ反馈信息也在上行时隙n+8中发送。终端在该上行时隙n+8中发送的HARQ-ACK码本中包括PDSCH 1、PDSCH 2和PDSCH 3的HARQ反馈信息。需要说明的是,本申请实施例中以时间单元是时隙为例进行说明,但本申请并不限于此,在具体实施中,时间单元可以是帧、子帧、迷你时隙(mini-slot)、子时隙(sub-slot)等其他时间单元。
目前的HARQ机制是针对一个DCI调度一个小区的数据信道设计的,当一个DCI可以调度多个小区的数据信道时,HARQ机制还需要适应性地改进,以使数据的接收端和发送端对数据是否正确接收理解一致。在本申请的实施例中,在逻辑不矛盾的情况下,小区和载波可以互换使用,例如,小区的数据信道和载波上的数据信道可以互换使用,小区索引和载波标识可以互换使用。
本申请实施例提供了一种HARQ-ACK码本反馈方法,网络设备向终端发送的调度多个载波上的多个数据信道的DCI中包括C-DAI。终端根据该C-DAI确定该DCI调度的多个数据信道的HARQ反馈信息在HARQ-ACK码本中的排列顺序,并向网络设备反馈得到的HARQ-ACK码本。终端根据网络设备指示的C-DAI向网络设备反馈HARQ-ACK码本使得终端和网络设备对包括一个DCI调度的多个数据信道的HARQ反馈信息的HARQ-ACK码本能够理解一致。提高了HARQ-ACK码本反馈的可靠性以及数据传输的可靠性。
图4是本申请实施例提供的HARQ-ACK码本反馈方法400的示意性流程图。在该方法400中以网络设备和终端为例进行说明,可以由网络设备或应用于网络设备的模块执行方法400中网络设备执行的步骤以实现相应的功能,可以由终端或应用于终端的模块执行方法400中终端执行的步骤以实现相应的功能。该方法400包括但不限于如下步骤:
S401,网络设备向终端发送第一DCI,该第一DCI包括W个载波上的N1个数据信道的调度信息和C-DAI,其中,W、N1为大于1的整数,且W小于或等于N1。
相应地,终端接收来自网络设备的该第一DCI。终端接收该第一DCI的监听时机可以记为第一监听时机。该第一DCI中包括第一C-DAI,该第一C-DAI用于确定N1个数据信道的HARQ反馈信息在S402中发送的第一HARQ-ACK码本中的排列顺序,具体可以参考S402中的描述。
该第一DCI调度W个载波上的N1个数据信道,该第一DCI在W个载波中的每个载波上调度了至少一个数据信道。为了方便描述,在本申请中将调度多个载波上的多个数据信道的DCI称为多载波调度DCI。终端根据该第一DCI,在该W个载波上接收该N1个数据信道。终端根据是否正确接收到该N1个数据信道,生成该N1个数据信道的HARQ反馈信息,并发送给网络设备。
S402,终端向网络设备发送反馈信息,该反馈信息包括第一HARQ-ACK码本,该第一HARQ-ACK 码本包括N2个数据信道的HARQ反馈信息,该N2个数据信道包括该N1个数据信道,该N1个数据信道的HARQ反馈信息在第一HARQ-ACK码本中的排列顺序是根据第一C-DAI确定的。其中,N2是大于或等于N1的整数。
其中,该N1个数据信道的HARQ反馈信息在第一HARQ-ACK码本中的排列顺序是根据第一C-DAI确定的是指,N1个数据信道的HARQ反馈信息作为一个整体在第一HARQ-ACK码本中的位置是根据第一C-DAI确定的。也就是说,N1个数据信道的HARQ反馈信息作为一个整体与第一HARQ-ACK码本中的其他数据信道的HARQ反馈信息在第一HARQ-ACK码本中排列的先后顺序是根据第一C-DAI确定的。
第一DCI中包括上述PDSCH至HARQ反馈的定时指示(下文中简称为“定时指示”),终端可以根据该定时指示确定发送该N1个数据信道的HARQ反馈信息的第一时隙,终端在该第一时隙发送第一HARQ-ACK码本,该第一HARQ-ACK码本包括该N1个数据信道的HARQ反馈信息。若终端根据接收到的调度数据信道的其他DCI中的定时指示,确定第一时隙中还需要发送其他数据信道的反馈信息,即N2大于N1,在第一时隙中共需要发送N2个数据信道的反馈信息。终端根据调度该N2个数据信道的DCI指示的C-DAI,确定N2个数据信道的反馈信息的排列顺序,生成第一HARQ-ACK码本,在第一时隙发送该第一HARQ-ACK码本。
第一C-DAI指示累计计数值的方式可以包括但不限于实施方式一至实施方式三。下面分别介绍这三种实施方式。
实施方式一,第一C-DAI指示第一DCI在调度N2个数据信道的DCI中的累计计数值,其中,调度N2个数据信道的DCI是先对同一监听时机内的DCI按照所在服务小区的索引由小到大的顺序依次累计计数,再按照DCI所属的监听时机的时间先后顺序依次累计计数。
或者说,第一C-DAI指示的是截止到当前服务小区(即第一DCI所在的服务小区)和当前监听时机(即第一DCI所在的第一监听时机),先按照服务小区索引由小到大的顺序再按照监听时机的时间先后顺序对(服务小区,PDCCH监听时机)-对进行计数得到的累计计数值。如前所述,在本申请中,小区和载波可以互换使用,小区索引和载波标识可以互换使用。第一C-DAI也可以理解为,指示的是截止到当前载波(即第一DCI所在的载波)和当前监听时机(即第一DCI所在的第一监听时机),先按照载波标识由小到大的顺序再按照监听时机的时间先后顺序对(载波,PDCCH监听时机)-对进行计数得到的累计计数值。下面以载波和载波标识为例,对本申请的实施例进行描述。
需要说明的是,DCI与承载DCI的PDCCH一一对应,因此在本实施方式中也可以称为第一C-DAI指示承载第一DCI的PDCCH在承载调度N2个数据信道的DCI的PDCCH中的累计计数值。以下以第一C-DAI指示第一DCI在调度N2个数据信道的DCI中的累计计数值为例进行描述,第一C-DAI指示PDCCH的累计计数值可以参考下文中的示例进行实施,为了简要,在此不再赘述。
如图5所示,网络设备与终端采用载波聚合的方式通信,且网络设备可以通过一个DCI调度多个载波上的PDSCH。如图5所示,网络设备在监听时机n中的载波1上发送了DCI A和载波4上发送了DCI B。该DCI A调度了分别位于载波1、载波2和载波3上的PDSCH 1、PDSCH 2和PDSCH 3。该DCI B调度了分别位于载波4、载波5上的PDSCH 4、PDSCH 5。网络设备可以通过DCI A中的定时指示指示终端在第一时隙发送DCI A调度的3个PDSCH的HARQ反馈信息,且网络设备通过DCI B中的定时指示同样指示了在第一时隙发送其调度的2个PDSCH的HARQ反馈信息。假设该监听时机n内的DCI是在时间上最早出现指示在第一时隙内发送PDSCH的HARQ反馈信息的DCI,DCI A所在载波的载波标识为1小于DCI B所在载波的载波标识4,因此,该DCI A中的C-DAI指示DCI的累计计数值为1,该DCI B中的C-DAI指示DCI的累计计数值为2。在该监听时机n之后,网络设备发送的下一个指示在第一时隙发送PDSCH的HARQ反馈信息的DCI是位于监听时机n+k中的载波1上的DCI C,其中,k是正整数。该DCI C调度了分别位于载波1和载波3的PDSCH 6和PDSCH 7。则该DCI C中的C-DAI指示DCI的累计计数为3。
需要说明的是,图5所示实施例中示例性地示出了承载DCI的载波以及承载PDSCH的载波,终端与网络设备的载波聚合可以包括但不限于如图5所示的载波1至载波5,如还可以包括载波0和/或载波6等图5未示出的载波。
若调度N2个数据信道的DCI中的多个DCI在同一监听时机且在同一载波上,该多个DCI按照该多个DCI中每个DCI调度的参考数据信道所在的载波的载波标识由小到大的顺序或由大到小的顺序依 次累计计数。
一个示例中,DCI调度的参考数据信道可以是该DCI调度的数据信道中所在载波的载波标识最小的数据信道,也可以是该DCI调度的数据信道中所在载波的载波标识最大的数据信道。
或者,若调度N2个数据信道的DCI中的多个DCI在同一监听时机且在同一载波上,该多个DCI按照调度的数据信道所在载波中的参考载波的载波标识由小到大的顺序或由大到小的顺序依次累计计数。DCI调度的参考载波可以是该DCI调度的多个载波中载波标识最小的数据信道,也可以是该DCI调度的多个载波中载波标识最大的数据信道。
如图6所示,网络设备在同一监听时机的载波0上发送了DCI A和DCI B,且DCI A中的定时指示和DCI B中的定时指示均指示在第一时隙发送PDSCH的HARQ反馈信息。其中,DCI A调度了载波1上的PDSCH 2和载波2上的PDSCH 3。DCI B调度了载波0上的PDSCH 1和载波3上的PDSCH 4。网络设备可以确定DCI A调度的数据信道所在载波的载波标识最小的PDSCH为载波1上的PDSCH 2,则该PDSCH 2为DCI A调度的参考数据信道。同样,网络设备可以确定DCI B调度的参考数据信道为载波0上的PDSCH 1。PDSCH 1所在载波的载波标识0小于PDSCH 2所在载波的载波标识1,则DCI B先于DCI A进行累计计数,如DCI B中C-DAI指示DCI的累计计数值为y,DCI A中的C-DAI指示DCI的累计计数值为y+1。该方案使得终端与网络设备对DCI的累计计数值可以理解一致。
另一个示例中,该DCI调度的参考数据信道是DCI调度的数据信道中用于确定发送HARQ反馈信息的时间单元的数据信道。
例如,终端根据DCI调度的结束时间最晚的PDSCH所在的时隙和DCI指示的定时指示,确定PDSCH的HARQ反馈信息所在的时隙。如图6所示示例中,DCI A调度的PDSCH 3位于时隙x,PDSCH 2位于时隙x+1,PDSCH 2是DCI A调度的PDSCH中结束时间最晚的PDSCH。终端根据PDSCH 2所在时隙x和DCI A中的定时指示确定在第一时隙发送DCI A调度的PDSCH的HARQ反馈信息,则该PDSCH 2为DCI A调度的参考数据信道。DCI B调度的两个PDSCH均在时隙x,则终端根据时隙x和DCI B中的定时指示,确定在第一时隙发送DCI B调度的PDSCH的HARQ反馈信息。网络设备可以根据DCI B调度的时隙x中的PDSCH 1和PDSCH 4中所在载波的载波标识,确定DCI B中调度的参考数据信道为载波0上的PDSCH 1。在确定DCI A和DCI B调度的参考数据信道之后,网络设备可以再根据参考数据信道所在载波的载波标识由小到大的顺序对DCI进行累计计数,DCI B调度的PDSCH 1所在载波的载波标识0小于DCI A的参考数据信道PDSCH 2所在载波的载波标识1,则DCI B中的C-DAI指示DCI的累计计数值为y,DCI A中的C-DAI指示DCI的累计计数值为y+1。该方案使得终端与网络设备对DCI的累计计数值理解一致。
终端根据DCI中的C-DAI指示的累计计数值由小到大的顺序排列在第一时隙内发送的PDSCH的HARQ反馈信息,以得到第一HARQ-ACK码本。
在如图5所示的示例中,若仅包括图5所示的3个DCI指示在第一时隙发送PDSCH的HARQ反馈信息,则终端在第一时隙发送的第一HARQ-ACK码本包括该3个DCI调度的7个PDSCH的HARQ反馈信息,即N2=7。该7个PDSCH在第一HARQ-ACK码本中的排列顺序是根据调度PDSCH的DCI指示的C-DAI确定的,在第一HARQ-ACK码本中,DCI A调度的3个PDSCH的HARQ反馈信息在DCI B调度的2个PDSCH的HARQ反馈信息之前,以及,DCI C调度的2个PDSCH的HARQ反馈信息在DCI B调度的2个PDSCH的HARQ反馈信息之后。
可选地,同一DCI调度的多个PDSCH的HARQ反馈信息在第一HARQ-ACK码本中的排列顺序可以按照PDSCH所在载波的载波标识由小到大的顺序排列。
在如图5所示的示例中,按照PDSCH所在载波的载波标识由小到大的顺序,在第一HARQ-ACK码本中DCI A调度的3个PDSCH的HARQ反馈信息的先后顺序依次为载波1上的PDSCH 1的HARQ反馈信息、载波2上的PDSCH 2的HARQ反馈信息和载波3上的PDSCH 3的HARQ反馈信息。DCI B调度的2个PDSCH的HARQ反馈信息在第一HARQ-ACK码本中的先后顺序依次为载波4上的PDSCH 4的HARQ反馈信息、载波5上的PDSCH 5的HARQ反馈信息。
网络设备与终端对第一HARQ-ACK码本中数据信道的HARQ反馈信息的排列顺序的理解相同,使得网络设备接收到该第一HARQ-ACK码本后可以确定N2个数据信道的HARQ反馈信息的位置,从而基于HARQ反馈信息可以判断出终端是否正确接收到相应的数据信道。
以下列出了本申请实施例提供的第一HARQ-ACK码本的两个具体实施示例。
一个示例中,第一HARQ-ACK码本包括K个HARQ反馈信息组,K为调度N2个数据信道的DCI的个数,一个HARQ反馈信息组包括L1个HARQ反馈信息。一个HARQ反馈信息组包括一个DCI调度的所有数据信道的HARQ反馈信息,L1大于或等于N1,其中,L1是一个DCI调度的数据块的最大个数,数据信道用于承载至少一个数据块。
也就是说,K个DCI中的定时指示指示调度的数据信道的HARQ反馈信息在第一时隙内发送,则终端在第一时隙发送的该第一HARQ-ACK码本中包括K个HARQ反馈信息组,每个HARQ反馈信息组中包括一个DCI能够调度的数据块的最大个数L1个反馈信息。
其中,若一个DCI能够调度的PDSCH的最大个数为Nmax,且一个PDSCH能够承载的数据块的最大个数为D,则一个DCI能够调度的数据块的最大个数Nmax×D。
一个DCI可以只调度一个载波上的一个PDSCH,那么,一个DCI调度的Nmax个PDSCH分别位于Nmax个载波上。在图4所示实施例中,第一DCI调度了W个载波上的N1个数据信道,则在该方式中W=N1。
作为示例非限定,数据块可以是传输块(transport block,TB)、码块(code block,CB)或CB组(CB group,CBG)。
例如,数据块为TB,一个DCI可以调度的PDSCH的最大个数Nmax为4,且一个PDSCH可以承载的TB的最大个数为2,则一个DCI可以调度的TB的最大个数L1为8。如图5所示示例中,该第一HARQ-ACK码本包括3个DCI调度的7个PDSCH的HARQ反馈信息,即K=3,N2=7。第一HARQ-ACK码本中包括3个HARQ反馈信息组,每个HARQ反馈信息组包括8个HARQ反馈信息,则第一HARQ-ACK码本中包括24个HARQ反馈信息,且根据DCI中C-DAI指示的累计计数值,该第一HARQ-ACK码本中的前8个HARQ反馈信息为DCI A对应的反馈信息,DCI A仅调度了3个PDSCH,则该8个HARQ反馈信息中的前6个HARQ反馈信息依次为PDSCH 1的2个HARQ反馈信息、PDSCH 2的2个HARQ反馈信息和PDSCH 3的2个HARQ反馈信息。类似地,中间8个HARQ反馈信息为DCI B对应的反馈信息,其中前4个HARQ反馈信息依次为PDSCH 4的2个HARQ反馈信息和PDSCH 5的2个HARQ反馈信息。以及最后8个HARQ反馈信息为DCI C对应的HARQ反馈信息,其中前4个HARQ反馈信息依次为PDSCH 6的2个HARQ反馈信息和PDSCH 7的2个HARQ反馈信息。
1个HARQ反馈信息可以是1比特,该1比特用于指示该1比特对应的TB是否被终端成功接收到,如该1比特指示“1”表示成功接收到该1比特对应的TB,指示“0”表示未成功接收到该1比特对应的TB。上述图5示例中,若一个DCI未调度满8个TB,则该DCI对应的HARQ反馈信息组的8个比特中包括不对应TB的比特,不对应TB的比特可以设置为预设值,例如预设值可以是“0”。
比如,DCI A调度的PDSCH 1和PDSCH 2均承载了2个TB,而PDSCH 3承载了1个TB,即DCI A共调度了5个TB,若终端成功接收到该5个TB,则第一HARQ-ACK码本中的前8个比特为“11111000”,其中,第1、2比特分别指示PDSCH 1的两个TB被成功接收到,第3、4比特分别指示PDSCH 2的两个TB被成功接收到。而PDSCH 3承载了1个TB,则第5比特指示PDSCH 3中的一个TB被成功接收到,其他3个比特不对应TB,则指示为预设值“0”。相应地,网络设备接收到该第一HARQ-ACK码本后,可以根据该8个比特确定终端成功接收到DCI A调度的5个TB。若终端未成功接收到PDSCH 2的第二个TB,PDSCH 2的第二个TB对应的比特指示“0”,则该8个比特为“11101000”,网络设备可以根据终端反馈的该第一HARQ-ACK码本中的该8个比特确定在DCI A调度的5个TB中终端未成功接收到PDSCH 2的第二个TB,成功接收到其他TB。
若DCI B调度的2个PDSCH分别承载了2个TB,DCI B共调度了4个TB,则DCI B对应的HARQ反馈信息组的8个比特中前4个比特与该4个TB依次对应,其余4个比特指示预设值“0”。
若DCI C调度的PDSCH 6和PDSCH 7分别承载了1个TB,则DCI C对应的HARQ反馈信息组的8个比特中的第一个比特指示PDSCH 6承载的1个TB是否被终端成功接收到,第二个比特不对应TB,则指示“0”。第三个比特指示PDSCH 7承载的1个TB是否被终端成功接收到,如终端成功接收到该2个TB,则该8个比特为“10100000”。若该2个TB中的一个或两个TB未被终端成功接收到,则相应的比特指示“0”。示例性地,若上述图5所示的3个DCI调度的TB均被成功接收到,则第一HARQ-ACK码本中3个DCI对应的24比特如图7所示。若存在未被成功接收到的TB则相应的比特指示“0”。
以上以数据块是TB为例进行了说明,数据块还可以是CB或CBG,具体实施方式可以参考上述TB的示例进行实施,为了简要,在此不再赘述。
根据该方案,第一HARQ-ACK码本中包含的每个DCI对应的HARQ反馈信息组中反馈信息的个数为固定值,即L1,使得即使终端未成功接收到其中一个或多个DCI的情况下可以根据C-DAI得到第一HARQ-ACK码本。例如在图5所示示例中,终端成功接收到DCI A和DCI C,但未接收到DCI B,终端根据DCI A中的C-DAI指示1以及DCI C中的C-DAI指示3,可以确定未接收到累计计数值为2的DCI。终端发送的第一HARQ-ACK码本中DCI A对应的8个比特之后包括累计计数值为2的DCI对应的指示全“0”的8个比特,在此之后为DCI C对应的8个比特。使得网络设备依然可以按照其发送包括DCI B在内的3个DCI的C-DAI确定第一HARQ-ACK码本中各个TB对应的HARQ反馈信息。提高了HARQ-ACK码本的传输可靠性,通过可靠的HARQ-ACK码本的反馈,使得网络设备能够在终端未成功接收到数据块时及时进行数据块重传,进而提高了数据块的传输效率以及可靠性。
另一个示例中,第一HARQ-ACK码本包括K个HARQ反馈信息组,一个HARQ反馈信息组包括L2个HARQ反馈信息,一个HARQ反馈信息组包括一个DCI调度的所有数据信道所属的数据信道组的HARQ反馈信息,L2小于或等于N1,L2是一个DCI调度的数据信道组的最大个数。
终端根据L2对一个DCI调度的数据信道进行分组,如终端将第一DCI调度的N1个数据信道分为L2个数据信道组,L2个HARQ反馈信息与L2个数据信道组一一对应,L2个HARQ反馈信息中的一个HARQ反馈信息指示对应的数据信道组被成功接收到或对应的数据信道组中至少一个数据信道未被成功接收到。
作为示例非限定,L2可以是网络设备通过信令指示给终端的或者是协议预定义。该信令可以是无线资源控制(radio resource control,RRC)消息和/或无线接入控制(medium access control,MAC)控制元素(control element,CE)。
该N1个数据信道分为L2个数据信道组的分组方式可以根据具体实施需求确定,在一种可选实施方式中,L2个数据信道组中的数据信道组可以包括个数据信道,最后一个数据信道组包括 个数据信道。
例如,网络设备可以通过RRC消息为终端配置L2为2。在图5所示示例中,DCI A调度了3个PDSCH,该3个PDSCH分为两个PDSCH组其中第一个PDSCH组包括个PDSCH,第二个PDSCH组包括2个PDSCH。如终端按照PDSCH所在载波的载波标识由小到大的顺序进行分组,则第一个PDSCH组包括PDSCH 1,第二个PDSCH组包括PDSCH 2和PDSCH 3。DCI B和DCI C调度的2个PDSCH各自为一个PDSCH组。第一HARQ-ACK码本包括每个DCI调度的2个PDSCH组的2个比特的HARQ反馈信息,即第一HARQ-ACK码本包括6比特,根据DCI指示的C-DAI,可以确定前2个比特为DCI A调度的2个PDSCH组的反馈信息,其中第1个比特用于指示仅包括PDSCH 1的PDSCH组是否被终端设备成功接收到,第2个比特用于指示包括PDSCH 2和PDSCH 3的PDSCH组,若PDSCH 2和PDSCH 3中的至少一个PDSCH未被终端成功接收到,则该比特指示“0”;若PDSCH 2和PDSCH 3均被终端成功接收到,则该比特指示“1”。第3、4个比特分别是DCI B调度的2个PDSCH(即各为一个PDSCH组)的HARQ反馈信息,第5、6个比特分别是DCI C调度的2个PDSCH(即各为一个PDSCH组)的HARQ反馈信息。该方案通过对PDSCH进行分组,且每组反馈一个HARQ反馈信息的方式,能够减小HARQ-ACK码本的比特开销,提高资源利用率。
再如图8所示,网络设备通过RRC消息为终端配置L2为2。网络设备在监听时机n向终端发送DCI A,该DCI A调度了如图8所示的PDSCH 1至PDSCH 5共5个PDSCH。该DCI A中的定时指示指示在第一时隙发送PDSCH的HARQ反馈信息,且该DCI A中的C-DAI指示1。以及网络设备在监听时机n+k发送DCI B,该DCI B调度了如图8所示的PDSCH 6至PDSCH 9共4个PDSCH。该DCI B中的定时指示也指示了在第一时隙发送PDSCH的HARQ反馈信息,且该DCI B中的C-DAI指示2。终端可以确定DCI A调度的5个PDSCH分为3个PDSCH组,其中,第一个PDSCH组包括个PDSCH,第二个PDSCH组包括3个PDSCH,即PDSCH 1、PDSCH2为PDSCH组1、PDSCH 3至PDSCH 5为PDSCH组2。终端在第一时隙发送的第一HARQ-ACK码本中的前2个比特分别依次对应DCI A调度的PDSCH组1、2,指示相应的PDSCH组中的PDSCH是否全部被成功接收到。同理,终端可以确定DCI B调度的4个PDSCH的分组,终端基于N1和L2可以确定每组包括2个PDSCH。第一HARQ-ACK码本中的第3个比特指示包括PDSCH 6和PDSCH 7的PDSCH组3是否被全部成功接 收到,第4个比特指示包括PDSCH 8和PDSCH 9的PDSCH组4是否被全部成功接收到。该DCI A和DCI B调度的9个PDSCH仅需要4个HARQ反馈比特,减小了第一HARQ-ACK码本的反馈开销,提高了资源利用率。
在一种实施方式中,网络设备可以通过第一配置信息为终端配置至少一个载波集合,其中,一个载波集合包括多个载波,一个多载波调度DCI可以调度一个载波集合中的至少两个载波上的数据信道。
网络设备发送的一个多载波调度DCI仅能够调度一个载波集合中的至少两个载波上的数据信道。也就是说,终端不期望一个多载波调度DCI调度多个载波集合中的载波上的数据信道,即终端不期望一个多载波调度DCI调度不同载波集合中的载波上的数据信道。其中,载波集合可以称为共调度载波集合。上述第一DCI调度的N1个数据信道所在的W个载波是一个载波集合中的载波。
例如,网络设备通过RRC消息为终端配置了载波0至载波7共8个载波,终端可以采用载波聚合的通信方式使用者8个载波与网络设备进行通信。另外,网络设备通过第一配置信息为终端配置了载波集合0和载波集合1共2个载波集合,其中,载波集合0包括载波0至载波3,载波集合1包括载波4至载波7。网络设备向终端发送的一个多载波调度DCI仅可以调度一个载波集合内的多个载波。
示例性地,如图8A所示,网络设备在监听时机n内的载波1上发送的DCI A调度了载波集合0中的2个载波上的PDSCH,即载波0上的PDSCH 0和载波1上的PDSCH 1。以及,网络设备在监听时机n内的载波4上还发送了DCI B,该DCI B调度了载波集合1中的3个载波上的PDSCH,即载波4上的PDSCH 2、载波5上的PDSCH 3以及载波7上的PDSCH 4。网络设备在监听时机n+k上发送了DCI C,该DCI C调度了载波集合1中的2个载波上的PDSCH,即载波5上的PDSCH 5和载波6上的PDSCH 6。如该示例,网络设备发送的一个多载波调度DCI仅能够调度一个载波集合中的多个载波上的PDSCH。
网络设备还可以通过第二配置信息为终端配置一个DCI在一个载波上调度的数据块的最大个数,一个DCI在一个载波上调度的数据块的个数小于或等于网络设备配置的在该载波上被一个DCI调度的数据块的最大个数。
上述第一配置信息和第二配置信息可以承载在RRC消息或其他信令中,示例性地,第二配置信息可以称为被DCI调度的最大码字(码字是数据块的另一种表述)个数配置信息,该第二配置信息可以为RRC消息中的maxNrofCodeWordsScheduledByDCI信元。
在该实施方式中,第一HARQ-ACK码本包括K个HARQ反馈信息组,该K个HARQ反馈信息组与调度N2个数据信道的K个DCI相对应,一个HARQ反馈信息组包括Li个HARQ反馈信息,该Li个HARQ反馈信息包括该HARQ反馈信息组对应的DCI调度的数据块的反馈信息。其中,Li是网络设备配置的载波集合i中的载波被一个DCI调度的数据块的最大个数之和。该载波集合i是该HARQ反馈信息组对应的DCI调度的数据信道所在的载波集合。
例如,数据块为TB,如在图8A所示示例中,网络设备通过第二配置信息为终端配置在载波1、载波3和载波7各自被一个DCI调度的数据块的最大个数为2,其他载波各自被一个DCI调度的数据块的最大个数为1。若仅包括图8A所示的3个DCI指示在第一时隙发送PDSCH的HARQ反馈信息,则终端在第一时隙发送的第一HARQ-ACK码本包括该3个DCI(即K=3)调度的PDSCH的HARQ反馈信息。具体地,该第一HARQ-ACK码本包括与该3个DCI对应的3个HARQ反馈信息组,其中包括DCI A对应的HARQ反馈信息组A,该HARQ反馈信息组A包括L0个HARQ反馈信息,L0是网络设备配置的载波集合0中的载波被一个DCI调度的数据块的最大个数之和。在载波集合0中载波0、载波2各自被一个DCI调度的数据块的最大个数均为1,载波1、载波3各自被一个DCI调度的数据块的最大个数为2,则L0=2×1+2×2=6。其中,该6个HARQ反馈信息包括载波0对应的1个HARQ反馈信息、载波1对应的2个HARQ反馈信息、载波2对应的1个HARQ反馈信息和载波3对应的1个HARQ反馈信息。例如,一个HARQ反馈信息为1比特,置“1”指示成功接收到相应的数据块,置“0”表示未成功接收到相应的数据块,则该HARQ反馈信息组A包括6个比特。若终端成功接收到PDSCH 0和PDSCH 1中的TB,如PDSCH 0包括1个TB,PDSCH 1包括2个TB,则HARQ反馈信息组A中的该6个比特为“111000”,其中第1个比特是载波0上的PDSCH 0中的一个TB的HARQ反馈信息,指示“1”表示PDSCH 0中的一个TB被成功接收到,第2、3比特分别是载波1上的PDSCH 1中的2个TB的HARQ反馈信息,该2个比特均指示“1”表示PDSCH 1中的2个TB均被接收到。若终端未成功接收到PDSCH 0和PDSCH 1中的TB,则该TB对应的比特指示“0”。而DCI A未调度载波2和载波3 上的PDSCH,则载波2对应的第4个比特以及载波3对应的第5比特和第6比特均指示“0”。
该3个HARQ反馈信息组还包括DCI B对应的HARQ反馈信息组B,该HARQ反馈信息组B包括L1个HARQ反馈信息,L1是网络设备配置的载波集合1中的载波被一个DCI调度的数据块的最大个数之和。假设在载波集合1中载波4至载波6各自被一个DCI调度的数据块的最大个数均为1,载波7被一个DCI调度的数据块的最大个数为2,则L1=3×1+2=5,该HARQ反馈信息组B包括5个HARQ反馈信息,该5个HARQ反馈信息中包括载波4、载波5和载波6分别对应的1个HARQ反馈信息,以及还包括载波7对应的2个HARQ反馈信息,由于DCI B在载波6上未调度PDSCH,则载波6对应的HARQ反馈信息指示未成功接收到相应的TB,终端根据是否成功接收到相应的TB,确定其他4个HARQ反馈信息指示成功或未成功接收到相应的TB。
该3个HARQ反馈信息组还包括DCI C对应的HARQ反馈信息组C,由于DCI C调度的是载波集合1上的PDSCH,因此,该HARQ反馈信息组C也包括L1个HARQ反馈信息,其中载波4、载波7上未调度PDSCH,则载波4对应的1个HARQ反馈信息和载波7对应的2个HARQ反馈信息均指示未成功接收到相应的TB,终端根据是否成功接收到载波5和载波6上的PDSCH中TB,确定载波5和载波6上的每个TB对应的HARQ反馈信息。
根据上述方案,终端根据网络设备配置的载波集合中的载波被一个DCI调度的数据块的最大个数之和,确定该载波集合上的数据信道被调度时相应的HARQ反馈信息的个数。使得网络设备与终端对反馈信息的大小可以达成共识。能够提高HARQ-ACK码本的传输可靠性。
第一DCI还可以包括下行分配总索引(total-DAI,T-DAI),该T-DAI指示截止到该第一监听时机,调度N2个数据信道的DCI中的DCI的总计数值。
例如,网络设备通过如图9所示的DCI A、DCI B、DCI C和DCI D分别指示这四个DCI调度的PDSCH的HARQ反馈信息在第一时隙反馈。其中,图9所示的DCI下方括号内逗号之前表示C-DAI指示的累计计数值,逗号后表示T-DAI指示的总计数值。在监听时隙n内,DCI A的C-DAI指示DCI的累计计数值为1,DCI B的C-DAI指示DCI的累计计数值为2,而截止到监听时机n,对DCI A和DCI B进行累计计数,总计数值为2,则DCI A和DCI B中的T-DAI均指示总计数值为2。而DCI C的C-DAI指示DCI的累计计数值为3,DCI D的C-DAI指示DCI的累计计数值为4,因此,截止到监听时机n+k,累计计数了4个DCI,总计数值为4。若终端未检测到DCI D,终端可以根据接收到的DCI C中的T-DAI指示的截止到监听时机n+k的总计数值为4,确定未检测到C-DAI指示4的DCI。终端仍可以确定第一HARQ-ACK码本包括4个HARQ反馈信息组,从而使得终端与网络设备对第一HARQ-ACK码本的大小的理解一致,即使终端未检测到DCI D,网络设备也能够成功解码第一HARQ-ACK码本。
实施方式二,第一C-DAI指示截止到第一DCI,N2个数据信道中已被调度的数据信道的累计计数值,其中,该N2个数据信道是先对同一监听时机内按照调度N2个数据信道中的数据信道的DCI所在载波的载波标识由小到大的顺序,对DCI调度的数据信道进行累计计数,再按照DCI所属的监听时机的时间先后顺序对数据信道依次累计计数。
或者说,第一C-DAI指示的是截止到当前监听时机(即第一DCI所在的第一监听时机)和当前DCI(即第一DCI)所在的载波,先按照监听时机的时间先后顺序,再按照DCI所在的服务小区的索引由小到大的顺序对(PDCCH监听时机,数据信道)-对进行计数得到的累计计数值。
如图10所示,网络设备在监听时机n中的载波1和载波4上分别发送了DCI A和DCI B,DCI A跨载波调度了载波2上的PDSCH 1和载波3上的PDSCH 2。该DCI B调度了分别位于载波4、载波5上的PDSCH 3、PDSCH 4。DCI A和DCI B中的定时指示均指示终端在第一时隙发送PDSCH的HARQ反馈信息。如在该监听时机n内的DCI是在时间上最早出现指示在第一时隙内发送PDSCH的HARQ反馈信息的DCI,首先对DCI所在载波的载波标识最小的DCI调度的PDSCH进行累计计数,DCI A所在载波的载波标识为1小于DCI B所在载波的载波标识4,则先对DCI A调度的2个PDSCH进行累计计数,PDSCH 1的计数值为1,PDSCH 2的计数值为2,则截止到该DCI A,已被调度的PDSCH的累计计数值为2。或者说,截止到当前监听时机n且按照DCI所在载波的载波标识由小到大的顺序截止到该DCI A,已被调度的PDSCH的累计计数值为2,则该DCI A中的C-DAI指示2。同理,截止到DCI B,已被调度的PDSCH的累计计数值为4,则DCI B中的C-DAI指示4。在该监听时机n之后,网络设备发送的下一个指示在第一时隙发送PDSCH的HARQ反馈信息的DCI是位于监听时机n+k中 的载波1上的DCI C,该DCI C调度了分别位于载波1、载波2和载波3的PDSCH 5、PDSCH 6和PDSCH 7共3个PDSCH,即截止该DCI C,已被调度的PDSCH的累计计数值为7,则该DCI C中的C-DAI指示7。终端按照调度DCI中C-DAI指示的累计计数值由小到大的顺序,排列在第一时隙内发送的PDSCH的HARQ反馈信息,其中同一DCI调度的多个数据信道的HARQ反馈信息按照数据信道所在载波的载波标识由小到大的顺序排列,从而得到第一HARQ-ACK码本。
第一DCI还可以包括T-DAI,该T-DAI指示截止到该第一监听时机,N2个数据信道中已被调度的数据信道的总计数值。
例如图11所示,DCI A、DCI B和DCI C共3个DCI指示在第一时隙发送PDSCH的HARQ反馈信息,该第一时隙中需要发送7个PDSCH的HARQ反馈信息。截止到监听时机n,该7个PDSCH中已被调度的PDSCH的总数为4,则DCI A和DCI B中的T-DAI指示4,截止到监听时机n+k,该7个PDSCH中已被调度的PDSCH的总数为7,则DCI C中的T-DAI指示7。或者说,截止到监听时机n,指示在第一时隙内发送PDSCH的HARQ反馈信息的DCI(包括DCI A和DCI B)调度的PDSCH的总数为4,则DCI A和DCI B中的T-DCI均指示4。而截止到监听时机n+k,指示在第一时隙内发送PDSCH的HARQ反馈信息的DCI(包括DCI A、DCI B和DCI C)调度的PDSCH的总数为7,则DCI C中的T-DAI指示7。
实施方式三,第一C-DAI指示N1个数据信道中所在载波的载波标识最小的数据信道在N2个数据信道中的累计计数值,其中,N2个数据信道是先对同一监听时机内调度的数据信道按照所在的载波的载波标识由小到大的顺序依次累计计数,再按照调度数据信道的DCI所属的监听时机的时间先后顺序依次累计计数。
例如图12所示,DCI A、DCI B和DCI C共3个DCI指示在第一时隙发送PDSCH的HARQ反馈信息。同一监听时机内调度的PDSCH按照所在载波的载波标识由小到大的顺序依次累计计数,则监听时机n中的DCI A和DCI B调度的PDSCH按照所在载波的载波标识由小到大的顺序累计计数,则DCI A调度的PDSCH 1和PDSCH 2的累计计数值分别为1和2,则DCI A中的C-DAI指示DCI A调度的2个PDSCH中累计计数值最小的PDSCH的累计计数值,即PDSCH 1的累计计数值1。或者说,DCI A中的C-DAI指示该2个PDSCH中所在载波的载波标识最小的PDSCH的累计计数值,即C-DAI指示1。同理,DCI B中的C-DAI指示累计计数值最小的PDSCH的累计计数值,即PDSCH 3的累计计数值3。监听时机n+k的DCI(仅包括DCI C)共调了3个PSDCH,按照载波的载波标识由小到大的顺序依次累计计数,则DCI C指示其调度3个PDSCH中累计计数值最小的累计计数值5。终端按照调度DCI中C-DAI指示的累计计数值由小到大的顺序,对在第一时隙内发送PDSCH的HARQ反馈信息进行排序,其中同一DCI调度的多个数据信道按照数据信道所在载波的载波标识由小到大的顺序排列,从而得到第一HARQ-ACK码本。
需要说明的是,在实施方式二和实施方式三中,终端得到第一HARQ-ACK码本可以包括K个HARQ反馈信息组,每个HARQ反馈信息组可以包括L1个反馈信息或L2个反馈信息,具体实施方式可以参考实施方式一中相应的描述,为了简要在此不再赘述。
第一DCI还可以包括T-DAI,该T-DAI指示截止到该第一监听时机,N2个数据信道中已被调度的数据信道的总计数值。
在图12所示示例中,各DCI指示的T-DAI与图11所示示例中各DCI指示的T-DAI值相同。
可选地,本申请实施例中的多载波调度DCI调度的数据信道所在的载波属于一个下行载波组,该下行载波组对应一个上行控制信道,该下行载波组上已被调度的数据信道的HARQ反馈信息承载在该上行控制信道上。
以前文图5为例,图5所示的多载波调度DCI A、DCI B和DCI C调度了载波1至载波5上的PDSCH,该载波1至载波5属于同一个下行载波组,该下行载波组对应的一个PUCCH。因此,若DCI A、DCI B和DCI C调度的PDSCH的HARQ反馈信息承载在PUCCH上,则具体承载在第一时隙内的该下行载波组对应的该PUCCH上。当终端具有上行载波聚合能力时,可以对下行载波进行分组,每个下行载波组中下行载波上的PDSCH的HARQ反馈信息承载在一个上行载波上的一个PUCCH上,即每个下行载波组对应一个上行载波上的一个PUCCH,该PUCCH可以称为PUCCH组(PUCCH group)。对于需要在第一时隙发送的由多载波调度DCI调度的同一下行载波组上的PDSCH的HARQ反馈信息,终端可以按照前文描述的实施方式生成一个HARQ-ACK码本,并在第一时隙中的该下行载波组对应 PUCCH上向发送该HARQ-ACK码本。
在上述实施方式中,DCI中C-DAI的比特数以及和T-DAI的比特数(若DCI中包括T-DAI)可以根据最大联合调度的PDSCH的个数确定。
以最大联合调度8个PDSCH为例,C-DAI和T-DAI可以分别包含3比特指示累计计数值Y,即以C-DAI/T-DAI用于指示累计计数值Y为例,表1示出了C-DAI和T-DAI的取值对应关系的一个示例,其中表中C-DAI/T-DAI的取值的最左边的比特为最高有效位,最右边的比特为最低有效位。
表1
在一种实施方式中,调度N2个数据信道的DCI均调度了多个载波上的数据信道。在同一时隙中,由多载波调度DCI调度的数据信道的HARQ反馈信息生成一个HARQ-ACK码本。也就是说,第一HARQ-ACK码本是承载多载波调度DCI调度的数据信道的反馈信息的专用HARQ-ACK码本。
终端在S402中发送的反馈信息中还可以包括第二HARQ-ACK码本,该第二HARQ-ACK码本包括N3个数据信道的HARQ反馈信息,调度N3个数据信道中每个数据信道的DCI仅调度了一个数据信道。
也就是说,该N3个数据信道均为单载波调度DCI调度的数据信道,单载波调度DCI是调度一个载波上的一个数据信道的DCI,该DCI可以是自载波调度DCI,即该DCI与其调度的数据信道位于同一载波,也可以是跨载波调度DCI,即该DCI与其调度的数据信道位于不同载波。
如图13所示,在监听时间n中的DCI A、DCI B和监听时机n+k1中的DCI C共3个多载波调度DCI指示在第一时隙发送PDSCH的HARQ反馈信息,该3个多载波调度DCI中的C-DAI可以采用上述实施方式一至三中的一种方式进行累计计数,图13为该3个多载波调度DCI采用上述实施方式一提供的方式进行累计计数的示例,可选地,多载波调度DCI还可以包括T-DAI,如图13所示。终端在第一时隙发送反馈信息,该反馈信息包括第一HARQ-ACK码本,该第一HARQ-ACK码本包括根据C-DAI指示的累计计数值排列的该3个多载波调度DCI调度的7个PDSCH的HARQ反馈信息。如图13所示,网络设备在监听时机n、n+k2中还分别发送了单载波调度DCI D、DCI E,且DCI D和DCI E均指示在第一时隙中发送HARQ反馈信息。单载波调度DCI中的C-DAI对单载波调度DCI进行累计计数,单载波调度DCI中还可以包括T-DAI。终端在第一时隙中发送的反馈信息还包括第二HARQ-ACK码本,第二HARQ-ACK码本中包括根据C-DAI指示的累计计数值排列的PDSCH0和PDSCH 8的HARQ反馈信息。
第一HARQ-ACK码本和第二HARQ-ACK码本在反馈信息中的排列顺序可以是协议预定义的或者由网络设备通过信令配置给终端的。例如,可以预定义单载波调度DCI调度的PDSCH的HARQ-ACK码本排列在多载波调度DCI调度的PDSCH的HARQ-ACK码本之前,则反馈信息中第二HARQ-ACK码本排列在第一HARQ-ACK码本之前,如图14所示。需要说明的是,在具体实施中,反馈信息可以称为一个HARQ-ACK码本,而上述第一HARQ-ACK码本和第二HARQ-ACK码本可以分别是该HARQ-ACK码本中的一个子码本,如第一HARQ-ACK子码本、第二HARQ-ACK子码本。
终端在S402中发送的反馈信息中还可以包括第三HARQ-ACK码本,该第三HARQ-ACK码本包括N4个数据信道的HARQ反馈信息,调度N4个数据信道中每个数据信道的DCI均调度了位于多个 时间单元的多个数据信道。也就是说,该N3个数据信道均为多时间单元调度DCI调度的数据信道,时间单元可以是但不限于子帧、时隙、mini-slot或OFDM符号组。多时间单元调度DCI是调度了多个时间单元中的多个数据信道的DCI。
如图15所示,除了包括图13所示的单载波调度DCI和多载波调度DCI以外,网络设备在监听时机n+k1中还发送了DCI F,该DCI F调度了两个时间单元中的PDSCH 9和PDSCH 10,且该DCI F指示了在第一时隙发送HARQ反馈信息,该DCI F中的C-DAI指示1,多时间单元调度DCI中的C-DAI对多时间单元DCI进行累计计数。该DCI F还可以包括T-DAI。终端在第一时隙中发送的反馈信息还包括第三HARQ-ACK码本,该第三HARQ-ACK码本包括多时间单元DCI调度的PDSCH 9和PDSCH 10的HARQ反馈信息。可以协议预定义或网络设备通过通信信令配置多个HARQ-ACK码本在反馈信息中的排列顺序。在反馈信息中,该三个HARQ-ACK码本可以按照第二HARQ-ACK码本、第一HARQ-ACK码本、第三HARQ-ACK码本的排列顺序依次排列。
在另一种实施方式中,该第一HARQ-ACK码本包括上述N2个数据信道的反馈信息(即包括多载波调度DCI调度的N2个数据信道的反馈信息)以外,该第一HARQ-ACK码本还包括N4个数据信道的HARQ反馈信息,调度N4个数据信道中每个数据信道的DCI均调度了位于多个时间单元的多个数据信道,即该第一HARQ-ACK码本还包括多时间单元调度DCI调度的N4个数据信道的反馈信息。
在该实施方式中,多载波调度DCI中的C-DAI和多时间单元调度DCI中的C-DAI对多载波调度DCI和多时间单元调度DCI进行联合累计计数。
上述第一DCI中的第一C-DAI指示第一DCI在G个DCI中的累计计数值,该G个DCI包括调度N2个数据信道的DCI和调度N4个数据信道的DCI,其中,该G个DCI是先对同一监听时机内的DCI按照所在服务小区的索引由小到大的顺序依次累计计数,再按照DCI所属的监听时机的时间先后顺序依次累计计数。
例如图15A所示,网络设备在监听时机n中的载波0上发送了DCI A和载波2上发送了DCI B。其中DCI A是多时间单元调度DCI,调度了位于不同时间单元的PDSCH 0和PDSCH 1。DCI B是多载波调度DCI,调度了位于不同载波上的PDSCH 2、PDSCH 3和PDSCH 4。C-DAI对多载波调度DCI和多时隙调度DCI进行联合计数。若DCI A和DCI B中的HARQ定时指示均指示终端在第一时隙发送DCI A和DCI B调度的PDSCH的HARQ反馈信息,且该监听时机n内的DCI是在时间上最早出现指示在第一时隙内发送PDSCH的HARQ反馈信息的DCI,由于DCI A所在载波的载波标识为0小于DCI B所在载波的载波标识2,因此,该DCI A中的C-DAI指示DCI的累计计数值为1,该DCI B中的C-DAI指示DCI的累计计数值为2。网络设备在监听时机n+k中发送了DCI C和DCI D,其中DCI C是多载波调度DCI,调度了位于不同载波上的PDSCH 5和PDSCH 6。DCI D是多时间单元调度DCI,调度了位于不同时间单元的PDSCH 7和PDSCH 8。DCI C和DCI D中的HARQ定时指示均指示终端在第一时隙发送DCI C和DCI D调度的PDSCH的HARQ反馈信息,由于DCI C所在载波的载波标识为1小于DCI D所在载波的载波标识4,该DCI C中的C-DAI指示DCI的累计计数值为3,该DCI D中的C-DAI指示DCI的累计计数值为4。
可选地,多载波调度DCI和多时间单元调度DCI中还包括T-DAI,该T-DAI也对多载波调度DCI和多时间单元调度DCI进行联合计数,则T-DAI指示截止到当前监听时机上述G个DCI中DCI的总计数值。
如图15A所示,截止到监听时机n,网络设备发送的、调度的PDSCH的反馈信息在第一时隙发送的多载波调度DCI和多时间单元调度DCI的总计数值为2,即包括DCI A和DCI B,则DCI A和DCI B中的T-DAI指示2。而截止到监听时机n+k,网络设备发送的、调度的PDSCH的反馈信息在第一时隙发送的多载波调度DCI和多时间单元调度DCI的总计数值为4,即包括DCI A、DCI B、DCI C和DCI D,则监听时机n+k中的DCI C和DCI D中的T-DAI指示4。
终端设备可以基于C-DAI,确定第一HARQ-ACK码本。该第一HARQ-ACK码本中包括G个HARQ反馈信息组,该G个HARQ反馈信息组与调度上述N2个数据信道和上述N4个数据信道的G个DCI相对应,一个HARQ反馈信息组中包括L3个HARQ反馈信息,L3个HARQ反馈信息包括该HARQ反馈信息组对应的DCI调度的多个数据信道的HARQ反馈信息,其中,L3是L4和L5中的最大值,L4是一个多载波调度DCI调度的数据块的最大个数,L5是多时间单元调度DCI调度的数据块的最大个数。
若一个数据信道能够承载的数据块的最大个数为D,一个多载波调度DCI最大调度多个载波上的个数据信道,则一个多载波调度DCI能够调度的数据块的最大个数一个多时间单元调度DCI最大调度多个时间单元(time unit,TU)中的个数据信道,则一个多时间单元调度DCI能够调度的数据块的最大个数则L3=max(L4,L5),若L4大于L5,则L3=L4,若L4小于L5,则L3=L5。
例如,一个PDSCH能够承载的TB的最大个数D=2,一个多载波调度DCI最多能够调度多个载波上的4个PDSCH,即则L4=2×4=8。一个多时间单元调度DCI最多能够调度8个时间单元,即L5=2×8=16。则L5大于L4,L3=L5=16。如图15A所示示例中,若在第一时隙之前网络设备发送的DCI A、DCI B、DCI C和DCI D,该4个多载波调度DCI和多时间单元调度DCI指示在第一时隙发送相应的HARQ反馈信息,即G=4,该4个DCI中C-DAI的最大值为4,若包括T-DAI,该T-DAI的最大值也为4。终端在第一时隙发送第一HARQ-ACK反馈码本,该第一HARQ-ACK反馈码本包括4个HARQ反馈信息组,该4个HARQ反馈信息组与该4个DCI按照C-DAI的大小依次对应,每个HARQ反馈信息组包括16个反馈信息。该4个HARQ反馈信息组中的HARQ反馈信息组A包括DCI A对应的16个HARQ反馈信息,该16个HARQ反馈信息包括DCI A调度的PDSCH 0和PDSCH 1中的TB的HARQ反馈信息,如PDSCH 0和PDSCH 1均包括2个TB,则该16个HARQ反馈信息中的包括DCI A调度的PDSCH 0和PDSCH 1中的TB的4个HARQ反馈信息,如一个HARQ反馈信息为1比特,则该16个HARQ反馈信息中的前4个比特可以依次对应PDSCH 0的2个TB,以及PDSCH 1的2个TB。该16个HARQ反馈信息中除前4个比特以外的12个比特置“0”。以及该4个HARQ反馈信息组还包括DCI B对应的HARQ反馈信息组B、DCI C对应的HARQ反馈信息组C和DCI D对应的HARQ反馈信息组D,每个HARQ反馈信息组中的16个反馈信息均包括相应的DCI调度的PDSCH中的TB的HARQ反馈信息。
根据上述方案,通过C-DAI对多载波调度DCI和多时间单元调度DCI进行联合累计计数,使得终端设备可以获知网络设备发送的多载波调度DCI和多时间单元调度DCI的累计计数,从而基于C-DAI确定第一HARQ-ACK码本的大小以及HARQ反馈信息在码本中的位置,使得网络设备与终端设备对第一HARQ-ACK码本的大小以及HARQ反馈信息在码本中的位置可以达成共识。提高了HARQ-ACK码本传输的可靠性。在一种实施方式中,当一个多载波调度DCI调度的多个数据信道中的一个或多个数据信道与半静态配置的上行符号或下行符号冲突(即该多载波调度DCI指示该一个或多个数据信道占用了半静态配置的上行符号或下行符号),则终端设备不期望接收该一个或多个数据信道。在第一HARQ-ACK码本中,该一个或多个数据信道的HARQ反馈信息指示未成功接收到该数据信道中的数据块。
例如,第一DCI调度了多个载波上的多个PDSCH,该多个PDSCH中的PDSCH 1在时域上占用了时隙s中的符号2至符号7,其中,符号7为半静态配置的上行符号,则终端不接收该PDSCH 1。第一HARQ-ACK码本中PDSCH 1的HARQ反馈信息指示未成功接收到该PDSCH 1中的数据块。
本申请实施例还提供一种用于激活或去激活多个载波上的半持续调度(semi-persistent scheduling,SPS)数据信道的DCI。SPS数据信道是指在激活后以一定时间间隔为周期,周期性出现的数据信道。半持续数据信道也可以称为半静态调度(semi-static scheduling)数据信道。
网络设备可以向终端发送第二DCI,该第二DCI用于激活P个载波上的SPS数据信道,P为大于1的整数。终端接收到该第二DCI后,根据第二DCI可以确定该P个载波上的SPS数据信道被激活。例如,该P个载波上的SPS数据信道为PDSCH,则终端可以在该P个载波上每个周期内的SPS数据信道上接收下行数据。或者该P个载波上的SPS数据信道为PUSCH,则终端可以在该P个载波中的多个载波上的SPS数据信道上发送上行数据。
第二DCI的DCI格式(format)与第一DCI的DCI格式可以相同。该DCI格式中可以包括一个指示域,用于指示网络设备发送的该DCI格式的DCI是调度多个载波上的数据信道的DCI或激活多个载波上的SPS数据信道的DCI。
网络设备可以向终端发送第三DCI,该第三DCI用于去激活Q个载波上的SPS数据信道,Q为大于1的整数。终端接收到该第三DCI后,根据第三DCI可以确定该Q个载波上的SPS数据信道被去激活,即该Q个载波上不再周期性地出现第三DCI指示的SPS数据信道。该Q个载波可以是P个载波中的部分或全部载波,或者Q个载波可以包括P个载波中的部分载波以及P个载波以外的载波。或 者,该Q个载波可以是P个载波以外的载波。
第三DCI的DCI格式与第一DCI的DCI格式可以相同。该DCI格式中可以包括一个指示域,用于指示该DCI格式的DCI是调度多个载波上的数据信道的DCI或去激活多个载波上的SPS数据信道的DCI。
一种实施方式中,第一DCI、第二DCI和第三DCI的DCI格式均相同,该DCI格式中包括指示域1,该指示域1用于指示网络设备发送的该DCI格式的DCI是用于调度多个载波上的数据信道的DCI,或用于多个载波上的SPS数据信道的激活、或去激活的DCI。
例如,该指示域1可以是DCI中的2个比特,该2个比特指示第一值表示该DCI格式的DCI用于调度多个载波上的数据信道,指示第二值表示该DCI格式的DCI用于多个载波上的SPS数据信道的激活,指示第三值表示该DCI格式的DCI用于多个载波上的SPS数据信道的去激活。
再例如,该指示域1可以复用目前DCI中的一种或多种指示域。如该指示域1可以包括频域资源分配(frequency domain resource assignment,FDRA)指示域和调制编码方式(modulation and coding scheme,MCS)指示域,当FDRA指示域的所有比特均置“0”且MCS指示域的所有比特非全“1”时,可以表示该DCI用于SPS数据信道的激活(即为第二DCI);当MCS指示域的所有比特均置“1”时,可以表示该DCI用于半持续数据信道的去激活(即为第三DCI);当FDRA指示域非全“0”,且MCS指示域的所有比特非全“1”时,可以表示该DCI用于动态调度多载波上的数据信道。
可以理解的是,为了实现上述实施例中功能,基站和终端包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图16和图17为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端120a-120j中的一个,也可以是如图1所示的网络设备110a或110b,还可以是应用于终端或网络设备的模块(如芯片)。
如图16所示,通信装置1600包括处理单元1610和收发单元1620。通信装置1600用于实现上述图4中所示的方法实施例中终端或网络设备的功能。
当通信装置1600用于实现图4所示的方法实施例中终端的功能时:收发单元1620用于接收来自网络设备的第一DCI,第一DCI包括W个小区上的N1个数据信道的调度信息以及第一累计下行分配索引C-DAI,其中,W、N1为大于1的整数,且W小于或等于N1。处理单元1610用于确定包括第一HARQ-ACK码本的反馈信息,其中,第一HARQ-ACK码本包括N2个数据信道的HARQ反馈信息,N2为大于1的整数,N2个数据信道包括N1个数据信道,N1个数据信道的HARQ反馈信息在第一HARQ-ACK码本中的排列顺序是根据第一C-DAI确定的。收发单元1620还用于向网络设备发送该反馈信息。
当通信装置1600用于实现图4所示的方法实施例中网络设备的功能时:收发单元1620用于向终端发送第一DCI,第一DCI包括W个小区上的N1个数据信道的调度信息以及第一累计下行分配索引C-DAI,其中,W、N1为大于1的整数,且W小于或等于N1。以及,收发单元1620还用于接收来自终端的反馈信息,反馈信息包括第一混合自动重传请求确认HARQ-ACK码本,第一HARQ-ACK码本包括N2个数据信道的HARQ反馈信息,N2为大于1的整数,N2个数据信道包括N1个数据信道。处理单元1610用于根据第一C-DAI确定N1个数据信道的HARQ反馈信息在第一HARQ-ACK码本中的排列顺序。
有关上述处理单元1610和收发单元1620更详细的描述可以参考图4所示的方法实施例中相关描述。
如图17所示,通信装置1700包括处理器1710和接口电路1720。处理器1710和接口电路1720之间相互耦合。可以理解的是,接口电路1720可以为收发器或输入输出接口。可选的,通信装置1700还可以包括存储器1730,用于存储处理器1710执行的指令或存储处理器1710运行指令所需要的输入数据或存储处理器1710运行指令后产生的数据。
当通信装置1700用于实现图4所示的方法时,处理器1710用于实现上述处理单元1610的功能,接口电路1720用于实现上述收发单元1620的功能。
当上述通信装置为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能。该终端芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给网络设备的。
当上述通信装置为应用于网络设备的模块时,该网络设备模块实现上述方法实施例中网络设备的功能。该网络设备模块从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端发送给网络设备的;或者,该网络设备模块向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端的。这里的网络设备模块可以是网络设备的基带芯片,也可以是DU或其他模块,这里的DU可以是开放式无线接入网(open radio access network,O-RAN)架构下的DU。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以在硬件中实现,也可以在可由处理器执行的软件指令中实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端中。处理器和存储介质也可以作为分立组件存在于网络设备或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。

Claims (20)

  1. 一种混合自动重传请求确认HARQ-ACK码本反馈方法,由终端或应用于终端中的模块执行,其特征在于,包括:
    接收来自网络设备的第一下行控制信息DCI,所述第一DCI包括W个小区上的N1个数据信道的调度信息和第一累计下行分配索引C-DAI,W、N1为大于1的整数,且W小于或等于N1;
    向所述网络设备发送反馈信息,所述反馈信息包括第一混合自动重传请求确认HARQ-ACK码本,所述第一HARQ-ACK码本包括N2个数据信道的HARQ反馈信息,N2为大于或等于N1的整数,所述N2个数据信道包括所述N1个数据信道,所述N1个数据信道的HARQ反馈信息在所述第一HARQ-ACK码本中的排列顺序是根据所述第一C-DAI确定的。
  2. 根据权利要求1所述的方法,其特征在于,所述第一C-DAI指示所述第一DCI在调度所述N2个数据信道的DCI中的累计计数值,调度所述N2个数据信道的DCI是先对同一监听时机内的DCI按照所在小区的服务小区索引由小到大的顺序依次累计计数,再按照所述DCI所属的监听时机的时间先后顺序依次累计计数。
  3. 根据权利要求2所述的方法,其特征在于,若调度所述N2个数据信道的DCI中的多个DCI在同一监听时机且在同一小区上,所述多个DCI按照所述多个DCI中每个DCI调度的参考数据信道所在的小区的服务小区索引由小到大的顺序或由大到小的顺序依次累计计数,其中,所述DCI调度的参考数据信道是所述DCI调度的数据信道中所在小区的服务小区索引最小的数据信道,或者,所述参考数据信道是所述DCI调度的数据信道中用于确定发送HARQ反馈信息的时间单元的数据信道。
  4. 根据权利要求1所述的方法,其特征在于,所述第一C-DAI指示截止到所述第一DCI,所述N2个数据信道中已被调度的数据信道的累计计数值,其中,所述N2个数据信道是先对同一监听时机内按照调度所述数据信道的DCI所在小区的服务小区索引由小到大的顺序,对所述DCI调度的所述数据信道进行累计计数,再按照所述DCI所属的监听时机的时间先后顺序对所述数据信道依次累计计数。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一DCI还包括下行分配总索引T-DAI,
    所述T-DAI指示截止到第一监听时机,所述N2个数据信道中被调度的数据信道的总计数值,所述第一监听时机为所述第一DCI所在的监听时机;或者,
    所述T-DAI指示截止到所述第一监听时机,调度所述N2个数据信道的DCI的总计数值。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,调度所述N2个数据信道的DCI均调度了多个小区上的多个数据信道。
  7. 根据权利要求6所述的方法,其特征在于,所述第一HARQ-ACK码本包括K个HARQ反馈信息组,其中,K为调度所述N2个数据信道的DCI的个数,一个所述HARQ反馈信息组包括L1个HARQ反馈信息,且所述L1个HARQ反馈信息包括一个DCI调度的数据信道的HARQ反馈信息,其中,所述L1是一个DCI调度的数据块的最大个数,L1大于或等于N1,所述数据信道用于承载至少一个数据块。
  8. 根据权利要求6所述的方法,其特征在于,所述第一HARQ-ACK码本包括K个反馈信息组,一个所述HARQ反馈信息组包括L2个HARQ反馈信息,且所述L2个HARQ反馈信息包括一个DCI调度的数据信道所属的数据信道组的HARQ反馈信息,L2小于或等于N1,L2是一个DCI调度的数据信道组的最大个数。
  9. 一种混合自动重传请求确认HARQ-ACK码本反馈方法,由网络设备或应用于网络设备中的模块执行,其特征在于,包括:
    向终端发送第一下行控制信息DCI,所述第一DCI包括W个小区上的N1个数据信道的调度信息和第一累计下行分配索引C-DAI,W、N1为大于1的整数,且W小于或等于N1;
    接收来自所述终端的反馈信息,所述反馈信息包括第一混合自动重传请求确认HARQ-ACK码本,所述第一HARQ-ACK码本包括N2个数据信道的HARQ反馈信息,N2为大于或等于N1的整数,所述N2个数据信道包括所述N1个数据信道,所述N1个数据信道的HARQ反馈信息在所述第一HARQ-ACK码本中的排列顺序是根据所述第一C-DAI确定的。
  10. 根据权利要求9所述的方法,其特征在于,所述第一C-DAI指示所述第一DCI在调度所述N2 个数据信道的DCI中的累计计数值,调度所述N2个数据信道的DCI是先对同一监听时机内的DCI按照所在小区的服务小区索引由小到大的顺序依次累计计数,再按照所述DCI所属的监听时机的时间先后顺序依次累计计数。
  11. 根据权利要求10所述的方法,其特征在于,若调度所述N2个数据信道的DCI中的多个DCI在同一监听时机且在同一小区上,所述多个DCI按照所述多个DCI中每个DCI调度的参考数据信道所在的小区的服务小区索引由小到大的顺序或由大到小的顺序依次累计计数,
    其中,所述DCI调度的参考数据信道是所述DCI调度的数据信道中所在小区的服务小区索引最小的数据信道,或者,所述参考数据信道是所述DCI调度的所述数据信道中用于确定发送HARQ反馈信息的时间单元的数据信道。
  12. 根据权利要求9所述的方法,其特征在于,所述第一C-DAI指示截止到所述第一DCI,所述N2个数据信道中已被调度的数据信道的累计计数值,其中,所述N2个数据信道是先对同一监听时机内按照调度所述数据信道的DCI所在小区的服务小区索引由小到大的顺序,对所述DCI调度的所述数据信道进行累计计数,再按照所述DCI所属的监听时机的时间先后顺序对所述数据信道依次累计计数。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,所述第一DCI还包括下行分配总索引T-DAI,
    所述T-DAI指示截止到第一监听时机,所述N2个数据信道中被调度的数据信道的总计数值,所述第一监听时机为接收所述第一DCI的监听时机;或者,
    所述T-DAI指示截止到所述第一监听时机,调度所述N2个数据信道的DCI的总计数值。
  14. 根据权利要求9至13中任一项所述的方法,其特征在于,调度所述N2个数据信道的DCI均调度了多个小区上的多个数据信道。
  15. 根据权利要求14所述的方法,其特征在于,所述第一HARQ-ACK码本包括K个HARQ反馈信息组,其中,K为调度所述N2个数据信道的DCI的个数,一个所述HARQ反馈信息组包括L1个HARQ反馈信息,且所述L1个HARQ反馈信息中包括一个DCI调度的数据信道的HARQ反馈信息,其中,所述L1是一个DCI调度的数据块的最大个数,L1大于或等于N1,所述数据信道用于承载至少一个数据块。
  16. 根据权利要求14所述的方法,其特征在于,所述第一HARQ-ACK码本包括K个反馈信息组,一个所述HARQ反馈信息组包括L2个HARQ反馈信息,且所述L2个HARQ反馈信息包括一个DCI调度的数据信道所属的数据信道组的HARQ反馈信息,L2小于或等于N1,L2是一个DCI调度的数据信道组的最大个数。
  17. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自网络设备的第一下行控制信息DCI,所述第一DCI包括W个小区上的N1个数据信道的调度信息和第一累计下行分配索引C-DAI,W、N1为大于1的整数,且W小于或等于N1;
    处理单元,用于确定反馈信息,所述反馈信息包括第一混合自动重传请求确认HARQ-ACK码本,所述第一HARQ-ACK码本包括N2个数据信道的HARQ反馈信息,N2为大于或等于N1的整数,所述N2个数据信道包括所述N1个数据信道,所述N1个数据信道的HARQ反馈信息在所述第一HARQ-ACK码本中的排列顺序是根据所述第一C-DAI确定的;
    所述收发单元还用于向所述网络设备发送所述反馈信息。
  18. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一下行控制信息DCI,所述第一DCI包括W个小区上的N1个数据信道的调度信息和第一累计下行分配索引C-DAI,W、N1为大于1的整数,且W小于或等于N1;
    收发单元,用于向终端发送所述第一DCI;
    所述收发单元用于接收来自所述终端的反馈信息,所述反馈信息包括第一混合自动重传请求确认HARQ-ACK码本,所述第一HARQ-ACK码本包括N2个数据信道的HARQ反馈信息,N2为大于或等于N1的整数,所述N2个数据信道包括所述N1个数据信道,所述N1个数据信道的HARQ反馈信息在所述第一HARQ-ACK码本中的排列顺序是根据所述第一C-DAI确定的。
  19. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给其它通信装置,所述处理器通过逻辑 电路或执行代码指令用于实现如权利要求1至16中任一项所述的方法。
  20. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至16中任一项所述的方法。
PCT/CN2023/112333 2022-08-11 2023-08-10 Harq-ack码本反馈方法和通信装置 WO2024032732A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210963819.2 2022-08-11
CN202210963819 2022-08-11
CN202211213951.8A CN117675147A (zh) 2022-08-11 2022-09-30 Harq-ack码本反馈方法和通信装置
CN202211213951.8 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024032732A1 true WO2024032732A1 (zh) 2024-02-15

Family

ID=89851012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112333 WO2024032732A1 (zh) 2022-08-11 2023-08-10 Harq-ack码本反馈方法和通信装置

Country Status (1)

Country Link
WO (1) WO2024032732A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200266937A1 (en) * 2019-02-14 2020-08-20 Qualcomm Incorporated Dynamic hybrid automatic repeat request (harq) codebook for multi-transmit receive point (trp) communication
WO2020220359A1 (zh) * 2019-04-30 2020-11-05 Oppo广东移动通信有限公司 确定harq码本的方法和设备
WO2022015936A2 (en) * 2020-07-17 2022-01-20 Qualcomm Incorporated Feedback schemes for multiple component carrier scheduling and joint feedback reporting
WO2022086888A1 (en) * 2020-10-19 2022-04-28 Yunjung Yi Hybrid automatic repeat request feedback with multi-cell downlink control information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200266937A1 (en) * 2019-02-14 2020-08-20 Qualcomm Incorporated Dynamic hybrid automatic repeat request (harq) codebook for multi-transmit receive point (trp) communication
WO2020220359A1 (zh) * 2019-04-30 2020-11-05 Oppo广东移动通信有限公司 确定harq码本的方法和设备
WO2022015936A2 (en) * 2020-07-17 2022-01-20 Qualcomm Incorporated Feedback schemes for multiple component carrier scheduling and joint feedback reporting
WO2022086888A1 (en) * 2020-10-19 2022-04-28 Yunjung Yi Hybrid automatic repeat request feedback with multi-cell downlink control information

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Discussion on multi-cell scheduling", 3GPP DRAFT; R1-2203583, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153058 *

Similar Documents

Publication Publication Date Title
US11804929B2 (en) Apparatus and method for transmission of uplink control information in network cooperative communication
CN110291743B (zh) 用于在物理层帧上复用不同服务的抢占指示符和基于代码块组的重传技术
CN108293253B (zh) 信息比特封装
US20210028823A1 (en) Method for measurement and report of channel state information for network cooperative communication
WO2019072074A1 (zh) Harq-ack反馈码本的发送方法、装置及设备
US20190254088A1 (en) Method and apparatus for transmitting or receiving data and control information in wireless communication system
US11930506B2 (en) Method and apparatus for transmitting and receiving data in wireless communication system
CN116546641A (zh) 无线蜂窝通信系统中发送控制和数据信息的方法和装置
WO2021032015A1 (zh) 反馈信息传输方法及通信装置
WO2019242710A1 (zh) 生成混合自动重传请求harq信息的方法和装置
WO2021197270A1 (zh) 信息传输方法、装置及系统
WO2019157669A1 (zh) 通信方法及装置
US11902943B2 (en) Communication method and communications apparatus
WO2022022286A2 (en) Method and apparatus for transmitting csi report
WO2019157996A1 (zh) 数据传输方法、通信装置及存储介质
CN114885431A (zh) 一种通信方法及装置
TWI759507B (zh) 回饋應答訊息的傳輸方法、裝置及系統
WO2019137011A1 (zh) 一种通信方法及上行资源确定方法
US10749638B2 (en) Soft buffer handling with limited memory access bandwidth
WO2020143813A1 (zh) 传输信息的方法和装置
US20230189244A1 (en) Semi-persistent schedule feedback method and apparatus, and device and storage medium
CN115918011A (zh) 生成混合自动重复请求harq码本的方法和装置
WO2023011542A1 (zh) 控制信息的传输方法和装置
WO2022237424A1 (zh) 通信方法及装置
US20180317206A1 (en) Method and apparatus for determining uplink transmission timing in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851952

Country of ref document: EP

Kind code of ref document: A1