WO2022052131A1 - 通信方法、装置 - Google Patents

通信方法、装置 Download PDF

Info

Publication number
WO2022052131A1
WO2022052131A1 PCT/CN2020/115161 CN2020115161W WO2022052131A1 WO 2022052131 A1 WO2022052131 A1 WO 2022052131A1 CN 2020115161 W CN2020115161 W CN 2020115161W WO 2022052131 A1 WO2022052131 A1 WO 2022052131A1
Authority
WO
WIPO (PCT)
Prior art keywords
mcs index
index table
value
index value
modulation order
Prior art date
Application number
PCT/CN2020/115161
Other languages
English (en)
French (fr)
Inventor
余雅威
郭志恒
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/115161 priority Critical patent/WO2022052131A1/zh
Priority to CN202080105100.4A priority patent/CN116114228A/zh
Priority to EP20952919.7A priority patent/EP4207845A4/en
Publication of WO2022052131A1 publication Critical patent/WO2022052131A1/zh
Priority to US18/183,266 priority patent/US20230216604A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the present application relates to the field of communication, and, more particularly, to a communication method and apparatus.
  • the transmission capability of the user equipment (UE) is limited, for example, the number of antennas is small, the baseband chip processing is general, and the energy consumption is limited etc.
  • the uplink transmission power and rate face greater challenges.
  • the base station (base station, or g Node B, gNB) side has a threshold requirement for the signal-to-noise ratio (SNR) of the received uplink signal, which is called It is the sensitivity of the receiver.
  • SNR signal-to-noise ratio
  • Quadrature Phase Shift Keying compared with ⁇ /2 Binary Phase Shift Keying (BPSK), the peak to average power ratio (Peak to Average Power Ratio, PAPR) ) is larger, it is more likely that the maximum power exceeds the linear threshold of the power amplifier (Power Amplifier, PA), so the power backoff value of QPSK is larger than that of ⁇ /2 BPSK, and the actual transmit power is larger than that of ⁇ /2 BPSK. The power is small, resulting in performance loss of uplink transmission.
  • QPSK Quadrature Phase Shift Keying
  • BPSK Binary Phase Shift Keying
  • the target transmission rate is also a key indicator to measure the uplink transmission capability of the current NR system, that is, under the time-frequency resources in different scenarios, improve the efficiency of uplink transmission as much as possible, such as reducing pilot overhead, Reducing the redundancy of sending information, etc., will help to improve the throughput of uplink transmission.
  • the ⁇ /2 BPSK modulation method is used, the corresponding target code rate is low, and the number of redundant bits introduced into the transmitted information bit sequence is large, resulting in low spectral efficiency.
  • the present application provides a communication method and apparatus, which can enable a terminal device to use a ⁇ /2 BPSK modulation method with higher transmit power for uplink transmission and achieve higher spectral efficiency, thereby improving uplink performance.
  • a first aspect provides a communication method for indicating an MCS, the method comprising: sending first indication information to the terminal device, where the first indication information is used to indicate a first MCS index table or a second MCS index table, and Send downlink control information DCI to the terminal device, where the DCI includes a first MCS index value, and the first MCS index value is a value in the first MCS index table or the second MCS index table; wherein: the first MCS index table Including the second MCS index value, the modulation order corresponding to the second MCS index value is 1, and the product of the target code rate corresponding to the second MCS index value and 1024 is greater than 314, and the corresponding modulation in the first MCS index table The number of MCS index values whose order is 1 is greater than or equal to 3; the second MCS index table includes a third MCS index value, the modulation order corresponding to the third MCS index value is 1, and the third MCS index value corresponds to The product of the target code rate and 1024 is greater than 198, and
  • the value of the target code rate corresponding to the ⁇ /2 BPSK modulation method is increased by extending or redefining the MCS index table of the existing protocol, and correspondingly, the value of the target code rate corresponding to the ⁇ /2 BPSK modulation method is also increased.
  • the target code rate corresponding to the modulation method is higher, thereby improving the performance of uplink data transmission.
  • the product of the target code rate corresponding to the MCS index value with a modulation order of 1 in the first MCS index table and 1024 includes at least one in the first set.
  • An item, the first set is ⁇ 340, 378, 379, 386, 434, 449, 466, 490, 502, 517, 526, 553, 567, 602, 616, 658, 666, 679, 719, 758, 772 , 822, 873, 898, 910, 948 ⁇ ; or the product of the target code rate corresponding to the MCS index value with the corresponding modulation order of 1 in the second MCS index table and 1024 includes at least one item in the second set,
  • the second set is ⁇ 240, 314, 340, 378, 379, 386, 434, 449, 466, 490, 502, 517, 526, 553, 567, 602, 616, 658, 666, 679, 719, 758,
  • the second MCS index value is one of 28-31; or the third MCS index value is one of 28-31.
  • the number of MCS index values in the first MCS index table is greater than 32; or the number of MCS index values in the second MCS index table is greater than 32.
  • the method further includes: sending second indication information to the terminal device, where the second indication information is used to indicate that the modulation order of the uplink transmission of the terminal device is 1 .
  • a second aspect provides a communication method for indicating an MCS, the method comprising: receiving first indication information sent by the network device, where the first indication information is used to indicate a first MCS index table or a second MCS index table; Receive the DCI sent by the network device, where the DCI includes a first MCS index value, and the first MCS index value is a value in the first MCS index table or the second MCS index table; in the first MCS index table or the second MCS index In the index table, determine the first target code rate of the uplink transmission corresponding to the first MCS index value, wherein the first MCS index table includes the second MCS index value, and the modulation order corresponding to the second MCS index value is 1, and the product of the target code rate corresponding to the second MCS index value and 1024 is greater than 314, and the corresponding modulation order in the first MCS index table is that the number of MCS index values of 1 is greater than or equal to 3; the second MCS The index table includes a third MCS index value, the modulation order
  • the value of the target code rate corresponding to the ⁇ /2 BPSK modulation method in the MCS index table is increased by extending or redefining the MCS index table of the existing protocol.
  • the target code rate corresponding to the ⁇ /2 BPSK modulation method is higher, thereby improving the performance of uplink data transmission.
  • the product of the target code rate corresponding to the MCS index value with a modulation order of 1 in the first MCS index table and 1024 includes at least one in the first set.
  • An item, the first set is ⁇ 340, 378, 379, 386, 434, 449, 466, 490, 502, 517, 526, 553, 567, 602, 616, 658, 666, 679, 719, 758, 772 , 822, 873, 898, 910, 948 ⁇ ; or the product of the target code rate corresponding to the MCS index value with the corresponding modulation order of 1 in the second MCS index table and 1024 includes at least one item in the second set,
  • the second set is ⁇ 240, 314, 340, 378, 379, 386, 434, 449, 466, 490, 502, 517, 526, 553, 567, 602, 616, 658, 666, 679, 719, 758,
  • the second MCS index value is one of 28-31; or the third MCS index value is one of 28-31.
  • the number of MCS index values in the first MCS index table is greater than 32; or the number of MCS index values in the second MCS index table is greater than 32.
  • the method further includes: receiving second indication information sent by the network device, where the second indication information is used to indicate that the modulation order adopted for uplink transmission is 1, According to the second indication information, it is determined that the modulation order adopted for the uplink transmission is 1.
  • a third aspect provides a communication method for indicating an MCS, the method comprising: sending first indication information to the terminal device, where the first indication information is used to indicate a third MCS index table, wherein the third MCS index The modulation order corresponding to the MCS index value in the table includes the values of 1 and 2, but does not include the value greater than or equal to 6; and sends DCI to the terminal device, where the DCI includes the first MCS index value, the first MCS index The value is a value in the third MCS index table.
  • the MCS index table adds more values of the target code rate corresponding to the ⁇ /2 BPSK modulation method on the basis of the existing protocol. , correspondingly, the target code rate corresponding to the ⁇ /2 BPSK modulation method is higher, thereby improving the performance of uplink data transmission.
  • the number of MCS index values in the third MCS index table is 16, and the third MCS index table includes M MCS index values with a modulation order of 1 , where M is a positive integer greater than or equal to 3.
  • the number of MCS index values in the third MCS index table is 32, and the third MCS index table includes N MCS index values with a modulation order of 1 , where N is a positive integer greater than or equal to 3.
  • the value of the maximum target code rate corresponding to the modulation order 1 is greater than the first threshold
  • a fourth aspect provides a communication method for indicating an MCS, the method comprising: receiving first indication information sent by the network device, where the first indication information is used to indicate a third MCS index table; receiving a DCI sent by the network device , the DCI includes a first MCS index value, and the first MCS index value is a value in the third MCS index table; in the third MCS index table, determine the uplink transmission corresponding to the first MCS index value.
  • the first modulation order and the first target code rate, wherein the modulation order corresponding to the MCS index value in the third MCS index table includes the values of 1 and 2, and does not include the value greater than or equal to 6.
  • the number of MCS index values in the third MCS index table is 16, and the third MCS index table includes M MCS index values with a modulation order of 1, This M is a positive integer greater than or equal to 3.
  • the number of MCS index values in the third MCS index table is 32, and the third MCS index table includes M MCS index values with a modulation order of 1, This M is a positive integer greater than or equal to 3.
  • the value of the maximum target code rate corresponding to the modulation order of 1 is greater than the first threshold.
  • the MCS index table adds more values of the target code rate corresponding to the ⁇ /2 BPSK modulation method on the basis of the existing protocol. , correspondingly, the target code rate corresponding to the ⁇ /2 BPSK modulation method is higher, thereby improving the performance of uplink data transmission.
  • a fifth aspect provides a communication apparatus, which is configured to execute the methods for indicating MCS provided in the above-mentioned first to fourth aspects.
  • the apparatus may include modules for executing the communication methods provided by the first to fourth aspects.
  • a communication device including a processor.
  • the processor is coupled to the memory, and can be used to execute the instructions in the memory, so as to implement the communication method of the first aspect to the fourth aspect and any possible implementation manner of the first aspect to the fourth aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface to which the processor is coupled, and the communication interface is used for inputting and/or outputting information.
  • the information includes at least one of instructions and data.
  • the means for communication is network equipment.
  • the communication interface may be a transceiver, or an input/output interface.
  • the means for communication is a chip or a system of chips.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip or a chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the communication apparatus is a chip or a chip system configured in a network device.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a communication device, causes the communication device to implement the first to fourth aspects, and the first to fourth aspects.
  • the communication method in any possible implementation manner of the four aspects.
  • a computer program product including instructions, the instructions, when executed by a computer, cause a communication apparatus to implement the communication methods provided in the first to fourth aspects.
  • FIG. 1 is a schematic diagram of a wireless communication system applicable to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a wireless communication method applicable to an embodiment of the present application.
  • FIG. 3 is a schematic block diagram of a communication device suitable for use in an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a communication device suitable for use in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device suitable for use in an embodiment of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • FIG. 1 is a schematic diagram of a wireless communication system 100 suitable for an embodiment of the present application.
  • the wireless communication system 100 may include at least one network device, for example, the network device 110 shown in FIG. 1 .
  • the wireless communication system 100 may further include at least one terminal device, for example, the terminal device 120 shown in FIG. 1 .
  • a wireless connection can be established between a terminal device and a network device and between a terminal device and a terminal device for wireless communication, and the sending device can indicate data scheduling information through control information, so that the receiving device can correctly receive data according to the control information.
  • the terminal equipment in the embodiments of the present application may also be referred to as user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal , wireless communication device, user agent or user device.
  • user equipment user equipment
  • UE user equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal , wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security ( wireless terminals in transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local Wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, 5G
  • Public Land Mobile Network Public Land Mobile Network
  • the terminal device may also be a terminal device in an internet of things (Internet of things, IoT) system.
  • IoT Internet of things
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect items to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and interconnection of things.
  • the network device in this embodiment of the present application may be any device with a wireless transceiver function.
  • the equipment includes but is not limited to: evolved Node B (evolved Node B, eNB), Radio Network Controller (Radio Network Controller, RNC), Node B (Node B, NB), Base Station Controller (Base Station Controller, BSC) , base transceiver station (Base Transceiver Station, BTS), home base station (for example, Home evolved NodeB, or Home Node B, HNB), base band unit (Base Band Unit, BBU), Wireless Fidelity (Wireless Fidelity, WIFI) system
  • the access point (Access Point, AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc. can also be 5G, such as, NR, gNB in the system, or, transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of a base station in a 5G system, or
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (active antenna unit, AAU for short).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implementing functions of radio resource control (RRC) and packet data convergence protocol (PDCP) layers.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, the media access control (MAC) layer and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the higher-layer signaling such as the RRC layer signaling
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • Power Class The current NR protocol imposes different restrictions on the maximum power that the terminal can send in different frequency bands based on the requirements of the specific absorption rate (SAR) of different frequency bands and the capability of radio frequency devices, namely Different power levels Power Class.
  • SAR specific absorption rate
  • MPR Maximum Power Reduction
  • PA Power Amplifier
  • PA Power Amplifier
  • the value of MPR may be different.
  • EVM Error Vector Magnitude
  • the MPR is usually larger, and the maximum transmit power requirements are more stringent.
  • Table 2 for the UE of power level 3, the MPR values when different modulation modes are adopted. Among them, it is mentioned in Note 1 that when the following conditions are met, the UE of 23dBm can transmit with a higher power of 26dBm:
  • the power boost parameter powerBoost ⁇ /2 BPSK configured by high-level signaling is 1;
  • the total number of time slots for transmitting uplink data shall not exceed 40%.
  • the terminal equipment can use higher transmit power for uplink transmission, but the spectral efficiency of ⁇ /2 BPSK modulation in the MCS index table of the existing protocol is lower than that of QPSK modulation, and ⁇ /2 BPSK or QPSK modulation have little difference in uplink performance. Therefore, in order to solve the problem that the target code rate corresponding to the MCS value of ⁇ /2 BPSK is too low, resulting in low spectral efficiency, the original MCS in the existing protocol is modified. The index table has been modified and expanded, so that the terminal device has higher spectral efficiency when using ⁇ /2 BPSK modulation, thereby improving the performance of the uplink.
  • FIG. 2 is a schematic flowchart of a wireless communication method applicable to the present application, and the method includes:
  • the network device determines the first MCS index value.
  • the network device measures the uplink channel quality and interference situation based on the received signal, calculates the modulation method and the target code rate that make the terminal equipment's uplink transmission performance the best according to the measurement result, and determines the MCS index table according to the modulation method and the target code rate. The corresponding first MCS index value.
  • the modulation methods that can be used by the terminal equipment for uplink transmission may be ⁇ /2 BPSK, QPSK, 16QAM and 64QAM.
  • the network device determines that the terminal device adopts the ⁇ /2 BPSK modulation method, and configures the power boost parameter for the terminal device to be 1 and the proportion of uplink subframes in the TDD frame structure is not higher than 40%, the power level is 3
  • the maximum transmit power of the terminal equipment can be increased from 23dBm to 26dBm.
  • the network device sends first indication information, where the first indication information includes the identifier of the MCS index table determined by the network device.
  • the terminal device receives the first indication information, and determines the first MCS index table or the second MCS index table according to the identifier of the MCS index table included in the first indication information.
  • the first indication information includes enabling transmission precoding, that is, the parameter transformPrecoder of the RRC signaling configuration is 'enabled', and further includes:
  • the first indication information instructs the terminal to use the second MCS index table
  • the first indication information indicates that the terminal uses the second MCS index table.
  • the first indication information indicates that the terminal adopts the first MCS index table.
  • the above-mentioned first indication information may also indicate the third MCS index table.
  • the value of the MCS-Table field in which the first indication information includes the RRC signaling configuration is no longer 'qam64LowSE' or 'qam256', but the value For example 'CoverageEnhance'.
  • the network device sends second indication information, where the second indication information may be used to indicate the modulation order adopted by the terminal device for uplink transmission.
  • the terminal device receives the second indication information, and determines the modulation mode according to the second indication information.
  • the modulation order is 1 at this time.
  • the first indication information and the second indication information may be the same information or different information, which is not limited here.
  • the indication information may be RRC or MAC signaling.
  • the indication information It can also be DCI, which can switch the modulation mode adopted by the terminal equipment for uplink transmission more flexibly.
  • the sending order of the first indication information and the second indication information may be that the first indication information comes first or the second indication information comes first, and the sending order is not limited here.
  • the DCI sent by the network device includes a first MCS index value determined by the network device, where the first MCS index value is used to indicate a target code rate for uplink transmission by the terminal device.
  • the terminal device receives the DCI, and determines the target code rate of uplink transmission corresponding to the first MCS index value.
  • the MCS index table to which the first MCS index value belongs may be the first MCS index table or the second MCS index table
  • the first MCS index table may be understood as being applied to common scenarios
  • the second MCS index table may be understood as being applied to In the URLLC scenario (supporting extremely low spectral efficiency and target code rate to ensure high reliability)
  • the first MCS index table includes a second MCS index value
  • the modulation order corresponding to the second MCS index value is 1
  • the first MCS index value is 1.
  • the product of the target code rate corresponding to the two MCS index values and 1024 is greater than 314, that is, the target code rate corresponding to the second MCS index value is greater than 314/1024, and the first MCS index table corresponds to the MCS index with a modulation order of 1
  • the number of values is greater than or equal to 3.
  • the MCS index table to which the first MCS index value included in the DCI sent by the network device belongs is the third MCS index table, and correspondingly , the terminal device receives the DCI, and determines the target code rate of uplink transmission corresponding to the first MCS index value in the third MCS index table.
  • the modulation order corresponding to the MCS index value is 1 and the product of the target code rate and 1024 is greater than 314.
  • the product of the code rate and 1024 includes at least one item in the first set, and the first set is ⁇ 340, 378, 379, 386, 434, 449, 466, 490, 502, 517, 526, 553, 567, 602, 616, 658, 666, 679, 719, 758, 772, 822, 873, 898, 910, 948, 1052, 1204, 1358 ⁇ .
  • the index values 2-9 are newly introduced in Table 3, which can correspond to a modulation order of 1 and the product of the target code rate and 1024 is greater than 314.
  • 5 bits in the DCI need to be used to indicate all MCSs in the first MCS index table.
  • the index value, the target code rate corresponding to ⁇ /2 BPSK in the first MCS index table is more than that of the existing protocol, and the corresponding spectral efficiency is also higher than that of the existing protocol.
  • the values of the corresponding target code rate and spectral efficiency when the modulation order is 1 in Table 3 are only examples, and the values of the corresponding target code rate and spectral efficiency can also be the values shown in Table 3 in the above-mentioned first set. Values other than those shown are not limited here.
  • the second MCS index table includes a third MCS index value, the modulation order corresponding to the third MCS index value is 1, and the product of the target code rate corresponding to the third MCS index value and 1024 is greater than 198.
  • the number of MCS index values corresponding to modulation order 1 in the second MCS index table is greater than or equal to 7, and the product of the specific target code rate and 1024 includes at least one item in the second set, and the second set is ⁇ 240, 314 , 340, 378, 379, 386, 434, 449, 466, 490, 502, 517, 526, 553, 567, 602, 616, 658, 666, 679, 719, 758, 772, 822, 873, 898, 910 , 948, 1052, 1204, 1358 ⁇ .
  • the MCS index value in the second MCS index table needs to be indicated by 5 bits in the DCI.
  • the target code rate corresponding to ⁇ /2 BPSK in the second MCS index table has more values and higher spectral efficiency, thereby improving the performance of the uplink.
  • Table 3 and Table 4 are pre-configured at both ends of the network device and the terminal device, respectively, based on the two tables of the existing protocol, by flexibly configuring more corresponding MCSs with modulation order q
  • the index value without increasing the MCS index value indication overhead, introduces a ⁇ /2 BPSK with a higher target code rate.
  • the above-mentioned second MCS index value can be one of the MCS index values 28-31.
  • ⁇ /2 BPSK adopts a code rate that is too high (for example, the target code rate is 948/1024), which may cause too much loss of channel coding performance, and the transmission performance at this time may be worse than that when the QPSK code rate is slightly lower. Therefore, there is no need to define an excessively high target code rate, so the possible high code rate values of ⁇ /2 BPSK can be reduced.
  • the value of the MCS index value in the first MCS index table can be the same as that of the existing protocol.
  • the MCS index values 28-31 in the table are the MCS index values of the reserved state of the MCS index table of the existing protocol, which can be Redefine the MCS index values of the four reserved states as ⁇ /2 BPSK with a modulation order of 1, and define its target code rate, so that the spectral efficiency corresponding to ⁇ /2 BPSK is higher than that of the existing protocol 314/1024.
  • the value of the target code rate corresponding to ⁇ /2 BPSK includes at least one item in the first set. This solution does not add the status value of the existing MCS index, so it is still indicated by 5 bits in the DCI.
  • the values of the target code rate and spectral efficiency corresponding to the MCS index values 28-31 in Table 5 are only examples, and are not limited here, and the values of the target code rate and spectral efficiency can also be divided by the above-mentioned first set. Values other than those shown in Table 5.
  • the above-mentioned third MCS index value may be one of the MCS index values 28-31, and a specific example is shown in Table 6.
  • the value of the MCS index value in the second MCS index table can be the same as that of the existing protocol.
  • the MCS index values 28-31 in Table 6 are the MCS index values of the reserved state of the MCS index table of the existing protocol, and 4 are reserved.
  • the MCS index value of the state is redefined as ⁇ /2 BPSK with a modulation order of 1, and its target code rate is defined, so that the target code rate corresponding to ⁇ /2 BPSK is higher than the existing protocol 198/1024, specifically ⁇ /2
  • the value of the target code rate corresponding to BPSK includes at least one item in the second set. This solution does not add the status value of the existing MCS index, so it is still indicated by 5 bits in the DCI.
  • MCS index value modulation order Target bit rate ⁇ 1024 Spectral efficiency 0 q 60/q 0.0586 1 q 80/q 0.0781 2 q 100/q 0.0977 3 q 128/q 0.1250 4 q 156/q 0.1523 5 q 198/q 0.1934 6 2 120 0.2344 7 2 157 0.3066 8 2 193 0.3770 9 2 251 0.4902 10 2 308 0.6016
  • the values of the target code rate and spectral efficiency corresponding to the MCS index values 28-31 in Table 5 and Table 6 are only examples, and are not limited here, and the values of the target code rate and spectral efficiency can also be the above-mentioned second. Values other than those shown in Table 6 in the set. Tables 5 and 6 are also preconfigured at both ends of the network device and the terminal device.
  • the number of MCS index values in the MCS tables in Tables 3 to 6 above remains unchanged, and there is no need to increase the number of bits indicated by the MCS in the DCI.
  • more MCS index values can also be introduced.
  • the first MCS index table can add more ⁇ /2 BPSK modulation index values and corresponding targets based on the first table of the original NR protocol.
  • the code rate for example, is shown in Table 7;
  • the second MCS index table can add more target code rates corresponding to the index values of ⁇ /2 BPSK modulation on the basis of the second table of the original NR protocol, for example, as shown in Table 8. Show.
  • MCS index value modulation order Target bit rate ⁇ 1024 Spectral efficiency 0 q 60/q 0.0586 1 q 80/q 0.0781 2 q 100/q 0.0977 3 q 128/q 0.1250 4 q 156/q 0.1523 5 q 198/q 0.1934 6 2 120 0.2344 7 2 157 0.3066 8 2 193 0.3770 9 2 251 0.4902 10 2 308 0.6016 11 2 379 0.7402 12 2 449 0.8770 13 2 526 1.0273 14 2 602 1.1758 15 2 679 1.3262 16 4 378 1.4766 17 4 434 1.6953
  • the product of the target code rate and 1024 corresponding to the newly added MCS index value in the above-mentioned table 7 can also be other values in the first set except those shown in Table 7; the newly added MCS in the above-mentioned table 8
  • the product of the target code rate corresponding to the index value and 1024 may also be other values in the second set except those shown in Table 8, which are not limited here.
  • the modulation order corresponding to the MCS index value in the third MCS index table includes the values of 1 and 2, excluding the value greater than or equal to 6, the third MCS index table
  • the number of MCS index values is 16, and the third MCS index table includes M MCS index values whose modulation order is 1, where M is a positive integer greater than or equal to 3, and in the third MCS index table, the modulation order is The maximum target code rate corresponding to 1 is greater than the first threshold, and the first threshold is greater than or equal to 314/1024.
  • the third MCS index table is shown in Table 9, and the value of the target code rate corresponding to ⁇ /2 BPSK includes at least one item in the above-mentioned first set.
  • the 16 MCS index values can be indicated by 4 bits in the DCI.
  • the values of the target code rate and spectral efficiency corresponding to ⁇ /2 BPSK in Table 9 are only examples, and are not limited here, and the values of the target code rate and spectral efficiency can also be in the first set mentioned above. Values other than those shown in Table 9.
  • the number of MCS index values in the third MCS index table may also be 32, and the third MCS index table includes N MCS index values with a modulation order of 1, where N is a positive integer greater than or equal to 3, and In the third MCS index table, the value of the maximum target code rate corresponding to the modulation order of 1 is greater than the first threshold, and the first threshold is greater than or equal to 314/1024.
  • the index value of ⁇ /2 BPSK can also be added on the basis of the MCS table with a lower code rate, as shown in Table 10.
  • the maximum target code rate corresponding to the modulation order of 1 is greater than the first threshold.
  • the first threshold is greater than or equal to 198/1024
  • the value of the target code rate corresponding to ⁇ /2 BPSK includes at least one item in the second set mentioned above, and the corresponding modulation mode is the MCS index value of ⁇ /2 BPSK
  • the quantity is also not limited here.
  • MCS index value modulation order Target bit rate ⁇ 1024 Spectral efficiency 0 1 60 0.0586 1 1 80 0.0781 2 1 100 0.0977 3 1 128 0.1250 4 1 156 0.1523 5 1 198 0.1934 6 q 240/q 0.2344 7 q 314/q 0.3066 8 q 379/q 0.3701 9 q 449/q 0.4385 10 q 526/q 0.5137 11 q 602/q 0.5879 12 q 679/q 0.6631 13 q 666/q 0.6504 14 q 719/q 0.7021 15 2 193 0.3770 16 2 251 0.4902 17 2 308 0.6016 18 2 379 0.7402 19 2 449 0.8770 20 2 526 1.0273
  • Table 9 or Table 10 is also pre-configured at both ends of the network device and the terminal device, and coexists with the MCS index table of the existing protocol, that is to say, three MCS index tables are pre-configured at both ends of the network device and the terminal device.
  • the S250 terminal device determines the target bit rate.
  • the terminal device determines the MCS index table, the modulation order and the first MCS index value respectively according to the received first indication information, the second indication information and the DCI, and then determines the relationship between the MCS index table and the first MCS index value according to the first MCS index value.
  • a target code rate corresponding to an MCS index value and then perform uplink data transmission.
  • the above-mentioned first MCS index value may be any one of the MCS index values in Table 3 to Table 10, which is the MCS index value corresponding to the target code rate used by the network device for uplink transmission determined by the terminal device through calculation.
  • the second MCS index value mentioned is the MCS index value whose modulation order in the first MCS index table is 1 and the corresponding target code rate is greater than 314/1024
  • the third MCS index value mentioned above is the second MCS
  • the corresponding modulation order in the index table is 1 and the corresponding target code rate is greater than the MCS index value of 198/1024.
  • the first MCS index value may be the second MCS index value, the third MCS index value, or the MCS index values other than the second MCS index value and the third MCS index value.
  • the writing order of the first indication information, the second indication information and the DCI sent by the above-mentioned network device does not mean the execution order, and the execution order of each process should be determined by its function and internal logic, and should not be applied to the embodiments of the present application. implementation constitutes any limitation.
  • the order in which the terminal device receives the first indication information, the second indication information, and the DCI does not constitute any limitation.
  • the PUSCH uplink transmission supports the transmission of two waveforms, Orthogonal Frequency Division Multiplexing (OFDM) and DFT-S-OFDM, that is, the uplink transmission of multi-carrier and single-carrier respectively.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DFT-S-OFDM DFT-S-OFDM
  • transformPrecoder When the value of transformPrecoder is enabled, it indicates that the terminal needs to first perform discrete Fourier transform (Discrete Fourier Transform, DFT) on the signal sequence to be sent in the time domain during PUSCH transmission, and then map it to multiple resource units in the frequency domain ( Resource Element, RE), the subsequent Invert Fast Fourier Transformation (IFFT) processing is an inverse process of DFT processing, and the frequency domain signal is converted into a time domain signal through IFFT, and a cyclic prefix is added. Then send it out; when the value of transformPrecoder is disabled, the multiple signals to be sent are directly mapped to multiple REs in the frequency domain, and the frequency domain signals are converted into time domain signals through IFFT, and a cyclic prefix is added.
  • DFT discrete Fourier Transform
  • IFFT Invert Fast Fourier Transformation
  • the low peak-to-average power ratio (PAPR) signal to be sent is transmitted and received. It will still maintain a low PAPR, which is friendly to devices such as power transmitters at the sending and receiving ends, and can ensure the normal power amplification of the power amplifier; however, when ODFM waveform is used for transmission, IFFT will be performed on multiple signals in the frequency domain.
  • the processing is transformed to the time domain, so the signal in the time domain is equivalent to the aliasing of multiple frequency domain subcarrier signals, and there may be very high peaks and very small fluctuations, resulting in a large PAPR.
  • the fluctuation range is greater than the power amplifier's In the linear working range, it is possible to introduce some non-ideal characteristics such as noise during power transmission, which affects the transmission and reception of signals.
  • the current NR When using DFT-S-OFDM for uplink transmission, the current NR only supports single-stream PUSCH transmission, that is, only one DMRS antenna port can transmit PUSCH at the same time, resulting in limited uplink transmission efficiency. Therefore, in order to improve the efficiency of the uplink transmission, it may be considered to support the transmission of the PUSCH of the DFT-S-OFDM with multiple streams in the uplink transmission.
  • it when multi-stream transmission is adopted, it is necessary to weight and combine multiple signals before sending them through multiple antenna ports, which may increase the PAPR.
  • the use of ⁇ /2 BPSK modulation can ensure a smaller PAPR. Therefore, when Pi/2 BPSK modulation is used for uplink transmission, the ability of uplink transmission can be improved through the multi-stream DFT-S-OFDM PUSCH transmission scheme.
  • the 2bit of DCI can indicate the antenna port of the terminal equipment for uplink transmission; when the DMRS type is 1, the maximum length of the DMRS symbol is 2 ODFM symbols When the symbol is used, the antenna port of the uplink transmission of the terminal equipment can be indicated by 4 bits of DCI.
  • the upstream transmission adopts Pi/2 BPSK modulation when the upstream transmission adopts Pi/2 BPSK modulation, multi-stream transmission can be supported at this time, and the value of maxRank in the high-layer signaling configured by the network device can be 2 or 4, that is, it can support 2 layers Or parallel transmission of 4 layers of data.
  • the value of maxRank in the high-level signaling configured by the network device is 4, the actual transmission of layer 1, layer 2, layer 3 or layer 4 data can be supported.
  • the antenna ports of the DMRS are indicated as follows.
  • the maximum length of the DMRS symbol is 1 ODFM symbol, and only single-stream transmission is supported.
  • the maximum length of a single DMRS symbol is 2 ODFM symbols, and only single-stream transmission is supported. Indicates the antenna port of the terminal device for uplink transmission.
  • the maximum length of a single DMRS symbol is 1 ODFM symbol, and the parallel transmission of Layer 2 data can be supported.
  • the index table indicated by the DMRS antenna port is shown in Table 12, which can be passed through
  • the 3 bits of DCI indicate the antenna port of the terminal equipment for uplink transmission.
  • the maximum length of a single DMRS symbol is 1 ODFM symbol, and the parallel transmission of Layer 3 data can be supported.
  • the index table indicated by the DMRS antenna port is shown in Table 14, which can be passed through
  • the 3 bits of DCI indicate the antenna port of the terminal equipment for uplink transmission.
  • the maximum length of a single DMRS symbol is 1 ODFM symbol, and the parallel transmission of layer 4 data can be supported.
  • the index table indicated by the antenna port of the DMRS is shown in Table 15.
  • the 3 bits of DCI indicate the antenna port of the terminal equipment for uplink transmission.
  • the maximum length of a single DMRS symbol is 2 ODFM symbols, and the parallel transmission of layer 2 data can be supported.
  • the index table indicated by the antenna port of the DMRS is shown in Table 16.
  • the 4 bits of DCI indicate the antenna port of the terminal equipment for uplink transmission.
  • the maximum length of a single DMRS symbol is 2 ODFM symbols, and the parallel transmission of layer 3 data can be supported.
  • the index table indicated by the DMRS antenna port is shown in Table 17, which can be passed through
  • the 4 bits of DCI indicate the antenna port of the terminal equipment for uplink transmission.
  • the maximum length of a single DMRS symbol is 2 ODFM symbols, and the parallel transmission of layer 4 data can be supported.
  • the index table indicated by the antenna port of the DMRS is shown in Table 18.
  • the 4 bits of DCI indicate the antenna port of the terminal equipment for uplink transmission.
  • the capability of uplink transmission is improved by supporting PUSCH transmission of multi-stream DFT-S-OFDM, and when ⁇ /2 BPSK modulation is used, multi-stream DFT-S-OFDM is supported
  • the DMRS antenna port is indicated in the case of transmission.
  • each network element for example, a terminal device or a network device, includes corresponding hardware structures and/or software modules for performing each function in order to implement the above-mentioned functions.
  • a network element for example, a terminal device or a network device
  • each network element includes corresponding hardware structures and/or software modules for performing each function in order to implement the above-mentioned functions.
  • the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the transmitting-end device or the receiving-end device may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module. middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware, or can be implemented in the form of software function modules.
  • the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation. The following description will be given by using the division of each function module corresponding to each function as an example.
  • FIG. 3 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 300 may include a transceiver unit 310 and a processing unit 320 .
  • the communication apparatus 300 may correspond to the terminal device in the above method embodiments, for example, may be a terminal device, or a chip configured in the terminal device.
  • the communication apparatus 300 may correspond to the terminal device in the method 200 according to the embodiment of the present application, and the communication apparatus 300 may include a unit for executing the method performed by the terminal device in the method 200 of FIG. 2 . Moreover, each unit in the communication device 300 and the other operations and/or functions mentioned above are respectively for realizing the corresponding flow of the method 200 in FIG. 2 .
  • the transceiver unit 310 in the communication device 300 may correspond to the transceiver 430 in the terminal device 400 shown in FIG. 4
  • the processing unit 320 in the communication device 300 may Corresponds to the processor 410 in the terminal device 400 shown in FIG. 4 .
  • the transceiver unit 310 in the communication apparatus 300 may be implemented through a communication interface (such as a transceiver or an input/output interface), for example, it may correspond to the terminal device shown in FIG. 4 .
  • the transceiver 430 in 400, the processing unit 320 in the communication apparatus 300 may be implemented by at least one processor, for example, may correspond to the processor 410 in the terminal device 400 shown in FIG. 4, the processing unit 300 in the communication apparatus 300 Unit 320 may also be implemented by at least one logic circuit.
  • the communication apparatus 300 may further include a processing unit 320, and the processing unit 320 may be configured to process instructions or data to implement corresponding operations.
  • the communication apparatus 300 may further include a storage unit, which may be used to store instructions or data, and the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • a storage unit which may be used to store instructions or data
  • the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • the communication apparatus 300 may correspond to the network device in the above method embodiments, for example, may be a network device, or a chip configured in the network device.
  • the communication apparatus 300 may correspond to the network device in the method 200 according to the embodiment of the present application, and the communication apparatus 300 may include a unit for executing the method performed by the network device in the method 200 in FIG. 2 . Moreover, each unit in the communication device 300 and the other operations and/or functions mentioned above are respectively for realizing the corresponding flow of the method 200 in FIG. 2 .
  • the transceiver unit 310 in the communication apparatus 300 may correspond to the transceiver 430 in the network apparatus 400 shown in FIG. 4
  • the processing unit 320 in the communication apparatus 300 may correspond to the processor 410 in the network device 400 shown in 4.
  • the communication apparatus 300 may further include a processing unit 320, and the processing unit 320 may be configured to process instructions or data to implement corresponding operations.
  • the communication apparatus 300 may further include a storage unit, which may be used to store instructions or data, and the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • a storage unit which may be used to store instructions or data
  • the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • the transceiver unit 310 in the communication apparatus 300 may be implemented through a communication interface (such as a transceiver or an input/output interface), for example, may correspond to the network shown in FIG. 4 .
  • the transceiver 430 in the device 400, the processing unit 320 in the communication device 300 may be implemented by at least one processor, for example, may correspond to the processor 410 in the network device 400 shown in FIG.
  • the processing unit 320 may be implemented by at least one logic circuit.
  • FIG. 5 is a schematic structural diagram of a network device provided by an embodiment of the present application, which may be, for example, a schematic diagram of a related structure of the network device.
  • the network device 500 shown in FIG. 5 can implement various processes involving the network device in the method embodiment shown in FIG. 2 .
  • the operations and/or functions of each module in the network device 500 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • network device 500 shown in FIG. 5 is only a possible architecture of the network device, and should not constitute any limitation to the present application.
  • the methods provided in this application may be applicable to network devices of other architectures.
  • network equipment including CU, DU, and AAU, etc. This application does not limit the specific architecture of the network device.
  • FIG. 5 may also be a schematic structural diagram of a terminal device provided by an embodiment of the present application, for example, a schematic diagram of a related structure of the terminal device.
  • the terminal device 500 shown in FIG. 5 can implement various processes involving the terminal device in the method embodiment shown in FIG. 2 .
  • the operations and/or functions of each module in the terminal device 500 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • terminal device 500 shown in FIG. 5 is only a possible architecture of the terminal device, and should not constitute any limitation to the present application.
  • the method provided in the present application may be applicable to terminal devices of other architectures.
  • the specific architecture of the terminal device is not limited.
  • An embodiment of the present application further provides a processing apparatus, including a processor and an interface, where the processor is configured to execute the method in any of the foregoing method embodiments.
  • the above-mentioned processing device may be one or more chips.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or a It is a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • MCU microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiment may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the aforementioned processors may be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • the methods, steps, and logic block diagrams disclosed in the embodiments of this application can be implemented or executed.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code is run on a computer, the computer is made to execute the embodiment shown in FIG. 2 . method in .
  • the present application further provides a computer-readable medium, where the computer-readable medium stores program codes, when the program codes are executed on a computer, the computer is made to execute the embodiment shown in FIG. 2 . method in .
  • the present application further provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the network equipment in each of the above apparatus embodiments completely corresponds to the terminal equipment and the network equipment or terminal equipment in the method embodiments, and corresponding steps are performed by corresponding modules or units.
  • a processing unit processor
  • processor For functions of specific units, reference may be made to corresponding method embodiments.
  • the number of processors may be one or more.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored on or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be transmitted over a wire from a website site, computer, server or data center (eg coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) means to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, high-density digital video disc (DVD)), or semiconductor media (eg, solid state disc (SSD) ))Wait.
  • the network equipment in each of the above apparatus embodiments completely corresponds to the terminal equipment and the network equipment or terminal equipment in the method embodiments, and corresponding steps are performed by corresponding modules or units.
  • a processing unit processor
  • processor For functions of specific units, reference may be made to corresponding method embodiments.
  • the number of processors may be one or more.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the unit is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined or Integration into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the unit described as a separate component may or may not be physically separated, and the component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • each functional unit may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions (programs). When the computer program instructions (programs) are loaded and executed on a computer, all or part of the processes or functions according to the embodiments of the present application are generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored on or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be transmitted over a wire from a website site, computer, server or data center (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the method in each embodiment of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请提供了一种通信方法和装置,该方法包括:终端设备接收网络设备发送的MCS索引值,在MCS索引表中确定该MCS索引值对应的调制方法和目标码率,该MCS索引表中对应π/2BPSK调制方法的最大目标码率高于第一阈值,使得终端设备上行传输采用π/2BPSK调制方法的同时能实现更高的频谱效率,从而提升上行链路性能。

Description

通信方法、装置 技术领域
本申请涉及通信领域,并且,更具体地,涉及通信方法、装置。
背景技术
在当前新接入技术(New Radio Access Technology,NR)系统的上行发送中,用户设备(user equipment,UE)的发送能力受限,例如:天线数目较少、基带芯片处理一般、能耗受限等,上行的发送功率和速率相比下行传输面临着更大的挑战。通常,为了保证上行发送数据的正确解调,基站(base station,或g Node B,gNB)侧对接收到的上行信号的信噪比(Signal to Noise Power Ratio,SNR)有一个门限要求,称之为接收机的灵敏度。只有当接收信号的SNR高于灵敏度时,才能保证正确的信号估计和数据解调。因此,在给定一定传输距离的传播损耗情况下,UE侧上行数据的发送功率对基站侧的正确解调十分重要。
采用正交相移键控(Quadrature Phase Shift Keying,QPSK)的调制方式,相比π/2二进制相移键控(Binary Phase Shift Keying,BPSK)的功率峰均比(Peak to Average Power Ratio,PAPR)较大,更有可能出现最大功率超过功率放大器(Power Amplifier,PA)的线性阈值,所以QPSK的功率回退值比π/2 BPSK更大,实际发送功率比π/2 BPSK允许采用的最大功率小,造成上行传输的性能损失。
在上行发送中,除了发送功率,目标传输速率也是衡量当前NR系统上行传输能力的关键指标,即在不同场景下的时频资源下,尽可能的提高上行传输的效率,例如降低导频开销、减少发送信息的冗余等,都有助于提升上行传输的吞吐量。
现有NR协议中,采用π/2 BPSK调制方法,对应的目标码率较低,传输的信息比特序列中引入的冗余比特数目较多,导致频谱效率较低。
发明内容
本申请提供一种通信方法和装置,能够使得终端设备上行传输采用更高发送功率的π/2 BPSK调制方法的同时能实现更高的频谱效率,从而提升上行链路性能。
第一方面提供了一种通信方法,用于指示MCS,该方法包括:向该终端设备发送第一指示信息,该第一指示信息用于指示第一MCS索引表或第二MCS索引表,并向终端设备发送下行控制信息DCI,该DCI包括第一MCS索引值,该第一MCS索引值为该第一MCS索引表或第二MCS索引表中的一个值;其中:该第一MCS索引表包括第二MCS索引值,该第二MCS索引值对应的调制阶数为1,且该第二MCS索引值对应的目标码率与1024的乘积大于314,该第一MCS索引表中对应的调制阶数为1的MCS索引值的数量大于或等于3;该第二MCS索引表包括第三MCS索引值,该第三MCS索引值对应的调制阶数为1,且该第三MCS索引值对应的目标码率与1024的乘积大于198,该第二 MCS索引表中对应的调制阶数为1的MCS索引值的数量大于或等于7。
基于上述技术方案,通过在现有协议的MCS索引表的基础上以扩展或重新定义的方式,增加了π/2 BPSK调制方法对应的目标码率的取值,对应的也使得π/2 BPSK调制方法对应的目标码率更高,从而提升了上行链路数据传输的性能。
结合第一方面,在第一方面的某些实现方式中,该第一MCS索引表中对应的调制阶数为1的MCS索引值对应的目标码率与1024的乘积包括第一集合中的至少一项,该第一集合为{340,378,379,386,434,449,466,490,502,517,526,553,567,602,616,658,666,679,719,758,772,822,873,898,910,948};或该第二MCS索引表中对应的调制阶数为1的MCS索引值对应的目标码率与1024的乘积包括第二集合中的至少一项,该第二集合为{240,314,340,378,379,386,434,449,466,490,502,517,526,553,567,602,616,658,666,679,719,758,772,822,873,898,910,948}。
结合第一方面,在第一方面的某些实现方式中,该第二MCS索引值为28-31中的其中一个;或该第三MCS索引值为28-31中的其中一个。
结合第一方面,在第一方面的某些实现方式中,该第一MCS索引表中的MCS索引值的数量大于32;或该第二MCS索引表中的MCS索引值的数量大于32。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:向该终端设备发送第二指示信息,该第二指示信息用于指示该终端设备上行传输的调制阶数为1。
第二方面提供了一种通信方法,用于指示MCS,该方法包括:接收该网络设备发送的第一指示信息,该第一指示信息用于指示第一MCS索引表或第二MCS索引表;接收网络设备发送的DCI,该DCI包括第一MCS索引值,该第一MCS索引值为第一MCS索引表或第二MCS索引表中的一个值;在该第一MCS索引表或第二MCS索引表中,确定与该第一MCS索引值对应的上行传输的第一目标码率,其中,该第一MCS索引表包括第二MCS索引值,该第二MCS索引值对应的调制阶数为1,且该第二MCS索引值对应的目标码率与1024的乘积大于314,该第一MCS索引表中对应的调制阶数为1的MCS索引值的数量大于或等于3;该第二MCS索引表包括第三MCS索引值,该第三MCS索引值对应的调制阶数为1,且该第三MCS索引值对应的目标码率与1024的乘积大于198,该第二MCS索引表中对应的调制阶数为1的MCS索引值的数量大于或等于7。
基于上述技术方案,通过在现有协议的MCS索引表的基础上以扩展或重新定义的方式,增加了MCS索引表中π/2 BPSK调制方法对应的目标码率的取值,对应的也使得π/2 BPSK调制方法对应的目标码率更高,从而提升了上行链路数据传输的性能。
结合第二方面,在第二方面的某些实现方式中,该第一MCS索引表中对应的调制阶数为1的MCS索引值对应的目标码率与1024的乘积包括第一集合中的至少一项,该第一集合为{340,378,379,386,434,449,466,490,502,517,526,553,567,602,616,658,666,679,719,758,772,822,873,898,910,948};或该第二MCS索引表中对应的调制阶数为1的MCS索引值对应的目标码率与1024的乘积包括第二集合中的至少一项,该第二集合为{240,314,340,378,379,386,434,449,466,490,502,517,526,553,567,602,616,658,666,679,719,758,772,822,873,898,910,948}。
结合第二方面,在第二方面的某些实现方式中,该第二MCS索引值为28-31中的其中一个;或该第三MCS索引值为28-31中的其中一个。
基于上述技术方案,在现有协议的两张表格基础上,通过灵活配置更多对应的调制阶数为q的MCS索引值,在不增加MCS索引值指示开销的前提下,引入了更高目标码率的π/2 BPSK。
结合第二方面,在第二方面的某些实现方式中,该第一MCS索引表中的MCS索引值数量大于32;或该第二MCS索引表中的MCS索引值数量大于32。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:接收该网络设备发送的第二指示信息,该第二指示信息用于指示上行传输采用的调制阶数为1,根据该第二指示信息确定上行传输采用的调制阶数为1。
第三方面提供了一种通信方法,用于指示MCS,该方法包括:向该终端设备发送第一指示信息,该第一指示信息用于指示第三MCS索引表,其中,该第三MCS索引表中的MCS索引值对应的调制阶数包括1和2的取值,不包括大于或等于6的取值;并向终端设备发送DCI,该DCI包括第一MCS索引值,该第一MCS索引值为该第三MCS索引表中的一个值。
基于上述技术方案,通过重新定义一张在覆盖增强场景下使用的MCS索引表,该MCS索引表在现有协议的基础上增加了更多π/2 BPSK调制方法对应的目标码率的取值,对应的也使得π/2 BPSK调制方法对应的目标码率更高,从而提升了上行链路数据传输的性能。
结合第三方面,在第三方面的某些实现方式中,该第三MCS索引表中的MCS索引值的数量为16,该第三MCS索引表包括M个调制阶数为1的MCS索引值,该M为大于或等于3的正整数。
结合第三方面,在第三方面的某些实现方式中,该第三MCS索引表中的MCS索引值的数量为32,该第三MCS索引表包括N个调制阶数为1的MCS索引值,该N为大于或等于3的正整数。
结合第三方面,在第三方面的某些实现方式中,该第三MCS索引表中,调制阶数1对应的最大目标码率的取值大于第一阈值
第四方面提供了一种通信方法,用于指示MCS,该方法包括:接收该网络设备发送的第一指示信息,该第一指示信息用于指示第三MCS索引表;接收网络设备发送的DCI,该DCI包括第一MCS索引值,该第一MCS索引值为该第三MCS索引表中的一个值;在该第三MCS索引表中,确定与该第一MCS索引值对应的上行传输的第一调制阶数和第一目标码率,其中,该第三MCS索引表中的MCS索引值对应的调制阶数包括1和2的取值,不包括大于或等于6的取值。
结合第四方面,在第四方面的某些实现方式中,第三MCS索引表中的MCS索引值的数量为16,该第三MCS索引表包括M个调制阶数为1的MCS索引值,该M为大于或等于3的正整数。
结合第四方面,在第四方面的某些实现方式中,第三MCS索引表中的MCS索引值的数量为32,该第三MCS索引表包括M个调制阶数为1的MCS索引值,该M为大于或等于3的正整数。
结合第四方面,在第四方面的某些实现方式中,该第三MCS索引表中,调制阶数为1对应的最大目标码率的取值大于第一阈值。
基于上述技术方案,通过重新定义一张在覆盖增强场景下使用的MCS索引表,该MCS索引表在现有协议的基础上增加了更多π/2 BPSK调制方法对应的目标码率的取值,对应的也使得π/2 BPSK调制方法对应的目标码率更高,从而提升了上行链路数据传输的性能。
第五方面提供了一种通信装置,该装置用于执行上述第一方面至第四方面提供的指示MCS的方法。具体地,该装置可以包括用于执行第一方面至第四方面提供的通信方法的模块。
第六方面,提供一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的通信方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。
在一种实现方式中,该用于通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该用于通信装置为芯片或芯片系统。当该通信装置为芯片或芯片系统时,所述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片或芯片系统。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第七方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现第一方面至第四方面,以及第一方面至第四方面的任一可能的实现方式中的通信方法。
第八方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第一方面至第四方面提供的通信方法。
附图说明
图1为一种适用于本申请实施例的无线通信系统的示意图。
图2为一种适用于本申请实施例的无线通信方法的示意性流程图。
图3为一种适用于本申请实施例提供的通信装置的示意性框图。
图4为一种适用于本申请实施例提供的通信装置的示意性结构图。
图5为一种适用于本申请实施例提供的通信装置的示意性架构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system formobile communications,GSM)系统、码分多址(code division multiple access, CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、卫星通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR),以及未来的通信系统。
图1是适用于本申请实施例的无线通信系统100的示意图。
如图1所示,该无线通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110。该无线通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。终端设备与网络设备之间、终端设备与终端设备之间可以建立无线连接,进行无线通信,发送设备可以通过控制信息指示数据的调度信息,以便接收设备根据控制信息正确地接收数据。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
此外,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
应理解,本申请对于终端设备的具体形式不作限定。
本申请实施例中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(Base Band Unit,BBU),无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单 元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,简称AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
为便于理解本申请实施例,下面首先对本申请中涉及的几个术语做简单介绍。
1、功率等级
功率等级(Power Class):当前NR协议基于不同频段的电磁波吸收比值(Specific Absorption Rate,SAR)的要求和射频器件能力的制约,对不同频段上终端能够发送的最大功率做了不同的限制,即不同的功率等级Power Class。
通常分为3个功率等级,分别工作在23dBm、26dBm和31dBm。如表1,针对每个功率等级,在特定条件下引入容忍度,即可以在上述功率数值基础上有特定范围的浮动,例如增加2dBm或者减少3dBm,在不做其他说明情况下,通常默认UE的发送功率上限是23dBm。
表1 用户设备功率等级
Figure PCTCN2020115161-appb-000001
Figure PCTCN2020115161-appb-000002
2、最大功率回退
最大功率回退(Maximum Power Reduction,MPR),通常,在数据发送过程中,信号会经历功率放大器(Power Amplifier,PA)进行放大,但PA有一定的线性工作区,即发送信号的功率必须在一定范围内才能够保证PA正常工作,避免信号功率放大非线性。当信号发送功率较大可能会超过PA的线性放大阈值时,需要将发送信号功率进行一定的最大功率回退。
现有NR协议中,在采用不同调制方式时,MPR的取值可以不同。例如,在采用高阶调制时,对误差矢量幅度(Error Vector Magnitude,EVM)更敏感,即微小的PA放大非线性的失真可能会导致高阶调制星座点之间的模糊和错误解调,因此采用高阶调制时MPR通常会更大,对最大发送功率要求更严格。如表2所示,针对功率等级3的UE,采用不同调制方式时的MPR取值。其中,注1中提到在如下条件满足时,23dBm的UE能够采用更高的26dBm的功率进行发送:
1)采用π/2 BPSK调制;
2)高层信令配置的功率提升参数powerBoostπ/2 BPSK取值为1;
3)在n40,n41,n77,n78和n79频段上,发送上行数据的总时隙数目占比不超过40%。
表2 功率等级3的UE最大功率回退取值
Figure PCTCN2020115161-appb-000003
Figure PCTCN2020115161-appb-000004
在上述三个条件满足时,终端设备能够采用更高的发送功率进行上行发送,但是现有协议的MCS索引表中对应π/2 BPSK调制的频谱效率比QPSK调制低,此时采用π/2 BPSK或是采用QPSK调制对于上行链路的性能差别不大,因此本申请为了解决π/2 BPSK的MCS值对应的目标码率过低导致频谱效率低下的问题,对现有协议中原有的MCS索引表进行了修改和扩展,使得终端设备采用π/2 BPSK调制时有更高的频谱效率,从而提升上行链路的性能。
图2为适用本申请的无线通信方法的示意性流程图,该方法包括:
S210网络设备确定第一MCS索引值。
具体地,网络设备基于接收信号测量上行信道质量及干扰情况,根据测量结果计算出使得终端设备上行传输性能最好的调制方法和目标码率,根据该调制方法和目标码率确定MCS索引表中对应的第一MCS索引值。
示例地,终端设备上行传输可采用的调制方法可以为π/2 BPSK,QPSK,16QAM以及64QAM。其中,当网络设备确定终端设备采用π/2 BPSK调制方法,并为终端设备配置功率提升参数取值为1且TDD帧结构中上行子帧的占比不高于40%时,功率等级为3的终端设备的最大发送功率可以由23dBm增加到26dBm。
S220网络设备发送第一指示信息,该第一指示信息包括网络设备确定的MCS索引表的标识。对应地,终端设备接收第一指示信息,并根据该第一指示信息包括的MCS索引表的标识确定第一MCS索引表或第二MCS索引表。
具体地,该第一指示信息包括使能传输预编码,即RRC信令配置的参数transformPrecoder取值为‘enabled’,此外还包括:
1)当物理上行共享数据信道(Physical Uplink Shared Channel,PUSCH)传输是被C-RNTI或者SP-CSI-RNTI加扰的PDCCH动态调度时,若RRC信令配置的参数pusch-Config::Mcs-Table-forDCIFormat0_2的取值为‘qam64LowSE’或者参数pusch-Config::mcs-TableTransformPrecoder的取值为‘qam64LowSE’,第一指示信息指示终端采用第二MCS索引表;
2)当PUSCH传输是被MCS-C-RNTI加扰的PDCCH动态调度时,则第一指示信息指示终端采用第二MCS索引表;
3)当PUSCH是配置授权configure grant时,若RRC信令配置的参数 configuredGrantConfig::mcs-TableTransformPrecoder取值为‘qam64LowSE’,第一指示信息指示终端采用第二MCS索引表。
若不满足上述条件,且不满足下述任一条件时,则第一指示信息指示终端采用第一MCS索引表。
所述下述任一条件包括:
4)当PUSCH传输是被C-RNTI或者SP-CSI-RNTI加扰的PDCCH调度且RRC信令配置的参数pusch-Config::Mcs-Table-forDCIFormat0_2的取值为‘qam256’或者参数pusch-Config::mcs-TableTransformPrecoder的取值为‘qam256’时;
5)当RRC信令配置的参数configuredGrantConfig::mcs-TableTransformPrecoder的取值为‘qam256’时。
应理解,当终端设备和网络设备两端存在预定义的新增加的第三MCS索引表时,上述提及的第一指示信息还可以指示该第三MCS索引表。
具体地,当第一指示信息指示终端设备采用第三MCS索引表时,第一指示信息包括RRC信令配置的MCS-Table字段取值不再是‘qam64LowSE’或‘qam256’,而是取值为例如‘CoverageEnhance’。
S230网络设备发送第二指示信息,该第二指示信息可用于指示终端设备上行传输采用的调制阶数。对应地,终端设备接收第二指示信息,并根据该第二指示信息确定调制方式。
具体地,当网络设备通过第二指示信息指示终端设备采用π/2 BPSK调制方法,此时调制阶数为1。
示例地,第二指示信息包括:RRC信令配置了参数tp-pi2 BPSK,即指示终端设备上行传输采用调制阶数q=1的π/2 BPSK调制方法。
应理解,第一指示信息和第二指示信息可以是同一个信息,也可以是不同的信息,在此不做限定,具体地,指示信息可以是RRC或者是MAC信令,同样地,指示信息也可以是DCI,这样可以更灵活的切换终端设备上行传输采用的调制方式。
还应理解,第一指示信息和第二指示信息的发送顺序,可以是第一指示信息在前,也可以是第二指示信息在前,在此并不做发送顺序的限制。
S240网络设备发送下行控制信息DCI。
具体地,网络设备发送的DCI包括网络设备确定的第一MCS索引值,该第一MCS索引值用于指示终端设备上行传输的目标码率。对应地,终端设备接收DCI,确定第一MCS索引值对应的上行传输的目标码率。
具体地,第一MCS索引值所属的MCS索引表可以为第一MCS索引表或第二MCS索引表,第一MCS索引表可以理解为应用于普通场景,第二MCS索引表可以理解为应用于URLLC场景(支持极低的频谱效率和目标码率来保证高可靠性),该第一MCS索引表包括第二MCS索引值,该第二MCS索引值对应的调制阶数为1,且该第二MCS索引值对应的目标码率与1024的乘积大于314,即该第二MCS索引值对应的目标码率大于314/1024,该第一MCS索引表中对应的调制阶数为1的MCS索引值的数量大于或等于3。
应理解,当上述提及的第一指示信息指示终端设备采用第三MCS索引表时,网络设备发送的DCI中包括的第一MCS索引值所属的MCS索引表为第三MCS索引表,对应地, 终端设备接收该DCI,并在该第三MCS索引表中确定与第一MCS索引值对应的上行传输的目标码率。
示例地,在现有协议应用于普通场景下的MCS索引表基础上,引入至少一个MCS索引值,该MCS索引值对应的调制阶数为1且目标码率与1024的乘积大于314,该目标码率与1024的乘积包括第一集合中的至少一项,该第一集合为{340,378,379,386,434,449,466,490,502,517,526,553,567,602,616,658,666,679,719,758,772,822,873,898,910,948,1052,1204,1358}。例如表3中新引入了索引值2-9,可以对应调制阶数为1且目标码率与1024的乘积大于314,此时需要用DCI中的5bit来指示第一MCS索引表中的所有MCS索引值,该第一MCS索引表中π/2 BPSK对应的目标码率比现有协议更多,对应的频谱效率也比现有协议更高。
表3
Figure PCTCN2020115161-appb-000005
Figure PCTCN2020115161-appb-000006
应理解,表3中调制阶数为1时对应的目标码率和频谱效率的取值只是示例,其对应的目标码率和频谱效率的取值还可以是上述第一集合中除表3所示之外别的取值,在此不做限定。
具体地,第二MCS索引表包括第三MCS索引值,该第三MCS索引值对应的调制阶数为1,且该第三MCS索引值对应的目标码率与1024的乘积大于198,该第二MCS索引表中对应的调制阶数为1的MCS索引值的数量大于或等于7,具体目标码率与1024的乘积包括第二集合中的至少一项,该第二集合为{240,314,340,378,379,386,434,449,466,490,502,517,526,553,567,602,616,658,666,679,719,758,772,822,873,898,910,948,1052,1204,1358}。
示例地,在现有协议MCS索引表的基础上,不添加新的MCS索引值,将现有协议中部分QPSK(调制阶数为2)替换为π/2 BPSK(调制阶数为1),如表4,应理解,表4中MCS索引值6-12对应的目标码率与1024的乘积和频谱效率的取值只是示例,在此不做限定,该目标码率×1024和频谱效率的取值还可以是上述第二集合中除表4所示之外别的取值,并且具体替换目标码率×1024和频谱效率的MCS索引值以及MCS索引值的数量在此也不做限定,第二MCS索引表中的MCS索引值需要DCI中的5bit来指示。该第二MCS索引表中π/2 BPSK对应的目标码率取值更多,频谱效率更高,从而可以提升上行链路的性能。
表4
Figure PCTCN2020115161-appb-000007
Figure PCTCN2020115161-appb-000008
应理解,这表3和表4是预先在网络设备和终端设备两端配置好的,分别是在现有协议的两张表格基础上,通过灵活配置更多对应的调制阶数为q的MCS索引值,在不增加MCS索引值指示开销的前提下,引入了更高目标码率的π/2 BPSK。
可选地,第一MCS索引表中,上述提及的第二MCS索引值可以为MCS索引值28-31中的其中一个,应理解,实际情况中,π/2 BPSK采用太高码率(例如目标码率为948/1024)可能会导致信道编码性能损失太大,此时的传输性能可能比采用QPSK稍低码率时的传输性能差。因此,无需定义过高的目标码率,因此可以减少π/2 BPSK可能的高码率取值。
具体地,第一MCS索引表中MCS索引值的取值可与现有协议相同,如表5,表中MCS索引值28-31是现有协议MCS索引表的保留状态的MCS索引值,可将4个保留状态的MCS索引值重新定义成调制阶数为1的π/2 BPSK,并且定义其目标码率,使得π/2 BPSK对应的频谱效率比现有协议314/1024更高,具体π/2 BPSK对应的目标码率的取值包括上述第一集合中的至少一项。此方案没有新增现有MCS索引的状态值,因此依然用DCI中的5bit指示。
表5
MCS索引值 调制阶数 目标码率×1024 频谱效率
0 q 240/q 0.2344
1 q 314/q 0.3066
2 2 193 0.3770
3 2 251 0.4902
4 2 308 0.6016
5 2 379 0.7402
6 2 449 0.8770
7 2 526 1.0273
8 2 602 1.1758
9 2 679 1.3262
10 4 340 1.3281
11 4 378 1.4766
12 4 434 1.6953
13 4 490 1.9141
14 4 553 2.1602
15 4 616 2.4063
16 4 658 2.5703
17 6 466 2.7305
18 6 517 3.0293
19 6 567 3.3223
20 6 616 3.6094
21 6 666 3.9023
22 6 719 4.2129
23 6 772 4.5234
24 6 822 4.8164
25 6 873 5.1152
26 6 910 5.3320
27 6 948 5.5547
28 q 386/q 0.3770
29 q 502/q 0.4902
30 q 616/q 0.6016
31 q 758/q 0.7402
应理解,表5中MCS索引值28-31对应的目标码率和频谱效率的取值只是示例,在此不做限定,目标码率和频谱效率的取值还可以是上述第一集合中除表5所示之外别的取值。
可选地,应用于URLLC场景的第二MCS索引表中,上述提及的第三MCS索引值可以为MCS索引值28-31中的其中一个,具体示例如表6。
具体地,第二MCS索引表中MCS索引值的取值可与现有协议相同,表6中MCS索引值28-31是现有协议MCS索引表的保留状态的MCS索引值,将4个保留状态的MCS索引值重新定义成调制阶数为1的π/2 BPSK,并且定义其目标码率,使得π/2 BPSK对应的目标码率比现有协议198/1024更高,具体π/2 BPSK对应的目标码率的取值包括上述第二集合中的至少一项。此方案没有新增现有MCS索引的状态值,因此依然用DCI中的5bit指示。
表6
MCS索引值 调制阶数 目标码率×1024 频谱效率
0 q 60/q 0.0586
1 q 80/q 0.0781
2 q 100/q 0.0977
3 q 128/q 0.1250
4 q 156/q 0.1523
5 q 198/q 0.1934
6 2 120 0.2344
7 2 157 0.3066
8 2 193 0.3770
9 2 251 0.4902
10 2 308 0.6016
11 2 379 0.7402
12 2 449 0.8770
13 2 526 1.0273
14 2 602 1.1758
15 2 679 1.3262
16 4 378 1.4766
17 4 434 1.6953
18 4 490 1.9141
19 4 553 2.1602
20 4 616 2.4063
21 4 658 2.5703
22 4 699 2.7305
23 4 772 3.0156
24 6 567 3.3223
25 6 616 3.6094
26 6 666 3.9023
27 6 772 4.5234
28 q 240/q 0.2344
29 q 314/q 0.3066
30 q 386/q 0.3770
31 q 512/q 0.4902
应理解,表5和表6中MCS索引值28-31对应的目标码率和频谱效率的取值只是示例,在此不做限定,目标码率和频谱效率的取值还可以是上述第二集合中除表6所示之外别的取值。表5和表6也是预先在网络设备和终端设备两端配置好的。
上述表3~表6中的MCS表格中MCS索引值数目保持不变,不需要增加DCI中MCS指示的bit数目。此外,也可以引入更多的MCS索引值的数量,例如第一MCS索引表可以在原有NR协议的第一张表格的基础上新增更多的π/2 BPSK调制的索引值及对应的目标码率,例如表格7所示;第二MCS索引表可以在原有NR协议的第二张表格的基础上新增更多的π/2 BPSK调制的索引值对应的目标码率,例如表格8所示。
表7
MCS索引值 调制阶数 目标码率×1024 频谱效率
0 q 240/q 0.2344
1 q 314/q 0.3066
2 2 193 0.3770
3 2 251 0.4902
4 2 308 0.6016
5 2 379 0.7402
6 2 449 0.8770
7 2 526 1.0273
8 2 602 1.1758
9 2 679 1.3262
10 4 340 1.3281
11 4 378 1.4766
12 4 434 1.6953
13 4 490 1.9141
14 4 553 2.1602
15 4 616 2.4063
16 4 658 2.5703
17 6 466 2.7305
18 6 517 3.0293
19 6 567 3.3223
20 6 616 3.6094
21 6 666 3.9023
22 6 719 4.2129
23 6 772 4.5234
24 6 822 4.8164
25 6 873 5.1152
26 6 910 5.3320
27 6 948 5.5547
28 1 340 0.3320
29 1 378 0.3692
30 1 434 0.4238
31 1 466 0.4551
32 1 490 0.4785
33 1 517 0.5049
34 1 553 0.5401
表8
MCS索引值 调制阶数 目标码率×1024 频谱效率
0 q 60/q 0.0586
1 q 80/q 0.0781
2 q 100/q 0.0977
3 q 128/q 0.1250
4 q 156/q 0.1523
5 q 198/q 0.1934
6 2 120 0.2344
7 2 157 0.3066
8 2 193 0.3770
9 2 251 0.4902
10 2 308 0.6016
11 2 379 0.7402
12 2 449 0.8770
13 2 526 1.0273
14 2 602 1.1758
15 2 679 1.3262
16 4 378 1.4766
17 4 434 1.6953
18 4 490 1.9141
19 4 553 2.1602
20 4 616 2.4063
21 4 658 2.5703
22 4 699 2.7305
23 4 772 3.0156
24 6 567 3.3223
25 6 616 3.6094
26 6 666 3.9023
27 6 772 4.5234
28 1 240 0.2344
29 1 314 0.3066
30 1 386 0.3770
31 1 512 0.4902
32 1 616 0.6016
33 1 758 0.7402
34 1 898 0.8770
应理解,上述表7中新增的MCS索引值对应的目标码率与1024的乘积,还可以是第一集合中除表7所示之外其他的取值;上述表8中新增的MCS索引值对应的目标码率与1024的乘积,还可以是第二集合中除表8所示之外其他的取值,在此不做限定。
还应理解,其中表7和表8中新增加的MCS索引值的数量在表中也仅为举例,在此不做限定。
可选地,通常,覆盖增强场景时只采用较低的调制阶数,不太可能采用16QAM(对应调制阶数为4)和64QAM(对调制阶数为6),因此,重新定义一张只针对覆盖增强场景的第三MCS索引表,第三MCS索引表中的MCS索引值对应的调制阶数包括1和2的取值,不包括大于或等于6的取值,该第三MCS索引表中MCS索引值的数量为16,并且第三MCS索引表包括M个调制阶数为1的MCS索引值,M为大于或等于3的正整数,并且在第三MCS索引表中,调制阶数为1对应的最大的目标码率取值大于第一阈值,第一阈值大于或等于314/1024。
具体地,第三MCS索引表如表9,π/2 BPSK对应的目标码率的取值包括上述第一集合中的至少一项,此时M取值为8,第三MCS索引表中的16个MCS索引值可用DCI中的4bit去指示。
表9
MCS索引值 调制阶数 目标码率×1024 频谱效率
0 q 240/q 0.2344
1 q 314/q 0.3066
2 q 379/q 0.3701
3 q 449/q 0.4385
4 q 526/q 0.5137
5 q 602/q 0.5879
6 q 679/q 0.6631
7 q 666/q 0.6504
8 q 719/q 0.7021
9 2 193 0.3770
10 2 251 0.4902
11 2 308 0.6016
12 2 379 0.7402
13 2 449 0.8770
14 2 526 1.0273
15 2 602 1.1758
应理解,表9中π/2 BPSK对应的目标码率和频谱效率的取值只是示例,在此不做限定,目标码率和频谱效率的取值还可以是上述提及的第一集合中除表9所示之外别的取值。可选地,第三MCS索引表中MCS索引值的数量还可以为32,该第三MCS索引表包括N个调制阶数为1的MCS索引值,N为大于或等于3的正整数,并且在第三MCS索引表中,调制阶数为1对应的最大的目标码率取值大于第一阈值,第一阈值大于或等于314/1024。
此外,还可以在更低码率的MCS表格基础上新增π/2 BPSK的索引值,如表10所示,此时调制阶数为1对应的最大的目标码率取值大于第一阈值,第一阈值大于或等于198/1024,π/2 BPSK对应的目标码率的取值包括上述提及的第二集合中的至少一项,对应调制方式为π/2 BPSK的MCS索引值的数量在此也不做限定。
表10
MCS索引值 调制阶数 目标码率×1024 频谱效率
0 1 60 0.0586
1 1 80 0.0781
2 1 100 0.0977
3 1 128 0.1250
4 1 156 0.1523
5 1 198 0.1934
6 q 240/q 0.2344
7 q 314/q 0.3066
8 q 379/q 0.3701
9 q 449/q 0.4385
10 q 526/q 0.5137
11 q 602/q 0.5879
12 q 679/q 0.6631
13 q 666/q 0.6504
14 q 719/q 0.7021
15 2 193 0.3770
16 2 251 0.4902
17 2 308 0.6016
18 2 379 0.7402
19 2 449 0.8770
20 2 526 1.0273
21 2 602 1.1758
22 2 679 1.3262
表9或表10也是预配置在网络设备和终端设备两端的,与现有协议的MCS索引表是共存的,也就是说网络设备和终端设备两端预先配置三张MCS索引表。
S250终端设备确定目标码率。
具体地,终端设备通过接收的第一指示信息、第二指示信息以及DCI分别确定MCS索引表、调制阶数以及第一MCS索引值,然后通过第一MCS索引值确定MCS索引表中与该第一MCS索引值对应的目标码率,进而进行上行数据的传输。
应理解,上述提及的第一MCS索引值可以是表3~表10中的任意一个MCS索引值,是网络设备通过计算确定的终端设备上行传输采用的目标码率对应的MCS索引值,上述提及的第二MCS索引值是第一MCS索引表中对应的调制阶数为1且对应的目标码率大于314/1024的MCS索引值,上述提及的第三MCS索引值是第二MCS索引表中对应的调制阶数为1且对应的目标码率大于198/1024的MCS索引值,第一MCS索引值可以是第二MCS索引值,也可以是第三MCS索引值,也可以是除第二MCS索引值和第三MCS索引值之外的MCS索引值。
还应理解,上述网络设备发送第一指示信息、第二指示信息、DCI的撰写顺序并不意味着执行顺序,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。同样地,对终端设备接收第一指示信息、第二指示信息、DCI的顺序也不构成任何限定。
通过以上三种方案,在现有协议原有的MCS索引表的基础上,以扩展或重新定义MCS表格的形式,引入了更多高码率的π/2 BPSK调制,能够有效改善上行链路的传输性能。
当前协议中PUSCH上行传输支持正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)和DFT-S-OFDM两种波形的传输,即分别为多载波和单载波的上行发送,其通过高层信令配置的参数字段transformPrecoder的取值来指示当前传输采用哪种波形。当transformPrecoder取值为enabled,即指示终端在PUSCH传输时需要将时域的待发送信号序列首先进行离散傅里叶变换(Discrete Fourier Transform,DFT)处理后,映射到频域的多个资源单元(Resource Element,RE)上,后续的快速傅里叶逆变换(Invert Fast Fourier Transformation,IFFT)处理是DFT处理的一个逆过程,通过IFFT再将频域的信号转换为时域信号,加上循环前缀之后发送出去;当transformPrecoder取值为disabled时,则直接将待发送的多个信号直接映射到频域的多个RE上,通过IFFT再将频域的信号转换为时域信号,加上循环前缀之后发送出去。因为在采用DFT-S-OFDM波形发送时,DFT处理和IFFT是一个逆变换的过程,因此,低峰值平均功率比值(Peak-to-Average Power ratio,PAPR)的待发送信号在发送和接收时依然会保持较低的PAPR,对发送和接收端的功率发送器等器件比较友好,能够保障功率放大器的正常功率放大;而在采用ODFM波形发送时,因为会对频域上的多个信号进行IFFT处理变换到时域,因此时域上的信号等效为多个频域子载波信号的混叠,可能会出现峰值特别高和特别小的波动,导致PAPR较大,当波动范围大于功率放大器的线性工作区间时,则有可能导致功率发送时引入一些噪 声等非理想特性,而影响信号的发送和接收。
当采用DFT-S-OFDM上行传输时,当前NR只支持单流的PUSCH发送,即同时只能通过一个DMRS天线端口来发送PUSCH,导致上行传输效率受限。因此,为了提高上行传输的效率,可以考虑在上行传输中支持多流的DFT-S-OFDM的PUSCH的发送。但是,采用多流传输,需要对多路信号进行加权合并之后,再通过多个天线端口发送,有可能会导致PAPR升高。而采用π/2 BPSK调制能够保证较小的PAPR,因此上行传输采用Pi/2 BPSK调制时,可以通过多流DFT-S-OFDM的PUSCH传输的方案提高上行传输的能力。
当前NR协议,由于PUSCH上行传输采用DFT-S-OFDM时,即transmformPrecoder=enabled时,仅支持单流传输,所以网络设备在RRC信令中配置的maxRank的取值只能为1,此时只支持单天线端口的DMRS配置。
具体地,当DMRS类型为1,DMRS符号的最大长度为1个ODFM符号时,可通过DCI的2bit指示终端设备上行传输的天线端口;当DMRS类型为1,DMRS符号的最大长度为2个ODFM符号时,可通过DCI的4bit指示终端设备上行传输的天线端口。
在本实施例中,当上行传输采用Pi/2 BPSK调制时,此时可支持多流传输,网络设备配置的高层信令中maxRank的取值可以为2,或者是4,即能够支持2层或者4层数据的并行传输。
示例地,当网络设备配置的高层信令中maxRank的取值为2时,可支持rank=1和rank=2的实际传输,即支持1层或2层数据的传输。当网络设备配置的高层信令中maxRank的取值为4时,可支持1层、2层、3层或4层数据的实际传输。
具体地,DMRS的天线端口指示如下。
当网络设备通过高层信令配置的DMRS类型为1,DMRS符号的最大长度为1个ODFM符号,且仅支持单流传输,DMRS的天线端口指示的索引表格如表11,可通过DCI的2bit指示终端设备上行传输的天线端口。
表11
没有数据的DMRS CDM组的数量 DMRS端口
0 2 0
1 2 1
2 2 2
3 2 3
当网络设备通过高层信令配置的DMRS类型为1,单个DMRS符号的最大长度为2个ODFM符号,且仅支持单流传输,DMRS的天线端口指示的索引表格如表12,可通过DCI的4bit指示终端设备上行传输的天线端口。
表12
Figure PCTCN2020115161-appb-000009
Figure PCTCN2020115161-appb-000010
当网络设备通过高层信令配置的DMRS类型为1,单个DMRS符号的最大长度为1个ODFM符号,且可支持2层数据的并行传输,DMRS的天线端口指示的索引表格如表12,可通过DCI的3bit指示终端设备上行传输的天线端口。
表13
没有数据的DMRS CDM组的数量 DMRS端口
0 1 0,1
1 2 0,1
2 2 2,3
3 2 0,2
4-7 保留的 保留的
当网络设备通过高层信令配置的DMRS类型为1,单个DMRS符号的最大长度为1个ODFM符号,且可支持3层数据的并行传输,DMRS的天线端口指示的索引表格如表14,可通过DCI的3bit指示终端设备上行传输的天线端口。
表14
没有数据的DMRS CDM组的数量 DMRS端口
0 2 0-2
2-7 保留的 保留的
当网络设备通过高层信令配置的DMRS类型为1,单个DMRS符号的最大长度为1个ODFM符号,且可支持4层数据的并行传输,DMRS的天线端口指示的索引表格如表15,可通过DCI的3bit指示终端设备上行传输的天线端口。
表15
没有数据的DMRS CDM组的数量 DMRS端口
0 2 0-3
2-7 保留的 保留的
当网络设备通过高层信令配置的DMRS类型为1,单个DMRS符号的最大长度为2个ODFM符号,且可支持2层数据的并行传输,DMRS的天线端口指示的索引表格如表16,可通过DCI的4bit指示终端设备上行传输的天线端口。
表16
Figure PCTCN2020115161-appb-000011
Figure PCTCN2020115161-appb-000012
当网络设备通过高层信令配置的DMRS类型为1,单个DMRS符号的最大长度为2个ODFM符号,且可支持3层数据的并行传输,DMRS的天线端口指示的索引表格如表17,可通过DCI的4bit指示终端设备上行传输的天线端口。
表17
Figure PCTCN2020115161-appb-000013
当网络设备通过高层信令配置的DMRS类型为1,单个DMRS符号的最大长度为2个ODFM符号,且可支持4层数据的并行传输,DMRS的天线端口指示的索引表格如表18,可通过DCI的4bit指示终端设备上行传输的天线端口。
表18
Figure PCTCN2020115161-appb-000014
本实施例上行传输中采用π/2 BPSK调制时,通过支持多流DFT-S-OFDM的PUSCH传输提高上行传输的能力,并且在采用π/2 BPSK调制,并且支持多流DFT-S-OFDM传输的情况下指示了DMRS天线端口。
上述指示MCS的方法主要是从交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如终端设备或者网络设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以使用硬件的形式实现,也可以使用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以使用对应各个功能划分各个功能模块为例进行说明。
以上,结合图1和图2以及表3至表10,详细说明了本申请实施例提供的方法。以 下,结合图3至图5详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
图3是本申请实施例提供的通信装置的示意性框图。如图3所示,该通信装置300可以包括收发单元310和处理单元320。
在一种可能的设计中,该通信装置300可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的芯片。
应理解,该通信装置300可对应于根据本申请实施例的方法200中的终端设备,该通信装置300可以包括用于执行图2的方法200中终端设备执行的方法的单元。并且,该通信装置300中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程。
还应理解,该通信装置300为终端设备时,该通信装置300中的收发单元310可对应于图4中示出的终端设备400中的收发器430,该通信装置300中的处理单元320可对应于图4中示出的终端设备400中的处理器410。
还应理解,该通信装置300为终端设备时,该通信装置300中的收发单元310可通过通信接口(如收发器或输入/输出接口)实现,例如可对应于图4中示出的终端设备400中的收发器430,该通信装置300中的处理单元320可通过至少一个处理器实现,例如可对应于图4中示出的终端设备400中的处理器410,该通信装置300中的处理单元320还可以通过至少一个逻辑电路实现。
可选地,通信装置300还可以包括处理单元320,该处理单元320可以用于处理指令或者数据,以实现相应的操作。
可选地,通信装置300还可以包括存储单元,该存储单元可以用于存储指令或者数据,处理单元可以调用该存储单元中存储的指令或者数据,以实现相应的操作。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
在另一种可能的设计中,该通信装置300可对应于上文方法实施例中的网络设备,例如,可以为网络设备,或者配置于网络设备中的芯片。
应理解,该通信装置300可对应于根据本申请实施例的方法200中的网络设备,该通信装置300可以包括用于执行图2中的方法200中网络设备执行的方法的单元。并且,该通信装置300中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程。
还应理解,该通信装置300为网络设备时,该通信装置300中的收发单元310为可对应于图4中示出的网络设备400中的收发器430,该通信装置300中的处理单元320可对应于4中示出的网络设备400中的处理器410。
可选地,通信装置300还可以包括处理单元320,该处理单元320可以用于处理指令或者数据,以实现相应的操作。
可选地,通信装置300还可以包括存储单元,该存储单元可以用于存储指令或者数据,处理单元可以调用该存储单元中存储的指令或者数据,以实现相应的操作。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为 了简洁,在此不再赘述。
还应理解,该通信装置300为网络设备时,该通信装置300中的收发单元310为可通过通信接口(如收发器或输入/输出接口)实现,例如可对应于图4中示出的网络设备400中的收发器430,该通信装置300中的处理单元320可通过至少一个处理器实现,例如可对应于图4中示出的网络设备400中的处理器410,该通信装置300中的处理单元320可通过至少一个逻辑电路实现。
图5是本申请实施例提供的网络设备的结构示意图,例如可以为网络设备的相关结构的示意图。
应理解,图5所示的网络设备500能够实现图2所示方法实施例中涉及网络设备的各个过程。网络设备500中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
应理解,图5所示出的网络设备500仅为网络设备的一种可能的架构,而不应对本申请构成任何限定。本申请所提供的方法可适用于其他架构的网络设备。例如,包含CU、DU和AAU的网络设备等。本申请对于网络设备的具体架构不作限定。
图5也可以是本申请实施例提供的终端设备的结构示意图,例如可以为终端设备的相关结构的示意图。
应理解,图5所示的终端设备500能够实现图2所示方法实施例中涉及终端设备的各个过程。终端设备500中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
应理解,图5所示出的终端设备500仅为终端设备的一种可能的架构,而不应对本申请构成任何限定,本申请所提供的方法可适用于其他架构的终端设备,本申请对于终端设备的具体架构不作限定。
本申请实施例还提供了一种处理装置,包括处理器和接口;该处理器用于执行上述任一方法实施例中的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软 件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图2所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机指令时,全部或部分地产生按照本申请实施例该的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个 网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,各功能单元的功能可以全部或部分地通过软件、硬件、固件或者其 任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行该计算机程序指令(程序)时,全部或部分地产生按照本申请实施例该的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
该功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例该方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求和说明书的保护范围为准。

Claims (38)

  1. 一种通信方法,其特征在于,包括:
    向所述终端设备发送第一指示信息,所述第一指示信息用于指示第一调制和编码策略MCS索引表或第二MCS索引表;
    向终端设备发送下行控制信息DCI,所述DCI包括第一MCS索引值,所述第一MCS索引值为所述第一MCS索引表或第二MCS索引表中的一个值,其中:
    所述第一MCS索引表包括第二MCS索引值,所述第二MCS索引值对应的调制阶数为1,且所述第二MCS索引值对应的目标码率与1024的乘积大于314;
    所述第二MCS索引表包括第三MCS索引值,所述第三MCS索引值对应的调制阶数为1,且所述第三MCS索引值对应的目标码率与1024的乘积大于198。
  2. 根据权利要求1所述的方法,其特征在于,所述第一MCS索引表中对应的调制阶数为1的MCS索引值对应的目标码率与1024的乘积包括第一集合中的至少一项,所述第一集合为{340,378,379,386,434,449,466,490,502,517,526,553,567,602,616,658,666,679,719,758,772,822,873,898,910,948};或
    所述第二MCS索引表中对应的调制阶数为1的MCS索引值对应的目标码率与1024的乘积包括第二集合中的至少一项,所述第二集合为{240,314,340,378,379,386,434,449,466,490,502,517,526,553,567,602,616,658,666,679,719,758,772,822,873,898,910,948}。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二MCS索引值为28-31中的其中一个;或
    所述第三MCS索引值为28-31中的其中一个。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第一MCS索引表中的MCS索引值的数量大于32;或
    所述第二MCS索引表中的MCS索引值的数量大于32。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述终端设备上行传输的调制阶数为1。
  6. 一种通信方法,其特征在于,包括:
    接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示第一MCS索引表或第二MCS索引表;
    接收网络设备发送的DCI,所述DCI包括第一MCS索引值,所述第一MCS索引值为所述第一MCS索引表或第二MCS索引表中的一个值;
    根据所述第一指示信息,确定所述第一MCS索引表或第二MCS索引表,并确定与所述第一MCS索引值对应的第一目标码率,其中:
    所述第一MCS索引表包括第二MCS索引值,所述第二MCS索引值对应的调制阶数为1,且所述第二MCS索引值对应的目标码率与1024的乘积大于314;
    所述第二MCS索引表包括第三MCS索引值,所述第三MCS索引值对应的调制阶数 为1,且所述第三MCS索引值对应的目标码率与1024的乘积大于198。
  7. 根据权利要求6所述的方法,其特征在于,所述第一MCS索引表中对应的调制阶数为1的MCS索引值对应的目标码率与1024的乘积包括第一集合中的至少一项,所述第一集合为{340,378,379,386,434,449,466,490,502,517,526,553,567,602,616,658,666,679,719,758,772,822,873,898,910,948};或
    所述第二MCS索引表中对应的调制阶数为1的MCS索引值对应的目标码率与1024的乘积包括第二集合中的至少一项,所述第二集合为{240,314,340,378,379,386,434,449,466,490,502,517,526,553,567,602,616,658,666,679,719,758,772,822,873,898,910,948}。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第二MCS索引值为28-31中的其中一个;或
    所述第三MCS索引值为28-31中的其中一个。
  9. 根据权利要求6或7所述的方法,其特征在于,所述第一MCS索引表中的MCS索引值数量大于32;或
    所述第二MCS索引表中的MCS索引值数量大于32。
  10. 根据权利要求6至9任一项所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示上行传输采用的调制阶数为1;
    根据所述第二指示信息确定上行传输采用的调制阶数为1。
  11. 一种通信方法,其特征在于,包括:
    向所述终端设备发送第一指示信息,所述第一指示信息用于指示第三MCS索引表,其中,所述第三MCS索引表中的MCS索引值对应的调制阶数包括1和2的取值,不包括大于或等于6的取值;
    向终端设备发送DCI,所述DCI包括第一MCS索引值,所述第一MCS索引值为所述第三MCS索引表中的一个值。
  12. 根据权利要求11所述的方法,其特征在于,所述第三MCS索引表中的MCS索引值的数量为16,所述第三MCS索引表包括M个调制阶数为1的MCS索引值,所述M为大于或等于3的正整数。
  13. 根据权利要求11所述的方法,其特征在于,所述第三MCS索引表中的MCS索引值的数量为32,所述第三MCS索引表包括N个调制阶数为1的MCS索引值,所述N为大于或等于3的正整数。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第三MCS索引表中,调制阶数1对应的最大目标码率的取值大于第一阈值。
  15. 一种通信方法,其特征在于,包括:
    接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示第三MCS索引表,其中,所述第三MCS索引表中的MCS索引值对应的调制阶数包括1和2的取值,且不包括大于或等于6的取值;
    接收网络设备发送的DCI,所述DCI包括第一MCS索引值,所述第一MCS索引值为所述第三MCS索引表中的一个值;
    根据所述第一指示信息和所述第一MCS索引值确定上行传输的第一调制阶数和第一目标码率。
  16. 根据权利要求15所述的方法,其特征在于,所述第三MCS索引表中的MCS索引值的数量为16,所述第三MCS索引表包括M个调制阶数为1的MCS索引值,所述M为大于或等于3的正整数。
  17. 根据权利要求15所述的方法,其特征在于,所述第三MCS索引表中的MCS索引值的数量为32,所述第三MCS索引表包括M个调制阶数为1的MCS索引值,所述M为大于或等于3的正整数。
  18. 根据权利要求16或17所述的方法,其特征在于,所述第三MCS索引表中,调制阶数1对应的最大目标码率的取值大于第一阈值。
  19. 一种通信装置,其特征在于,包括:
    收发模块,用于发送第一指示信息,所述第一指示信息用于指示第一MCS索引表或第二MCS索引表;
    所述收发模块还用于发送下行控制信息DCI,所述DCI包括第一MCS索引值,所述第一MCS索引值为所述第一MCS索引表或第二MCS索引表中的一个值,其中:
    所述第一MCS索引表包括第二MCS索引值,所述第二MCS索引值对应的调制阶数为1,且所述第二MCS索引值对应的目标码率与1024的乘积大于314;
    所述第二MCS索引表包括第三MCS索引值,所述第三MCS索引值对应的调制阶数为1,且所述第三MCS索引值对应的目标码率与1024的乘积大于198。
  20. 根据权利要求19所述的装置,其特征在于,所述第一MCS索引表中对应的调制阶数为1的MCS索引值对应的目标码率与1024的乘积包括第一集合中的至少一项,所述第一集合为{340,378,379,386,434,449,466,490,502,517,526,553,567,602,616,658,666,679,719,758,772,822,873,898,910,948};或
    所述第二MCS索引表中对应的调制阶数为1的MCS索引值对应的目标码率与1024的乘积包括第二集合中的至少一项,所述第二集合为{240,314,340,378,379,386,434,449,466,490,502,517,526,553,567,602,616,658,666,679,719,758,772,822,873,898,910,948}。
  21. 根据权利要求19或20所述的装置,其特征在于,所述第二MCS索引值为28-31中的其中一个;或
    所述第三MCS索引值为28-31中的其中一个。
  22. 根据权利要求19或20所述的装置,其特征在于,所述第一MCS索引表中的MCS索引值的数量大于32;或
    所述第二MCS索引表中的MCS索引值的数量大于32。
  23. 根据权利要求19至22任一项所述的装置,其特征在于,所述收发模块还用于:
    发送第二指示信息,所述第二指示信息用于指示所述终端设备上行传输的调制阶数为1。
  24. 一种通信装置,其特征在于,包括:
    收发模块,用于第一指示信息,所述第一指示信息用于指示第一MCS索引表或第二MCS索引表;
    所述收发模块还用于接收DCI,所述DCI包括第一MCS索引值,所述第一MCS索引值为所述第一MCS索引表或第二MCS索引表中的一个值;
    处理模块,用于根据所述第一指示信息,确定所述第一MCS索引表或第二MCS索引表,并确定与所述第一MCS索引值对应的上行传输的第一目标码率,其中:
    所述第一MCS索引表包括第二MCS索引值,所述第二MCS索引值对应的调制阶数为1,且所述第二MCS索引值对应的目标码率与1024的乘积大于314;
    所述第二MCS索引表包括第三MCS索引值,所述第三MCS索引值对应的调制阶数为1,且所述第三MCS索引值对应的目标码率与1024的乘积大于198。
  25. 根据权利要求24所述的装置,其特征在于,所述第一MCS索引表中对应的调制阶数为1的MCS索引值对应的目标码率与1024的乘积包括第一集合中的至少一项,所述第一集合为{340,378,379,386,434,449,466,490,502,517,526,553,567,602,616,658,666,679,719,758,772,822,873,898,910,948};或
    所述第二MCS索引表中对应的调制阶数为1的MCS索引值对应的目标码率与1024的乘积包括第二集合中的至少一项,所述第二集合为{240,314,340,378,379,386,434,449,466,490,502,517,526,553,567,602,616,658,666,679,719,758,772,822,873,898,910,948}。
  26. 根据权利要求24或25所述的装置,其特征在于,所述第二MCS索引值为28-31中的其中一个;或
    所述第三MCS索引值为28-31中的其中一个。
  27. 根据权利要求24或25所述的装置,其特征在于,所述第一MCS索引表中的MCS索引值数量大于32;或
    所述第二MCS索引表中的MCS索引值数量大于32。
  28. 根据权利要求24至27任一项所述的装置,其特征在于,包括:
    所述收发模块还用于接收第二指示信息,所述第二指示信息用于指示上行传输采用的调制阶数为1;
    所述处理模块还用于根据所述第二指示信息确定上行传输采用的调制阶数为1。
  29. 一种通信装置,其特征在于,包括:
    收发模块,用于发送第一指示信息,所述第一指示信息用于指示第三MCS索引表,其中,所述第三MCS索引表中的MCS索引值对应的调制阶数包括1和2的取值,且不包括大于或等于6的取值;
    所述收发模块还用于发送DCI,所述DCI包括第一MCS索引值,所述第一MCS索引值为所述第三MCS索引表中的一个值。
  30. 根据权利要求29所述的装置,其特征在于,所述第三MCS索引表中的MCS索引值的数量为16,所述第三MCS索引表包括M个调制阶数为1的MCS索引值,所述M为大于或等于3的正整数。
  31. 根据权利要求29所述的装置,其特征在于,所述第三MCS索引表中的MCS索引值的数量为32,所述第三MCS索引表包括N个调制阶数为1的MCS索引值,所述N为大于或等于3的正整数。
  32. 根据权利要求30或31所述的装置,其特征在于,所述第三MCS索引表中,调 制阶数1对应的最大目标码率的取值大于第一阈值。
  33. 一种通信装置,其特征在于,包括:
    收发模块,用于接收第一指示信息,所述第一指示信息用于指示第三MCS索引表,其中,所述第三MCS索引表中的MCS索引值对应的调制阶数包括1和2的取值,且不包括大于或等于6的取值;
    所述收发模块,还用于接收DCI,所述DCI包括第一MCS索引值,所述第一MCS索引值为所述第三MCS索引表中的一个值;
    处理模块,用于根据所述第一指示信息和所述第一MCS索引值确定上行传输的第一调制阶数和第一目标码率。
  34. 根据权利要求33所述的装置,其特征在于,所述第三MCS索引表中的MCS索引值的数量为16,所述第三MCS索引表包括M个调制阶数为1的MCS索引值,所述M为大于或等于3的正整数。
  35. 根据权利要求33所述的装置,其特征在于,所述第三MCS索引表中的MCS索引值的数量为32,所述第三MCS索引表包括M个调制阶数为1的MCS索引值,所述M为大于或等于3的正整数。
  36. 根据权利要求34或35所述的装置,其特征在于,所述第三MCS索引表中,调制阶数1对应的最大目标码率的取值大于第一阈值。
  37. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述存储器中存储的计算机指令,使得所述通信装置执行如权利要求1至5中任一项所述的方法或如权利要求6至10中任一项所述的方法或如权利要求11至14中任一项所述的方法或如权利要求15或权利要求18所述的方法。
  38. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置执行如权利要求1至5中任一项所述的方法或如权利要求6至10中任一项所述的方法或如权利要求11至14中任一项所述的方法或如权利要求15或权利要求18所述的方法。
PCT/CN2020/115161 2020-09-14 2020-09-14 通信方法、装置 WO2022052131A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/115161 WO2022052131A1 (zh) 2020-09-14 2020-09-14 通信方法、装置
CN202080105100.4A CN116114228A (zh) 2020-09-14 2020-09-14 通信方法、装置
EP20952919.7A EP4207845A4 (en) 2020-09-14 2020-09-14 COMMUNICATION METHOD AND DEVICE
US18/183,266 US20230216604A1 (en) 2020-09-14 2023-03-14 Communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/115161 WO2022052131A1 (zh) 2020-09-14 2020-09-14 通信方法、装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/183,266 Continuation US20230216604A1 (en) 2020-09-14 2023-03-14 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2022052131A1 true WO2022052131A1 (zh) 2022-03-17

Family

ID=80630143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115161 WO2022052131A1 (zh) 2020-09-14 2020-09-14 通信方法、装置

Country Status (4)

Country Link
US (1) US20230216604A1 (zh)
EP (1) EP4207845A4 (zh)
CN (1) CN116114228A (zh)
WO (1) WO2022052131A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220029870A1 (en) * 2020-10-13 2022-01-27 Peng Lu Phase tracking reference signal for 6g wireless communication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109246047A (zh) * 2017-10-11 2019-01-18 华为技术有限公司 一种通信方法及装置
US20190253121A1 (en) * 2018-04-06 2019-08-15 Intel Corporation Configuration and design of cqi and mcs tables for 5g communications
CN110167062A (zh) * 2018-02-14 2019-08-23 维沃移动通信有限公司 信道状态信息报告发送和接收方法及装置
US20200266964A1 (en) * 2019-02-14 2020-08-20 Samsung Electronics Co., Ltd. Method and apparatus for configuring reference signal in wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109246047A (zh) * 2017-10-11 2019-01-18 华为技术有限公司 一种通信方法及装置
CN110167062A (zh) * 2018-02-14 2019-08-23 维沃移动通信有限公司 信道状态信息报告发送和接收方法及装置
US20190253121A1 (en) * 2018-04-06 2019-08-15 Intel Corporation Configuration and design of cqi and mcs tables for 5g communications
US20200266964A1 (en) * 2019-02-14 2020-08-20 Samsung Electronics Co., Ltd. Method and apparatus for configuring reference signal in wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP TSGRAN: "3GPP TS 38.214 V15.2.0 (June 2018)", NR; PHYSICAL LAYER PROCEDURES FOR DATA(RELEASE 15), 30 June 2018 (2018-06-30), XP051474491 *
See also references of EP4207845A4 *

Also Published As

Publication number Publication date
US20230216604A1 (en) 2023-07-06
EP4207845A1 (en) 2023-07-05
CN116114228A (zh) 2023-05-12
EP4207845A4 (en) 2023-10-18
CN116114228A8 (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
WO2020134944A1 (zh) 干扰测量的方法和通信装置
WO2020063777A1 (zh) 传输数据的方法和装置
CN110691405A (zh) 功率控制方法及装置
US20240063950A1 (en) SHORT PHYSICAL UPLINK CONTROL CHANNEL (sPUCCH) STRUCTURE
AU2017431865A1 (en) Data processing method, terminal device and network device
WO2019052388A1 (zh) 数据传输的方法和设备
WO2018192471A1 (zh) 上行参考信号的发送方法及装置
WO2020221321A1 (zh) 通信方法以及通信装置
US11641254B2 (en) Multi-resource-unit aggregation
WO2021017949A1 (zh) 一种数据传输方法、装置及系统
WO2022061622A1 (zh) 通信方法、通信设备、电子设备及计算机可读存储介质
JP2020509686A (ja) 通信方法、ネットワークデバイス、および端末デバイス
WO2019079936A1 (zh) 一种选择波形的方法及设备
WO2021189213A1 (zh) 一种控制信息的发送、接收方法及装置
US20230216604A1 (en) Communication method and apparatus
US20210281357A1 (en) Bandwidth Puncture and Response Rules
WO2018171742A1 (zh) 无线通信的方法和装置
WO2022228117A1 (zh) 一种确定ptrs图案的方法和装置
WO2018202106A1 (zh) 无线通信方法及装置
WO2022022516A1 (zh) 无线通信的方法和装置
WO2022082466A1 (zh) 无线通信方法及通信装置
WO2022067749A1 (zh) 一种分集通信的方法及装置
CN114698104A (zh) 一种指示天线端口的方法、装置与系统
WO2019178736A1 (zh) 控制信息的接收和发送方法、装置及通信系统
WO2023011617A1 (zh) 一种获取信息的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952919

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020952919

Country of ref document: EP

Effective date: 20230328

NENP Non-entry into the national phase

Ref country code: DE