WO2020063777A1 - 传输数据的方法和装置 - Google Patents

传输数据的方法和装置 Download PDF

Info

Publication number
WO2020063777A1
WO2020063777A1 PCT/CN2019/108251 CN2019108251W WO2020063777A1 WO 2020063777 A1 WO2020063777 A1 WO 2020063777A1 CN 2019108251 W CN2019108251 W CN 2019108251W WO 2020063777 A1 WO2020063777 A1 WO 2020063777A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink data
transmission power
power
precoding matrix
equal
Prior art date
Application number
PCT/CN2019/108251
Other languages
English (en)
French (fr)
Inventor
刘显达
纪刘榴
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2021517573A priority Critical patent/JP7319360B2/ja
Priority to BR112021006062-6A priority patent/BR112021006062A2/pt
Priority to EP19865564.9A priority patent/EP3852464A4/en
Publication of WO2020063777A1 publication Critical patent/WO2020063777A1/zh
Priority to US17/214,347 priority patent/US20210227472A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
    • H04L27/2053Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases
    • H04L27/206Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers
    • H04L27/2067Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers with more than two phase states
    • H04L27/2078Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers with more than two phase states in which the phase change per symbol period is constrained
    • H04L27/2082Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers with more than two phase states in which the phase change per symbol period is constrained for offset or staggered quadrature phase shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/262TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account adaptive modulation and coding [AMC] scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity

Definitions

  • the present application relates to the field of communications, and more particularly, to a method and device for transmitting data in the field of communications.
  • p t the actual transmit power used by the terminal device to send uplink data
  • P p the terminal device ’s transmit power.
  • Channel transmission power of uplink data N is the number of non-zero power antenna ports used to send the uplink data, and M is the number of antenna ports configured or predefined by the network device for sending the uplink data.
  • the present application provides a method and device for transmitting data, which can effectively improve the reliability of data transmission.
  • a method for transmitting data includes:
  • the terminal device determines a channel transmission power of the first uplink data
  • the terminal device Determining, by the terminal device, the actual transmission power of the first uplink data according to the channel transmission power and transmission parameters, where the actual transmission power is less than or equal to the channel transmission power, wherein the transmission parameters include one of the following or Multiple:
  • Power headroom indicates a difference between the maximum transmission power allowed by the terminal device and the transmission power of the channel, and the channel transmission power is less than or equal to the maximum transmission power allowed by the terminal device, or,
  • a waveform used for sending the first uplink data or
  • a downlink control information DCI format for scheduling the first uplink data or
  • the modulation and coding scheme MCS used for sending the first uplink data or
  • the terminal device uses the actual transmission power to send the first uplink data.
  • the method for transmitting data determines the actual transmission power of the uplink data based on the channel transmission power and various transmission parameters that can indicate whether the terminal device is at the cell edge, and can flexibly adjust the actual transmission power of the uplink data. Improve the reliability of data transmission.
  • N is less than M
  • M is the number of antenna ports configured by the network device to send the first uplink data
  • N is the number of M antenna ports used to send the first uplink data.
  • the number of non-zero power antenna ports, N is an integer greater than or equal to 1
  • M is an integer greater than 1.
  • the method for transmitting data provided in the embodiment of the present application is more effective in determining the actual transmission power of uplink data based on the channel transmission power and various transmission parameters that can indicate whether the terminal device is at the cell edge when N is less than M It can flexibly adjust the actual transmission power of uplink data to improve data transmission reliability.
  • the transmission parameter includes the power headroom
  • the power headroom satisfies a first condition, the actual transmission power p t > (N / M) ⁇ p p , and p p is the channel transmission power.
  • the first condition is used to determine that the terminal device is at a cell edge.
  • the terminal device at the cell edge can use a larger The transmission power sends uplink data, which improves the reliability of data transmission.
  • the actual transmission power p t (N / M) ⁇ p p .
  • the uplink data is transmitted using the scaled channel transmission power.
  • the terminal equipment it is beneficial to reduce the interference caused by data transmission, and it is also conducive to reducing the power consumption of the terminal equipment.
  • the first condition is that the power headroom is greater than or equal to a first threshold
  • the first threshold is equal to 6 dBm; or
  • the first threshold is equal to 3 dBm; or
  • the first threshold is equal to 3 dBm.
  • the actual transmission power p t (N / M) ⁇ p p .
  • the first condition is that the power headroom is greater than or equal to a first threshold
  • the first threshold is equal to 6dB; or,
  • the first threshold is equal to 3 dB; or
  • the first threshold is equal to 3dB.
  • the transmission parameter includes a waveform used for sending the first uplink data
  • the waveform is a discrete Fourier transform extended orthogonal frequency division multiplexing multiple access DFT-s-OFDM waveform, the actual transmission power p t > (N / M) ⁇ p p , and p p is the channel transmission power .
  • the terminal device at the cell edge can use a larger actual situation by increasing the actual transmission power.
  • the transmission power sends uplink data, which improves the reliability of data transmission.
  • CP-OFDM orthogonal frequency division multiplexing
  • the transmission parameter includes a downlink control information DCI format used for sending the first uplink data
  • the DCI format is a first DCI format, the actual transmission power p t > (N / M) ⁇ p p , and the first DCI format is a plurality of DCI formats used for scheduling uplink data with a minimum number of bits.
  • DCI format, p p is the transmission power of the channel.
  • the DCI format capable of characterizing the position of the terminal device is a DCI format with a minimum number of bits included in multiple DCI formats for scheduling uplink data
  • the actual transmission power is improved.
  • the terminal equipment at the cell edge can use a larger actual transmission power to send uplink data, which improves the reliability of data transmission.
  • the DCI format is a second DCI format
  • the actual transmission power p t (N / M) ⁇ p p
  • the second DCI format is multiple for scheduling uplink data.
  • the DCI format capable of characterizing the position of the terminal device is the second DCI format
  • using the scaled channel transmission power to send uplink data is beneficial to the terminal devices located at the edge of the cell that is not conducive to data transmission. Interference at the same time, it is conducive to reducing power consumption of terminal equipment.
  • the transmission parameter includes the modulation and coding scheme MCS used for sending the first uplink data
  • the modulation method of the MCS is binary phase shift keying BPSK or quadrature phase shift keying QPSK, then the actual transmit power p t > (N / M) ⁇ p p , where p p is the channel transmit power.
  • the terminal device at the cell edge can use a larger actual The transmission power sends uplink data, which improves the reliability of data transmission.
  • the MCS modulation mode is a 16 quadrature amplitude modulation QAM or 64QAM and a higher-order modulation mode, and the actual transmission power p t > (N / M) ⁇ p p .
  • the modulation method of the MCS capable of characterizing the position of the terminal device is 16 quadrature amplitude modulation QAM or 64QAM and a higher-order modulation method
  • uplink data is transmitted by using the scaled channel transmission power.
  • the terminal equipment it is beneficial to reduce the interference caused by data transmission, and it is also conducive to reducing the power consumption of the terminal equipment.
  • the transmission parameter includes the power adjustment value used to send the first uplink data
  • the power adjustment value obtained by the terminal device K times satisfies the second condition, the actual transmission power p t > (N / M) ⁇ p p , where p p is the transmission power of the channel, and K is greater than or equal to 1. Integer.
  • the second condition is used to determine that the terminal device is at a cell edge.
  • the terminal device at the cell edge is improved by increasing the actual transmission power
  • the uplink data can be sent with a larger actual transmission power, which improves the reliability of data transmission.
  • the second condition is that a power adjustment value obtained by the terminal device K times is greater than or equal to a second threshold, and the second threshold is equal to 3 dB or 3 dBm.
  • the second condition is specifically that the power adjustment value obtained by the terminal device for consecutive K times is equal to the second threshold, the second threshold is equal to 3dB or 3dBm, and K is greater than An integer of 1.
  • the uplink channel data is sent using the scaled channel transmission power. It is beneficial to reduce the interference caused by data transmission, and it is also beneficial to the terminal equipment to reduce power consumption.
  • the actual transmission power is equal to the channel transmission power.
  • the reliability of data transmission can be improved to the greatest extent.
  • the method further includes:
  • the terminal equipment evenly distributes the actual transmission power to the N antenna ports used to send the first uplink data.
  • a method for transmitting data includes:
  • the terminal device determines a channel transmission power of the first uplink data
  • the terminal device Determining, by the terminal device, the actual transmission power of the first uplink data according to the channel transmission power and transmission parameters, where the actual transmission power is less than or equal to the channel transmission power, wherein the transmission parameters include one of the following or Multiple:
  • Power headroom indicates a difference between the maximum transmission power allowed by the terminal device and the transmission power of the channel, and the channel transmission power is less than or equal to the maximum transmission power allowed by the terminal device, or,
  • a waveform used for sending the first uplink data or
  • a downlink control information DCI format for scheduling the first uplink data or
  • the modulation and coding scheme MCS used for sending the first uplink data or
  • the terminal device uses the actual transmission power to send the first uplink data.
  • the method for transmitting data determines the actual transmission power of the uplink data based on the channel transmission power and various transmission parameters that can indicate whether the terminal device is at the cell edge, and can flexibly adjust the actual transmission power of the uplink data. Improve the reliability of data transmission.
  • N is less than M
  • M is the number of antenna ports configured by the network device to send the first uplink data
  • N is the number of M antenna ports used to send the first uplink data.
  • the number of non-zero power antenna ports, N is an integer greater than or equal to 1
  • M is an integer greater than 1.
  • the transmission parameter includes the power headroom
  • the determining, by the terminal device according to the channel transmission power and transmission parameters, the actual transmission power of the first uplink data includes:
  • the terminal device determines an actual transmission power of the first uplink data.
  • the first condition is that the power headroom is greater than or equal to a first threshold
  • the first threshold value meets at least one of the following:
  • the first threshold is equal to 6 dBm; or
  • the first threshold is equal to 3 dBm; or
  • the first threshold is equal to 3 dBm.
  • the transmission parameter includes a waveform used for sending the first uplink data
  • the determining, by the terminal device according to the channel transmission power and transmission parameters, the actual transmission power of the first uplink data includes:
  • the waveform is a discrete Fourier transform extended orthogonal frequency division multiplex multiple access DFT-s-OFDM waveform
  • the terminal device determines an actual transmission power of the first uplink data.
  • the transmission parameter includes a downlink control information DCI format used for sending the first uplink data
  • the determining, by the terminal device according to the channel transmission power and transmission parameters, the actual transmission power of the first uplink data includes:
  • the DCI format is a first DCI format
  • the first DCI format is a DCI format with a minimum number of bits included in multiple DCI formats for scheduling uplink data
  • the terminal device determines an actual transmission power of the first uplink data.
  • the transmission parameter includes the modulation and coding scheme MCS used for sending the first uplink data
  • the determining, by the terminal device according to the channel transmission power and transmission parameters, the actual transmission power of the first uplink data includes:
  • the MCS modulation mode is binary phase shift keying BPSK or quadrature phase shift keying QPSK
  • the terminal device determines an actual transmission power of the first uplink data.
  • the transmission parameter includes a power adjustment value used for sending the first uplink data
  • the determining, by the terminal device according to the channel transmission power and transmission parameters, the actual transmission power of the first uplink data includes:
  • the terminal device determines an actual transmission power of the first uplink data.
  • the second condition is that a power adjustment value obtained by the terminal device K times is greater than or equal to a second threshold, and the second threshold is equal to 3 dBm.
  • the second condition is specifically that a power adjustment value obtained by the terminal device for consecutive K times is equal to the second threshold, and K is an integer greater than 1.
  • the actual transmit power p t > (N / M) ⁇ p p
  • p p is the channel transmit power
  • the actual transmission power is equal to the channel transmission power.
  • N 2
  • the method further includes:
  • the terminal equipment evenly distributes the actual transmission power to the N antenna ports used to send the first uplink data.
  • a method for transmitting information includes:
  • the terminal device receives indication information, where the indication information is used to indicate a first precoding matrix used for sending the first uplink data, and the first precoding matrix belongs to a first precoding matrix subset or a first A subset of two precoding matrices, where
  • the transmit power of the uplink data determined based on each of the one or more precoding matrices in the first precoding matrix subset satisfies the following condition: the transmit power of one antenna port among the antenna ports used to send the uplink data p 0 > (1 / M) ⁇ p p , and the number of antenna ports used for sending uplink data is greater than or equal to 1 and less than M, based on one or more precodings in the second precoding matrix subset
  • M is the number of antenna ports configured by the network device to send the first uplink data, M is an integer greater than 1, and p p is a channel transmission power of the uplink data;
  • the terminal device uses the actual transmission power to send the first uplink data.
  • a first precoding subset and a second precoding subset are set in a precoding set, where it is determined based on any one precoding matrix in the first precoding matrix subset.
  • the transmit power determined based on each precoding matrix in one or more precoding matrices in the first precoding matrix subset specifically meets the following conditions:
  • the actual transmission power determined based on each of the one or more precoding matrices in the first precoding matrix subset is equal to the channel transmission power.
  • each precoding matrix in the precoding matrix set includes a phase and amplitude quantization value, where the amplitude quantization value is used to determine transmission power of uplink data, where:
  • a phase of each precoding matrix in one or more precoding matrices in the first precoding matrix subset belongs to a phase of a precoding matrix included in the second precoding matrix subset.
  • the number of occupied bits is determined based on the number of precoding matrices included in the precoding matrix set. For example, if the number of bits is N, the number of N bits can be Indicates 2 n precoding matrices, however, there may be some bit values remaining in practice. Since the phase of the precoding matrix in the first precoding matrix subset belongs to the phase of the precoding matrix in the second precoding subset, it means that the number of the first precoding subset is small.
  • the coding matrix can be indicated by the remaining bit values in the precoding matrix set. Without changing the existing number of bits and without affecting the flexibility of the existing codeword selection, the reserved field is used to indicate the pre-adjusted amplitude quantization value. Encoding matrix.
  • each precoding matrix in the precoding matrix set is composed of a phase and amplitude quantization value, and the amplitude quantization value is used to determine transmission power of uplink data, where the first
  • Each precoding matrix in the precoding matrix subset satisfies the following conditions:
  • the number of antenna ports used for sending uplink data is equal to 1, and the amplitude quantization value of each precoding matrix in the first precoding matrix subset is 1,
  • the number of antenna ports used for sending uplink data is equal to two, and the amplitude quantization value of each precoding matrix in the first precoding matrix subset is
  • the precoding matrix in the set of precoding matrices is a precoding matrix corresponding to all the number of transmission layers whose transmission layer number is less than or equal to L for sending uplink data, and one transmission layer number corresponds to One or more pre-programmed matrices, L is the maximum number of transmission layers that the terminal device can support, L is an integer greater than or equal to 1, and the pre-coding matrix in the first pre-coding matrix subset corresponds to one number of transmission layers.
  • a method for transmitting data which is characterized in that:
  • the network device determines a channel transmit power of the first uplink data
  • the network device Determining, by the network device according to the channel transmission power and transmission parameters, the actual transmission power of the first uplink data, where the actual transmission power is less than or equal to the channel transmission power, wherein the transmission parameters include one of the following or Multiple:
  • Power headroom indicates a difference between the maximum transmission power allowed by the terminal device and the transmission power of the channel, and the channel transmission power is less than or equal to the maximum transmission power allowed by the terminal device, or,
  • a waveform used for sending the first uplink data or
  • a downlink control information DCI format used for scheduling the first uplink data or
  • the modulation and coding scheme MCS used for sending the first uplink data or
  • the method for transmitting data determines the actual transmission power of the uplink data based on the channel transmission power and various transmission parameters that can indicate whether the terminal device is at the cell edge, and can flexibly adjust the actual transmission power of the uplink data. Improve the reliability of data transmission. At the same time, it is convenient for network equipment scheduling and system optimization.
  • N is less than M
  • M is the number of antenna ports configured for sending the first uplink data by the network device
  • N is the first uplink data sent from M antenna ports.
  • the number of non-zero power antenna ports used, N is an integer greater than or equal to 1, and M is an integer greater than 1.
  • the method for transmitting data provided in the embodiment of the present application is more effective in determining the actual transmission power of uplink data based on the channel transmission power and various transmission parameters that can indicate whether the terminal device is at the cell edge when N is less than M. It can flexibly adjust the actual transmission power of uplink data to improve data transmission reliability. At the same time, it is convenient for network equipment scheduling and system optimization.
  • the transmission parameter includes the power headroom
  • the power headroom satisfies a first condition, the actual transmission power p t > (N / M) ⁇ p p , and p p is the channel transmission power.
  • the first condition is used to determine that the terminal device is at a cell edge.
  • the terminal device at the cell edge can use a larger The transmission power sends uplink data, which improves the reliability of data transmission.
  • the actual transmission power p t (N / M) ⁇ p p .
  • the first condition is that the power headroom is greater than or equal to a first threshold
  • the first threshold is equal to 6 dBm; or
  • the first threshold is equal to 3 dBm; or
  • the first threshold is equal to 3 dBm.
  • the transmission parameter includes a waveform used for sending the first uplink data
  • the waveform is a discrete Fourier transform extended orthogonal frequency division multiplexing multiple access DFT-s-OFDM waveform, the actual transmission power p t > (N / M) ⁇ p p , and p p is the channel transmission power .
  • the terminal device at the cell edge can use a larger actual situation by increasing the actual transmission power.
  • the transmission power sends uplink data, which improves the reliability of data transmission.
  • it is convenient for network equipment scheduling and system optimization.
  • the waveform is a CP-OFDM waveform
  • the actual transmission power p t (N / M) ⁇ p p .
  • the transmission parameter includes a downlink control information DCI format used for sending the first uplink data
  • the DCI format is a first DCI format, the actual transmission power p t > (N / M) ⁇ p p , and the first DCI format is a plurality of DCI formats used for scheduling uplink data with a minimum number of bits.
  • DCI format, p p is the transmission power of the channel.
  • the DCI format capable of characterizing the position of the terminal device is a DCI format with a minimum number of bits included in multiple DCI formats for scheduling uplink data
  • the actual transmission power is improved.
  • the terminal equipment at the cell edge can use a larger actual transmission power to send uplink data, which improves the reliability of data transmission.
  • the DCI format is a second DCI format
  • the actual transmission power p t (N / M) ⁇ p p
  • the second DCI format is multiple for scheduling uplink data.
  • the transmission parameter includes the modulation and coding scheme MCS used for sending the first uplink data
  • the modulation method of the MCS is binary phase shift keying BPSK or quadrature phase shift keying QPSK, the actual transmission power p t > (N / M) ⁇ p p , and p p is the channel transmission power.
  • the modulation method of the MCS capable of characterizing the position of the terminal device is BPSK or QPSK
  • the terminal device at the cell edge can use a larger actual The transmission power sends uplink data, which improves the reliability of data transmission.
  • the transmission parameter includes a power adjustment value used for sending the first uplink data
  • the power adjustment value obtained by the terminal device K times satisfies the second condition, the actual transmission power p t > (N / M) ⁇ p p , where p p is the transmission power of the channel, and K is greater than or equal to 1. Integer.
  • the second condition is used to determine that the terminal device is at a cell edge.
  • the terminal device at the cell edge is improved by increasing the actual transmission power
  • the uplink data can be sent with a larger actual transmission power, which improves the reliability of data transmission.
  • the second condition is that a power adjustment value obtained by the terminal device K times is greater than or equal to a second threshold, and the second threshold is equal to 3 dBm.
  • the second condition is specifically that power adjustment values obtained by the terminal device for consecutive K times are all equal to the second threshold, and K is an integer greater than 1.
  • the actual transmission power is equal to the channel transmission power.
  • the reliability of data transmission can be improved to the greatest extent.
  • a method for transmitting data includes:
  • the network device determines a channel transmit power of the first uplink data
  • the network device Determining, by the network device according to the channel transmission power and transmission parameters, the actual transmission power of the first uplink data, where the actual transmission power is less than or equal to the channel transmission power, wherein the transmission parameters include one of the following or Multiple:
  • Power headroom indicates a difference between the maximum transmission power allowed by the terminal device and the transmission power of the channel, and the channel transmission power is less than or equal to the maximum transmission power allowed by the terminal device, or,
  • a waveform used for sending the first uplink data or
  • a downlink control information DCI format for scheduling the first uplink data or
  • the modulation and coding scheme MCS used for sending the first uplink data or
  • the terminal device uses the actual transmission power to send the first uplink data.
  • the method for transmitting data determines the actual transmission power of the uplink data based on the channel transmission power and various transmission parameters that can indicate whether the terminal device is at the cell edge, and can flexibly adjust the actual transmission power of the uplink data. Improve the reliability of data transmission.
  • N is less than M
  • M is the number of antenna ports configured for sending the first uplink data by the network device
  • N is the first uplink data sent from M antenna ports.
  • the number of non-zero power antenna ports used, N is an integer greater than or equal to 1, and M is an integer greater than 1.
  • the transmission parameter includes the power headroom
  • the determining, by the network device according to the channel transmission power and transmission parameters, the actual transmission power of the first uplink data includes:
  • the network device determines an actual transmission power of the first uplink data.
  • the first condition is that the power headroom is greater than or equal to a first threshold
  • the first threshold value meets at least one of the following:
  • the first threshold is equal to 6 dBm; or
  • the first threshold is equal to 3 dBm; or
  • the first threshold is equal to 3 dBm.
  • the transmission parameter includes a waveform used for sending the first uplink data
  • the determining, by the network device according to the channel transmission power and transmission parameters, the actual transmission power of the first uplink data includes:
  • the waveform is a discrete Fourier transform extended orthogonal frequency division multiplex multiple access DFT-s-OFDM waveform
  • the network device determines an actual transmission power of the first uplink data.
  • the transmission parameter includes a downlink control information DCI format used for sending the first uplink data
  • the determining, by the network device according to the channel transmission power and transmission parameters, the actual transmission power of the first uplink data includes:
  • the DCI format is a first DCI format
  • the first DCI format is a DCI format with a minimum number of bits included in multiple DCI formats for scheduling uplink data
  • the network device determines an actual transmission power of the first uplink data.
  • the transmission parameter includes the modulation and coding scheme MCS used for sending the first uplink data
  • the determining, by the network device according to the channel transmission power and transmission parameters, the actual transmission power of the first uplink data includes:
  • the MCS modulation mode is binary phase shift keying BPSK or quadrature phase shift keying QPSK
  • the network device determines an actual transmission power of the first uplink data.
  • the transmission parameter includes a power adjustment value used for sending the first uplink data
  • the determining, by the network device according to the channel transmission power and transmission parameters, the actual transmission power of the first uplink data includes:
  • the network device determines an actual transmission power of the first uplink data.
  • the second condition is that a power adjustment value obtained by the terminal device K times is greater than or equal to a second threshold, and the second threshold is equal to 3 dBm.
  • the second condition is specifically that a power adjustment value obtained by the terminal device for consecutive K times is equal to the second threshold, and K is an integer greater than 1.
  • the actual transmit power p t > (N / M) ⁇ p p
  • p p is the channel transmit power
  • the actual transmission power is equal to the channel transmission power.
  • N 2
  • a method for transmitting data includes:
  • the network device determines a first precoding matrix for precoding the first uplink data, where the first precoding matrix belongs to the first precoding matrix subset or the second precoding matrix subset in the precoding matrix set, where:
  • the transmit power of the uplink data determined based on each of the one or more precoding matrices in the first precoding matrix subset satisfies the following condition: the transmit power of one antenna port among the antenna ports used to send the uplink data p 0 > (1 / M) ⁇ p p , and the number of antenna ports used for sending uplink data is greater than or equal to 1 and less than M, based on one or more precodings in the second precoding matrix subset
  • the number of antenna ports configured to send the first uplink data, M is an integer greater than 1
  • p p is a channel transmission power of the uplink data;
  • a first precoding subset and a second precoding subset are set in a precoding set, where it is determined based on any one precoding matrix in the first precoding matrix subset.
  • the transmit power determined based on each precoding matrix in one or more precoding matrices in the first precoding matrix subset specifically meets the following conditions:
  • the actual transmission power determined based on each of the one or more precoding matrices in the first precoding matrix subset is equal to the channel transmission power.
  • each precoding matrix in the precoding matrix set includes a phase and amplitude quantization value, where the amplitude quantization value is used to determine transmission power of uplink data, where:
  • a phase of each precoding matrix in one or more precoding matrices in the first precoding matrix subset belongs to a phase of a precoding matrix included in the second precoding matrix subset.
  • the number of occupied bits is determined based on the number of precoding matrices included in the precoding matrix set. For example, if the number of bits is N, the number of N bits can be Indicates 2 n precoding matrices, however, there may be some bit values remaining in practice. Since the phase of the precoding matrix in the first precoding matrix subset belongs to the phase of the precoding matrix in the second precoding subset, it means that the number of the first precoding subset is small.
  • the coding matrix can be indicated by the remaining bit values in the precoding matrix set. Without changing the existing number of bits and without affecting the flexibility of the existing codeword selection, the reserved field is used to indicate the pre-adjusted amplitude quantization value. Encoding matrix.
  • an apparatus for transmitting data may be configured to perform operations of the terminal device in the first aspect to the second aspect and any possible implementation manners thereof.
  • the apparatus may include a module unit for performing each operation of the terminal device in any possible implementation manner of the first aspect to the third aspect.
  • an apparatus for transmitting data may be used to perform operations of the network device in the third to fourth aspects and any possible implementation manners thereof.
  • the apparatus may include a module unit for performing each operation of the network device in any possible implementation manner of the fourth aspect to the sixth aspect.
  • a terminal device includes a processor, a transceiver, and a memory.
  • the processor, the transceiver, and the memory communicate with each other through an internal connection path.
  • the memory is configured to store instructions
  • the processor is configured to execute instructions stored in the memory.
  • the execution causes the terminal device to execute any one of the methods in any possible implementation manner of the first aspect to the third aspect, or the execution causes the terminal.
  • the device implements the apparatus provided by the seventh aspect.
  • a network device includes a processor, a transceiver, and a memory.
  • the processor, the transceiver, and the memory communicate with each other through an internal connection path.
  • the memory is configured to store instructions
  • the processor is configured to execute instructions stored in the memory.
  • the execution causes the network device to execute any one of the methods in any of the possible implementation manners of the fourth aspect to the sixth aspect, or the execution causes the network
  • the device implements the apparatus provided by the eighth aspect.
  • a chip system including a memory and a processor, where the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the chip system is installed
  • the communication device executes any one of the above-mentioned first to sixth aspects and possible implementations thereof.
  • a computer program product includes: computer program code, where the computer program code is received by a communication unit, a processing unit, or a transceiver of a communication device (for example, a network device or a terminal device).
  • a communication device for example, a network device or a terminal device.
  • the communication device is caused to execute any one of the foregoing first aspect to the sixth aspect and the possible implementation methods thereof.
  • a computer-readable storage medium stores a program that causes a communication device (for example, a network device or a terminal device) to execute the first to sixth aspects. And any of its possible implementations.
  • a computer program is provided.
  • the computer program When the computer program is executed on a computer, the computer will enable the computer to implement any one of the foregoing first to sixth aspects and possible implementations thereof. .
  • FIG. 1 is a schematic diagram of a communication system used in an embodiment of the present application.
  • FIG. 2 is a schematic interaction diagram of a data transmission method according to an embodiment of the present application.
  • FIG. 3 is another schematic interaction diagram of a data transmission method according to an embodiment of the present application.
  • FIG. 4 is another schematic interaction diagram of a data transmission method according to an embodiment of the present application.
  • 5 to 8 are schematic block diagrams of an apparatus for transmitting data according to an embodiment of the present application.
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the terminal device in the embodiments of the present application may refer to user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or User device.
  • Terminal equipment can also be cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), and wireless communications Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network, or public land mobile network (PLMN) in future evolution Terminal equipment and the like are not limited in this embodiment of the present application.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • PLMN public land mobile network
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, and the network device may be a Global System for Mobile Communication (GSM) system or a Code Division Multiple Access (CDMA) system.
  • the base station (Base Transceiver Station (BTS)) can also be a base station (NodeB, NB) in a wideband code division multiple access (WCDMA) system, or an evolved base station (evolved) in an LTE system.
  • GSM Global System for Mobile Communication
  • CDMA Code Division Multiple Access
  • the base station can also be a base station (NodeB, NB) in a wideband code division multiple access (WCDMA) system, or an evolved base station (evolved) in an LTE system.
  • NodeB, NB base station
  • WCDMA wideband code division multiple access
  • evolved evolved base station
  • NodeB can also be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device can be a relay station, access point, in-vehicle device, wearable device, and future
  • CRAN cloud radio access network
  • the network equipment in the 5G network or the network equipment in the future evolved PLMN network is not limited in the embodiments of the present application.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a windows operating system.
  • This application layer contains applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of the present application does not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the application can be run to provide the program according to the embodiment of the application.
  • the communication may be performed by using the method described above.
  • the method execution subject provided in the embodiments of the present application may be a terminal device or a network device, or a function module in the terminal device or the network device that can call a program and execute the program.
  • next-generation mobile communication system makes it possible for future mobile data traffic growth, massive Internet of Things, and diversified new services and application scenarios.
  • the new 5G radio (NR) the foundation of the new generation cellular network, is also expected to raise the network's data speed, capacity, delay, reliability, efficiency and coverage to a whole new level. Will make full use of the available spectrum resources for each bit.
  • 5G based on orthogonal frequency division multiplexing (OFDM) new air interface design will become a global standard, supporting 5G equipment, diversified deployments, and covering diverse spectrum (including low-frequency and high-frequency Coverage), but also support a variety of services and terminals.
  • OFDM orthogonal frequency division multiplexing
  • MIMO multiple-input multiple-output
  • MIMO technology refers to the use of multiple transmitting antennas and receiving antennas in the transmitting device and the receiving device, respectively, so that signals are transmitted and received through multiple antennas of the transmitting device and the receiving device, thereby improving communication quality. It can make full use of space resources, realize multiple transmissions and multiple receptions through multiple antennas, and can increase the channel capacity of the system multiple times without increasing spectrum resources and antenna transmit power.
  • the transmitting device performs a bit mapping process on the data bits that need to be sent to the receiving device to obtain a modulation symbol.
  • the modulation symbol is mapped to multiple transmission layers through layer mapping.
  • the modulation symbols after layer mapping are precoded to obtain a precoded signal.
  • the pre-encoded signal is mapped to multiple REs after being mapped with resource elements (REs). These REs are then modulated by orthogonal frequency division multiplexing (OFDM) and transmitted through an antenna port.
  • OFDM orthogonal frequency division multiplexing
  • each transmission layer may correspond to one or more antenna ports.
  • the antenna port referred to here can be understood as a logical port used for transmission, and there is no one-to-one correspondence with the port of the physical antenna.
  • the antenna port can be composed of pilot signals (for example, DMRS (Demodulation Reference Signal (DMRS)).
  • DMRS Demodulation Reference Signal
  • one DMRS corresponds to one antenna port.
  • FIG. 1 is a schematic diagram of a communication system used in an embodiment of the present application.
  • the communication system 100 includes a network device 102, and the network device 102 may include multiple antenna groups.
  • Each antenna group may include one or more antennas, for example, one antenna group may include antennas 104 and 106, another antenna group may include antennas 108 and 110, and additional groups may include antennas 112 and 114. 2 antennas are shown in FIG. 1 for each antenna group, however, more or fewer antennas may be used for each group.
  • the network device 102 may additionally include a transmitter chain and a receiver chain. Those of ordinary skill in the art may understand that each of them may include multiple components related to signal transmission and reception, such as a processor, a modulator, a multiplexer, and a decoder. Tuner, demultiplexer, or antenna.
  • the network device 102 may communicate with multiple terminal devices, for example, the network device 102 may communicate with the terminal device 116 and the terminal device 122. However, it is understood that the network device 102 may communicate with any number of terminal devices similar to the terminal devices 116 or 122.
  • the terminal devices 116 and 122 may be, for example, cellular phones, smartphones, laptops, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and / or any other suitable for communicating on the wireless communication system 100 device.
  • the terminal device 116 communicates with the antennas 112 and 114, where the antennas 112 and 114 send information to the terminal device 116 through the forward link 118 and receive information from the terminal device 116 through the reverse link 120.
  • the terminal device 122 communicates with the antennas 104 and 106, where the antennas 104 and 106 send information to the terminal device 122 through the forward link 124 and receive information from the terminal device 122 through the reverse link 126.
  • forward link 118 may utilize a different frequency band from that used by reverse link 120
  • forward link 124 may utilize a different frequency band from that used by reverse link 126 .
  • the forward link 118 and the reverse link 120 may use a common frequency band
  • the forward link 124 and the reverse link 126 may use a common frequency band. frequency band.
  • Each set of antennas and / or areas designed for communication is referred to as a sector of the network device 102.
  • the antenna group may be designed to communicate with terminal devices in a sector covered by the network device 102.
  • the transmitting antennas of the network device 102 can use beamforming to improve the signal-to-noise ratio of the forward links 118 and 124.
  • the Mobile devices experience less interference.
  • the network device 102, the terminal device 116, or the terminal device 122 may be a wireless communication transmitting apparatus and / or a wireless communication receiving apparatus.
  • the wireless communication transmitting device may encode the data for transmission.
  • the wireless communication transmitting device may acquire a certain number of data bits to be transmitted to the wireless communication receiving device through a channel.
  • the wireless communication transmitting device may generate, receive from other communication devices, or save in a memory, etc., to be transmitted through the channel.
  • Such data bits may be contained in a transport block or multiple transport blocks of data, which may be segmented to generate multiple code blocks.
  • the communication system 100 may be a public land mobile network, a PLMN network, a device-to-device (D2D) network, a machine-to-machine (M2M) network, or another network.
  • FIG. 1 is only an example for easy understanding. Simplified schematic diagram, the network can also include other network equipment, not shown in Figure 1.
  • Antenna port configured by the network device for sending uplink data
  • the network device can configure the number of antenna ports through the configuration information.
  • the configuration information may be implicitly notified by configuring the number of ports of sounding reference signal (SRS) resources, that is, if the number of ports of the SRS resource is configured as 4, it means that the number of antenna ports used to transmit the uplink data is 4, If the network device is configured with multiple SRS resources and the number of ports of the multiple SRS resources is different, the number of antenna ports is determined according to one SRS resource indicated by the SRI field in the DCI scheduling the uplink data, or according to all configured SRSs The total number of ports of the resource determines the number of antenna ports.
  • the configuration information also implicitly indicates the dimension of the precoding matrix indicated by the precoding matrix indication field in the DCI scheduling uplink data.
  • M is used to indicate the number of antenna ports configured by the network device for sending uplink data.
  • the antenna ports mentioned in the context are all antenna ports used by the terminal device to send uplink data.
  • Antenna port used to send uplink data
  • Non-zero power antenna port used by the terminal device to send uplink data.
  • the number of non-zero power antenna ports is less than or equal to M.
  • N is used to indicate the number of non-zero power antenna ports used for sending uplink data among the M antenna ports.
  • the terminal device may determine N by using a transmission precoding matrix indication field in the DCI scheduling the uplink data.
  • the transmission precoding matrix indication field may be used to indicate that some antenna ports or all antenna ports are selected for uplink transmission, that is, N is less than or equal to M.
  • the number M of antenna ports configured by the network device for sending uplink data is 4, and when sending uplink data, the number N of antenna ports used may be any number less than or equal to 4.
  • the value of M may be configured to the terminal device by some fields, such as nrofSRS-Ports.
  • the value of N may also be configured to the terminal device by certain fields, such as Precoding, Information, and Number of Layers.
  • the maximum transmission power indicates the maximum capability of the power used by the terminal device to send uplink data, or the maximum transmission power that the terminal device can support.
  • the maximum transmission power may be the transmission power configured by the network device to the terminal device, and indicates the maximum transmission power that the network device allows the terminal device to use.
  • the maximum transmission power may also be the maximum transmission power that the network device agrees that the terminal device can adopt.
  • p max is used to indicate the maximum transmission power.
  • the channel status will be different in different time periods.
  • the channel quality is poor and requires a larger transmission power to send data.
  • the channel quality is good, and the lower transmission power can be used to send data.
  • the uplink transmission in different periods
  • the size of the occupied frequency domain resources is different.
  • the larger the frequency domain resource the larger the transmission power required to send the uplink data, and the smaller the frequency domain resource, the smaller the transmission power is required to transmit the uplink data. Therefore, in uplink transmission, the transmission power determined based on factors such as channel state and frequency domain resource allocation is different.
  • the network device determines the configuration parameter of the transmission power according to the channel status and the scheduling policy indication.
  • the terminal device may call the transmission power determined based on the configuration parameter indicated by the network device and its own signal measurement result as the channel transmission power.
  • the channel transmit power indicates the maximum transmit power that the terminal device can use to transmit uplink data at the current moment.
  • p p is used to indicate the channel transmission power of uplink data.
  • the terminal device can determine the channel transmission power p p of the uplink data by the following formula:
  • the maximum transmission power p max is the same as p CMAX, f, c (i), and the channel transmission power p p is the same as p PUSCH, b, f, c (i , j, q d , l).
  • BWP bandwidth
  • PUSCH physical uplink shared channel
  • f is the carrier occupied by PUSCH transmission.
  • c is the serving cell where the carrier is located.
  • l is a power control parameter set configured by a network device through high-level signaling, and parameter values configured by the following high-level signaling are all configured in the power control parameter set.
  • p CMAX, f, c (i) is the maximum transmission power.
  • p O_PUSCH, b, f, c (j) are parameter values configured by the network device through higher layer signaling.
  • the terminal device further determines The corresponding indication field selects one of the plurality of parameter values for determination, or selects one of the plurality of parameter values for determination according to a predefined rule.
  • ⁇ a, b, c (j) are parameter values configured by the network device through higher layer signaling.
  • the terminal device When the network device configures multiple parameter values through the high layer, the terminal device further according to the corresponding information in the downlink control information (DCI)
  • DCI downlink control information
  • the instruction field selects one of the plurality of parameter values for determination, or selects one of the plurality of parameter values for determination according to a predefined rule.
  • PL b, f, c (q d ) is estimated based on a reference resource (RS) configured by a network device.
  • RS reference resource
  • the values of ⁇ TF, b, f, c (i) are related to the number of transmission layers, and can be related to the number of code blocks, the size of the code blocks, the number of REs occupied by the PUSCH, and the type of data carried on the PUSCH.
  • K S indicates through high-level signaling that the value of BPRE is related to the number of code blocks, the size of code blocks, and the number of REs occupied by PUSCH.
  • f b, f, c (i, l) is determined according to the transmission power control (TPC) indication carried in the DCI.
  • TPC transmission power control
  • the TPC indicates an absolute amount
  • f b, f, c (i , l) ⁇ PUSCH, b, f, c (i last , i, K PUSCH , l).
  • the terminal device determines the transmission power of the PUSCH used on each transmission port according to the channel transmission power and the number of antenna ports M used to send uplink data.
  • the transmission power of each transmission port is the channel transmission power. Ratio to M.
  • the number N of antenna ports used to send uplink data is less than or equal to M, and the actual transmission power represents the total transmission power of the N antenna ports that the terminal device actually uses when sending uplink data.
  • the actual transmission power is less than or equal to the channel transmission power.
  • p t is used to represent the actual transmission power.
  • the terminal device may determine whether to use the channel transmission power to send uplink data.
  • One case is to use the channel transmission power to send uplink data. That is, the actual transmission power is equal to the channel transmission power.
  • the terminal device does not perform a power scaling operation, and uses the channel transmission power to send uplink data.
  • Another case is to use a power smaller than the channel transmission power to send uplink data.
  • the terminal device can perform a power scaling operation. , Using the scaled power of the channel transmission power to send uplink data.
  • the actual transmission power may also be a calculated value of the actual transmission power determined by the terminal device, and the actual transmission power may also be a result of scaling according to the foregoing parameters and / or the values of M and N.
  • the actual transmission power of each antenna port may be a calculated value determined by the terminal device, or may be based on the above parameters and / or M The values of N and N are scaled.
  • each precoding matrix includes two parts of amplitude quantization value and phase, and a precoding matrix with a transmission layer number of 2.
  • the amplitude quantization value is 1/2
  • the phase rotation relationship of each antenna port can be expressed as
  • Table 1 represents a codebook consisting of a precoding matrix with 2 antenna ports and 1 transmission layer
  • Table 2 represents a precoding consisting of 4 antenna ports with 4 transmission layers
  • Table 3 shows a codebook consisting of a matrix of precoding matrices with 4 antenna ports and 1 transmission layer.
  • one precoding matrix corresponds to one index, which can be referred to as a precoding indicator (transmission, precoding, matrix, or indicator) (TPMI) index. That is, a precoding indicator index is used to indicate the corresponding precoding matrix.
  • TPMI transmission, precoding, matrix, or indicator
  • the precoding matrix is divided into three types of precoding matrices according to the coherence capability between the antenna ports of the terminal equipment: the precoding matrix with full-coherent capability and the partial-coherent ) Capable precoding matrix and non-coherent capable precoding matrix.
  • the three types of precoding matrices are introduced separately.
  • This type of precoding matrix indicates that all antenna ports (M antenna ports) configured by the network device to send uplink data complete phase calibration and can be phase weighted, that is, , All antenna ports can be used to send uplink data in one transmission layer.
  • the precoding matrix indicated by each index value in TPMI index values 2-5 in Table 1 the precoding matrix indicated by each index value in TPMI index values 12-27 in Table 2, and the TPMI index value in Table 3.
  • the precoding matrix indicated by each index value in 12-27 is a fully capable precoding matrix.
  • Partial-coherent capability precoding matrix This type of precoding matrix indicates that each antenna port of a terminal device that can be used to send uplink data completes phase calibration and can perform phase weighting. Phase calibration is not completed between antenna port pairs, and phase weighting cannot be performed. In other words, in a transmission layer, uplink data can be sent using two antenna ports that have been calibrated.
  • the precoding matrix indicated by each index value in the TPMI index values 4-11 in Table 2 and the precoding matrix indicated by each index value in the TPMI index values 6-13 in Table 3 are pre-coding matrices with partial coherence. Encoding matrix.
  • Non-coherent capability precoding matrix This type of precoding matrix indicates that all antenna ports of a terminal device that can be used to send uplink data have not completed phase calibration and cannot be phase weighted. In other words, only one antenna port can be used to send uplink data in a transmission layer.
  • the precoding matrix indicated by each index value in TPMI index values 0-1 in Table 1 the precoding matrix indicated by each index value in TPMI index values 0-3 in Table 2, and the TPMI index value in Table 3.
  • the precoding matrices indicated by the precoding matrices 14-21 indicated by each index value in 0-5 are all non-coherent precoding matrices.
  • the rank of the precoding matrix represents the number of transmission layers
  • the number of rows of the precoding matrix represents the number of antenna ports M configured by the network device for sending uplink data
  • the number of non-zero rows represents sending uplink data The number of antenna ports N used.
  • One transmission layer uses one antenna port (corresponding to the number of non-zero values in each column in the matrix) to send uplink data.
  • the types of the precoding matrix have been described in detail above.
  • the relationship between the number of M, N, and the number of transmission layers and the precoding matrix is further described in combination with the types of the precoding matrix.
  • the relationship between specific N and M is related to the number of transmission layers.
  • Two antenna ports are used in one transmission layer to send uplink data.
  • the antenna ports used by different transmission layers are different.
  • the transmission layer # 1 uses antenna port # 1 and antenna port # 3, and transmission layer # 2 uses antenna port # 2 and antenna port # 4. It can be understood that the transmitting antenna # 3 of the corresponding transmitting antenna # 1 can be regarded as a transmitting antenna pair.
  • the relationship between specific N and M is related to the number of transmission layers.
  • Each transmission layer uses one antenna port to send uplink data.
  • the values of M and N in the present application may be parameters determined by the terminal device, or may be parameters configured by the terminal device, where M and N may both be determined by the terminal device or both It is configured, or one parameter of M and N is configured. Another parameter of M and N is determined by the terminal device. After the terminal device calculates according to the value of N, the actual number of antenna ports actually used is less than The N value. In one embodiment, the value of N is the number of ports where the terminal device transmits data with non-zero power.
  • the ratio of the actual transmission power p t to the channel transmission power P p may be referred to as a power control factor, and t is used to represent the power control factor.
  • the precoding matrix includes an amplitude quantization value and a phase.
  • the amplitude quantization value can represent the transmission power on each non-zero antenna port, and thus can also represent the power control factor.
  • There is a relationship between the power control factor and the amplitude quantization value: t ⁇ 2 ⁇ l ⁇ N, where ⁇ represents the amplitude quantization value, and l represents the number of transmission layers corresponding to each antenna port, or that the same antenna port is used The number of transport layers that sent data.
  • the transmission power p 0 of each antenna port is ( ⁇ 2 ⁇ l) ⁇ p p .
  • the amplitude quantization value is 1/2
  • the amplitude quantization value is 1/2
  • N 2
  • the amplitude quantization value is 1/2
  • N 4
  • N is less than M
  • the actual transmission power is always less than the channel transmission power.
  • the embodiment of the present application provides a method for transmitting data, and improves the transmission reliability of data by flexibly adjusting the actual transmission power of the data.
  • FIG. 2 is a schematic interaction diagram of a data transmission method 100 according to an embodiment of the present application. Each step in the method 100 will be described in detail below.
  • the network device sends information indicating a configuration parameter to the terminal device, where the configuration parameter is used to determine a channel transmission power.
  • the configuration parameter may include some of the parameters in the formula for determining the channel transmission power described above, and may also include a parameter for determining the remaining parameters in the above formula.
  • the configuration parameter includes the maximum transmission power (for example, p CMAX, f, c (i)), and the number of resource blocks (RB) occupied by the PUSCH used to carry uplink data (for example, ), And other related parameters (for example, p O_PUSCH, b, f, c (j), ⁇ a, b, c (j)), etc.
  • the configuration parameters also include RS (the terminal device can determine PL b based on the RS , f, c (q d )) or power adjustment value (the terminal device can determine f b, f, c (i, l)) and other parameters based on the power adjustment value. In this way, the terminal device can determine the channel transmission power based on the received configuration parameters.
  • the terminal device determines the channel transmission power of the first uplink data to be transmitted according to the configuration parameter.
  • the terminal device can determine the channel transmission power based on the following formula. For the explanation of each configuration parameter, refer to the above.
  • the terminal device can also determine the channel transmission power according to other methods.
  • the terminal device determines the actual transmission power of the first uplink data according to the transmission power and transmission parameters of the channel.
  • the actual transmission power is less than or equal to the transmission power of the channel.
  • the transmission parameters include one or more of the following. :
  • Power headroom which represents the difference between the maximum transmission power allowed by the terminal device and the transmission power of the channel.
  • the waveform used to send the first uplink data or
  • a downlink control information DCI format used for scheduling the first uplink data or
  • the modulation and coding scheme MCS used for sending the first uplink data or,
  • the above transmission parameters can characterize whether the terminal device is at a cell edge or a non-cell edge to a certain extent. Therefore, the actual transmission power of the first uplink data may be determined according to the transmission parameters and the determined channel transmission power. The actual transmission power represents a total of transmission power on the N antenna ports used by the terminal device to send the first uplink data.
  • the actual transmission power is naturally equal to the channel transmission power.
  • the actual transmission power may be less than the transmission power of the channel, or may be equal to the transmission power of the channel, and the specific situation may be further determined through the transmission parameter.
  • the actual transmission power is less than the transmission power of the channel, Then the actual transmission power can be understood as the scaled transmission power obtained after the terminal device performs a power scaling operation according to the channel transmission power and the transmission parameter.
  • the actual transmission power is optional, and the total transmission power of the N antenna ports used to send the first uplink data is optional, and the actual transmission power may also be determined by other constraints.
  • the power headroom is low, it means that the terminal equipment is at the edge of the cell with a high probability.
  • the channel state such as signal to interference plus noise ratio (SINR) is low.
  • SINR signal to interference plus noise ratio
  • the power headroom is high, It indicates that the terminal device is most likely located in the center of the cell.
  • the terminal device calculates and determines the power headroom based on the allowed maximum transmission power and the channel transmission power.
  • the power headroom may also be generated by the maximum transmission power and channel transmission power allowed by the terminal device, and is not limited to the difference between the two. For example, the power headroom may be an upward value of the difference between the two or The result is rounded down.
  • This waveform is a waveform used in data modulation.
  • the waveform can be a discrete Fourier transform extended orthogonal frequency division multiple frequency (DFT-sOFDM) waveform, or it can be Based on cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) waveforms and the like.
  • DFT-sOFDM discrete Fourier transform extended orthogonal frequency division multiple frequency
  • CP-OFDM cyclic prefix orthogonal frequency division multiplexing
  • the waveform of the uplink transmission is switched according to whether the terminal device is at the edge of the cell or whether the terminal device is power limited. For example, if the DFT-s-OFDM waveform is used, it indicates that the terminal device is at the edge of the cell with a high probability, or the terminal device is in a power-limited state (that is, the transmission performance will be improved due to power increase); if the CP-OFDM waveform is used, then It indicates that the terminal equipment is likely to be located at the center of the cell, or the terminal equipment is not in a power limited state.
  • the DCI format may be any DCI format among multiple DCI formats for scheduling uplink data.
  • the DCI format may be DCI format 0_0 or DCI format 0_1.
  • a DCI format with a minimum number of bits included in a plurality of types of DCI used for scheduling uplink data may be referred to as a compact DCI format, for example, a DCI format 0_0.
  • the DCI format detected by the terminal device is sent by the network device to the terminal device according to whether the terminal device is at a cell edge. For example, if the DCI format 0_0 is used, it indicates that the terminal device is most likely to be at the cell edge; if the DCI format 0_1 is used, it is indicated that the terminal device is at the cell center.
  • the modulation method in the MCS can be any of the following four modulation methods: binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 16 positive Quadrature Amplitude Modulation and 64QAM.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • 64QAM 16 positive Quadrature Amplitude Modulation
  • 16QAM indicates a QAM modulation method including 16 symbols
  • 64QAM indicates a QAM modulation method including 16 symbols.
  • the MCS used by the terminal equipment to modulate data is determined according to the current channel quality.
  • a low modulation order in the modulation method in MCS indicates poor channel quality, indicating that the terminal device is at a cell edge with a high probability, such as BPSK or QPSK;
  • a high modulation order in the modulation method in MCS indicates that the channel quality is good, indicating that The terminal device is most likely in the center of the cell, for example, 16QAM or 64QAM.
  • the value of power adjustment is a parameter characterizing the state of the channel. Generally, a large power adjustment value and poor channel quality indicate that the terminal device is most likely to be at the cell edge at this time; a small power adjustment value and good channel quality indicate that the terminal device is at the center of the cell or has reached the maximum transmit power at this time.
  • the power adjustment value may be a cumulative value, and the cumulative value is determined by summing the previously determined ⁇ PUSCH, b, f, c and the ⁇ PUSCH, b, f, c indicated by the current DCI, or may be an absolute value.
  • the absolute value is directly calculated according to the ⁇ PUSCH, b, f, c indicated by the TPC in the current DCI.
  • the power adjustment value indicated by the TPC field may be a power adjustment value corresponding to any field value (or bit value) in Table 4.
  • the network device may indicate a transmission parameter by using a bit value in the indication information, and the terminal device may determine the specific content of the transmission parameter by using the bit value. The terminal device may also determine the specific content of the transmission parameter by using other parameters.
  • the embodiments of the application are not limited thereto, and all manners of determining transmission parameters are within the protection scope of the embodiments of the present application.
  • the above transmission parameter may be an indication value, or other parameters may be implicitly or explicitly indicated.
  • the power headroom may have multiple values, and a power headroom value is indicated by indicating 01.
  • the terminal device calculates or queries the corresponding association relationship according to the indicated value or level to determine the calculation input parameter.
  • the transmission parameter includes a power value
  • the power headroom can be determined by using the difference between the maximum transmission power p max and the channel's transmitted power p p ; for another example, if the transmission parameter includes a waveform, it can be transmitted through the network.
  • the bit value in the waveform information indicating the waveform sent by the device determines whether the waveform is a DFT-s-OFDM waveform or a CP-OFDM waveform.
  • the terminal device uses the actual transmission power to send the first uplink data.
  • the network device receives the first uplink data.
  • the method further includes:
  • the terminal device evenly distributes the actual transmission power to the N antenna ports used to send the first uplink data.
  • the terminal device specifically uses the transmit power corresponding to each antenna port on the N antenna ports to send uplink data to complete the sending process of the first uplink data.
  • the network device although the actual transmission power is determined by the terminal device, for the network device, in some cases, the network device also needs to know the actual transmission power in order to determine its scheduling policy, such as data Selection of precoding matrix used for transmission.
  • the terminal device and the network device can determine the actual transmit power of the first uplink data according to the same manner, so that the terminal device and the network device have the same understanding of the actual transmit power of the first uplink data.
  • the network device may determine the actual transmission power in various ways. Two ways are described below.
  • the actual transmission power is determined by the channel transmission power and transmission parameters.
  • the network device determines the transmission power of the channel.
  • the specific process for the network device to determine the transmission power of the channel is as follows:
  • the terminal device After the terminal device determines the transmission power of the channel in S110, it can calculate the difference between the maximum transmission power and the transmission power of the channel to obtain the power headroom.
  • the terminal device sends power headroom information indicating the power headroom to the network device.
  • the terminal device may use the uplink resources periodically configured by the network device to indicate the power headroom, and the periodically configured uplink resources may be uplink resources used for PUSCH transmission or PUCCH transmission.
  • the terminal device may also report the power headroom according to an event, and the event is that the power headroom is greater than or equal to a threshold threshold. When this event occurs, the terminal device can use the uplink resources occupied by the first PUSCH transmission after the event to report the power headroom.
  • the specific reporting format and the resources occupied by the power headroom can be defined in advance or Network equipment is configured through high-level signaling, where the resources reported for the power headroom are some of the uplink resources occupied by PUSCH transmission; the terminal equipment can also transmit the first PUCCH that meets the requirements after the event
  • the occupied uplink resources are used to report the power headroom.
  • the specific reporting format and the resources used to report the power headroom can be defined in advance or configured by network equipment through high-level signaling.
  • the resources reported by the power headroom are transmitted by PUCCH. For the part of the occupied uplink resources, the requirement may be the number of bits that can be further reported by the power headroom in addition to the first number of bits.
  • the first number of bits is the PUCCH resource indicated by the network device and the UCI bit that needs to be reported currently.
  • Number (including HARQ bits and CSI bits, in addition to power headroom information)
  • the CH can carry the number of UCI bits.
  • the number of bits reported by the power headroom may correspond to the absolute power headroom value, for example, a way of corresponding to different bit values according to a certain step within an integer value interval defining [0,23] / [0,26], or relative
  • the relative power headroom value for the maximum transmission power corresponds to different bit values according to a certain step size, or only 1 bit corresponds to indicate that the first threshold is exceeded.
  • the network device determines the transmission power of the channel according to the power headroom information and the maximum transmission power.
  • the maximum transmission power is configured by the network device to the terminal device. Therefore, the network device knows the maximum transmission power and can determine the channel transmission based on the maximum transmission power and the power headroom obtained from the power headroom information. power.
  • the network device determines the actual transmission power of the first uplink data according to the channel transmission power and the transmission parameter.
  • both S130 and S140 may occur before S120 or S150, or both may occur after S120 or S150, and the embodiment of the present application is not limited thereto.
  • the terminal device may send information indicating the actual transmission power to the network device, so that the network device determines the actual transmission power based on the information.
  • the channel-based The transmission power and various transmission parameters that can indicate whether the terminal device is at the cell edge determine the actual transmission power of the uplink data, thereby flexibly adjusting the actual transmission power of the uplink data, and further improving the reliability of data transmission.
  • the actual transmission power determined by the terminal device according to the channel transmission power and transmission parameters may be less than or equal to the channel transmission power.
  • N is less than M
  • the actual transmission power is less than the channel transmission power, or the actual transmission power is the scaled transmission power obtained after the terminal device performs a power scaling operation.
  • the actual transmission power is no longer determined based on the existing technology, but the transmission power needs to be increased to obtain the actual transmission power, then the actual transmission power p t > (N / M) ⁇ p p ,
  • the actual transmission power is less than or equal to the channel transmission power.
  • the specific increase of the transmission power may be based on a protocol specification or an instruction from a network device, and the embodiment of the present application is not limited thereto.
  • the actual transmission power is determined according to the channel transmission power and power headroom.
  • the first condition is used to determine that the terminal device is at a cell edge.
  • the power headroom meeting the first condition may be a judgment process, that is, the terminal device determines whether the power headroom meets the first condition. In one case, the terminal device determines that the power headroom meets the first condition. Condition, the terminal device determines the actual transmission power, and the determined actual transmission power satisfies certain constraints; for example, if the power headroom meets the first condition, it may also be a parameter based on or related to the power headroom Value, or power headroom level, and related instructions for making a judgment and determination; for another example, if the power headroom meets the first condition, the power headroom value (or power headroom level) and the transmission power may be used.
  • the process of determining the associated relationship of the constraints on the actual transmission power or the constraint relationship of the actual transmission power is similar to this.
  • the first condition is that the power headroom is greater than or equal to a first threshold.
  • the transmission power needs to be increased.
  • the first threshold may also be associated with certain parameters, for example, the first threshold is associated with antenna port information. Wherein, if the first condition is that the power headroom is greater than or equal to the first threshold, the first threshold may have one or more of the following associations:
  • the first threshold is equal to 6 dBm; or
  • the first threshold is equal to 3 dBm; or
  • the first threshold is equal to 3 dBm.
  • M 2
  • the precoding matrix is a non-coherent precoding matrix
  • the number of transmission layers is 1, and the corresponding first threshold is 3 dBm.
  • the terminal device may store the above-mentioned association relationship, and in a case where confirmation is required, the value of the first threshold may be confirmed by querying.
  • the terminal device may store the association relationship of the first threshold, determine the first threshold according to the stored association relationship, and further determine whether the power headroom meets the first condition (for example, whether the threshold relationship is satisfied).
  • This can be used as a separate embodiment or combined with other embodiments. Other similar forms in this application may also appear in this form.
  • the unit for describing power may be not only dBm, but also dB, and in specific implementation, it may also be other quantized values, levels, or parameter values.
  • the embodiments of the present application are not limited to this. .
  • the actual transmission power is equal to the channel Transmit power.
  • the transmission power of each antenna port among the N antenna ports will be described in the case where the actual transmission power is equal to the transmission power of the channel, and the amplitude quantization value of the associated precoding matrix will be described.
  • the transmit power of each antenna port is as follows:
  • N 2
  • the transmission power of one antenna port of the N antenna ports meets the foregoing conditions, and the transmission power of each antenna port of the N antenna ports also meets the foregoing conditions.
  • the transmit power of an antenna port is the channel transmit power.
  • Table 5 describes the power headroom and the amplitude quantization value of the precoding matrix in different scenarios when the actual transmission power is the channel transmission power.
  • the terminal device determines a precoding matrix based on the TPMI sent by the network device for indicating the precoding matrix, and uses the precoding matrix to precode the first uplink data.
  • the The amplitude quantization value of the precoding matrix may indicate that the actual transmit power of the first uplink data is equal to (N / M) ⁇ p p .
  • the terminal device determines that the transmission power needs to be increased based on the transmission parameters, if the amplitude quantization value of the precoding matrix according to the prior art is related to the power between the ports The allocation relationship does not match.
  • the terminal device can be agreed to precode the first uplink data by using a precoding matrix adjusted for the amplitude quantization value.
  • the actual transmission power may be further determined according to the value range of the power headroom, and the quantized values of the amplitudes of the corresponding precoding matrices are also different.
  • the method of determining the actual transmission power according to the value range of PH is described in Table 6.
  • N 1 is specifically the precoding matrix is not The coherence-capable precoding matrix, that is, the precoding matrix indicated by the TPMI index value 0-3, the amplitude quantization value of each precoding matrix is increased to 1.
  • the reason why the TPMI index values 0 and 2 are divided into one group and the TPMI index values 1 and 3 are divided into another group is that the channel correlation of the antenna ports corresponding to the TPMI index values 0 and 2 is high, and the TPMI index values are high.
  • the channel correlation between the antenna ports corresponding to 1 and 3 is high, and the channel correlation between the antenna port groups is low.
  • the method for transmitting data provided in the embodiments of the present application, on the one hand, in a case where the power margin capable of characterizing the position of the terminal device meets the first condition, the terminal device at the cell edge can be used by increasing the actual transmission power. Higher transmission power sends uplink data, which improves the reliability of data transmission.
  • sending uplink data by using the scaled channel transmission power is beneficial to the terminal device at the non-cell edge to reduce the data. The interference caused by transmission will also help the terminal equipment to reduce power consumption.
  • the actual transmission power is determined according to the channel transmission power and waveform.
  • the DFT-s-OFDM waveform When normal circumstances, if the DFT-s-OFDM waveform is used, it indicates that the terminal device is most likely to be at the edge of the cell, or the terminal device is in a power-limited state (that is, the transmission performance will be improved due to the power increase), so the transmission power needs to be increased.
  • other waveforms for example, CP-OFDM waveform
  • the network device can indicate the waveform used by the first uplink data through high-level signaling or DCI signaling, and the terminal device can directly determine the actual transmission used to send the first uplink data transmission based on the information of the indicated waveform. power.
  • the actual transmission power is equal to the channel Transmit power.
  • the terminal device does not perform a power scaling operation.
  • the actual transmission power is equal to the channel transmission power, and the channel transmission power is used to send uplink data.
  • the waveform is other waveforms ( For example, CP-OFDM waveform)
  • the terminal device performs a power scaling operation to transmit the scaled power of the channel.
  • the transmission power of each antenna port among the N antenna ports will be described in the case where the actual transmission power is equal to the transmission power of the channel, and the amplitude quantization value of the associated precoding matrix will be described.
  • the transmit power of each antenna port is as follows:
  • N 2
  • the transmission power of one antenna port of the N antenna ports meets the foregoing conditions, and the transmission power of each antenna port of the N antenna ports also meets the foregoing conditions.
  • the precoding of the first uplink data is performed.
  • Amplitude quantization value of the encoding matrix please refer to the related description of case 1. For brevity, we will not repeat them here.
  • the transmission parameters include a waveform
  • Table 7 describes the waveform and the amplitude quantization value of the precoding matrix in different scenarios when the actual transmission power is the channel transmission power.
  • the terminal device at the cell edge can use the Large transmission power sends uplink data, which improves the reliability of data transmission.
  • the waveform that can characterize the position of the terminal device is a CP-OFDM waveform
  • using the scaled channel transmission power to send uplink data is beneficial to reducing the data transmission band for terminal devices that are not at the cell edge. Incoming interference, while helping terminal equipment reduce power consumption.
  • the actual transmission power is determined according to the channel transmission power and the DCI format.
  • the DCI format is the first DCI format, and the determined actual transmission power p t > (N / M) ⁇ p p , where the first DCI may also be referred to as the compact DCI described above.
  • the network device instructs control information configuration parameters through high-level signaling, and the control information configuration parameter includes a time-frequency code resource carrying the DCI signaling, and a detection method for the DCI by the terminal device. Detection cycle, number of detections, DCI format to be detected, etc. Among them, for a certain DCI signaling, the network device can be configured with multiple DCI formats that need to be detected, and the terminal device needs to try the multiple DCI formats at each DCI detection moment, and determine the current DCI signaling through blind detection The DCI format used.
  • the actual transmission power is equal to the channel Transmit power.
  • the transmission power of each antenna port among the N antenna ports will be described in the case where the actual transmission power is equal to the transmission power of the channel, and the amplitude quantization value of the associated precoding matrix will be described.
  • the transmit power of each antenna port is as follows:
  • N 2
  • the transmission power of one antenna port of the N antenna ports meets the foregoing conditions, and the transmission power of each antenna port of the N antenna ports also meets the foregoing conditions.
  • the precoding of the first uplink data is performed.
  • Amplitude quantization value of the encoding matrix please refer to the related description of case 1. For brevity, we will not repeat them here.
  • the transmission parameters include parameters for indicating the DCI format
  • the precoding matrix is partially coherent, and the number of transmission layers is 1 scene.
  • Table 8 describes the DCI format and the amplitude quantization value of the precoding matrix in different scenarios when the actual transmission power is the channel transmission power.
  • the DCI format capable of characterizing the position of the terminal device is a DCI format with a minimum number of bits included in a plurality of DCI formats for scheduling uplink data (for example, the first DCI Format), by increasing the actual transmission power, the terminal device at the edge of the cell can use a larger transmission power to send uplink data, which improves the reliability of data transmission.
  • the DCI format capable of characterizing the position of the terminal device is not the first DCI format
  • using the scaled channel transmission power to send uplink data is beneficial for the terminal device at the non-cell edge to reduce the data. The interference caused by transmission will also help the terminal equipment to reduce power consumption.
  • the actual transmission power is determined according to the channel transmission power and the MCS.
  • the modulation order in the modulation method in MCS is low.
  • BPSK or QPSK indicates that the channel quality is poor, indicating that the terminal device is most likely to be at the edge of the cell, or that the terminal device is in a power-constrained state.
  • Transmit power the actual transmit power p t > (N / M) ⁇ p p ;
  • the modulation order in the modulation method in MCS is high, for example, 16QAM or 64QAM, which indicates that the channel quality is good, indicating that the terminal device is most likely to be in the center of the cell Or, the terminal equipment is not in a power limited state, so there is no need to increase the transmission power.
  • the actual transmission power p t (N / M) ⁇ p p , which not only saves the transmission power of the terminal equipment, but also avoids unnecessary power. Uplink interference brought by promotion.
  • the network device can instruct the terminal device to send the MCS used by the first uplink data through the DCI.
  • the MCS index value can be used to indicate the MCS used by the first uplink data.
  • the terminal device can use The MCS determines the coding and modulation mode of the first uplink data, and determines the actual transmission power used to send the first uplink data transmission.
  • Table 9 shows the MCS field of the DFT-s-OFDM waveform. Taking the MCS modulation order as 4 as an example, if the MCS modulation order is 4, you can index by any of the index values 10-16. The value indicates the MCS used to send the first uplink data.
  • the actual transmission power is equal to the channel transmission power.
  • the terminal device does not perform power scaling operation.
  • the actual transmission power is equal to the channel transmission power, and the channel transmission power is used to send uplink data.
  • the MCS modulation mode is other For a modulation method (for example, 16QAM or 64QAM)
  • the transmission power of each antenna port among the N antenna ports will be described in the case where the actual transmission power is equal to the transmission power of the channel, and the amplitude quantization value of the associated precoding matrix will be described.
  • the transmit power of each antenna port is as follows:
  • N 2
  • the transmission power of one antenna port of the N antenna ports meets the foregoing conditions, and the transmission power of each antenna port of the N antenna ports also meets the foregoing conditions.
  • the precoding of the first uplink data is performed.
  • Amplitude quantization value of the encoding matrix please refer to the related description of case 1. For brevity, we will not repeat them here.
  • the transmission parameters include MCS
  • the precoding matrix is a precoding matrix with partial coherence
  • the number of transmission layers is 1.
  • Table 10 describes the MCS modulation mode and pre-coding matrix amplitude quantization value in different scenarios when the actual transmission power is the channel transmission power.
  • the terminal device at the cell edge can use the Large transmission power sends uplink data, which improves the reliability of data transmission.
  • the modulation method of the MCS capable of characterizing the position of the terminal device is 16 quadrature amplitude modulation QAM or 64QAM and a higher-order modulation method
  • the uplink channel data is transmitted using the scaled channel transmission power.
  • the actual transmission power is determined according to the channel transmission power and the power adjustment value.
  • the second condition is used to determine that the terminal device is at a cell edge. Similar to cases 1-4 above, this can also be a process of judgment or a process of determination.
  • the TPC field in the DCI can refer to the description about Table 4 above. For brevity, it will not be repeated here.
  • the second condition is that a power adjustment value obtained by the terminal device K times is greater than or equal to a second threshold.
  • the power adjustment value is large, and the channel quality is poor, which indicates that the terminal device is at the cell edge at a high probability at this time.
  • a good quantity indicates that the terminal equipment is at the center of the cell at this time. Therefore, there is no need to increase the transmission power.
  • the actual transmission power p t (N / M) ⁇ p p , which not only saves the transmission power of the terminal equipment, but also avoids unnecessary transmission power. Interference caused by the increase in power.
  • the second condition is that the power adjustment value obtained by the terminal device K times is greater than or equal to the second threshold value
  • the second threshold is equal to 3 dBm, and K is an integer greater than or equal to 1.
  • 3dBm here refers to the cumulative value of the power adjustment value.
  • the second threshold may also be 4 dBm, where 3 dBm here refers to the absolute value of the power adjustment value.
  • the power adjustment value obtained by K times may be the same or different, as long as it is greater than or equal to the second threshold.
  • the second threshold is equal to 3 dBm
  • K 2
  • the power adjustment value obtained for the first time is 2 dBm
  • the power adjustment value obtained for the second time is 3 dBm.
  • the second condition is specifically that the power adjustment value obtained by the terminal device for consecutive K times is equal to the second threshold value.
  • K 2 that is, if the power adjustment value obtained twice consecutively is greater than the second threshold value, it means that the terminal device is at the cell edge and needs to increase the transmission power.
  • the actual transmission power is equal to the channel transmission power.
  • the transmission power of each antenna port among the N antenna ports will be described in the case where the actual transmission power is equal to the transmission power of the channel, and the amplitude quantization value of the associated precoding matrix will be described.
  • the transmit power of each antenna port is as follows:
  • N 2
  • the transmission power of one antenna port of the N antenna ports meets the foregoing conditions, and the transmission power of each antenna port of the N antenna ports also meets the foregoing conditions.
  • the precoding of the first uplink data is performed.
  • Amplitude quantization value of the encoding matrix please refer to the related description of case 1. For brevity, we will not repeat them here.
  • the actual transmission power is increased to make it be at the cell edge.
  • Terminal equipment can send uplink data with a larger actual transmission power, which improves the reliability of data transmission.
  • the power adjustment value that can characterize the position of the terminal device obtained multiple times by the terminal device does not meet the second condition, the uplink channel data is transmitted using the scaled channel transmission power. For terminal devices that are not at the cell edge, In other words, it is beneficial to reduce the interference caused by data transmission, and it is also conducive to reducing the power consumption of terminal equipment.
  • the method for transmitting data in the embodiment of the present application has been described in detail above.
  • the method for transmitting data 100 is provided in the embodiment of the present application.
  • Method 200 elaborates the solution from another implementation perspective.
  • the network device determines the precoding matrix used by the uplink data to be sent by the terminal device through its own algorithm.
  • the precoding matrix informs the terminal device. In this way, the terminal device can determine the actual transmission power based on the precoding matrix, and the method 100 is not required to determine the actual transmission power based on various transmission parameters.
  • the network device determines a first precoding matrix for precoding the first uplink data, and the first precoding matrix belongs to the first precoding matrix subset or the second precoding matrix subset in the precoding matrix set. ,among them,
  • the transmit power of uplink data determined based on each precoding matrix in one or more precoding matrices in the first precoding matrix subset satisfies the following condition: the transmit power p of one antenna port among the antenna ports used to send the uplink data. 0 > (1 / M) ⁇ p p , and the number of antenna ports used for sending uplink data is greater than or equal to 1 and less than M, based on the number of antenna ports in one or more precoding matrices in the second precoding matrix subset.
  • the transmission power of the uplink data determined by each precoding matrix satisfies the following conditions: the transmission of one antenna port among the antenna ports used to send the uplink data
  • Power p 0 (1 / M) ⁇ p p
  • M is the number of antenna ports configured by the network device to send uplink data
  • p p is the channel transmission power of the uplink data
  • M is an integer greater than 1.
  • the network device may determine a time-frequency resource and a transmission scheme used by the terminal device to send the first uplink data based on a current uplink channel quality and other parameters, where the transmission scheme includes a precoding used to send the first uplink data.
  • Matrix ie, the first precoding matrix.
  • the network device may select a precoding matrix from the first precoding matrix subset or the second precoding matrix subset in the precoding matrix set, and is used by the terminal device for the first precoding matrix.
  • An upstream data is precoded.
  • the precoding matrix set in the embodiment of the present application is described in detail below.
  • the one or more precoding matrices in the first precoding subset correspond to the actual transmit power after power boosting. Specifically, based on each precoding matrix in the one or more precoding matrices, The transmission power p 0 > (1 / M) ⁇ p p of each antenna port in the transmission power determined by the coding matrix.
  • the antenna port corresponding to the precoding matrix used to send uplink data is N (N is determined by the type of the precoding matrix), then the actual transmission power determined based on the precoding matrix is p 0 > (N / M) ⁇ p p ; one or more precoding matrices in the second precoding subset correspond to untransmitted transmit power, specifically, based on each of the one or more precoding matrices Among the transmission power determined by the precoding matrix, the transmission power p 0 of each antenna port is (1 / M) ⁇ p p .
  • the precoding set in the embodiment of the present application may be prescribed by a protocol or a system, or may be configured in advance by a network device, and a specific implementation manner is not limited in any way.
  • the precoding set in the The precoding matrix is a precoding matrix corresponding to all transmission layers whose transmission layer number is less than or equal to L for transmitting uplink data.
  • One transmission layer number corresponds to one or more precoding matrices, and L is the maximum transmission that the terminal device can support. Number of layers, L is an integer greater than or equal to 1.
  • the set of precoding matrices may include precoding matrices with non-coherent capabilities, or include precoding matrices with partially coherent capabilities and non-coherent capabilities, or may include precoding matrices with full coherence capabilities, or precoding matrices with partial coherence capabilities.
  • non-coherent precoding matrix may correspond to one or more types of precoding matrices in the precoding set, or one or more precoding matrices corresponding to one transmission layer number may be different types of precoding matrices.
  • the precoding matrix set in the embodiment of the present application may be indicated by a precoding and a maximum number of transmission layers (precoding information and number of layers) fields.
  • Table 11 shows the precoding information and number of layers fields in the case of four antenna ports, the waveform is CP-OFDM, and the maximum number of transmission layers is 2-3.
  • Table 12 shows the four antenna ports and the waveform is CP- In the case of OFDM, the maximum number of transmission layers is 1.
  • bit-field index value of 11 can also be used to indicate a precoding matrix with a transmission layer number of 1
  • bit-field index value of 12 can also be used to indicate a pre-coding matrix with a transmission layer number of 2.
  • the network device based on the maximum number of transmission layers L that the terminal device can support and the type of precoding matrix supported, the network device passes all the number of transmission layers less than or equal to L and the precoding matrix that conforms to the type of the precoding matrix through high-level signaling.
  • the bit field index value in the Precoding information and number of layers layers (for example, Table 11 or Table 12) is indicated to the terminal device.
  • the terminal device is based on the TPMI of the uplink data currently to be sent through the DCI sent by the network device. Determine the precoding matrix indicated by the TPMI in the precoding matrix (for example, Table 1 or Table 2 or Table 3) of the antenna port and the number of transmission layers.
  • the network device can use the Precoding information and number of layers layers according to the far right of Table 11.
  • the correspondence between the precoding matrix and the bit field index indicates the precoding matrix to the terminal device.
  • the terminal device also determines the precoding matrix according to the corresponding relationship between the rightmost precoding matrix and the bit field index value according to the bit value indicated by the field.
  • TPMI 0 1
  • TPMI 1 ... ... 3
  • TPMI 3 4
  • Layer 1: TPMI 4 ... ... 11
  • Layer 1: TPMI 11 12
  • Layer 1: TPMI 0 (amplitude quantization value is 1) 13
  • TPMI 1 (amplitude quantization value is 1) 14
  • Layer 1: TPMI 2 (amplitude quantization value is 1)
  • the bit field index values 11-15 are used to indicate the non-coherent capable precoding matrix in the first precoding subset, and the number of transmission layers is 1 or 2, and the rest The bit field index value is used to indicate a non-coherent capable precoding matrix in the second precoding subset. If the set of precoding matrices includes a precoding matrix of partially coherent capability and a precoding matrix of non-coherent capability, the bit domain index values of 11, 30, and 31 are used to indicate the non-coherent capable precoding matrix in the first precoding subset.
  • the number of transmission layers is 1, and the remaining bit field index values are used to indicate a pre-coding matrix with partial coherence or non-coherence in the second pre-coding subset. If the set of precoding matrices includes a precoding matrix with partial full coherence capability, a precoding matrix with partially coherent capability, and a precoding matrix with non-coherent capability, the bit domain index values 11, 30, 31, 60-63 are used to indicate the A non-coherent capable precoding matrix in a precoding subset. The number of transmission layers is 1 or 2. The remaining bit field index values are used to indicate the precoding matrix in the second precoding subset.
  • the precoding matrix indicated by the bit field index value 12-15 is the first precoding matrix.
  • the non-coherent capable precoding matrix in the coding subset, the number of transmission layers is 1, and the precoding matrix indicated by the remaining bit field index values is the precoding matrix in the second precoding subset.
  • the determined actual transmission power is equal to the channel transmission power of the uplink data.
  • each antenna in the antenna port used to send uplink data is The transmission power of the port will be described, and the amplitude quantization value of the associated precoding matrix will be described.
  • the transmit power determined based on each precoding matrix in one or more precoding matrices in the first precoding matrix subset specifically meets the following conditions:
  • the transmission power of one antenna port satisfies the foregoing conditions, and the transmission power of each antenna port in the antenna ports used for sending uplink data also meets the foregoing conditions.
  • the precoding matrix is a non-coherent precoding matrix
  • the number of transmission layers is 1, and M is not limited.
  • the transmit power of an antenna port is the channel transmit power.
  • M 4
  • the precoding matrix is part
  • Each precoding matrix in the first precoding matrix subset satisfies the following conditions:
  • the number of antenna ports used for sending uplink data is equal to 1, and the amplitude quantization value of each precoding matrix in the first precoding matrix subset is 1,
  • the number of antenna ports used for sending uplink data is equal to two, and the amplitude quantization value of each precoding matrix in the first precoding matrix subset is
  • bit index values 12-15 are used to indicate a non-coherent capable precoding matrix with an amplitude quantization value of 1, the number of transmission layers is 1, and the bit index value of 11 is used.
  • the quantized value at the indicated amplitude Non-coherent precoding matrix, the number of transmission layers is two. If the precoding matrix set includes partially coherent energy
  • the precoding matrix is a strong precoding matrix and the non-coherent precoding matrix
  • the bit-field index values of 11, 30, and 31 are used to indicate a non-coherent precoding matrix with an amplitude quantization value of 1, and the number of transmission layers is 1.
  • the set of precoding matrices includes a precoding matrix with partially fully coherent capabilities, a precoding matrix with partially coherent capabilities, and a precoding matrix with non-coherent capabilities
  • bit-field index value 60-63 indicates a non-coherent precoding matrix with an amplitude quantization value of 1, and the number of transmission layers is 1.
  • bit-field index values 12-15 are used to indicate a non-coherent precoding matrix with an amplitude quantization value of 1.
  • the precoding matrix includes phase and amplitude quantization values.
  • the phase of the matrix belongs to the phase of the precoding matrix included in the second precoding matrix subset.
  • the types of the two precoding matrices with the same phase in the two subsets are the same.
  • the four precoding matrices in the first precoding subset are all precoding matrices with a transmission layer of 1, non-coherent capability, and the phases of the four precoding matrices belong to the bit domain index value 0-
  • the number of occupied bits is determined based on the number of precoding matrices included in the precoding matrix set. For example, if the number of bits is N, the number of N bits can be Indicates 2 n precoding matrices, however, there may be some bit values remaining in practice. Since the phase of the precoding matrix in the first precoding matrix subset belongs to the phase of the precoding matrix in the second precoding subset, it means that the number of the first precoding subset is small.
  • the coding matrix can be indicated by the remaining bit values in the precoding matrix set. Without changing the existing number of bits and without affecting the flexibility of the existing codeword selection, the reserved field is used to indicate the pre-adjusted amplitude quantization value. Encoding matrix.
  • bit field index values 0-11 all indicate the precoding matrix in the second precoding matrix subset.
  • Coding matrix bit field index value 11 indicates the precoding matrix corresponding to the 4-layer transmission
  • 11 indicates the precoding matrix corresponding to the 2-layer transmission in the first precoding subset, and the remaining bit field index values 12-15 are used to indicate the precoding matrix corresponding to the 1-layer transmission in the first precoding subset.
  • the network device sends instruction information used to indicate the first precoding matrix to the terminal device.
  • the instruction information is the TPMI described above.
  • the terminal device determines the actual transmission power of the first uplink data according to the first precoding matrix and the channel transmission power of the first uplink data.
  • the terminal device uses the relationship between the amplitude quantization value of the precoding matrix and the actual transmission power to determine the actual transmission power based on the amplitude quantization value of the precoding matrix and the channel transmission power, and specifically determines the description of the actual transmission power
  • the terminal device uses the relationship between the amplitude quantization value of the precoding matrix and the actual transmission power to determine the actual transmission power based on the amplitude quantization value of the precoding matrix and the channel transmission power, and specifically determines the description of the actual transmission power
  • the terminal device uses the actual transmission power to send the first uplink data.
  • a first precoding subset and a second precoding subset are set in a precoding set, where an uplink determined based on a precoding matrix in the first precoding matrix subset
  • FIG. 5 shows a schematic block diagram of a data transmission apparatus 300 according to an embodiment of the present application. As shown in FIG. 5, the apparatus 300 includes:
  • a processing unit 310 configured to determine a channel transmission power of the first uplink data
  • the processing unit 310 is further configured to determine an actual transmission power of the first uplink data according to the channel transmission power and transmission parameters, where the actual transmission power is less than or equal to the channel transmission power, wherein the transmission
  • the parameters include one or more of the following:
  • Power headroom where the power headroom indicates a difference between the maximum transmission power allowed by the device and the transmission power of the channel, and the channel transmission power is less than or equal to the maximum transmission power allowed by the device, or,
  • a waveform used for sending the first uplink data or
  • a downlink control information DCI format for scheduling the first uplink data or
  • the modulation and coding scheme MCS used for sending the first uplink data or
  • the sending unit 320 is configured to use the actual sending power to send the first uplink data.
  • N is less than M
  • M is the number of antenna ports configured by the network device to send the first uplink data
  • N is the number of M antenna ports used to send the first uplink data.
  • the number of non-zero power antenna ports, N is an integer greater than or equal to 1
  • M is an integer greater than 1.
  • the transmission parameter includes the power headroom
  • the power headroom satisfies a first condition, the actual transmission power p t > (N / M) ⁇ p p , and p p is the channel transmission power.
  • the terminal device at the cell edge can use a larger device by increasing the actual transmission power.
  • the transmission power sends uplink data, which improves the reliability of data transmission.
  • the first condition is that the power headroom is greater than or equal to a first threshold
  • the first threshold is equal to 6 dBm; or
  • the first threshold is equal to 3 dBm; or
  • the first threshold is equal to 3 dBm.
  • the transmission parameter includes a waveform used for sending the first uplink data
  • the waveform is a discrete Fourier transform extended orthogonal frequency division multiplexing multiple access DFT-s-OFDM waveform, the actual transmission power p t > (N / M) ⁇ p p , and p p is the channel transmission power .
  • the transmission parameter includes a downlink control information DCI format used for sending the first uplink data
  • the DCI format is a first DCI format, the actual transmission power p t > (N / M) ⁇ p p , and the first DCI format is a plurality of DCI formats used for scheduling uplink data with a minimum number of bits.
  • DCI format, p p is the transmission power of the channel.
  • the transmission parameter includes the modulation and coding scheme MCS used for sending the first uplink data
  • the modulation method of the MCS is binary phase shift keying BPSK or quadrature phase shift keying QPSK, the actual transmission power p t > (N / M) ⁇ p p , and p p is the channel transmission power.
  • the transmission parameter includes a power adjustment value used for sending the first uplink data
  • the power adjustment value obtained by the processing unit K times satisfies the second condition, the actual transmission power p t > (N / M) ⁇ p p , where p p is the transmission power of the channel, and K is greater than or equal to 1. Integer.
  • the second condition is that a power adjustment value obtained by the processing unit K times is greater than or equal to a second threshold, and the second threshold is equal to 3 dBm.
  • the second condition is specifically that a power adjustment value obtained by the processing unit for consecutive K times is equal to the second threshold, and K is an integer greater than 1.
  • the actual transmission power is equal to the channel transmission power.
  • N 2
  • processing unit 310 is further configured to:
  • the actual transmission power is evenly allocated to the N antenna ports used to send the first uplink data.
  • the apparatus for transmitting data determines the actual transmission power of uplink data based on the channel transmission power and various transmission parameters capable of characterizing whether the terminal device is at the cell edge, and can flexibly adjust the actual transmission power of uplink data. , Thereby improving the reliability of data transmission.
  • the apparatus 300 for transmitting data may correspond to (for example, may be configured on or itself) the terminal device described in the above method 100, and each module or unit in the apparatus 300 for transmitting data is respectively used to execute the terminal in the above method 100 Each action or process performed by the device is omitted here to avoid detailed description.
  • the device 300 may be a terminal device.
  • the device 300 may include a processor, a transmitter, and a receiver, and the processor, the transmitter, and the receiver are communicatively connected.
  • the device also includes a memory, and the memory is communicatively connected to the processor.
  • the processor, the memory, the transmitter, and the receiver may be communicatively connected.
  • the memory may be used to store instructions.
  • the processor is configured to execute the instructions stored in the memory to control the transmitter to send information or the receiver to receive signals.
  • the processing unit 310 in the apparatus 300 shown in FIG. 5 may also correspond to a processor, and the sending unit 320 in the apparatus 300 shown in FIG. 5 may correspond to a transmitter.
  • the transmitter and the receiver may be implemented by the same component transceiver.
  • the device 300 may be a chip (or a chip system) installed in a terminal device.
  • the device 300 may include a processor and an input / output interface.
  • the interface is communicatively connected with the transceiver of the network device.
  • the device further includes a memory, and the memory is communicatively connected with the processor.
  • the processor, the memory, and the transceiver may be communicatively connected.
  • the memory may be used to store instructions.
  • the processor is configured to execute the instructions stored in the memory to control the transceiver to send information or signals.
  • the processing unit 310 in the apparatus 300 shown in FIG. 5 may correspond to a processor, and the sending unit 320 in the apparatus 300 shown in FIG. 5 may correspond to an output interface.
  • FIG. 6 shows a schematic block diagram of an apparatus 400 for transmitting data according to an embodiment of the present application.
  • the apparatus 400 includes:
  • a processing unit 410 configured to determine a channel transmission power of the first uplink data
  • the processing unit 410 is further configured to determine the actual transmission power of the first uplink data according to the channel transmission power and transmission parameters, where the actual transmission power is less than or equal to the channel transmission power, wherein the transmission
  • the parameters include one or more of the following:
  • a power headroom where the power headroom indicates a difference between the maximum transmission power allowed by the terminal device and the transmission power of the channel, and the channel transmission power is less than or equal to the maximum transmission power allowed by the terminal device, or,
  • a waveform used for sending the first uplink data or
  • a downlink control information DCI format for scheduling the first uplink data or
  • the modulation and coding scheme MCS used for sending the first uplink data or
  • the receiving unit 420 is configured to receive the first uplink data.
  • N is less than M
  • M is the number of antenna ports configured by the network device to send the first uplink data
  • N is the number of M antenna ports used to send the first uplink data.
  • the number of non-zero power antenna ports, N is an integer greater than or equal to 1
  • M is an integer greater than 1.
  • the transmission parameter includes the power headroom
  • the power headroom satisfies a first condition, the actual transmission power p t > (N / M) ⁇ p p , and p p is the channel transmission power.
  • the first condition is used to determine that the terminal device is at a cell edge.
  • the first condition is that the power headroom is greater than or equal to a first threshold
  • the first threshold is equal to 6 dBm; or
  • the first threshold is equal to 3 dBm; or
  • the first threshold is equal to 3 dBm.
  • the transmission parameter includes a waveform used for sending the first uplink data
  • the waveform is a discrete Fourier transform extended orthogonal frequency division multiplexing multiple access DFT-s-OFDM waveform, the actual transmission power p t > (N / M) ⁇ p p , and p p is the channel transmission power .
  • the waveform is a CP-OFDM waveform
  • the actual transmission power p t (N / M) ⁇ p p .
  • the transmission parameter includes a downlink control information DCI format used for sending the first uplink data
  • the DCI format is a first DCI format, the actual transmission power p t > (N / M) ⁇ p p , and the first DCI format is a plurality of DCI formats used for scheduling uplink data with a minimum number of bits.
  • DCI format, p p is the transmission power of the channel.
  • the DCI format is a second DCI format
  • the actual transmission power p t (N / M) ⁇ p p
  • the second DCI format is multiple for scheduling uplink data.
  • the transmission parameter includes the modulation and coding scheme MCS used for sending the first uplink data
  • the modulation method of the MCS is binary phase shift keying BPSK or quadrature phase shift keying QPSK, the actual transmission power p t > (N / M) ⁇ p p , and p p is the channel transmission power.
  • the transmission parameter includes a power adjustment value used for sending the first uplink data
  • the power adjustment value obtained by the terminal device K times satisfies the second condition, the actual transmission power p t > (N / M) ⁇ p p , where p p is the transmission power of the channel, and K is greater than or equal to 1. Integer.
  • the second condition is used to determine that the terminal device is at a cell edge.
  • the actual transmission power p t (N / M) ⁇ p p .
  • the second condition is that a power adjustment value obtained by the terminal device K times is greater than or equal to a second threshold, and the second threshold is equal to 3 dBm.
  • the second condition is specifically that a power adjustment value obtained by the terminal device for consecutive K times is equal to the second threshold, and K is an integer greater than 1.
  • the actual transmission power is equal to the channel transmission power.
  • the channel-based The transmission power and various transmission parameters that can indicate whether the terminal device is at the cell edge determine the actual transmission power of the uplink data, thereby flexibly adjusting the actual transmission power of the uplink data, and further improving the reliability of data transmission. At the same time, it facilitates the scheduling of the device and the optimization of the system.
  • the apparatus 400 for transmitting data may correspond to (for example, may be configured on or in itself) the network device described in the foregoing method 100, and each module or unit in the apparatus 400 for transmitting data is respectively used to execute the network in the above method 100 Each action or process performed by the device is omitted here to avoid detailed description.
  • the apparatus 400 may be a network device.
  • the apparatus 400 may include a processor, a transmitter, and a receiver, and the processor, the transmitter, and the receiver are communicatively connected.
  • the device also includes a memory, and the memory is communicatively connected to the processor.
  • the processor, the memory, the transmitter, and the receiver may be communicatively connected.
  • the memory may be used to store instructions.
  • the processor is configured to execute the instructions stored in the memory to control the transmitter to send information or the receiver to receive signals.
  • the processing unit 410 in the apparatus 400 shown in FIG. 6 may also correspond to a processor, and the receiving unit 420 in the apparatus 400 shown in FIG. 6 may correspond to a receiver.
  • the device 400 may be a chip (or a chip system) installed in a network device.
  • the device 400 may include a processor and an input / output interface. The interface is communicatively connected with the transceiver of the network device.
  • the device further includes a memory, and the memory is communicatively connected with the processor.
  • the processor, the memory, and the transceiver may be communicatively connected.
  • the memory may be used to store instructions.
  • the processor is configured to execute the instructions stored in the memory to control the transceiver to send information or signals.
  • the processing unit 410 in the apparatus 400 shown in FIG. 6 may correspond to a processor, and the receiving unit 420 in the apparatus 400 shown in FIG. 6 may correspond to an input interface.
  • FIG. 7 shows a schematic block diagram of an apparatus 500 for transmitting data according to an embodiment of the present application.
  • the apparatus 500 includes:
  • the receiving unit 510 is configured to receive indication information, where the indication information is used to indicate a first precoding matrix used for sending first uplink data, where the first precoding matrix belongs to a first precoding matrix in a precoding matrix set. A subset or a second precoding matrix subset, wherein,
  • the transmit power of the uplink data determined based on each of the one or more precoding matrices in the first precoding matrix subset satisfies the following condition: the transmit power of one antenna port among the antenna ports used to send the uplink data p 0 > (1 / M) ⁇ p p , and the number of antenna ports used for sending uplink data is greater than or equal to 1 and less than M, based on one or more precodings in the second precoding matrix subset
  • M is the number of antenna ports configured by the network device to send the first uplink data, M is an integer greater than 1, and p p is a channel transmission power of the uplink data;
  • a processing unit 520 configured to determine the actual transmission power of the first uplink data according to the first precoding matrix and the channel transmission power of the first uplink data, where the actual transmission power is less than or equal to the first Channel transmit power of uplink data;
  • the sending unit 530 is configured to use the actual sending power to send the first uplink data.
  • the transmit power determined based on each precoding matrix in one or more precoding matrices in the first precoding matrix subset specifically meets the following conditions:
  • each precoding matrix in the precoding matrix set includes a phase and amplitude quantization value, where the amplitude quantization value is used to determine transmission power of uplink data, where:
  • a phase of each precoding matrix in one or more precoding matrices in the first precoding matrix subset belongs to a phase of a precoding matrix included in the second precoding matrix subset.
  • the apparatus for transmitting data in the embodiment of the present application sets a first precoding subset and a second precoding subset in a precoding set, where the precoding matrix is determined based on any one of the precoding matrix subsets.
  • the apparatus 500 for transmitting data may correspond to (for example, may be configured on or itself) the terminal device described in the foregoing method 200, and each module or unit in the apparatus 500 for transmitting data is respectively used to execute the terminal in the above method 200 Each action or process performed by the device is omitted here to avoid detailed description.
  • the apparatus 500 may be a terminal device.
  • the apparatus 500 may include a processor, a transmitter, and a receiver, and the processor, the transmitter, and the receiver are communicatively connected.
  • the device also includes a memory, and the memory is communicatively connected to the processor.
  • the processor, the memory, the transmitter, and the receiver may be communicatively connected.
  • the memory may be used to store instructions.
  • the processor is configured to execute the instructions stored in the memory to control the transmitter to send information or the receiver to receive signals.
  • the receiving unit 510 in the device 500 shown in FIG. 7 may correspond to a receiver, and the processing unit 520 in the device 500 shown in FIG. 7 may correspond to a processor.
  • the sending unit 530 may correspond to the transmitter.
  • the transmitter and the receiver may be implemented by the same component transceiver.
  • the device 500 may be a chip (or a chip system) installed in a terminal device.
  • the device 500 may include a processor and an input / output interface.
  • the interface is communicatively connected with the transceiver of the terminal device.
  • the device further includes a memory, and the memory is communicatively connected with the processor.
  • the processor, the memory, and the transceiver may be communicatively connected.
  • the memory may be used to store instructions.
  • the processor is configured to execute the instructions stored in the memory to control the transceiver to send information or signals.
  • the receiving unit 510 in the device 500 shown in FIG. 7 may correspond to the input interface
  • the processing unit 520 in the device 500 shown in FIG. 7 may correspond to the processor
  • the sending in the device 500 shown in FIG. 7 The unit 530 may correspond to an output interface.
  • FIG. 8 shows a schematic block diagram of an apparatus 600 for transmitting data according to an embodiment of the present application. As shown in FIG. 8, the apparatus 600 includes:
  • a processing unit 610 is configured to determine a first precoding matrix for precoding the first uplink data, where the first precoding matrix belongs to the first precoding matrix subset or the second precoding matrix subset in the precoding matrix set. Set, where,
  • the transmit power of the uplink data determined based on each of the one or more precoding matrices in the first precoding matrix subset satisfies the following condition: the transmit power of one antenna port among the antenna ports used to send the uplink data p 0 > (1 / M) ⁇ p p , and the number of antenna ports used for sending uplink data is greater than or equal to 1 and less than M, based on one or more precodings in the second precoding matrix subset
  • M is the number of antenna ports configured by the network device to send the first uplink data, M is an integer greater than 1, and p p is a channel transmission power of the uplink data;
  • a sending unit 620 configured to send instruction information used to indicate the first precoding matrix
  • the receiving unit 630 is configured to receive the first uplink data.
  • the transmit power determined based on each precoding matrix in one or more precoding matrices in the first precoding matrix subset specifically meets the following conditions:
  • each precoding matrix in the precoding matrix set includes a phase and amplitude quantization value, where the amplitude quantization value is used to determine transmission power of uplink data, where:
  • a phase of each precoding matrix in one or more precoding matrices in the first precoding matrix subset belongs to a phase of a precoding matrix included in the second precoding matrix subset.
  • the apparatus for transmitting data in the embodiment of the present application sets a first precoding subset and a second precoding subset in a precoding set, where the precoding matrix is determined based on any one of the precoding matrix subsets.
  • the apparatus 600 for transmitting data may correspond to (for example, may be configured on or in itself) the network device described in the foregoing method 200, and each module or unit in the apparatus 600 for transmitting data is respectively configured to execute the network in the above method 200 Each action or process performed by the device is omitted here to avoid detailed description.
  • the apparatus 600 may be a network device.
  • the apparatus 600 may include a processor, a transmitter, and a receiver, and the processor, the transmitter, and the receiver are communicatively connected.
  • the device also includes a memory, and the memory is communicatively connected to the processor.
  • the processor, the memory, the transmitter, and the receiver may be communicatively connected.
  • the memory may be used to store instructions.
  • the processor is configured to execute the instructions stored in the memory to control the transmitter to send information or the receiver to receive signals.
  • the processing unit 610 in the apparatus 600 shown in FIG. 8 may correspond to the processor, and the sending unit 620 in the apparatus 600 shown in FIG. 8 may correspond to the transmitter.
  • the receiving unit 630 may correspond to a receiver.
  • the transmitter and the receiver may be implemented by the same component transceiver.
  • the device 600 may be a chip (or a chip system) installed in a network device.
  • the device 600 may include a processor and an input / output interface.
  • the interface is communicatively connected with the transceiver of the network device.
  • the device further includes a memory, and the memory is communicatively connected with the processor.
  • the processor, the memory, and the transceiver may be communicatively connected.
  • the memory may be used to store instructions.
  • the processor is configured to execute the instructions stored in the memory to control the transceiver to send information or signals.
  • the processing unit in the device 600 shown in FIG. 8 may correspond to a processor
  • the sending unit 620 in the device 600 shown in FIG. 8 may correspond to an output interface
  • the receiving unit in the device 600 shown in FIG. 8 630 can correspond to the input interface
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, the indirect coupling or communication connection of the device or unit, and may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disks, mobile hard disks, read-only memories (ROMs), random access memories (RAMs), magnetic disks or compact discs and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种传输数据的方法和装置。该方法包括:终端设备根据确定的针对信道发送功率和传输参数,确定第一上行数据的实际发送功率,该实际发送功率小于或等于该信道发送功率,其中,该传输参数包括能够用于表示终端设备所处的位置的参数中的一个或多个;该终端设备使用该实际发送功率该所述第一上行数据。因此,终端设备可以基于信道发送功率和各种能够表征终端设备是否处于小区边缘的传输参数确定上行数据的实际发送功率,灵活调整上行数据的实际发送功率,进而提高数据的传输可靠性。

Description

传输数据的方法和装置
本申请要求于2018年9月27日提交中国专利局、申请号为201811133863.0、申请名称为“传输数据的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体地,涉及通信领域中一种传输数据的方法和装置。
背景技术
在上行传输中,终端设备发送上行数据的实际发送功率为p t=(N/M)×p p,其中,p t为终端设备发送上行数据所采用的实际发送功率,P p为终端设备发送上行数据的信道发送功率,N为发送该上行数据采用的非零功率的天线端口的数量,M为网络设备配置的或者预先定义的用于发送该上行数据的天线端口的数量。
从上述公式p t=(N/M)×p p可以看出,N越小,上行数据的实际发送功率越小,在N小于M的情况下,实际发送功率总是小于信道发送功率,实际上,若是实际发送功率总小于信道发送功率,会在某些情况下影响数据的传输可靠性。例如,通常情况下,处于小区边缘的终端设备会采用一个传输层进行上行传输,以便于提高传输的鲁棒性。但是,在现有的功率控制的机制下,在传输层数为1的情况下,N小于M,意味着实际发送功率小于信道发送功率,较小的发送功率会影响处于小区边缘的终端设备发送的上行数据的解调性能,从而,影响数据的传输可靠性。
因此,需要提供一种技术,可以提高数据的传输可靠性。
发明内容
本申请提供一种传输数据的方法和装置,能够有效地提高数据的传输可靠性。
第一方面,提供了一种传输数据的方法,所述方法包括:
终端设备确定第一上行数据的信道发送功率;
所述终端设备根据所述信道发送功率和传输参数,确定所述第一上行数据的实际发送功率,所述实际发送功率小于或等于所述信道发送功率,其中,所述传输参数包括以下一个或多个:
功率余量,所述功率余量表示所述终端设备允许的最大发送功率和所述信道发送功率的差值,所述信道发送功率小于或等于所述终端设备允许的最大发送功率,或,
发送所述第一上行数据所采用的波形,或,
用于调度所述第一上行数据的下行控制信息DCI格式,或,
发送所述第一上行数据所采用的调制和编码方案MCS,或,
发送所述第一上行数据所采用的功率调整取值;
所述终端设备使用所述实际发送功率,发送所述第一上行数据。
因此,本申请实施例提供的传输数据的方法,基于信道发送功率和各种能够表征终端设备是否处于小区边缘的传输参数确定上行数据的实际发送功率,可以灵活调整上行数据的实际发送功率,进而提高数据的传输可靠性。
在一种可能的实现方式中,N小于M,M为网络设备配置的用于发送所述第一上行数据的天线端口的数量,N为M个天线端口中发送所述第一上行数据所采用的非零功率的天线端口的数量,N为大于或等于1的整数,M为大于1的整数。
因此,本申请实施例提供的传输数据的方法,在N小于M的情况下,基于信道发送功率和各种能够表征终端设备是否处于小区边缘的传输参数确定上行数据的实际发送功率,更加可以有效地灵活调整上行数据的实际发送功率,提高数据的传输可靠性。
在一种可能的实现方式中,所述传输参数包括所述功率余量;以及,
所述功率余量满足第一条件,所述实际发送功率p t>(N/M)×p p,p p为所述信道发送功率。
其中,所述第一条件用于确定终端设备处于小区边缘。
因此,本申请实施例提供的传输数据的方法,在能够表征终端设备的位置的功率余量满足第一条件的情况下,通过提升实际发送功率,使得处于小区边缘的终端设备能够使用较大的发送功率发送上行数据,提高了数据传输的可靠性。
在一种可能的实现方式中,若所述功率余量不满足第一条件,则所述实际发送功率p t=(N/M)×p p
因此,本申请实施例提供的传输数据的方法,在能够表征终端设备的位置的功率余量不满足第一条件的情况下,采用缩放后的信道发送功率发送上行数据,对于处于非小区边缘的终端设备来说,有利于降低数据传输带来的干扰,同时有利于终端设备降低功耗。
一种可能的实现方式中,所述第一条件为所述功率余量大于或等于第一阈值;以及,
在N=1,M=4的情况下,所述第一阈值等于6dBm;或,
在N=2,M=4的情况下,所述第一阈值等于3dBm;或,
在N=1,M=2的情况下,所述第一阈值等于3dBm。
即,若所述功率余量大于或等于6dBm,则所述实际发送功率p t>(N/M)×p p,若所述功率余量小于6dBm,则所述实际发送功率p t=(N/M)×p p
在另一种可能的实现方式中,所述第一条件为所述功率余量大于或等于第一阈值;以及,
在N=1,M=4的情况下,所述第一阈值等于6dB;或,
在N=2,M=4的情况下,所述第一阈值等于3dB;或,
在N=1,M=2的情况下,所述第一阈值等于3dB。
在一种可能的实现方式中,所述传输参数包括所述发送所述第一上行数据所采用的波形;以及,
所述波形为离散傅里叶变化扩展正交频分复用多址DFT-s-OFDM波形,所述实际发送功率p t>(N/M)×p p,p p为所述信道发送功率。
本申请实施例提供的传输数据的方法,在能够表征终端设备的位置的波形为 DFT-s-OFDM波形的情况下,通过提升实际发送功率,使得处于小区边缘的终端设备能够使用较大的实际发送功率发送上行数据,提高了数据传输的可靠性。
在一种可能的实现方式中,所述波形为循环前缀正交频分复用多址(cyclic prefix orthogonal frequency division multiplexing,CP-OFDM)波形,所述实际发送功率p t=(N/M)×p p
因此,在能够表征终端设备的位置的波形为CP-OFDM波形的情况下,采用缩放后的信道发送功率发送上行数据,对于处于非小区边缘的终端设备来说,有利于降低数据传输带来的干扰,同时有利于终端设备降低功耗。在一种可能的实现方式中,所述传输参数包括所述发送所述第一上行数据所采用的下行控制信息DCI格式;以及,
所述DCI格式为第一DCI格式,所述实际发送功率p t>(N/M)×p p,所述第一DCI格式为多种用于调度上行数据的DCI格式中包括的比特数最少的DCI格式,p p为所述信道发送功率。
本申请实施例提供的传输数据的方法,在能够表征终端设备的位置的DCI格式为多个用于调度上行数据的DCI格式中包括的比特数最少的DCI格式的情况下,通过提升实际发送功率,使得处于小区边缘的终端设备能够使用较大的实际发送功率发送上行数据,提高了数据传输的可靠性。
在一种可能的实现方式中,所述DCI格式为第二DCI格式,所述实际发送功率p t=(N/M)×p p,所述第二DCI格式为多个用于调度上行数据的DCI格式中除所述第一DCI格式以外的DCI格式。
因此,在能够表征终端设备的位置的DCI格式为第二DCI格式的情况下,采用缩放后的信道发送功率发送上行数据,对于处于非小区边缘的终端设备来说,有利于降低数据传输带来的干扰,同时有利于终端设备降低功耗。
在一种可能的实现方式中,所述传输参数包括所述发送所述第一上行数据所采用的调制和编码方案MCS;以及,
若所述MCS的调制方式为二进制相移键控BPSK或正交相移键控QPSK,则所述实际发送功率p t>(N/M)×p p,p p为所述信道发送功率。
本申请实施例提供的传输数据的方法,在能够表征终端设备的位置的MCS的调制方式为BPSK或QPSK的情况下,通过提升实际发送功率,使得处于小区边缘的终端设备能够使用较大的实际发送功率发送上行数据,提高了数据传输的可靠性。
在一种可能的实现方式中,所述MCS的调制方式为16正交幅度调制QAM或64QAM以及更高阶调制方式,所述实际发送功率p t>(N/M)×p p
因此,在能够表征终端设备的位置的MCS的调制方式为16正交幅度调制QAM或64QAM以及更高阶调制方式的情况下,采用缩放后的信道发送功率发送上行数据,对于处于非小区边缘的终端设备来说,有利于降低数据传输带来的干扰,同时有利于终端设备降低功耗。
在一种可能的实现方式中,所述传输参数包括所述用于发送所述第一上行数据的功率调整取值;以及,
所述终端设备K次获得的功率调整取值满足第二条件,所述实际发送功率p t>(N/M)×p p,p p为所述信道发送功率,K为大于或等于1的整数。
其中,所述第二条件用于确定终端设备处于小区边缘。
本申请实施例提供的传输数据的方法,在终端设备多次获得的能够表征终端设备的位置的功率调整取值满足第二条件的情况下,通过提升实际发送功率,使得处于小区边缘的终端设备能够使用较大的实际发送功率发送上行数据,提高了数据传输的可靠性。
在一种可能的实现方式中,所述终端设备K次获得的功率调整取值不满足第二条件,所述实际发送功率p t=(N/M)×p p
在一种可能的实现方式中,所述第二条件为所述终端设备K次获得的功率调整取值大于或等于第二阈值,所述第二阈值等于3dB或3dBm。
在一种可能的实现方式中,所述第二条件具体为所述终端设备连续K次获得的功率调整取值都等于所述第二阈值,所述第二阈值等于3dB或3dBm,K为大于1的整数。
在一种可能的实现方式中,所述终端设备K次获得的功率调整取值中存在至少一次功率调整取值小于3dB或3dBm,所述实际发送功率p t=(N/M)×p p
因此,在终端设备多次获得的能够表征终端设备的位置的功率调整取值不满足第二条件的情况下,采用缩放后的信道发送功率发送上行数据,对于处于非小区边缘的终端设备来说,有利于降低数据传输带来的干扰,同时有利于终端设备降低功耗。
在一种可能的实现方式中,所述实际发送功率等于所述信道发送功率。
因此,通过使得实际发送功率等于信道发送功率,可以最大程度提高数据的传输可靠性。
在一种可能的实现方式中,N=1,所述N个天线端口中一个天线端口的发送功率为p 0=p p;或,N=2,所述N个天线端口中一个天线端口的发送功率为p 0=0.5p p
在一种可能的实现方式中,所述方法还包括:
所述终端设备将所述实际发送功率平均分配给发送所述第一上行数据所采用的N个天线端口。
第二方面,提供了一种传输数据的方法,所述方法包括:
终端设备确定第一上行数据的信道发送功率;
所述终端设备根据所述信道发送功率和传输参数,确定所述第一上行数据的实际发送功率,所述实际发送功率小于或等于所述信道发送功率,其中,所述传输参数包括以下一个或多个:
功率余量,所述功率余量表示所述终端设备允许的最大发送功率和所述信道发送功率的差值,所述信道发送功率小于或等于所述终端设备允许的最大发送功率,或,
发送所述第一上行数据所采用的波形,或,
用于调度所述第一上行数据的下行控制信息DCI格式,或,
发送所述第一上行数据所采用的调制和编码方案MCS,或,
发送所述第一上行数据的所采用的功率调整取值;
所述终端设备使用所述实际发送功率,发送所述第一上行数据。
因此,本申请实施例提供的传输数据的方法,基于信道发送功率和各种能够表征终端设备是否处于小区边缘的传输参数确定上行数据的实际发送功率,可以灵活调整上行数据的实际发送功率,进而提高数据的传输可靠性。
在一种可能的实现方式中,N小于M,M为网络设备配置的用于发送所述第一上行 数据的天线端口的数量,N为M个天线端口中发送所述第一上行数据所采用的非零功率的天线端口的数量,N为大于或等于1的整数,M为大于1的整数。
在一种可能的实现方式中,所述传输参数包括所述功率余量;以及,
所述终端设备根据所述信道发送功率和传输参数,确定所述第一上行数据的实际发送功率,包括:
所述终端设备确定所述功率余量满足第一条件;
所述终端设备确定所述第一上行数据的实际发送功率。
在一种可能的实现方式中,所述第一条件为所述功率余量大于或等于第一阈值;以及,
所述第一阈值满足以下至少一项:
在N=1,M=4的情况下,所述第一阈值等于6dBm;或,
在N=2,M=4的情况下,所述第一阈值等于3dBm;或,
在N=1,M=2的情况下,所述第一阈值等于3dBm。
在一种可能的实现方式中,所述传输参数包括所述发送所述第一上行数据所采用的波形;以及,
所述终端设备根据所述信道发送功率和传输参数,确定所述第一上行数据的实际发送功率,包括:
所述终端设备确定所述波形为离散傅里叶变化扩展正交频分复用多址DFT-s-OFDM波形;
所述终端设备确定所述第一上行数据的实际发送功率。
在一种可能的实现方式中,所述传输参数包括所述发送所述第一上行数据所采用的下行控制信息DCI格式;以及,
所述终端设备根据所述信道发送功率和传输参数,确定所述第一上行数据的实际发送功率,包括:
所述终端设备确定所述DCI格式为第一DCI格式,所述第一DCI格式为多种用于调度上行数据的DCI格式中包括的比特数最少的DCI格式;
所述终端设备确定所述第一上行数据的实际发送功率。
在一种可能的实现方式中,所述传输参数包括所述发送所述第一上行数据所采用的调制和编码方案MCS;以及,
所述终端设备根据所述信道发送功率和传输参数,确定所述第一上行数据的实际发送功率,包括:
所述终端设备确定所述MCS的调制方式为二进制相移键控BPSK或正交相移键控QPSK;
所述终端设备确定所述第一上行数据的实际发送功率。
在一种可能的实现方式中,所述传输参数包括所述发送所述第一上行数据所采用的功率调整取值;以及,
所述终端设备根据所述信道发送功率和传输参数,确定所述第一上行数据的实际发送功率,包括:
所述终端设备确定所述终端设备K次获得的功率调整取值满足第二条件,K为大于或等于1的整数;
所述终端设备确定所述第一上行数据的实际发送功率。
在一种可能的实现方式中,所述第二条件为所述终端设备K次获得的功率调整取值大于或等于第二阈值,所述第二阈值等于3dBm。
在一种可能的实现方式中,所述第二条件具体为所述终端设备连续K次获得的功率调整取值都等于所述第二阈值,K为大于1的整数。
在一种可能的实现方式中,所述实际发送功率p t>(N/M)×p p,p p为所述信道发送功率。
在一种可能的实现方式中,所述实际发送功率等于所述信道发送功率。
在一种可能的实现方式中,N=1,所述N个天线端口中一个天线端口的发送功率为p 0=p p;或,
N=2,所述N个天线端口中一个天线端口的发送功率为p 0=0.5p p
在一种可能的实现方式中,所述方法还包括:
所述终端设备将所述实际发送功率平均分配给发送所述第一上行数据所采用的N个天线端口。
第三方面,提供了一种传输信息的方法,所述方法包括:
终端设备接收指示信息,所述指示信息用于指示发送第一上行数据所采用的第一预编码矩阵,所述第一预编码矩阵属于预编码矩阵集合中的第一预编码矩阵子集或第二预编码矩阵子集,其中,
基于所述第一预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送功率p 0>(1/M)×p p,并且,所述发送上行数据所采用的天线端口的数量大于或等于1且小于M,基于所述第二预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送功率p 0=(1/M)×p p
M为网络设备配置的用于发送所述第一上行数据的天线端口的数量,M为大于1的整数,p p为上行数据的信道发送功率;
所述终端设备根据所述第一预编码矩阵和所述第一上行数据的信道发送功率,确定所述第一上行数据的实际发送功率,所述实际发送功率小于或等于所述第一上行数据的信道发送功率;
所述终端设备使用所述实际发送功率,发送所述第一上行数据。
因此,本申请实施例的传输数据的方法,通过在预编码集合中设置第一预编码子集和第二预编码子集,其中,基于第一预编码矩阵子集中的任意一个预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送功率p 0>(1/M)×p p,并且,发送上行数据所采用的天线端口的数量大于或等于1且小于M,基于第二预编码矩阵子集的任意一个预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送功率p 0=(1/M)×p p,可以使得网络设备可以从两个预编码矩阵子集中动态指示待发送的上行数据采用的预编码矩阵,也就是可以灵活确定待发送的上行数据的实际发送功率,从而提升传数据的传输可靠性。
在一种可能的实现方式中,基于所述第一预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的发送功率具体满足以下条件:
所述发送上行数据所采用的天线端口的数量等于1,一个天线端口的发送功率为p 0=p p;或,
所述发送上行数据所采用的天线端口的数量等于2,一个天线端口的发送功率为p 0=0.5p p
也就是说,基于所述第一预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的实际发送功率等于信道发送功率。
因此,这里通过使得实际发送功率等于信道发送功率,可以最大程度提高数据的传输可靠性。
在一种可能的实现方式中所述预编码矩阵集合中每个预编码矩阵包括相位和幅度量化值,所述幅度量化值用于确定上行数据的发送功率,其中,
所述第一预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵的相位属于所述第二预编码矩阵子集中包括的预编码矩阵的相位。
由于预编码矩阵都是通过比特域索引值指示的,实现中,会基于预编码矩阵集合中包括的预编码矩阵的数量确定占用的比特数,例如,比特数为N,则N个比特数可以指示2 n个预编码矩阵,但是,实际中有可能会剩余一些比特值。由于第一预编码矩阵子集中预编码矩阵的相位属于该第二预编码子集中预编码矩阵的相位,意味着,第一预编码子集的数量少,因此,第一预编码子集中的预编码矩阵可以通过预编码矩阵集合中剩余的比特值来指示,可以在不改变现有的比特数且不影响现有码字选择灵活度的前提下,利用保留字段指示调整了幅度量化值的预编码矩阵。
在一种可能的实现方式中,所述预编码矩阵集合中的每个预编码矩阵由相位和幅度量化值组成,所述幅度量化值用于确定上行数据的发送功率,其中,所述第一预编码矩阵子集中每个预编码矩阵满足以下条件:
所述发送上行数据所采用的天线端口的数量等于1,所述第一预编码矩阵子集中每个预编码矩阵的幅度量化值为1,
所述发送上行数据所采用的天线端口的数量等于2,所述第一预编码矩阵子集中每个预编码矩阵的幅度量化值为
Figure PCTCN2019108251-appb-000001
在一种可能的实现方式中,所述预编码矩阵集合中的预编码矩阵是用于发送上行数据的传输层数小于或等于L的所有传输层数对应的预编码矩阵,一个传输层数对应一个或多个预编矩阵,L为终端设备能够支持的最大传输层数,L为大于或等于1的整数,所述第一预编码矩阵子集中的预编码矩阵对应1个传输层数。
第四方面,提供了一种传输数据的方法,其特征在于,
网络设备确定第一上行数据的信道发送功率;
所述网络设备根据所述信道发送功率和传输参数,确定所述第一上行数据的实际发送功率,所述实际发送功率小于或等于所述信道发送功率,其中,所述传输参数包括以下一个或多个:
功率余量,所述功率余量表示所述终端设备允许的最大发送功率和所述信道发送功率的差值,所述信道发送功率小于或等于所述终端设备允许的最大发送功率,或,
发送所述第一上行数据所采用的波形,或,
用于调度所述第一上行数据所采用的下行控制信息DCI格式,或,
发送所述第一上行数据所采用的调制和编码方案MCS,或,
发送所述第一上行数据所采用的功率调整取值;
所述网络设备接收所述第一上行数据。
因此,本申请实施例提供的传输数据的方法,基于信道发送功率和各种能够表征终端设备是否处于小区边缘的传输参数确定上行数据的实际发送功率,可以灵活调整上行数据的实际发送功率,进而提高数据的传输可靠性。同时,便于网络设备的调度以及系统的优化。
在一种可能的实现方式中,N小于M,M为所述网络设备配置的用于发送所述第一上行数据的天线端口的数量,N为M个天线端口中发送所述第一上行数据所采用的非零功率的天线端口的数量,N为大于或等于1的整数,M为大于1的整数。
因此,本申请实施例提供的传输数据的方法,在N小于M的情况下,基于信道发送功率和各种能够表征终端设备是否处于小区边缘的传输参数确定上行数据的实际发送功率,更加可以有效地灵活调整上行数据的实际发送功率,提高数据的传输可靠性。同时,便于网络设备的调度以及系统的优化。
在一种可能的实现方式中,所述传输参数包括所述功率余量;以及,
所述功率余量满足第一条件,所述实际发送功率p t>(N/M)×p p,p p为所述信道发送功率。
其中,所述第一条件用于确定终端设备处于小区边缘。
因此,本申请实施例提供的传输数据的方法,在能够表征终端设备的位置的功率余量满足第一条件的情况下,通过提升实际发送功率,使得处于小区边缘的终端设备能够使用较大的发送功率发送上行数据,提高了数据传输的可靠性。
在一种可能的实现方式中,若所述功率余量不满足第一条件,则所述实际发送功率p t=(N/M)×p p
一种可能的实现方式中,所述第一条件为所述功率余量大于或等于第一阈值;以及,
在N=1,M=4的情况下,所述第一阈值等于6dBm;或,
在N=2,M=4的情况下,所述第一阈值等于3dBm;或,
在N=1,M=2的情况下,所述第一阈值等于3dBm。
在一种可能的实现方式中,所述传输参数包括所述发送所述第一上行数据所采用的波形;以及,
所述波形为离散傅里叶变化扩展正交频分复用多址DFT-s-OFDM波形,所述实际发送功率p t>(N/M)×p p,p p为所述信道发送功率。
本申请实施例提供的传输数据的方法,在能够表征终端设备的位置的波形为DFT-s-OFDM波形的情况下,通过提升实际发送功率,使得处于小区边缘的终端设备能够使用较大的实际发送功率发送上行数据,提高了数据传输的可靠性。同时,便于网络设备的调度以及系统的优化。
在一种可能的实现方式中,所述波形为CP-OFDM波形,所述实际发送功率p t=(N/M)×p p
在一种可能的实现方式中,所述传输参数包括所述发送所述第一上行数据所采用的下行控制信息DCI格式;以及,
所述DCI格式为第一DCI格式,所述实际发送功率p t>(N/M)×p p,所述第一DCI格式为多种用于调度上行数据的DCI格式中包括的比特数最少的DCI格式,p p为所述信道发送功率。
本申请实施例提供的传输数据的方法,在能够表征终端设备的位置的DCI格式为多个用于调度上行数据的DCI格式中包括的比特数最少的DCI格式的情况下,通过提升实际发送功率,使得处于小区边缘的终端设备能够使用较大的实际发送功率发送上行数据,提高了数据传输的可靠性。同时,便于网络设备的调度以及系统的优化。
在一种可能的实现方式中,所述DCI格式为第二DCI格式,所述实际发送功率p t=(N/M)×p p,所述第二DCI格式为多个用于调度上行数据的DCI格式中除所述第一DCI格式以外的DCI格式。
在一种可能的实现方式中,所述传输参数包括所述发送所述第一上行数据所采用的调制和编码方案MCS;以及,
所述MCS的调制方式为二进制相移键控BPSK或正交相移键控QPSK,所述实际发送功率p t>(N/M)×p p,p p为所述信道发送功率。
本申请实施例提供的传输数据的方法,在能够表征终端设备的位置的MCS的调制方式为BPSK或QPSK的情况下,通过提升实际发送功率,使得处于小区边缘的终端设备能够使用较大的实际发送功率发送上行数据,提高了数据传输的可靠性。同时,便于网络设备的调度以及系统的优化。
在一种可能的实现方式中,所述MCS的调制方式为16正交幅度调制QAM或,则所述实际发送功率p t=(N/M)×p p
在一种可能的实现方式中,所述传输参数包括所述发送所述第一上行数据所采用的功率调整取值;以及,
所述终端设备K次获得的功率调整取值满足第二条件,所述实际发送功率p t>(N/M)×p p,p p为所述信道发送功率,K为大于或等于1的整数。
其中,所述第二条件用于确定终端设备处于小区边缘。
本申请实施例提供的传输数据的方法,在终端设备多次获得的能够表征终端设备的位置的功率调整取值满足第二条件的情况下,通过提升实际发送功率,使得处于小区边缘的终端设备能够使用较大的实际发送功率发送上行数据,提高了数据传输的可靠性。同时,便于网络设备的调度以及系统的优化。
在一种可能的实现方式中,所述终端设备K次获得的功率调整取值不满足第二条件,所述实际发送功率p t=(N/M)×p p
在一种可能的实现方式中,所述第二条件为所述终端设备K次获得的功率调整取值大于或等于第二阈值,所述第二阈值等于3dBm。
在一种可能的实现方式中,所述第二条件具体为所述终端设备连续K次获得的功率调 整取值都等于所述第二阈值,K为大于1的整数。
在一种可能的实现方式中,所述实际发送功率等于所述信道发送功率。
因此,通过使得实际发送功率等于信道发送功率,可以最大程度提高数据的传输可靠性。
在一种可能的实现方式中,N=1,所述N个天线端口中一个天线端口的发送功率为p 0=p p;或,N=2,所述N个天线端口中一个天线端口的发送功率为p 0=0.5p p
第五方面,提供了一种传输数据的方法,所述方法包括:
网络设备确定第一上行数据的信道发送功率;
所述网络设备根据所述信道发送功率和传输参数,确定所述第一上行数据的实际发送功率,所述实际发送功率小于或等于所述信道发送功率,其中,所述传输参数包括以下一个或多个:
功率余量,所述功率余量表示所述终端设备允许的最大发送功率和所述信道发送功率的差值,所述信道发送功率小于或等于所述终端设备允许的最大发送功率,或,
发送所述第一上行数据所采用的波形,或,
用于调度所述第一上行数据的下行控制信息DCI格式,或,
发送所述第一上行数据所采用的调制和编码方案MCS,或,
发送所述第一上行数据的所采用的功率调整取值;
所述终端设备使用所述实际发送功率,发送所述第一上行数据。
因此,本申请实施例提供的传输数据的方法,基于信道发送功率和各种能够表征终端设备是否处于小区边缘的传输参数确定上行数据的实际发送功率,可以灵活调整上行数据的实际发送功率,进而提高数据的传输可靠性。
在一种可能的实现方式中,N小于M,M为所述网络设备配置的用于发送所述第一上行数据的天线端口的数量,N为M个天线端口中发送所述第一上行数据所采用的非零功率的天线端口的数量,N为大于或等于1的整数,M为大于1的整数。
在一种可能的实现方式中,所述传输参数包括所述功率余量;以及,
所述网络设备根据所述信道发送功率和传输参数,确定所述第一上行数据的实际发送功率,包括:
所述网络设备确定所述功率余量满足第一条件;
所述网络设备确定所述第一上行数据的实际发送功率。
在一种可能的实现方式中,所述第一条件为所述功率余量大于或等于第一阈值;以及,
所述第一阈值满足以下至少一项:
在N=1,M=4的情况下,所述第一阈值等于6dBm;或,
在N=2,M=4的情况下,所述第一阈值等于3dBm;或,
在N=1,M=2的情况下,所述第一阈值等于3dBm。
在一种可能的实现方式中,所述传输参数包括所述发送所述第一上行数据所采用的波形;以及,
所述网络设备根据所述信道发送功率和传输参数,确定所述第一上行数据的实际发送功率,包括:
所述网络设备确定所述波形为离散傅里叶变化扩展正交频分复用多址DFT-s-OFDM 波形;
所述网络设备确定所述第一上行数据的实际发送功率。
在一种可能的实现方式中,所述传输参数包括所述发送所述第一上行数据所采用的下行控制信息DCI格式;以及,
所述网络设备根据所述信道发送功率和传输参数,确定所述第一上行数据的实际发送功率,包括:
所述网络设备确定所述DCI格式为第一DCI格式,所述第一DCI格式为多种用于调度上行数据的DCI格式中包括的比特数最少的DCI格式;
所述网络设备确定所述第一上行数据的实际发送功率。
在一种可能的实现方式中,所述传输参数包括所述发送所述第一上行数据所采用的调制和编码方案MCS;以及,
所述网络设备根据所述信道发送功率和传输参数,确定所述第一上行数据的实际发送功率,包括:
所述网络设备确定所述MCS的调制方式为二进制相移键控BPSK或正交相移键控QPSK;
所述网络设备确定所述第一上行数据的实际发送功率。
在一种可能的实现方式中,所述传输参数包括所述发送所述第一上行数据所采用的功率调整取值;以及,
所述网络设备根据所述信道发送功率和传输参数,确定所述第一上行数据的实际发送功率,包括:
所述网络设备确定所述终端设备K次获得的功率调整取值满足第二条件,K为大于或等于1的整数;
所述网络设备确定所述第一上行数据的实际发送功率。
在一种可能的实现方式中,所述第二条件为所述终端设备K次获得的功率调整取值大于或等于第二阈值,所述第二阈值等于3dBm。
在一种可能的实现方式中,所述第二条件具体为所述终端设备连续K次获得的功率调整取值都等于所述第二阈值,K为大于1的整数。
在一种可能的实现方式中,所述实际发送功率p t>(N/M)×p p,p p为所述信道发送功率。
在一种可能的实现方式中,所述实际发送功率等于所述信道发送功率。
在一种可能的实现方式中,N=1,所述N个天线端口中一个天线端口的发送功率为p 0=p p;或,
N=2,所述N个天线端口中一个天线端口的发送功率为p 0=0.5p p
第六方面,提供了一种传输数据的方法,所述方法包括:
网络设备确定对第一上行数据进行预编码的第一预编码矩阵,所述第一预编码矩阵属于预编码矩阵集合中的第一预编码矩阵子集或第二预编码矩阵子集,其中,
基于所述第一预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送功率p 0>(1/M)×p p,并且,所述发送上行数据所采用的天线端口的数量大于或等于1且小于M,基于所述第二预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送功率p 0=(1/M)×p p,M为网络设备配置的用于发送所述第一上行数据的天线端 口的数量,M为大于1的整数,p p为上行数据的信道发送功率;
所述网络设备发送用于指示所述第一预编码矩阵的指示信息;
所述网络设备接收所述第一上行数据。
因此,本申请实施例的传输数据的方法,通过在预编码集合中设置第一预编码子集和第二预编码子集,其中,基于第一预编码矩阵子集中的任意一个预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送功率p 0>(1/M)×p p,并且,发送上行数据所采用的天线端口的数量大于或等于1且小于M,基于第二预编码矩阵子集的任意一个预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送功率p 0=(1/M)×p p,可以使得网络设备可以从两个预编码矩阵子集中动态指示待发送的上行数据采用的预编码矩阵,也就是可以灵活确定待发送的上行数据的实际发送功率,从而提升传数据的传输可靠性。
在一种可能的实现方式中,基于所述第一预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的发送功率具体满足以下条件:
所述发送上行数据所采用的天线端口的数量等于1,一个天线端口的发送功率为p 0=p p;或,
所述发送上行数据所采用的天线端口的数量等于2,一个天线端口的发送功率为p 0=0.5p p
也就是说,基于所述第一预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的实际发送功率等于信道发送功率。
因此,这里通过使得实际发送功率等于信道发送功率,可以最大程度提高数据的传输可靠性。
在一种可能的实现方式中,所述预编码矩阵集合中每个预编码矩阵包括相位和幅度量化值,所述幅度量化值用于确定上行数据的发送功率,其中,
所述第一预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵的相位属于所述第二预编码矩阵子集中包括的预编码矩阵的相位。
由于预编码矩阵都是通过比特域索引值指示的,实现中,会基于预编码矩阵集合中包括的预编码矩阵的数量确定占用的比特数,例如,比特数为N,则N个比特数可以指示2 n个预编码矩阵,但是,实际中有可能会剩余一些比特值。由于第一预编码矩阵子集中预编码矩阵的相位属于该第二预编码子集中预编码矩阵的相位,意味着,第一预编码子集的数量少,因此,第一预编码子集中的预编码矩阵可以通过预编码矩阵集合中剩余的比特值来指示,可以在不改变现有的比特数且不影响现有码字选择灵活度的前提下,利用保留字段指示调整了幅度量化值的预编码矩阵。
第七方面,提供了一种传输数据的装置,所述装置可以用来执行第一方面至第二方面及其任意可能的实现方式中的终端设备的操作。具体地,所述装置可以包括用于执行上述第一方面至第三方面的任意可能的实现方式中的终端设备的各个操作的模块单元。
第八方面,提供了一种传输数据的装置,所述装置可以用来执行第三方面至第四方面及其任意可能的实现方式中的网络设备的操作。具体地,所述装置可以包括用于执行上述第四方面至第六方面的任意可能的实现方式中的网络设备的各个操作的模块单元。
第九方面,提供了一种终端设备,所述终端设备包括:处理器、收发器和存储器。其中,所述处理器、收发器和存储器之间通过内部连接通路互相通信。所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令。当所述处理器执行所述存储器存储的指令时,所述执行使得所述终端设备执行第一方面至第三方面的任意可能的实现方式中的任一方法,或者所述执行使得所述终端设备实现第七方面提供的装置。
第十方面,提供了一种网络设备,所述网络设备包括:处理器、收发器和存储器。其中,所述处理器、收发器和存储器之间通过内部连接通路互相通信。所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令。当所述处理器执行所述存储器存储的指令时,所述执行使得所述网络设备执行第四方面至第六方面的任意可能的实现方式中的任一方法,或者所述执行使得所述网络设备实现第八方面提供的装置。
第十一方面,提供了一种芯片系统,包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从存储器中调用并运行所述计算机程序,使得安装有所述芯片系统的通信设备执行上述第一方面至第六方面及其可能的实施方式中的任一方法。
第十二方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被通信设备(例如,网络设备或终端设备)的通信单元、处理单元或收发器、处理器运行时,使得通信设备执行上述第一方面至第六方面及其可能的实施方式中的任一方法。
第十三方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得通信设备(例如,网络设备或终端设备)执行上述第一方面至第六方面及其可能的实施方式中的任一方法。
第十四方面,提供了一种计算机程序,所述计算机程序在某一计算机上执行时,将会使所述计算机实现上述第一方面至第六方面及其可能的实施方式中的任一方法。
附图说明
图1是本申请实施例所用的通信系统的示意图。
图2是本申请实施例的传输数据的方法的示意性交互图。
图3是本申请实施例的传输数据的方法的另一示意性交互图。
图4是本申请实施例的传输数据的方法的另一示意性交互图。
图5至图8是本申请实施例的传输数据的装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX) 通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
下一代移动通信系统使未来移动数据流量增长、海量物联网、多样化的新业务和应用场景成为可能。除了充当一个统一的连接框架外,新一代蜂窝网络的基础5G新空口(new radio,NR)还有望将网络的数据速度、容量、时延、可靠性、效率和覆盖能力都提升到全新水平,并将充分利用每一比特的可用频谱资源。同时,基于正交频分复用(orthogonalfrequency division multiplexing,OFDM)新空口设计的5G将会成为全球标准,支持5G设备,多样化的部署,涵盖多样化的频谱(包括对低频段和高频段的覆盖),还要支持多样化的服务及终端。
作为5G NR实现的技术手段之一,大规模的多输入输出(multiple-input multiple-output,MIMO)通过利用基站中的大量天线来使用高频段,这样就可以集中能量传输给用户,以在这些更高频段上实现更好的覆盖。
MIMO技术是指在发送设备和接收设备分别使用多个发射天线和接收天线,使信号通过发送设备与接收设备的多个天线传送和接收,从而改善通信质量。它能充分利用空间资 源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍地提高系统信道容量。
具体来说,发送设备对需要发送给接收设备的数据比特进行比特映射处理得到调制符号,调制符号经过层映射(layer mapping),被映射到多个传输层(layer)。经过层映射后的调制符号经过预编码(precoding),得到预编码后的信号。预编码后的信号经过资源元素(resource element,RE)映射后,被映射到多个RE上。这些RE随后经过正交复用(orthogonal frequency division multiplexing,OFDM)调制后通过天线端口(antenna port)发射出去。
其中,为了支持多层数据流的同时传输,为各个传输层配置了对应的天线端口,也就是说,每个传输层可以对应一个或多个天线端口。需要说明的是,这里所说的天线端口可以理解为用于传输的逻辑端口,与物理天线的端口不存在一一对应的关系,天线端口可以由用于该天线的导频信号(例如,解调参考信号(demodulation reference signal,DMRS))来定义。换句话说,一个DMRS对应了一个天线端口。
图1是本申请实施例所用的通信系统的示意图。如图1所示,该通信系统100包括网络设备102,网络设备102可包括多个天线组。每个天线组可以包括一个或多个天线,例如,一个天线组可包括天线104和106,另一个天线组可包括天线108和110,附加组可包括天线112和114。图1中对于每个天线组示出了2个天线,然而可以对于每个组使用更多或更少的天线。网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件,例如处理器、调制器、复用器、解调器、解复用器或天线等。
网络设备102可以与多个终端设备通信,例如,网络设备102可以与终端设备116和终端设备122通信。然而,可以理解,网络设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工FDD系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工TDD系统和全双工(full duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每组天线和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取要通过信道发送至无线通信接收装置的一定数目的数据比特,例如,无线通信发送装置可生成、从其它通信装置接收、或在存储器中保存等要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块或多个传输块中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是公共陆地移动网络PLMN网络或者设备对设备(device to device,D2D)网络或者机器对机器(machine to machine,M2M)网络或者其他网络,图1仅为便于理解而示例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
下面,在描述本申请实施例之前,首先对本申请实施例涉及到的相关术语或相关描述进行简单介绍。
网络设备配置的用于发送上行数据的天线端口
表示的是网络设备基于终端设备上报的用于发送上行数据的天线端口的数量配置的天线端口的数量。网络设备可以通过配置信息配置天线端口的数量。该配置信息可以通过配置探测参考信号(sounding reference signal,SRS)资源的端口数隐式通知,即若SRS资源的端口数配置为4,意味着用于传输该上行数据的天线端口的数量为4,若网络设备配置了多个SRS资源,且多个SRS资源的端口数不同时,则根据调度该上行数据的DCI中的SRI字段指示的一个SRS资源确定天线端口的数量,或者根据配置的全部SRS资源的端口总数确定天线端口的数量。该配置信息也隐式指示了调度上行数据的DCI中的预编码矩阵指示字段所指示的预编码矩阵的维度。
在本申请实施例中,使用M表示网络设备配置的用于发送上行数据的天线端口的数量。
需要说明的是,由于本申请实施例涉及上行传输,所以,若无特殊说明,上下文中所说的天线端口都是终端设备发送上行数据的天线端口。
发送上行数据采用的天线端口
表示终端设备发送上行数据所采用的非零功率的天线端口。其中,非零功率的天线端口的数量小于或等于M。
在本申请实施例中,使用N表示M个天线端口中发送上行数据采用的非零功率的天线端口的数量。
终端设备可以通过根据调度该上行数据的DCI中的传输预编码矩阵指示字段确定N。传输预编码矩阵指示字段可以用于指示选择部分天线端口或全部天线端口用于上行传输,即,N小于或等于M。
例如,网络设备配置的用于发送上行数据的天线端口的数量M为4,发送上行数据时,使用的天线端口的数量N可以为小于或等于4的任一个数。具体地,所述M的值可以由某些字段配置给终端设备,例如nrofSRS-Ports。所述N的值也可以由某些字段配置给终端设备,例如Precoding information and number of layers。
终端设备允许的最大发送功率
最大发送功率表示的终端设备发送上行数据所采用的功率的最大能力,或者说,终端 设备能够支持的最大发送功率。可选地,最大发送功率可以是网络设备配置给终端设备的发送功率,表示网络设备允许终端设备能够使用的最大发送功率。可选地,最大发送功率也可以是网络设备约定终端设备能够采用的最大发送功率。在本申请实施例中,使用p max表示最大发送功率。
信道发送功率
在上行传输中,不同时段的信道状态会存在差异,一般情况,信道质量差,需要较大的发送功率发送数据,信道质量好,可以使用较低的发送功率发送数据,并且,不同时段上行传输占用的频域资源大小是不同的,一般情况,频域资源越大,需要较大的发送功率发送上行数据,频域资源越小,需要较小的发送功率发送上行数据。因此,在上行传输中,基于例如信道状态、频域资源分配等因素确定的发送功率是不同的。
网络设备会根据信道状态和调度策略指示确定发送功率的配置参数,终端设备可以将基于网络设备指示的配置参数以及自身的信号测量结果确定的发送功率称为信道发送功率。在上行传输中,信道发送功率表示当前时刻终端设备发送上行数据能够使用的最大发送功率。
在本申请实施例中,使用p p表示上行数据的信道发送功率。
终端设备可以通过下述公式可以确定上行数据的信道发送功率p p
Figure PCTCN2019108251-appb-000002
需要指出的是,下述确定上行数据的信道发送功率的公式中,最大发送功率p max同p CMAX,f,c(i),信道发送功率p p同p PUSCH,b,f,c(i,j,q d,l)。
下面,对公式中的各个参数的物理意义做相关解释。
b是物理上行共享信道(physical uplink shared channel,PUSCH)传输所占的部分带宽(bandwidth part,BWP)。
f是PUSCH传输所占的载波(carrier)。
c是该载波所在的服务小区(serving cell)。
l是网络设备通过高层信令配置的功控参数集合,下述高层信令配置的参数值均配置在该功控参数集合中。
p CMAX,f,c(i)是最大发送功率。
p O_PUSCH,b,f,c(j)是网络设备通过高层信令配置的参数值,当网络设备通过高层配置多个参数值时,终端设备进一步根据下行控制信息(downlink control information,DCI)中相应的指示字段从该多个参数值中选择其中之一确定,或者,根据预定义的规则从多个参数值中选择其中之一确定。
α a,b,c(j)是网络设备通过高层信令配置的参数值,当网络设备通过高层配置多个参数值时,终端设备进一步根据下行控制信息(downlink control information,DCI)中相应的指示字段从该多个参数值中选择其中之一确定,或者,根据预定义的规则从多个参数值中选择其中之一确定。
Figure PCTCN2019108251-appb-000003
是PUSCH所占的资源块(resource block,RB)数。
PL b,f,c(q d)是基于网络设备配置的参考信号(reference resource,RS)估计得到的。
Δ TF,b,f,c(i)的取值与传输层数相关,与码块(code block)数、码块大小、PUSCH所占的RE数以及PUSCH上承载的数据类型均可以相关。一种Δ TF,b,f,c(i)的计算方式为
Figure PCTCN2019108251-appb-000004
其中,K S通过高层信令指示,BPRE的取值与码块(code block)数、码块大小、PUSCH所占的RE数相关,
Figure PCTCN2019108251-appb-000005
与PUSCH上承载的数据类型相关。
f b,f,c(i,l)根据DCI中承载的传输功率指令(transmission power control,TPC)指示确定,在TPC指示累积量的场景中,f b,f,c(i,l)=f b,f,c(i last,l)+δ PUSCH,b,f,c(i last,i,K PUSCH,l),在TPC指示绝对量的场景中,f b,f,c(i,l)=δ PUSCH,b,f,c(i last,i,K PUSCH,l)。
在现有技术中,终端设备根据信道发送功率和用于发送上行数据的天线端口的数量M确定每个发送端口上采用的PUSCH的发送功率,例如,每个发送端口的发送功率为信道发送功率与M的比值。
实际发送功率
在上行传输中,发送上行数据采用的天线端口的数量N小于或等于M,实际发送功率表示终端设备在发送上行数据时实际使用的N个天线端口的发送功率的总和。其中,实际发送功率小于或等于信道发送功率。在本申请实施例中,使用p t表示实际发送功率。
现有技术中,实际发送功率p t=(N/M)×p p,当N小于M时,该操作可以被理解为将信道发送功率进行了功率缩放(scale)。
在本申请实施例中,当N小于M时,终端设备可以确定是否使用信道发送功率发送上行数据,一种情况是使用信道发送功率发送上行数据,即,实际发送功率等于信道发送功率,这种情况下,终端设备不执行功率缩放操作,使用信道发送功率发送上行数据;另一种情况是使用小于信道发送功率的功率发送上行数据,这种情况下,终端设备可以执行功率缩放(scale)操作,使用对信道发送功率缩放后的功率(scaled power)发送上行数据。
作为本申请的一个实施例,实际发送功率还可以是终端设备确定出的实际发送功率的计算值,在实际发送功率也可以是根据上述参数和/或M、N的值做缩放后的结果。相应的,作为本申请的一个实施例,将实际发送功率分配给N个天线端口后,每个天线端口的实际发送功率可以是终端设备确定的计算值,也可以是根据上述参数和/或M、N的值做缩放后的结果。
基于码本的上行传输
上文说到,经过层映射后的数据需要经过预编码,即,使用预编码矩阵对数据做预编码处理。在基于码本的上行传输的中,网络设备和终端设备均可以根据协议存储上行传输的码本,码本包括多个预编码矩阵。其中,每个预编码矩阵包括幅度量化值和相位两部分,以传输层数为2的预编码矩阵
Figure PCTCN2019108251-appb-000006
为例,幅度量化值为1/2,各个天线端口(矩 阵的每一行对应一个天线端口)的相位旋转关系可以表示为
Figure PCTCN2019108251-appb-000007
在上行传输中,针对不同的M的取值和传输层数取值有不同的码本。如表1至表3所示,表1表示由天线端口数为2且传输层数为1的预编码矩阵构成的码本,表2表示由天线端口数为4传输层数为1的预编码矩阵构成的码本,表3表示由天线端口数为4且传输层数为1的预编码矩阵构成的码本。在每个表格中,一个预编码矩阵对应一个索引,可以称为预编码指示(transmission precoding matrix indicator,TPMI)索引,即,使用预编码指示索引指示对应的预编码矩阵,该索引用于确定DCI中的预编码矩阵指示字段中指示的TPMI对应的预编码矩阵。
其中,根据终端设备各个天线端口之间的相干能力,将预编码矩阵分为3种类型的预编码矩阵,分别是:完全相干(full-coherent)能力的预编码矩阵、部分相干(partial-coherent)能力的预编码矩阵和非相干(non-coherent)能力的预编码矩阵。下面,对这3种类型的预编码矩阵分别做一介绍。
完全相干(full-coherent)能力的预编码矩阵:这种类型的预编码矩阵表示网络设备配置的用于发送上行数据的所有天线端口(M个天线端口)完成相位校准,可以进行相位加权,即,在一个传输层中可以使用所有天线端口发送上行数据。例如,表1中TPMI索引值2-5中的每个索引值指示的预编码矩阵、表2中TPMI索引值12-27中的每个索引值指示的预编码矩阵和表3中TPMI索引值12-27中的每个索引值指示的预编码矩阵都是完全能力的预编码矩阵。
部分相干(partial-coherent)能力的预编码矩阵:这种类型的预编码矩阵表示终端设备的能够用于发送上行数据的每个天线端口对完成相位校准,可以进行相位加权,而终端设备的一个天线端口对之间未完成相位校准,不可以进行相位加权。也就是说,在一个传输层中可以使用完成校准的两个天线端口发送上行数据。例如,表2中TPMI索引值4-11中的每个索引值指示的预编码矩阵和表3中TPMI索引值6-13中的每个索引值指示的预编码矩阵都是部分相干能力的预编码矩阵。
非相干(non-coherent)能力的预编码矩阵:这种类型的预编码矩阵表示终端设备的能够用于发送上行数据的所有天线端口之间均未完成相位校准,均不可以进行相位加权。也就是说,在一个传输层中只能使用一个天线端口发送上行数据。例如,表1中TPMI索引值0-1中的每个索引值指示的预编码矩阵、表2中TPMI索引值0-3中的每个索引值指示的预编码矩阵和表3中TPMI索引值0-5中的每个索引值指示的预编码矩阵14-21所指示的预编码矩阵都是非相干能力的预编码矩阵。
表1
Figure PCTCN2019108251-appb-000008
表2
Figure PCTCN2019108251-appb-000009
表3
Figure PCTCN2019108251-appb-000010
M、N和传输层数与预编码矩阵的关系
在一个预编码矩阵中,预编码矩阵的秩表示传输层数,预编码矩阵的行数表示网络设备配置的用于发送上行数据的天线端口的数量M,非零数值的行数表示发送上行数据采用的天线端口的数量N。
例如,预编码矩阵为
Figure PCTCN2019108251-appb-000011
预编码矩阵的秩为2,则表示传输层数为2,预编码矩阵的行数为4,则表示M=4,非零数值的行数为2,则N=2。一个传输层中使用1个天线端口(对应于矩阵中每列中非零数值的个数)发送上行数据。
上文对预编码矩阵的类型做了详细描述,这里,结合预编码矩阵的类型,对M、N、和传输层数与预编码矩阵的关系做进一步说明。
针对完全相干能力的预编码矩阵,在使用完全相干能力的预编码矩阵对上行数据进行预编码并且发送上行数据的过程中,无论传输层数是多少,N=M,一个传输层中使用所有的天线端口发送上行数据。
针对部分相干能力的预编码矩阵,在使用部分相干能力的预编码矩阵对上行数据进行预编码并且发送上行数据的过程中,具体N与M之间的关系和传输层数相关。例如,表2所示的部分相干能力的预编码矩阵,M=4,N=2,传输层数为1,一个传输层中使用两个天线端口发送上行数据;再例如,表3所示的部分相干能力的预编码矩阵,N=M=4,传输层数为2,一个传输层中同样使用两个天线端口发送上行数据,但是,不同传输层使用的天线端口不同,具体举例,传输层#1使用天线端口#1和天线端口#3,传输层#2使用天线端口#2和天线端口#4,可以理解,对应的发送天线#1的发送天线#3可以视为一个发送天线对。
同样,针对非相干能力的预编码矩阵,在使用非相干能力的预编码矩阵对上行数据进行预编码并且发送上行数据的过程中,具体N与M之间的关系和传输层数相关。例如,表2所示的非相干能力的预编码矩阵,M=4,N=1,传输层数为1,一个传输层中使用一个天线端口发送上行数据;再例如,表3所示的非相干能力的预编码矩阵,M=4,N=2,传输层数为2,一个传输层中使用一个天线端口发送上行数据,不同传输层使用的天线端口不同;再例如,对于4个发送天线4个传输层数的预编码矩阵而言,M=4=N,一个传输层中使用一个天线端口发送上行数据,4个传输层中任意两个传输层使用的天线端口都不同。
一个实施例中,本申请的所述M、N的值可以是终端设备确定的参数,,也可以是终端设备被配置的参数,其中,M和N可以都是终端设备确定的,也可以都是配置的,也可以是M和N中的一个参数是配置的,M和N中的另一个参数是终端设备确定的,终端设备根据N值进行计算后,实际使用的天线端口的实际数量小于所述N值。一个实施例中,N的值为终端设备采用非零功率传输数据的端口的数量。
实际发送功率和预编码矩阵的关系
在本申请实施例中,可以将实际发送功率p t与信道发送功率P p的比值称为功控因子,用t表示功控因子。
如上文所述,预编码矩阵包括幅度量化值和相位,幅度量化值能够表征每个非0的天线端口上的发送功率,进而也就能够表征功控因子。功控因子与幅度量化值之间存在如下关系:t=λ 2×l×N,其中,λ表示幅度量化值,l表示每个天线端口对应的传输层数,或者说,使用同一个天线端口发送数据的传输层的数量。这样,实际发送功率 p t=t×p p=(λ 2×l)×N×p p,每个天线端口的发送功率p 0=(λ 2×l)×p p
下面,以M=4,结合表2所示的4个天线端口1层传输的预编码矩阵和表3所示的4个天线端口2层传输的预编码矩阵,对功控因子和预编码矩阵的关系进行说明。
例如,在表2中,若TPMI索引值为0,则,预编码码本类型为非相干能力的预编码矩阵(l=1),幅度量化值为1/2,N=1,功控因子t=(1/2) 2=1/4,每个天线端口的发送功率为p 0=(λ 2×l)×p p=(1/4)×p p
再例如,在表3中,若TPMI索引值为0,则,预编码矩阵的类型为非相干能力的预编码矩阵(l=1),幅度量化值为1/2,N=2,功控因子t=(1/2) 2×2=1/2,每个天线端口的发送功率为p 0=(λ 2×l)×p p=(1/4)×p p
再例如,在表3中,若TPMI索引值为7,则,预编码矩阵的类型为部分相干能力的预编码矩阵(l=1),幅度量化值为1/2,N=4,功控因子t=(1/2) 2×4=1,每个天线端口的发送功率为p 0=(λ 2×l)×p p=(1/4)×p p
再例如,在表3中,若TPMI索引值为16,则,预编码矩阵的类型为完全相干能力的预编码矩阵(l=2),幅度量化值为
Figure PCTCN2019108251-appb-000012
N=4,功控因子
Figure PCTCN2019108251-appb-000013
每个天线端口的发送功率为p 0=(λ 2×l)×p p=(1/4)×p p
以上,对本申请实施例涉及的相关术语或相关技术做了简单描述。下面,结合背景技术,简单介绍与本申请相关的现有技术。
在现有技术的上行传输中,终端设备采用N个天线端口发送上行数据的实际发送功率为p t=(N/M)×p p,从上述公式可以看出,在N小于M的情况下,实际发送功率总是小于信道发送功率,实际上,在有些场景中,若是实际发送功率总小于信道发送功率,会影响数据的传输可靠性。因此,本申请实施例提供了一种传输数据的方法,通过灵活调整数据的实际发送功率来提高数据的传输可靠性。
需要说明的是,通过p t=(N/M)×p p得到的实际发送功率和通过上文所述的p t=t×p p=(λ 2×l)×N×p p获得的实际发送功率的值都是相同的,两个不同公式仅是从不同角度阐述了确定实际发送功率的方式。
还需要说明的是,无论在现有技术还是本申请实施例中,功控因子t和幅度量化值λ会一直存在下述关系:t=(λ 2×l)×N,对应地,实际发送功率和信道发送功率也会一直存在下述关系:p t=t×p p=(λ 2×l)×N×p p
下面,结合图2至图3,对本申请实施例做一详细说明。
图2所示为本申请实施例的传输数据的方法100的示意性交互图,下面,对方法100中的各个步骤进行详细说明。
在S101中,网络设备向终端设备发送用于指示配置参数的信息,其中,该配置参数用于确定信道发送功率。
举例来说,该配置参数可以包括上文中关于确定信道发送功率的公式中的各个参数中的部分参数,也可以包括用于确定上述公式中其余参数的参数。
例如,该配置参数包括最大发送功率(例如,p CMAX,f,c(i))、用于承载上行数据的PUSCH所占的资源块(resource block,RB)的数量(例如,
Figure PCTCN2019108251-appb-000014
)、以及其他相关参数(例如,p O_PUSCH,b,f,c(j)、α a,b,c(j))等,该配置参数还包括RS(终端设备基于该RS可以确定 PL b,f,c(q d))或功率调整取值(终端设备可以基于该功率调整取值确定f b,f,c(i,l))等参数。这样,该终端设备可以基于接收到的配置参数确定信道发送功率。
其中,关于配置参数的具体描述参考上文中关于确定信道发送功率中关于公式中各个参数的描述,为了简洁,此处不再赘述。
在S110中,终端设备根据该配置参数确定待发送的第一上行数据的信道发送功率。
如上文所述,该终端设备可以基于下述公式确定信道发送功率,每个配置参数的解释可以参考上文,该终端设备也可以根据其它方式确定信道发送功率。此外,需要再次说明的是,下述确定信道发送功率的公式中,最大发送功率p CMAX,f,c(i)同p max,信道发送功率p PUSCH,b,f,c(i,j,q d,l)同p p
Figure PCTCN2019108251-appb-000015
在S120中,该终端设备根据该信道发送功率和传输参数,确定该第一上行数据的实际发送功率,该实际发送功率小于或等于该信道发送功率,其中,该传输参数包括以下一个或多个:
功率余量,该功率余量表示该终端设备允许的最大发送功率和该信道发送功率的差值,该信道发送功率小于或等于该终端设备允许的最大发送功率,或,
发送该第一上行数据所采用的波形,或,
用于调度该第一上行数据所采用的下行控制信息DCI格式,或,
发送该第一上行数据所采用的调制和编码方案MCS,或,
发送该第一上行数据所采用的功率调整取值;
具体而言,上述传输参数在一定程度上能够表征终端设备是处于小区边缘还是处于非小区边缘,因此,可以根据上述传输参数和确定好的信道发送功率确定该第一上行数据的实际发送功率,该实际发送功率表示该终端设备发送该第一上行数据采用的N个天线端口上的发送功率的总和。
在N等于M的情况下,该实际发送功率自然等于该信道发送功率。
在N小于M的情况下,该实际发送功率可以小于该信道发送功率,也可以等于该信道发送功率,具体情况可以通过该传输参数进一步确定;此外,若该实际发送功率小于该信道发送功率,则实际发送功率可以理解为该终端设备根据该信道发送功率和该传输参数执行功率缩放操作后得到的缩放后的发送功率。
一个实施例中,该实际发送功率为发送该第一上行数据所采用的N个天线端口的发送功率的总和是可选的,其实际发送功率也可以是由其它约束条件确定。
下面,对每个传输参数做一详细说明。
功率余量
通常情况下,若功率余量较低,则表明终端设备大概率处于小区边缘,信道状态比如信号与干扰加噪声比(signal to interference plus noise ratio,SINR)较低,若功率余量较高时,则表明终端设备大概率处于小区中心。应理解,与功率余量表征终端设备在小区的位置类似,功率余量也可以单由允许的最大发送功率代替,终端设备根据允许的最大发送功率和信道发送功率计算确定功率余量。还应理解,功率余量也可以由终端设备允许的最 大发送功率和信道发送功率生成,不仅限于两者的差值,例如,可以功率余量可以是对两者差值的进行向上取值或向下取整得到的结果。
波形
该波形是在数据调制的时候采用的波形,该波形可以是离散傅里叶变化扩展正交频分复用多址(discrete fourier transform spread orthogonal frequency division multiple,DFT-s OFDM)波形,也可以是基于循环前缀正交频分复用(cyclic prefix orthogonal frequency division multiple,CP-OFDM)波形等。
通常情况下,上行传输的波形是根据终端设备是否处于小区边缘或者根据终端设备是否处于功率受限而切换的。例如,若采用DFT-s-OFDM波形,则表明终端设备大概率处于小区边缘,或者,终端设备处于功率受限状态(即传输性能会由于功率提升而提升);若采用CP-OFDM波形,则表明终端设备大概率处于小区中心,或者,终端设备不处于功率受限状态。
DCI格式
该DCI格式可以是用于调度上行数据的多种DCI格式中的任一种DCI格式,例如,该DCI格式可以为DCI格式0_0或DCI格式0_1。其中,可以将用于调度上行数据的多种DCI中包括的比特数最少的DCI格式称为紧凑的DCI格式,例如,DCI格式0_0。
通常情况下,终端设备检测到的DCI格式是网络设备根据终端设备是否处于小区边缘而发送给终端设备的。例如,若采用DCI格式0_0,则表明终端设备大概率处于小区边缘;若采用DCI格式0_1,则表明终端设备大概率处于小区中心。
MCS
该MCS中的调制方式可以是以下4种调制方式中的任一种:二进制相移键控(binary Phase Shift Keying,BPSK)、正交相移键控(Quadrature Phase Shift Keyin,QPSK)、16正交幅度调制(Quadrature Amplitude Modulation)和64QAM,其中,16QAM表示包括16种符号的QAM调制方式,64QAM表示包括16种符号的QAM调制方式。
通常情况下,终端设备调制数据采用的MCS是根据当前的信道质量确定的。MCS中的调制方式中的调制阶数低,表示信道质量差,表明终端设备大概率处于小区边缘,例如,BPSK或QPSK;MCS中的调制方式中的调制阶数高,表示信道质量好,表明终端设备大概率处于小区中心,例如,16QAM或64QAM。
功率调整取值
功率调整取值是表征信道状态的参数。通常情况下,功率调整取值大,信道质量差,表明此时终端设备大概率处于小区边缘;功率调整取值小,信道质量好,表明此时终端设备处于小区中心或者已经达到最大发送功率。
其中,该功率调整取值可以是累积值,累积值是根据之前确定的δ PUSCH,b,f,c与当前DCI指示的δ PUSCH,b,f,c求和确定的,也可以是绝对值,绝对值是直接根据当前DCI中TPC指示的δ PUSCH,b,f,c计算。以该参数为传输功率控制(transmission power control,TPC)字段为例,TPC字段指示的功率调整取值可以是表4中的任一个字段值(或,比特值)对应的功率调整取值。
应理解,上述传输参数仅仅是一个示例,也可能有其它相关传输参数。在本申请实施例中,网络设备可以通过指示信息中的比特值指示传输参数,终端设备通过比特值确定该传输参数的具体内容,终端设备也可以通过其他参数确定该传输参数的具体内容,本申请 实施例不限于此,所有能够确定传输参数的方式都在本申请实施例的保护范围内。例如,在具体应用中,上述传输参数可以是一个指示值,或者是其它参数隐式或显式指示的内容,例如,功率余量可以有多个取值,通过指示01指示一个功率余量值或等级,终端设备根据指示值或等级来计算或查询对应的关联关系确定计算入参。再例如,若该传输参数包括功率取值,则可以使用最大发送功率p max和信道发送给功率p p的差值确定该功率余量;再例如,若该传输参数包括波形,则可以通过网络设备发送的用于指示波形的波形信息中的比特值确定波形是DFT-s-OFDM波形还是CP-OFDM波形。
表4
Figure PCTCN2019108251-appb-000016
在S150中,该终端设备使用该实际发送功率,发送该第一上行数据。
对应地,网络设备接收该第一上行数据。
在一种可能的实现方式中,该方法还包括:
该终端设备将该实际发送功率平均分配给发送该第一上行数据所采用的N个天线端口。
从而,在S150中,终端设备具体在该N个天线端口上使用每个天线端口对应的发送功率发送上行数据,以完成该第一上行数据的发送过程。
在本申请实施例中,该实际发送功率虽然是终端设备确定的,但是,对于网络设备来说,在某些情况下,网络设备也需要确知该实际发送功率以便确定其调度策略,比如数据传输采用的预编码矩阵的选择。
可以这么理解,终端设备和网络设备可以根据相同的方式确定第一上行数据的实际发送功率,从而终端设备和网络设备对于第一上行数据的实际发送功率的理解保持一致。
在本申请实施例中,该网络设备可以通过各种方式确定该实际发送功率,下面,介绍两种方式。
方式1
通过信道发送给功率和传输参数确定该实际发送功率。
下面,通过S130和S140描述该网络设备确定该实际发送功率的过程。
在S130中,该网络设备确定该信道发送功率。
参考图3,在一种可能的实现方式中,该网络设备确定该信道发送功率的具体过程如下:
该终端设备在S110中确定该信道发送功率后,可以通过最大发送功率与该信道发送功率计算差值,获得功率余量。
在S131中,终端设备向网络设备发送用于指示功率余量的功率余量信息。
具体而言,终端设备可以使用网络设备周期配置的上行资源指示该功率余量,周期配 置的上行资源可以为用于PUSCH传输或者用于PUCCH传输的上行资源。终端设备还可以根据事件进行功率余量的上报,该事件为功率余量的大于或者等于阈值阈值。当该事件发生时,终端设备可以将该事件发生之后的第一个PUSCH传输所占的上行资源用于功率余量的上报,具体的上报格式以及上报该功率余量占用的资源可以预先定义或者由网络设备通过高层信令配置,其中,上报该功率余量占用的资源是PUSCH传输所占的上行资源中的部分资源;终端设备还可以将该事件发生之后的第一个满足要求的PUCCH传输所占的上行资源用于功率余量的上报,具体的上报格式以及上报该功率余量占用的资源可以预先定义或者由网络设备通过高层信令配置,上报该功率余量占用的资源是PUCCH传输所占的上行资源中的部分资源,该要求可以为第一比特数以外可以进一步承载功率余量上报的比特数,该第一比特数为根据网络设备指示的PUCCH资源以及当前需要上报的UCI比特数(包含HARQ比特数以及CSI比特数,且除功率余量信息之外)确定的PUCCH中可以承载该UCI的比特数。功率余量上报的比特数可以对应于绝对的功率余量值,比如定义[0,23]/[0,26]的整数值区间内按照一定的步长对应不同的比特值的方式,或者相对于最大发送功率的相对的功率余量值并按照一定的步长对应不同的比特值的方式,或者仅为1比特对应指示超过第一阈值等。
在S132中,网络设备根据该功率余量信息和最大发送功率,确定该信道发送功率。
该最大发送功率是该网络设备配置给该终端设备的,因此,该网络设备确知该最大发送功率,可以基于该最大发送功率和从该功率余量信息中获取的功率余量确定该信道发送功率。
在S140中,该网络设备根据该信道发送功率和该传输参数,确定该第一上行数据的实际发送功率。
其中,关于S140的描述可以参考S120的描述,仅是执行主体的不同,确定该实际发送功率的方式都相同。此外,为了便于描述,下文会从终端设备的角度,对根据该信道发送功率和传输参数确定实际发送功率的方式做具体描述,网络设备根据该信道发送功率和传输参数确定实际发送功率的方式可以参考终端设备的描述,为了简洁,后续不再赘述。
这里,S130和S140都可以先于S120或S150发生,也可以都晚于S120或S150发生,本申请实施例不限于此。
方式2
终端设备在确定该实际发送功率后,可以向网络设备发送用于指示该实际发送功率的信息,从而,该网络设备基于该信息确定该实际发送功率。
因此,本申请实施例提供的传输数据的方法,在发送上行数据所采用的天线端口的实际数量N小于网络设备配置的用于发送上行数据的天线端口的数量M的情况下,可以通过基于信道发送功率和各种能够表征终端设备是否处于小区边缘的传输参数确定上行数据的实际发送功率,从而,灵活调整上行数据的实际发送功率,进而,提高数据的传输可靠性。
应理解,本申请实施例的所有方法步骤,上述各过程的序号的大小都不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
通常情况下,对于处于小区边缘的终端设备,需要采用大功率发送上行数据,对于处 于小区中心的终端设备,采用小功率就可以发送上行数据。在本申请实施例中,对于N小于M的情况,终端设备根据信道发送功率和传输参数确定的实际发送功率可以小于或等于信道发送功率。
若基于传输参数确定终端设备处于非小区边缘,则可以按照现有技术的方式确定实际发送功率,即,p t=(N/M)×p p,可以节省终端设备的发送功率,同时避免不必要的功率提升带来的上行干扰。在N小于M的情况下,实际发送功率小于信道发送功率,或者说,该实际发送功率为该终端设备执行功率缩放操作后得到的缩放后的发送功率。
若基于传输参数确定终端设备处于小区边缘,不再基于现有技术的方式确定该实际发送功率,而是需要提升发送功率以获得实际发送功率,则,实际发送功率p t>(N/M)×p p
并且,实际发送功率小于或等于信道发送功率。其中,具体将发送功率提升至多少,可以基于协议规定,也可以基于网络设备的指示,本申请实施例不限于此。
下面,结合上述各个传输参数,分为不同情况详细描述确定的实际发送功率。
情况1
根据信道发送功率和功率余量确定该实际发送功率。
在这种情况下,功率余量满足第一条件,确定的实际发送功率p t>(N/M)×p p;在功率余量不满足该第一条件的情况下,实际发送功率p t=(N/M)×p p。其中,该第一条件用于确定终端设备处于小区边缘。在本申请实施例中,p t>(N/M)×p p和p t=(N/M)×p p可以仅仅为一个示例,也可以分别满足其它约束。
一个实施例中,关于功率余量满足该第一条件的解释可以有多种。例如,功率余量满足该第一条件可以是一个判断的过程,即,终端设备确定该功率余量是否满足该第一条件,一种情况下,该终端设备确定该功率余量满足该第一条件,该终端设备确定实际发送功率,且确定的实际发送功率满足某些约束;再例如,功率余量满足该第一条件也可以是一个根据功率余量、或与功率余量相关联的参数值、或功率余量等级、相关指示做出判断和确定的过程;再例如,功率余量满足该第一条件也可以是根据功率余量值(或,功率余量等级)和发送功率之间约束的关联关系确定实际发送功率、或实际发送功率的约束关系的过程。后面的各个情况的解释与此处类似。
在一种可能的实现方式中,该第一条件为该功率余量大于或等于第一阈值。
通常情况下,若功率余量较低,则表明终端设备大概率处于小区边缘,信道状态比如信号与干扰加噪声比(signal to interference plus noise ratio,SINR)较低,因此,需要提升发送功率,该实际发送功率p t>(N/M)×p p;若功率余量较高,则表明终端设备大概率处于小区中心,因此,不需要提升发送功率,实际发送功率p t=(N/M)×p p,不仅节省终端设备的发送功率,也避免了不必要的功率提升带来的上行干扰。
该第一阈值也可以是与某些参数相关联的,例如,该第一阈值与天线端口信息相关联。其中,若该第一条件为该功率余量大于或等于第一阈值,则第一阈值可以有如下关联关系的一种或多种:
在N=1,M=4的情况下,该第一阈值等于6dBm;或,
在N=2,M=4的情况下,该第一阈值等于3dBm;或,
在N=1,M=2的情况下,该第一阈值等于3dBm。
具体而言,N=1,M=4,第一阈值为6dBm的情况,也可以具体为下述场景:M=4,预编码矩阵为非相干能力的预编码矩阵,传输层数为1,对应的第一阈值为6dBm;同理, N=2,M=4,第一阈值等于3dBm的情况,也可以具体为下述场景:M=4,预编码矩阵为部分相干能力的预编码矩阵,传输层数为2,或者,M=4,预编码矩阵为非相干能力的预编码矩阵,传输层数为1,对应的第一阈值都为3dBm;同理,N=1,M=2,第一阈值等于3dB的情况,也可以具体为下述场景:M=2,预编码矩阵为非相干能力的预编码矩阵,传输层数为1,对应的第一阈值为3dBm。终端设备可以存储上述关联关系,在需要确认的情况下通过查询确认该第一阈值的值即可得到。
作为一个实施例,终端设备可以存储上述第一阈值的关联关系,并根据所述存储的关联关系确定第一阈值,并进一步确定功率余量是否满足上述第一条件(例如,是否满足阈值关系)。这里可以作为一个单独的实施例,也可以与其他实施例结合。在本申请中的其它类似的表格也可以是以此种形式出现。
需要说明的是,在本申请实施例中,描述功率的单位不仅可以是dBm,也可以是dB,在具体实施中,也可以是其它量化值、等级或参数值,本申请实施例不限于此。
在提升发送功率的方式(即,p t>(N/M)×p p)中,为了更好地提高数据的传输可靠性,在一种可能的实现方式中,该实际发送功率等于该信道发送功率。
这种情况下,若该功率余量满足该第一条件的,则终端设备不执行功率缩放操作,该实际发送功率等于该信道发送功率,使用该信道发送功率发送上行数据;若该功率余量不满足该第一条件,则终端设备执行功率缩放操作,将该信道发送功率缩放后的功率即为该实际发送功率,该实际发送功率p t=(N/M)×p p
下面,针对该实际发送功率等于该信道发送功率的情况,对该N个天线端口中每个天线端口的发送功率进行说明,同时,对关联的预编码矩阵的幅度量化值进行说明。
N不同,每个天线端口的发送功率不同,每个天线端口的发送功率具体如下:
N=1,该N个天线端口中一个天线端口的发送功率为p 0=p p;或,
N=2,该N个天线端口中一个天线端口的发送功率为p 0=0.5p p
其中,该N个天线端口中一个天线端口的发送功率满足上述条件,该N个天线端口中每个天线端口的发送功率也满足上述条件。
上文描述了实际发送功率和预编码矩阵的关系,其中,一个天线端口的发送功率p 0=(λ 2×l)×p p,λ表示幅度量化值,l表示一个天线端口被占用的传输层数,或者说,使用同一个天线端口发送数据的传输层数。因此,若N=1,则λ 2×l=1;若N=2,则
Figure PCTCN2019108251-appb-000017
下面,基于N的不同取值对应的不同场景,指出实际发送功率对应的预编码矩阵的幅度量化值。
N=1的情况可以具体为下述场景:预编码矩阵为非相干能力的预编码矩阵,传输层数为1,M不做限定。这种场景中,l=1,则幅度量化值λ=1。一个天线端口的发送功率即为信道发送功率。
N=2的情况可以具体为下述两种场景:M=4,预编码矩阵为非相干能力的预编码矩阵,传输层数为2,或者,M=4,预编码矩阵为部分相干能力的预编码矩阵,传输层数为1。在这两种场景中,l=1,则幅度量化值
Figure PCTCN2019108251-appb-000018
为了便于理解,表5描述了实际发送功率为信道发送功率时不同场景下的功率余量和预编码矩阵的幅度量化值。
表5
Figure PCTCN2019108251-appb-000019
这里,需要指出的是,现有技术中,终端设备会基于网络设备发送的用于指示预编码矩阵的TPMI确定预编码矩阵,采用该预编码矩阵对第一上行数据进行预编码,同时,该预编码矩阵的幅度量化值可以表征第一上行数据的实际发送功率等于(N/M)×p p。但是,由于幅度量化值与实际发送功率之间的关系不变,若终端设备基于传输参数确定需要提升发送功率,则若按照现有技术的预编码矩阵的幅度量化值会与端口之间的功率分配关系不匹配,这样,可以约定终端设备使用调整了幅度量化值的预编码矩阵对该第一上行数据进行预编码。例如,以表4为例,在M=4,1个传输层,预编码矩阵为非相干能力的预编码矩阵时,幅度量化值λ=1,而现有技术中的幅度量化值λ=1/2(表2中TPMI索引值0指示的预编码矩阵)。
在一种可能的实现方式中,可以根据功率余量的取值范围进一步确定实际发送功率,对应的预编码矩阵的幅度来量化值也不同。以4个天线端口1个传输层的预编码矩阵为例,通过表6,对根据PH的取值范围确定实际发送功率的方式做一说明。
若PH的取值范围为[0-3)dBm,N=1,则每个天线端口的发送功率为p 0=p p,其中,在表5中,N=1具体为预编码矩阵为非相干能力的预编码矩阵,即,TPMI索引值0-3指示的预编码矩阵,每个预编码矩阵的幅度量化值均提升为1。
若PH取值范围为(3-6]dBm时,N=1,则若预编码矩阵为TPMI索引值0和2指示的预编码矩阵,则每个天线端口的发送功率为p 0=p p,每个预编码矩阵的幅度量化值由原来的1/2提升为1;若预编码矩阵为TPMI索引值1和3指示的预编码矩阵,则每个天线端口的发送功率为p 0=(1/4)×p p(即,现有技术的实际发送功率),每个预编码矩阵的幅度量化值不变,均为1/2。
其中,将TPMI索引值0和2分为一组以及将TPMI索引值1和3分为另一组的原因在于,TPMI索引值0和2对应的天线端口的信道相关性较高,TPMI索引值1和3对应的天线端口的信道相关性较高,而天线端口组间的信道相关性较低。
表6
Figure PCTCN2019108251-appb-000020
因此,本申请实施例提供的传输数据的方法,一方面,在能够表征终端设备的位置的 功率余量满足第一条件的情况下,通过提升实际发送功率,使得处于小区边缘的终端设备能够使用较大的发送功率发送上行数据,提高了数据传输的可靠性。另一方面,在能够表征终端设备的位置的功率余量不满足第一条件的情况下,采用缩放后的信道发送功率发送上行数据,对于处于非小区边缘的终端设备来说,有利于降低数据传输带来的干扰,同时有利于终端设备降低功耗。
情况2
根据信道发送功率和波形确定该实际发送功率。
在这种情况下,该波形为DFT-s-OFDM波形,确定的实际发送功率满足p t>(N/M)×p p;若该波形为其他波形(例如,CP-OFDM波形),则确定的实际发送功率满足p t=(N/M)×p p。和上面情况1类似,这里也可以是一个判断的过程,也可以是确定的过程。
通常情况下,若采用DFT-s-OFDM波形,则表明终端设备大概率处于小区边缘,或者,终端设备处于功率受限状态(即传输性能会由于功率提升而提升),因此,需要提升发送功率,该实际发送功率p t>(N/M)×p p;若采用其他波形(例如,CP-OFDM波形),则表明终端设备大概率处于小区中心,或者,终端设备不处于功率受限状态,因此,不需要提升发送功率,实际发送功率p t=(N/M)×p p,不仅节省终端设备的发送功率,也避免了不必要的功率提升带来的上行干扰。
关于终端设备获取波形的方式,网络设备可以通过高层信令或者DCI信令指示该第一上行数据采用的波形,终端设备可以直接根据指示波形的信息确定发送该第一上行数据传输采用的实际发送功率。
在提升发送功率的方式(即,p t>(N/M)×p p)中,为了更好地提高数据的传输可靠性,在一种可能的实现方式中,该实际发送功率等于该信道发送功率。
这种情况下,若该波形为DFT-s-OFDM,则终端设备不执行功率缩放操作,该实际发送功率等于该信道发送功率,使用该信道发送功率发送上行数据;若该波形为其他波形(例如,CP-OFDM波形),则终端设备执行功率缩放操作,将该信道发送功率缩放后的功率
即为该实际发送功率,该实际发送功率p t=(N/M)×p p
下面,针对该实际发送功率等于该信道发送功率的情况,对该N个天线端口中每个天线端口的发送功率进行说明,同时,对关联的预编码矩阵的幅度量化值进行说明。
N不同,每个天线端口的发送功率不同,每个天线端口的发送功率具体如下:
N=1,该N个天线端口中一个天线端口的发送功率为p 0=p p;或,
N=2,该N个天线端口中一个天线端口的发送功率为p 0=0.5p p
其中,该N个天线端口中一个天线端口的发送功率满足上述条件,该N个天线端口中每个天线端口的发送功率也满足上述条件。
同理,N=1可以适用的场景和N=2可以适用的场景可以参考情况1中N=1和N=2时适用的场景,并且,N=1的场景下对第一上行数据进行预编码的预编码矩阵的幅度量化值λ=1的描述可以参考情况1的相关描述,N=2的场景下对第一上行数据进行预编码的预
编码矩阵的幅度量化值
Figure PCTCN2019108251-appb-000021
的描述可以参考情况1的相关描述,为了简洁,此处不再赘述。
这里,需要说明的是,在传输参数包括波形时,一般情况下,DFT-s-OFDM波形会采用一层传输,因此,N=2的情况可以适用于M=4、预编码矩阵为部分相干能力的预编码 矩阵、传输层数为1的场景。
不过,为了便于理解,表7描述了实际发送功率为信道发送功率时不同场景下的波形和预编码矩阵的幅度量化值。
表7
Figure PCTCN2019108251-appb-000022
本申请实施例提供的传输数据的方法,一方面,在能够表征终端设备的位置的波形为DFT-s-OFDM波形的情况下,通过提升实际发送功率,使得处于小区边缘的终端设备能够使用较大的发送功率发送上行数据,提高了数据传输的可靠性。另一方面,在能够表征终端设备的位置的波形为CP-OFDM波形的情况下,采用缩放后的信道发送功率发送上行数据,对于处于非小区边缘的终端设备来说,有利于降低数据传输带来的干扰,同时有利于终端设备降低功耗。
情况3
根据信道发送功率和DCI格式确定该实际发送功率。
在这种情况下,该DCI格式为第一DCI格式,确定的实际发送功率p t>(N/M)×p p,其中,该第一DCI也可以称为上文所述的紧凑的DCI格式,紧凑的DCI格式可以是DCI格式0_0;若该DCI格式为第二DCI格式(例如,DCI格式0_1时),则确定的实际发送功率p t=(N/M)×p p,即,实际发送功率基于现有技术确定。和上面情况1、2类似,这里也可以是一个判断的过程,也可以是确定的过程。
通常情况下,终端设备检测到的DCI格式是网络设备根据终端设备是否处于小区边缘而发送给终端设备的。例如,若DCI格式为第一DCI格式(例如,DCI格式0_0),则表明终端设备大概率处于小区边缘,或者,终端设备处于功率受限状态(即传输性能会由于功率提升而提升),因此,需要提升发送功率,该实际发送功率p t>(N/M)×p p;若DCI格式第二DCI格式(例如,DCI格式0_1),则表明终端设备大概率处于小区中心,或者,终端设备不处于功率受限状态,因此,不需要提升发送功率,实际发送功率p t=(N/M)×p p,不仅节省终端设备的发送功率,也避免了不必要的功率提升带来的上行干扰。
关于终端设备获取DCI格式的方式,网络设备通过高层信令指示控制信息配置参数,该控制信息配置参数包含承载DCI信令的时频码资源,以及终端设备对该DCI的检测方法,检测方法包含检测周期、检测次数、需要检测的DCI格式等。其中,对于某一个DCI信令,网络设备可以配置多个需要检测的DCI格式,终端设备在每个DCI检测时刻均需要尝试该多个DCI格式,通过盲检测(Blind Detection)确定当前DCI信令采用的DCI格 式。
在提升发送功率的方式(即,p t>(N/M)×p p)中,为了更好地提高数据的传输可靠性,在一种可能的实现方式中,该实际发送功率等于该信道发送功率。
这种情况下,若该DCI格式为第一DCI格式(例如,DCI格式0_0),则终端设备不执行功率缩放操作,该实际发送功率等于该信道发送功率,使用该信道发送功率发送上行数据;若该DCI格式为第二DCI格式(例如,DCI格式0_1),则终端设备执行功率缩放操作,将该信道发送功率缩放后的功率即为该实际发送功率,该实际发送功率p t=(N/M)×p p
下面,针对该实际发送功率等于该信道发送功率的情况,对该N个天线端口中每个天线端口的发送功率进行说明,同时,对关联的预编码矩阵的幅度量化值进行说明。
N不同,每个天线端口的发送功率不同,每个天线端口的发送功率具体如下:
N=1,该N个天线端口中一个天线端口的发送功率为p 0=p p;或,
N=2,该N个天线端口中一个天线端口的发送功率为p 0=0.5p p
其中,该N个天线端口中一个天线端口的发送功率满足上述条件,该N个天线端口中每个天线端口的发送功率也满足上述条件。
同理,N=1可以适用的场景和N=2可以适用的场景可以参考情况1中N=1和N=2时适用的场景,并且,N=1的场景下对第一上行数据进行预编码的预编码矩阵的幅度量化值λ=1的描述可以参考情况1的相关描述,N=2的场景下对第一上行数据进行预编码的预
编码矩阵的幅度量化值
Figure PCTCN2019108251-appb-000023
的描述可以参考情况1的相关描述,为了简洁,此处不再赘述。
这里,需要说明的是,在传输参数包括用于指示DCI格式的参数的情况下,N=2的情况可以适用于M=4、预编码矩阵为部分相干能力的预编码矩阵、传输层数为1的场景。
不过,为了便于理解,表8描述了实际发送功率为信道发送功率时不同场景下的DCI格式和预编码矩阵的幅度量化值。
表8
Figure PCTCN2019108251-appb-000024
本申请实施例提供的传输数据的方法,一方面,在能够表征终端设备的位置的DCI格式为多个用于调度上行数据的DCI格式中包括的比特数最少的DCI格式(例如,第一DCI格式)的情况下,通过提升实际发送功率,使得处于小区边缘的终端设备能够使用较大的发送功率发送上行数据,提高了数据传输的可靠性。另一方面,在能够表征终端设备的位置的DCI格式不是该第一DCI格式的情况下,采用缩放后的信道发送功率发送上行数据,对于处于非小区边缘的终端设备来说,有利于降低数据传输带来的干扰,同时有利于终端设备降低功耗。
情况4
根据信道发送功率和MCS确定该实际发送功率。
在这种情况下,MCS的调制方式为BPSK或QPSK,确定的实际发送功率p t>(N/M)×p p;若MCS的调制方式为其他调制方式(例如,16QAM或64QAM),则确定的实际发送功率p t=(N/M)×p p,即,实际发送功率基于现有技术确定。和上面情况1-3类似,这里也可以是一个判断的过程,也可以是确定的过程。
通常情况下,MCS中的调制方式中的调制阶数低,例如,BPSK或QPSK,表示信道质量差,表明终端设备大概率处于小区边缘,或者,终端设备处于功率受限状态,因此,需要提升发送功率,该实际发送功率p t>(N/M)×p p;MCS中的调制方式中的调制阶数高,例如,16QAM或64QAM,表示信道质量好,表明终端设备大概率处于小区中心,或者,终端设备不处于功率受限状态,因此,不需要提升发送功率,实际发送功率p t=(N/M)×p p,不仅节省终端设备的发送功率,也避免了不必要的功率提升带来的上行干扰。
关于终端设备获取MCS的方式,网络设备可以通过DCI指示终端设备发送该第一上行数据所采用的MCS,具体可以通过MCS的索引值指示该第一上行数据的所采用的MCS,终端设备可以使用该MCS确定该第一上行数据的编码调制方式,并且确定确定发送该第一上行数据传输采用的实际发送功率。例如,表9所示为DFT-s-OFDM波形的MCS字段,以MCS的调制阶数为4为例,若MCS的调制阶数为4,则可以通过索引值10-16中的任一个索引值指示发送该第一上行数据所采用的MCS。
表9
Figure PCTCN2019108251-appb-000025
Figure PCTCN2019108251-appb-000026
在提升发送功率的方式(即,p t>(N/M)×p p)中,为了更好地提高数据的传输性能,在一种可能的实现方式中,该实际发送功率等于该信道发送功率。
这种情况下,若MCS的调制方式为BPSK或QPSK,则终端设备不执行功率缩放操作,该实际发送功率等于该信道发送功率,使用该信道发送功率发送上行数据;若MCS的调制方式为其他调制方式(例如,16QAM或64QAM),则终端设备执行功率缩放操作,将该信道发送功率缩放后的功率即为该实际发送功率,该实际发送功率p t=(N/M)×p p
下面,针对该实际发送功率等于该信道发送功率的情况,对该N个天线端口中每个天线端口的发送功率进行说明,同时,对关联的预编码矩阵的幅度量化值进行说明。
N不同,每个天线端口的发送功率不同,每个天线端口的发送功率具体如下:
N=1,该N个天线端口中一个天线端口的发送功率为p 0=p p;或,
N=2,该N个天线端口中一个天线端口的发送功率为p 0=0.5p p
其中,该N个天线端口中一个天线端口的发送功率满足上述条件,该N个天线端口中每个天线端口的发送功率也满足上述条件。
同理,N=1可以适用的场景和N=2可以适用的场景可以参考情况1中N=1和N=2时适用的场景,并且,N=1的场景下对第一上行数据进行预编码的预编码矩阵的幅度量化值λ=1的描述可以参考情况1的相关描述,N=2的场景下对第一上行数据进行预编码的预
编码矩阵的幅度量化值
Figure PCTCN2019108251-appb-000027
的描述可以参考情况1的相关描述,为了简洁,此处不再赘述。
这里,需要说明的是,在传输参数包括MCS情况下,N=2的情况可以适用于M=4、预编码矩阵为部分相干能力的预编码矩阵、传输层数为1的场景。
不过,为了便于理解,表10描述了实际发送功率为信道发送功率时不同场景下的MCS的调制方式和预编码矩阵的幅度量化值。
表10
Figure PCTCN2019108251-appb-000028
Figure PCTCN2019108251-appb-000029
本申请实施例提供的传输数据的方法,一方面,在能够表征终端设备的位置的MCS的调制方式为BPSK或QPSK的情况下,通过提升实际发送功率,使得处于小区边缘的终端设备能够使用较大的发送功率发送上行数据,提高了数据传输的可靠性。另一方面,在能够表征终端设备的位置的MCS的调制方式为16正交幅度调制QAM或64QAM以及更高阶调制方式的情况下,采用缩放后的信道发送功率发送上行数据,对于处于非小区边缘的终端设备来说,有利于降低数据传输带来的干扰,同时有利于终端设备降低功耗。
情况5
根据信道发送功率和功率调整取值确定该实际发送功率。
在这种情况下,终端设备K次获得的功率调整取值满足第二条件,确定的实际发送功率p t>(N/M)×p p;反之,则确定的实际发送功率p t=(N/M)×p p。其中,该第二条件用于确定终端设备处于小区边缘。和上面情况1-4类似,这里也可以是一个判断的过程,也可以是确定的过程。
若K=1,则这次获得的功率调整取值是针对该第一上行数据的功率调整取值,若K>1,则K次获得的功率调整取值中最后一次获得的功率调整取值是针对该第一上行数据的功率调整取值。
例如,以功率调整取值可以通过DCI中的TPC字段指示为例,若K=1,则功率调整取值是针对用于调度该第一上行数据的DCI中的TPC字段所指示的功率调整取值;若K>1,则K次获得的DCI中最后一次获得的DCI是针对该第一上行数据的功率调整取值,自然地,最后一次获得的DCI中的TPC字段指示的功率调整取值也是针对该第一上行数据的。这里,DCI中的TPC字段可以参考上文关于表4的描述,为了简洁,此处不再赘述。
在一种可能的实现方式中,该第二条件为该终端设备K次获得的功率调整取值大于或等于第二阈值。
通常情况下,功率调整取值大,信道质量差,表明此时终端设备大概率处于小区边缘,
因此,需要提升发送功率,该实际发送功率p t>(N/M)×p p;功率调整取值小,信道质
量好,表明此时终端设备大概率处于小区中心,因此,不需要提升发送功率,实际发送功率p t=(N/M)×p p,不仅节省终端设备的发送功率,也避免了不必要的功率提升带来的上行干扰。
其中,若该第二条件为该终端设备K次获得的功率调整取值大于或等于第二阈值,则
该第二阈值等于3dBm,K为大于或等于1的整数。这里的3dBm指的是功率调整取值的累计值。作为示例而非限定,该第二阈值也可以是4dBm,其中,这里的3dBm指的是功率调整取值的绝对值。
应理解,在K>1的情况下,K次获得的功率调整取值可以相同,也可以不同,只要大于或等于该第二阈值即可。例如,该第二阈值等于3dBm,K=2,第一次获得的功率调 整取值为2dBm,第二次获得的功率调整取值为3dBm。
在一种可能的实现方式中,该第二条件具体为该终端设备连续K次获得的功率调整取值都等于该第二阈值。
实际实现中,从实际情况考虑,K=2,即,若连续两次获得的功率调整取值都大于该第二阈值,则表示终端设备处在小区边缘,需要提升发送功率。
在提升发送功率的方式(即,p t>(N/M)×p p)中,为了更好地提高数据的传输性能,在一种可能的实现方式中,该实际发送功率等于该信道发送功率。
这种情况下,若K次获得的功率调整取值满足该第二条件,则终端设备不执行功率缩放操作,该实际发送功率等于该信道发送功率,使用该信道发送功率发送上行数据;若K次获得的功率调整取值不满足该第二条件,则终端设备执行功率缩放操作,将该信道发送功率缩放后的功率即为该实际发送功率,该实际发送功率p t=(N/M)×p p
下面,针对该实际发送功率等于该信道发送功率的情况,对该N个天线端口中每个天线端口的发送功率进行说明,同时,对关联的预编码矩阵的幅度量化值进行说明。
N不同,每个天线端口的发送功率不同,每个天线端口的发送功率具体如下:
N=1,该N个天线端口中一个天线端口的发送功率为p 0=p p;或,
N=2,该N个天线端口中一个天线端口的发送功率为p 0=0.5p p
其中,该N个天线端口中一个天线端口的发送功率满足上述条件,该N个天线端口中每个天线端口的发送功率也满足上述条件。
同理,N=1可以适用的场景和N=2可以适用的场景可以参考情况1中N=1和N=2时适用的场景,并且,N=1的场景下对第一上行数据进行预编码的预编码矩阵的幅度量化值λ=1的描述可以参考情况1的相关描述,N=2的场景下对第一上行数据进行预编码的预
编码矩阵的幅度量化值
Figure PCTCN2019108251-appb-000030
的描述可以参考情况1的相关描述,为了简洁,此处不再赘述。
本申请实施例提供的传输数据的方法,一方面,在终端设备多次获得的能够表征终端设备的位置的功率调整取值满足第二条件的情况下,通过提升实际发送功率,使得处于小区边缘的终端设备能够使用较大的实际发送功率发送上行数据,提高了数据传输的可靠性。另一方面,在终端设备多次获得的能够表征终端设备的位置的功率调整取值不满足第二条件的情况下,采用缩放后的信道发送功率发送上行数据,对于处于非小区边缘的终端设备来说,有利于降低数据传输带来的干扰,同时有利于终端设备降低功耗。
以上对本申请实施例的传输数据的一种方法做了详细介绍,此外,本申请实施例还提供了传输数据的方法100。方法200从另一个实现角度阐述了方案,简单来说,系统或协议规定或网络设备预配置有功率提升后的实际发送功率(即,实际发送功率p t>(N/M)×p p,或者,一个天线端口的发送功率p t=(N/M)×p p)对应的预编码矩阵,网络设备通过自身算法确定终端设备待发送的上行数据所采用的预编码矩阵,通过信息将该预编码矩阵告知终端设备,这样,终端设备可以基于预编码矩阵确定实际发送功率,不需要方法100要基于各种传输参数确定实际发送功率。
下面,结合图4,对本申请实施例的传输数据的方法200做详细介绍。
在S210中,网络设备确定对第一上行数据进行预编码的第一预编码矩阵,该第一预编码矩阵属于预编码矩阵集合中的第一预编码矩阵子集或第二预编码矩阵子集,其中,
基于该第一预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的上 行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送功率p 0>(1/M)×p p,并且,该发送上行数据所采用的天线端口的数量大于或等于1且小于M,基于该第二预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送
功率p 0=(1/M)×p p,M为网络设备配置的用于发送上行数据的天线端口的数量,p p为上行数据的信道发送功率,M为大于1的整数。
具体而言,网络设备可以基于当前上行信道的质量以及其他参数确定终端设备发送第一上行数据所采用的时频资源和传输方案,其中,传输方案包括发送该第一上行数据所采用的预编码矩阵(即,该第一预编码矩阵)。在确定该第一预编码矩阵过程中,网络设备可以从该预编码矩阵集合中的第一预编码矩阵子集或第二预编码矩阵子集中选择一个预编码矩阵,用于终端设备对该第一上行数据进行预编码。
下面,对本申请实施例的预编码矩阵集合做一详细说明。
在本申请实施例中,该第一预编码子集中的一个或多个预编码矩阵对应的都是功率提升后的实际发送功率,具体地,基于该一个或多个预编码矩阵中每个预编码矩阵确定的发送功率中每个天线端口的发送功率p 0>(1/M)×p p。以一个预编码矩阵为例,该预编码矩阵对应的发送上行数据所采用的天线端口为N(由该预编码矩阵的类型决定N),则基于该预编码矩阵确定的实际发送功率p 0>(N/M)×p p;该第二预编码子集中的一个或多个预编码矩阵对应的都是功率未提升的发送功率,具体地,基于该一个或多个预编码矩阵中每个预编码矩阵确定的发送功率中每个天线端口的发送功率p 0=(1/M)×p p。同样,以一个预编码矩阵为例,该预编码矩阵对应的发送上行数据所采用的天线端口为N,则基于该预编码矩阵确定的实际发送功率p t=(N/M)×p p
本申请实施例的预编码集合可以是协议或系统规定的,也可以是网络设备提前配置的,具体实现方式不做任何限定。
由于预编码矩阵的指示最终需要落实在传输层数(例如,上文表1至表3都是具体在天线端口的数量和传输层数上的预编码集合),因此,在预编码集合中的预编码矩阵是用于发送上行数据的传输层数小于或等于L的所有传输层数对应的预编码矩阵,一个传输层数对应一个或多个预编码矩阵,L为终端设备能够支持的最大传输层数,L为大于或等于1的整数。此外,该预编码矩阵集合可以包括非相干能力的预编码矩阵,也可以包括部分相干能力和非相干能力的预编码矩阵,也可以包括完全相干能力的预编码矩阵、部分相干能力的预编码矩阵和非相干能力的预编码矩阵。一个传输层数可以对应预编码集合中的一种或多种类型的预编码矩阵,或者说,一个传输层数对应的一个或多个预编码矩阵可以是不同类型的预编码矩阵。
本申请实施例的预编码矩阵集合可以通过预编码和最大传输层数(precoding information and number of layers)字段指示。表11所示为4个天线端口、波形为CP-OFDM、最大传输层数为2-3的情况下的precoding information and number of layers字段,表12所示为4个天线端口、波形为CP-OFDM、最大传输层数为1的情况下的precoding information and number of layers字段。
应理解,表11和表12中比特域索引值与预编码矩阵的对应关系仅为示例性说明,不应对本申请实施例构成限定。例如,以非相干能力的预编码矩阵为例,比特域索引值11也可以用于指示传输层数为1的预编码矩阵,比特域索引值12也可以用于指示传输层数 为2的预编码矩阵。
实现中,网络设备基于终端设备能够支持的最大传输层数L和支持的预编码矩阵的类型,将小于或等于L的所有传输层数和符合预编码矩阵的类型的预编码矩阵通过高层信令中的Precoding information and number of layers字段(例如,表11或表12)中的比特域索引值指示给终端设备,终端设备基于网络设备通过DCI发送的当前待发送的上行数据的TPMI,从表示具体的天线端口和传输层数的预编码矩阵(例如,表1或表2或表3)中确定TPMI指示的预编码矩阵。例如,若终端设备能够支持的最大传输层数为3、支持的预编码矩阵的类型为非相干能力的预编码矩阵,则网络设备可以通过Precoding information and number of layers字段按照表11中最右边的预编码矩阵与比特域索引值的对应关系将预编码矩阵指示给终端设备,终端设备也按照最右边的预编码矩阵与与比特域索引值的对应关系根据该字段指示的比特值确定预编码矩阵,例如,在确定终端设备发送第一上行数据需要采用比特域索引值为1的预编码矩阵时,可以通过在DCI中携带比特域索引值为1指示该预编码矩阵,终端设备可以基于比特域索引值1在表2中确定TPMI=1指示的预编码矩阵。
表11
Figure PCTCN2019108251-appb-000031
Figure PCTCN2019108251-appb-000032
表12
比特域索引值 部分相干+非相干
0 1层:TPMI=0
1 1层:TPMI=1
3 1层:TPMI=3
4 1层:TPMI=4
11 1层:TPMI=11
12 1层:TPMI=0(幅度量化值为1)
13 1层:TPMI=1(幅度量化值为1)
14 1层:TPMI=2(幅度量化值为1)
15 1层:TPMI=3(幅度量化值为1)
基于表11和表12,对预编码矩阵集合中的第一预编码子集和第二预编码子集进行说明。
在表11中,以最大传输层数L=3为例,对第一预编码子集和第二预编码子集进行说明。
若预编码矩阵集合包括非相干能力的预编码矩阵,则,比特域索引值11-15用于指示第一预编码子集中的非相干能力的预编码矩阵,传输层数为1或2,其余比特域索引值用于指示第二预编码子集中的非相干能力的预编码矩阵。若预编码矩阵集合包括部分相干能力的预编码矩阵和非相干能力的预编码矩阵,则,比特域索引值11、30、31用于指示第一预编码子集中的非相干能力的预编码矩阵,传输层数为1,其余比特域索引值用于指示第二预编码子集中的部分相干能力或非相干能力的预编码矩阵。若预编码矩阵集合包括部分完全相干能力的预编码矩阵、部分相干能力的预编码矩阵和非相干能力的预编码矩阵,则,比特域索引值11、30、31、60-63用于指示第一预编码子集中的非相干能力的预编码矩阵,传输层数为1或2,其余比特域索引值用于指示第二预编码子集中的预编码矩阵。
在表12中,最大传输层数L=1,预编码矩阵集合包括部分相干能力的预编码矩阵和非相干能力的预编码矩阵,比特域索引值12-15指示的预编码矩阵是第一预编码子集中的非相干能力的预编码矩阵,传输层数为1,其余比特域索引值指示的预编码矩阵是第二预编码子集中的预编码矩阵。
需要说明的是,本申请实施例的预编码矩阵集合中添加了第一预编码矩阵子集,在由具体的天线端口和传输层数的预编码矩阵构成的码本中可以相应添加或不添加对应的预编码矩阵。对于在码本中不添加该第一预编码子集对应的预编码矩阵的情况,以表12中比特域索引值12指示的TPMI=0对应的幅度量化值为1的预编码矩阵为例,终端设备可以基于将表2中TPMI=0的幅度量化值修改为1后的预编码矩阵确定为实际使用的预编码矩阵。对于在码本中添加该第一预编码子集对应的预编码矩阵的情况,可以使用其他比特值作为预编码矩阵的TPMI索引值,同样以表12为例,比特域索引值12可以对应1层传输、TPMI=12(幅度量化值为1)的预编码矩阵,将TPMI=12添加值表2中。其中,表2中的TPMI=12和TPMI=0指示的预编码矩阵的相位相同,仅是幅度量化值的不同。
在提升发送功率的方式中,为了更好地提高数据的传输性能,在一种可能的实现方式中,基于该第一预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的实际发送功率等于上行数据的信道发送功率。
下面,针对基于第一预编码子集中的一个或多个预编码矩阵中每个预编码矩阵确定的实际发送功率等于该信道发送功率的情况,对发送上行数据所采用的天线端口中每个天线端口的发送功率进行说明,同时,对关联的预编码矩阵的幅度量化值进行说明。
基于该第一预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的发送功率具体满足以下条件:
该发送上行数据所采用的天线端口的数量等于1,一个天线端口的发送功率为p 0=p p;或,
该发送上行数据所采用的天线端口的数量等于2,一个天线端口的发送功率为 p 0=0.5p p
应理解,一个天线端口的发送功率满足上述条件,发送上行数据所采用的天线端口中每个天线端口的发送功率也满足上述条件。
上文描述了实际发送功率和预编码矩阵的关系,其中,一个天线端口的发送功率p 0=(λ 2×l)×p p,λ表示幅度量化值,l表示一个天线端口被占用的传输层数,或者说,使用同一个天线端口发送数据的传输层数。因此,若发送上行数据所采用的天线端口的数量等于1,则λ 2×l=1;若发送上行数据所采用的天线端口的数量等于2,则
Figure PCTCN2019108251-appb-000033
下面,基于发送上行数据所采用的天线端口的数量的不同取值对应的不同场景,说明实际发送功率对应的预编码矩阵的幅度量化值。
发送上行数据所采用的天线端口的数量等于1的情况可以具体为下述场景:预编码矩阵为非相干能力的预编码矩阵,传输层数为1,M不做限定。这种场景中,l=1,则幅度量化值λ=1。一个天线端口的发送功率即为信道发送功率。
发送上行数据所采用的天线端口的数量等于2的情况可以具体为下述两种场景:M=4,预编码矩阵为非相干能力的预编码矩阵,传输层数为2;或者,M=4,预编码矩阵为部分
相干能力的预编码矩阵,传输层数为1。在这两种场景中,l=1,则幅度量化值
Figure PCTCN2019108251-appb-000034
基于上述分析可以看出,从预编码矩阵的角度也可以描述本申请实施例的第一预编码子集:
该第一预编码矩阵子集中每个预编码矩阵满足以下条件:
该发送上行数据所采用的天线端口的数量等于1,该第一预编码矩阵子集中每个预编码矩阵的幅度量化值为1,
该发送上行数据所采用的天线端口的数量等于2,该第一预编码矩阵子集中每个预编码矩阵的幅度量化值为
Figure PCTCN2019108251-appb-000035
下面,对上述两种幅度量化值对应于表11和表12包括的第一预编码子集进行说明。
首先,在表11中,以最大传输层数L=3为例,对第一预编码子集进行说明。
若预编码矩阵集合包括非相干能力的预编码矩阵,则,比特索引值12-15用于指示幅度量化值为1的非相干能力的预编码矩阵,传输层数为1,比特索引值11用于指示幅度量化值为
Figure PCTCN2019108251-appb-000036
的非相干能力的预编码矩阵,传输层数为2。若预编码矩阵集合包括部分相干能
力的预编码矩阵和非相干能力的预编码矩阵,则,比特域索引值11、30、31用于指示幅度量化值为1的非相干能力的预编码矩阵,传输层数为1。若预编码矩阵集合包括部分完全相干能力的预编码矩阵、部分相干能力的预编码矩阵和非相干能力的预编码矩阵,则,比特
域索引值11、30、31用于指示幅度量化值为
Figure PCTCN2019108251-appb-000037
的非相干能力的预编码矩阵,传输层数
为2,比特域索引值60-63指示幅度量化值为1的非相干能力的预编码矩阵,传输层数为1。
在表12中,比特域索引值12-15用于指示幅度量化值为1的非相干能力的预编码矩阵。
如上文所述,预编码矩阵包括相位和幅度量化值,在本申请实施例的一种可能的实现方式中,该第一预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵的相位属于该第二预编码矩阵子集中包括的预编码矩阵的相位。
其中,两个子集中相位相同的两个预编码矩阵的类型是相同的。
例如,以表12为例,第一预编码子集中的4个预编码矩阵都是传输层为1、非相干能力的预编码矩阵,该4个预编码矩阵的相位属于比特域索引值0-11指示的第二预编码矩阵子集中预编码矩阵的相位。具体地,比特域索引值0指示的TPMI=0的预编码矩阵的相位与比特域索引值12指示的TPMI=0的预编码矩阵的相位相同,比特域索引值1指示的TPMI=1的预编码矩阵的相位与比特域索引值13指示的TPMI=1的预编码矩阵的相位相同,比特域索引值2指示的TPMI=2的预编码矩阵的相位与比特域索引值14指示的TPMI=2的预编码矩阵的相位相同,比特域索引值3指示的TPMI=3的预编码矩阵的相位与比特域索引值15指示的TPMI=3的预编码矩阵的相位相同。
由于预编码矩阵都是通过比特域索引值指示的,实现中,会基于预编码矩阵集合中包括的预编码矩阵的数量确定占用的比特数,例如,比特数为N,则N个比特数可以指示2 n个预编码矩阵,但是,实际中有可能会剩余一些比特值。由于第一预编码矩阵子集中预编码矩阵的相位属于该第二预编码子集中预编码矩阵的相位,意味着,第一预编码子集的数量少,因此,第一预编码子集中的预编码矩阵可以通过预编码矩阵集合中剩余的比特值来指示,可以在不改变现有的比特数且不影响现有码字选择灵活度的前提下,利用保留字段指示调整了幅度量化值的预编码矩阵。
例如,以表11中的最大传输层数L=3、非相干能力的预编码矩阵为例,现有技术中,比特域索引值0-11指示的都是第二预编码矩阵子集中的预编码矩阵,比特域索引值11指示的是4层传输对应的预编码矩阵,12-15都是剩余比特值,若L=3,则将4层传输的预编码矩阵删除,使用比特域索引值11指示第一预编码子集中的2层传输对应的预编码矩阵,使用剩余的比特域索引值12-15指示第一预编码子集中的1层传输对应的预编码矩阵。
在S220中,该网络设备向该终端设备发送用于指示该第一预编码矩阵的指示信息。该指示信息即为上文所述的TPMI。
在S230中,该终端设备根据该第一预编码矩阵和该第一上行数据的信道发送功率,确定该第一上行数据的实际发送功率。
也就是说,该终端设备利用预编码矩阵的幅度量化值和实际发送功率之间的关系,基于预编码矩阵的幅度量化值和该信道发送功率确定该实际发送功率,具体确定实际发送功率的描述可以参考上述的相关描述,为了简洁,此处不再赘述。
在S240中,该终端设备使用该实际发送功率,发送该第一上行数据。
因此,本申请实施例的传输数据的方法,通过在预编码集合中设置第一预编码子集和第二预编码子集,其中,基于第一预编码矩阵子集中的预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送功率p 0>(1/M)×p p,并且,发送上行数据所采用的天线端口的数量大于或等于1且小于M,基于第二预编码矩阵子集的预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送功率p 0=(1/M)×p p,可以使得网络设备可以从两个子集中确定待发送的上行数据采用的预编码矩阵,也就是可以灵活确定待发送的上行数据的实际发送功率,从而提升传数据的传输可靠性。
以上,结合图1至图4详细描述了本申请实施例提供的传输数据的方法,下面,结合图5至图8描述本申请实施例提供的传输数据的装置,方法实施例所描述的技术特征同样适用于以下装置实施例。
图5示出了本申请实施例提供的传输数据的装置300的示意性框图。如图5所示,该装置300包括:
处理单元310,用于确定第一上行数据的信道发送功率;
所述处理单元310还用于,根据所述信道发送功率和传输参数,确定所述第一上行数据的实际发送功率,所述实际发送功率小于或等于所述信道发送功率,其中,所述传输参数包括以下一个或多个:
功率余量,所述功率余量表示所述装置允许的最大发送功率和所述信道发送功率的差值,所述信道发送功率小于或等于所述装置允许的最大发送功率,或,
发送所述第一上行数据所采用的波形,或,
用于调度所述第一上行数据的下行控制信息DCI格式,或,
发送所述第一上行数据所采用的调制和编码方案MCS,或,
发送所述第一上行数据的所采用的功率调整取值;
发送单元320,用于使用所述实际发送功率,发送所述第一上行数据。
在一种可能的实现方式中,N小于M,M为网络设备配置的用于发送所述第一上行数据的天线端口的数量,N为M个天线端口中发送所述第一上行数据所采用的非零功率的天线端口的数量,N为大于或等于1的整数,M为大于1的整数。
在一种可能的实现方式中,所述传输参数包括所述功率余量;以及,
所述功率余量满足第一条件,所述实际发送功率p t>(N/M)×p p,p p为所述信道发送功率。
因此,本申请实施例提供的传输数据的装置,在能够表征终端设备的位置的功率余量满足第一条件的情况下,通过提升实际发送功率,使得处于小区边缘的终端设备能够使用较大的发送功率发送上行数据,提高了数据传输的可靠性。
在一种可能的实现方式中,所述第一条件为所述功率余量大于或等于第一阈值;以及,
在N=1,M=4的情况下,所述第一阈值等于6dBm;或,
在N=2,M=4的情况下,所述第一阈值等于3dBm;或,
在N=1,M=2的情况下,所述第一阈值等于3dBm。
在一种可能的实现方式中,所述传输参数包括所述发送所述第一上行数据所采用的波形;以及,
所述波形为离散傅里叶变化扩展正交频分复用多址DFT-s-OFDM波形,所述实际发送功率p t>(N/M)×p p,p p为所述信道发送功率。
在一种可能的实现方式中,所述传输参数包括所述发送所述第一上行数据所采用的下行控制信息DCI格式;以及,
所述DCI格式为第一DCI格式,所述实际发送功率p t>(N/M)×p p,所述第一DCI格式为多种用于调度上行数据的DCI格式中包括的比特数最少的DCI格式,p p为所述信道发送功率。
在一种可能的实现方式中,所述传输参数包括所述发送所述第一上行数据所采用的调 制和编码方案MCS;以及,
所述MCS的调制方式为二进制相移键控BPSK或正交相移键控QPSK,所述实际发送功率p t>(N/M)×p p,p p为所述信道发送功率。
在一种可能的实现方式中,所述传输参数包括所述发送所述第一上行数据所采用的功率调整取值;以及,
所述处理单元K次获得的功率调整取值满足第二条件,所述实际发送功率p t>(N/M)×p p,p p为所述信道发送功率,K为大于或等于1的整数。
在一种可能的实现方式中,所述第二条件为所述处理单元K次获得的功率调整取值大于或等于第二阈值,所述第二阈值等于3dBm。
在一种可能的实现方式中,所述第二条件具体为所述处理单元连续K次获得的功率调整取值都等于所述第二阈值,K为大于1的整数。
在一种可能的实现方式中,所述实际发送功率等于所述信道发送功率。
在一种可能的实现方式中,N=1,所述N个天线端口中一个天线端口的发送功率为p 0=p p;或,
N=2,所述N个天线端口中一个天线端口的发送功率为p 0=0.5p p
在一种可能的实现方式中,所述处理单元310还用于:
将所述实际发送功率平均分配给用于发送所述第一上行数据的N个天线端口。
因此,本申请实施例提供的传输数据的装置,该装置基于信道发送功率和各种能够表征终端设备是否处于小区边缘的传输参数确定上行数据的实际发送功率,可以灵活调整上行数据的实际发送功率,进而提高数据的传输可靠性。
该传输数据的装置300可以对应(例如,可以配置于或本身即为)上述方法100中描述的终端设备,并且,该传输数据的装置300中各模块或单元分别用于执行上述方法100中终端设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本申请实施例中,该装置300可以为终端设备,此种情况下,该装置300可以包括:处理器、发送器和接收器,处理器、发送器和接收器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器、发送器和接收器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制发送器发送信息或接收器接收信号。
此种情况下,图5所示的装置300中的处理单元310也可以对应该处理器,图,图5所示的装置300中的发送单元320可以对应该发送器。另一种实施方式中,发送器和接收器可以由同一个部件收发器实现。
在本申请实施例中,该装置300可以为安装在终端设备中的芯片(或者说,芯片系统),此情况下,该装置300可以包括:处理器和输入输出接口,处理器可以通过输入输出接口与网络设备的收发器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器发送信息或信号。
此情况下,图5所示的装置300中的处理单元310可以对应该处理器,图5所示的装置300中的发送单元320可以对应该输出接口。
图6示出了本申请实施例提供的传输数据的装置400的示意性框图。如图6所示,该装置400包括:
处理单元410,用于确定第一上行数据的信道发送功率;
所述处理单元410还用于,根据所述信道发送功率和传输参数,确定所述第一上行数据的实际发送功率,所述实际发送功率小于或等于所述信道发送功率,其中,所述传输参数包括以下一个或多个:
功率余量,所述功率余量表示终端设备允许的最大发送功率和所述信道发送功率的差值,所述信道发送功率小于或等于所述终端设备允许的最大发送功率,或,
发送所述第一上行数据所采用的波形,或,
用于调度所述第一上行数据的下行控制信息DCI格式,或,
发送所述第一上行数据所采用的调制和编码方案MCS,或,
发送所述第一上行数据所采用的功率调整取值;
接收单元420,用于接收所述第一上行数据。
在一种可能的实现方式中,N小于M,M为网络设备配置的用于发送所述第一上行数据的天线端口的数量,N为M个天线端口中发送所述第一上行数据所采用的非零功率的天线端口的数量,N为大于或等于1的整数,M为大于1的整数。
在一种可能的实现方式中,所述传输参数包括所述功率余量;以及,
所述功率余量满足第一条件,所述实际发送功率p t>(N/M)×p p,p p为所述信道发送功率。
其中,所述第一条件用于确定终端设备处于小区边缘。
在一种可能的实现方式中,所述功率余量不满足第一条件,所述实际发送功率p t=(N/M)×p p
一种可能的实现方式中,所述第一条件为所述功率余量大于或等于第一阈值;以及,
在N=1,M=4的情况下,所述第一阈值等于6dBm;或,
在N=2,M=4的情况下,所述第一阈值等于3dBm;或,
在N=1,M=2的情况下,所述第一阈值等于3dBm。
在一种可能的实现方式中,所述传输参数包括所述发送所述第一上行数据所采用的波形;以及,
所述波形为离散傅里叶变化扩展正交频分复用多址DFT-s-OFDM波形,所述实际发送功率p t>(N/M)×p p,p p为所述信道发送功率。
在一种可能的实现方式中,所述波形为CP-OFDM波形,所述实际发送功率p t=(N/M)×p p
在一种可能的实现方式中,所述传输参数包括所述发送所述第一上行数据所采用的下行控制信息DCI格式;以及,
所述DCI格式为第一DCI格式,所述实际发送功率p t>(N/M)×p p,所述第一DCI格式为多种用于调度上行数据的DCI格式中包括的比特数最少的DCI格式,p p为所述信道发送功率。
在一种可能的实现方式中,所述DCI格式为第二DCI格式,所述实际发送功率p t=(N/M)×p p,所述第二DCI格式为多个用于调度上行数据的DCI格式中除所述第一DCI格式以外的DCI格式。
在一种可能的实现方式中,所述传输参数包括所述发送所述第一上行数据所采用的调 制和编码方案MCS;以及,
所述MCS的调制方式为二进制相移键控BPSK或正交相移键控QPSK,所述实际发送功率p t>(N/M)×p p,p p为所述信道发送功率。
在一种可能的实现方式中,所述MCS的调制方式为16正交幅度调制QAM或,所述实际发送功率p t=(N/M)×p p
在一种可能的实现方式中,所述传输参数包括所述发送所述第一上行数据所采用的功率调整取值;以及,
所述终端设备K次获得的功率调整取值满足第二条件,所述实际发送功率p t>(N/M)×p p,p p为所述信道发送功率,K为大于或等于1的整数。
其中,所述第二条件用于确定终端设备处于小区边缘。
在一种可能的实现方式中,所述终端设备K次获得的功率调整取值不满足第二条件,则所述实际发送功率p t=(N/M)×p p
在一种可能的实现方式中,所述第二条件为所述终端设备K次获得的功率调整取值大于或等于第二阈值,所述第二阈值等于3dBm。
在一种可能的实现方式中,所述第二条件具体为所述终端设备连续K次获得的功率调整取值都等于所述第二阈值,K为大于1的整数。
在一种可能的实现方式中,所述实际发送功率等于所述信道发送功率。
在一种可能的实现方式中,N=1,所述N个天线端口中一个天线端口的发送功率为p 0=p p;或,N=2,所述N个天线端口中一个天线端口的发送功率为p 0=0.5p p
因此,本申请实施例提供的传输数据的装置,在发送上行数据所采用的天线端口的实际数量N小于网络设备配置的用于发送上行数据的天线端口的数量M的情况下,可以通过基于信道发送功率和各种能够表征终端设备是否处于小区边缘的传输参数确定上行数据的实际发送功率,从而,灵活调整上行数据的实际发送功率,进而,提高数据的传输可靠性。同时,便于该装置的调度以及系统的优化。
该传输数据的装置400可以对应(例如,可以配置于或本身即为)上述方法100中描述的网络设备,并且,该传输数据的装置400中各模块或单元分别用于执行上述方法100中网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本申请实施例中,该装置400可以为网络设备,此种情况下,该装置400可以包括:处理器、发送器和接收器,处理器、发送器和接收器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器、发送器和接收器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制发送器发送信息或接收器接收信号。
此种情况下,图6所示的装置400中的处理单元410也可以对应该处理器,图6所示的装置400中的接收单元420可以对应该接收器。在本申请实施例中,该装置400可以为安装在网络设备中的芯片(或者说,芯片系统),此情况下,该装置400可以包括:处理器和输入输出接口,处理器可以通过输入输出接口与网络设备的收发器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器发送信息或信号。
此情况下,图6所示的装置400中的处理单元410可以对应该处理器,图6所示的装置400中的接收单元420可以对应该输入接口。
图7示出了本申请实施例提供的传输数据的装置500的示意性框图。如图7所示,该装置500包括:
接收单元510,用于接收指示信息,所述指示信息用于指示发送第一上行数据所采用的第一预编码矩阵,所述第一预编码矩阵属于预编码矩阵集合中的第一预编码矩阵子集或第二预编码矩阵子集,其中,
基于所述第一预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送功率p 0>(1/M)×p p,并且,所述发送上行数据所采用的天线端口的数量大于或等于1且小于M,基于所述第二预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送功率p 0=(1/M)×p p
M为网络设备配置的用于发送所述第一上行数据的天线端口的数量,M为大于1的整数,p p为上行数据的信道发送功率;
处理单元520,用于根据所述第一预编码矩阵和所述第一上行数据的信道发送功率,确定所述第一上行数据的实际发送功率,所述实际发送功率小于或等于所述第一上行数据的信道发送功率;
发送单元530,用于使用所述实际发送功率,发送所述第一上行数据。
在一种可能的实现方式中,基于所述第一预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的发送功率具体满足以下条件:
所述发送上行数据所采用的天线端口的数量等于1,一个天线端口的发送功率为p 0=p p;或,
所述发送上行数据所采用的天线端口的数量等于2,一个天线端口的发送功率为p 0=0.5p p
在一种可能的实现方式中,所述预编码矩阵集合中每个预编码矩阵包括相位和幅度量化值,所述幅度量化值用于确定上行数据的发送功率,其中,
所述第一预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵的相位属于所述第二预编码矩阵子集中包括的预编码矩阵的相位。
因此,本申请实施例的传输数据的装置,通过在预编码集合中设置第一预编码子集和第二预编码子集,其中,基于第一预编码矩阵子集中的任意一个预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送功率p 0>(1/M)×p p,并且,发送上行数据所采用的天线端口的数量大于或等于1且小于M,基于第二预编码矩阵子集的任意一个预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送功率p 0=(1/M)×p p,可以使得网络设备可以从两个预编码矩阵子集中动态指示待发送的上行数据采用的预编码矩阵,也就是可以灵活确定待发送的上行数据的实际发送功率,从而提升传数据的传输可靠性。
该传输数据的装置500可以对应(例如,可以配置于或本身即为)上述方法200中描述的终端设备,并且,该传输数据的装置500中各模块或单元分别用于执行上述方法200 中终端设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本申请实施例中,该装置500可以为终端设备,此种情况下,该装置500可以包括:处理器、发送器和接收器,处理器、发送器和接收器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器、发送器和接收器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制发送器发送信息或接收器接收信号。
此种情况下,图7所示的装置500中的接收单元510可以对应该接收器,图,7所示的装置500中的处理单元520可以对应该处理器,图7所示的装置500中的发送单元530可以对应该发送器,。另一种实施方式中,发送器和接收器可以由同一个部件收发器实现。
在本申请实施例中,该装置500可以为安装在终端设备中的芯片(或者说,芯片系统),此情况下,该装置500可以包括:处理器和输入输出接口,处理器可以通过输入输出接口与终端设备的收发器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器发送信息或信号。
此情况下,图7所示的装置500中的接收单元510可以对应该输入接口,图7所示的装置500中的处理单元520可以对应该处理器,图7所示的装置500中的发送单元530可以对应该输出接口。
图8示出了本申请实施例提供的传输数据的装置600的示意性框图。如图8所示,该装置600包括:
处理单元610,用于确定对第一上行数据进行预编码的第一预编码矩阵,所述第一预编码矩阵属于预编码矩阵集合中的第一预编码矩阵子集或第二预编码矩阵子集,其中,
基于所述第一预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送功率p 0>(1/M)×p p,并且,所述发送上行数据所采用的天线端口的数量大于或等于1且小于M,基于所述第二预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送功率p 0=(1/M)×p p
M为网络设备配置的用于发送所述第一上行数据的天线端口的数量,M为大于1的整数,p p为上行数据的信道发送功率;
发送单元620,用于发送用于指示所述第一预编码矩阵的指示信息;
接收单元630,用于接收所述第一上行数据。
功在一种可能的实现方式中,基于所述第一预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的发送功率具体满足以下条件:
所述发送上行数据所采用的天线端口的数量等于1,一个天线端口的发送功率为p 0=p p;或,
所述发送上行数据所采用的天线端口的数量等于2,一个天线端口的发送率为p 0=0.5p p
在一种可能的实现方式中,所述预编码矩阵集合中每个预编码矩阵包括相位和幅度量化值,所述幅度量化值用于确定上行数据的发送功率,其中,
所述第一预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵的相位属于 所述第二预编码矩阵子集中包括的预编码矩阵的相位。
因此,本申请实施例的传输数据的装置,通过在预编码集合中设置第一预编码子集和第二预编码子集,其中,基于第一预编码矩阵子集中的任意一个预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送功率p 0>(1/M)×p p,并且,发送上行数据所采用的天线端口的数量大于或等于1且小于M,基于第二预编码矩阵子集的任意一个预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送功率p 0=(1/M)×p p,可以使得该装置可以从两个预编码矩阵子集中动态指示待发送的上行数据采用的预编码矩阵,也就是可以灵活确定待发送的上行数据的实际发送功率,从而提升传数据的传输可靠性。
该传输数据的装置600可以对应(例如,可以配置于或本身即为)上述方法200中描述的网络设备,并且,该传输数据的装置600中各模块或单元分别用于执行上述方法200中网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本申请实施例中,该装置600可以为网络设备,此种情况下,该装置600可以包括:处理器、发送器和接收器,处理器、发送器和接收器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器、发送器和接收器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制发送器发送信息或接收器接收信号。
此种情况下,图8所示的装置600中的处理单元610可以对应该处理器,图8所示的装置600中的发送单元620可以对应该发送器,图8所示的装置600中的接收单元630可以对应该接收器。另一种实施方式中,发送器和接收器可以由同一个部件收发器实现。
在本申请实施例中,该装置600可以为安装在网络设备中的芯片(或者说,芯片系统),此情况下,该装置600可以包括:处理器和输入输出接口,处理器可以通过输入输出接口与网络设备的收发器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器发送信息或信号。
此情况下,图8所示的装置600中的处理单元可以对应该处理器,图8所示的装置600中的发送单元620可以对应该输出接口,图8所示的装置600中的接收单元630可以对应该输入接口
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间 接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (40)

  1. 一种传输数据的方法,其特征在于,所述方法包括:
    终端设备确定第一上行数据的信道发送功率;
    所述终端设备根据所述信道发送功率和传输参数,确定所述第一上行数据的实际发送功率,所述实际发送功率小于或等于所述信道发送功率,其中,所述传输参数包括以下一个或多个:
    功率余量,所述功率余量表示所述终端设备允许的最大发送功率和所述信道发送功率的差值,所述信道发送功率小于或等于所述终端设备允许的最大发送功率,或,
    发送所述第一上行数据所采用的波形,或,
    用于调度所述第一上行数据的下行控制信息DCI格式,或,
    发送所述第一上行数据所采
    用的调制和编码方案MCS,或,
    发送所述第一上行数据的所采用的功率调整取值;
    所述终端设备使用所述实际发送功率,发送所述第一上行数据。
  2. 根据权利要求1所述的方法,其特征在于,N小于M,M为网络设备配置的用于发送所述第一上行数据的天线端口的数量,N为M个天线端口中发送所述第一上行数据所采用的非零功率的天线端口的数量,N为大于或等于1的整数,M为大于1的整数。
  3. 根据权利要求2所述的方法,其特征在于,所述传输参数包括所述功率余量;以及,
    所述功率余量满足第一条件,所述实际发送功率p t>(N/M)×p p,p p为所述信道发送功率。
  4. 根据权利要求3所述的方法,其特征在于,所述第一条件为所述功率余量大于或等于第一阈值;以及,
    在N=1,M=4的情况下,所述第一阈值等于6dBm;或,
    在N=2,M=4的情况下,所述第一阈值等于3dBm;或,
    在N=1,M=2的情况下,所述第一阈值等于3dBm。
  5. 根据权利要求2或3所述的方法,其特征在于,所述传输参数包括所述发送所述第一上行数据所采用的波形;以及,
    所述波形为离散傅里叶变化扩展正交频分复用多址DFT-s-OFDM波形,所述实际发送功率p t>(N/M)×p p,p p为所述信道发送功率。
  6. 根据权利要求2至5中任一项所述的方法,其特征在于,所述传输参数包括所述发送所述第一上行数据所采用的下行控制信息DCI格式;以及,
    所述DCI格式为第一DCI格式,所述实际发送功率p t>(N/M)×p p,所述第一DCI格式为多种用于调度上行数据的DCI格式中包括的比特数最少的DCI格式,p p为所述信道发送功率。
  7. 根据权利要求2至6中任一项所述的方法,其特征在于,所述传输参数包括所述发送所述第一上行数据所采用的调制和编码方案MCS;以及,
    所述MCS的调制方式为二进制相移键控BPSK或正交相移键控QPSK,所述实际发 送功率p t>(N/M)×p p,p p为所述信道发送功率。
  8. 根据权利要求2至7中任一项所述的方法,其特征在于,所述传输参数包括所述发送所述第一上行数据所采用的功率调整取值;以及,
    所述终端设备K次获得的功率调整取值满足第二条件,所述实际发送功率p t>(N/M)×p p,p p为所述信道发送功率,K为大于或等于1的整数。
  9. 根据权利要求8所述的方法,其特征在于,所述第二条件为所述终端设备K次获得的功率调整取值大于或等于第二阈值,所述第二阈值等于3dBm。
  10. 根据权利要求9所述的方法,其特征在于,所述第二条件具体为所述终端设备连续K次获得的功率调整取值都等于所述第二阈值,K为大于1的整数。
  11. 根据权利要求2至10中任一项所述的方法,其特征在于,所述实际发送功率等于所述信道发送功率。
  12. 根据权利要求11所述的方法,其特征在于,
    N=1,所述N个天线端口中一个天线端口的发送功率为p 0=p p;或,
    N=2,所述N个天线端口中一个天线端口的发送功率为p 0=0.5p p
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备将所述实际发送功率平均分配给发送所述第一上行数据所采用的N个天线端口。
  14. 一种传输数据的方法,其特征在于,所述方法包括:
    网络设备确定第一上行数据的信道发送功率;
    所述网络设备根据所述信道发送功率和传输参数,确定所述第一上行数据的实际发送功率,所述实际发送功率小于或等于所述信道发送功率,其中,所述传输参数包括以下一个或多个:
    功率余量,所述功率余量表示所述终端设备允许的最大发送功率和所述信道发送功率的差值,所述信道发送功率小于或等于所述终端设备允许的最大发送功率,或,
    发送所述第一上行数据所采用的波形,或,
    用于调度所述第一上行数据的下行控制信息DCI格式,或,
    发送所述第一上行数据所采用的调制和编码方案MCS,或,
    发送所述第一上行数据所采用的功率调整取值;
    所述网络设备接收所述第一上行数据。
  15. 根据权利要求14所述的方法,其特征在于,N小于M,M为所述网络设备配置的用于发送所述第一上行数据的天线端口的数量,N为M个天线端口中发送所述第一上行数据所采用的非零功率的天线端口的数量,N为大于或等于1的整数,M为大于1的整数。
  16. 一种传输数据的方法,其特征在于,所述方法包括:
    终端设备接收指示信息,所述指示信息用于指示发送第一上行数据所采用的第一预编码矩阵,所述第一预编码矩阵属于预编码矩阵集合中的第一预编码矩阵子集或第二预编码矩阵子集,其中,
    基于所述第一预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发 送功率p 0>(1/M)×p p,并且,所述发送上行数据所采用的天线端口的数量大于或等于1且小于M,基于所述第二预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送功率p 0=(1/M)×p p,M为网络设备配置的用于发送所述第一上行数据的天线端口的数量,M为大于1的整数,p p为上行数据的信道发送功率;
    所述终端设备根据所述第一预编码矩阵和所述第一上行数据的信道发送功率,确定所述第一上行数据的实际发送功率,所述实际发送功率小于或等于所述第一上行数据的信道发送功率;
    所述终端设备使用所述实际发送功率,发送所述第一上行数据。
  17. 根据权利要求16所述的方法,其特征在于,基于所述第一预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的发送功率具体满足以下条件:
    所述发送上行数据所采用的天线端口的数量等于1,一个天线端口的发送功率为p 0=p p;或,
    所述发送上行数据所采用的天线端口的数量等于2,一个天线端口的发送功率为p 0=0.5p p
  18. 根据权利要求16或17所述的方法,其特征在于,所述预编码矩阵集合中每个预编码矩阵包括相位和幅度量化值,所述幅度量化值用于确定上行数据的发送功率,其中,
    所述第一预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵的相位属于所述第二预编码矩阵子集中包括的预编码矩阵的相位。
  19. 一种传输数据的方法,其特征在于,所述方法包括:
    网络设备确定对第一上行数据进行预编码的第一预编码矩阵,所述第一预编码矩阵属于预编码矩阵集合中的第一预编码矩阵子集或第二预编码矩阵子集,其中,
    基于所述第一预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送功率p 0>(1/M)×p p,并且,所述发送上行数据所采用的天线端口的数量大于或等于1且小于M,基于所述第二预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送功率p 0=(1/M)×p p,M为网络设备配置的用于发送所述第一上行数据的天线端口的数量,M为大于1的整数,p p为上行数据的信道发送功率;
    所述网络设备发送用于指示所述第一预编码矩阵的指示信息;
    所述网络设备接收所述第一上行数据。
  20. 一种传输数据的装置,其特征在于,所述装置包括:
    处理单元,用于确定第一上行数据的信道发送功率;
    所述处理单元还用于,根据所述信道发送功率和传输参数,确定所述第一上行数据的实际发送功率,所述实际发送功率小于或等于所述信道发送功率,其中,所述传输参数包括以下一个或多个:
    功率余量,所述功率余量表示所述装置允许的最大发送功率和所述信道发送功率的差值,所述信道发送功率小于或等于所述装置允许的最大发送功率,或,
    发送所述第一上行数据所采用的波形,或,
    用于调度所述第一上行数据的下行控制信息DCI格式,或,
    发送所述第一上行数据所采用的调制和编码方案MCS,或,
    发送所述第一上行数据的所采用的功率调整取值;
    发送单元,用于使用所述实际发送功率,发送所述第一上行数据。
  21. 根据权利要求20所述的装置,其特征在于,
    N小于M,M为网络设备配置的用于发送所述第一上行数据的天线端口的数量,N为M个天线端口中发送所述第一上行数据所采用的非零功率的天线端口的数量,N为大于或等于1的整数,M为大于1的整数。
  22. 根据权利要求21所述的装置,其特征在于,所述传输参数包括所述功率余量;以及,
    所述功率余量满足第一条件,所述实际发送功率p t>(N/M)×p p,p p为所述信道发送功率。
  23. 根据权利要求22所述的装置,其特征在于,所述第一条件为所述功率余量大于或等于第一阈值;以及,
    在N=1,M=4的情况下,所述第一阈值等于6dBm;或,
    在N=2,M=4的情况下,所述第一阈值等于3dBm;或,
    在N=1,M=2的情况下,所述第一阈值等于3dBm。
  24. 根据权利要求21至23中任一项所述的装置,其特征在于,所述传输参数包括所述发送所述第一上行数据所采用的波形;以及,
    所述波形为离散傅里叶变化扩展正交频分复用多址DFT-s-OFDM波形,所述实际发送功率p t>(N/M)×p p,p p为所述信道发送功率。
  25. 根据权利要求21至24中任一项所述的装置,其特征在于,所述传输参数包括所述发送所述第一上行数据所采用的下行控制信息DCI格式;以及,
    所述DCI格式为第一DCI格式,所述实际发送功率p t>(N/M)×p p,所述第一DCI格式为多种用于调度上行数据的DCI格式中包括的比特数最少的DCI格式,p p为所述信道发送功率。
  26. 根据权利要求21至25中任一项所述的装置,其特征在于,所述传输参数包括所述发送所述第一上行数据所采用的调制和编码方案MCS;以及,
    所述MCS的调制方式为二进制相移键控BPSK或正交相移键控QPSK,所述实际发送功率p t>(N/M)×p p,p p为所述信道发送功率。
  27. 根据权利要求21至26中任一项所述的装置,其特征在于,所述传输参数包括所述发送所述第一上行数据所采用的功率调整取值;以及,
    所述处理单元K次获得的功率调整取值满足第二条件,所述实际发送功率
    p t>(N/M)×p p,p p为所述信道发送功率,K为大于或等于1的整数。
  28. 根据权利要求27所述的装置,其特征在于,所述第二条件为所述处理单元K次获得的功率调整取值大于或等于第二阈值,所述第二阈值等于3dBm。
  29. 根据权利要求28所述的装置,其特征在于,所述第二条件具体为所述处理单元连续K次获得的功率调整取值都等于所述第二阈值,K为大于1的整数。
  30. 根据权利要求21至29中任一项所述的装置,其特征在于,所述实际发送功率等于所述信道发送功率。
  31. 根据权利要求30所述的装置,其特征在于,
    N=1,所述N个天线端口中一个天线端口的发送功率为p 0=p p;或,
    N=2,所述N个天线端口中一个天线端口的发送功率为p 0=0.5p p
  32. 根据权利要求20至31中任一项所述的装置,其特征在于,所述处理单元还用于:
    将所述实际发送功率平均分配给发送所述第一上行数据所采用的N个天线端口。
  33. 一种传输数据的装置,其特征在于,所述装置包括:
    处理单元,用于确定第一上行数据的信道发送功率;
    所述处理单元还用于,根据所述信道发送功率和传输参数,确定所述第一上行数据的实际发送功率,所述实际发送功率小于或等于所述信道发送功率,其中,所述传输参数包括以下一个或多个:
    功率余量,所述功率余量表示终端设备允许的最大发送功率和所述信道发送功率的差值,所述信道发送功率小于或等于所述终端设备允许的最大发送功率,或,
    发送所述第一上行数据所采用的波形,或,
    用于调度所述第一上行数据的下行控制信息DCI格式,或,
    发送所述第一上行数据所采用的调制和编码方案MCS,或,
    发送所述第一上行数据所采用的功率调整取值;
    接收单元,用于接收所述第一上行数据。
  34. 根据权利要求33所述的装置,其特征在于,
    N小于M,M为网络设备配置的用于发送所述第一上行数据的天线端口的数量,N为M个天线端口中发送所述第一上行数据所采用的非零功率的天线端口的数量,N为大于或等于1的整数,M为大于1的整数。
  35. 一种传输数据的装置,其特征在于,所述装置包括:
    接收单元,用于接收指示信息,所述指示信息用于指示发送第一上行数据所采用的第一预编码矩阵,所述第一预编码矩阵属于预编码矩阵集合中的第一预编码矩阵子集或第二预编码矩阵子集,其中,
    基于所述第一预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送功率p 0>(1/M)×p p,并且,所述发送上行数据所采用的天线端口的数量大于或等于1且小于M,基于所述第二预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送功率p 0=(1/M)×p p
    M为网络设备配置的用于发送所述第一上行数据的天线端口的数量,M为大于1的整数,p p为上行数据的信道发送功率;
    处理单元,用于根据所述第一预编码矩阵和所述第一上行数据的信道发送功率,确定所述第一上行数据的实际发送功率,所述实际发送功率小于或等于所述第一上行数据的信道发送功率;
    发送单元,用于使用所述实际发送功率,发送所述第一上行数据。
  36. 根据权利要求35所述的装置,其特征在于,基于所述第一预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的发送功率具体满足以下条件:
    所述发送上行数据所采用的天线端口的数量等于1,一个天线端口的发送功率为p 0=p p;或,
    所述发送上行数据所采用的天线端口的数量等于2,一个天线端口的发送功率为p 0=0.5p p
  37. 根据权利要求35或36所述的装置,其特征在于,所述预编码矩阵集合中每个预编码矩阵包括相位和幅度量化值,所述幅度量化值用于确定上行数据的发送功率,其中,
    所述第一预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵的相位属于所述第二预编码矩阵子集中包括的预编码矩阵的相位。
  38. 一种传输数据的装置,其特征在于,所述装置包括:
    处理单元,用于确定对第一上行数据进行预编码的第一预编码矩阵,所述第一预编码矩阵属于预编码矩阵集合中的第一预编码矩阵子集或第二预编码矩阵子集,其中,
    基于所述第一预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送功率p 0>(1/M)×p p,并且,所述发送上行数据所采用的天线端口的数量大于或等于1且小于M,基于所述第二预编码矩阵子集中一个或多个预编码矩阵中的每个预编码矩阵确定的上行数据的发送功率满足以下条件:发送上行数据所采用的天线端口中一个天线端口的发送功率p 0=(1/M)×p p
    M为网络设备配置的用于发送所述第一上行数据的天线端口的数量,M为大于1的整数,p p为上行数据的信道发送功率;
    发送单元,用于发送用于指示所述第一预编码矩阵的指示信息;
    接收单元,用于接收所述第一上行数据。
  39. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至19中任意一项所述的方法。
  40. 一种芯片系统,其特征在于,所述芯片系统包括:
    存储器:用于存储指令;
    处理器,用于从所述存储器中调用并运行所述指令,使得安装有所述芯片系统的通信设备执行如权利要求1至19中任意一项所述的方法。
PCT/CN2019/108251 2018-09-27 2019-09-26 传输数据的方法和装置 WO2020063777A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021517573A JP7319360B2 (ja) 2018-09-27 2019-09-26 データ伝送方法及び装置
BR112021006062-6A BR112021006062A2 (pt) 2018-09-27 2019-09-26 método e aparelho de transmissão de dados
EP19865564.9A EP3852464A4 (en) 2018-09-27 2019-09-26 DATA TRANSMISSION PROCESS AND DEVICE
US17/214,347 US20210227472A1 (en) 2018-09-27 2021-03-26 Data transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811133863.0 2018-09-27
CN201811133863.0A CN110958699B (zh) 2018-09-27 2018-09-27 传输数据的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/214,347 Continuation US20210227472A1 (en) 2018-09-27 2021-03-26 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2020063777A1 true WO2020063777A1 (zh) 2020-04-02

Family

ID=69953319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108251 WO2020063777A1 (zh) 2018-09-27 2019-09-26 传输数据的方法和装置

Country Status (6)

Country Link
US (1) US20210227472A1 (zh)
EP (1) EP3852464A4 (zh)
JP (1) JP7319360B2 (zh)
CN (2) CN115580327A (zh)
BR (1) BR112021006062A2 (zh)
WO (1) WO2020063777A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114884553A (zh) * 2021-05-17 2022-08-09 银河航天(北京)网络技术有限公司 卫星通信系统移动性管理的方法及管理波位参数集的方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111108799B (zh) * 2017-11-22 2022-02-01 中兴通讯股份有限公司 一种高效控制信令方法及系统
CN112369084B (zh) * 2018-06-27 2022-04-05 华为技术有限公司 一种功率分配方法及相关设备
CN115580327A (zh) * 2018-09-27 2023-01-06 华为技术有限公司 传输数据的方法和装置
EP3925181B1 (en) * 2019-02-14 2023-08-16 Telefonaktiebolaget LM Ericsson (publ) Multi-layer harq transmission technique
CN118678372A (zh) * 2020-06-16 2024-09-20 荣耀终端有限公司 调整数据流数量的方法、终端及mimo系统
CN116806437A (zh) * 2020-12-03 2023-09-26 日本电气株式会社 用于通信的方法、设备和计算机可读介质
CN115529107A (zh) * 2021-06-25 2022-12-27 华为技术有限公司 一种调制和编码方案mcs表格确定方法及装置
US12119904B2 (en) 2021-09-21 2024-10-15 Samsung Electronics Co., Ltd. Method and apparatus for codebook based UL transmission
CN113993200B (zh) * 2021-12-27 2022-03-18 四川创智联恒科技有限公司 一种5gnr下行信道功率调整方法
WO2024063946A1 (en) * 2022-09-21 2024-03-28 Apple Inc. Technologies for precoding matrix with phase calibration error compensation
WO2024156107A1 (zh) * 2023-01-29 2024-08-02 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105557055A (zh) * 2013-09-13 2016-05-04 交互数字专利控股公司 空闲信道评估(cca)阈值适配方法
CN105580452A (zh) * 2013-09-27 2016-05-11 瑞典爱立信有限公司 用于功率控制处理的方法和装置
EP3313129A1 (en) * 2016-10-21 2018-04-25 ASUSTek Computer Inc. Method and apparatus for power headroom report for beam operation in a wireless communication system

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080151794A1 (en) * 2006-12-21 2008-06-26 Nokia Corporation Apparatus, method, and computer program product for reducing uplink interference
CN101902750B (zh) * 2009-05-26 2012-12-05 电信科学技术研究院 一种调整功率参数值的方法和设备
TR201904391T4 (tr) 2009-06-26 2019-05-21 Sun Patent Trust Radyo iletişim aparatları ve radyo iletişim yöntemi.
EP2317815A1 (en) * 2009-11-02 2011-05-04 Panasonic Corporation Power-limit reporting in a communication system using carrier aggregation
WO2012106832A1 (en) 2011-02-07 2012-08-16 Nokia Siemens Networks Oy Scaling transmit power in multi-antenna wireless systems
US20140036967A1 (en) 2012-08-03 2014-02-06 Qualcomm Incorporated System and method for uplink multiple input multiple output transmission
US9955433B2 (en) 2012-08-13 2018-04-24 Sharp Kabushiki Kaisha Wireless communication apparatus, wireless communication method, program, and integrated circuit
US9521655B2 (en) 2013-07-30 2016-12-13 Qualcomm Incorporated Method and apparatus for avoiding power scaling in uplink data transmission
JP6154857B2 (ja) 2015-06-30 2017-06-28 ソフトバンク株式会社 無線通信中継装置及び無線通信中継方法
CN107615814B (zh) * 2015-08-10 2020-09-08 华为技术有限公司 上行数据传输的方法、基站和终端
WO2017195815A1 (ja) * 2016-05-12 2017-11-16 シャープ株式会社 基地局装置、端末装置およびその通信方法
CN107690181B (zh) * 2016-08-05 2019-09-17 电信科学技术研究院 一种短传输时间间隔传输的功率控制方法及装置
KR102434078B1 (ko) * 2018-02-23 2022-08-18 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 전력 헤드룸 리포팅 방법 및 장치, 컴퓨터 저장 매체
CN110324784B (zh) * 2018-03-29 2021-02-19 维沃移动通信有限公司 通信范围信息的处理方法及终端
JP2019186676A (ja) * 2018-04-05 2019-10-24 シャープ株式会社 基地局装置および端末装置
JP7064931B2 (ja) * 2018-04-05 2022-05-11 シャープ株式会社 基地局装置および端末装置
JP2019193194A (ja) * 2018-04-27 2019-10-31 シャープ株式会社 基地局装置および端末装置
JP7066503B2 (ja) * 2018-04-27 2022-05-13 シャープ株式会社 基地局装置および端末装置
CN115580327A (zh) * 2018-09-27 2023-01-06 华为技术有限公司 传输数据的方法和装置
US20230276379A1 (en) * 2020-08-07 2023-08-31 Telefonaktiebolaget Lm Ericsson (Publ) Indication of Reduced Output Power in Beam Report

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105557055A (zh) * 2013-09-13 2016-05-04 交互数字专利控股公司 空闲信道评估(cca)阈值适配方法
CN105580452A (zh) * 2013-09-27 2016-05-11 瑞典爱立信有限公司 用于功率控制处理的方法和装置
EP3313129A1 (en) * 2016-10-21 2018-04-25 ASUSTek Computer Inc. Method and apparatus for power headroom report for beam operation in a wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Remaining Issues on PT-RS", 3GPP TSG RAN WG1 MEETING #93 R1-1806512, 25 May 2018 (2018-05-25), XP051441713 *
See also references of EP3852464A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114884553A (zh) * 2021-05-17 2022-08-09 银河航天(北京)网络技术有限公司 卫星通信系统移动性管理的方法及管理波位参数集的方法
CN114884553B (zh) * 2021-05-17 2023-08-22 银河航天(北京)网络技术有限公司 卫星通信系统移动性管理的方法及管理波位参数集的方法

Also Published As

Publication number Publication date
BR112021006062A2 (pt) 2021-07-20
JP7319360B2 (ja) 2023-08-01
CN110958699B (zh) 2022-09-02
CN115580327A (zh) 2023-01-06
EP3852464A4 (en) 2021-11-03
CN110958699A (zh) 2020-04-03
EP3852464A1 (en) 2021-07-21
US20210227472A1 (en) 2021-07-22
JP2022501956A (ja) 2022-01-06

Similar Documents

Publication Publication Date Title
WO2020063777A1 (zh) 传输数据的方法和装置
US20200366448A1 (en) System and method for link adaptation for low cost user equipments
US11736170B2 (en) Data transmission method, terminal device, and network device
CN112448805B (zh) 无线通信的方法、装置和计算机可读存储介质
EP2892192B1 (en) D2d communication method and device
WO2019062998A1 (zh) 功率控制方法及装置
WO2018127022A1 (zh) 发送功率的确定方法、装置及系统
US12003434B2 (en) PRB bundling extension
KR20150031242A (ko) Tdd 협력 다중-포인트 및 캐리어 집성 시나리오를 위한 공간 피드백(pmi/ri)없이 cqi 피드백하기 위한 방법
WO2018044849A1 (en) Methods for finite blocklength coding in wireless communication systems
WO2018033148A1 (en) A method to transmit channel state information reference signals in large mimo systems
US12004207B2 (en) Method, device, and system for notifying information about power difference
CN110933747B (zh) 一种资源配置方法及通信装置
RU2765207C1 (ru) Способ связи, а также система и устройство связи
US11757598B2 (en) Communications devices, infrastructure equipment and methods
CN114902774A (zh) 一种确定参考信号的方法及装置
WO2018171742A1 (zh) 无线通信的方法和装置
CN116114228A (zh) 通信方法、装置
WO2015071535A1 (en) Power back-off arrangement and channel state information reporting to support higher order modulation
CN115706608A (zh) 一种通信方法和通信装置
CN117135740A (zh) 信号传输的方法及设备
CN116888917A (zh) 用于在无线通信系统中发送上行链路信道的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865564

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021517573

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021006062

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019865564

Country of ref document: EP

Effective date: 20210413

ENP Entry into the national phase

Ref document number: 112021006062

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210329