WO2022082466A1 - 无线通信方法及通信装置 - Google Patents
无线通信方法及通信装置 Download PDFInfo
- Publication number
- WO2022082466A1 WO2022082466A1 PCT/CN2020/122292 CN2020122292W WO2022082466A1 WO 2022082466 A1 WO2022082466 A1 WO 2022082466A1 CN 2020122292 W CN2020122292 W CN 2020122292W WO 2022082466 A1 WO2022082466 A1 WO 2022082466A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- srs
- pdsch
- terminal
- access device
- receiving
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 85
- 238000004891 communication Methods 0.000 title claims abstract description 62
- 230000005540 biological transmission Effects 0.000 claims abstract description 59
- 238000001774 stimulated Raman spectroscopy Methods 0.000 claims abstract description 27
- 230000015654 memory Effects 0.000 claims description 43
- 238000005457 optimization Methods 0.000 claims description 22
- 238000004590 computer program Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 description 24
- 239000011159 matrix material Substances 0.000 description 19
- 230000000875 corresponding effect Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 18
- 230000006870 function Effects 0.000 description 15
- 230000008569 process Effects 0.000 description 13
- 238000013507 mapping Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 241000700159 Rattus Species 0.000 description 3
- 238000013473 artificial intelligence Methods 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 101100037618 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) ant-1 gene Proteins 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0628—Diversity capabilities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the embodiments of the present application relate to the field of communication technologies, and in particular, to a wireless communication method and a communication device.
- the base station sends the data of the Physical Downlink Shared CHannel (PDSCH) to the terminal.
- the number of receiving antennas of the terminal needs to be greater than or equal to the Multiple Input and Multiple Output (Multiple Input and Multiple Output) of the PDSCH configured by the base station.
- the number of MIMO) layers the larger the number of MIMO layers of the PDSCH configured by the base station, the more receiving antennas the terminal needs to open for receiving PDSCH data. The more receive antennas are turned on, the greater the power consumption of the terminal for PDSCH reception.
- Embodiments of the present application provide a wireless communication method and a communication device, so as to reduce the power consumption of the terminal, thereby improving the performance of the terminal.
- an embodiment of the present application provides a wireless communication method, the method may be performed by a terminal or a chip used for the terminal, the method includes: receiving an RRC message from an access device, where the RRC message includes a sounding reference signal SRS configuration information, the SRS configuration information is used to indicate multiple SRS resources, and each SRS resource in the multiple SRS resources is sufficient for the transmission of one SRS; according to the SRS configuration information and the preset scheduling policy, use all transmission ports Some of the sending ports in the SRS send SRS to the access device, so that the number of SRS sent to the access device is less than the number of the multiple SRS resources indicated by the SRS configuration information, wherein the The number of all the sending ports is equal to the number of the multiple SRS resources indicated by the SRS configuration information, and each sending port corresponds to one SRS.
- the terminal can send SRS to the access device by using some of all the sending ports based on the SRS configuration information and the preset scheduling policy, so that the number of SRSs sent to the access device is less than that indicated by the SRS configuration information.
- the number of multiple SRS resources thereby triggering the access device to reduce the number of MIMO layers used to transmit PDSCH based on the number of received SRSs, so that the terminal can receive PDSCH data with fewer receiving antennas, which helps In order to reduce the power consumption of the terminal, and then improve the performance of the terminal.
- downlink control information is received from the access device, and the downlink control information includes indication information of an antenna port on a physical downlink shared channel for receiving PDSCH data, wherein the receiving PDSCH data
- the number of antenna ports is less than or equal to the number of SRSs sent to the access device.
- the data of the PDSCH is received through some of the receiving antennas in all the receiving antennas, wherein the number of the partial receiving antennas is greater than or equal to the number of the antenna ports for receiving the data of the PDSCH .
- the receiving antennas for receiving PDSCH data are reduced, the power consumption of the terminal can be reduced, thereby improving the performance of the terminal.
- terminal capability information is sent to the access device, where the terminal capability information carries the indication information of the SRS sending port switching capability of the terminal, and the The maximum number of MIMO layers of PDSCH supported by the terminal.
- the SRS sending port switching capability supported by the terminal includes N sending and M receiving capabilities, and the number of the multiple SRS resources is equal to M, where both N and M are positive integers.
- the preset scheduling strategy includes: a power consumption optimization strategy, or a dual-card optimization strategy.
- the power consumption optimization strategy is activated in a PDSCH energy-efficient scenario.
- the dual-card optimization strategy is activated in a dual-card concurrent scenario.
- the terminal uses all the sending ports to send the SRS to the access device, which can increase the amount of PDSCH data sent, thereby improving the performance of the terminal.
- an embodiment of the present application provides a communication device, including a processor and an interface circuit, where the processor is configured to communicate with other devices through the interface circuit, so as to implement the method described in the first aspect.
- the processor includes one or more.
- an embodiment of the present application provides a communication device, where the device may be a terminal or a chip used for the terminal.
- the device has the function of implementing the method described in the first aspect above. This function can be implemented by hardware or by executing corresponding software by hardware.
- the hardware or software includes one or more modules corresponding to the above functions.
- an embodiment of the present application provides a communication device, including a processor and a memory; the memory is used to store computer-executed instructions, and when the communication device is running, the processor executes the computer-executed instructions stored in the memory to The method described in the first aspect above is implemented.
- an embodiment of the present application provides a communication device, including units or means for executing each step of the method described in the first aspect above.
- the embodiments of the present application further provide a computer program product including instructions, which, when run on a computer, implements the method described in the first aspect.
- the embodiments of the present application further provide a computer-readable storage medium, where instructions are stored on the computer-readable storage medium, and when the instructions are run on a computer, the method described in the first aspect is implemented .
- Figure 1 is a schematic diagram of a 2*2MIMO system
- FIG. 2 is a schematic diagram of a communication flow between a UE and a base station
- FIG. 3 is a schematic diagram of an SRS transmission mode
- FIG. 4 is a schematic structural diagram of a wireless communication system according to an embodiment of the present application.
- FIG. 5 is a schematic structural diagram of a wireless communication device according to an embodiment of the present application.
- FIG. 6 is a schematic diagram of an SRS sending method provided by an embodiment of the present application.
- FIGS 10 to 11 are schematic diagrams of communication apparatuses provided by embodiments of the present application.
- New radio (New radio, NR) PDSCH is used to carry downlink data.
- the PDSCH channel coding process includes: the transport block (transport block, TB) undergoes scrambling (Scrambling), modulation mapping (Modulation Mapper), layer mapping (Layer Mapper), precoding & antenna port mapping (Precoding & Antenna Port Mapper), resource unit ( Resource Element, RE) mapping (RE mapper), Orthogonal Frequency Division Multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) signal generation (OFDM signal generation).
- the coded transport block is sent on the air interface.
- the layer refers to the degree of spatial multiplexing or the degree of spatial freedom.
- Layer mapping uses the spatial multiplexing capability to transmit the data of the transport block in layers. For example, if two layers are assumed, the data of one transport block is divided into two layers, and the data of the two layers are different, and the data of the two layers are combined to form the data of one transport block.
- Precoding is multiplied by a precoding matrix.
- the precoding matrix is obtained according to the channel characteristics.
- the purpose is to change the shape and direction of the beam so that the maximum radiation direction is aimed at the terminal.
- Antenna port mapping is to map precoded data to antenna ports.
- the precoding will be introduced below in conjunction with an example.
- the rank of H is 2, and the weight is the diagonal matrix H.
- H is not a unit matrix.
- the terminal sends the known sounding reference signal (Sounding Reference Signal, SRS) to the base station according to the agreement, and the base station compares the actually received SRS with the known SRS, and the channel matrix H can be obtained as:
- SRS Sounding Reference Signal
- the weight of H is used for precoding.
- the terminal is a UE and the access device is a base station as an example for description.
- FIG. 2 it is a schematic diagram of the communication flow between the UE and the base station, including the following steps:
- Step 201 through a radio resource control (Radio Resource Control, RRC) connection establishment process, the UE establishes an air interface connection with the base station.
- RRC Radio Resource Control
- Step 202 the base station sends a UE capability query request (UECapabilityEnquiry request) to the UE, which is used for requesting to query the UE capability.
- UECapabilityEnquiry request UECapabilityEnquiry request
- Step 203 the UE sends UE capability information (UECapabilityInformation) to the base station for reporting the UE capability.
- UECapabilityInformation UE capability information
- the UECapabilityInformation includes maxNumberMIMO-LayersPDS, where the maxNumberMIMO-LayersPDS is used to indicate the maximum number of MIMO layers of the PDSCH supported by the UE, such as 2, 4, 8 and so on.
- UECapabilityInformation also includes supportedSRS-TxPortSwitch, the supportedSRS-TxPortSwitch is used to indicate the UE's SRS transmission port switching capability, such as t1r2, t1r4, t2r4, t1r4-t2r4, t1r1, t2r2, t4r4 or notSupported.
- 't' means send and 'r' means receive.
- Step 204 the base station sends an RRC reconfiguration message (RRCReconfiguration message) to the UE for performing RRC reconfiguration on the UE.
- RRC reconfiguration message RRCReconfiguration message
- the RRCReconfiguration message carries SRS-config, which is used to configure how the UE sends SRS, or it can be understood that the SRS-Config is used to indicate multiple SRS resources, and each SRS resource in the multiple SRS resources is sufficient for the transmission of one SRS .
- SRS-config contains nrofSRS-Ports, slotOffset, startPosition, period, etc.
- nrofSRS-Ports represents the number of antenna ports for sending SRS (for example, the value is 1, 2 or 4, etc.)
- slotOffset represents the time of sending SRS
- startPosition represents the frequency domain of sending SRS
- period represents the period of sending SRS.
- Step 205 the UE periodically reports the SRS.
- the UE periodically reports the SRS to the base station according to the SRS transmission mode configured by the base station through the RRCReconfiguration message. For example, the UE transmits the SRS at a specific time, in a specific frequency domain, and on a specific port.
- maximumNumberMIMO-LayersPDS of the UE is “fourLayers”
- "supportedSRS-TxPortSwitch” is "t1r4"
- the base station configures 4 sets of SRS-Resources. It should be noted that when the base station configures the number of MIMO layers of PDSCH for the UE, it needs to ensure that the number of receiving antennas of the UE is greater than or equal to the number of MIMO layers of PDSCH, so as to ensure that there are enough antennas to receive downlink data of each layer.
- the base station can map the PDSCH transport blocks to multiple MIMO layers and send them to the UE.
- Each antenna port of the UE is used to receive PDSCH data of one MOMO layer, and the sum of the PDSCH data received by each antenna port constitutes a A complete PDSCH transport block.
- one antenna port corresponds to one or more receiving antennas.
- each antenna port corresponds to a receiving antenna.
- the UE transmits the SRS on the air interface time 1 (air interface slot1, symbol1), Port0, corresponding to antenna 1, on the frequency domain resources allocated by the network.
- the UE sends the SRS on the air interface time 2 (air interface slot2, symbol2), Port1, corresponding to antenna 2, and the frequency domain resources allocated by the network.
- the UE sends the SRS on the air interface time 3 (air interface slot3, symbol3), Port2, corresponding to antenna 3, and the frequency domain resources allocated by the network.
- the UE sends the SRS on the air interface time 4 (air interface slot4, symbol 4), Port3, corresponding to antenna 4, on the frequency domain resources allocated by the network.
- Step 206 the base station calculates and obtains downlink channel feature information by using the received SRS according to the reciprocity of the uplink and downlink channels.
- the downlink channel feature information includes the rank and weight of the precoding matrix, and the downlink channel feature information is used for PDSCH channel coding.
- the rank is the number of MIMO layers of the PDSCH.
- Step 207 the base station sends a physical downlink control channel (Physical Downlink Control Channel, PDCCH) to the UE.
- PDCCH Physical Downlink Control Channel
- the PDCCH carries DCI, where the DCI is used to indicate an antenna port for receiving the PDSCH, and the number of the antenna ports for receiving the PDSCH is used to indicate the number of the antenna ports for the UE to receive data of the PDSCH.
- Step 208 the base station sends PDSCH data to the UE.
- the data of the PDSCH sent by the base station to the UE is the data processed by the weight of the precoding matrix obtained by calculation in the above step 206 .
- Step 209 the UE sends the verification result of the PDSCH data to the base station.
- the communication between the UE and the base station can be realized.
- the number of receiving antennas of the terminal is always greater than or equal to the number of MIMO layers of the PDSCH configured by the base station. for receiving PDSCH data. The more receive antennas are turned on, the greater the power consumption of the terminal for PDSCH reception.
- the terminal when the TxPortSwitch capability of the terminal is t1r4, the terminal sends the SRS according to the method shown in FIG. 3 .
- the base station monitors the air interface channel characteristics of the four ports.
- the rank of the precoding matrix of the downlink channel is calculated to be 4, and the PDSCH is scheduled with four MIMO layers.
- the number of receiving antennas of the terminal needs to be greater than or equal to 4.
- the maximum downlink throughput of 4 receiving antennas can reach a maximum of 1.6Gbps.
- the actual situation in the network is that the actual rate of the user is less than 10 Mbps most of the time, resulting in a serious waste of performance, and the power consumption of the PDSCH receiving antenna of the terminal is also relatively large.
- the technical solutions of the embodiments of the present application are mainly applicable to wireless communication systems.
- the wireless communication system may comply with the wireless communication standard of the third generation partnership project (3GPP), or may comply with other wireless communication standards, such as the 802 of the Institute of Electrical and Electronics Engineers (IEEE). series (such as 802.11, 802.15, or 802.20) of wireless communication standards.
- 3GPP third generation partnership project
- IEEE Institute of Electrical and Electronics Engineers
- series such as 802.11, 802.15, or 802.20
- FIG. 4 is a schematic structural diagram of a wireless communication system according to an embodiment of the present application.
- the wireless communication system includes an access device and one or more terminals. According to different transmission directions, the transmission link from the terminal to the access device is denoted as an uplink (uplink, UL), and the transmission link from the access device to the terminal is denoted as a downlink (downlink, DL).
- uplink data transmission may be abbreviated as uplink data transmission or uplink transmission, and downlink data transmission may be abbreviated as downlink data transmission or downlink transmission.
- the access device can provide communication coverage for a specific geographical area through an integrated or external antenna device.
- One or more terminals located within the communication coverage of the access device can all access the access device.
- An access device can manage one or more cells. Each cell has an identification, which is also called a cell identity (cell ID). From the perspective of radio resources, a cell is a combination of downlink radio resources and paired uplink radio resources (optional).
- the terminal and the access device know the predefined configuration of the wireless communication system, including the radio access technology (radio access technology, RAT) supported by the system and the wireless resource configuration specified by the system (such as the radio frequency band and the basic configuration of the carrier).
- a carrier is a frequency range that conforms to system regulations. This frequency range can be determined by the center frequency of the carrier (referred to as the carrier frequency) and the bandwidth of the carrier.
- the pre-defined configurations of these systems can be used as part of the standard protocols of the wireless communication system, or determined by the interaction between the terminal and the access device.
- the content of the relevant standard protocol may be pre-stored in the memory of the terminal and the access device, or embodied as hardware circuits or software codes of the terminal and the access device.
- the terminal and the access device support one or more of the same RATs, such as New Radio (New Radio, NR), Long Term Evolution (Long Term Evolution, LTE), or RATs of future evolution systems.
- the terminal and the access device use the same air interface parameters, coding scheme, modulation scheme, etc., and communicate with each other based on the radio resources specified by the system.
- the terminal in the embodiment of the present application is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; can also be deployed on water (such as ships, etc.); can also be deployed in the air (eg airplanes, balloons, and satellites, etc.).
- the terminal may be a mobile phone (mobile phone), a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, an industrial control (industrial control) wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, Wireless terminals in a smart city (smart city), wireless terminals in a smart home (smart home), user equipment (user equipment, UE), etc.
- a virtual reality virtual reality
- AR augmented reality
- industrial control industrial control
- An access device is a device that provides a wireless communication function for a terminal.
- the access device includes but is not limited to: the next generation base station (g nodeB, gNB) in the fifth generation (5th generation, 5G), the evolved node B ( evolved node B (eNB), radio network controller (RNC), node B (NB), base station controller (BSC), base transceiver station (BTS), Home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (BBU), transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), mobile switching center, etc. .
- the next generation base station g nodeB, gNB
- 5G next generation base station
- eNB evolved node B
- RNC radio network controller
- NB node B
- BSC base station controller
- BTS base transceiver station
- Home base station for example, home evolved nodeB, or home node B, HNB
- BBU base
- FIG. 5 is a schematic structural diagram of a wireless communication device according to an embodiment of the present application.
- the wireless communication device may be a terminal or an access device in this embodiment of the present application.
- the wireless communication device may include multiple components such as: application subsystem, memory, massive storage, baseband subsystem, radio frequency integrated circuit (RFIC), radio frequency front-end (radio frequency) front end, RFFE) device, and antenna (antenna, ANT). These components may be coupled by various interconnecting buses or other electrical connections.
- RFIC radio frequency integrated circuit
- RFFE radio frequency front-end
- antenna antenna
- ANT_1 represents the first antenna
- ANT_N represents the Nth antenna
- N is an integer greater than 1.
- Tx represents the transmit path
- Rx represents the receive path
- different numbers represent different paths.
- Each path can represent a signal processing channel.
- FBRx represents the feedback receiving path
- PRx represents the primary receiving path
- DRx represents the diversity receiving path.
- HB means high frequency
- LB means low frequency, both refer to the relative high and low frequency.
- BB stands for baseband.
- the application subsystem may include one or more processors. Multiple processors may include multiple processors of the same type, or may include a combination of multiple types of processors.
- the processor may be a general-purpose processor or a processor designed for a specific field.
- the processor may be a central processing unit (CPU), a digital signal processor (DSP), or a microcontroller (MCU).
- the processor may also be a graphics processor (graphics processing unit, GPU), an image signal processor (image signal processing, ISP), an audio signal processor (audio signal processor, ASP), and an artificial intelligence (artificial intelligence, AI) Apply a specially designed AI processor.
- AI processors include, but are not limited to, neural network processing units (NPUs), tensor processing units (TPUs), and processors called AI engines.
- the RF integrated circuit (including RFIC 1, and one or more optional RFIC 2) and the RF front-end device can together form the RF subsystem.
- the radio frequency subsystem can also be divided into the radio frequency receive path (RF receive path) and the radio frequency transmit path (RF transmit path).
- the radio frequency receiving channel can receive the radio frequency signal through the antenna, process the radio frequency signal (such as amplifying, filtering and down-converting) to obtain the baseband signal, and transmit it to the baseband subsystem.
- the RF transmit channel can receive the baseband signal from the baseband subsystem, process the baseband signal (such as upconverting, amplifying and filtering) to obtain the RF signal, and finally radiate the RF signal into space through the antenna.
- a radio frequency integrated circuit may be referred to as a radio frequency processing chip or a radio frequency chip.
- the baseband subsystem mainly completes the processing of baseband signals.
- the baseband subsystem can extract useful information or data bits from the baseband signal, or convert the information or data bits into the baseband signal to be transmitted. These information or data bits may be data representing user data or control information such as voice, text, video, etc.
- the baseband subsystem can implement signal processing operations such as modulation and demodulation, encoding and decoding.
- the baseband signal processing operations are not identical for different radio access technologies, such as 5G NR and 4G LTE.
- the baseband subsystem may also include one or more processors.
- the baseband subsystem may also include one or more hardware accelerators (HACs).
- HACs hardware accelerators
- Hardware accelerators can be used to specifically complete some sub-functions with high processing overhead, such as data packet assembly and parsing, data packet encryption and decryption, etc. These sub-functions can also be implemented using general-purpose processors, but hardware accelerators may be more appropriate due to performance or cost considerations.
- the hardware accelerator is mainly implemented by an application specific integrated circuit (ASIC).
- ASIC application specific integrated circuit
- the hardware accelerator may also include one or more relatively simple processors, such as MCU.
- the baseband subsystem may be integrated into one or more chips, which may be referred to as baseband processing chips or baseband chips.
- the baseband subsystem can be used as a separate chip, which can be called a modem or a modem chip.
- Baseband subsystems can be manufactured and sold in units of modem chips. Modem chips are also sometimes called baseband processors or mobile processors.
- the baseband subsystem can also be further integrated in a larger chip, manufactured and sold in a larger chip unit. This larger chip may be called a system-on-a-chip, system-on-a-chip, or system on a chip (SoC), or simply a SoC chip.
- SoC system on a chip
- the software components of the baseband subsystem can be built into the hardware components of the chip before the chip leaves the factory, or can be imported into the hardware components of the chip from other non-volatile memory after the chip leaves the factory, or can also be downloaded online through the network. and update these software components.
- the wireless communication device may further include memory, such as the memory and mass storage in FIG. 5 .
- memory can be divided into volatile memory (volatile memory) and non-volatile memory (non-volatile memory, NVM).
- Volatile memory refers to memory in which data stored inside is lost when the power supply is interrupted.
- volatile memory is mainly random access memory (random access memory, RAM), including static random access memory (static RAM, SRAM) and dynamic random access memory (dynamic RAM, DRAM).
- RAM random access memory
- SRAM static random access memory
- DRAM dynamic random access memory
- Non-volatile memory refers to memory whose internal data will not be lost even if the power supply is interrupted.
- Common non-volatile memories include read only memory (ROM), optical disks, magnetic disks, and various memories based on flash memory technology.
- ROM read only memory
- mass storage can choose non-volatile memory, such as flash memory.
- the power consumption of the UE's receiving antenna is positively correlated with the rank of the PDSCH precoding matrix.
- the UE controls the transmission of the SRS to reduce the rank of the PDSCH precoding matrix calculated by the base station. Therefore, the base station uses fewer MIMO layers to send PDSCH data to the UE, thereby triggering the UE to reduce the number of receiving antennas of the UE, so as to reduce the power consumption of the receiving antennas of the UE, thereby improving the energy efficiency of the PDSCH.
- the scheduling of the maximum number of MIMO layers can be maintained.
- FIG. 6 a schematic diagram of a method for sending an SRS provided by an embodiment of the present application, the method includes the following steps:
- Step 601 the base station sends an RRC message to the UE. Accordingly, the UE receives the RRC message.
- the RRC message includes SRS configuration information (SRS-config), and the SRS configuration information is used to indicate multiple SRS resources, and each SRS resource in the multiple SRS resources is sufficient for transmission of one SRS. That is, the base station configures the UE with multiple SRS resources for transmitting the SRS.
- SRS-config SRS configuration information
- this step 601 can be the same as the above-mentioned step 204 .
- Step 602 the UE transmits the SRS to the base station by using some of the transmission ports in all the transmission ports according to the SRS configuration information and the preset scheduling policy, so that the number of SRSs sent to the base station is less than the number of SRS resources indicated by the SRS configuration information.
- the number where the number of all sending ports is equal to the number of multiple SRS resources indicated by the SRS configuration information, and each sending port corresponds to one SRS.
- the UE sends SRS to the base station by using some of all the sending ports according to the SRS configuration, so that the number of SRS sent to the base station is less than the SRS configuration information. Indicates the number of multiple SRS resources.
- the transmit port here refers to the antenna port used to transmit the SRS.
- the UE can send 4 SRSs, but the UE In a scenario where the preset scheduling policy is activated, only some of the four transmission ports may be used to transmit the SRS to the base station. For example, the UE transmits 3 SRSs to the base station by using 3 transmission ports, or transmits 2 SRSs to the base station by using 2 transmission ports, and each transmission port is used to transmit one SRS.
- the number of all transmission ports of the UE is related to the switching capability of the SRS transmission ports of the UE, and for details, reference may be made to the supportedSRS-TxPortSwitch described above. For example, if the UE supports t2r4, the number of all transmission ports of the UE is 4.
- the transmit power used may be the same as the transmit power in the prior art, or may be greater than the transmit power in the prior art.
- the base station can accurately receive the SRS sent by the UE using some of the sending ports. For other transmit ports in all transmit ports, the UE may not transmit SRS on these other transmit ports, or may transmit SRS on these other transmit ports with lower power so that these transmitted SRSs are overwhelmed by noise, so that the base station cannot SRS is correctly received on these other ports.
- the base station After receiving the SRS sent by the UE, the base station calculates the rank of the precoding matrix of the PDSCH, and the rank is the number of MIMO layers used for sending the PDSCH. Since the UE only transmits SRS to the base station on some ports of all ports, the value of the rank of the precoding matrix determined by the base station will be reduced, that is, less than the number of SRS resources configured by the base station to the UE. Therefore, the number of MIMO layers of the PDSCH re-determined by the base station will be reduced.
- the base station configures 4 sets of SRS resources for the UE, and the UE can use each of the 4 transmission ports to send 1 SRS, that is, it can send 4 SRSs, but the UE actually only uses 2 of the transmission ports, and a total of 2 SRS.
- the rank of the PDSCH precoding matrix is calculated to be equal to 2, and then it is determined that the number of MIMO layers used to transmit PDSCH data is equal to 2, that is, the UE only needs to receive the base station on 2 receiving antennas in the future.
- the data of the PDSCH sent, and the UE needs to receive the data of the PDSCH sent by the base station on the four receiving antennas. Since the UE reduces the usage of the receiving antenna, the power consumption of the UE can be reduced.
- the UE can send SRS to the base station by using some of all the sending ports based on the SRS configuration information and the preset scheduling policy, so that the number of SRSs sent to the base station is less than the multiple SRSs indicated by the SRS configuration information.
- the number of resources thereby triggering the base station to reduce the number of MIMO layers used to transmit PDSCH based on the number of received SRSs, so that the UE can receive PDSCH data with fewer receiving antennas, which helps reduce the power consumption of the UE .
- the base station sends downlink control information (Downlink control information, DCI) to the UE, where the DCI carries indication information used to indicate the antenna port for receiving PDSCH, and the number of antenna ports for receiving PDSCH Less than or equal to the number of SRSs sent by the UE to the base station.
- DCI Downlink control information
- the number of antenna ports for receiving PDSCH is equal to the number of MIMO layers for transmitting PDSCH data by the base station to the UE.
- the rank of the PDSCH precoding matrix recalculated by the base station based on the SRS reported by the UE is reduced, and the rank of the PDSCH precoding matrix is equal to the number of MIMO layers that the base station sends the PDSCH to the UE.
- the UE may receive PDSCH data through some of the all receive antennas, where the number of some of the receive antennas is greater than or equal to the number of antenna ports for receiving PDSCH data. For example, there are four receiving antennas that the UE can use to receive PDSCH data, each receiving antenna corresponds to an antenna port, and is used to receive PDSCH data of one MIMO layer.
- the base station indicates to the UE through DCI the antenna for receiving PDSCH data If the number of ports is 2, the UE can reduce the number of receiving antennas used for receiving PDSCH data, for example, the actual number of receiving antennas used by the UE to receive PDSCH data can be 2 or 3. Thus, the power consumption of the receiving antenna of the UE can be reduced.
- the UE may also send UE capability information (such as UECapabilityInformation) to the base station, and the UE capability information carries the indication information of the UE's SRS transmission port switching capability, and the PDSCH supported by the UE.
- UE capability information such as UECapabilityInformation
- the maximum number of MIMO layers can refer to the description of the foregoing step 203, for example, the indication information of the SRS transmission port switching capability of the UE can be supportedSRS-TxPortSwitch, and the maximum number of MIMO layers of PDSCH supported by the UE can be indicated by maxNumberMIMO-LayersPDS.
- the SRS sending port switching capability supported by the UE includes N sending and M receiving capabilities, and the number of multiple SRS resources configured by the base station to the UE in the foregoing step 601 is equal to M, where N and M are both positive integers.
- the port switching capability of the UE indicated by the indication information of the SRS transmission port switching capability of the UE reported by the UE to the base station is t1r4, and the maximum number of MIMO layers of the PDSCH supported by the UE is 4, then the base station reports in step 601.
- the number of SRS resources configured for the UE to transmit the SRS may be four.
- the preset scheduling strategy in the foregoing step 602 may include a power consumption optimization strategy or a dual-card optimization strategy.
- the power consumption optimization policy can be activated in a PDSCH energy-efficient scenario. That is, when the UE determines that it is in a PDSCH high energy efficiency scenario, the UE determines to activate the power consumption optimization strategy, and then the UE executes the above step 602 .
- the method for determining whether the UE is in a PDSCH high-efficiency scenario may be: the UE determines that the number of PDSCH transport blocks received within the statistical period is less than a preset threshold, indicating that the current amount of downlink data of the UE is small, then The UE may determine that it is in a PDSCH energy-efficient scenario.
- the dual-card optimization policy may be activated in a dual-card concurrent scenario. That is, when the UE is in a dual-SIM concurrent scenario, the UE determines to activate the dual-SIM optimization strategy, and then the UE executes the above step 602 .
- the dual-card concurrent scenario refers to that two Subscriber Identity Module (SIM) cards on the UE are executing services at the same time, for example, one SIM card is used for surfing the Internet, and the other SIM card is used for dialing.
- SIM Subscriber Identity Module
- the UE sends the SRS to the base station using all the sending ports according to the SRS configuration information. That is, when the UE will no longer send SRS to the base station in a low power consumption manner, the UE can be considered to be in a PDSCH high-performance scenario, a single-card scenario, or a dual-card non-concurrent scenario, etc.
- maximumNumberMIMO-LayersPDS of the UE is “fourLayers”
- "supportedSRS-TxPortSwitch” is "t1r4"
- the base station configures 4 sets of SRS-Resources.
- the UE Based on the four sets of SRS-Resources configured by the base station, the UE sends the SRS to the base station in the manner shown in FIG. 3 by default. That is, within one SRS transmission period, the UE uses 4 antennas to transmit SRS, each antenna transmits one SRS, and each antenna corresponds to one antenna port. It can be considered that the UE is currently in a high-performance scenario, and the preset scheduling policy of the UE is deactivated.
- the UE keeps acquiring the number of PDSCH transport blocks received in each statistical period. For example, at a certain moment, the UE determines that the number of PDSCH transport blocks received in a statistical period is less than the preset threshold, then the UE determines that the current amount of downlink data is small, so the UE determines that it is currently in the high-efficiency mode, and the UE activates
- the scheduling policy (specifically, the power consumption optimization policy) is preset, so that the UE reduces the number of SRSs sent in one SRS sending period.
- Figures 7(a) to 7(c) show three different SRS transmission methods. It should be noted that, this is only an example, and in practice, it is only necessary to reduce the number of SRSs sent in one SRS sending period, and is not limited to a specific sending manner.
- the SRS transmission method is as follows:
- UE sends SRS on air interface time 1 (air interface slot1, symbol1), Port0, corresponding to antenna 1, on the frequency domain resources allocated by the network;
- UE sends SRS on air interface time 2 (air interface slot2, symbol2), Port2, corresponding to antenna 2, on the frequency domain resources allocated by the network;
- the UE does not transmit SRS or reduces the transmission power of SRS, so that the SRS is overwhelmed by noise;
- the UE does not transmit the SRS or reduces the transmission power of the SRS, so that the SRS is overwhelmed by noise.
- the SRS transmission method is as follows:
- UE sends SRS on air interface time 1 (air interface slot1, symbol1), Port0, corresponding to antenna 1, on the frequency domain resources allocated by the network;
- air interface time 2 air interface slot2, symbol2
- the UE does not transmit SRS or reduces the transmission power of SRS, so that the SRS is overwhelmed by noise;
- UE sends SRS on air interface time 3 (air interface slot3, symbol3), Port3, corresponding to antenna 3, on the frequency domain resources allocated by the network;
- the UE does not transmit the SRS or reduces the transmission power of the SRS, so that the SRS is overwhelmed by noise.
- the SRS transmission method is as follows:
- UE sends SRS on air interface time 1 (air interface slot1, symbol1), Port0, corresponding to antenna 1, on the frequency domain resources allocated by the network;
- air interface time 2 air interface slot2, symbol2
- the UE does not transmit SRS or reduces the transmission power of SRS, so that the SRS is overwhelmed by noise;
- the UE does not transmit SRS or reduces the transmission power of SRS, so that the SRS is overwhelmed by noise;
- the UE does not transmit the SRS or reduces the transmission power of the SRS, so that the SRS is overwhelmed by noise.
- maximumNumberMIMO-LayersPDS of the UE is “fourLayers”
- "supportedSRS-TxPortSwitch” is "t2r4"
- the base station configures two sets of SRS-Resources.
- the UE Based on the two sets of SRS-Resources configured by the base station, the UE sends the SRS to the base station in the manner shown in FIG. 8 by default. That is, the UE sends 4 SRSs to the base station in one SRS sending period, and each antenna sends one SRS, that is, each antenna corresponds to one antenna port. Since the UE supports 2t, 2 SRSs can be sent at the same time. It can be considered that the UE is currently in a high-performance scenario, and the preset scheduling policy of the UE is deactivated.
- the SRS transmission method is as follows:
- the UE sends SRS on the frequency domain resources allocated by the network at air interface time 1 (air interface slot1, symbol1), Port0 and Port1, corresponding to antenna 1 and antenna 2, that is, one SRS is sent on each of antenna 1 and antenna 2;
- the UE sends SRS on the frequency domain resources allocated by the network, that is, one SRS is sent on each of antennas 3 and 4.
- the UE keeps acquiring the number of PDSCH transport blocks received in each statistical period. For example, at a certain moment, the UE determines that the number of PDSCH transport blocks received in a statistical period is less than the preset threshold, then the UE determines that the current amount of downlink data is small, so the UE determines that it is currently in the high-efficiency mode, and the UE activates
- the scheduling policy (specifically, the power consumption optimization policy) is preset, so that the UE reduces the number of SRSs sent in one SRS sending period.
- FIG. 9 shows an SRS transmission method. It should be noted that, this is only an example, and in practice, it is only necessary to reduce the number of SRSs sent in one SRS sending period, and is not limited to a specific sending manner.
- the SRS transmission method is as follows:
- the UE sends SRS on the frequency domain resources allocated by the network at air interface time 1 (air interface slot1, symbol1), Port0 and Port1, corresponding to antenna 1 and antenna 2, that is, one SRS is sent on each of antenna 1 and antenna 2;
- the UE does not transmit SRS or reduces the transmission power of SRS, so that the SRS is submerged by noise.
- the base station receives the SRS sent by the UE, and calculates the rank of the PDSCH precoding matrix (for example, 2 or 1) according to the received SRS. Therefore, the DCI indicates to the UE the antenna port for receiving PDSCH data.
- the number of data antenna ports is equal to the rank of the PDSCH precoding matrix. It indicates that the base station will reduce the number of MIMO layers to which PDSCH data is mapped. Specifically, the adjusted number of MIMO layers mapped may be equal to the rank of the precoding matrix of PDSCH.
- the UE receives the PDSCH data sent by the base station.
- the UE adjusts the number of receiving antennas to the number of antenna ports that the UE actually sends the SRS.
- the expected PDSCH transport block here refers to is the transport block that is transmitted using the adjusted number of mapped MIMO layers.
- the base station when the UE determines that the amount of downlink data is small, the base station is triggered to reduce the number of MIMO layers mapped by the PDSCH data by reducing the number of SRS transmissions, so that the UE can use fewer receiving antennas to receive the PDSCH sent by the base station. Specifically, it only needs to ensure that the number of receive antennas used to receive the PDSCH is greater than the number of MIMO layers mapped to the PDSCH data. Since the UE reduces the number of receiving antennas, the power consumption of the receiving antennas of the UE can be reduced, thereby improving the performance of the UE.
- the communication apparatus 1000 includes a sending unit 1010 and a receiving unit 1020 .
- the communication device is used to implement each step of the corresponding terminal in the above embodiments:
- a receiving unit 1020 configured to receive an RRC message from an access device, where the RRC message includes SRS configuration information, where the SRS configuration information is used to indicate multiple SRS resources, and each SRS resource in the multiple SRS resources Enough for the transmission of one SRS;
- the sending unit 1010 is configured to send the SRS to the access device by using a part of the sending ports in all the sending ports according to the SRS configuration information and the preset scheduling policy, so that the number of SRSs sent to the access device is , which is less than the number of the multiple SRS resources indicated by the SRS configuration information, wherein the number of all the sending ports is equal to the number of the multiple SRS resources indicated by the SRS configuration information, and each sending port A port corresponds to an SRS.
- the receiving unit 1020 is further configured to receive downlink control information from the access device, where the downlink control information includes indication information of an antenna port for receiving PDSCH data, wherein the receiving The number of antenna ports for PDSCH data is less than or equal to the number of SRSs sent to the access device.
- the receiving unit 1020 is further configured to receive the data of the PDSCH through some of the receiving antennas in all the receiving antennas, wherein the number of the partial receiving antennas is greater than or equal to the number of the receiving PDSCH Number of antenna ports for data.
- the sending unit 1010 is further configured to send terminal capability information to the access device before the receiving unit 1020 receives the RRC message, where the terminal capability information carries the SRS transmission of the terminal Indication information of port switching capability, and the maximum number of MIMO layers of PDSCH supported by the terminal.
- the SRS sending port switching capability supported by the terminal includes N sending and M receiving capabilities, and the number of the multiple SRS resources is equal to M, where both N and M are positive integers.
- the preset scheduling strategy includes: a power consumption optimization strategy, or a dual-card optimization strategy.
- the power consumption optimization strategy is activated in a PDSCH energy-efficient scenario.
- the dual-card optimization strategy is activated in a dual-card concurrent scenario.
- the sending unit 1010 is further configured to send the SRS to the access device by using the all sending ports according to the SRS configuration information after the preset scheduling policy is deactivated.
- the above-mentioned communication device may further include a storage unit, which is used to store data or instructions (also referred to as codes or programs), and each of the above-mentioned units may interact or be coupled with the storage unit to implement corresponding methods or functions.
- the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
- the division of units in the communication device is only a division of logical functions, and in actual implementation, all or part of them may be integrated into one physical entity, or may be physically separated.
- the units in the communication device can all be implemented in the form of software calling through the processing element; also can all be implemented in the form of hardware; some units can also be implemented in the form of software calling through the processing element, and some units can be implemented in the form of hardware.
- each unit can be a separately established processing element, or can be integrated in a certain chip of the communication device to realize, in addition, it can also be stored in the memory in the form of a program, which can be called and executed by a certain processing element of the communication device. function of the unit.
- each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in the processor element or implemented in the form of software being invoked by the processing element.
- a unit in any of the above communication devices may be one or more integrated circuits configured to implement the above method, such as: one or more application specific integrated circuits (ASICs), or, an or multiple microprocessors (digital singnal processors, DSP), or, one or more field programmable gate arrays (FPGA), or a combination of at least two of these integrated circuit forms.
- ASICs application specific integrated circuits
- DSP digital singnal processors
- FPGA field programmable gate arrays
- a unit in the communication device can be implemented in the form of a processing element scheduler
- the processing element can be a general-purpose processor, such as a central processing unit (CPU) or other processors that can invoke programs.
- CPU central processing unit
- these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
- the communication apparatus includes: a processor 1110 and an interface 1130 , and optionally, the communication apparatus further includes a memory 1120 .
- the interface 1130 is used to enable communication with other devices.
- the interface may also be referred to as a communication interface, and its specific form may be a transceiver, a circuit, a bus, a module, a pin, or other types of communication interfaces.
- the method performed by the terminal in the above embodiment may be implemented by the processor 1110 calling a program stored in a memory (which may be the memory 1120 in the terminal, or an external memory). That is, the terminal may include a processor 1110, and the processor 1110 executes the method performed by the terminal in the above method embodiments by invoking the program in the memory.
- the processor here may be an integrated circuit with signal processing capability, such as a CPU.
- the terminal may be implemented by one or more integrated circuits configured to implement the above methods. For example: one or more ASICs, or, one or more microprocessor DSPs, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms. Alternatively, the above implementations may be combined.
- the functions/implementation process of the sending unit 1010 and the receiving unit 1020 in FIG. 10 can be implemented by the processor 1110 in the communication apparatus 1100 shown in FIG. 11 calling computer executable instructions stored in the memory 1120 .
- the functions/implementation processes of the sending unit 1010 and the receiving unit 1020 in FIG. 10 may be implemented through the interface 1130 in the communication apparatus 1100 shown in FIG. 11 .
- the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which can implement or
- a general purpose processor may be a microprocessor or any conventional processor or the like.
- the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
- the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or may also be a volatile memory (volatile memory), for example Random-access memory (RAM).
- Memory is any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
- the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
- At least one item (single, species) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple.
- “Plurality" means two or more, and other quantifiers are similar.
- the technical solutions provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
- software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
- the computer program product includes one or more computer instructions.
- the computer may be a general-purpose computer, a special-purpose computer, a computer network, a terminal device, a network device, an artificial intelligence device, or other programmable devices.
- the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
- the computer-readable storage medium may be any available medium that a computer can access, or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
- the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.
- various embodiments may refer to each other.
- methods and/or terms between method embodiments may refer to each other.
- functions and/or terms between device embodiments may refer to each other.
- device embodiments may refer to each other.
- Functional and/or terminology between embodiments and method embodiments may refer to each other.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请实施例提供无线通信方法及通信装置。该方法包括:接收来自接入设备的RRC消息,RRC消息中包含SRS配置信息,SRS配置信息用于指示多个SRS资源,多个SRS资源中的每个SRS资源足够一个SRS的传输;根据SRS配置信息和预设调度策略,用全部发送端口中的部分发送端口向接入设备发送SRS,使得向接入设备发送的SRS的个数小于SRS配置信息指示的多个SRS资源的个数。如此,终端减少发送的SRS的数量,触发接入设备减少用于发送PDSCH的MIMO层数,终端可以以更少的接收天线来接收PDSCH的数据,有助于降低终端的功耗,提升终端的性能。
Description
本申请实施例涉及通信技术领域,尤其涉及无线通信方法及通信装置。
基站向终端发送物理下行共享信道(Physical Downlink Shared CHannel,PDSCH)的数据,为保证PDSCH能正确接收,终端的接收天线数需要大于或等于基站配置的PDSCH的多输入多输出(Multiple Input and Multiple Output,MIMO)层数,基站配置的PDSCH的MIMO层数越大,则终端需要开启越多的接收天线用于接收PDSCH的数据。开启的接收天线越多,终端的PDSCH接收功耗越大。
发明内容
本申请实施例提供无线通信方法及通信装置,用以降低终端的功耗,从而提升终端的性能。
第一方面,本申请实施例提供一种无线通信方法,该方法可由终端或用于终端的芯片执行,该方法包括:接收来自接入设备的RRC消息,所述RRC消息中包含探测参考信号SRS配置信息,所述SRS配置信息用于指示多个SRS资源,所述多个SRS资源中的每个SRS资源足够一个SRS的传输;根据所述SRS配置信息和预设调度策略,用全部发送端口中的部分发送端口向所述接入设备发送SRS,以使得向所述接入设备发送的SRS的个数,小于所述SRS配置信息指示的所述多个SRS资源的个数,其中,所述全部发送端口的个数等于所述SRS配置信息指示的所述多个SRS资源的个数,每个发送端口对应一个SRS。
基于上述方案,终端可以基于SRS配置信息和预设调度策略,用全部发送端口中的部分发送端口向接入设备发送SRS,以使得向接入设备发送的SRS的个数,小于SRS配置信息指示的多个SRS资源的个数,从而触发接入设备基于收到的SRS的个数,减少用于发送PDSCH的MIMO层数,从而终端可以以更少的接收天线来接收PDSCH的数据,有助于降低终端的功耗,进而提升终端的性能。
在一种可能的实现方法中,从所述接入设备接收下行控制信息,所述下行控制信息中包含物理下行共享信道接收PDSCH的数据的天线端口的指示信息,其中,所述接收PDSCH的数据的天线端口的个数小于或等于所述向所述接入设备发送的SRS的个数。
在一种可能的实现方法中,通过全部接收天线中的部分接收天线,接收所述PDSCH的数据,其中,所述部分接收天线的数量大于或等于所述接收PDSCH的数据的天线端口的个数。
基于上述方案,由于减少了接收PDSCH的数据的接收天线,有助于降低终端的功耗,进而提升终端的性能。
在一种可能的实现方法中,在接收所述RRC消息之前,向所述接入设备发送终端能力信息,所述终端能力信息中携带了终端的SRS发送端口切换能力的指示信息,以及所述终端支持的PDSCH的最大MIMO层数。
在一种可能的实现方法中,所述终端支持的SRS发送端口切换能力包括N发M收能力,并且,所述多个SRS资源的个数等于M,其中,N和M均为正整数。
在一种可能的实现方法中,所述预设调度策略包括:功耗优化策略,或双卡优化策略。
在一种可能的实现方法中,所述功耗优化策略在PDSCH高能效场景下被激活。
在一种可能的实现方法中,所述双卡优化策略在双卡并发场景下被激活。
在一种可能的实现方法中,所述预设调度策略被去激活之后,根据所述SRS配置信息,用所述全部发送端口向所述接入设备发送SRS。
基于上述方案,终端使用全部发送端口向接入设备发送SRS,可以提升PDSCH的数据的发送量,进而提升终端性能。
第二方面,本申请实施例提供一种通信装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,以实现上述第一方面所述的方法。该处理器包括一个或多个。
第三方面,本申请实施例提供一种通信装置,该装置可以是终端,还可以是用于终端的芯片。该装置具有实现上述第一方面所述方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,本申请实施例提供一种通信装置,包括处理器和存储器;该存储器用于存储计算机执行指令,当该通信装置运行时,该处理器执行该存储器存储的该计算机执行指令,以实现上述第一方面所述的方法。
第五方面,本申请实施例提供一种通信装置,包括用于执行上述第一方面所述方法的各个步骤的单元或手段(means)。
第六方面,本申请实施例中还提供一种包含指令的计算机程序产品,当其在计算机上运行时,以实现第一方面所述的方法。
第七方面,本申请实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有指令,当所述指令在计算机上运行时,以实现第一方面所述的方法。
图1为2*2MIMO系统示意图;
图2为UE与基站的通信流程示意图;
图3为SRS发送方式示意图;
图4为本申请实施例提供的一种无线通信系统的结构示意图;
图5为本申请实施例提供的一种无线通信设备的结构示意图;
图6为本申请实施例提供的一种SRS发送方法示意图;
图7(a)至图7(c)为SRS发送方式示意图;
图8至图9为SRS发送方式示意图;
图10至图11为本申请实施例提供的通信装置示意图。
新无线(New radio,NR)PDSCH用于承载下行数据。PDSCH信道编码过程包括:传输块(transport block,TB)经过加扰(Scrambling)、调制映射(Modulation Mapper), 层映射(Layer Mapper),预编码&天线端口映射(Precoding&Antenna Port Mapper),资源单元(Resource Element,RE)映射(RE mapper),正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)信号生成(OFDM signal generation)。PDSCH信道编码完成后在空口上发送编码后的传输块。
其中,层指的是空间复用度或空间自由度。层映射即使用空间复用能力,将传输块的数据分层传输。比如假设两层,则将一个传输块的数据分成两层,两层的数据不一样,合起来是一个传输块的数据。
预编码即乘以预编码矩阵,预编码矩阵是根据信道特征得到的,目的是改变波束的形状和方向,让最大辐射方向对准终端。
天线端口映射是将预编码后的数据映射到天线端口。
下面结合示例,对预编码进行介绍。
以最简单的2*2MIMO系统为例(未考虑频域维度、高斯白噪声),2个基站发射天线X1、X2,2个终端接收天线Y1、Y2,4条信道路径h1-h4,如图1所示,为2*2MIMO系统示意图。
在理想情况下,两组天线之间互不干扰(h2=h3=0),没有路径损耗(h1=h4=1),接收到的Y和发送的X完全一致,此时信道矩阵H为:
此时,H的秩(rank)为2,权值为对角阵H。
实际情况下,存在天线间干扰(h2、h3)和衰减(h1、h4),H就不是单位阵。终端根据协议,向基站发送基站已知的探测参考信号(Sounding Reference Signal,SRS),基站将实际接收到的SRS和已知的SRS进行比对计算,可以得到信道矩阵H为:
其中,H的权值用于预编码。
下面介绍终端与接入设备之间的通信流程。以下实施例中,以终端为UE,接入设备为基站为例进行说明。
如图2所示,为UE与基站的通信流程示意图,包括以下步骤:
步骤201,通过无线资源控制(Radio Resource Control,RRC)连接建立过程,UE与基站建立空口连接。
步骤202,基站向UE发送UE能力查询请求(UECapabilityEnquiry请求),用于请求查询UE能力。
步骤203,UE向基站发送UE能力信息(UECapabilityInformation),用于上报UE能力。
其中,UECapabilityInformation包含maxNumberMIMO-LayersPDS,该 maxNumberMIMO-LayersPDS用于指示UE支持的PDSCH的最大MIMO层数,比如可以是2,4,8等。
UECapabilityInformation还包含supportedSRS-TxPortSwitch,该supportedSRS-TxPortSwitch用于指示UE的SRS发送端口切换能力,比如可以是t1r2,t1r4,t2r4,t1r4-t2r4,t1r1,t2r2,t4r4或notSupported。其中,’t’表示发送,’r’表示接收。
步骤204,基站向UE发送RRC重配置消息(RRCReconfiguration消息),用于对UE进行RRC重配置。
RRCReconfiguration消息携带SRS-config,该SRS-Config用于配置UE如何发送SRS,或者理解为该SRS-Config用于指示多个SRS资源,该多个SRS资源中的每个SRS资源足够一个SRS的传输。比如,SRS-config包含nrofSRS-Ports、slotOffset、startPosition、周期等。其中,nrofSRS-Ports表示发送SRS的天线端口数(比如取值为1,2或4等),slotOffset表示发送SRS的时间、startPosition表示发送SRS的频域,周期表示发送SRS的周期。
步骤205,UE周期性地上报SRS。
UE根据基站通过RRCReconfiguration消息配置的SRS发送方式,周期性地向基站上报SRS。比如,UE在特定时间、特定频域、用特定端口发送SRS。
示例性地,UE的“maxNumberMIMO-LayersPDS”为“fourLayers”,“supportedSRS-TxPortSwitch”为“t1r4”,基站配置4套SRS-Resource。需要说明的是,基站为UE配置PDSCH的MIMO层数时,需要保证UE的接收天线数大于或等于PDSCH的MIMO层数,这样才能保证有足够的天线数接收各层的下行数据。
需要说明的是,基站可以将PDSCH的传输块映射至多个MIMO层发送至UE,UE的每个天线端口用于接收一个MOMO层的PDSCH的数据,各个天线端口收到的PDSCH的数据的总和构成一个完整的PDSCH的传输块。
其中,一个天线端口对应一个或多个接收天线。
如图3所示,为SRS发送方式示意图。其中,每个天线端口(Port)对应一个接收天线。
UE在空口时间1(空口slot1、symbol1),Port0,对应天线1,网络分配的频域资源上发送SRS。
UE在空口时间2(空口slot2、symbol2),Port1,对应天线2,网络分配的频域资源上发送SRS。
UE在空口时间3(空口slot3、symbol3),Port2,对应天线3,网络分配的频域资源上发送SRS。
UE在空口时间4(空口slot4、symbol4),Port3,对应天线4,网络分配的频域资源上发送SRS。
步骤206,基站根据上下行信道的互易性,用收到的SRS计算得到下行信道特征信息。
下行信道特征信息包含预编码矩阵的秩和权值,下行信道特征信息用于PDSCH信道编码。该秩即为PDSCH的MIMO层数。
步骤207,基站向UE发送物理下行控制信道(Physical Downlink Control Channel,PDCCH)。
该PDCCH携带DCI,该DCI用于指示接收PDSCH的天线端口,该接收PDSCH的天线端口的个数用于指示UE接收PDSCH的数据的天线端口的个数。
步骤208,基站向UE发送PDSCH的数据。
其中,基站向UE发送的PDSCH的数据是经过上述步骤206计算得到的预编码矩阵的权值处理后的数据。
步骤209,UE向基站发送对PDSCH的数据的校验结果。
基于上述过程,可以实现UE与基站之间的通信。
上述方案中,为保证PDSCH能正确接收,终端的接收天线数始终大于或等于基站配置的PDSCH的MIMO层数,基站配置的PDSCH的MIMO层数越大,则终端将开启越多的接收天线用于接收PDSCH的数据。开启的接收天线越多,终端的PDSCH接收功耗越大。
作为示例,当终端的TxPortSwtich能力是t1r4,终端按照图3所示的方法发送SRS。在信号较好的时候,基站监测到4个Port的空口信道特征,根据上下行信道互易性,计算得到下行信道的预编码矩阵的秩是4,则PDSCH用4个MIMO层进行调度。为保证PDSCH能正确接收,终端接收天线数需要大于或等于4。在典型网络配置(如带宽为100Mhz,子载波间隔为30khz)下,4接收天线的下行最大吞吐率最大能达到1.6Gbps。但网络中实际情况为,用户绝大多数时间的实际速率小于10Mbps,造成性能严重浪费,并且造成终端的PDSCH接收天线的功耗也较大。
为解决终端的接收功耗问题,本申请实施例将提供相应的解决方案。
本申请实施例的技术方案主要适用于无线通信系统。该无线通信系统可以遵从第三代合作伙伴计划(third generation partnership project,3GPP)的无线通信标准,也可以遵从其他无线通信标准,例如电气电子工程师学会(Institute of Electrical and Electronics Engineers,IEEE)的802系列(如802.11,802.15,或者802.20)的无线通信标准。
图4为本申请实施例提供的一种无线通信系统的结构示意图。该无线通信系统包括接入设备和一个或多个终端。按照传输方向的不同,从终端到接入设备的传输链路记为上行链路(uplink,UL),从接入设备到终端的传输链路记为下行链路(downlink,DL)。上行链路的数据传输可简记为上行数据传输或上行传输,下行链路的数据传输可简记为下行数据传输或下行传输。
该无线通信系统中,接入设备可通过集成或外接的天线设备,为特定地理区域提供通信覆盖。位于接入设备的通信覆盖范围内的一个或多个终端,均可以接入到接入设备。一个接入设备可以管理一个或多个小区(cell)。每个小区具有一个身份证明(identification),该身份证明也被称为小区标识(cell identity,cell ID)。从无线资源的角度看,一个小区是下行无线资源,以及与其配对的上行无线资源(可选)的组合。
终端和接入设备知晓该无线通信系统预定义的配置,包括系统支持的无线接入技术(radio access technology,RAT)以及系统规定的无线资源配置(比如无线电的频段和载波的基本配置)等。载波是符合系统规定的一段频率范围。这段频率范围可由载波的中心频率(记为载频)和载波的带宽共同确定。这些系统预定义的配置可作为无线通信系统的标准协议的一部分,或者通过终端和接入设备间的交互确定。相关标准协议的内容,可能会预先存储在终端和接入设备的存储器中,或者体现为终端和接入设备的硬件电路或软件代码。
该无线通信系统中,终端和接入设备支持一种或多种相同的RAT,例如新无线(New radio,NR),长期演进(long term evolution,LTE),或未来演进系统的RAT。具体地,终端和接入设备采用相同的空口参数、编码方案和调制方案等,并基于系统规定的无线资源相互通信。
本申请实施例中的终端,是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、用户设备(user equipment,UE)等。
接入设备,是一种为终端提供无线通信功能的设备,接入设备包括但不限于:第五代(5th generation,5G)中的下一代基站(g nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。
图5为本申请实施例提供的一种无线通信设备的结构示意图。该无线通信设备可以是本申请实施例中的终端或者接入设备。该无线通信设备可包括多个组件,例如:应用子系统,内存(memory),大容量存储器(massive storage),基带子系统,射频集成电路(radio frequency integrated circuit,RFIC),射频前端(radio frequency front end,RFFE)器件,以及天线(antenna,ANT)。这些组件可以通过各种互联总线或其他电连接方式耦合。
图5中,ANT_1表示第一天线,ANT_N表示第N天线,N为大于1的整数。Tx表示发送路径,Rx表示接收路径,不同的数字表示不同的路径。每条路径均可以表示一个信号处理通道。其中,FBRx表示反馈接收路径,PRx表示主接收路径,DRx表示分集接收路径。HB表示高频,LB表示低频,两者是指频率的相对高低。BB表示基带。应理解,图5中的标记和组件仅为示意目的,仅作为一种可能的实现方式,本申请实施例还包括其他的实现方式。例如,无线通信设备可以包括更多或更少的路径,包括更多或更少的组件。
其中,应用子系统可包括一个或多个处理器。多个处理器可以包括多个相同类型的处理器,也可以包括多种类型的处理器组合。本申请中,处理器可以是通用用途的处理器,也可以是为特定领域设计的处理器。例如,处理器可以是中央处理单元(center processing unit,CPU),数字信号处理器(digital signal processor,DSP),或微控制器(micro control unit,MCU)。处理器也可以是图形处理器(graphics processing unit,GPU)、图像信号处理器(image signal processing,ISP),音频信号处理器(audio signal processor,ASP),以及为人工智能(artificial intelligence,AI)应用专门设计的AI处理器。AI处理器包括但不限于神经网络处理器(neural network processing unit,NPU),张量处理器(tensor processing unit,TPU)以及被称为AI引擎的处理器。
射频集成电路(包括RFIC 1,以及一个或多个可选的RFIC 2)和射频前端器件可以共 同组成射频子系统。根据信号的接收或发送路径的不同,射频子系统也可以分为射频接收通道(RF receive path)和射频发射通道(RF transmit path)。其中,射频接收通道可通过天线接收射频信号,对该射频信号进行处理(如放大、滤波和下变频)以得到基带信号,并传递给基带子系统。射频发送通道可接收来自基带子系统的基带信号,对基带信号进行处理(如上变频、放大和滤波)以得到射频信号,并最终通过天线将该射频信号辐射到空间中。射频集成电路可以被称为射频处理芯片或射频芯片。
与射频子系统主要完成射频信号处理类似,基带子系统主要完成对基带信号的处理。基带子系统可以从基带信号中提取有用的信息或数据比特,或者将信息或数据比特转换为待发送的基带信号。这些信息或数据比特可以是表示语音、文本、视频等用户数据或控制信息的数据。例如,基带子系统可以实现诸如调制和解调,编码和解码等信号处理操作。对于不同的无线接入技术,例如5G NR和4G LTE,基带信号处理操作也不完全相同。
与应用子系统类似,基带子系统也可包括一个或多个处理器。此外,基带子系统还可以包括一种或多种硬件加速器(hardware accelerator,HAC)。硬件加速器可用于专门完成一些处理开销较大的子功能,如数据包(data packet)的组装和解析,数据包的加解密等。这些子功能采用通用功能的处理器也可以实现,但是因为性能或成本的考量,采用硬件加速器可能更加合适。在具体的实现中,硬件加速器主要是用专用集成电路(application specified integrated circuit,ASIC)来实现。当然,硬件加速器中也可以包括一个或多个相对简单的处理器,如MCU。
基带子系统可以集成为一个或多个芯片,该芯片可称为基带处理芯片或基带芯片。基带子系统可以作为独立的芯片,该芯片可被称调制解调器(modem)或modem芯片。基带子系统可以按照modem芯片为单位来制造和销售。modem芯片有时也被称为基带处理器或移动处理器。此外,基带子系统也可以进一步集成在更大的芯片中,以更大的芯片为单位来制造和销售。这个更大的芯片可以称为系统芯片,芯片系统或片上系统(system on a chip,SoC),或简称为SoC芯片。基带子系统的软件组件可以在芯片出厂前内置在芯片的硬件组件中,也可以在芯片出厂后从其他非易失性存储器中导入到芯片的硬件组件中,或者还可以通过网络以在线方式下载和更新这些软件组件。
此外,该无线通信设备中还可包括存储器,例如图5中的内存和大容量存储器。此外,在应用子系统和基带子系统中,还可以分别包括一个或多个缓存。具体实现中,存储器可分为易失性存储器(volatile memory)和非易失性存储器(non-volatile memory,NVM)。易失性存储器是指当电源供应中断后,内部存放的数据便会丢失的存储器。目前,易失性存储器主要是随机存取存储器(random access memory,RAM),包括静态随机存取存储器(static RAM,SRAM)和动态随机存取存储器(dynamic RAM,DRAM)。非易失性存储器是指即使电源供应中断,内部存放的数据也不会因此丢失的存储器。常见的非易失性存储器包括只读存储器(read only memory,ROM)、光盘、磁盘以及基于闪存(flash memory)技术的各种存储器等。通常来说,内存和缓存可以选用易失性存储器,大容量存储器可以选用非易失性存储器,例如闪存。
本申请实施例后续仍以终端为UE,接入设备为基站为例进行说明。
本申请实施例中,UE的接收天线的功耗与PDSCH的预编码矩阵的秩正相关,在小速率场景中,UE通过控制SRS的发送,减少基站计算得到的PDSCH的预编码矩阵的秩, 从而基站使用更少的MIMO层向UE发送PDSCH的数据,进而触发UE减少UE的接收天线数,以降低UE的接收天线的功耗,从而提升PDSCH的能效。在大速率场景中,可以维持最大MIMO层数的调度。
下面结合附图介绍本申请实施例方案。
如图6所示,为本申请实施例提供的一种SRS发送方法示意图,该方法包括以下步骤:
步骤601,基站向UE发送RRC消息。相应地,UE接收RRC消息。
该RRC消息中包含SRS配置信息(SRS-config),SRS配置信息用于指示多个SRS资源,多个SRS资源中的每个SRS资源足够一个SRS的传输。也即,基站向UE配置用于发送SRS的多个SRS资源。
作为一种实现方法,该步骤601可以与上述步骤204相同。
步骤602,UE根据SRS配置信息和预设调度策略,用全部发送端口中的部分发送端口向基站发送SRS,以使得向基站发送的SRS的个数,小于SRS配置信息指示的多个SRS资源的个数,其中,全部发送端口的个数等于SRS配置信息指示的多个SRS资源的个数,每个发送端口对应一个SRS。
也可以理解为,UE在预设调度策略被激活的前提下,根据SRS配置,用全部发送端口中的部分发送端口向基站发送SRS,以使得向基站发送的SRS的个数,小于SRS配置信息指示的多个SRS资源的个数。
这里的发送端口,指的是用于发送SRS的天线端口。
比如,基站向UE发送的SRS配置信息所指示的多个SRS资源的个数为4,则UE可用于发送SRS的全部发送端口的个数为4,因此,UE可以发送4个SRS,但UE可以在预设调度策略被激活的场景下,仅用4个发送端口中的部分发送端口,向基站发送SRS。比如,UE使用3个发送端口向基站发送3个SRS,或者使用2个发送端口向基站发送2个SRS,每个发送端口用于发送一个SRS。
其中,UE的全部发送端口的个数与UE的SRS发送端口切换能力相关,具体可以参考前述描述的supportedSRS-TxPortSwitch。比如,UE支持t2r4,则UE的全部发送端口的个数为4。
需要说明的是,UE在使用全部发送端口中的部分发送端口向基站发送SRS时,所使用的发送功率可以与现有技术中的发送功率相同,也可以大于现有技术中的发送功率。基站可以准确接收到UE使用部分发送端口发送的SRS。针对全部发送端口中的其它发送端口,UE可以不在这些其它发送端口上发送SRS,或者也可以在这些其它发送端口上以较低功率发送SRS以使得发送的这些SRS被噪声淹没,从而基站无法从这些其它端口上正确接收到SRS。
基站在接收到UE发送的SRS之后,计算PDSCH的预编码矩阵的秩,该秩即为用于发送PDSCH的MIMO层数。由于UE仅在全部端口的部分端口上向基站发送SRS,因此基站确定的预编码矩阵的秩的值将会减小,也即小于基站向UE配置的SRS资源的个数。从而基站重新确定的PDSCH的MIMO层数将会减少。示例性地,基站向UE配置4套SRS资源,UE可以用4个发送端口各发送1个SRS,也即可以发送4个SRS,但UE实际仅使用其中的2个发送端口,共发送了2个SRS。基站收到2个SRS之后,计算得到PDSCH的预编码矩阵的秩等于2,则确定后续用于发送PDSCH的数据的MIMO层数等于2,也 即UE后续只需要在2个接收天线上接收基站发送的PDSCH的数据,而之前UE需要在4个接收天线上接收基站发送的PDSCH的数据。由于UE减少了接收天线的使用,从而可以降低UE功耗。
基于上述方案,UE可以基于SRS配置信息和预设调度策略,用全部发送端口中的部分发送端口向基站发送SRS,以使得向基站发送的SRS的个数,小于SRS配置信息指示的多个SRS资源的个数,从而触发基站基于收到的SRS的个数,减少用于发送PDSCH的MIMO层数,从而UE可以以更少的接收天线来接收PDSCH的数据,有助于降低UE的功耗。
作为一种实现方法,在上述步骤602之前,基站向UE发送下行控制信息(Downlink control information,DCI),该DCI携带用于指示接收PDSCH的天线端口的指示信息,接收PDSCH的天线端口的个数小于或等于UE向基站发送的SRS的个数。其中,接收PDSCH的天线端口的个数等于基站向UE发送PDSCH的数据的MIMO层数。也即,基站基于UE上报的SRS,重新计算得到的PDSCH的预编码矩阵的秩减小了,该PDSCH的预编码矩阵的秩等于基站向UE发送PDSCH的MIMO层数。后续,UE可以通过全部接收天线中的部分接收天线接收PDSCH的数据,其中,部分接收天线的数量大于或等于接收PDSCH的数据的天线端口的个数。比如,UE可用于接收PDSCH的数据的全部接收天线为4个,每个接收天线对应一个天线端口,用于接收一个MIMO层的PDSCH的数据,基站通过DCI向UE指示的接收PDSCH的数据的天线端口的个数为2,则UE可以减少用于接收PDSCH的数据的接收天线数,比如UE实际用于接收PDSCH的数据的接收天线的数量可以是2或3。从而实现降低UE的接收天线的功耗。
作为一种实现方法,在上述步骤601之前,UE还可以向基站发送UE能力信息(比如可以是UECapabilityInformation),UE能力信息中携带了UE的SRS发送端口切换能力的指示信息,以及UE支持的PDSCH的最大MIMO层数。该过程可以参考前述步骤203的描述,比如UE的SRS发送端口切换能力的指示信息可以是supportedSRS-TxPortSwitch,UE支持的PDSCH的最大MIMO层数可以用于maxNumberMIMO-LayersPDS来指示。其中,UE支持的SRS发送端口切换能力包括N发M收能力,并且,基站在上述步骤601中向UE配置的多个SRS资源的个数等于M,其中,N和M均为正整数。示例性地,UE向基站上报的UE的SRS发送端口切换能力的指示信息所指示的该UE的端口切换能力为t1r4,UE支持的PDSCH的最大MIMO层数为4,则基站在上报步骤601中为UE配置的用于发送SRS的SRS资源的个数可以是4。
作为一种实现方法,上述步骤602中的预设调度策略可以包括功耗优化策略或双卡优化策略。
比如,当预设调度策略包括功耗优化策略,则功耗优化策略可以在PDSCH高能效场景下被激活。也即当UE确定处于PDSCH高能效场景,则UE确定激活功耗优化策略,进而UE执行上述步骤602。其中,UE判断是否处于进入PDSCH高能效场景的方法,比如可以是:UE确定在统计周期内收到的PDSCH的传输块的个数小于预设门限,表明当前UE的下行数据量较小,则UE可以确定处于PDSCH高能效场景。
再比如,当预设调度策略包括双卡优化策略,则双卡优化策略可以在双卡并发场景下被激活。也即当UE处于双卡并发场景,则UE确定激活双卡优化策略,进而UE执行上述步骤602。其中,双卡并发场景,指的是UE上的两个用户识别模块(Subscriber Identity Module,SIM)卡同时有业务在执行,比如一个SIM卡用于上网,另一个SIM卡用于拨号。
作为一种实现方法,在上述预设调度策略被去激活之后,UE根据SRS配置信息,用全部发送端口向基站发送SRS。也即,当UE将不再使用低功耗方式向基站发送SRS,此时UE可以认为是处于PDSCH高性能场景、或处于单卡场景、或处于双卡非并发场景等。
下面结合具体示例,对上述流程进行说明。
示例一
示例性地,UE的“maxNumberMIMO-LayersPDS”为“fourLayers”,“supportedSRS-TxPortSwitch”为“t1r4”,基站配置4套SRS-Resource。
UE基于基站配置的4套SRS-Resource,默认先按照图3所示的方式,向基站发送SRS。也即,UE在一个SRS发送周期内,使用4个天线发送SRS,每个天线发送了一个SRS,并且每个天线对应一个天线端口。可以认为,UE当前处于高性能场景,UE的预设调度策略去激活。
后续,UE保持获取每个统计周期内收到的PDSCH的传输块的数量。比如,UE在某个时刻,确定一个统计周期内收到的PDSCH的传输块的数量少于预设门限,则UE确定当前下行数据量较小,因而UE确定当前处于高能效模式,则UE激活预设调度策略(具体为功耗优化策略),从而UE减少一个SRS发送周期内发送的SRS个数。作为示例,图7(a)至图7(c)给出了三种不同的SRS发送方法。需要说明的是,这里仅作为示例,实际中只需要减少一个SRS发送周期内发送的SRS个数即可,并不限于具体的发送方式。
参考图7(a),SRS发送方法如下:
UE在空口时间1(空口slot1、symbol1),Port0,对应天线1,网络分配的频域资源上发送SRS;
UE在空口时间2(空口slot2、symbol2),Port2,对应天线2,网络分配的频域资源上发送SRS;
UE在空口时间3(空口slot3、symbol3),不发送SRS或减少SRS发送功率,使得SRS被噪声淹没;
UE在空口时间4(空口slot4、symbol4),不发送SRS或减少SRS发送功率,使得SRS被噪声淹没。
参考图7(b),SRS发送方法如下:
UE在空口时间1(空口slot1、symbol1),Port0,对应天线1,网络分配的频域资源上发送SRS;
UE在空口时间2(空口slot2、symbol2),不发送SRS或减少SRS发送功率,使得SRS被噪声淹没;
UE在空口时间3(空口slot3、symbol3),Port3,对应天线3,网络分配的频域资源上发送SRS;
UE在空口时间4(空口slot4、symbol4),不发送SRS或减少SRS发送功率,使得SRS被噪声淹没。
参考图7(c),SRS发送方法如下:
UE在空口时间1(空口slot1、symbol1),Port0,对应天线1,网络分配的频域资源上发送SRS;
UE在空口时间2(空口slot2、symbol2),不发送SRS或减少SRS发送功率,使得SRS被噪声淹没;
UE在空口时间3(空口slot3、symbol3),不发送SRS或减少SRS发送功率,使得SRS被噪声淹没;
UE在空口时间4(空口slot4、symbol4),不发送SRS或减少SRS发送功率,使得SRS被噪声淹没。
示例二
示例性地,UE的“maxNumberMIMO-LayersPDS”为“fourLayers”,“supportedSRS-TxPortSwitch”为“t2r4”,基站配置2套SRS-Resource。
UE基于基站配置的2套SRS-Resource,默认先按照图8所示的方式,向基站发送SRS。也即,UE在一个SRS发送周期内,向基站发送4个SRS,每个天线发送了一个SRS,也即每个天线对应一个天线端口。由于UE支持2t,因此可以同一时间发送2个SRS。可以认为,UE当前处于高性能场景,UE的预设调度策略去激活。
参考图8,SRS发送方法如下:
UE在空口时间1(空口slot1、symbol1),Port0和Port1,对应天线1和天线2,在网络分配的频域资源上发送SRS,也即在天线1和天线2各发送了一个SRS;
UE在空口时间2(空口slot2、symbol2),Port2和Port3,对应天线3和天线4,在网络分配的频域资源上发送SRS,也即在天线3和天线4各发送了一个SRS。
后续,UE保持获取每个统计周期内收到的PDSCH的传输块的数量。比如,UE在某个时刻,确定一个统计周期内收到的PDSCH的传输块的数量少于预设门限,则UE确定当前下行数据量较小,因而UE确定当前处于高能效模式,则UE激活预设调度策略(具体为功耗优化策略),从而UE减少一个SRS发送周期内发送的SRS个数。作为示例,图9给出了一种SRS发送方法。需要说明的是,这里仅作为示例,实际中只需要减少一个SRS发送周期内发送的SRS个数即可,并不限于具体的发送方式。
参考图9,SRS发送方法如下:
UE在空口时间1(空口slot1、symbol1),Port0和Port1,对应天线1和天线2,在网络分配的频域资源上发送SRS,也即在天线1和天线2各发送了一个SRS;
UE在空口时间2(空口slot2、symbol2),Port2和Port3,对应天线3和天线4,不发送SRS或减少SRS发送功率,使得SRS被噪声淹没。
后续,基站接收到UE发送的SRS,根据接收到的SRS计算得到PDSCH的预编码矩阵的秩(例如为2或1),因此通过DCI向UE指示接收PDSCH的数据的天线端口,该接收PDSCH的数据的天线端口的个数等于PDSCH的预编码矩阵的秩。表明基站将减少PDSCH的数据所映射的MIMO层数,具体的,调整后的映射的MIMO层数可以等于PDSCH的预编码矩阵的秩。UE接收基站发送的PDSCH的数据,比如UE在连续接收到N个期望的PDSCH的传输块后,将接收天线数调整为UE实际发送SRS的天线端口数,这里的期 望的PDSCH的传输块指的是采用调整后的映射的MIMO层数进行传输的传输块。
本申请实施例,当UE确定下行数据量较小时,则通过减少SRS的发送数量,触发基站减少PDSCH的数据所映射的MIMO层数,从而UE可以使用更少的接收天线来接收基站发送的PDSCH的数据,具体的,只需要保证用于接收PDSCH的接收天线的数量大于PDSCH的数据所映射的MIMO层数即可。由于UE减少了接收天线的数量,从而可以降低UE的接收天线的功耗,从而提升UE性能。
参考图10,为本申请实施例提供的一种通信装置示意图,该通信装置1000包括发送单元1010和接收单元1020。该通信装置用于实现上述各实施例中对应终端的各个步骤:
接收单元1020,用于接收来自接入设备的RRC消息,所述RRC消息中包含SRS配置信息,所述SRS配置信息用于指示多个SRS资源,所述多个SRS资源中的每个SRS资源足够一个SRS的传输;
发送单元1010,用于根据所述SRS配置信息和预设调度策略,用全部发送端口中的部分发送端口向所述接入设备发送SRS,以使得向所述接入设备发送的SRS的个数,小于所述SRS配置信息指示的所述多个SRS资源的个数,其中,所述全部发送端口的个数等于所述SRS配置信息指示的所述多个SRS资源的个数,每个发送端口对应一个SRS。
在一种可能的实现方法中,接收单元1020,还用于从所述接入设备接收下行控制信息,所述下行控制信息中包含接收PDSCH的数据的天线端口的指示信息,其中,所述接收PDSCH的数据的天线端口的个数小于或等于所述向所述接入设备发送的SRS的个数。
在一种可能的实现方法中,接收单元1020,还用于通过全部接收天线中的部分接收天线,接收所述PDSCH的数据,其中,所述部分接收天线的数量大于或等于所述接收PDSCH的数据的天线端口的个数。
在一种可能的实现方法中,发送单元1010,还用于在接收单元1020接收所述RRC消息之前,向所述接入设备发送终端能力信息,所述终端能力信息中携带了终端的SRS发送端口切换能力的指示信息,以及所述终端支持的PDSCH的最大MIMO层数。
在一种可能的实现方法中,所述终端支持的SRS发送端口切换能力包括N发M收能力,并且,所述多个SRS资源的个数等于M,其中,N和M均为正整数。
在一种可能的实现方法中,所述预设调度策略包括:功耗优化策略,或双卡优化策略。
在一种可能的实现方法中,所述功耗优化策略在PDSCH高能效场景下被激活。
在一种可能的实现方法中,所述双卡优化策略在双卡并发场景下被激活。
在一种可能的实现方法中,发送单元1010,还用于在所述预设调度策略被去激活之后,根据所述SRS配置信息,用所述全部发送端口向所述接入设备发送SRS。
可选地,上述通信装置还可以包括存储单元,该存储单元用于存储数据或者指令(也可以称为代码或者程序),上述各个单元可以和存储单元交互或者耦合,以实现对应的方法或者功能。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。
本申请实施例中,通信装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且通信装置中的单元可以全部 以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在通信装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由通信装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一通信装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当通信装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
参考图11,为本申请实施例提供的一种通信装置示意图,用于实现以上实施例中终端的操作。如图11所示,该通信装置包括:处理器1110和接口1130,可选地,该通信装置还包括存储器1120。接口1130用于实现与其他设备进行通信。本申请实施例中,接口还可以称为通信接口,其具体形式可以是收发器、电路、总线、模块、管脚或其它类型的通信接口。
以上实施例中终端执行的方法可以通过处理器1110调用存储器(可以是终端中的存储器1120,也可以是外部存储器)中存储的程序来实现。即,终端可以包括处理器1110,该处理器1110通过调用存储器中的程序,以执行以上方法实施例中终端执行的方法。这里的处理器可以是一种具有信号的处理能力的集成电路,例如CPU。终端可以通过配置成实施以上方法的一个或多个集成电路来实现。例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。或者,可以结合以上实现方式。
具体的,图10中的发送单元1010和接收单元1020的功能/实现过程可以通过图11所示的通信装置1100中的处理器1110调用存储器1120中存储的计算机可执行指令来实现。或者,图10中的发送单元1010和接收单元1020的功能/实现过程可以通过图11中所示的通信装置1100中的接口1130来实现。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令 或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本领域普通技术人员可以理解:本申请实施例中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或者多个。至少两个是指两个或者多个。“至少一个”、“任意一个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个、种),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。“多个”是指两个或两个以上,其它量词与之类似。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本申请实施例提供的技术方案可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、终端设备、网络设备、人工智能设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
在本申请实施例中,各实施例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置实施例和方法实施例之间的功能和/或术语可以相互引用。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
Claims (12)
- 一种无线通信方法,其特征在于,包括:接收来自接入设备的无线资源控制RRC消息,所述RRC消息中包含探测参考信号SRS配置信息,所述SRS配置信息用于指示多个SRS资源,所述多个SRS资源中的每个SRS资源足够一个SRS的传输;根据所述SRS配置信息和预设调度策略,用全部发送端口中的部分发送端口向所述接入设备发送SRS,以使得向所述接入设备发送的SRS的个数,小于所述SRS配置信息指示的所述多个SRS资源的个数,其中,所述全部发送端口的个数等于所述SRS配置信息指示的所述多个SRS资源的个数,每个发送端口对应一个SRS。
- 如权利要求1所述的方法,其特征在于,还包括:从所述接入设备接收下行控制信息,所述下行控制信息中包含物理下行共享信道接收PDSCH的数据的天线端口的指示信息,其中,所述接收PDSCH的数据的天线端口的个数小于或等于所述向所述接入设备发送的SRS的个数。
- 如权利要求2所述的方法,其特征在于,还包括:通过全部接收天线中的部分接收天线,接收所述PDSCH的数据,其中,所述部分接收天线的数量大于或等于所述接收PDSCH的数据的天线端口的个数。
- 如权利要求1至3中任一所述的方法,其特征在于,在接收所述RRC消息之前,还包括:向所述接入设备发送终端能力信息,所述终端能力信息中携带了终端的SRS发送端口切换能力的指示信息,以及所述终端支持的PDSCH的最大MIMO层数。
- 如权利要求4所述的方法,其特征在于:所述终端支持的SRS发送端口切换能力包括N发M收能力,并且,所述多个SRS资源的个数等于M,其中,N和M均为正整数。
- 如权利要求1至5中任一所述的方法,其特征在于:所述预设调度策略包括:功耗优化策略,或双卡优化策略。
- 如权利要求6所述的方法,其特征在于:所述功耗优化策略在PDSCH高能效场景下被激活。
- 如权利要求6所述的方法,其特征在于:所述双卡优化策略在双卡并发场景下被激活。
- 如权利要求1至8中任一所述的方法,其特征在于,还包括:所述预设调度策略被去激活之后,根据所述SRS配置信息,用所述全部发送端口向所述接入设备发送SRS。
- 一种通信装置,其特征在于,包括:处理器和存储器,所述存储器和所述处理器耦合,所述存储器用于存储程序指令,所述处理器用于执行所述程序指令,以实现权利要求1-9任一项所述的方法。
- 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,实现上述权利要求1-9任一所述的方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有指令,当所述指令在计算机上运行时,实现如权利要求1-9任一所述的方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/122292 WO2022082466A1 (zh) | 2020-10-20 | 2020-10-20 | 无线通信方法及通信装置 |
CN202080006888.3A CN114651502A (zh) | 2020-10-20 | 2020-10-20 | 无线通信方法及通信装置 |
EP20958049.7A EP4216632A4 (en) | 2020-10-20 | 2020-10-20 | METHOD AND DEVICE FOR WIRELESS COMMUNICATION |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/122292 WO2022082466A1 (zh) | 2020-10-20 | 2020-10-20 | 无线通信方法及通信装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022082466A1 true WO2022082466A1 (zh) | 2022-04-28 |
Family
ID=81291271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/122292 WO2022082466A1 (zh) | 2020-10-20 | 2020-10-20 | 无线通信方法及通信装置 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4216632A4 (zh) |
CN (1) | CN114651502A (zh) |
WO (1) | WO2022082466A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023236105A1 (en) * | 2022-06-08 | 2023-12-14 | Apple Inc. | Method and procedure for ai based coherent ul mimo transmission |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118785321A (zh) * | 2023-04-07 | 2024-10-15 | 维沃移动通信有限公司 | Srs配置方法、装置及相关设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108111283A (zh) * | 2017-11-03 | 2018-06-01 | 中兴通讯股份有限公司 | 一种参考信号的传输方法及设备 |
US20190174466A1 (en) * | 2018-01-22 | 2019-06-06 | Intel Corporation | Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration |
CN110945822A (zh) * | 2017-12-01 | 2020-03-31 | Lg 电子株式会社 | 在无线通信系统中的上行链路发送和接收方法及其装置 |
CN111052838A (zh) * | 2017-08-24 | 2020-04-21 | 高通股份有限公司 | 用于发送用于具有非对称发送/接收的用户设备的探测参考信号的方法 |
US20200204240A1 (en) * | 2018-12-21 | 2020-06-25 | Qualcomm Incorporated | User equipment (ue) antenna grouping |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020511037A (ja) * | 2017-02-14 | 2020-04-09 | エルジー エレクトロニクス インコーポレイティド | Srs設定情報を受信する方法及びそのための端末 |
WO2020047080A1 (en) * | 2018-08-28 | 2020-03-05 | Hua Zhou | Uplink transmission in a wireless communication system |
EP3906728A4 (en) * | 2019-02-01 | 2022-04-06 | Huawei Technologies Co., Ltd. | DEVICE, NETWORK, AND METHOD FOR TRANSMITTING AND RECEIVING SOUNDING REFERENCE SIGNAL |
WO2020248158A1 (en) * | 2019-06-12 | 2020-12-17 | Qualcomm Incorporated | Adaptive sounding reference signal port configuration |
-
2020
- 2020-10-20 EP EP20958049.7A patent/EP4216632A4/en active Pending
- 2020-10-20 CN CN202080006888.3A patent/CN114651502A/zh active Pending
- 2020-10-20 WO PCT/CN2020/122292 patent/WO2022082466A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111052838A (zh) * | 2017-08-24 | 2020-04-21 | 高通股份有限公司 | 用于发送用于具有非对称发送/接收的用户设备的探测参考信号的方法 |
CN108111283A (zh) * | 2017-11-03 | 2018-06-01 | 中兴通讯股份有限公司 | 一种参考信号的传输方法及设备 |
CN110945822A (zh) * | 2017-12-01 | 2020-03-31 | Lg 电子株式会社 | 在无线通信系统中的上行链路发送和接收方法及其装置 |
US20190174466A1 (en) * | 2018-01-22 | 2019-06-06 | Intel Corporation | Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration |
US20200204240A1 (en) * | 2018-12-21 | 2020-06-25 | Qualcomm Incorporated | User equipment (ue) antenna grouping |
Non-Patent Citations (1)
Title |
---|
See also references of EP4216632A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023236105A1 (en) * | 2022-06-08 | 2023-12-14 | Apple Inc. | Method and procedure for ai based coherent ul mimo transmission |
Also Published As
Publication number | Publication date |
---|---|
EP4216632A1 (en) | 2023-07-26 |
EP4216632A4 (en) | 2023-11-22 |
CN114651502A (zh) | 2022-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020143829A1 (zh) | 发送和接收指示的方法和装置 | |
US20210084650A1 (en) | Communication method and communications apparatus | |
US11419120B2 (en) | Information transmission method and communications device | |
US11218999B2 (en) | Method and apparatus for sending uplink control channel | |
CN113595696B (zh) | 通信方法、装置及系统 | |
WO2021213364A1 (zh) | 指示方法、上行传输方法、装置、服务节点、终端及介质 | |
CN111867086B (zh) | 通信方法以及通信装置 | |
WO2019214559A1 (zh) | 通信的方法和通信装置 | |
US20230262452A1 (en) | Communication Method for Terminal and Communication Apparatus | |
WO2022082466A1 (zh) | 无线通信方法及通信装置 | |
WO2019096210A1 (zh) | 资源分配的方法和装置 | |
WO2020057375A1 (zh) | 一种资源配置方法及通信装置 | |
WO2019191970A1 (zh) | 通信方法、通信装置和系统 | |
JP2022516962A (ja) | 節電に関わるユーザ機器 | |
WO2022027694A1 (zh) | 一种资源信息指示方法及装置 | |
WO2022052131A1 (zh) | 通信方法、装置 | |
CN111327346A (zh) | 一种信道跳频的确定方法及装置、计算机存储介质 | |
WO2024016837A1 (zh) | 一种通信方法及装置 | |
WO2022262620A1 (zh) | 一种指示解调参考信号的方法和装置 | |
WO2023060449A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
WO2021068202A1 (zh) | 一种通信方法及通信装置 | |
CN114698104A (zh) | 一种指示天线端口的方法、装置与系统 | |
WO2019214331A1 (zh) | 一种发送pucch的方法、装置及可读存储介质 | |
WO2023159575A1 (zh) | 通信方法、终端设备及网络设备 | |
CN111313929A (zh) | 一种信道跳频的确定方法及装置、计算机存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20958049 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020958049 Country of ref document: EP Effective date: 20230420 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |