WO2022068686A1 - 一种名义包填充值的指示方法、确定方法及通信装置 - Google Patents

一种名义包填充值的指示方法、确定方法及通信装置 Download PDF

Info

Publication number
WO2022068686A1
WO2022068686A1 PCT/CN2021/120204 CN2021120204W WO2022068686A1 WO 2022068686 A1 WO2022068686 A1 WO 2022068686A1 CN 2021120204 W CN2021120204 W CN 2021120204W WO 2022068686 A1 WO2022068686 A1 WO 2022068686A1
Authority
WO
WIPO (PCT)
Prior art keywords
threshold
modulation
nsts
physical layer
subfield
Prior art date
Application number
PCT/CN2021/120204
Other languages
English (en)
French (fr)
Inventor
狐梦实
于健
淦明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112023006042A priority Critical patent/BR112023006042A2/pt
Publication of WO2022068686A1 publication Critical patent/WO2022068686A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/06Notations for structuring of protocol data, e.g. abstract syntax notation one [ASN.1]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/323Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the physical layer [OSI layer 1]

Definitions

  • the present application relates to the technical field of wireless fidelity, and in particular, to a method for indicating a filling value of a nominal packet, a method for determining it, and a communication device.
  • the receiver can indicate a certain number of spatial and time streams (NSTS), a certain resource allocation (RU) size the corresponding modulation threshold.
  • the transmitter can determine the nominal packet padding value to use based on this modulation threshold. Then, the transmitter determines an actual padding value according to the nominal packet padding value, so as to pad the packet extension that may be included in the data packet sent to the receiver according to the actual padding value.
  • the data in the packet extension is not required for reception, so other data can be processed within the processing time of the packet extension, thereby ensuring that the receiver has enough processing time.
  • the RU size increases, causing the receiver to require more processing time in these cases, eg, greater than 16 ⁇ s.
  • the present application provides an indication method, a determination method and a communication device of a nominal packet filling value, which can indicate a nominal packet filling value greater than 16 microseconds.
  • an embodiment of the present application provides a method for indicating a nominal packet filling value.
  • the method can be executed by a first communication device, and the first communication device can be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method. device, such as a system-on-a-chip.
  • the following description takes the communication device as the first device as an example, where the first device may be an AP or a STA.
  • the method includes:
  • the first device generates a PPDU, and sends the PPDU to the second device, where the PPDU includes a physical layer packet extension threshold existence subfield and a physical layer packet extension threshold field; wherein, the physical layer packet extension threshold existence subfield is selected.
  • the value is 1, the physical layer packet extension threshold field includes the space-time stream number NSTS field, and the first subfield set used to indicate that the NSTS is n, the modulation threshold corresponding to the RU numbered b, and the value range of n is [1,...,N], N is an integer greater than 8, the value range of b is [m,...,M], m and M are integers greater than or equal to 1;
  • a first subfield in the first subfield set is used to indicate a first modulation threshold corresponding to an RU whose NSTS is n and numbered b, and the first modulation threshold is used to indicate that the second device is in a modulation mode.
  • a first set of subfields can be set in the physical layer packet extension threshold field, which can be used to indicate that the second nominal packet filling value used by the second device when the modulation mode is greater than or equal to the second modulation threshold is greater than 16 microseconds. That is, for application scenarios that support more NSTS, higher-order modulation methods, and larger bandwidths, a method for indicating a nominal packet filling value greater than 16 microseconds is provided. In addition, the nominal packet filling value corresponding to different NSTSs, different modulation modes, and different RUs can be indicated through the first subfield set, which is more flexible.
  • an embodiment of the present application provides a method for indicating a nominal packet filling value.
  • the method can be executed by a first communication device, and the first communication device can be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method. device, such as a system-on-a-chip.
  • the following description takes the communication device as the first device as an example, where the first device may be an AP or a STA.
  • the method includes:
  • the first device sends the first space-time stream number NSTS threshold and/or the first resource unit RU threshold to the second device, where the first NSTS threshold is used to indicate that the NSTS used by the second device is greater than or equal to the At the first NSTS threshold, use the first nominal packet padding value;
  • the first RU threshold is used to indicate that when the RU size adopted by the second device is greater than or equal to the first RU threshold, the first nominal packet filling value is used;
  • the first nominal packet fill value is greater than 16 microseconds.
  • the NSTS used by the second device is greater than or equal to the set NSTS threshold
  • the size of the RU used by the second device is greater than or equal to the set RU threshold, and the first nominal packet filling value may also be determined to be used, which is relatively simple and easy to implement.
  • the method further includes:
  • the first device sends a physical layer protocol data unit PPDU to the second device, the PPDU includes a space-time stream number NSTS field, and a first field for indicating the modulation threshold corresponding to the RU whose NSTS is n and the sequence number is b.
  • the modulation threshold is used to indicate the nominal packet padding value used by the second device when the modulation mode is greater than or equal to the modulation threshold; wherein, the value range of n is [1,...,p], and p is less than or equal to the first NSTS threshold.
  • the method further includes:
  • the first device sends a physical layer protocol data unit PPDU to the second device, the PPDU includes a space-time stream number NSTS field, and a first field for indicating the modulation threshold corresponding to the RU whose NSTS is n and the sequence number is b.
  • a set of subfields; the modulation threshold is used to indicate the nominal packet filling value used by the second device when the modulation mode is greater than or equal to the modulation threshold;
  • the value range of b is [m,...,q], where m is An integer greater than or equal to 1, q is less than or equal to the first RU threshold.
  • the first device indicates the first NSTS threshold and/or the first RU threshold to the second device
  • the first subfield set sent by the first device to the second device may not need to traverse all NSTS and RU sizes,
  • the overhead of the PPDU can be saved.
  • the method further includes:
  • the first device sends first indication information to the second device, where the first indication information is used to indicate whether the first NSTS is valid.
  • the method further includes:
  • the first device sends second indication information to the second device, where the second indication information is used to indicate whether the first RU threshold takes effect.
  • the first device may indirectly inform the second device through the first indication information and/or the second indication information whether to refer to the first NSTS threshold and/or the first RU threshold when determining the nominal packet filling value. It should be understood that even if the first NSTS threshold and/or the first RU threshold are set, if the processing capability of the first device is strong, the second device may use a smaller nominal packet filling value, that is, the first nominal packet need not be used. Packet padding value.
  • the physical layer packet extension threshold field further includes:
  • the physical layer packet extension threshold field also includes a second subfield set and a third subfield set, which are compatible with the existing PPDU structure and can realize a nominal packet filling value of 8 microseconds or a nominal packet filling value of 16 microseconds. or a method with a nominal packet padding value greater than 16 microseconds.
  • the first subfield set, the second subfield set and the third subfield set may be located in a physical layer packet extension threshold field, It may also be located in multiple physical layer packet extension threshold fields, which are not limited in this embodiment of the present application.
  • the first subfield set, the second subfield set and the third subfield set are located in the first physical layer packet extension threshold information field included in the physical layer packet extension threshold field.
  • the first subfield set is located in the first physical layer packet extension threshold information field included in the physical layer packet extension threshold field
  • the second subfield set and the third subfield set are located in the physical layer packet extension threshold information field.
  • n corresponding to the first subfield set is greater than or equal to the first NSTS threshold, and the physical layer packet extension threshold field does not include the first NSTS threshold.
  • the PPDU includes a third physical layer packet extension threshold information field and a fourth physical layer packet extension threshold information field, which are used to indicate that the NSTS is n, and the number is The first subfield set of the modulation threshold corresponding to the RU of b is located in the third physical layer packet extension threshold information field and the fourth physical layer packet extension threshold information field;
  • the n corresponding to the third physical layer packet extension threshold information field is located in the second set, the second set is a subset of [1, . . . , N], the elements in the second set are continuous, and all
  • the b corresponding to the third physical layer packet extension threshold information field is located in the third set, and the third set is a subset of [q,...,M], and the q is greater than the m, [q,...,M ]
  • the elements in the set are continuous, and the elements in the third set are continuous;
  • the fourth set is [p,...,N]
  • p is an integer greater than 1
  • the elements in the fourth set are consecutive
  • the b corresponding to the fourth physical layer packet extension threshold information field is located in the fifth set
  • the fifth set is a subset of [m,...,q]
  • the q is smaller than M, [m,... , q] are consecutive, and the elements in the fifth set are consecutive.
  • the PPDU includes a third physical layer packet extension threshold information field and a fourth physical layer packet extension threshold information field, which are used to indicate that the NSTS is n, and the number is The first subfield set of the modulation threshold corresponding to the RU of b is respectively located in the third physical layer packet extension threshold information field and the fourth physical layer packet extension threshold information field;
  • the second set is a subset of [p,...,N]
  • p is an integer greater than 1
  • the second set is The elements are consecutive
  • the b corresponding to the third physical layer packet extension threshold information field is located in the third set, the third set is a subset of [m,...,M], and the elements are consecutive;
  • the n corresponding to the fourth physical layer packet extension threshold information field is located in the fourth set, the fourth set is [1, . . . , p], p is less than N, the elements in the fourth set are continuous, and The b corresponding to the fourth physical layer packet extension threshold information field is located in the fifth set, and the fifth set is a subset of [q,...,M], and the q is greater than m, [q,...,M] The elements within are consecutive, and the elements within the fifth set are consecutive.
  • the PPDU includes a third physical layer packet extension threshold information field, a fourth physical layer packet extension threshold information field, and a fifth physical layer packet extension threshold information field , the first subfield set used to indicate that the NSTS is n and the modulation threshold corresponding to the RU numbered b is located in the third physical layer packet extension threshold information field, the fourth physical layer packet extension threshold information field, and the fifth physical layer packet extension threshold information field, respectively.
  • Layer packet extension threshold information field where,
  • the second set is a subset of [p,...,N]
  • p is an integer greater than 1
  • the second set is The elements are continuous
  • the b corresponding to the third physical layer packet extension threshold information field is located in the third set
  • the third set is a subset of [m, . . . , q], where q is less than M, [ The elements in m,...,q] are continuous, and the elements in the fifth set are continuous;
  • the n corresponding to the fourth physical layer packet extension threshold information field is located in the fourth set, the fourth set is [1, . . . , p], p is less than N, the elements in the fourth set are continuous, and The b corresponding to the fourth physical layer packet extension threshold information field is located in the fifth set, and the fifth set is a subset of [q,...,M], and the q is greater than m, [q,...,M] The elements in the set are consecutive, and the elements in the fifth set are consecutive;
  • the sixth set is [p,...N]
  • p is an integer greater than 1
  • the elements in the sixth set are consecutive
  • the b corresponding to the fifth physical layer packet extension threshold information field is located in the seventh set
  • the seventh set is a subset of [q,...,M]
  • the q is greater than m, [q,..., The elements in M] are consecutive, and the elements in the seventh set are consecutive.
  • the first device can indicate to the second device that the subfield indicated in the corresponding HE capability element is omitted in the EHT capability element, which can reduce the complexity of receiver implementation.
  • the NSTS adopted by the second device is the second value, and the value range of n is a proper subset of [1,...,N]; and/ Or, the index of the RU indicated by the resource unit RU index mask included in the physical layer packet extension threshold field belongs to a proper subset of the eighth set, and the first set is ⁇ 242, 484, 996, 2*996, 3* 996, 4*996 ⁇ . Since the value range of n is the proper subset of [1, . . . , N], and the index of RU belongs to the proper subset of the eighth set, this scheme can reduce the overhead of PPDU.
  • an embodiment of the present application provides a method for determining a nominal packet filling value.
  • the method can be executed by a second communication device, and the second communication device can be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method. device, such as a system-on-a-chip.
  • the following description takes the communication device as a second device as an example, where the second device may be an AP or a STA.
  • the method includes:
  • the second device receives the physical layer protocol data unit PPDU from the first device, wherein the PPDU includes a physical layer packet extension threshold existence subfield and a physical layer packet extension threshold field, and the physical layer packet extension threshold existence subfield is selected
  • the value is 1, the physical layer packet extension threshold field includes the space-time stream number NSTS field, and the first subfield set used to indicate that the NSTS is n, the modulation threshold corresponding to the RU numbered b, and the value range of n is [1,...,N], N is an integer greater than 8, the value range of b is [m,...,M], m and M are integers greater than or equal to 1;
  • a first subfield is used to indicate a first modulation threshold corresponding to the RU whose NSTS is n and the number is b, and the first modulation threshold is used to indicate that the modulation mode of the second device is greater than or equal to the first modulation threshold the first nominal packet filling value used in the threshold, the first nominal packet filling value is a
  • the second device determines that the adopted modulation mode is greater than or equal to the first modulation threshold. If the second device determines that the adopted modulation mode is greater than or equal to the first modulation threshold, the second device determines the first nominal packet filling value to be used.
  • an embodiment of the present application provides a method for determining a nominal packet filling value.
  • the method may be executed by a second communication device, and the second communication device may be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method. device, such as a system-on-a-chip.
  • the following description takes the communication device as a second device as an example, where the second device may be an AP or a STA.
  • the method includes:
  • the second device determines that at least one of the following two conditions is met, the first nominal packet filling value is used, and the first nominal packet filling value is greater than 16 microseconds;
  • the number of space-time streams NSTS used by the second device is greater than or equal to the first NSTS threshold
  • the second device determines that the adopted RU size is greater than or equal to the first RU threshold.
  • the method further includes:
  • the second device uses the nominal packet padding value corresponding to the first modulation threshold corresponding to the RU whose NSTS is n and the sequence number is b in the first subfield set, where n
  • the value range of b is [1, ..., the first NSTS threshold]
  • the value range of b is [m, ..., M]
  • m and M are integers greater than or equal to 1.
  • the method further includes:
  • the second device uses the nominal packet padding value corresponding to the first modulation threshold corresponding to the RU whose NSTS is n and the sequence number is b in the first subfield set, wherein,
  • the value range of n is [1, ..., N], where N is an integer greater than 8, the value range of b is [m, ..., the first RU threshold], and m is an integer greater than or equal to 1.
  • the method further includes:
  • the second device receives the first RU threshold sent by the first device.
  • the method further includes:
  • the second device receives second indication information from the first device, where the second indication information is used to indicate whether the first RU threshold takes effect.
  • the second subfield set used to indicate the modulation threshold corresponding to the RU whose NSTS is n and the sequence number is b.
  • the second nominal packet filling value is 16 microseconds;
  • the third modulation threshold corresponding to the RU, the third modulation threshold is used to indicate the third nominal packet filling value used by the second device.
  • the third nominal packet fill value is 8 microseconds.
  • the first subfield set, the second subfield set and the third subfield set are located in the physical layer packet extension threshold field including: the first physical layer packet extension threshold information field; or,
  • the first subfield set is located in the first physical layer packet extension threshold information field included in the physical layer packet extension threshold field, and the second subfield set and the third subfield set are located in the physical layer packet extension.
  • the threshold field includes a second physical layer packet extension threshold information field.
  • n corresponding to the first subfield set is greater than or equal to the first NSTS threshold, and the physical layer packet extension threshold field does not include the first NSTS threshold.
  • the PPDU includes a third physical layer packet extension threshold information field and a fourth physical layer packet extension threshold information field, which are used to indicate that the NSTS is n and the sequence number is The first subfield set of the modulation threshold corresponding to the RU of b is located in the third physical layer packet extension threshold information field and the fourth physical layer packet extension threshold information field, wherein,
  • the n corresponding to the third physical layer packet extension threshold information field is located in the second set, the second set is a subset of [1, . . . , N], the elements in the second set are continuous, and all
  • the b corresponding to the third physical layer packet extension threshold information field is located in the third set, and the third set is a subset of [q,...,M], and the q is greater than the m, [q,...,M ]
  • the elements in the set are continuous, and the elements in the third set are continuous;
  • the fourth set is [p,...,N]
  • p is an integer greater than 1
  • the elements in the fourth set are consecutive
  • the b corresponding to the fourth physical layer packet extension threshold information field is located in the fifth set
  • the fifth set is a subset of [m,...,q]
  • the q is smaller than M, [m,... , q] are consecutive, and the elements in the fifth set are consecutive.
  • the PPDU includes a third physical layer packet extension threshold information field and a fourth physical layer packet extension threshold information field, which are used to indicate that the NSTS is n and the sequence number is The first subfield set of the modulation threshold corresponding to the RU corresponding to b is located in the third physical layer packet extension threshold information field and the fourth physical layer packet extension threshold information field, wherein,
  • the second set is a subset of [p,...,N]
  • p is an integer greater than 1
  • the second set is The elements are consecutive
  • the b corresponding to the third physical layer packet extension threshold information field is located in the third set, the third set is a subset of [m,...,M], and the elements are consecutive;
  • the n corresponding to the fourth physical layer packet extension threshold information field is located in the fourth set, the fourth set is [1, . . . , p], p is less than N, the elements in the fourth set are continuous, and The b corresponding to the fourth physical layer packet extension threshold information field is located in the fifth set, and the fifth set is a subset of [q,...,M], and the q is greater than m, [q,...,M] The elements within are consecutive, and the elements within the fifth set are consecutive.
  • the PPDU includes a third physical layer packet extension threshold information field, a fourth physical layer packet extension threshold information field, and a fifth physical layer packet extension threshold information field , the first subfield set used to indicate that the NSTS is n and the modulation threshold corresponding to the RU corresponding to the sequence number b is located in the third physical layer packet extension threshold information field, the fourth physical layer packet extension threshold information field and the fifth Physical layer packet extension threshold information field;
  • the second set is a subset of [p,...,N]
  • p is an integer greater than 1
  • the second set is The elements are continuous
  • the b corresponding to the third physical layer packet extension threshold information field is located in the third set
  • the third set is a subset of [m, . . . , q], where q is less than M, [ The elements in m,...,q] are continuous, and the elements in the fifth set are continuous;
  • the n corresponding to the fourth physical layer packet extension threshold information field is located in the fourth set, the fourth set is [1, . . . , p], p is less than N, the elements in the fourth set are continuous, and The b corresponding to the fourth physical layer packet extension threshold information field is located in the fifth set, and the fifth set is a subset of [q,...,M], and the q is greater than m, [q,...,M] The elements in the set are consecutive, and the elements in the fifth set are consecutive;
  • the sixth set is [p,...N]
  • p is an integer greater than 1
  • the elements in the sixth set are consecutive
  • the b corresponding to the fifth physical layer packet extension threshold information field is located in the seventh set
  • the seventh set is a subset of [q,...,M]
  • the q is greater than m, [q,..., The elements in M] are consecutive, and the elements in the seventh set are consecutive.
  • the NSTS adopted by the second device is the second value
  • the value range of n is a proper subset of [1, . . . , N]; and/ or,
  • the index of the RU indicated by the resource unit RU index mask included in the physical layer packet extension threshold field belongs to the proper subset of the eighth set, and the first set is ⁇ 242, 484, 996, 2*996, 3*996, 4*996 ⁇ .
  • the second device determines that the nominal packet padding value to be used is equal to 8 microseconds:
  • the first condition is that the modulation mode to be used by the second device is greater than or equal to the third modulation threshold
  • the second condition is that the modulation mode to be used by the second device is less than the second modulation threshold, or the value of the second subfield set is null (null);
  • the third condition is that the modulation mode to be used by the second device is smaller than the first modulation threshold, or the value of the first subfield set is empty.
  • the second device determines that the nominal packet padding value to be used is equal to 16 microseconds:
  • the fourth condition is that the modulation mode to be used by the second device is greater than the third modulation threshold, or the value of the third subfield set is null;
  • the fifth condition is that the modulation mode to be used by the second device is greater than or equal to the second modulation threshold
  • the sixth condition is that the modulation mode to be used by the second device is smaller than the first modulation threshold, or the value of the first subfield set is null (null).
  • an embodiment of the present application provides a method for indicating a nominal packet filling value.
  • the method can be executed by a first communication device, and the first communication device can be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method. device, such as a system-on-a-chip.
  • the following description takes the communication device as the first device as an example, where the first device may be an AP or a STA.
  • the method includes:
  • the first device generates a physical layer protocol data unit PPDU, and sends the PPDU to the second device, where the PPDU includes a physical layer packet extension threshold existence subfield; wherein the value of the physical layer packet extension threshold existence subfield is a value of 1.
  • the PPDU includes a threshold field, where the threshold field is used to indicate one or more of the first NSTS threshold, the first resource unit RU threshold, and the first modulation threshold, and the parameters for sending data at the second device When the preset condition is met, the nominal packet filling value is a first value, and the first value is greater than 16 microseconds;
  • the preset condition is one or more of the following conditions:
  • the NSTS used by the second device to send data is greater than or equal to the first NSTS threshold
  • the RU used by the second device to send data is greater than or equal to the first RU threshold
  • the modulation mode to be used by the second device is greater than or equal to the first modulation threshold.
  • the PPDU does not include the second subfield set and the third subfield set used to indicate the modulation threshold corresponding to the RU corresponding to the NSTS of n and the sequence number of b.
  • the value range is [1, ..., N], N is an integer less than or equal to 8, the value range of b is [m, ..., M], m and M are integers greater than or equal to 1.
  • the first device further sends indication information to the second device, wherein,
  • the threshold field includes an NSTS threshold subfield, an RU threshold subfield, and a modulation threshold subfield, and the indication information is used to indicate whether one or more subfields in the threshold field are valid; or,
  • the indication information is used to indicate that the nominal packet padding value is invalid for the first value; or,
  • the indication information is used to indicate whether the threshold field includes one or more of the NSTS threshold subfield, the RU threshold subfield and the modulation threshold subfield.
  • an embodiment of the present application provides a method for determining a nominal packet filling value.
  • the method can be executed by a second communication device, and the second communication device can be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method. device, such as a system-on-a-chip.
  • the following description takes the communication device as a second device as an example, where the second device may be an AP or a STA.
  • the method includes:
  • the second device receives the physical layer protocol data unit PPDU from the first device, and the PPDU includes a physical layer packet extension threshold existence subfield; wherein the value of the physical layer packet extension threshold existence subfield is 1, and the PPDU including a threshold field, where the threshold field is used to indicate one or more of the first NSTS threshold, the first resource unit RU threshold, and the first modulation threshold,
  • the second device determines that a preset condition is met, the second device determines that the nominal packet filling value is a first value, and the first value is greater than 16 microseconds;
  • the preset condition is one of the following conditions one or more of:
  • the NSTS used by the second device to send data is greater than or equal to the first NSTS threshold
  • the RU used by the second device to send data is greater than or equal to the first RU threshold
  • the modulation mode to be used by the second device is greater than or equal to the first modulation threshold.
  • the PPDU does not include a second subfield set and a third subfield set that are used to indicate the modulation threshold corresponding to the RU corresponding to the NSTS of n and the sequence number of b.
  • the value range is [1, ..., N], N is an integer less than or equal to 8, the value range of b is [m, ..., M], m and M are integers greater than or equal to 1.
  • the second device further receives indication information sent by the first device, wherein,
  • the threshold field includes an NSTS threshold subfield, an RU threshold subfield, and a modulation threshold subfield, and the indication information is used to indicate whether one or more subfields in the threshold field are valid; or,
  • the indication information is used to indicate that the nominal packet padding value is invalid for the first value; or,
  • the indication information is used to indicate whether the threshold field includes one or more of the NSTS threshold subfield, the RU threshold subfield and the modulation threshold subfield.
  • a communication device is provided, for example, the communication device is the aforementioned first device or a device provided in the first device.
  • the communication device may be used to perform the method in the above-mentioned first aspect or any possible implementation manner of the first aspect.
  • the communication apparatus may include a module for performing the method in the first aspect or any possible implementation manner of the first aspect, for example, including a processing module and a transceiver module coupled with each other.
  • the communication apparatus is the aforementioned first device. in,
  • the processing module is configured to generate a PPDU, and the transceiver module is configured to send the PPDU to the second device; wherein the PPDU includes a physical layer packet extension threshold existence subfield, a physical layer packet extension threshold field, and the physical layer
  • the value of the packet extension threshold existence subfield is 1, and the physical layer packet extension threshold field includes the NSTS field, and the first subfield set for indicating the modulation threshold corresponding to the RU whose NSTS is n and numbered b, where n is The value range is [1, ..., N], N is an integer greater than 8, the value range of b is [m, ..., M], m and M are integers greater than or equal to 1;
  • a first subfield in the first subfield set is used to indicate a first modulation threshold corresponding to an RU whose NSTS is n and numbered b, and the first modulation threshold is used to indicate that the second device is in a modulation mode.
  • a communication device is provided, for example, the communication device is the aforementioned first device or a device provided in the first device.
  • the communication device may be configured to perform the method of the second aspect or any possible implementation of the second aspect.
  • the communication apparatus may include a module for executing the method in the second aspect or any possible implementation manner of the second aspect, for example, including a processing module and a transceiver module coupled with each other.
  • the communication apparatus is the aforementioned first device. in,
  • the transceiver module is configured to send the first space-time stream number NSTS threshold and/or the first resource unit RU threshold to the second device, wherein the first NSTS threshold is used to indicate that the NSTS used by the second device is greater than or When equal to the first NSTS threshold, use the first nominal packet padding value;
  • the first RU threshold is used to indicate that when the RU size adopted by the second device is greater than or equal to the first RU threshold, a first nominal packet filling value is used, and the first nominal packet filling value is greater than 16 microseconds.
  • the transceiver module is further configured to send a physical layer protocol data unit PPDU to the second device, where the PPDU includes a space-time stream number NSTS field, and is used to indicate the NSTS is n, the first subfield set of the modulation threshold corresponding to the RU with sequence number b; the modulation threshold is used to indicate the nominal packet padding value used by the second device when the modulation mode is greater than or equal to the modulation threshold; wherein, n The value range of is [1, . . . , p], and p is less than or equal to the first NSTS threshold.
  • the transceiver module is further configured to send a physical layer protocol data unit PPDU to the second device, where the PPDU includes a space-time stream number NSTS field, and is used to indicate the NSTS is n, the first subfield set of the modulation threshold corresponding to the RU with sequence number b; the modulation threshold is used to indicate the nominal packet padding value used by the second device when the modulation mode is greater than or equal to the modulation threshold; the b
  • the value range of is [m, ..., q], m is an integer greater than or equal to 1, and q is less than or equal to the first RU threshold.
  • the transceiver module is further configured to send first indication information to the second device, where the first indication information is used to indicate whether the first NSTS takes effect.
  • the transceiver module is further configured to send second indication information to the second device, where the second indication information is used to indicate whether the first RU threshold takes effect.
  • the physical layer packet extension threshold field further includes:
  • the first subfield set, the second subfield set, and the third subfield set are located in the physical layer packet extension threshold field including: The first physical layer packet extension threshold information field.
  • the first subfield set is located in the first physical layer packet extension threshold information field included in the physical layer packet extension threshold field
  • the second subfield set and the third subfield set are located in the physical layer The second physical layer packet extension threshold information field included in the packet extension threshold field.
  • n corresponding to the first subfield set is greater than or equal to the first NSTS threshold, and the physical layer packet extension threshold field does not include the first NSTS threshold.
  • the PPDU includes a third physical layer packet extension threshold information field and a fourth physical layer packet extension threshold information field, which are used to indicate that the NSTS is n, and the number is The first subfield set of the modulation threshold corresponding to the RU of b is located in the third physical layer packet extension threshold information field and the fourth physical layer packet extension threshold information field respectively;
  • the n corresponding to the third physical layer packet extension threshold information field is located in the second set, the second set is a subset of [1, . . . , N], the elements in the second set are continuous, and all
  • the b corresponding to the third physical layer packet extension threshold information field is located in the third set, and the third set is a subset of [q,...,M], and the q is greater than the m, [q,...,M ]
  • the elements in the set are continuous, and the elements in the third set are continuous;
  • the fourth set is [p,...,N]
  • p is an integer greater than 1
  • the elements in the fourth set are consecutive
  • the b corresponding to the fourth physical layer packet extension threshold information field is located in the fifth set
  • the fifth set is a subset of [m,...,q]
  • the q is smaller than M, [m,... , q] are consecutive, and the elements in the fifth set are consecutive.
  • the PPDU includes a third physical layer packet extension threshold information field and a fourth physical layer packet extension threshold information field, which are used to indicate that the NSTS is n, and the number is The first subfield set of the modulation threshold corresponding to the RU of b is located in the third physical layer packet extension threshold information field and the fourth physical layer packet extension threshold information field;
  • the second set is a subset of [p,...,N]
  • p is an integer greater than 1
  • the second set is The elements are consecutive
  • the b corresponding to the third physical layer packet extension threshold information field is located in the third set, the third set is a subset of [m,...,M], and the elements are consecutive;
  • the n corresponding to the fourth physical layer packet extension threshold information field is located in the fourth set, the fourth set is [1, . . . , p], p is less than N, the elements in the fourth set are continuous, and
  • the b corresponding to the fourth physical layer packet extension threshold information field is located in the fifth set, and the fifth set is a subset of [q, ..., M], and the q is greater than m, [q, ..., M]
  • the elements within are consecutive, and the elements within the fifth set are consecutive.
  • the PPDU includes a third physical layer packet extension threshold information field, a fourth physical layer packet extension threshold information field, and a fifth physical layer packet extension threshold information field , the first subfield set used to indicate that the NSTS is n and the modulation threshold corresponding to the RU numbered b is located in the third physical layer packet extension threshold information field, the fourth physical layer packet extension threshold information field, and the fifth physical layer packet extension threshold information field, respectively.
  • Layer packet extension threshold information field where,
  • the second set is a subset of [p,...,N]
  • p is an integer greater than 1
  • the second set is The elements are continuous
  • the b corresponding to the third physical layer packet extension threshold information field is located in the third set
  • the third set is a subset of [m, . . . , q], where q is less than M, [ The elements in m,...,q] are continuous, and the elements in the fifth set are continuous;
  • the n corresponding to the fourth physical layer packet extension threshold information field is located in the fourth set, the fourth set is [1, . . . , p], p is less than N, the elements in the fourth set are continuous, and The b corresponding to the fourth physical layer packet extension threshold information field is located in the fifth set, and the fifth set is a subset of [q,...,M], and the q is greater than m, [q,...,M] The elements in the set are consecutive, and the elements in the fifth set are consecutive;
  • the sixth set is [p,...N]
  • p is an integer greater than 1
  • the elements in the sixth set are consecutive
  • the b corresponding to the fifth physical layer packet extension threshold information field is located in the seventh set
  • the seventh set is a subset of [q,...,M]
  • the q is greater than m, [q,..., The elements in M] are consecutive, and the elements in the seventh set are consecutive.
  • the NSTS adopted by the second device is a second value
  • the value range of n is a proper subset of [1, . . . , N]
  • the index of the RU indicated by the resource unit RU index mask included in the physical layer packet extension threshold field belongs to a proper subset of the eighth set, and the first set is ⁇ 242, 484, 996, 2*996, 3* 996, 4*996 ⁇ .
  • a communication device is provided, for example, the communication device is the aforementioned second device or a device provided in the second device.
  • the communication device can be used to perform the method in the above third aspect or any possible implementation manner of the third aspect.
  • the communication apparatus may include a module for executing the third aspect or the method in any possible implementation manner of the third aspect, for example, including a processing module and a transceiver module coupled with each other.
  • the communication device is the aforementioned second device. in,
  • the transceiver module is configured to receive a physical layer protocol data unit PPDU from the first device, wherein the PPDU includes a physical layer packet extension threshold existence subfield, a physical layer packet extension threshold field, and the physical layer packet extension threshold existence subfield.
  • the value of the field is 1, and the physical layer packet extension threshold field includes the space-time stream number NSTS field, and the first subfield set used to indicate that the NSTS is n and the modulation threshold corresponding to the RU numbered b, the value of n is The value range is [1,...,N], N is an integer greater than 8, the value range of b is [m,...,M], m and M are integers greater than or equal to 1;
  • a first subfield in the field set is used to indicate a first modulation threshold corresponding to an RU whose NSTS is n and numbered b, and the first modulation threshold is used to indicate that the modulation mode of the second device is greater than or equal to the The first nominal packet filling value used during the first modul
  • the processing module is configured to determine the first nominal packet filling value to be used if it is determined that the adopted modulation mode is greater than or equal to the first modulation threshold.
  • a tenth aspect provides a communication device, for example, the communication device is the aforementioned second device or a device provided in the second device.
  • the communication device can be used to perform the method in the above fourth aspect or any possible implementation manner of the fourth aspect.
  • the communication apparatus may include a module for performing the method in the fourth aspect or any possible implementation manner of the fourth aspect, for example, including a processing module and a transceiver module coupled with each other.
  • the communication device is the aforementioned second device. in,
  • the processing module is configured to use a first nominal packet filling value when at least one of the following two conditions is satisfied, and the first nominal packet filling value is greater than 16 microseconds;
  • the number of space-time streams NSTS used by the second device is greater than or equal to the first NSTS threshold
  • the second device determines that the adopted RU size is greater than or equal to the first RU threshold.
  • the processing module is further configured to determine that when the adopted NSTS is smaller than the first NSTS threshold, use the corresponding RU whose NSTS is n and the sequence number is b in the first subfield set.
  • the nominal packet padding value corresponding to the first modulation threshold of where the value range of n is [1, ..., the first NSTS threshold], the value range of b is [m, ..., M], and m and M are greater than or an integer equal to 1.
  • the processing module is further configured to use the RU whose NSTS is n and the sequence number is b in the first subfield set when the size of the RU used is smaller than the first RU threshold
  • the nominal packet filling value corresponding to the corresponding first modulation threshold where the value range of n is [1,...,N], N is an integer greater than 8, the value range of b is [m,..., the first RU Threshold], m is an integer greater than or equal to 1.
  • the transceiver module is further configured to:
  • the first RU threshold sent by the first device is received.
  • the transceiver module is further configured to:
  • the physical layer packet extension threshold field further includes:
  • the second subfield set used to indicate the modulation threshold corresponding to the RU whose NSTS is n and the sequence number is b.
  • the second nominal packet filling value is 16 microseconds;
  • the third modulation threshold corresponding to the RU, the third modulation threshold is used to indicate the third nominal packet filling value used by the second device.
  • the third nominal packet fill value is 8 microseconds.
  • the first subfield set, the second subfield set, and the third subfield set are located in the physical layer packet extension threshold field including: the first physical layer packet extension threshold information field; or,
  • the first subfield set is located in the first physical layer packet extension threshold information field included in the physical layer packet extension threshold field, and the second subfield set and the third subfield set are located in the physical layer packet extension.
  • the threshold field includes a second physical layer packet extension threshold information field.
  • n corresponding to the first subfield set is greater than or equal to the first NSTS threshold, and the physical layer packet extension threshold field does not include the first NSTS threshold.
  • the PPDU includes a third physical layer packet extension threshold information field and a fourth physical layer packet extension threshold information field, which are used to indicate that the NSTS is n and the sequence number is The first subfield set of the modulation threshold corresponding to the RU of b is located in the third physical layer packet extension threshold information field and the fourth physical layer packet extension threshold information field, wherein,
  • the n corresponding to the third physical layer packet extension threshold information field is located in the second set, the second set is a subset of [1, . . . , N], the elements in the second set are continuous, and all
  • the b corresponding to the third physical layer packet extension threshold information field is located in the third set, and the third set is a subset of [q,...,M], and the q is greater than the m, [q,...,M ]
  • the elements in the set are continuous, and the elements in the third set are continuous;
  • the fourth set is [p,...,N]
  • p is an integer greater than 1
  • the elements in the fourth set are consecutive
  • the b corresponding to the fourth physical layer packet extension threshold information field is located in the fifth set
  • the fifth set is a subset of [m,...,q]
  • the q is smaller than M, [m,... , q] are consecutive, and the elements in the fifth set are consecutive.
  • the PPDU includes a third physical layer packet extension threshold information field and a fourth physical layer packet extension threshold information field, which are used to indicate that the NSTS is n and the sequence number is The first subfield set of the modulation threshold corresponding to the RU corresponding to b is located in the third physical layer packet extension threshold information field and the fourth physical layer packet extension threshold information field, wherein,
  • the second set is a subset of [p,...,N]
  • p is an integer greater than 1
  • the second set is The elements are consecutive
  • the b corresponding to the third physical layer packet extension threshold information field is located in the third set, the third set is a subset of [m,...,M], and the elements are consecutive;
  • the n corresponding to the fourth physical layer packet extension threshold information field is located in the fourth set, the fourth set is [1, . . . , p], p is less than N, the elements in the fourth set are continuous, and The b corresponding to the fourth physical layer packet extension threshold information field is located in the fifth set, and the fifth set is a subset of [q,...,M], and the q is greater than m, [q,...,M] The elements within are consecutive, and the elements within the fifth set are consecutive.
  • the PPDU includes a third physical layer packet extension threshold information field, a fourth physical layer packet extension threshold information field, and a fifth physical layer packet extension threshold information field , the first subfield set used to indicate that the NSTS is n and the modulation threshold corresponding to the RU corresponding to the sequence number b is located in the third physical layer packet extension threshold information field, the fourth physical layer packet extension threshold information field and the fifth Physical layer packet extension threshold information field;
  • the second set is a subset of [p,...,N]
  • p is an integer greater than 1
  • the second set is The elements are continuous
  • the b corresponding to the third physical layer packet extension threshold information field is located in the third set
  • the third set is a subset of [m, . . . , q], where q is less than M, [ The elements in m,...,q] are continuous, and the elements in the fifth set are continuous;
  • the n corresponding to the fourth physical layer packet extension threshold information field is located in the fourth set, the fourth set is [1, . . . , p], p is less than N, the elements in the fourth set are continuous, and The b corresponding to the fourth physical layer packet extension threshold information field is located in the fifth set, and the fifth set is a subset of [q,...,M], and the q is greater than m, [q,...,M] The elements in the set are consecutive, and the elements in the fifth set are consecutive;
  • the sixth set is [p,...N]
  • p is an integer greater than 1
  • the elements in the sixth set are consecutive
  • the b corresponding to the fifth physical layer packet extension threshold information field is located in the seventh set
  • the seventh set is a subset of [q,...,M]
  • the q is greater than m, [q,..., The elements in M] are consecutive, and the elements in the seventh set are consecutive.
  • the NSTS adopted by the second device is a second value
  • the value range of n is a proper subset of [1, . . . , N]; and/ or,
  • the index of the RU indicated by the resource unit RU index mask included in the physical layer packet extension threshold field belongs to the proper subset of the eighth set, and the first set is ⁇ 242, 484, 996, 2*996, 3*996, 4*996 ⁇ .
  • the second device determines that the nominal packet padding value to be used is equal to 8 microseconds:
  • the first condition is that the modulation mode to be used by the second device is greater than or equal to the third modulation threshold
  • the second condition is that the modulation mode to be used by the second device is less than the second modulation threshold, or the value of the second subfield set is null (null);
  • the third condition is that the modulation mode to be used by the second device is smaller than the first modulation threshold, or the value of the first subfield set is empty.
  • the second device determines that the nominal packet padding value to be used is equal to 16 microseconds:
  • the fourth condition is that the modulation mode to be used by the second device is greater than the third modulation threshold, or the value of the third subfield set is null;
  • the fifth condition is that the modulation mode to be used by the second device is greater than or equal to the second modulation threshold
  • the sixth condition is that the modulation mode to be used by the second device is smaller than the first modulation threshold, or the value of the first subfield set is null (null).
  • a communication device is provided, for example, the communication device is the aforementioned first device or a device provided in the first device.
  • the communication device can be used to perform the method in the fifth aspect or any possible implementation manner of the fifth aspect.
  • the communication apparatus may include a module for performing the method in the fifth aspect or any possible implementation manner of the fifth aspect, for example, including a processing module and a transceiver module coupled with each other.
  • the communication apparatus is the aforementioned first device. in,
  • the processing module is configured to generate a physical layer protocol data unit PPDU, and the transceiver module is configured to send the PPDU to the second device, where the PPDU includes a physical layer packet extension threshold existence subfield; wherein the physical layer packet extension The value of the threshold existence subfield is 1.
  • the PPDU includes a threshold field, and the threshold field is used to indicate one or more of the first NSTS threshold, the first resource unit RU threshold, and the first modulation threshold.
  • the preset condition is one or more of the following conditions:
  • the NSTS used by the second device to send data is greater than or equal to the first NSTS threshold
  • the RU used by the second device to send data is greater than or equal to the first RU threshold
  • the modulation mode to be used by the second device is greater than or equal to the first modulation threshold.
  • the PPDU does not include a second subfield set and a third subfield set for indicating the modulation threshold corresponding to the RU corresponding to the NSTS of n and the sequence number of b, n
  • the value range of is [1, ..., N], N is an integer less than or equal to 8
  • the value range of b is [m, ..., M]
  • m and M are integers greater than or equal to 1.
  • the transceiver module is further configured to send indication information to the second device, wherein,
  • the threshold field includes an NSTS threshold subfield, an RU threshold subfield, and a modulation threshold subfield, and the indication information is used to indicate whether one or more subfields in the threshold field are valid; or,
  • the indication information is used to indicate that the nominal packet padding value is invalid for the first value; or,
  • the indication information is used to indicate whether the threshold field includes one or more of the NSTS threshold subfield, the RU threshold subfield and the modulation threshold subfield.
  • a twelfth aspect provides a communication device, for example, the communication device is the aforementioned first device or a device provided in the first device.
  • the communication device can be used to perform the method in the above sixth aspect or any possible implementation manner of the sixth aspect.
  • the communication apparatus may include a module for executing the method in the sixth aspect or any possible implementation manner of the sixth aspect, for example, including a processing module and a transceiver module coupled with each other.
  • the communication device is the aforementioned second device. in,
  • the transceiver module is configured to receive a physical layer protocol data unit PPDU from the first device, and the PPDU includes a physical layer packet extension threshold existence subfield; wherein the value of the physical layer packet extension threshold existence subfield is 1,
  • the PPDU includes a threshold field, where the threshold field is used to indicate one or more of the first NSTS threshold, the first resource unit RU threshold, and the first modulation threshold,
  • the processing module is configured to determine that when a preset condition is met, the second device determines that the nominal packet filling value is a first value, and the first value is greater than 16 microseconds; the preset condition is the following condition one or more of:
  • the NSTS used by the communication device to send data is greater than or equal to the first NSTS threshold
  • the RU used by the communication apparatus to send data is greater than or equal to the first RU threshold
  • the modulation mode to be adopted by the communication apparatus is greater than or equal to the first modulation threshold.
  • the PPDU does not include a second subfield set and a third subfield set for indicating the modulation threshold corresponding to the RU corresponding to the NSTS of n and the sequence number of b, n
  • the value range of is [1, ..., N], N is an integer less than or equal to 8
  • the value range of b is [m, ..., M]
  • m and M are integers greater than or equal to 1.
  • the transceiver module is further configured to receive indication information sent by the first device, wherein,
  • the threshold field includes an NSTS threshold subfield, an RU threshold subfield, and a modulation threshold subfield, and the indication information is used to indicate whether one or more subfields in the threshold field are valid; or,
  • the indication information is used to indicate that the nominal packet padding value is invalid for the first value; or,
  • the indication information is used to indicate whether the threshold field includes one or more of the NSTS threshold subfield, the RU threshold subfield and the modulation threshold subfield.
  • an embodiment of the present application provides a communication device, and the communication device may be the communication device of any one of the seventh to twelfth aspects in the foregoing embodiments, or the communication device of the seventh to tenth aspects.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store computer programs or instructions or data
  • the processor is coupled with the memory and the communication interface, and when the processor reads the computer program, instructions or data, the communication device is made to execute the above-mentioned first to sixth aspects A method performed by the first device or the second device in the method embodiment of any one of the aspects.
  • the communication interface can be implemented by an antenna, a feeder, a codec, etc. in the communication device, or, if the communication device is a chip provided in the first device or the second device, the communication interface can be the chip the input/output interface, such as input/output pins, etc.
  • the communication apparatus may also include a transceiver for the communication apparatus to communicate with other devices. Exemplarily, when the communication device is the first device, the other device is the second device; or, when the communication device is the second device, the other device is the first device.
  • an embodiment of the present application provides a chip system, where the chip system includes a processor, and may further include a memory, for implementing the method executed by the communication apparatus in any one of the seventh aspect to the twelfth aspect .
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a communication system, where the communication system includes the seventh aspect and the communication apparatus described in the ninth aspect; or, the communication system includes the eighth aspect and the first The communication device according to the tenth aspect; the communication system includes the communication device according to the eleventh aspect and the twelfth aspect.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed, the method executed by the first device in the above aspects is implemented; or The methods performed by the second device in the above aspects are implemented.
  • a seventeenth aspect provides a computer program product, the computer program product comprising: computer program code, when the computer program code is executed, the method performed by the first device in the above aspects is performed, or The method performed by the second device in the above aspects is caused to be performed.
  • FIG. 1 is a network architecture diagram of a WLAN to which an embodiment of the application is applicable;
  • Fig. 2 is the filling process of PPDU bit in the last coded symbol
  • FIG. 3 is a schematic diagram of a PPDU provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an HE physical layer capability information field provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an HE capability element provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a physical layer packet extension threshold field provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an existing physical layer packet extension threshold information field
  • FIG. 8 is a schematic structural diagram of a physical layer packet extension threshold information field provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a method for indicating a nominal packet filling value provided by an embodiment of the present application.
  • FIG. 10 is a two-dimensional schematic diagram of PPET20 NSTSn RUb subfields provided by the embodiment of the application;
  • FIG. 11 is a schematic diagram of reserved subfields in the PPET16 NSTSn RUb subfields and PPET8 NSTSn RUb subfields included in the physical packet extension threshold information field provided by the embodiment of the present application;
  • FIG. 12 is a schematic structural diagram of a PPDU provided by an embodiment of the present application.
  • 13A is a two-dimensional schematic diagram of PPETy NSTSn RUb subfields provided by the embodiment of the application;
  • 13B is another two-dimensional schematic diagram of PPETy NSTSn RUb subfields provided by the embodiment of the application;
  • 13C is another two-dimensional schematic diagram of PPETy NSTSn RUb subfields provided by the embodiment of the application;
  • FIG. 14 is a schematic structural diagram of a physical layer packet extension threshold information field provided by an embodiment of the present application.
  • 15 is a schematic structural diagram of a threshold field provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 17 is another schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the embodiments of the present application may be applicable to a wireless local area network (wireless local area network, WLAN) scenario, and may be applicable to IEEE 802.11 system standards, such as 802.11a/b/g, 802.11n, 802.11ac, 802.11ax, or the next generation thereof, For example in 802.11be or next generation standards.
  • IEEE 802.11 system standards such as 802.11a/b/g, 802.11n, 802.11ac, 802.11ax, or the next generation thereof, For example in 802.11be or next generation standards.
  • the embodiments of the present application may also be applied to a wireless local area network system such as an internet of things (Internet of things, IoT) network or a vehicle to X (Vehicle to X, V2X) network.
  • IoT internet of things
  • V2X vehicle to X
  • the embodiments of the present application may also be applicable to other possible communication systems, for example, a long term evolution (long term evolution, LTE) system, an LTE frequency division duplex (frequency division duplex, FDD) system, an LTE time division duplex (time division duplex) system duplex, TDD), universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) communication system, and future 5G communication system, etc.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • future 5G communication system etc.
  • WLAN started with the 802.11a/g standard and went through 802.11n, 802.11ac, 802.11ax and now 802.11be which is being discussed.
  • 802.11n can also be called high throughput (HT);
  • 802.11ac can also be called very high throughput (VHT);
  • 802.11ax can also be called high efficient (HE) or Wi-Fi -Fi 6;
  • 802.11be can also be called extremely high throughput (EHT) or (Wi-Fi 7), while for pre-HT standards, such as 802.11a/b/g, they are collectively referred to as non-high throughput (Non-HT).
  • HT high throughput
  • VHT very high throughput
  • 802.11ax can also be called high efficient (HE) or Wi-Fi -Fi 6
  • 802.11be can also be called extremely high throughput (EHT) or (Wi-Fi 7), while for pre-HT standards, such as 802.11a/b/g, they are collectively referred to
  • FIG. 1 a network architecture diagram of a WLAN to which the embodiments of the present application are applied is shown.
  • Figure 1 takes the WLAN including one wireless access point (access point, AP) and two stations (station, STA) as an example.
  • the STA associated with the AP can receive the radio frame sent by the AP, and can also send the radio frame to the AP.
  • the embodiments of the present application are also applicable to communication between APs.
  • APs can communicate with each other through a distributed system (DS), and the embodiments of the present application are also applicable to communication between STAs and STAs. .
  • DS distributed system
  • the number of APs and STAs in FIG. 1 is only an example, and may be more or less.
  • the STAs involved in the embodiments of the present application may be various user terminals, user equipment, access equipment, subscriber stations, subscriber units, mobile stations, user agents, user equipment or other names with wireless communication functions. Including various handheld devices, in-vehicle devices, wearable devices, computing devices or other processing devices connected to wireless modems with wireless communication functions, as well as various forms of user equipment (UE), mobile stations (mobile stations, MS), terminal, terminal equipment, portable communication device, handset, portable computing device, entertainment device, gaming device or system, global positioning system device, or any other device configured to communicate over a wireless medium over a network other suitable equipment, etc.
  • a STA may be a router, a switch, a network bridge, etc.
  • the above-mentioned devices are collectively referred to as a station or a STA.
  • the APs and STAs involved in the embodiments of this application may be APs and STAs applicable to the IEEE 802.11 system standard.
  • An AP is a device deployed in a wireless communication network to provide wireless communication functions to its associated STAs.
  • the AP can be used as the center of the communication system, and is usually a network-side product that supports the MAC and PHY of the 802.11 system standard, such as a base station. , router, gateway, repeater, communication server, switch or bridge and other communication equipment, wherein, the base station may include various forms of macro base station, micro base station, relay station and so on.
  • the devices mentioned above are collectively referred to as APs.
  • a STA is usually a terminal product that supports the media access control (MAC) and physical layer (physical, PHY) of the 802.11 system standard, such as a mobile phone and a notebook computer.
  • MAC media access control
  • PHY physical layer
  • 802.11ax stipulates that pre-(forward error correction, FEC) padding and post-forward error correction code padding can be added to the physical protocol data unit (PPDU). FEC padding) and packet extension. where pre-FEC padding and excess information occupy about one-quarter multiples (e.g., one-quarter, two-quarters, three-quarters, and all) of subcarriers in the last coded symbol, while The remaining subcarriers can be used to carry post-FEC padding. For ease of understanding, this will be described below with reference to FIG. 2 .
  • Figure 2 shows the stuffing process of the PPDU bits in the last coded symbol. And Figure 2 takes the pre-FEC padding bits and excess information bits occupying about a quarter of the subcarriers in the last coded symbol as an example.
  • a is equal to 1, indicating that the extension information bits and the pre-forward error correction code stuffing bits occupy about a quarter of the subcarriers in a symbol after scrambling and encoding.
  • post-FEC padding pads the remaining subcarriers in a symbol, so that the number of bits occupied by data reaches N CBPS bits, where N CBPS represents the number of coded bits in each symbol (coded bits per symbol).
  • N CBPS represents the number of coded bits in each symbol (coded bits per symbol).
  • the extra processing time reserved for the PPDU may not meet the minimum time required by the receiver.
  • a field that may need to be added is introduced in the last symbol of the PPDU, namely the packet extension (PE) field ( field).
  • FIG. 3 is a schematic diagram of a PPDU.
  • the duration of the PE field may also be referred to as the nominal packet extension time (nominal T PE ).
  • the nominal packet extension time is related to the nominal packet padding value included in the PPDU. It can be seen from Fig. 3 that the nominal packet expansion time is related to the value of a and the nominal packet filling value. Please refer to Table 1 for details.
  • the second row in Table 1 represents the nominal packet fill value, ie, 0 ⁇ s, 8 ⁇ s, or 16 ⁇ s.
  • the post-FEC padding may also provide additional processing time, and the processing time provided by the post-FEC padding and the nominal packet expansion time are combined into the real packet expansion time (T PE ).
  • T PE real packet expansion time
  • the packet expansion time is not necessarily equal to the minimum time required by the receiver (such as 0 ⁇ s, 8 ⁇ s or 16 ⁇ s).
  • the nominal packet filling value is equal to 16 ⁇ s
  • the nominal T PE can be 4 ⁇ s, 8 ⁇ s, 12 ⁇ s or 16 ⁇ s. That is, T PE is greater than or equal to nominal T PE .
  • the value of T PE is the minimum value that meets the requirements.
  • the first device can indicate a certain NSTS, a modulation corresponding to a certain RU size.
  • the second device generates a PPDU according to the duration of the PE field and sends it to the first device, which can ensure that the first device has sufficient processing time, that is, can ensure the minimum processing time requirement of the first device.
  • the first device may indicate to the second device the nominal packet filling value to be used by the second device, and to use here refers to the second device filling the value according to the nominal packet, in combination with the aforementioned a Determine the duration of the PE field.
  • the first device may directly indicate the nominal packet padding value to be used by the second device.
  • the first device may indicate the nominal packet padding value through a nominal packet padding subfield for indicating the nominal packet padding value.
  • the first device may send a PPDU carrying a nominal packet padding subfield to the second device.
  • the first device may indirectly indicate the nominal packet padding value to be used by the second device.
  • the first device may indicate the nominal packet filling value indirectly by indicating a modulation threshold associated with the nominal packet filling value.
  • the first device may send a PPDU carrying a subfield indicating a modulation threshold to the second device.
  • the mode of indicating the nominal packet padding value used by the second device through the nominal packet padding subfield is called direct indication mode, and the mode of indirectly indicating the nominal packet padding value used by the second device through the subfield indicating the modulation threshold is referred to as indirect indication mode. instructions.
  • the nominal packet padding value is equivalent to the nominal packet padding value used by the second device.
  • the PPDU includes the nominal packet padding subfield and the subfield indicating the modulation threshold. In order to distinguish when the nominal packet padding subfield or the subfield indicating the modulation threshold is used, the PPDU also includes the physical packet extension threshold presence subfield (physical packet extension (PPE). )thresholds present subfield).
  • PPE physical packet extension
  • the nominal packet padding subfield is used to indicate the nominal packet padding value.
  • the subfield indicating the modulation threshold is used to indicate the nominal packet padding value.
  • the physical layer packet extension threshold existence subfield and the nominal packet filling subfield are carried in the HE physical layer capability information field (HE PHY capabilities information field).
  • the HE physical layer capability information field is included in the HE capability element (HE capabilities element), as shown in FIG. 5 .
  • the HE capability element may include an element field, a length field, an element ID extension field, and a HE (medium access control, MAC) capability Information field.
  • HE physical layer capability information field (HE PHY capabilities information), supported high efficiency (HE)-modulation and coding scheme (modulation and coding scheme, MCS) MCS and number of spatial streams (NSS) NSS setting field ( Supported HE-MCS and NSS Set), and may also include the physical layer packet extension threshold field (PPE thresholds field).
  • PPE thresholds field This embodiment of the present application does not limit the number of bits occupied by each field or subfield included in the HE capability element.
  • the element field occupies 1 bit
  • the length field occupies 1 bit
  • the element identifier extension field occupies 1 bit
  • the HE medium access control capability information field occupies 6 bits
  • the HE physical layer capability information field occupies 11 bits
  • the physical layer The number of bits occupied by the packet extension threshold field is variable.
  • the physical layer packet extension threshold field is optional, that is, not required to be included.
  • the nominal packet padding value indicated by the nominal packet padding subfield may refer to Table 2 for details.
  • the supported modulation method changed from 1K quadrature amplitude modulation (QAM) to 4KQAM, and the supported bandwidth changed from 160MHz to 320MHz, which made the receiver More processing time is required in these cases.
  • QAM quadrature amplitude modulation
  • the supported bandwidth changed from 160MHz to 320MHz, which made the receiver More processing time is required in these cases.
  • a nominal packet padding value greater than 16 ⁇ s is proposed, for example, a nominal packet padding value of 20 ⁇ s is proposed.
  • the nominal packet padding value when the value of the nominal packet padding subfield is 3, when the modulation mode is less than or equal to 1KQAM, NSTS is less than or equal to 8, and the size of RU is less than or equal to 2*996, the nominal packet padding value is 16 ⁇ s, otherwise the nominal packet padding value is 20 ⁇ s.
  • the nominal packet padding field in the HE capability element can be used, and the number of bits occupied by the nominal packet padding field can be increased to indicate how much the nominal packet padding value is.
  • a field indicating the nominal packet padding value may be set in the newly defined EHT Capability element.
  • the nominal packet padding value can be indirectly indicated by the Physical Layer Packet Extension Threshold Presence subfield and the Physical Layer Packet Extension Thresholds field (PPE thresholds field) in the PPDU. For example, if the value of the subfield of the physical layer packet extension threshold exists is 1, then the physical layer packet extension threshold field indicates that the NSTS is n, and the RU is the modulation threshold corresponding to a certain RU. The second device may determine the nominal packet fill value based on the modulation threshold. In this way, different nominal packet filling values can be indicated according to different NSTS, RU size, and modulation mode, which is more flexible.
  • PPE thresholds field Physical Layer Packet Extension Thresholds field
  • FIG. 6 is a schematic structural diagram of a physical layer packet extension threshold field.
  • the physical layer packet extension threshold field includes an NSTS field, a RU index mask field (RU Index Bitmask field), a physical layer packet extension threshold information field, and a physical layer packet extension padding (PPE padding) field.
  • NSTS NSTS
  • RU index mask field RU Index Bitmask field
  • PPE padding physical layer packet extension padding
  • the NSTS field may be used to indicate the number of space-time streams used for sending data.
  • the NSTS field occupies 3 bits, and the values of the 3 bits are 0-7, which may indicate the first stream to the eighth stream respectively. That is, a value of the 3 bits corresponds to a space-time stream number.
  • the RU Index Bitmask field can be used to indicate the size of the RU. The relationship between RU Index Bitmask field and RU size is shown in Table 3.
  • the RU Index Bitmask field is a bitmap.
  • the RU allocation index indicates the number of bits in the bitmap. For example, Table 3 takes RU Index Bitmask occupying 4 bits as an example. The first row of Table 3 indicates that the first bit of the RU Index Bitmask is set to 1, then the corresponding RU indicated in Figure 6 is 242; similarly, the second row indicates that the second bit of the RU Index Bitmask is set to 1, then Figure 6 Indicates that the corresponding RU is 484, and so on.
  • the RU allocation index can also be called the sequence number of the RU. The smaller the sequence number, the smaller the size of the corresponding RU.
  • the granularity of the size of the RU here is subcarriers, for example, 242 refers to 242 subcarriers, 484 refers to 484 subcarriers, and so on.
  • the minimum processing time required by the corresponding receiving end may be different, that is, the corresponding nominal packet padding value may be different.
  • the indication from the first stream to the Nth stream needs to be exhaustively given.
  • the RU size indicated from the smallest granularity is given exhaustively. It should be noted that the number of NSTS streams is indicated by the NSTS field.
  • the value set of the NSTS field may be denoted as [1, . . . NSTN+1]. Then the Nth stream is the NSTS+1th stream, that is, NSTS is equal to N.
  • the physical layer packet extension threshold information field in FIG. 6 may include a set of subfields used to indicate the modulation threshold corresponding to the RU whose NSTS is n and number b.
  • the value range of n is [1, . . . , N].
  • the sequence number b can be regarded as an RU allocation index, which is used to indicate the RU size.
  • the value range of b is [m, . the lowest bit. Taking Table 3 as an example, the value range of b is [0, . . . , 3], that is, m is equal to 0, and M is equal to 3.
  • the physical layer packet extension threshold information field includes a subfield set for indicating a modulation threshold corresponding to 8 ⁇ s and a subfield set for indicating a modulation threshold corresponding to 16 ⁇ s. That is, the physical layer packet extension threshold information field includes subfield sets with corresponding nominal packet filling values of 8 ⁇ s and 16 ⁇ s.
  • the set of subfields with a nominal packet filling value of 8 ⁇ s can be called PPET8 NSTSn RUb subfields, and any subfield in PPET8 NSTSn RUb subfields is called PPET8 NSTSn RUb subfield.
  • the corresponding nominal packet padding value of 16 ⁇ s can be called PPET16 NSTSn RUb subfields, and any subfield in PPET16 NSTSn RUb subfields is called PPET16 NSTSn RUb subfield.
  • the PPET8 NSTSn RUb subfield can be abbreviated as PPET8, that is, PPET8 represents a PPET8 NSTSn RUb subfield.
  • PPET16 NSTSn RUb subfield can be referred to as PPET16 for short.
  • Figure 7 needs to exhaustively give the indication from the first stream to the Nth stream and the RU size indicated from the smallest granularity. It can be considered that the value of n is traversed from 1 to N, n is an element in [1,...,N], and b is traversed from m to M].
  • the PPET8 NSTSn RUb subfield and PPET16 NSTSn RUb subfield can indicate the modulation threshold corresponding to the RU whose NSTS is n and the sequence number is b.
  • the PPET8 NSTSn RUb subfield occupies 3 bits, then the PPET8 NSTSn RUb subfields can be used to indicate 8 modulation thresholds.
  • the PPET8 NSTSn RUb subfield indicates that the NSTS is n
  • the modulation threshold corresponding to the RU with the serial number b can also be considered to indicate that the PPET8 NSTSn RUb subfield indicates that the NSTS is n
  • the RU is the serial number b.
  • modulation threshold may be used to indicate the modulation method
  • the modulation threshold indicated by the PPET8 NSTSn RUb subfield or the PPET16 NSTSn RUb subfield may indicate the modulation method.
  • PPET8 NSTSn RUb subfield or PPET16 NSTSn RUb subfield the corresponding relationship with the modulation mode is shown in Table 4.
  • the modulation threshold indicated by the PPET8 NSTSn RUb subfield or PPET16 NSTSn RUb subfield is similar to the constellation index in Table 4, thus indirectly indicating the modulation method.
  • the structure of the physical layer packet extension threshold field sent by the first device to the second device is shown in Figure 7.
  • the second device obtains the physical layer packet extension threshold field of the first device, which can be obtained through the PPET8 NSTSn RUb subfield and PPET16 NSTSn RUb subfield. combination to determine the nominal packet padding value to use.
  • the second device may determine the nominal packet filling value according to Table 5.
  • the nominal packet fill value is the value corresponding to the row.
  • the modulation modes in Table 5 refer to the modulation modes corresponding to DCM being adjusted by one level on the basis of the modulation modes corresponding to RUb.
  • the nominal packet is filled with
  • the recharge value is the value corresponding to the first condition and the second condition.
  • the constellation index x corresponding to the modulation mode adopted by the second device is greater than or equal to the modulation threshold indicated by PPET8, and the constellation index x corresponding to the modulation mode adopted by the second device is smaller than the modulation threshold indicated by PPET16 or PPET16 is set to be empty, and the nominal packet is filled The charge is 8 ⁇ s.
  • the constellation index x corresponding to the modulation mode adopted by the second device is greater than the modulation threshold indicated by PPET8 or the PPET8 is set to null, and the constellation index x corresponding to the modulation mode adopted by the second device is greater than or equal to the modulation threshold indicated by PPET16, and the nominal packet padding value is 16 ⁇ s. That is, if condition 1 and condition 2 of a row in Table 5 are satisfied, then the nominal packet fill value is the value in the row.
  • the supported modulation method changed from 1K quadrature amplitude modulation (QAM) to 4KQAM, and the supported bandwidth changed from 160MHz to 320MHz, which made the receiver More processing time is required in these cases.
  • QAM quadrature amplitude modulation
  • the supported bandwidth changed from 160MHz to 320MHz, which made the receiver More processing time is required in these cases.
  • a nominal packet padding value greater than 16 ⁇ s is proposed, for example, a nominal packet padding value of 20 ⁇ s is proposed.
  • the structure shown in Figure 7 cannot indicate the nominal packet stuffing value of 20 ⁇ s. That is, there is currently no way to indicate a nominal packet padding value of 20 ⁇ s.
  • an embodiment of the present application provides a method for indicating a nominal packet filling value, so as to indicate a larger nominal packet filling value.
  • the embodiment of the present application provides a new structure of the physical packet extension threshold field, for example, adding a sub-section to the physical layer packet extension threshold information field that can indicate a nominal packet padding value greater than 16 ⁇ s A collection of fields, thereby indicating a larger nominal packet padding value.
  • a nominal packet padding value indicating 20 ⁇ s is taken as an example. It should be noted that, the solutions provided in the embodiments of the present application are also applicable to the indication of other nominal packet filling values.
  • the maximum value of the nominal packet padding value indicated by the physical layer packet extension threshold information field shown in FIG. 7 is 16 ⁇ s.
  • the structure shown in FIG. 7 may be followed, and a field for indicating a nominal packet padding value of 20 ⁇ s is added to the physical layer packet extension threshold information field shown in FIG. 7 .
  • a first subfield set for indicating the modulation threshold corresponding to the RU whose NSTS is n and whose number is b is added.
  • the first subfield set may be used to indicate modulation thresholds corresponding to different NSTS and different RU sizes, but the nominal packet filling value determined by the second device according to the modulation threshold may be greater than 16 ⁇ s, for example, 20 ⁇ s.
  • the first subfield set may be denoted as PPET20 NSTSn RUb subfields, as shown in Figure 8. That is, each PPET20 NSTSn RUb subfield in the PPET20 NSTSn RUb subfields can be used to indicate the modulation threshold corresponding to the RU whose NSTS is n and the sequence number is b.
  • the value range of n in PPET20 NSTSn RUb subfields is [1,...,N], and the value range of b is [m,...,M].
  • the difference is that the length of the NSTS field in FIG. 8 is longer than that of the NSTS field in FIG. 7 , for example, the NSTS field may occupy 4 bits.
  • the value range of n is [1,...,N], and N is equal to 16.
  • the length of the RU Index Bitmask field in FIG. 8 can be longer than the length of the RU Index Bitmask field in FIG. 7 , that is, the RU Index Bitmask field in FIG. 8 occupies more bits, for example, the RU Index Bitmask field can occupy 5 bits. .
  • the maximum RU granularity indicated by the RU Index Bitmask field is 3*996.
  • the RU Index Bitmask field may occupy 6 bits. In this case, the maximum RU granularity indicated by the RU Index Bitmask field is 4*996.
  • the RU Index Bitmask field can occupy more bits, and the RU size is 242+484, 484+996, 2*996+484, or 3*996+484, etc.
  • the value range of b is [m, . . . , M], where M can be greater than or equal to 5.
  • the Constellation Index corresponding to any PPET20 NSTSn RUb subfield in the PPET20 NSTSn RUb subfields corresponds to more bits, such as 4 bits, which can indicate 16 modulation thresholds. It should be noted that the embodiment of the present application does not limit the number of bits occupied by the NSTS field, does not limit the number of bits occupied by the RU Index Bitmask field, and does not limit the number of bits corresponding to the Constellation Index corresponding to the PPET20 NSTSn RUb subfield.
  • the second device determines that the nominal packet filling value that can be used is 20 ⁇ s.
  • FIG. 9 is a schematic flowchart of an indication manner of a nominal packet padding value provided in an embodiment of the present application, and the process is described as follows:
  • the first device generates a PPDU, where the PPDU includes a physical layer packet extension threshold existence subfield and a physical layer packet extension threshold field, and the value of the physical layer packet extension threshold existence subfield is 1, and the physical layer packet extension threshold field Including the NSTS field, the RU index mask field and the first physical layer packet extension threshold information field, the first physical layer packet extension threshold information field includes PPET20 NSTSn RUb subfields, PPET16 NSTSn RUb subfields and PPET8 NSTSn RUb subfields.
  • the PPET20 NSTSn RUb subfield, the PPET16 NSTSn RUb subfield, and the PPET8 NSTSn RUb subfield are respectively used to indicate a modulation threshold corresponding to the RU whose NSTS is n and the sequence number is b.
  • the modulation threshold indicated by the PPET20 NSTSn RUb subfield is hereinafter referred to as the first modulation threshold
  • the modulation threshold indicated by the PPET16 NSTSn RUb subfield is referred to as the second modulation threshold
  • the modulation threshold indicated by the PPET8 NSTSn RUb subfields is referred to as the first modulation threshold
  • Three modulation thresholds are respectively used to indicate a modulation threshold corresponding to the RU whose NSTS is n and the sequence number is b.
  • the first device sends a PPDU to the second device, and the second device receives the PPDU.
  • the second device determines the nominal packet padding value to be used according to the received PPDU.
  • the second device may determine the nominal packet padding value to use by the combination of the PPET8 NSTSn RUb subfield, PPET16 NSTSn RUb subfield, and PPET16 NSTSn RUb subfield. That is, the second device determines the nominal packet filling value according to the comparison result of the adopted modulation mode with the first modulation threshold, the second modulation threshold and the third modulation threshold respectively. Specifically, the second device may determine the nominal packet filling value according to Table 6. If condition 1, condition 2, and condition 3 of a row in Table 6 are satisfied, the second device may determine that the nominal packet padding value used is the value corresponding to the row. That is, if the second device determines that a certain row condition in Table 6 is satisfied, then the second device determines to use the nominal packet filling value as the value indicated in the row.
  • condition 1, condition 2, and condition 3 in row 1 are satisfied, then the nominal packet filling value is 8 ⁇ s; if condition 1, condition 2, and condition 3 in row 2 are satisfied, then the nominal packet filling value is 16 ⁇ s; If conditions 1, 2, and 3 in line 3 are satisfied, then the nominal packet filling value is 20 ⁇ s.
  • the value of the NSTS field included in the PPDU sent by the first device is 100 (5), which means that the NSTS is 6, then the value range of n in PPET20 NSTSn RUb subfields, PPET16 NSTSn RUb subfields and PPET8 NSTSn RUb subfields is [1,...,6], that is, n traverses from 1 to 6.
  • the RU index mask field occupies 5 bits, and the value range of b can be [1,...,5]. When n is any value in [1,...,6], b traverses from 1 to 5.
  • the NSTS adopted by the second device is 4, the RU size is 242, and the modulation mode is 1024QAM. Then the second device can compare the first modulation threshold indicated by the PPET20 NSTS4 RU1 subfield, the second modulation threshold indicated by the PPET16 NSTS4 RU1 subfield, and the third modulation threshold indicated by the PPET8 NSTS4 RU1 subfield. If 1024QAM is greater than or equal to the first modulation threshold, then the second device determines that the nominal packet fill value is 20 ⁇ s.
  • the second device determines that the nominal packet padding value is 16 ⁇ s. If 1024QAM is less than the first modulation threshold, and 1024QAM is less than the second modulation threshold, and 1024QAM is greater than or equal to the third modulation threshold, then the second device determines that the nominal packet padding value is 8 ⁇ s.
  • the second device can default the nominal packet filling value to 20 ⁇ s .
  • the first NSTS threshold can be considered as a threshold indicating 20 ⁇ s.
  • the first device does not need to indicate to the second device that the NSTS is greater than or equal to the modulation threshold corresponding to the first NSTS threshold.
  • the PPET20 NSTSn RUb subfields include the PPET20 NSTSn RUb subfields corresponding to the smaller NSTS. That is, the value range of n in the PPET20 NSTSn RUb subfields can be a proper subset in [1,...,N], which can save the overhead of the physical layer packet extension information field.
  • Figure 10 is a two-dimensional schematic diagram of PPET20 NSTSn RUb subfields.
  • the NSTS to be used by the second device is greater than or equal to the first NSTS threshold
  • the value range of n in the PPET20 NSTSn RUb subfields in the physical packet extension threshold information field sent by the first device can be is [1, . . . , p1], where p1 is less than or equal to the first NSTS threshold.
  • the subfields corresponding to the shaded parts are omitted.
  • the second device can default the nominal packet padding value to 20 ⁇ s.
  • the first RU threshold can also be considered as another threshold of 20 ⁇ s.
  • the first device does not need to indicate to the second that the RU size is greater than or equal to the modulation threshold corresponding to the first RU threshold. That is, the PPET20 NSTSn RUb subfields include the PPET20 NSTSn RUb subfield corresponding to the smaller b. That is, the value range of b in the PPET20 NSTSn RUb subfields can be a proper subset in [m,...,M] to save the overhead of the physical layer packet extension information field.
  • the RU size used by the second device is greater than or equal to the first RU threshold, and the PPET20 NSTSn RUb subfields in the physical packet extension threshold information field sent by the first device
  • the value range of b may be [m, ..., q1], where q1 is less than or equal to the index of the first RU threshold, that is, the RU size indicated by q1 is less than or equal to the first RU threshold. It can also be considered that compared with traversing [m,...,M] in PPET20 NSTSn RUb subfields, the subfields corresponding to the shaded parts are omitted.
  • the value range of n in the PPET20 NSTSn RUb subfields can be [1,... , N]
  • the value range of b in PPET20 NSTSn RUb subfields can be the proper subset in [m,...,M].
  • the value range of n in the PPET20 NSTSn RUb subfields can be [1,...,p1], where p1 is less than or equal to the first NSTS threshold
  • the value range of b in PPET20NSTSn RUb subfields can be [m, ..., q1], where q1 is less than or equal to the index of the first RU threshold, that is, the RU size indicated by q1 is less than or equal to the first RU threshold, As shown in (c) of FIG. 10 .
  • omitting the shaded part in Figure 10 is to select and report the subfields whose NSTS is less than the first NSTS threshold in the PPET20 NSTSn RUb subfields.
  • the subfields whose NSTS is less than the first NSTS threshold are also reserved in the PPET16 NSTSn RUb subfields and PPET8 NSTSn RUb subfields. field.
  • the first device selects and reports the subfield of the PPET20 NSTSn RUb subfields whose b is less than the index corresponding to the first RU threshold.
  • the PPET16 NSTSn RUb subfields and PPET8 NSTSn RUb subfields also reserve the index corresponding to the b less than the first RU threshold. subfield of .
  • the shaded parts in FIG. 11 indicate reserved subfields.
  • the foregoing first NSTS threshold and/or first RU threshold may be predefined. If the first NSTS threshold is predefined, then the second device determines that the adopted NSTS is greater than or equal to the first NSTS threshold, then the second device determines that the available nominal packet padding value is 20 ⁇ s. And when the NSTS used by the second device is less than the first NSTS threshold, the second device determines to use the PPET20 NSTSn RUb subfields where n is the NSTS used by the second device, and b is the modulation indicated by the subfield of the index of the RU used by the second device. The nominal packet padding value corresponding to the threshold. It should be understood that n is less than the first NSTS threshold, and the value range of b is [m, . . . , M].
  • the second device determines that the available nominal packet filling value is 20 ⁇ s.
  • the second device determines to use the PPET20 NSTSn RUb subfields where n is the NSTS used by the second device, and b is the index of the RU used by the second device.
  • the nominal packet padding value corresponding to the modulation threshold. It should be understood that the value range of n is [1, . . . , N], and the b is less than the index corresponding to the first RU threshold.
  • the second device determines that the NSTS used is greater than or equal to the first NSTS threshold, and the second device may determine that the nominal packet filling value used is 20 ⁇ s; and/or, The second device determines that the used RU size is greater than or equal to the first RU threshold, and the second device may determine that the used nominal packet filling value is 20 ⁇ s.
  • the above-mentioned first NSTS threshold and/or first RU threshold may also be notified by the first device to the second device.
  • the first device sends first indication information to the second device, where the first indication information may be used to indicate the first NSTS threshold.
  • the first device may send a PPDU carrying the first indication information to the second device.
  • a field for carrying the first indication information, such as the first field, is newly added in the PPDU.
  • the first field may be used to indicate the first NSTS threshold.
  • the first field may be called an NSTN threshold field (may be called a Thres_NSTS field).
  • the first field may also be used to indicate the first RU threshold. If the first field is used to indicate the first RU threshold, the first field may be referred to as a RU threshold field (may be referred to as a Thres_RU field).
  • the first indication information can be used to indicate the first NSTS threshold and the first RU threshold, then the first field can be used to indicate the first NSTS threshold and the first RU threshold. It should be noted that this embodiment of the present application does not limit the number of fields used to carry the first indication information. For example, a new field may be added to the PPDU, such as a second field and a third field, where the second field is used to indicate the first NSTS threshold, and the third field is used to indicate the first RU threshold.
  • the first indication information may be carried in the first field and the second field.
  • this embodiment of the present application does not limit the names of the second field and the third field.
  • the first indication information may also be carried in an existing field included in the PPDU, and the embodiment of the present application does not limit the field used for carrying the first indication information.
  • the first NSTS threshold is defined, if the processing capability of the first device is relatively strong, that is, the minimum processing time of the first device may be shorter. In this case, the second device does not need to determine the nominal packet padding value with reference to the first NSTS threshold.
  • the first device may additionally inform the second device whether the first NSTS threshold is valid, that is, the first device informs the second device whether to use the first NSTS threshold.
  • the first device may additionally inform the second device whether the first RU threshold is valid, that is, the first device informs the second device whether to use the first RU threshold.
  • the first device sends a PPDU carrying second indication information to the second device, where the second indication information may be used to indicate whether the first NSTS threshold and/or the first RU threshold are valid.
  • the second indication information may be carried in a newly added field in the PPDU, or may be carried in an existing field in the PPDU.
  • the second indication information is used to indicate the first NSTS threshold, and the second indication information may be carried in a newly added fourth field in the EHT capabilities element.
  • the fourth field occupies 1 bit. When the value of the fourth field is 0, it indicates that the first NSTS threshold is valid; correspondingly, when the value of the fourth field is 1, it indicates that the first NSTS threshold is invalid.
  • the second indication information is used to indicate the first RU threshold, and the second indication information may be carried in a newly added fifth field in the EHT capabilities element.
  • the fifth field occupies 1 bit, and when the value of the fifth field is 0, it indicates that the first RU threshold is valid; correspondingly, when the value of the fifth field is 1, it indicates that the first RU threshold is invalid. Or, when the value of the fifth field is 1, it indicates that the first RU threshold is valid; correspondingly, when the value of the fifth field is 0, it indicates that the first RU threshold is invalid.
  • the second indication information may be carried in one field, or may be carried in multiple fields. This embodiment of the present application does not limit this.
  • the PPET20 NSTSn RUb subfields do not include subfields greater than or equal to the first NSTS threshold and/or the first RUb threshold, that is, the 20 ⁇ s threshold is not used to determine the nominal packet padding value.
  • the PPET16 NSTSn RUb subfields and the PPET8 NSTSn RUb subfields may also not include subfields greater than or equal to the first NSTS threshold and/or the first RUb threshold.
  • the second indication information may be used to indicate that the PPET16 NSTSn RUb subfields and the PPET8 NSTSn RUb subfields may also not include subfields greater than or equal to the first NSTS threshold and/or the first RUb threshold.
  • the second indication information may also be used to indicate whether some PPET16 NSTSn RUb subfields and some PPET8 NSTSn RUb subfields exist.
  • the nominal packet padding value corresponding to all other combinations not listed in this table can be defaulted to 0 ⁇ s, but not necessarily 0 ⁇ s.
  • this part of the PPET16 NSTSn RUb subfield and PPET8 NSTSn RUb subfield can be omitted in the EHT Capabilities.
  • the second device can determine the content indicated by the PPET16 NSTSn RUb subfield and PPET8 NSTSn RUb subfield according to Table 5, that is, the selected PPE Thresholds field in the query table 5
  • the indication of the EHT Capabilities except this part of the PPET16 NSTSn RUb subfield and PPET8 NSTSn RUb subfield can be determined according to Table 6, that is, the nominal packet padding value is determined by combining Table 5 and Table 6, rather than directly determining the nominal packet padding value is 0 ⁇ s.
  • the first device selects the PPET16 NSTSn RUb subfield and the PPET8 NSTSn RUb subfield because the NSTS is greater than or equal to the first NSTS threshold, and/or b is greater than or equal to the first RUb threshold, then there is no selected PPET16
  • the NSTSn RUb subfield and PPET8 NSTSn RUb subfield also do not necessarily mean that the nominal packet padding value is 0 ⁇ s.
  • the above table 6 also includes more rows, such as row 4, row 5, etc., as follows:
  • FIG. 11 shows that in the PPET16 NSTSn RUb subfields and the PPET8 NSTSn RUb subfields, the subfields whose NSTS is less than the first NSTS threshold and the subfields whose b is less than the first RUb threshold are reserved. That is, the shaded part in FIG. 11 shows the reserved subfields. If some subfields reserved in PPET16 NSTSn RUb subfields and PPET8 NSTSn RUb subfields (i.e. the shaded part in Figure 11) have been indicated in the PPE Thresholds field in the HE Capabilities element, the EHT Capabilities element no longer needs to indicate the shaded part in Figure 11 . For this purpose, the subfield corresponding to the shaded part of Figure 11 in the EHT Capabilities element may be deleted.
  • the PPETy NSTSn RUb subfields (y is 8, 16 and 20) in the PPE Thresholds Info field in the EHT Capabilities element include each subfield according to the 802.11ax sorting method (that is, first RU from small to large, and then flow from small to small Big).
  • the EHT Capabilities element may not include the subfields shaded in Figure 11.
  • this embodiment of the present application may indicate the subfields except the shaded part in FIG. 11 .
  • the subfields except the shaded part in FIG. 11 are divided into multiple subfield combinations, and the subfields in each subfield combination
  • the NSTS corresponding to the subfields are continuous, and the b corresponding to the subfields in each subfield combination is continuous.
  • the embodiment of the present application can indicate the combination of these multiple subfields respectively, and the receiver does not need to determine which subfields to delete according to the indication in the PPE Thresholds field in the HE Capabilities element, thereby reducing the complexity of the receiver implementation.
  • subfields other than the shaded subfields in FIG. 11 may be indicated by a plurality of physical layer packet extension threshold information fields.
  • FIG. 12 is a schematic structural diagram of a PPDU.
  • the PPDU may include at least two physical layer packet extension threshold information fields.
  • the first device may send at least two physical layer packet extension threshold information fields to the second device.
  • the physical layer packet extension threshold information field corresponds to an NSTS field and an RU index mask field.
  • n may not be traversed from 1.
  • the PPETy NSTSn RUb subfields ( y is 8, 16 and 20) where b can also be traversed without starting from m.
  • the PPETy NSTSn RUb subfield indicated by the at least two physical layer packet extension threshold information fields may determine the shaded part of FIG. 11 .
  • FIG. 13A takes as an example that at least two physical layer packet extension threshold information fields are two physical layer packet extension threshold information fields.
  • the two physical layer packet extension threshold information fields are referred to as the third physical layer packet extension threshold information field and the fourth physical layer packet extension threshold information field.
  • n in the PPETy NSTSn RUb subfields included in the physical packet extension threshold information field is simply referred to as n corresponding to the physical packet extension threshold information field
  • b in the PPETy NSTSn RUb subfields included in the physical packet extension threshold information field It is abbreviated as b corresponding to the physical packet extension threshold information field.
  • the n corresponding to the third physical layer packet extension threshold information field is located in the first set, the first set is a subset of [1,...,N], and the values in the first set are continuous; and, the third physical layer The b corresponding to the packet extension threshold information field is located in the second set, the second set belongs to the subset of [q2, . . . , M], the elements in the second set are continuous, and q2 is greater than m.
  • the n corresponding to the fourth physical layer packet extension threshold information field is located in the first set, the first set is a proper subset of [p2,...,N], p2 is an integer greater than 1, and the values in the first set are continuous ; and, b corresponding to the fourth physical layer packet extension threshold information field is located in the second set, the second set belongs to the subset of [m, . . . , q2], and the elements in the second set are consecutive.
  • the PPETy NSTSn RUb subfields included in the third physical layer packet extension threshold information field correspond to a rectangular area, for example, within the first rectangle
  • the PPETy NSTSn RUb subfields included in the fourth physical layer packet extension threshold information field correspond to A rectangular area, such as within a second rectangle.
  • the second device may determine the first rectangle according to the third physical layer packet extension threshold information field, and may determine the second rectangle according to the fourth physical layer packet extension threshold information field.
  • the shaded part of Figure 11 can be determined by combining the first rectangle and the second rectangle, and the receiver does not need to determine which subfields to delete according to the indication in the PPE Thresholds field in the HE Capabilities element, thereby reducing the complexity of receiver implementation.
  • FIG. 13B also takes as an example that at least two physical layer packet extension threshold information fields are two physical layer packet extension threshold information fields.
  • n corresponding to the third physical layer packet extension threshold information field is located in the first set, and the first set is a subset of [p2, . . . , N].
  • the values in the set are continuous, and p2 is an integer greater than 1; and the b corresponding to the third physical layer packet extension threshold information field is located in the second set, and the second set is a child of [m,...,M] set, the elements in the second set are consecutive.
  • the n corresponding to the fourth physical layer packet extension threshold information field is located in the first set, the first set is a proper subset of [1,...,p2], p2 is an integer greater than 1, and the values in the first set are continuous ; and, b corresponding to the fourth physical layer packet extension threshold information field is located in the second set, the second set belongs to the subset of [m, . . . , q2], and the elements in the second set are consecutive.
  • the PPETy NSTSn RUb subfields included in the third physical layer packet extension threshold information field correspond to a rectangular area, for example, within the first rectangle
  • the PPETy NSTSn RUb subfields included in the fourth physical layer packet extension threshold information field correspond to A rectangular area, such as within a second rectangle.
  • the second device may determine the first rectangle according to the third physical layer packet extension threshold information field, and may determine the second rectangle according to the fourth physical layer packet extension threshold information field.
  • the shaded part of Figure 11 can be determined by combining the first rectangle and the second rectangle, and the receiver does not need to determine which subfields to delete according to the indication in the PPE Thresholds field in the HE Capabilities element, thereby reducing the complexity of receiver implementation.
  • FIG. 13C takes as an example that at least two physical layer packet extension threshold information fields are three physical layer packet extension threshold information fields.
  • the three physical layer packet extension threshold information fields are the third physical layer packet extension threshold information field, the fourth physical layer packet extension threshold information field, and the fifth physical layer packet extension threshold information field.
  • n corresponding to the third physical layer packet extension threshold information field is located in the first set, the third set is a proper subset of [1,...,p2], p2 is an integer greater than 1, and the first set The values within are continuous; and the b corresponding to the third physical layer packet extension threshold information field is located in the second set, the second set belongs to the subset of [q2,...,M], and the second set The elements in are consecutive.
  • the first set is a subset of [p2,...,N], the values in the first set are continuous, and p2 is an integer greater than 1 and, the b corresponding to the second physical layer packet extension threshold information field is located in the second set, the second set is a subset of [m, . . . , q2], the elements in the second set are continuous, and q2 is less than M .
  • the n corresponding to the fifth physical layer packet extension threshold information field is located in the first set, the first set is a subset of [p2,...,N], the values in the first set are continuous, and p2 is an integer greater than 1 ; and, b corresponding to the second physical layer packet extension threshold information field is located in the second set, the second set belongs to the subset of [q2, . . . , M], and the elements in the second set are consecutive.
  • the PPETy NSTSn RUb subfields included in the third physical layer packet extension threshold information field correspond to a rectangular area, for example, within the first rectangle
  • the PPETy NSTSn RUb subfields included in the fourth physical layer packet extension threshold information field correspond to A rectangular area, such as within a second rectangle
  • the PPETy NSTSn RUb subfields included in the fifth physical layer packet extension threshold information field correspond to a rectangular area, for example, within the third rectangle.
  • the second device may determine the first rectangle according to the third physical layer packet extension threshold information field, may determine the second rectangle according to the fourth physical layer packet extension threshold information field, and may determine the third rectangle according to the fifth physical layer packet extension threshold information field .
  • the first rectangle, the second rectangle, and the third rectangle can be combined to determine the shaded part of Figure 11, and the receiver does not need to judge which subfields are not included according to the indication in the PPE Thresholds field in the HE Capabilities element, thereby reducing the receiver implementation. complexity.
  • this embodiment of the present application does not limit the number of physical layer packet extension threshold information fields, as long as the PPETy NSTSn RUb subfields indicated by the multiple physical layer packet extension threshold information fields are merged to remove the shaded part in FIG. 11 . subfield of .
  • PPE Thresholds field includes PPET20NSTSn RUb subfields in some cases, excluding PPET16 NSTSn RUb subfields and PPET8 NSTSn RUb subfields.
  • the PPE Thresholds field does not include the PPET20 NSTSn RUb subfields, but does include the PPET16 NSTSn RUb subfields and the PPET8 NSTSn RUb subfields. It should be understood that due to the omission of PPET16 NSTSn RUb subfields and PPET8 NSTSn RUb subfields, or the omission of PPET20 NSTSn RUb subfields, the length of the PPE Thresholds Info field may be either a multiple of 3 bits or a multiple of 9 bits, that is, the PPE Thresholds Info field The length is not fixed and does not use the receiver's resolution.
  • PPET20 NSTSn RUb subfields, PPET16 NSTSn RUb subfields and PPET8 NSTSn RUb subfields may also be located in different PPE Thresholds Info fields, as shown in FIG. 14 .
  • Figure 14 takes the example of a PPDU including two PPE Thresholds Info fields.
  • the embodiments of the present application refer to the two physical layer packet extension threshold information fields as the first PPE Thresholds Info field and the second PPE Thresholds Info field.
  • PPET20 NSTSn RUb subfields are located in the first PPE Thresholds Info field
  • PPET16 NSTSn RUb subfields and PPET8 NSTSn RUb subfields are located in the second PPE Thresholds Info field.
  • the length of the first PPE Thresholds Info field is always a multiple of 3 bits
  • the length of the second PPE Thresholds Info field is always a multiple of 6 bits, which is analyzed by the receiver.
  • the PPE Thresholds field can indicate different nominal packet filling values according to different NSTS, RU size, and modulation modes, which is more flexible. But for the PPE Thresholds field, if n is traversed from 1 to N, and b is traversed from m to M in PPET20 NSTSn RUb subfields, PPET16 NSTSn RUb subfields and PPET8 NSTSn RUb subfields, the overhead of PPE Thresholds field is large. Especially with the increase of NSTS, the increase of RU size, and the higher-order modulation method, the overhead of the PPE Thresholds field will increase.
  • the NSTS may not be traversed from 1 by continuously accumulating 1, that is, the multiple NSTS reported by the first device to the second device are discontinuous, that is, there are many NSTS are spaced.
  • the interval between two adjacent NSTSs may be the same or different.
  • the value range of n in the PPET20 NSTSn RUb subfields, PPET16 NSTSn RUb subfields and PPET8 NSTSn RUb subfields is the first value range, and the first value
  • the range is a proper subset of [1, .
  • the NSTS used by the second device is 10, and the first range of values may include an even number of NSTSs, that is, the first range of values is [2, 4, 6, 8, 10]. That is, the odd-numbered NSTS is not reported, which can save about half the overhead of the PPE Thresholds Info field.
  • the NSTS used by the second device is 10, and the first value range is [2, 6, 8, 10].
  • the notification granularity of the RU can be reduced.
  • the RU index mask field occupies 6 bits, then there are 6 RU sizes, namely ⁇ 242, 484, 996, 2*996, 3*996, 4*996 ⁇ .
  • the length of the RU index mask field in the PPDU sent by the first device to the second device may be less than 6 bits, such as 3 bits, and the corresponding RU size may be ⁇ 242, 484, 996, 2*996, 3*996, 4 A proper subset of *996 ⁇ , such as ⁇ 996, 2*996, 4*996 ⁇ , to save the overhead of the PPE Thresholds Info field.
  • a set of subfields such as PPET20 NSTSn RUb subfields, that can indicate a nominal packet filling value greater than 16 ⁇ s is added to the physical layer packet extension threshold information field, thereby indicating a larger nominal packet filling value.
  • the embodiment of the present application provides another method for indicating a nominal packet filling value greater than 16 ⁇ s.
  • a field or subfield related to a threshold value may be newly added to the PPDU to indicate the nominal packet filling value.
  • the threshold here refers to the NSTS threshold, the RU size threshold, and the modulation threshold.
  • the threshold field may be used to indicate one or more thresholds among the NSTS threshold, the RU size threshold, and the modulation threshold.
  • the threshold field may also be considered to include a third field, a fourth field and a fifth field, wherein the third field is used to indicate the NSTS threshold, the fourth field is used to indicate the RU size threshold, and the fifth field is used to indicate the modulation threshold.
  • this embodiment of the present application does not limit the names of the third field, the fourth field, and the fifth field.
  • the third field is used to indicate the NSTS threshold
  • the third field may also be referred to as the NSTS threshold field (Thres_NSTS field).
  • the fourth field may be referred to as a RU threshold field (Threshold_RU field)
  • the fifth field may be referred to as a modulation threshold field (Thres_Constellation field).
  • the embodiments of the present application do not limit the types of thresholds, for example, the thresholds may also be thresholds of other possible parameters.
  • FIG. 15 which is a schematic structural diagram of a threshold field
  • the embodiments of the present application do not limit the number of bits occupied by the third field, the fourth field, and the fifth field, respectively.
  • Figure 15 takes the third field occupying 4 bits and indicating a maximum of 16 streams as an example.
  • the fourth field occupies 3 bits and can indicate 8 kinds of RU sizes
  • the fifth field occupies 3 bits and can indicate 8 kinds of modulation modes.
  • the NSTS threshold, RU size threshold, modulation threshold related to the nominal packet fill value of 20 ⁇ s can be preset.
  • the NSTS threshold associated with the nominal packet stuffing value of 20 ⁇ s can be defined as the first NSTS threshold
  • the modulation threshold related to the nominal packet stuffing value of 20 ⁇ s is the first modulation threshold.
  • the third field indicates the first NSTS threshold
  • the fourth field indicates the first RU threshold
  • the fifth field indicates the first modulation threshold.
  • the second device may compare the adopted NSTS with the NSTS threshold indicated by the threshold field, compare the adopted RU with the RU size threshold, and compare the adopted modulation mode and modulation threshold, and determine the nominal packet filling value according to the comparison result. For example, if the parameters used by the second device to send data meet the following preset conditions, the second device determines that the nominal packet filling value is 20 ⁇ s.
  • the preset condition is one or more of the following conditions:
  • the NSTS used by the second device is greater than or equal to the first NSTS threshold
  • the RU used by the second device is greater than or equal to the first RU threshold
  • Condition 3 The modulation mode adopted by the second device is greater than or equal to the first modulation threshold.
  • the NSTS used by the second device is greater than or equal to the NSTS threshold indicated by the third field, and the second device may determine that the nominal packet filling value is 20 ⁇ s.
  • the RU used by the second device is greater than or equal to the RU size indicated by the fourth field, and the second device may determine that the nominal packet filling value is 20 ⁇ s.
  • the modulation mode adopted by the second device is greater than or equal to the modulation threshold indicated by the fifth field. The second device may determine that the nominal packet filling value is 20 ⁇ s.
  • the NSTS used by the second device is greater than or equal to the NSTS threshold indicated by the third field
  • the RU used by the second device is greater than or equal to the RU size indicated by the fourth field
  • the modulation method used by the second device is greater than or equal to
  • the second device may determine that the nominal packet filling value is 20 ⁇ s.
  • the first NSTS threshold, the first RU threshold, and the first modulation threshold may be predefined.
  • the nominal packet filling value is determined to be 20 ⁇ s.
  • this method can be regarded as a static indication method. It should be understood that in the static indication mode, the threshold field shown in FIG. 16 may not exist.
  • the first NSTS threshold, the first RU threshold, and the first modulation threshold may also be notified by the first device to the second device.
  • the first NSTS threshold, the first RU threshold, and the first modulation threshold may be carried in the PPE Thresholds field. That is, the third field, the fourth field and the fifth field can be newly added in the PPE Thresholds field.
  • this method can be understood as a semi-static indication method.
  • the scheme of adding a threshold field in the PPDU is also applicable to the foregoing direct indication method, which is used to indicate whether the nominal packet padding value indicated by the nominal packet padding field is valid. That is, whether the second device uses the nominal packet padding value indicated by the nominal packet padding field.
  • the processing capability of the first device is relatively strong, even though the threshold fields are preset, that is, the above-mentioned third field, fourth field and fifth field. However, it is possible that some field or fields are not used, ie the second device does not consider some field or fields. For example, for the RU, if the processing capability of the first device is relatively strong, the first device may indicate to the second device that the fourth field does not need to be considered.
  • the first device may indicate to the second device whether one or more of the third field, the fourth field, and the fifth field are valid.
  • the first device may send third indication information to the second device, where the third indication information may be used to indicate whether one or more fields of the third field, the fourth field and the fifth field are valid.
  • the first device may indicate to the second device whether the threshold field includes one or more of the third field, the fourth field, and the fifth field.
  • the first device may indicate to the second device that the nominal packet padding value determined according to the threshold field is invalid.
  • the PPE Thresholds Info field can also reserve some subfields in the PPET16 NSTSn RUb subfields and PPET8 NSTSn RUb subfields.
  • PPET16 NSTSn RUb subfields and PPET8 NSTSn RUb subfields with NSTSn greater than (or greater than or equal to) the first NSTS threshold do not need to appear in the PPE Thresholds Info field; PPET16 with RUb greater than (or greater than or equal to) the first RU threshold does not need to appear in the PPE Thresholds Info field NSTSn RUb subfields and PPET8 NSTSn RUb subfields; PPET16 NSTSn RUb subfields and PPET8 NSTSn RUb subfields whose modulation mode is greater than (or greater than or equal to) the first modulation threshold need not appear in the PPE Thresholds Info field.
  • PPETy NSTSn RUb subfields in the indication mode of the aforementioned PPETy NSTSn RUb subfields, which will not be repeated here.
  • an indication of whether 20 ⁇ s is required may also be added to the EHT Capabilities element. For example, a new field is added to the EHT Capabilities element, which occupies 1 bit. This field indicates that there is 20 ⁇ s, and the second device can obtain the first NSTS threshold, the first RU threshold, and the first modulation threshold. This field indicates that 20 ⁇ s does not exist, then the second device may not use the first NSTS threshold, the first RU threshold, and the first modulation threshold.
  • the methods provided by the embodiments of the present application are respectively introduced from the perspective of interaction between the first device and the second device.
  • the first device and the second device may include hardware structures and/or software modules, and implement the above-mentioned functions in the form of hardware structures, software modules, or hardware structures plus software modules. each function. Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • FIG. 16 is a schematic block diagram of a communication apparatus 1600 according to an embodiment of the present application.
  • the communication apparatus 1600 may correspondingly implement the functions or steps implemented by the first device or the second device in the foregoing method embodiments.
  • the communication apparatus may include a processing module 1610 and a transceiver module 1620 .
  • a storage unit may also be included, and the storage unit may be used to store instructions (codes or programs) and/or data.
  • the processing module 1610 and the transceiver module 1620 may be coupled with the storage unit, for example, the processing module 1610 may read instructions (codes or programs) and/or data in the storage unit to implement corresponding methods.
  • the above-mentioned units may be set independently, or may be partially or fully integrated.
  • the communication apparatus 1600 can correspondingly implement the behaviors and functions of the first device in the foregoing method embodiments.
  • the communication apparatus 1600 may be a STA or an AP, or may be a component (eg, a chip or a circuit) applied in the STA or the AP.
  • the transceiver module 1620 may be configured to perform all receiving or sending operations performed by the first device in the embodiment shown in FIG. 9 .
  • S902 in the embodiment shown in FIG. 9 and/or other processes used to support the techniques described herein; wherein, the processing module 1610 is used to execute the first device in the embodiment shown in FIG. 9 . All operations except the transceiving operation, such as S901 in the embodiment shown in FIG. 9 , and/or other processes used to support the techniques described herein.
  • the processing module 1610 is configured to generate a PPDU
  • the transceiver module 1620 is configured to send the PPDU to the second device
  • the PPDU includes a physical layer packet extension threshold existence subfield, a physical layer packet extension threshold field, and a physical layer packet extension threshold
  • the value of the existence subfield is 1, the physical layer packet extension threshold field includes the NSTS field, and the first subfield set used to indicate that the NSTS is n and the modulation threshold corresponding to the RU numbered b, and the value range of n is [ 1, ..., N], N is an integer greater than 8, the value range of b is [m, ..., M], m and M are integers greater than or equal to 1;
  • a first subfield in the first subfield set is used to indicate a first modulation threshold corresponding to an RU whose NSTS is n and numbered b, and the first modulation threshold is used to indicate that the modulation mode of the second device is greater than or equal to the first modulation threshold.
  • the first nominal packet filling value used when the modulation threshold is used is the first value, and the first value is greater than 16 microseconds.
  • the transceiver module 1620 is configured to send the first space-time stream number NSTS threshold and/or the first resource unit RU threshold to the second device, where the first NSTS threshold is used to indicate that the NSTS used by the second device is greater than or When equal to the first NSTS threshold, use the first nominal packet padding value;
  • the first RU threshold is used to indicate that when the RU size adopted by the second device is greater than or equal to the first RU threshold, the first nominal packet filling value is used, and the first nominal packet filling value is greater than 16 microseconds.
  • the transceiver module 1620 is further configured to send a physical layer protocol data unit PPDU to the second device, where the PPDU includes a space-time stream number NSTS field, and is used to indicate that the NSTS is n and the sequence number is b
  • the first subfield set of the modulation threshold corresponding to the RU of the p], p is less than or equal to the first NSTS threshold.
  • the transceiver module 1620 is further configured to send a physical layer protocol data unit PPDU to the second device, where the PPDU includes a space-time stream number NSTS field, and is used to indicate that the NSTS is n and the sequence number is b
  • the first subfield set of the modulation threshold corresponding to the RU of the , m is an integer greater than or equal to 1, and q is less than or equal to the first RU threshold.
  • the transceiver module 1620 is further configured to send first indication information to the second device, where the first indication information is used to indicate whether the first NSTS is valid.
  • the transceiver module 1620 is further configured to send second indication information to the second device, where the second indication information is used to indicate whether the first RU threshold takes effect.
  • the physical layer packet extension threshold field further includes:
  • a second subfield set used to indicate the modulation threshold corresponding to the RU whose NSTS is n and number b.
  • a second subfield in the second subfield set is used to indicate a RU corresponding to the RU whose NSTS is n and number b.
  • the second modulation threshold is used to indicate the second nominal packet filling value used by the second device when the modulation mode is greater than or equal to the second modulation threshold, and the second nominal packet filling value is 16 microseconds;
  • the third subfield set used to indicate the modulation threshold corresponding to the RU whose NSTS is n and number b.
  • a third subfield in the third subfield set is used to indicate a RU corresponding to the RU whose NSTS is n and number b.
  • the third modulation threshold is used to indicate the third nominal packet filling value used by the second device when the modulation mode is greater than or equal to the third modulation threshold, and the third nominal packet filling value is 8 microseconds.
  • the first subfield set, the second subfield set and the third subfield set are located in the first physical layer packet extension threshold information field included in the physical layer packet extension threshold field .
  • the first subfield set is located in the first physical layer packet extension threshold information field included in the physical layer packet extension threshold field
  • the second subfield set and the third subfield set are located in the second physical layer included in the physical layer packet extension threshold field. Packet extension threshold information field.
  • n corresponding to the first subfield set is greater than or equal to the first NSTS threshold, and the physical layer packet extension threshold field does not include the second subfield set and the third subfield set .
  • This scheme can further save the overhead of PPDU.
  • the PPDU includes a third physical layer packet extension threshold information field and a fourth physical layer packet extension threshold information field, which are used to indicate that the NSTS is n, and the RU number b corresponds to The first set of subfields of the modulation threshold are respectively located in the third physical layer packet extension threshold information field and the fourth physical layer packet extension threshold information field;
  • the second set is a subset of [1,...,N], the elements in the second set are continuous, and the third physical layer packet extension threshold
  • the b corresponding to the information field is located in the third set, the third set is a subset of [q,...,M], q is greater than m, the elements in [q,...,M] are continuous, and the elements in the third set is continuous;
  • the n corresponding to the fourth physical layer packet extension threshold information field is located in the fourth set, the fourth set is [p, ..., N], p is an integer greater than 1, the elements in the fourth set are continuous, and the fourth physical The b corresponding to the layer packet extension threshold information field is located in the fifth set, the fifth set is a subset of [m,...,q], q is less than M, the elements in [m,...,q] are continuous, the fifth The elements within the set are contiguous.
  • the PPDU includes a third physical layer packet extension threshold information field and a fourth physical layer packet extension threshold information field, which are used to indicate that the NSTS is n, and the RU number b corresponds to The first set of subfields of the modulation threshold are respectively located in the third physical layer packet extension threshold information field and the fourth physical layer packet extension threshold information field;
  • the n corresponding to the third physical layer packet extension threshold information field is located in the second set, the second set is a subset of [p,...,N], p is an integer greater than 1, the elements in the second set are continuous, and
  • the b corresponding to the third physical layer packet extension threshold information field is located in the third set, the third set is a subset of [m, . . . , M], and the elements in the third set are continuous;
  • the n corresponding to the fourth physical layer packet expansion threshold information field is located in the fourth set, the fourth set is [1,...,p], p is less than N, the elements in the fourth set are continuous, and the fourth physical layer packet expansion
  • the b corresponding to the threshold information field is located in the fifth set, the fifth set is a subset of [q,...,M], q is greater than m, the elements in [q,...,M] are continuous, and the elements in the fifth set are Elements are consecutive.
  • the PPDU includes a third physical layer packet extension threshold information field, a fourth physical layer packet extension threshold information field, and a fifth physical layer packet extension threshold information field, which are used to indicate The NSTS is n, and the first subfield set of the modulation threshold corresponding to the RU numbered b is located in the third physical layer packet extension threshold information field, the fourth physical layer packet extension threshold information field, and the fifth physical layer packet extension threshold information field.
  • the n corresponding to the third physical layer packet extension threshold information field is located in the second set, the second set is a subset of [p,...,N], p is an integer greater than 1, the elements in the second set are continuous, and
  • the b corresponding to the third physical layer packet extension threshold information field is located in the third set, the third set is a subset of [m,...,q], q is less than M, and the elements in [m,...,q] are consecutive , the elements in the fifth set are consecutive;
  • the n corresponding to the fourth physical layer packet expansion threshold information field is located in the fourth set, the fourth set is [1,...,p], p is less than N, the elements in the fourth set are continuous, and the fourth physical layer packet expansion
  • the b corresponding to the threshold information field is located in the fifth set, the fifth set is a subset of [q,...,M], q is greater than m, the elements in [q,...,M] are continuous, and the elements in the fifth set are elements are consecutive;
  • the n corresponding to the fifth physical layer packet extension threshold information field is located in the sixth set, the sixth set is [p,...N], p is an integer greater than 1, the elements in the sixth set are continuous, and the fifth physical layer
  • the b corresponding to the packet extension threshold information field is located in the seventh set, the seventh set is a subset of [q,...,M], q is greater than m, and the elements in [q,...,M] are continuous, the seventh set The elements within are contiguous.
  • the NSTS adopted by the second device is the second value, and the value range of n is a proper subset of [1,...,N]; and/or, the physical layer
  • the RU index indicated by the resource unit RU index mask included in the packet extension threshold field belongs to the proper subset of the eighth set, and the first set is ⁇ 242, 484, 996, 2*996, 3*996, 4*996 ⁇ .
  • the processing module 1610 is configured to generate a physical layer protocol data unit PPDU
  • the transceiver module 1620 is configured to send the PPDU to the second device
  • the PPDU includes a physical layer packet extension threshold existence subfield; wherein the physical layer packet extension threshold existence subfield
  • the value of the field is 1, and the PPDU includes a threshold field.
  • the threshold field is used to indicate one or more of the first NSTS threshold, the first resource unit RU threshold, and the first modulation threshold.
  • the parameters of the data sent by the second device satisfy In the preset condition, the nominal packet filling value is the first value, and the first value is greater than 16 microseconds;
  • the preset conditions are one or more of the following conditions:
  • the NSTS used by the second device to send data is greater than or equal to the first NSTS threshold
  • the RU used by the second device to send data is greater than or equal to the first RU threshold
  • the modulation mode to be used by the second device is greater than or equal to the first modulation threshold.
  • the PPDU does not include the second subfield set and the third subfield set used to indicate that the NSTS is n and the modulation threshold corresponding to the RU corresponding to the sequence number b is the second subfield set and the third subfield set.
  • the value range is [1, ..., N], N is an integer less than or equal to 8, the value range of b is [m, ..., M], m and M are integers greater than or equal to 1.
  • the transceiver module 1620 is further configured to send indication information to the second device, wherein,
  • the threshold field includes the NSTS threshold subfield, the RU threshold subfield, and the modulation threshold subfield, and the indication information is used to indicate whether one or more subfields in the threshold field are valid; or,
  • the indication information is used to indicate that the nominal packet padding value is invalid for the first value; or,
  • the indication information is used to indicate whether the threshold field includes one or more of the NSTS threshold subfield, the RU threshold subfield, and the modulation threshold subfield.
  • processing module 1610 in this embodiment of the present application may be implemented by a processor or a processor-related circuit component
  • transceiver module 1620 may be implemented by a transceiver or a transceiver-related circuit component or a communication interface.
  • the communication apparatus 1600 can correspondingly implement the behaviors and functions of the second device in the foregoing method embodiments.
  • the communication apparatus 1600 may be a STA or an AP, or may be a component (eg, a chip or a circuit) applied in the STA or the AP.
  • the transceiver module 1620 may be configured to perform all the receiving or sending operations performed by the second device in the embodiment shown in FIG. 9 .
  • the processing module 1610 is configured to perform all operations performed by the second device in the embodiment shown in FIG. 9 except for the transceiving operation, such as S903 in the embodiment shown in FIG. 9 , and/or for Additional processes supporting the techniques described herein.
  • the transceiver module 1620 is configured to receive a physical layer protocol data unit PPDU from the first device, wherein the PPDU includes a physical layer packet extension threshold existence subfield, a physical layer packet extension threshold field, and the physical layer packet extension threshold exists.
  • the value of the layer packet extension threshold existence subfield is 1, and the physical layer packet extension threshold field includes the space-time stream number NSTS field, and the first subfield used to indicate that the NSTS is n and the modulation threshold corresponding to the RU numbered b.
  • n is [1,...,N]
  • N is an integer greater than 8
  • value range of b is [m,...,M]
  • m and M are integers greater than or equal to 1;
  • a first subfield in the first subfield set is used to indicate a first modulation threshold corresponding to an RU whose NSTS is n and numbered b
  • the first modulation threshold is used to indicate that the communication apparatus 1600 is modulating
  • the first nominal packet filling value used when the mode is greater than or equal to the first modulation threshold, the first nominal packet filling value is a first value, and the first value is greater than 16 microseconds;
  • the processing module 1610 is configured to determine the first nominal packet filling value to be used if it is determined that the adopted modulation mode is greater than or equal to the first modulation threshold.
  • Example 5 provides a communication device, for example, the communication device is the aforementioned communication device 1600 or a device provided in the communication device 1600 .
  • the communication device can be used to perform the method in the above fourth aspect or any possible implementation manner of the fourth aspect.
  • the communication apparatus may include a module for performing the method in the fourth aspect or any possible implementation manner of the fourth aspect, for example, including a processing module 1610 and a transceiver module 1620 coupled with each other.
  • the communication device is the aforementioned communication device 1600 . in,
  • the processing module 1610 is configured to use a first nominal packet filling value when at least one of the following two conditions is satisfied, and the first nominal packet filling value is greater than 16 microseconds;
  • the number of space-time streams NSTS used by the communication device 1600 is greater than or equal to the first NSTS threshold
  • the communications apparatus 1600 determines that the employed RU size is greater than or equal to the first RU threshold.
  • the processing module 1610 is further configured to determine that when the adopted NSTS is smaller than the first NSTS threshold, use the corresponding RU whose NSTS is n and the sequence number is b in the first subfield set
  • the nominal packet padding value corresponding to the first modulation threshold of where the value range of n is [1, ..., the first NSTS threshold], the value range of b is [m, ..., M], and m and M are greater than or an integer equal to 1.
  • the processing module 1610 is further configured to use the RU whose NSTS is n and the sequence number is b in the first subfield set when it is determined that the adopted RU size is smaller than the first RU threshold
  • the nominal packet filling value corresponding to the corresponding first modulation threshold where the value range of n is [1,...,N], N is an integer greater than 8, the value range of b is [m,..., the first RU Threshold], m is an integer greater than or equal to 1.
  • the transceiver module 1620 is further configured to:
  • the first RU threshold sent by the first device is received.
  • the transceiver module 1620 is further configured to:
  • the physical layer packet extension threshold field further includes:
  • the second nominal packet filling value is 16 microseconds;
  • the third subfield set used to indicate the modulation threshold corresponding to the RU whose NSTS is n and the sequence number is b, and a third subfield in the third subfield set is used to indicate that one corresponds to an NSTS whose sequence number is b the third modulation threshold corresponding to the RU of the
  • the third nominal packet fill value is 8 microseconds.
  • the first subfield set, the second subfield set, and the third subfield set are located in the first subfield included in the physical layer packet extension threshold field.
  • a physical layer packet extension threshold information field or,
  • the first subfield set is located in the first physical layer packet extension threshold information field included in the physical layer packet extension threshold field, and the second subfield set and the third subfield set are located in the physical layer packet extension.
  • the threshold field includes a second physical layer packet extension threshold information field.
  • n corresponding to the first subfield set is greater than or equal to the first NSTS threshold, and the physical layer packet extension threshold field does not include the first NSTS threshold.
  • the PPDU includes a third physical layer packet extension threshold information field and a fourth physical layer packet extension threshold information field, which are used to indicate that the NSTS is n and the sequence number is b.
  • the first subfield set of the modulation threshold corresponding to the RU is respectively located in the third physical layer packet extension threshold information field and the fourth physical layer packet extension threshold information field, wherein,
  • the n corresponding to the third physical layer packet extension threshold information field is located in the second set, the second set is a subset of [1, . . . , N], the elements in the second set are continuous, and all
  • the b corresponding to the third physical layer packet extension threshold information field is located in the third set, and the third set is a subset of [q,...,M], and the q is greater than the m, [q,...,M ]
  • the elements in the set are continuous, and the elements in the third set are continuous;
  • the fourth set is [p,...,N]
  • p is an integer greater than 1
  • the elements in the fourth set are consecutive
  • the b corresponding to the fourth physical layer packet extension threshold information field is located in the fifth set
  • the fifth set is a subset of [m,...,q]
  • the q is smaller than M, [m,... , q] are consecutive, and the elements in the fifth set are consecutive.
  • the PPDU includes a third physical layer packet extension threshold information field and a fourth physical layer packet extension threshold information field, which are used to indicate that the NSTS is n, and the sequence number b corresponds to The first subfield set of the modulation threshold corresponding to the RU is respectively located in the third physical layer packet extension threshold information field and the fourth physical layer packet extension threshold information field, wherein,
  • the second set is a subset of [p,...,N]
  • p is an integer greater than 1
  • the second set is The elements are consecutive
  • the b corresponding to the third physical layer packet extension threshold information field is located in the third set, the third set is a subset of [m,...,M], and the elements are consecutive;
  • the n corresponding to the fourth physical layer packet extension threshold information field is located in the fourth set, the fourth set is [1, . . . , p], p is less than N, the elements in the fourth set are continuous, and The b corresponding to the fourth physical layer packet extension threshold information field is located in the fifth set, and the fifth set is a subset of [q,...,M], and the q is greater than m, [q,...,M] The elements within are consecutive, and the elements within the fifth set are consecutive.
  • the PPDU includes a third physical layer packet extension threshold information field, a fourth physical layer packet extension threshold information field, and a fifth physical layer packet extension threshold information field, using
  • the first subfield set indicating the modulation threshold corresponding to the RU corresponding to the NSTS is n and the sequence number is b is located in the third physical layer packet extension threshold information field, the fourth physical layer packet extension threshold information field and the fifth physical layer respectively.
  • Packet extension threshold information field where,
  • the second set is a subset of [p,...,N]
  • p is an integer greater than 1
  • the second set is The elements are continuous
  • the b corresponding to the third physical layer packet extension threshold information field is located in the third set
  • the third set is a subset of [m, . . . , q], where q is less than M, [ The elements in m,...,q] are continuous, and the elements in the fifth set are continuous;
  • the n corresponding to the fourth physical layer packet extension threshold information field is located in the fourth set, the fourth set is [1, . . . , p], p is less than N, the elements in the fourth set are continuous, and The b corresponding to the fourth physical layer packet extension threshold information field is located in the fifth set, and the fifth set is a subset of [q,...,M], and the q is greater than m, [q,...,M] The elements in the set are consecutive, and the elements in the fifth set are consecutive;
  • the sixth set is [p,...N]
  • p is an integer greater than 1
  • the elements in the sixth set are consecutive
  • the b corresponding to the fifth physical layer packet extension threshold information field is located in the seventh set
  • the seventh set is a subset of [q,...,M]
  • the q is greater than m, [q,..., The elements in M] are consecutive, and the elements in the seventh set are consecutive.
  • the NSTS adopted by the communication apparatus 1600 is the second value, and the value range of n is a proper subset of [1, . . . , the first NSTS threshold]; and /or,
  • the index of the RU indicated by the resource unit RU index mask included in the physical layer packet extension threshold field belongs to the proper subset of the eighth set, and the first set is ⁇ 242, 484, 996, 2*996, 3*996, 4*996 ⁇ .
  • the communication apparatus 1600 determines that the nominal packet padding value to be used is equal to 8 microseconds when the following first, second and third conditions are satisfied:
  • the first condition is that the modulation mode to be used by the communication device 1600 is greater than or equal to the third modulation threshold
  • the second condition is that the modulation mode to be used by the communication apparatus 1600 is smaller than the second modulation threshold, or the value of the second subfield set is null;
  • the third condition is that the modulation mode to be used by the communication apparatus 1600 is smaller than the first modulation threshold, or the value of the first subfield set is empty.
  • the communication apparatus 1600 determines that the nominal packet padding value to be used is equal to 16 microseconds when the following fourth, fifth and sixth conditions are satisfied:
  • the fourth condition is that the modulation mode to be used by the communication apparatus 1600 is greater than the third modulation threshold, or the value of the third subfield set is null;
  • the fifth condition is that the modulation mode to be used by the communication device 1600 is greater than or equal to the second modulation threshold
  • the sixth condition is that the modulation mode to be used by the communication apparatus 1600 is smaller than the first modulation threshold, or the value of the first subfield set is null (null).
  • Example 6 provides a communication apparatus, for example, the communication apparatus is the aforementioned first device or a device provided in the first device.
  • the communication device can be used to perform the method in the above sixth aspect or any possible implementation manner of the sixth aspect.
  • the communication apparatus may include a module for performing the method in the sixth aspect or any possible implementation manner of the sixth aspect, for example, including a processing module 1610 and a transceiver module 1620 coupled with each other.
  • the communication device is the aforementioned communication device 1600 . in,
  • the transceiver module 1620 is configured to receive a physical layer protocol data unit PPDU from the first device, and the PPDU includes a physical layer packet extension threshold existence subfield; wherein the physical layer packet extension threshold existence subfield takes a value of 1 , the PPDU includes a threshold field, and the threshold field is used to indicate one or more of the first NSTS threshold, the first resource unit RU threshold, and the first modulation threshold,
  • the processing module 1610 determines that a preset condition is met, the communication device 1600 determines that the nominal packet filling value is a first value, and the first value is greater than 16 microseconds; the preset condition is as follows One or more of the conditions:
  • the NSTS used by the communication device to send data is greater than or equal to the first NSTS threshold
  • the RU used by the communication apparatus to send data is greater than or equal to the first RU threshold
  • the modulation mode to be adopted by the communication apparatus is greater than or equal to the first modulation threshold.
  • the PPDU does not include the second subfield set and the third subfield set for indicating the modulation threshold corresponding to the RU corresponding to the NSTS of n and the sequence number of b, and the value range of n is [1,...,N], N is an integer less than or equal to 8, the value range of b is [m,...,M], m and M are integers greater than or equal to 1.
  • the transceiver module 1620 is further configured to receive indication information sent by the first device, wherein:
  • the threshold field includes an NSTS threshold subfield, an RU threshold subfield, and a modulation threshold subfield, and the indication information is used to indicate whether one or more subfields in the threshold field are valid; or,
  • the indication information is used to indicate that the nominal packet padding value is invalid for the first value; or,
  • the indication information is used to indicate whether the threshold field includes one or more of the NSTS threshold subfield, the RU threshold subfield and the modulation threshold subfield.
  • processing module 1610 in this embodiment of the present application may be implemented by a processor or a processor-related circuit component
  • transceiver module 1620 may be implemented by a transceiver or a transceiver-related circuit component or a communication interface.
  • FIG. 17 shows a communication apparatus 1700 provided in this embodiment of the present application, where the communication apparatus 1700 may be an AP or a STA, and can implement the function of the first device or the second device in the method provided by the embodiment of the present application; the communication apparatus 1700 It may also be an apparatus capable of supporting the first device to implement the functions corresponding to the methods provided in the embodiments of the present application, or an apparatus capable of supporting the second devices to implement the functions corresponding to the methods provided in the embodiments of the present application.
  • the communication device 1700 may be a chip or a chip system. In this embodiment of the present application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • the above-mentioned transceiver module 1620 may be the transceiver 1710 .
  • the communication apparatus 1700 includes at least one processor 1720, configured to implement or support the communication apparatus 1700 to implement the function of the first device or the second device in the method provided in this embodiment of the present application, for example, to generate the aforementioned PPDU.
  • Communication apparatus 1700 may also include at least one memory 1730 for storing program instructions and/or data.
  • Memory 1730 and processor 1720 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1720 may cooperate with the memory 1730.
  • the processor 1720 may execute program instructions and/or data stored in the memory 1730 to cause the communication device 1700 to implement the corresponding method. At least one of the at least one memory may be located in the processor.
  • the communication apparatus 1700 may also include a transceiver 1710 for communicating with other devices through a transmission medium, so that the devices used in the communication apparatus 1700 may communicate with other devices.
  • a transceiver 1710 for communicating with other devices through a transmission medium, so that the devices used in the communication apparatus 1700 may communicate with other devices.
  • the other device is a network device; or, when the communication device is a network device, the other device is a terminal.
  • the processor 1720 may use the transceiver 1710 to transmit and receive data.
  • the transceiver 1710 may specifically be a transceiver.
  • the communication device 1700 may also be a radio frequency unit, and the radio frequency unit may be independent of the communication device 1700 or integrated within the communication device 1700 .
  • the above-mentioned transceiver 1710 may also include an antenna, such as a remote antenna independent of the communication device 1700 , or an antenna integrated in the communication device 1700 .
  • the specific connection medium between the transceiver 1710, the processor 1720, and the memory 1730 is not limited in the embodiments of the present application.
  • the memory 1730, the processor 1720, and the transceiver 1710 are connected through a bus 1740 in FIG. 17.
  • the bus is represented by a thick line in FIG. 17, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 17, but it does not mean that there is only one bus or one type of bus.
  • the processor 1720 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement Alternatively, each method, step, and logic block diagram disclosed in the embodiments of the present application are executed.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory 1730 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), Such as random-access memory (random-access memory, RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • the communication device in the above embodiment may be a terminal or a circuit, and may also be a chip applied in the terminal or other combined devices and components having the above terminal function.
  • the transceiver module may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver module may be a radio frequency unit, and the processing module may be a processor.
  • the transceiver module may be an input/output interface of the chip or the chip system, and the processing module may be a processor of the chip or the chip system.
  • the APs and STAs described in the embodiments of the present application can also be implemented using the following: one or more FPGAs (Field Programmable Gate Arrays), PLDs (Programmable Logic Devices), controllers , state machines, gate logic, discrete hardware components, any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • FPGAs Field Programmable Gate Arrays
  • PLDs Programmable Logic Devices
  • controllers state machines, gate logic, discrete hardware components, any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • the first device in this embodiment of the present application may be an AP or a STA.
  • the second device may be an AP or a STA.
  • the APs in the above various product forms have any functions of the APs in the above method embodiments, which will not be repeated here;
  • the STAs in the above various product forms have any functions of the STAs in the above method embodiments, which are not described here. Repeat.
  • An embodiment of the present application further provides a communication system.
  • the communication system includes a second device and a first device, or may further include more first devices and second devices.
  • the communication system includes a second device and a first device for implementing the above-mentioned related functions in FIG. 9 .
  • the first devices are respectively used to implement the functions of the above-mentioned part of the first device related to FIG. 9 .
  • the second device is used to implement the functions of the above-mentioned second device related to FIG. 9 .
  • the second device can execute S902-S903 in the embodiment shown in FIG. 9
  • the first device can execute S901-S902 in the embodiment shown in FIG. 9 .
  • Embodiments of the present application further provide a computer-readable storage medium, including instructions, which, when executed on a computer, cause the computer to execute the method executed by the first device or the second device in FIG. 9 .
  • the embodiment of the present application also provides a computer program product, including computer program code, when the computer program code runs on the computer, the computer executes the method performed by the first device or the second device in FIG. 8 .
  • An embodiment of the present application provides a chip system, where the chip system includes a processor, and may further include a memory, for implementing the function of the first device or the second device in the foregoing method.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • An embodiment of the present application further provides a communication device, including a processor and an interface; the processor is configured to execute the method for indicating a nominal packet filling value described in any of the above method embodiments.
  • the above communication device may be a chip, and the processor may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software
  • the processor can be a general-purpose processor, which is realized by reading the software codes stored in the memory, and the memory can be integrated in the processor, and can be located outside the processor and exist independently.
  • At least one (a) of a, b or c can represent: a, b, c, a and b, a and c, b and c, or a, b and c, where a, b, c Can be single or multiple.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, sequence, priority or priority of multiple objects. Importance.
  • the first information and the second information are only for differentiating different indication information, and do not indicate the difference in priority or importance of the two kinds of information.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the word "exemplary” is used to indicate an example or illustration. Any embodiment or implementation described in this application summary as an “example” should not be construed as preferred over other embodiments or implementations. That is, the use of the word “example” is intended to present concepts in a concrete manner.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present invention are generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable apparatus.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server or data center by means of wired (such as coaxial cable, optical fiber, digital subscriber line, DSL for short) or wireless (such as infrared, wireless, microwave, etc.)
  • a computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains an integration of one or more available media.
  • the available media can be magnetic media (eg, floppy disks, hard disks, magnetic tape), optical media (eg, digital video disc (DVD) for short), or semiconductor media (eg, SSD), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种名义包填充值的指示方法、确定方法及通信装置,该方法包括:第一设备生成PPDU,以及向第二设备发送PPDU,PPDU包括的物理层包扩展门限存在子字段的取值为1,PPDU包括的物理层包扩展门限字段包括用于指示NSTS为n,编号为b的RU对应的调制门限的第一子字段集合,第一子字段集合中的一个第一子字段用于指示一个与NSTS为n,编号为b的RU对应的第一调制门限,第一调制门限用于指示第二设备在调制方式大于或等于第一调制门限时使用的第一名义包填充值,第一名义包填充值为大于16微秒的值。该方案可在物理层包扩展门限字段设置第一子字段集合,能够用于指示大于16微秒的第二名义包填充值。

Description

一种名义包填充值的指示方法、确定方法及通信装置
相关申请的交叉引用
本申请要求在2020年09月30日提交中国专利局、申请号为202011069848.1、申请名称为“一种名义包填充值的指示方法、确定方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线保真技术领域,尤其涉及一种名义包填充值的指示方法、确定方法及通信装置。
背景技术
为了保证接收机接收来自发送机的数据包能够有足够的处理时间,接收机可指示某个空时流数(number of spatial and time stream,NSTS),某个资源单元(resource allocation,RU)大小对应的调制门限。发送机可根据该调制门限确定要使用的名义包填充值。之后发送机根据该名义包填充值确定实际填充值,以根据实际填充值填充发送给接收机的数据包可能包括的包扩展。包扩展里面的数据是接收不需要的,所以可在包扩展的处理时间内处理其他数据,从而保证接收机有足够的处理时间。
随着设备支持的NSTS的增大,RU大小的增大,使得接收机在这些情况下需要更多的处理时间,例如大于16μs的处理时间。目前没有指示大于16μs的名义包填充值的方法。
发明内容
本申请提供一种名义包填充值的指示方法、确定方法及通信装置,能够指示大于16微秒的名义包填充值。
第一方面,本申请实施例提供一种名义包填充值的指示方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为第一设备为例进行描述,其中,第一设备可以是AP,也可以是STA。该方法包括:
第一设备生成PPDU,以及向第二设备发送所述PPDU,所述PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段;其中,所述物理层包扩展门限存在子字段的取值为1,所述物理层包扩展门限字段包括空时流数NSTS字段,以及用于指示NSTS为n,编号为b的RU对应的调制门限的第一子字段集合,n的取值范围为[1,…,N],N为大于8的整数,b的取值范围为[m,…,M],m和M为大于或等于1的整数;
所述第一子字段集合中的一个第一子字段用于指示一个与NSTS为n,编号为b的RU对应的第一调制门限,所述第一调制门限用于指示第二设备在调制方式大于或等于所述第一调制门限时使用的第一名义包填充值,所述第一名义包填充值为第一取值,所述第一取值大于16微秒。
该方案可在物理层包扩展门限字段设置第一子字段集合,能够用于指示第二设备在调 制方式大于或等于所述第二调制门限时使用的第二名义包填充值大于16微秒。即针对支持更多NSTS、更高阶调制方式、更大带宽的应用场景,提供了指示大于16微秒的名义包填充值的方法。且通过第一子字段集合可指示不同NSTS、不同调制方式、不同RU对应的名义包填充值,更为灵活。
第二方面,本申请实施例提供一种名义包填充值的指示方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为第一设备为例进行描述,其中,第一设备可以是AP,也可以是STA。该方法包括:
第一设备向第二设备发送第一空时流数NSTS门限和/或第一资源单元RU门限,其中,所述第一NSTS门限用于指示所述第二设备采用的NSTS大于或等于所述第一NSTS门限时,使用第一名义包填充值;
所述第一RU门限用于指示所述第二设备采用的RU大小大于或等于所述第一RU门限时,使用第一名义包填充值;
所述第一名义包填充值大于16微秒。
该方案可通过设定使用第一名义包填充值的门限,例如NSTS门限和/或RU门限,例如第二设备采用的NSTS大于或等于所设定的NSTS门限,可确定使用第一名义包填充值。例如第二设备采用的RU大小大于或等于所设定的RU门限,也可确定使用第一名义包填充值,较为简单,易于实现。
在第二方面的一种可能的实现方式中,所述方法还包括:
所述第一设备向所述第二设备发送物理层协议数据单元PPDU,所述PPDU包括空时流数NSTS字段,以及用于指示NSTS为n,序号为b的RU对应的调制门限的第一子字段集合;所述调制门限用于指示第二设备在调制方式大于或等于所述调制门限时使用的名义包填充值;其中,n的取值范围为[1,…,p],p小于或等于所述第一NSTS门限。
在第二方面的一种可能的实现方式中,所述方法还包括:
所述第一设备向所述第二设备发送物理层协议数据单元PPDU,所述PPDU包括空时流数NSTS字段,以及用于指示NSTS为n,序号为b的RU对应的调制门限的第一子字段集合;所述调制门限用于指示第二设备在调制方式大于或等于所述调制门限时使用的名义包填充值;所述b的取值范围为[m,…,q],m为大于或等于1的整数,q小于或等于所述第一RU门限。
该方案中,如果第一设备向第二设备指示第一NSTS门限和/或第一RU门限,那么第一设备向第二设备发送的第一子字段集合可不需要遍历全部的NSTS和RU大小,从而可节约PPDU的开销。
在第二方面的一种可能的实现方式中,所述方法还包括:
所述第一设备向所述第二设备发送第一指示信息,所述第一指示信息用于指示所述第一NSTS是否生效。
在第二方面的一种可能的实现方式中,所述方法还包括:
所述第一设备向所述第二设备发送第二指示信息,所述第二指示信息用于指示所述第一RU门限是否生效。
该方案中,第一设备通过第一指示信息和/或第二指示信息可间接告知第二设备,确定名义包填充值时是否参考第一NSTS门限和/或第一RU门限。应理解,即使设定了第一 NSTS门限和/或第一RU门限,但是如果第一设备的处理能力较强,第二设备可使用较小的名义包填充值,即不需要采用第一名义包填充值。
在第一方面或第二方面的一种可能的实现方式中,所述物理层包扩展门限字段还包括:
用于指示NSTS为n,编号为b的RU对应的调制门限的第二子字段集合,所述第二子字段集合中的一个第二子字段用于指示一个与NSTS为n,编号为b的RU对应的第二调制门限,所述第二调制门限用于指示第二设备在调制方式大于或等于所述第二调制门限时使用的第二名义包填充值,所述第二名义包填充值为16微秒;
用于指示NSTS为n,编号为b的RU对应的调制门限的第三子字段集合,所述第三子字段集合中的一个第三子字段用于指示一个与NSTS为n,编号为b的RU对应的第三调制门限,所述第三调制门限用于指示第二设备在调制方式大于或等于所述第三调制门限时使用的第三名义包填充值,所述第三名义包填充值为8微秒。
该方案中,物理层包扩展门限字段还包括第二子字段集合和第三子字段集合,兼容现有PPDU结构,可实现指示8微秒的名义包填充值或16微秒的名义包填充值或大于16微秒的名义包填充值的方法。
在第一方面或第二方面的一种可能的实现方式中,所述第一子字段集合、所述第二子字段集合和所述第三子字段集合可位于一个物理层包扩展门限字段,也可以位于多个物理层包扩展门限字段,对此本申请实施例不作限制。例如,所述第一子字段集合、所述第二子字段集合和所述第三子字段集合位于所述物理层包扩展门限字段包括的第一物理层包扩展门限信息字段。又例如,所述第一子字段集合位于所述物理层包扩展门限字段包括的第一物理层包扩展门限信息字段,所述第二子字段集合和所述第三子字段集合位于所述物理层包扩展门限字段包括的第二物理层包扩展门限信息字段。该方案可保证第一物理层包扩展门限信息字段的长度始终是3比特的倍数,第二物理层包扩展门限信息字段的长度始终是6比特的倍数,利用接收机的解析。
在第一方面或第二方面的一种可能的实现方式中,所述第一子字段集合对应的n大于或等于所述第一NSTS门限,所述物理层包扩展门限字段不包括所述第二子字段集合和所述第三子字段集合。该方案可进一步节省PPDU的开销。
在第一方面或第二方面的一种可能的实现方式中,所述PPDU包括第三物理层包扩展门限信息字段和第四物理层包扩展门限信息字段,用于指示NSTS为n,编号为b的RU对应的调制门限的第一子字段集合分别位于所述第三物理层包扩展门限信息字段和第四物理层包扩展门限信息字段;其中,
所述第三物理层包扩展门限信息字段对应的n位于第二集合,所述第二集合为[1,…,N]的子集,所述第二集合内的元素是连续的,且所述第三物理层包扩展门限信息字段对应的b的位于第三集合,所述第三集合为[q,…,M]的子集,所述q大于所述m,[q,…,M]内的元素是连续的,所述第三集合内的元素是连续的;
所述第四物理层包扩展门限信息字段对应的n位于第四集合,所述第四集合为[p,…,N],p为大于1的整数,所述第四集合内的元素是连续的,且所述第四物理层包扩展门限信息字段对应的b的位于第五集合,所述第五集合为[m,…,q]的子集,所述q小于M,[m,…,q]内的元素是连续的,所述第五集合内的元素是连续的。
在第一方面或第二方面的一种可能的实现方式中,所述PPDU包括第三物理层包扩展门限信息字段和第四物理层包扩展门限信息字段,用于指示NSTS为n,编号为b的RU 对应的调制门限的第一子字段集合分别位于所述第三物理层包扩展门限信息字段和第四物理层包扩展门限信息字段;其中,
所述第三物理层包扩展门限信息字段对应的n位于第二集合,所述第二集合为[p,…,N]的子集,p为大于1的整数,所述第二集合内的元素是连续的,且所述第三物理层包扩展门限信息字段对应的b的位于第三集合,所述第三集合为[m,…,M]的子集,所述第三集合内的元素是连续的;
所述第四物理层包扩展门限信息字段对应的n位于第四集合,所述第四集合为[1,…,p],p小于N,所述第四集合内的元素是连续的,且所述第四物理层包扩展门限信息字段对应的b的位于第五集合,所述第五集合为[q,…,M]的子集,所述q大于m,[q,…,M]内的元素是连续的,所述第五集合内的元素是连续的。
在第一方面或第二方面的一种可能的实现方式中,所述PPDU包括第三物理层包扩展门限信息字段、第四物理层包扩展门限信息字段和第五物理层包扩展门限信息字段,用于指示NSTS为n,编号为b的RU对应的调制门限的第一子字段集合分别位于所述第三物理层包扩展门限信息字段、第四物理层包扩展门限信息字段和第五物理层包扩展门限信息字段,其中,
所述第三物理层包扩展门限信息字段对应的n位于第二集合,所述第二集合为[p,…,N]的子集,p为大于1的整数,所述第二集合内的元素是连续的,且所述第三物理层包扩展门限信息字段对应的b的位于第三集合,所述第三集合为[m,…,q]的子集,所述q小于M,[m,…,q]内的元素是连续的,所述第五集合内的元素是连续的;
所述第四物理层包扩展门限信息字段对应的n位于第四集合,所述第四集合为[1,…,p],p小于N,所述第四集合内的元素是连续的,且所述第四物理层包扩展门限信息字段对应的b的位于第五集合,所述第五集合为[q,…,M]的子集,所述q大于m,[q,…,M]内的元素是连续的,所述第五集合内的元素是连续的;
所述第五物理层包扩展门限信息字段对应的n位于第六集合,所述第六集合为[p,…N],p为大于1的整数,所述第六集合内的元素是连续的,且所述第五物理层包扩展门限信息字段对应的b的位于第七集合,所述第七集合为[q,…,M]的子集,所述q大于m,[q,…,M]内的元素是连续的,所述第七集合内的元素是连续的。
上述三个可能的实施方式中,第一设备可向第二设备指示在EHT能力元素中省略对应HE能力元素中已经指示的子字段,可降低接收机实现的复杂度。
在第一方面或第二方面的一种可能的实现方式中,所述第二设备采用的NSTS为第二取值,n的取值范围为[1,…,N]的真子集;和/或,所述物理层包扩展门限字段包括的资源单元RU索引掩码指示的RU的索引属于第八集合的真子集,所述第一集合为{242,484,996,2*996,3*996,4*996}。该方案由于n的取值范围为[1,…,N]的真子集,RU的索引属于第八集合的真子集,所以可降低PPDU的开销。
第三方面,本申请实施例提供一种名义包填充值的确定方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为第二设备为例进行描述,其中,第二设备可以是AP,也可以是STA。该方法包括:
第二设备接收来自第一设备的物理层协议数据单元PPDU,其中,所述PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段 的取值为1,所述物理层包扩展门限字段包括空时流数NSTS字段,以及用于指示NSTS为n,编号为b的RU对应的调制门限的第一子字段集合,n的取值范围为[1,…,N],N为大于8的整数,b的取值范围为[m,…,M],m和M为大于或等于1的整数;其中,所述第一子字段集合中的一个第一子字段用于指示一个与NSTS为n,编号为b的RU对应的第一调制门限,所述第一调制门限用于指示第二设备在调制方式大于或等于所述第一调制门限时使用的第一名义包填充值,所述第一名义包填充值为第一取值,所述第一取值大于16微秒;
所述第二设备若确定采用的调制方式大于或等于所述第一调制门限,则确定要使用的所述第一名义包填充值。
第四方面,本申请实施例提供一种名义包填充值的确定方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为第二设备为例进行描述,其中,第二设备可以是AP,也可以是STA。该方法包括:
第二设备确定至少满足以下两个条件的至少一个时,使用第一名义包填充值,所述第一名义包填充值大于16微秒;
所述第二设备采用的空时流数NSTS大于或等于第一NSTS门限;
所述第二设备确定采用的RU大小大于或等于第一RU门限。
在第四方面的一种可能的实现方式中,所述方法还包括:
所述第二设备确定采用的NSTS小于所述第一NSTS门限时,使用第一子字段集合中NSTS为n,序号为b的RU对应的第一调制门限对应的名义包填充值,其中,n的取值范围为[1,…,第一NSTS门限],b的取值范围为[m,…,M],m和M为大于或等于1的整数。
在第四方面的一种可能的实现方式中,所述方法还包括:
所述第二设备确定采用的RU大小小于所述第一RU门限时,使用第一子字段集合中NSTS为n,序号为b的RU对应的第一调制门限对应的名义包填充值,其中,n的取值范围为[1,…,N],N为大于8的整数,b的取值范围为[m,…,第一RU门限],m为大于或等于1的整数。
在第四方面的一种可能的实现方式中,所述方法还包括:
所述第二设备接收所述第一设备发送的所述第一NSTS门限;和/或,
所述第二设备接收所述第一设备发送的所述第一RU门限。
在第四方面的一种可能的实现方式中,所述方法还包括:
所述第二设备接收来自所述第一设备的第二指示信息,所述第二指示信息用于指示所述第一RU门限是否生效。
所述物理层包扩展门限字段还包括:
用于指示NSTS为n,序号为b的RU对应的调制门限的第二子字段集合,所述第二子字段集合中的一个第二子字段用于指示一个与NSTS为n,序号为b对应的RU对应的第二调制门限,所述第二调制门限用于指示第二设备使用的第二名义包填充值,在所述第二设备的调制方式大于或等于所述第二调制门限时,所述第二名义包填充值为16微秒;
用于指示NSTS为n,序号为b的RU对应的调制门限的第三子字段集合,所述第三子字段集合中的一个第三子字段用于指示一个与NSTS为n,序号为b对应的RU对应的 第三调制门限,所述第三调制门限用于指示第二设备使用的第三名义包填充值,在所述第二设备的调制方式大于或等于所述第三调制门限时,所述第三名义包填充值为8微秒。
在第三方面或第四方面的一种可能的实现方式中,所述第一子字段集合、所述第二子字段集合和所述第三子字段集合位于所述物理层包扩展门限字段包括的第一物理层包扩展门限信息字段;或者,
所述第一子字段集合位于所述物理层包扩展门限字段包括的第一物理层包扩展门限信息字段,所述第二子字段集合和所述第三子字段集合位于所述物理层包扩展门限字段包括的第二物理层包扩展门限信息字段。
在第三方面或第四方面的一种可能的实现方式中,所述第一子字段集合对应的n大于或等于所述第一NSTS门限,所述物理层包扩展门限字段不包括所述第二子字段集合和所述第三子字段集合。
在第三方面或第四方面的一种可能的实现方式中,所述PPDU包括第三物理层包扩展门限信息字段和第四物理层包扩展门限信息字段,用于指示NSTS为n,序号为b的RU对应的调制门限的第一子字段集合分别位于所述第三物理层包扩展门限信息字段和第四物理层包扩展门限信息字段,其中,
所述第三物理层包扩展门限信息字段对应的n位于第二集合,所述第二集合为[1,…,N]的子集,所述第二集合内的元素是连续的,且所述第三物理层包扩展门限信息字段对应的b的位于第三集合,所述第三集合为[q,…,M]的子集,所述q大于所述m,[q,…,M]内的元素是连续的,所述第三集合内的元素是连续的;
所述第四物理层包扩展门限信息字段对应的n位于第四集合,所述第四集合为[p,…,N],p为大于1的整数,所述第四集合内的元素是连续的,且所述第四物理层包扩展门限信息字段对应的b的位于第五集合,所述第五集合为[m,…,q]的子集,所述q小于M,[m,…,q]内的元素是连续的,所述第五集合内的元素是连续的。
在第三方面或第四方面的一种可能的实现方式中,所述PPDU包括第三物理层包扩展门限信息字段和第四物理层包扩展门限信息字段,用于指示NSTS为n,序号为b对应的RU对应的调制门限的第一子字段集合分别位于所述第三物理层包扩展门限信息字段和第四物理层包扩展门限信息字段,其中,
所述第三物理层包扩展门限信息字段对应的n位于第二集合,所述第二集合为[p,…,N]的子集,p为大于1的整数,所述第二集合内的元素是连续的,且所述第三物理层包扩展门限信息字段对应的b的位于第三集合,所述第三集合为[m,…,M]的子集,所述第三集合内的元素是连续的;
所述第四物理层包扩展门限信息字段对应的n位于第四集合,所述第四集合为[1,…,p],p小于N,所述第四集合内的元素是连续的,且所述第四物理层包扩展门限信息字段对应的b的位于第五集合,所述第五集合为[q,…,M]的子集,所述q大于m,[q,…,M]内的元素是连续的,所述第五集合内的元素是连续的。
在第三方面或第四方面的一种可能的实现方式中,所述PPDU包括第三物理层包扩展门限信息字段、第四物理层包扩展门限信息字段和第五物理层包扩展门限信息字段,用于指示NSTS为n,序号为b对应的RU对应的调制门限的第一子字段集合分别位于所述第三物理层包扩展门限信息字段、第四物理层包扩展门限信息字段和第五物理层包扩展门限信息字段;其中,
所述第三物理层包扩展门限信息字段对应的n位于第二集合,所述第二集合为[p,…,N]的子集,p为大于1的整数,所述第二集合内的元素是连续的,且所述第三物理层包扩展门限信息字段对应的b的位于第三集合,所述第三集合为[m,…,q]的子集,所述q小于M,[m,…,q]内的元素是连续的,所述第五集合内的元素是连续的;
所述第四物理层包扩展门限信息字段对应的n位于第四集合,所述第四集合为[1,…,p],p小于N,所述第四集合内的元素是连续的,且所述第四物理层包扩展门限信息字段对应的b的位于第五集合,所述第五集合为[q,…,M]的子集,所述q大于m,[q,…,M]内的元素是连续的,所述第五集合内的元素是连续的;
所述第五物理层包扩展门限信息字段对应的n位于第六集合,所述第六集合为[p,…N],p为大于1的整数,所述第六集合内的元素是连续的,且所述第五物理层包扩展门限信息字段对应的b的位于第七集合,所述第七集合为[q,…,M]的子集,所述q大于m,[q,…,M]内的元素是连续的,所述第七集合内的元素是连续的。
在第三方面或第四方面的一种可能的实现方式中,所述第二设备采用的NSTS为第二取值,n的取值范围为[1,…,N]的真子集;和/或,
所述物理层包扩展门限字段包括的资源单元RU索引掩码指示的RU的索引属于第八集合的真子集,所述第一集合为{242,484,996,2*996,3*996,4*996}。
在第三方面的一种可能的实现方式中,满足如下第一条件、第二条件和第三条件,所述第二设备确定要使用的名义包填充值等于8微秒:
所述第一条件为所述第二设备要采用的调制方式大于或等于所述第三调制门限;
所述第二条件为所述第二设备要采用的调制方式小于所述第二调制门限,或者所述第二子字段集合的值为空(null);
所述第三条件为所述第二设备要采用的调制方式小于所述第一调制门限,或者所述第一子字段集合的值为空。
在第三方面的一种可能的实现方式中,满足如下第四条件、第五条件和第六条件,所述第二设备确定要使用的名义包填充值等于16微秒:
所述第四条件为所述第二设备要采用的调制方式大于所述第三调制门限,或者所述第三子字段集合的值为空;
所述第五条件为所述第二设备要采用的调制方式大于或等于所述第二调制门限;
所述第六条件为所述第二设备要采用的调制方式小于所述第一调制门限,或者所述第一子字段集合的值为空(null)。
关于第三方面或第三方面的各种可能的实施方式所带来的技术效果,可参考对于第一方面或第一方面的各种可能的实施方式的技术效果的介绍。关于第四方面或第四方面的各种可能的实施方式所带来的技术效果,可参考对于第二方面或第二方面的各种可能的实施方式的技术效果的介绍。
第五方面,本申请实施例提供一种名义包填充值的指示方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为第一设备为例进行描述,其中,第一设备可以是AP,也可以是STA。该方法包括:
第一设备生成物理层协议数据单元PPDU,以及向第二设备发送所述PPDU,所述PPDU包括物理层包扩展门限存在子字段;其中,所述物理层包扩展门限存在子字段的取 值为1,所述PPDU包括门限字段,所述门限字段用于指示第一NSTS门限、第一资源单元RU门限和第一调制门限中的一种或多种,在所述第二设备发送数据的参数满足预设条件时,所述名义包填充值为第一取值,且所述第一值大于16微秒;
所述预设条件为如下条件的一种或多种:
所述第二设备发送数据采用的NSTS大于或等于所述第一NSTS门限;
所述第二设备发送数据采用的RU大于或等于所述第一RU门限;
所述第二设备要采用的调制方式大于或等于所述第一调制门限。
在第五方面的一种可能的实现方式中,所述PPDU不包括用于指示NSTS为n,序号为b对应的RU对应的调制门限的第二子字段集合和第三子字段集合,n的取值范围为[1,…,N],N为小于或等于8的整数,b的取值范围为[m,…,M],m和M为大于或等于1的整数。
在第五方面的一种可能的实现方式中,第一设备还向所述第二设备发送指示信息,其中,
所述门限字段包括NSTS门限子字段、RU门限子字段和调制门限子字段,所述指示信息用于指示所述门限字段中的一个或多个子字段是否生效;或者,
所述指示信息用于指示所述名义包填充值为第一取值无效;或者,
所述指示信息用于指示所述门限字段是否包括NSTS门限子字段、RU门限子字段和调制门限子字段中的一种或多种。
第六方面,本申请实施例提供一种名义包填充值的确定方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为第二设备为例进行描述,其中,第二设备可以是AP,也可以是STA。该方法包括:
第二设备接收来自第一设备的物理层协议数据单元PPDU,所述PPDU包括物理层包扩展门限存在子字段;其中,所述物理层包扩展门限存在子字段的取值为1,所述PPDU包括门限字段,所述门限字段用于指示第一NSTS门限、第一资源单元RU门限和第一调制门限中的一种或多种,
所述第二设备确定满足预设条件时,所述第二设备确定所述名义包填充值为第一取值,且所述第一值大于16微秒;所述预设条件为如下条件的一种或多种:
所述第二设备发送数据采用的NSTS大于或等于所述第一NSTS门限;
所述第二设备发送数据采用的RU大于或等于所述第一RU门限;
所述第二设备要采用的调制方式大于或等于所述第一调制门限。
在第六方面的一种可能的实现方式中,所述PPDU不包括用于指示NSTS为n,序号为b对应的RU对应的调制门限的第二子字段集合和第三子字段集合,n的取值范围为[1,…,N],N为小于或等于8的整数,b的取值范围为[m,…,M],m和M为大于或等于1的整数。
在第六方面的一种可能的实现方式中,所述第二设备还接收所述第一设备发送的指示信息,其中,
所述门限字段包括NSTS门限子字段、RU门限子字段和调制门限子字段,所述指示信息用于指示所述门限字段中的一个或多个子字段是否生效;或者,
所述指示信息用于指示所述名义包填充值为第一取值无效;或者,
所述指示信息用于指示所述门限字段是否包括NSTS门限子字段、RU门限子字段和调制门限子字段中的一种或多种。
第七方面,提供一种通信装置,例如该通信装置为如前所述的第一设备或设置在第一设备内的装置。所述通信装置可用于执行上述第一方面或第一方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第一方面或第一方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。示例性地,所述通信装置为前述的第一设备。其中,
所述处理模块用于生成PPDU,所述收发模块用于向第二设备发送所述PPDU;其中,所述PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,所述物理层包扩展门限字段包括NSTS字段,以及用于指示NSTS为n,编号为b的RU对应的调制门限的第一子字段集合,n的取值范围为[1,…,N],N为大于8的整数,b的取值范围为[m,…,M],m和M为大于或等于1的整数;
所述第一子字段集合中的一个第一子字段用于指示一个与NSTS为n,编号为b的RU对应的第一调制门限,所述第一调制门限用于指示第二设备在调制方式大于或等于所述第一调制门限时使用的第一名义包填充值,所述第一名义包填充值为第一取值,所述第一取值大于16微秒。
第八方面,提供一种通信装置,例如该通信装置为如前所述的第一设备或设置在第一设备内的装置。所述通信装置可用于执行上述第二方面或第二方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第二方面或第二方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。示例性地,所述通信装置为前述的第一设备。其中,
所述收发模块用于向第二设备发送第一空时流数NSTS门限和/或第一资源单元RU门限,其中,所述第一NSTS门限用于指示所述第二设备采用的NSTS大于或等于所述第一NSTS门限时,使用第一名义包填充值;
所述第一RU门限用于指示所述第二设备采用的RU大小大于或等于所述第一RU门限时,使用第一名义包填充值,所述第一名义包填充值大于16微秒。
在第八方面的一种可能的实现方式中,所述收发模块还用于向所述第二设备发送物理层协议数据单元PPDU,所述PPDU包括空时流数NSTS字段,以及用于指示NSTS为n,序号为b的RU对应的调制门限的第一子字段集合;所述调制门限用于指示第二设备在调制方式大于或等于所述调制门限时使用的名义包填充值;其中,n的取值范围为[1,…,p],p小于或等于所述第一NSTS门限。
在第八方面的一种可能的实现方式中,所述收发模块还用于向所述第二设备发送物理层协议数据单元PPDU,所述PPDU包括空时流数NSTS字段,以及用于指示NSTS为n,序号为b的RU对应的调制门限的第一子字段集合;所述调制门限用于指示第二设备在调制方式大于或等于所述调制门限时使用的名义包填充值;所述b的取值范围为[m,…,q],m为大于或等于1的整数,q小于或等于所述第一RU门限。
在第八方面的一种可能的实现方式中,所述收发模块还用于向所述第二设备发送第一指示信息,所述第一指示信息用于指示所述第一NSTS是否生效。
在第八方面的一种可能的实现方式中,所述收发模块还用于向所述第二设备发送第二指示信息,所述第二指示信息用于指示所述第一RU门限是否生效。
在第七方面或第八方面的一种可能的实现方式中,所述物理层包扩展门限字段还包括:
用于指示NSTS为n,编号为b的RU对应的调制门限的第二子字段集合,所述第二子字段集合中的一个第二子字段用于指示一个与NSTS为n,编号为b的RU对应的第二调制门限,所述第二调制门限用于指示第二设备在调制方式大于或等于所述第二调制门限时使用的第二名义包填充值,所述第二名义包填充值为16微秒;
用于指示NSTS为n,编号为b的RU对应的调制门限的第三子字段集合,所述第三子字段集合中的一个第三子字段用于指示一个与NSTS为n,编号为b的RU对应的第三调制门限,所述第三调制门限用于指示第二设备在调制方式大于或等于所述第三调制门限时使用的第三名义包填充值,所述第三名义包填充值为8微秒。
在第七方面或第八方面的一种可能的实现方式中,所述第一子字段集合、所述第二子字段集合和所述第三子字段集合位于所述物理层包扩展门限字段包括的第一物理层包扩展门限信息字段。或者,所述第一子字段集合位于所述物理层包扩展门限字段包括的第一物理层包扩展门限信息字段,所述第二子字段集合和所述第三子字段集合位于所述物理层包扩展门限字段包括的第二物理层包扩展门限信息字段。
在第七方面或第八方面的一种可能的实现方式中,所述第一子字段集合对应的n大于或等于所述第一NSTS门限,所述物理层包扩展门限字段不包括所述第二子字段集合和所述第三子字段集合。该方案可进一步节省PPDU的开销。
在第七方面或第八方面的一种可能的实现方式中,所述PPDU包括第三物理层包扩展门限信息字段和第四物理层包扩展门限信息字段,用于指示NSTS为n,编号为b的RU对应的调制门限的第一子字段集合分别位于所述第三物理层包扩展门限信息字段和第四物理层包扩展门限信息字段;其中,
所述第三物理层包扩展门限信息字段对应的n位于第二集合,所述第二集合为[1,…,N]的子集,所述第二集合内的元素是连续的,且所述第三物理层包扩展门限信息字段对应的b的位于第三集合,所述第三集合为[q,…,M]的子集,所述q大于所述m,[q,…,M]内的元素是连续的,所述第三集合内的元素是连续的;
所述第四物理层包扩展门限信息字段对应的n位于第四集合,所述第四集合为[p,…,N],p为大于1的整数,所述第四集合内的元素是连续的,且所述第四物理层包扩展门限信息字段对应的b的位于第五集合,所述第五集合为[m,…,q]的子集,所述q小于M,[m,…,q]内的元素是连续的,所述第五集合内的元素是连续的。
在第七方面或第八方面的一种可能的实现方式中,所述PPDU包括第三物理层包扩展门限信息字段和第四物理层包扩展门限信息字段,用于指示NSTS为n,编号为b的RU对应的调制门限的第一子字段集合分别位于所述第三物理层包扩展门限信息字段和第四物理层包扩展门限信息字段;其中,
所述第三物理层包扩展门限信息字段对应的n位于第二集合,所述第二集合为[p,…,N]的子集,p为大于1的整数,所述第二集合内的元素是连续的,且所述第三物理层包扩展门限信息字段对应的b的位于第三集合,所述第三集合为[m,…,M]的子集,所述第三集合内的元素是连续的;
所述第四物理层包扩展门限信息字段对应的n位于第四集合,所述第四集合为[1,…,p],p小于N,所述第四集合内的元素是连续的,且所述第四物理层包扩展门限信息字段对应的b的位于第五集合,所述第五集合为[q,…,M]的子集,所述q大于m,[q,…, M]内的元素是连续的,所述第五集合内的元素是连续的。
在第七方面或第八方面的一种可能的实现方式中,所述PPDU包括第三物理层包扩展门限信息字段、第四物理层包扩展门限信息字段和第五物理层包扩展门限信息字段,用于指示NSTS为n,编号为b的RU对应的调制门限的第一子字段集合分别位于所述第三物理层包扩展门限信息字段、第四物理层包扩展门限信息字段和第五物理层包扩展门限信息字段,其中,
所述第三物理层包扩展门限信息字段对应的n位于第二集合,所述第二集合为[p,…,N]的子集,p为大于1的整数,所述第二集合内的元素是连续的,且所述第三物理层包扩展门限信息字段对应的b的位于第三集合,所述第三集合为[m,…,q]的子集,所述q小于M,[m,…,q]内的元素是连续的,所述第五集合内的元素是连续的;
所述第四物理层包扩展门限信息字段对应的n位于第四集合,所述第四集合为[1,…,p],p小于N,所述第四集合内的元素是连续的,且所述第四物理层包扩展门限信息字段对应的b的位于第五集合,所述第五集合为[q,…,M]的子集,所述q大于m,[q,…,M]内的元素是连续的,所述第五集合内的元素是连续的;
所述第五物理层包扩展门限信息字段对应的n位于第六集合,所述第六集合为[p,…N],p为大于1的整数,所述第六集合内的元素是连续的,且所述第五物理层包扩展门限信息字段对应的b的位于第七集合,所述第七集合为[q,…,M]的子集,所述q大于m,[q,…,M]内的元素是连续的,所述第七集合内的元素是连续的。
在第七方面或第八方面的一种可能的实现方式中,所述第二设备采用的NSTS为第二取值,n的取值范围为[1,…,N]的真子集;和/或,所述物理层包扩展门限字段包括的资源单元RU索引掩码指示的RU的索引属于第八集合的真子集,所述第一集合为{242,484,996,2*996,3*996,4*996}。
关于第七方面或第七方面的各种可能的实施方式所带来的技术效果,可参考对于第一方面或第一方面的各种可能的实施方式的技术效果的介绍。关于第八方面或第八方面的各种可能的实施方式所带来的技术效果,可参考对于第二方面或第二方面的各种可能的实施方式的技术效果的介绍。
第九方面,提供一种通信装置,例如该通信装置为如前所述的第二设备或设置在第二设备内的装置。所述通信装置可用于执行上述第三方面或第三方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第三方面或第三方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。示例性地,所述通信装置为前述的第二设备。其中,
所述收发模块用于接收来自第一设备的物理层协议数据单元PPDU,其中,所述PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,所述物理层包扩展门限字段包括空时流数NSTS字段,以及用于指示NSTS为n,编号为b的RU对应的调制门限的第一子字段集合,n的取值范围为[1,…,N],N为大于8的整数,b的取值范围为[m,…,M],m和M为大于或等于1的整数;其中,所述第一子字段集合中的一个第一子字段用于指示一个与NSTS为n,编号为b的RU对应的第一调制门限,所述第一调制门限用于指示第二设备在调制方式大于或等于所述第一调制门限时使用的第一名义包填充值,所述第一名义包填充值为第一取值,所述第一取值大于16微秒;
所述处理模块用于若确定采用的调制方式大于或等于所述第一调制门限,则确定要使用的所述第一名义包填充值。
第十方面,提供一种通信装置,例如该通信装置为如前所述的第二设备或设置在第二设备内的装置。所述通信装置可用于执行上述第四方面或第四方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第四方面或第四方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。示例性地,所述通信装置为前述的第二设备。其中,
所述处理模块用于确定至少满足以下两个条件的至少一个时,使用第一名义包填充值,所述第一名义包填充值大于16微秒;
第二设备采用的空时流数NSTS大于或等于第一NSTS门限;
第二设备确定采用的RU大小大于或等于第一RU门限。
在第十方面的一种可能的实现方式中,所述处理模块还用于确定采用的NSTS小于所述第一NSTS门限时,使用第一子字段集合中NSTS为n,序号为b的RU对应的第一调制门限对应的名义包填充值,其中,n的取值范围为[1,…,第一NSTS门限],b的取值范围为[m,…,M],m和M为大于或等于1的整数。
在第十方面的一种可能的实现方式中,所述处理模块还用于确定采用的RU大小小于所述第一RU门限时,使用第一子字段集合中NSTS为n,序号为b的RU对应的第一调制门限对应的名义包填充值,其中,n的取值范围为[1,…,N],N为大于8的整数,b的取值范围为[m,…,第一RU门限],m为大于或等于1的整数。
在第十方面的一种可能的实现方式中,所述收发模块还用于:
接收所述第一设备发送的所述第一NSTS门限;和/或,
接收所述第一设备发送的所述第一RU门限。
在第十方面的一种可能的实现方式中,所述收发模块还用于:
接收来自所述第一设备的第二指示信息,所述第二指示信息用于指示所述第一RU门限是否生效。
在第九方面或第十方面的一种可能的实现方式中,所述物理层包扩展门限字段还包括:
用于指示NSTS为n,序号为b的RU对应的调制门限的第二子字段集合,所述第二子字段集合中的一个第二子字段用于指示一个与NSTS为n,序号为b对应的RU对应的第二调制门限,所述第二调制门限用于指示第二设备使用的第二名义包填充值,在所述第二设备的调制方式大于或等于所述第二调制门限时,所述第二名义包填充值为16微秒;
用于指示NSTS为n,序号为b的RU对应的调制门限的第三子字段集合,所述第三子字段集合中的一个第三子字段用于指示一个与NSTS为n,序号为b对应的RU对应的第三调制门限,所述第三调制门限用于指示第二设备使用的第三名义包填充值,在所述第二设备的调制方式大于或等于所述第三调制门限时,所述第三名义包填充值为8微秒。
在第九方面或第十方面的一种可能的实现方式中,所述第一子字段集合、所述第二子字段集合和所述第三子字段集合位于所述物理层包扩展门限字段包括的第一物理层包扩展门限信息字段;或者,
所述第一子字段集合位于所述物理层包扩展门限字段包括的第一物理层包扩展门限信息字段,所述第二子字段集合和所述第三子字段集合位于所述物理层包扩展门限字段包括的第二物理层包扩展门限信息字段。
在第三方面或第四方面的一种可能的实现方式中,所述第一子字段集合对应的n大于或等于所述第一NSTS门限,所述物理层包扩展门限字段不包括所述第二子字段集合和所述第三子字段集合。
在第九方面或第十方面的一种可能的实现方式中,所述PPDU包括第三物理层包扩展门限信息字段和第四物理层包扩展门限信息字段,用于指示NSTS为n,序号为b的RU对应的调制门限的第一子字段集合分别位于所述第三物理层包扩展门限信息字段和第四物理层包扩展门限信息字段,其中,
所述第三物理层包扩展门限信息字段对应的n位于第二集合,所述第二集合为[1,…,N]的子集,所述第二集合内的元素是连续的,且所述第三物理层包扩展门限信息字段对应的b的位于第三集合,所述第三集合为[q,…,M]的子集,所述q大于所述m,[q,…,M]内的元素是连续的,所述第三集合内的元素是连续的;
所述第四物理层包扩展门限信息字段对应的n位于第四集合,所述第四集合为[p,…,N],p为大于1的整数,所述第四集合内的元素是连续的,且所述第四物理层包扩展门限信息字段对应的b的位于第五集合,所述第五集合为[m,…,q]的子集,所述q小于M,[m,…,q]内的元素是连续的,所述第五集合内的元素是连续的。
在第九方面或第十方面的一种可能的实现方式中,所述PPDU包括第三物理层包扩展门限信息字段和第四物理层包扩展门限信息字段,用于指示NSTS为n,序号为b对应的RU对应的调制门限的第一子字段集合分别位于所述第三物理层包扩展门限信息字段和第四物理层包扩展门限信息字段,其中,
所述第三物理层包扩展门限信息字段对应的n位于第二集合,所述第二集合为[p,…,N]的子集,p为大于1的整数,所述第二集合内的元素是连续的,且所述第三物理层包扩展门限信息字段对应的b的位于第三集合,所述第三集合为[m,…,M]的子集,所述第三集合内的元素是连续的;
所述第四物理层包扩展门限信息字段对应的n位于第四集合,所述第四集合为[1,…,p],p小于N,所述第四集合内的元素是连续的,且所述第四物理层包扩展门限信息字段对应的b的位于第五集合,所述第五集合为[q,…,M]的子集,所述q大于m,[q,…,M]内的元素是连续的,所述第五集合内的元素是连续的。
在第九方面或第十方面的一种可能的实现方式中,所述PPDU包括第三物理层包扩展门限信息字段、第四物理层包扩展门限信息字段和第五物理层包扩展门限信息字段,用于指示NSTS为n,序号为b对应的RU对应的调制门限的第一子字段集合分别位于所述第三物理层包扩展门限信息字段、第四物理层包扩展门限信息字段和第五物理层包扩展门限信息字段;其中,
所述第三物理层包扩展门限信息字段对应的n位于第二集合,所述第二集合为[p,…,N]的子集,p为大于1的整数,所述第二集合内的元素是连续的,且所述第三物理层包扩展门限信息字段对应的b的位于第三集合,所述第三集合为[m,…,q]的子集,所述q小于M,[m,…,q]内的元素是连续的,所述第五集合内的元素是连续的;
所述第四物理层包扩展门限信息字段对应的n位于第四集合,所述第四集合为[1,…,p],p小于N,所述第四集合内的元素是连续的,且所述第四物理层包扩展门限信息字段对应的b的位于第五集合,所述第五集合为[q,…,M]的子集,所述q大于m,[q,…,M]内的元素是连续的,所述第五集合内的元素是连续的;
所述第五物理层包扩展门限信息字段对应的n位于第六集合,所述第六集合为[p,…N],p为大于1的整数,所述第六集合内的元素是连续的,且所述第五物理层包扩展门限信息字段对应的b的位于第七集合,所述第七集合为[q,…,M]的子集,所述q大于m,[q,…,M]内的元素是连续的,所述第七集合内的元素是连续的。
在第九方面或第十方面的一种可能的实现方式中,所述第二设备采用的NSTS为第二取值,n的取值范围为[1,…,N]的真子集;和/或,
所述物理层包扩展门限字段包括的资源单元RU索引掩码指示的RU的索引属于第八集合的真子集,所述第一集合为{242,484,996,2*996,3*996,4*996}。
在第九方面的一种可能的实现方式中,满足如下第一条件、第二条件和第三条件,所述第二设备确定要使用的名义包填充值等于8微秒:
所述第一条件为所述第二设备要采用的调制方式大于或等于所述第三调制门限;
所述第二条件为所述第二设备要采用的调制方式小于所述第二调制门限,或者所述第二子字段集合的值为空(null);
所述第三条件为所述第二设备要采用的调制方式小于所述第一调制门限,或者所述第一子字段集合的值为空。
在第九方面的一种可能的实现方式中,满足如下第四条件、第五条件和第六条件,所述第二设备确定要使用的名义包填充值等于16微秒:
所述第四条件为所述第二设备要采用的调制方式大于所述第三调制门限,或者所述第三子字段集合的值为空;
所述第五条件为所述第二设备要采用的调制方式大于或等于所述第二调制门限;
所述第六条件为所述第二设备要采用的调制方式小于所述第一调制门限,或者所述第一子字段集合的值为空(null)。
关于第九方面或第九方面的各种可能的实施方式所带来的技术效果,可参考对于第一方面或第一方面的各种可能的实施方式的技术效果的介绍。关于第十方面或第十方面的各种可能的实施方式所带来的技术效果,可参考对于第二方面或第二方面的各种可能的实施方式的技术效果的介绍。
第十一方面,提供一种通信装置,例如该通信装置为如前所述的第一设备或设置在第一设备内的装置。所述通信装置可用于执行上述第五方面或第五方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第五方面或第五方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。示例性地,所述通信装置为前述的第一设备。其中,
所述处理模块用于生成物理层协议数据单元PPDU,所述收发模块用于向第二设备发送所述PPDU,所述PPDU包括物理层包扩展门限存在子字段;其中,所述物理层包扩展门限存在子字段的取值为1,所述PPDU包括门限字段,所述门限字段用于指示第一NSTS门限、第一资源单元RU门限和第一调制门限中的一种或多种,在所述第二设备发送数据的参数满足预设条件时,所述名义包填充值为第一取值,且所述第一值大于16微秒;
所述预设条件为如下条件的一种或多种:
所述第二设备发送数据采用的NSTS大于或等于所述第一NSTS门限;
所述第二设备发送数据采用的RU大于或等于所述第一RU门限;
所述第二设备要采用的调制方式大于或等于所述第一调制门限。
在第十一方面的一种可能的实现方式中,所述PPDU不包括用于指示NSTS为n,序号为b对应的RU对应的调制门限的第二子字段集合和第三子字段集合,n的取值范围为[1,…,N],N为小于或等于8的整数,b的取值范围为[m,…,M],m和M为大于或等于1的整数。
在第十一方面的一种可能的实现方式中,所述收发模块还用于还向所述第二设备发送指示信息,其中,
所述门限字段包括NSTS门限子字段、RU门限子字段和调制门限子字段,所述指示信息用于指示所述门限字段中的一个或多个子字段是否生效;或者,
所述指示信息用于指示所述名义包填充值为第一取值无效;或者,
所述指示信息用于指示所述门限字段是否包括NSTS门限子字段、RU门限子字段和调制门限子字段中的一种或多种。
第十二方面,提供一种通信装置,例如该通信装置为如前所述的第一设备或设置在第一设备内的装置。所述通信装置可用于执行上述第六方面或第六方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第六方面或第六方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。示例性地,所述通信装置为前述的第二设备。其中,
所述收发模块用于接收来自第一设备的物理层协议数据单元PPDU,所述PPDU包括物理层包扩展门限存在子字段;其中,所述物理层包扩展门限存在子字段的取值为1,所述PPDU包括门限字段,所述门限字段用于指示第一NSTS门限、第一资源单元RU门限和第一调制门限中的一种或多种,
所述处理模块用于确定满足预设条件时,所述第二设备确定所述名义包填充值为第一取值,且所述第一值大于16微秒;所述预设条件为如下条件的一种或多种:
所述通信装置发送数据采用的NSTS大于或等于所述第一NSTS门限;
所述通信装置发送数据采用的RU大于或等于所述第一RU门限;
所述通信装置要采用的调制方式大于或等于所述第一调制门限。
在第十一方面的一种可能的实现方式中,所述PPDU不包括用于指示NSTS为n,序号为b对应的RU对应的调制门限的第二子字段集合和第三子字段集合,n的取值范围为[1,…,N],N为小于或等于8的整数,b的取值范围为[m,…,M],m和M为大于或等于1的整数。
在第十二方面的一种可能的实现方式中,所述收发模块还用于接收所述第一设备发送的指示信息,其中,
所述门限字段包括NSTS门限子字段、RU门限子字段和调制门限子字段,所述指示信息用于指示所述门限字段中的一个或多个子字段是否生效;或者,
所述指示信息用于指示所述名义包填充值为第一取值无效;或者,
所述指示信息用于指示所述门限字段是否包括NSTS门限子字段、RU门限子字段和调制门限子字段中的一种或多种。
第十三方面,本申请实施例提供一种通信装置,该通信装置可以为上述实施例中第七方面至第十二方面中任一方面的通信装置,或者为设置在第七方面至第十二方面中任一方面的通信装置中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令或者数据,处理器与存储器、通信接口耦合, 当处理器读取所述计算机程序或指令或数据时,使通信装置执行上述第一方面至第六方面中任一方面方法实施例中由第一设备或第二设备所执行的方法。
应理解,该通信接口可以通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果通信装置为设置在第一设备或第二设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。所述通信装置还可以包括收发器,用于该通信装置与其它设备进行通信。示例性地,当该通信装置为第一设备时,该其它设备为第二设备;或者,当该通信装置为第二设备时,该其它设备为第一设备。
第十四方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现第七方面至第十二方面中任一方面中的通信装置执行的方法。在一种可能的实现方式中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十五方面,本申请实施例提供了一种通信系统,所述通信系统包括第七方面和所述第九方面所述的通信装置;或者,所述通信系统包括第八方面和所述第十方面所述的通信装置;所述通信系统包括第十一方面和所述第十二方面所述的通信装置。
第十六方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由第一设备执行的方法;或实现上述各方面中由第二设备执行的方法。
第十七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述各方面中由第一设备执行的方法被执行,或使得上述各方面中由第二设备执行的方法被执行。
上述第十三方面至第十七方面及其实现方式的有益效果可以参考对第一方面至第六方面的方法及其实现方式的有益效果的描述。
附图说明
图1为本申请实施例适用的一种WLAN的网络架构图;
图2为最后一个编码符号中PPDU比特的填充流程;
图3为本申请实施例提供的PPDU的一种示意图;
图4为本申请实施例提供的HE物理层能力信息字段的结构示意图;
图5为本申请实施例提供的HE能力元素的结构示意图;
图6为本申请实施例提供的物理层包扩展门限字段的结构示意图;
图7为现有的物理层包扩展门限信息字段的一种结构示意图;
图8为本申请实施例提供的物理层包扩展门限信息字段的一种结构示意图;
图9为本申请实施例提供的名义包填充值的指示方法的流程示意图;
图10为本申请实施例提供的为PPET20 NSTSn RUb subfields的二维示意图;
图11为本申请实施例提供的物理包扩展门限信息字段包括的PPET16 NSTSn RUb subfields和PPET8 NSTSn RUb subfields中保留部分子字段的示意图;
图12为本申请实施例提供的PPDU的一种结构示意图;
图13A为本申请实施例提供的为PPETy NSTSn RUb subfields的一种二维示意图;
图13B为本申请实施例提供的为PPETy NSTSn RUb subfields的另一种二维示意图;
图13C为本申请实施例提供的为PPETy NSTSn RUb subfields的再一种二维示意图;
图14为本申请实施例提供的物理层包扩展门限信息字段的一种结构示意图;
图15为本申请实施例提供的为门限字段的一种结构示意图;
图16为本申请实施例提供的通信装置的一种结构示意图;
图17为本申请实施例提供的通信装置的另一种结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例可以适用于无线局域网(wireless local area network,WLAN)的场景,可以适用于IEEE 802.11系统标准,例如802.11a/b/g、802.11n、802.11ac、802.11ax,或其下一代,例如802.11be或更下一代的标准中。或者本申请实施例也可以适用于物联网(internet of things,IoT)网络或车联网(Vehicle to X,V2X)网络等无线局域网系统中。当然,本申请实施例还可以适用于其他可能的通信系统,例如,长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、以及未来的5G通信系统等。
下文以本申请实施例可以适用于WLAN的场景为例。应理解,WLAN从802.11a/g标准开始,历经802.11n、802.11ac、802.11ax和如今正在讨论的802.11be。其中802.11n也可称为高吞吐率(high throughput,HT);802.11ac也可称为非常高吞吐率(very high throughput,VHT);802.11ax也可称为高效(high efficient,HE)或者Wi-Fi 6;802.11be也可称为极高吞吐率(extremely high throughput,EHT)或者(Wi-Fi 7),而对于HT之前的标准,如802.11a/b/g等统称叫做非高吞吐率(Non-HT)。
请参见图1,示出了本申请实施例适用的一种WLAN的网络架构图。图1以该WLAN包括1个无线接入点(access point,AP)和2个站点(station,STA)为例。与AP关联的STA,能够接收该AP发送的无线帧,也能够向该AP发送无线帧。另外,本申请实施例同样适用于AP与AP之间的通信,例如各个AP之间可通过分布式系统(distributed system,DS)相互通信,本申请实施例也适用于STA与STA之间的通信。应理解,图1中的AP和STA的数量仅是举例,还可以更多或者更少。
本申请实施例涉及到的STA可以是各种具有无线通信功能的用户终端、用户装置,接入装置,订户站,订户单元,移动站,用户代理,用户装备或其他名称,其中,用户终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(user equipment,UE),移动台(mobile station,MS),终端(terminal),终端设备(terminal equipment),便携式通信设备,手持机,便携式计算设备,娱乐设备,游戏设备或系统,全球定位系统设备或被配置为经由无线介质进行网络通信的任何其他合适的设备等。例如STA可以是路由器、交换机和网桥等,在此,为了描述方便,上面提到的设备统称为站点或STA。
本申请实施例所涉及到的AP和STA可以为适用于IEEE 802.11系统标准的AP和STA。AP是部署在无线通信网络中为其关联的STA提供无线通信功能的装置,该AP可用作该通信系统的中枢,通常为支持802.11系统标准的MAC和PHY的网络侧产品,例如可以 为基站、路由器、网关、中继器,通信服务器,交换机或网桥等通信设备,其中,所述基站可以包括各种形式的宏基站,微基站,中继站等。在此,为了描述方便,上面提到的设备统称为AP。STA通常为支持802.11系统标准的介质访问控制(media access control,MAC)和物理层(physical,PHY)的终端产品,例如手机、笔记本电脑等。
802.11ax规定可在物理层协议数据单元(physical protocol data unit,PPDU)中加入预前向纠错码填充(pre-(forward error correction,FEC)padding)、后前向纠错码填充(post-FEC padding)和包拓展(packet extension)。其中,pre-FEC padding和额外信息(excess information)在最后一个编码符号中占用约四分之一倍数(例如四分之一、四分之二、四分之三和全部)的子载波,而余下的子载波则可以用于承载post-FEC padding。为了便于理解,下面结合图2对此进行说明。
图2示出了最后一个编码符号中PPDU比特的填充流程。且图2以pre-FEC padding bit和excess information bits在最后一个编码符号中占用约四分之一的子载波为例。图2中,a等于1表示扩展信息比特和预前向纠错码填充比特在扰码和编码后约占一个符号内子载波的四分之一。同理,a=2表示扩展信息比特和预前向纠错码填充比特在扰码和编码后约占一个符号内子载波的四分之二;a=3表示扩展信息比特和预前向纠错码填充比特在扰码和编码后约占一个符号内子载波的四分之三;a=3表示扩展信息比特和预前向纠错码填充比特在扰码和编码后占一个符号内的全部子载波。
如图2所示,post-FEC padding对一个符号内的其余子载波进行了填充,使数据占用的比特数达到N CBPS比特,其中,N CBPS表示每个符号中编码的比特数(coded bits per symbol)。应理解,由于明确规定pre-FEC padding bits和excess information bits在最后一个编码符号中占用约四分之一倍数的子载波,那么接收端接收到PPDU,对PPDU的最后一个编码符号解码可只针对这四分之一倍数的子载波进行解码,而不需要对整个编码符号进行解码,所以可节约解码时间,从而给PPDU预留了更多的处理时间。
但是由于post-FEC padding对应的时长的不确定性和总时长的限制,导致为PPDU预留的额外处理时间可能不满足接收机所要求的最少时间。为了使得为PPDU预留的额外处理时间达到接收机要求的最少时间(如8μs和16μs),在PPDU的最后一个符号中引入了可能需要添加的字段,即包扩展(packet extension,PE)字段(field)。
请参见图3,为PPDU的一种示意图。图3示出了图2中a=1,a=2,a=3,a=4的情况下,PPDU中PE字段的持续时间。PE字段的持续时间也可以称为名义包扩展时间(nominal T PE)。名义包扩展时间与PPDU包括的名义包填充值(nominal packet padding value)相关。从图3可以看出名义包扩展时间与a的取值以及名义包填充值相关,具体请参见表1。
表1 名义包扩展时间值(nominal T PE value)
Figure PCTCN2021120204-appb-000001
表1中的第二行表示名义包填充值,即可为0μs、8μs或16μs。应理解,post-FEC padding 也可以提供额外的处理时间,post-FEC padding提供的处理时间和名义包扩展时间合起来为真实的包扩展时间(T PE)。从表1中可以看出包扩展时间不一定等于接收机所要求的最少时间(如0μs、8μs或16μs),例如名义包填充值等于16μs,nominal T PE可为4μs、8μs、12μs或16μs。即T PE大于等于nominal T PE。通常T PE的取值为满足要求的最小值。
通信的两端,例如第一设备和第二设备,为了保证第一设备接收来自第二设备的数据包能够有足够的处理时间,第一设备可指示某个NSTS,某个RU大小对应的调制门限,第二设备可根据该调制门限确定要使用的名义包填充值。之后第二设备根据该名义包填充值结合前述的a确定PE字段的持续时间,进而根据PE的持续时间来填充发送给第一设备的PPDU可能包括的PE字段。第二设备按照PE字段的持续时间生成PPDU发送给第一设备,可保证第一设备有足够的处理时间,即能够保证第一设备的最小处理时间需求。可以理解的是,本申请实施例中,第一设备可向第二设备指示第二设备要使用的名义包填充值,这里要使用指的是第二设备根据名义包填充值,并结合前述的a确定PE字段的持续时间。
在一些实施例中,第一设备可直接指示第二设备要使用的名义包填充值。作为一种示例,第一设备可通过用于指示名义包填充值的名义包填充子字段(nominal packet padding subfield)来指示名义包填充值。例如,第一设备可向第二设备发送携带名义包填充子字段的PPDU。
在另一些实施例中,第一设备可间接指示第二设备要使用的名义包填充值。作为一种示例,第一设备可通过用于指示与名义包填充值相关的调制门限来间接指示名义包填充值。例如,第一设备可向第二设备发送携带指示调制门限的子字段的PPDU。
本文将通过名义包填充子字段指示第二设备使用的名义包填充值的方式称为直接指示方式,将通过指示调制门限的子字段间接指示第二设备使用的名义包填充值的方式称为间接指示方式。为描述简便,名义包填充值等同于第二设备使用的名义包填充值。PPDU包括名义包填充子字段和指示调制门限的子字段,为了区分何时使用名义包填充子字段或指示调制门限的子字段,PPDU还包括物理层包扩展门限存在子字段(physical packet extension(PPE)thresholds present subfield)。当物理层包扩展门限存在子字段的取值为0,名义包填充子字段用于指示名义包填充值。当物理层包扩展门限存在子字段的取值为0,指示调制门限的子字段用于指示名义包填充值。
下面分别介绍直接指示方式和间接指示方式。
直接指示方式:
如图4所示,物理层包扩展门限存在子字段和名义包填充子字段携带在HE物理层能力信息字段(HE PHY capabilities information field)中。其中,HE物理层能力信息字段包括在HE能力元素(HE capabilities element)中,如图5所示。HE能力元素可包括元素字段(element field)、长度字段(length field)、元素标识扩展字段(element ID extension field)、HE媒体接入控制能力信息字段(HE(medium access control,MAC)capabilities Information)、HE物理层能力信息字段(HE PHY capabilities information)、支持的高效(HE)-调制与编码策略(modulation and coding scheme,MCS)MCS和空间流数量(number of spatial streams,NSS)NSS设置字段(Supported HE-MCS and NSS Set),还可以包括物理层包扩展门限字段(PPE thresholds field)。本申请实施例对HE能力元素包括的各个字段或子字段占用的比特数不作限制。如图5所示,元素字段占用1比特,长度字段占用1比特,元素标识扩展字段占用1比特,HE媒体接入控制能力信息字段占用6比特,HE物理层能力信息字段占 用11比特,物理层包扩展门限字段占用的比特数是可变(variable)的。且物理层包扩展门限字段是可选的,即不是必须包括的。
当物理层包扩展门限存在子字段的取值为0,名义包填充子字段指示的名义包填充值具体可参见表2。
表2 名义包填充子字段(nominal packet padding subfield)
Figure PCTCN2021120204-appb-000002
随着每个用户支持的流从8流变为了16流,支持的调制方式从1K正交振幅调制(quadrature amplitude modulation,QAM)变为了4KQAM,支持的带宽由160MHz变为了320MHz,这使得接收机在这些情况下需要更多的处理时间。基于此提出了大于16μs的名义包填充值,例如提出支持20μs的名义包填充值。
沿用表2,可在名义包填充子字段中增加value 3的指示。例如如果STA支持的星座<=1024、NSTS<=8,且分配的RU<=996*2的模式对应的名义包填充值为16μs,则名义包填充子字段设置为3,其余模式对应的名义包填充值为20μs。(Set to 3if the nominal packet padding is 16μs for all modes with constellation<=1024,NSTS<=8 and RU<=996*2,and 20μs for all other modes the STA supports)。换句话说,名义包填充子字段的值为3时,当调制方式小于等于1KQAM,NSTS小于等于8,RU的大小小于等于2*996时,名义包填充值为16μs,否则名义包填充值为20μs。
作为一种示例,可沿用HE能力元素中的名义包填充字段,可增加名义包填充字段占 用的比特数从而指示多大名义包填充值。作为另一种示例,可在新定义的EHT能力元素中设置用于指示名义包填充值的字段。
间接指示方式:
可通过PPDU中的物理层包扩展门限存在子字段以及物理层包扩展门限字段(PPE thresholds field)来间接指示名义包填充值。例如物理层包扩展门限存在子字段的取值为1,那么通过物理层包扩展门限字段来指示NSTS为n,RU为某个RU对应的调制门限。第二设备可根据该调制门限确定名义包填充值。这种方式可以根据不同的NSTS、RU大小、调制方式来指示不同的名义包填充值,更为灵活。
示例性的,请参见图6,为物理层包扩展门限字段的结构示意图。物理层包扩展门限字段包括NSTS字段、RU索引掩码字段(RU Index Bitmask field)、物理层包扩展门限信息字段和物理层包扩展填充(PPE padding)字段。
其中,NSTS字段可用于指示发送数据所采用的空时流数,例如NSTS字段占用3比特,该3比特的值为0-7,可以分别指示第1流到第8流。也就是说,该3比特的一个值,对应一个空时流数。RU Index Bitmask field可用于指示RU的大小。RU Index Bitmask field与RU大小关系如表3所示。
表3
RU allocation index RU allocation size
0(bitmap1000) 242
1(bitmap 0100) 484
2(bitmap 0010) 996
3(bitmap 0001) 2*996
RU Index Bitmask field是一个比特位图(bitmap),表3中,RU allocation index表示的是比特位图中的第几个比特。例如表3以RU Index Bitmask占用4比特为例。表3的第一行表示RU Index Bitmask的第一个比特置1,那么图6中指示对应的RU为242;同理,第二行表示RU Index Bitmask的第2个比特置1,那么图6中指示对应的RU为484,以此类推。其中,RU allocation index也可以称为RU的序号,序号越小,其对应的RU的大小越小。这里RU的大小以的粒度是子载波,例如242指的是242个子载波,484指的是484个子载波,等等。
应理解,发送端采用的NSTS、RU大小以及调制方式中的一种或多种不同,对应接收端需要的最小处理时间可能不同,即对应的名义包填充值可能不同。那么对于NSTS以及RU,需要穷尽式地给出从第一流到第N流的指示。同理,穷尽式地给出从最小粒度开始指示的RU大小。需要说明的是,其中,对于NSTS流数,用NSTS字段指示,在本申请实施例中,为了支持大于8流以上的空时流数的指示,N的取值为大于等于8的正整数,例如为10,16,20等等;N的值可以是NSTS字段采用的比特的最大值+1;例如,NSTS字段采用3比特,其最大值为7,则NSTS字段可以指示的最大流数为第8流(7+1=8);例如,NSTS字段采用6比特,其最大值为15,则NSTS字段可以指示的最大流数为第16流(15+1=16)。在本文中,可将NSTS字段的取值集合记为[1,…NSTN+1]。那么第N流即第NSTS+1流,即NSTS等于N。
可通过多个字段指示从第一流到第N流,各种RU大小对应的调制门限,通过调制门 限间接指示名义包填充值。示例性的,图6中的物理层包扩展门限信息字段可包括用于指示NSTS为n,编号为b的RU对应的调制门限的子字段集合。应理解,n的取值范围为[1,…,N]。这里序号b可认为是RU分配索引,用于指示RU大小。例如b的取值范围为[m,…,M],[m,…,M]为RU索引掩码字段中设置为1的所有比特位顺序形成的比特位列表,m为该比特位列表中的最低位。以表3为例,b的取值范围为[0,…,3],即m等于0,M等于3。
作为一种示例,请参见图7,示出了物理层包扩展门限信息字段包括用于指示对应8μs的调制门限的子字段集合和用于指示对应16μs的调制门限的子字段集合。也就是物理层包扩展门限信息字段包括对应名义包填充值为8μs和16μs的子字段集合。本文中将名义包填充值为8μs的子字段集合可称为PPET8 NSTSn RUb subfields,PPET8 NSTSn RUb subfields中的任意一个子字段称为PPET8 NSTSn RUb subfield。同理,对应名义包填充值为16μs可称为PPET16 NSTSn RUb subfields,PPET16 NSTSn RUb subfields中的任意一个子字段称为PPET16 NSTSn RUb subfield。或者需要更为简便,可将PPET8 NSTSn RUb subfield简称为PPET8,也就是PPET8表示一个PPET8 NSTSn RUb subfield。同理,PPET16 NSTSn RUb subfield可简称为PPET16。
图7需要穷尽式地给出从第一流到第N流的指示以及穷尽式地给出从最小粒度开始指示的RU大小。可认为n的取值从1遍历到N,n为[1,…,N]中的某个元素,b从m开始遍历到M]。(The PPET16 NSTSn Rub and PPET8 NSTSn Rub subfields are present for all values of n and b where 1≤n≤(N)and where b=[m,…,M]is the set of integers equal to the ordered list of bit positions of all bits that are set to 1in the RU Index Bitmask subfield,with m being the lowest value。)
PPET8 NSTSn RUb subfield和PPET16 NSTSn RUb subfield可指示NSTS为n,序号为b的RU对应的调制门限。例如PPET8 NSTSn RUb subfield占用3个比特,那么PPET8 NSTSn RUb subfields可用于指示8种调制门限。需要说明的是,在本申请实施例中,PPET8 NSTSn RUb subfield指示NSTS为n,序号为b的RU对应的调制门限,也可以认为指示PPET8 NSTSn RUb subfield指示NSTS为n,RU为序号为b的RU,以及调制门限。应理解,调制门限可用于指示调制方式,PPET8 NSTSn RUb subfield或PPET16 NSTSn RUb subfield指示的调制门限可指示调制方式。
例如PPET8 NSTSn RUb subfield或PPET16 NSTSn RUb subfield,与调制方式的对应关系如表4所示。PPET8 NSTSn RUb subfield或PPET16 NSTSn RUb subfield指示的调制门限类似表4中的星座索引,从而间接指示调制方式。
表4 Constellation Index(星座索引)
Figure PCTCN2021120204-appb-000003
Figure PCTCN2021120204-appb-000004
第一设备向第二设备发送的物理层包扩展门限字段的结构如图7所示,第二设备获取第一设备的物理层包扩展门限字段,可通过PPET8 NSTSn RUb subfield和PPET16 NSTSn RUb subfield的组合来决定要使用的名义包填充值。具体的,第二设备可根据表5确定名义包填充值。即第二设备采用的调制方式跟PPET8 NSTSn RUb subfields指示的调制门限的比较结果,以及第二设备采用的调制方式跟PPET16 NSTSn RUb subfields指示的调制门限的比较结果满足表5某行的条件,那么名义包填充值为该行对应的取值。
表5 PPET8和PPET16的PPE门限表(PE thresholds per PPET8 and PPET16)
Figure PCTCN2021120204-appb-000005
Figure PCTCN2021120204-appb-000006
需要说明的是,表5中的调制方式指的是在RUb对应的调制方式的基础上调一档DCM对应的调制方式。
如表5所示,第二设备采用的调制方式跟PPET8指示的调制门限的比较结果满足条件一,以及第二设备采用的调制方式跟PPET16指示的调制门限的比较结果条件二,那么名义包填充值为该条件一以及条件二对应的取值。
即第二设备采用的调制方式对应的星座索引x大于或等于PPET8指示的调制门限,且第二设备采用的调制方式对应的星座索引x小于PPET16指示的调制门限或者PPET16设置为空,名义包填充值为8μs。第二设备采用的调制方式对应的星座索引x大于PPET8指示的调制门限或者PPET8设置为空,且第二设备采用的调制方式对应的星座索引x大于或等于PPET16指示的调制门限,名义包填充值为16μs。也就是满足表5中某一行的条件一和条件二,那么名义包填充值为该行中的取值。
随着每个用户支持的流从8流变为了16流,支持的调制方式从1K正交振幅调制(quadrature amplitude modulation,QAM)变为了4KQAM,支持的带宽由160MHz变为了320MHz,这使得接收机在这些情况下需要更多的处理时间。基于此提出了大于16μs的名义包填充值,例如提出支持20μs的名义包填充值。但是如图7所示的结构无法指示20μs的名义包填充值。即目前没有指示20μs的名义包填充值的方法。
鉴于此,本申请实施例提供了一种名义包填充值的指示方法,以指示更大的名义包填充值。
在可能的实现方式中,本申请实施例提供一种物理包扩展门限字段的一种新的结构,例如在物理层包扩展门限信息字段中增加用于能够示意大于16μs的名义包填充值的子字段集合,从而指示更大的名义包填充值。在下文的描述中,以指示20μs的名义包填充值为例。需要说明的是,本申请实施例提供的方案同样适用其他名义包填充值的指示。
图7所示的物理层包扩展门限信息字段指示的名义包填充值的最大值为16μs。本申请实施例可沿用图7所示的结构,在图7所示的物理层包扩展门限信息字段中添加用于指示20μs的名义包填充值的字段。例如在图7所示的物理层包扩展门限信息字段中添加用于指示NSTS为n,编号为b的RU对应的调制门限的第一子字段集合。该第一子字段集合可用于指示不同的NSTS以及不同RU大小对应的调制门限,但是第二设备根据该调制门限确定的名义包填充值可大于16μs,例如为20μs。与PPET8 NSTSn RUb subfields类似,为便于描述可将第一子字段集合记为PPET20 NSTSn RUb subfields,如图8所示。即PPET20 NSTSn RUb subfields中每个PPET20 NSTSn RUb subfield可用于指示NSTS为n,序号为b的RU对应的调制门限。
与PPET16 NSTSn RUb subfields相同,PPET20 NSTSn RUb subfields中n的取值范围为[1,…,N],b的取值范围为[m,…,M]。不同之处在于,图8中的NSTS字段的长度比图7中的NSTS字段的长度更长,例如NSTS字段可占用4比特。那么n的取值范围为[1,…,N],N等于16。
同理,图8中的RU Index Bitmask字段的长度可比图7中的RU Index Bitmask字段的长度更长,即图8中的RU Index Bitmask字段占用更多比特,例如RU Index Bitmask字段 可占用5比特。这种情况下,RU Index Bitmask字段指示的RU最大粒度为3*996。又例如RU Index Bitmask字段可占用6比特,这种情况下,RU Index Bitmask字段指示的RU最大粒度为4*996。当然RU Index Bitmask字段可占用更多比特,RU大小为242+484、484+996、2*996+484或3*996+484等。那么b的取值范围为[m,…,M]中M可大于或等于5。
同理,考虑到更高调制方式的出现,PPET20 NSTSn RUb subfields中的任意一个PPET20 NSTSn RUb subfield对应的Constellation Index对应更多比特数,例如4比特,可指示16种调制门限。需要说明的是,本申请实施例对NSTS字段占用的比特数不作限制,对RU Index Bitmask字段占用的比特数不作限制,对PPET20 NSTSn RUb subfield对应的Constellation Index对应的比特数也不作限制。
当PPET20 NSTSn RUb subfield指示NSTS为n,序号为b的RU对应的某个调制门限,第二设备的调制方式大于或等于该调制门限,那么第二设备确定可使用的名义包填充值为20μs。
下面以接收机是第一设备,发送机是第二设备为例说明第一设备如何向第二设备指示第二设备使用的名义包填充值。请参见图9,为本申请实施例提供的名义包填充值的指示方式的流程示意图,该流程描述如下:
S901、第一设备生成PPDU,该PPDU包括物理层包扩展门限存在子字段,以及物理层包扩展门限字段,且,物理层包扩展门限存在子字段的取值为1,物理层包扩展门限字段包括NSTS字段、RU索引掩码字段以及第一物理层包扩展门限信息字段,该第一物理层包扩展门限信息字段包括PPET20 NSTSn RUb subfields、PPET16 NSTSn RUb subfields和PPET8 NSTSn RUb subfields。应理解,PPET20 NSTSn RUb subfield、PPET16 NSTSn RUb subfield和PPET8 NSTSn RUb subfield分别用于指示NSTS为n,序号为b的RU对应的一个调制门限。为了便于描述,下文中将PPET20 NSTSn RUb subfield指示的调制门限称为第一调制门限,将PPET16 NSTSn RUb subfield指示的调制门限称为第二调制门限,将PPET8 NSTSn RUb subfields指示的调制门限称为第三调制门限。
S902、第一设备向第二设备发送PPDU,第二设备接收该PPDU。
S903、第二设备根据接收的PPDU确定要使用的名义包填充值。
第二设备可通过PPET8 NSTSn RUb subfield、PPET16 NSTSn RUb subfield和PPET16 NSTSn RUb subfield的组合来决定要使用的名义包填充值。也就是第二设备根据采用的调制方式分别与第一调制门限、第二调制门限以及第三调制门限的比较结果来确定名义包填充值。具体的,第二设备可根据表6确定名义包填充值。若满足表6中某行的条件一、条件二以及条件三,那么第二设备可确定使用的名义包填充值为该行对应的取值。也就是第二设备确定满足表6中的某一行条件,那么第二设备确定使用名义包填充值为该行示意的值。
表6 PPET8和PPET16以及PPET20的PPE门限表
Figure PCTCN2021120204-appb-000007
Figure PCTCN2021120204-appb-000008
如表6所示,满足第1行的条件一、条件二、条件三,那么名义包填充值为8μs;满足第2行的条件一、条件二、条件三,那么名义包填充值为16μs;满足第3行的条件一、条件二、条件三,那么名义包填充值为20μs。
示例性的,第一设备发送的PPDU包括的NSTS字段的取值为100(5),即表示NSTS为6,那么PPET20 NSTSn RUb subfields、PPET16 NSTSn RUb subfields和PPET8 NSTSn RUb subfields中n的取值范围为[1,…,6],即n从1遍历到6。RU索引掩码字段占用5比特,b的取值范围可以是[1,…,5]。当n为[1,…,6]中的任意一个值,b从1遍历到5。
例如第二设备采用的NSTS为4,RU大小为242,调制方式为1024QAM。那么第二设备可比较PPET20 NSTS4 RU1 subfield指示的第一调制门限、PPET16 NSTS4 RU1 subfield指示的第二调制门限,PPET8 NSTS4 RU1subfield指示的第三调制门限。如果1024QAM大于或等于第一调制门限,那么第二设备确定名义包填充值为20μs。如果1024QAM小于第一调制门限,且1024QAM大于或等于第二调制门限,且1024QAM大于第三调制门限,那么第二设备确定名义包填充值为16μs。如果1024QAM小于第一调制门限,且1024QAM小于第二调制门限,且1024QAM大于或等于第三调制门限,那么第二设备确定名义包填充值为8μs。
通常来说,如果第二设备采用的NSTS较大,例如第二设备采用的NSTS大于或等于第一NSTS门限,为了保证接收机有足够的处理时间,第二设备可默认名义包填充值为20μs。应理解,第一NSTS门限可认为是指示20μs的一种门限。这种情况下,第一设备无需向第二设备指示NSTS大于或等于第一NSTS门限对应的调制门限。也就是PPET20 NSTSn RUb  subfields包括较小的NSTS对应的PPET20 NSTSn RUb subfield。即PPET20 NSTSn RUb subfields中n的取值范围可以是[1,…,N]中的真子集,这样可节省物理层包扩展信息字段的开销。
示例性的,请参见图10,为PPET20 NSTSn RUb subfields的二维示意图。如图10中的(a)所示,第二设备要采用的NSTS大于或等于第一NSTS门限,第一设备发送的物理包扩展门限信息字段中的PPET20 NSTSn RUb subfields中n的取值范围可以是[1,…,p1],其中,p1小于或等于第一NSTS门限。也可以认为是相较于PPET20 NSTSn RUb subfields中遍历[1,…,N]来说,省略了阴影部分对应的子字段。
同理,如果第二设备采用的RU大小较大,例如第二设备采用的RU大小大于或等于第一RU门限,为了保证接收机有足够的处理时间,第二设备可默认名义包填充值为20μs。第一RU门限也可认为是20μs的另一种门限。这种情况下,第一设备无需向第二指示RU大小大于或等于第一RU门限对应的调制门限。也就是PPET20 NSTSn RUb subfields包括较小的b对应的PPET20 NSTSn RUb subfield。即PPET20 NSTSn RUb subfields中b的取值范围可以是[m,…,M]中的真子集,以节省物理层包扩展信息字段的开销。
请继续参见图10,如图10中的(b)所示,第二设备采用的RU大小大于或等于第一RU门限,第一设备发送的物理包扩展门限信息字段中的PPET20 NSTSn RUb subfields中b的取值范围可以是[m,…,q1],其中,q1小于或等于第一RU门限的索引,也就是q1指示的RU大小小于或等于第一RU门限。也可以认为是相较于PPET20 NSTSn RUb subfields中遍历[m,…,M]来说,省略了阴影部分对应的子字段。
当然,第二设备采用的NSTS大于或等于第一NSTS门限,且第二设备采用的序号RU大小大于或等于第一RU门限,那么PPET20 NSTSn RUb subfields中n的取值范围可以是[1,…,N]中的真子集,且PPET20 NSTSn RUb subfields中b的取值范围可以是[m,…,M]中的真子集。沿用图10中(a)和图10中(b)的例子,这种情况下,PPET20 NSTSn RUb subfields中n的取值范围可以是[1,…,p1],其中,p1小于或等于第一NSTS门限,PPET20NSTSn RUb subfields中b的取值范围可以是[m,…,q1],其中,q1小于或等于第一RU门限的索引,也就是q1指示的RU大小小于或等于第一RU门限,如图10中的(c)所示。
应理解,图10省略阴影部分也就是选取上报PPET20 NSTSn RUb subfields中NSTS小于第一NSTS门限的子字段,相应的,PPET16 NSTSn RUb subfields和PPET8 NSTSn RUb subfields中也保留NSTS小于第一NSTS门限的子字段。同理,第一设备选取上报PPET20 NSTSn RUb subfields中b小于第一RU门限对应的索引的子字段,相应的,PPET16 NSTSn RUb subfields和PPET8 NSTSn RUb subfields中也保留b小于第一RU门限对应的索引的子字段。如图11所示,与图10相反,图11中阴影部分示意保留的子字段。
在本申请实施例中,上述的第一NSTS门限和/或第一RU门限可以是预定义的。如果预定义第一NSTS门限,那么第二设备确定采用的NSTS大于或等于第一NSTS门限,那么第二设备确定可使用的名义包填充值为20μs。而当第二设备采用的NSTS小于第一NSTS门限,那么第二设备确定使用PPET20 NSTSn RUb subfields中n为第二设备采用的NSTS,b为第二设备采用的RU的索引的子字段指示的调制门限对应的名义包填充值。应理解,n小于第一NSTS门限,b的取值范围为[m,…,M]。
同理,如果预定义第一RU门限,第二设备确定采用的RU大小大于或等于第一RU门限,那么第二设备确定可使用的名义包填充值为20μs。而当第二设备采用的RU大小小 于第一RU门限,那么第二设备确定使用PPET20 NSTSn RUb subfields中n为第二设备采用的NSTS,b为第二设备采用的RU的索引的子字段指示的调制门限对应的名义包填充值。应理解,n的取值范围为[1,…,N],所述b小于第一RU门限对应的索引。
应理解,如果预定义第一NSTS门限和第一RU门限,那么第二设备确定采用的NSTS大于或等于第一NSTS门限,第二设备可确定使用的名义包填充值为20μs;和/或,第二设备确定采用的RU大小大于或等于第一RU门限,第二设备可确定使用的名义包填充值为20μs。
上述的第一NSTS门限和/或第一RU门限也可以是第一设备告知第二设备的。例如,第一设备向第二设备发送第一指示信息,该第一指示信息可用于指示第一NSTS门限。示例性的,第一设备可向第二设备发送携带第一指示信息的PPDU。在PPDU中新增加用于承载第一指示信息的字段,例如第一字段。该第一字段可用于指示第一NSTS门限。需要说明的是,本申请实施例对第一字段的名称不作限制,例如第一字段可称为NSTN门限字段(可称为Thres_NSTS field)。该第一字段也可用于指示第一RU门限,如果第一字段用于指示第一RU门限,第一字段可称为RU门限字段(可称为Thres_RU field)。
当然第一指示信息可用于指示第一NSTS门限和第一RU门限,那么第一字段可用于指示第一NSTS门限和第一RU门限。需要说明的是,本申请实施例不限制用于承载第一指示信息的字段的个数。例如可在PPDU中新增加字段,例如第二字段和第三字段,其中,第二字段用于指示第一NSTS门限,第三字段用于指示第一RU门限。第一指示信息可承载于第一字段和第二字段。同样,本申请实施例对第二字段和第三字段的名称不作限制。
需要说明的是,第一指示信息也可以承载于PPDU包括的现有字段中,本申请实施例对用于承载第一指示信息的字段不作限制。
尽管定义了第一NSTS门限,但是如果第一设备的处理能力较强,即第一设备的最小处理时间可以较短。这种情况下,第二设备不需要参考第一NSTS门限确定名义包填充值。为此,本申请实施例,第一设备可另外告知第二设备第一NSTS门限是否生效,也就是第一设备告知第二设备是否使用第一NSTS门限。同理,第一设备可另外告知第二设备第一RU门限是否生效,也就是第一设备告知第二设备是否使用第一RU门限。
作为一种示例,第一设备向第二设备发送携带第二指示信息的PPDU,该第二指示信息可用于指示第一NSTS门限和/或第一RU门限是否生效。示例性的,第二指示信息可承载于PPDU中新增加的字段,也可以承载于PPDU中已有的字段。例如第二指示信息用于指示第一NSTS门限,第二指示信息可承载于EHT capabilities元素中新增加的第四字段。该第四字段占用1比特,当第四字段的取值为0,指示第一NSTS门限生效;相应的,当第四字段的取值为1,指示第一NSTS门限失效。或者,当第四字段的取值为1,指示第一NSTS门限生效;相应的,当第四字段的取值为0,指示第一NSTS门限失效。又例如第二指示信息用于指示第一RU门限,第二指示信息可承载于EHT capabilities元素中新增加的第五字段。该第五字段占用1比特,当第五字段的取值为0,指示第一RU门限生效;相应的,当第五字段的取值为1,指示第一RU门限失效。或者,当第五字段的取值为1,指示第一RU门限生效;相应的,当第五字段的取值为0,指示第一RU门限失效。
需要说明的是,第二指示信息可承载于一个字段,也可以承载于多个字段。本申请实施例对此不作限制。
应理解,如果PPET20 NSTSn RUb subfields不包括大于或等于第一NSTS门限和/或第 一RUb门限的子字段,也就是不使用20μs的门限确定名义包填充值。这种情况下,PPET16 NSTSn RUb subfields和PPET8 NSTSn RUb subfields也可以不包括大于或等于第一NSTS门限和/或第一RUb门限的子字段。相应的,第二指示信息可用于指示PPET16 NSTSn RUb subfields和PPET8 NSTSn RUb subfields也可以不包括大于或等于第一NSTS门限和/或第一RUb门限的子字段。这种情况下,第二指示信息也可以用于指示某些PPET16 NSTSn RUb subfield和某些PPET8 NSTSn RUb subfield是否存在。
需要说明的是,由于可省略部分PPET16 NSTSn RUb subfield和PPET8 NSTSn RUb subfield,那么表6中未列出的所有其他组合(all other combinations not otherwise listed in this table)对应的名义包填充值可默认为0μs,但是不一定是0μs。
例如,如果HE Capabilities字段中指示了选取的PPET16 NSTSn RUb subfield和PPET8 NSTSn RUb subfield,那么在EHT Capabilities中可以省略这部分PPET16 NSTSn RUb subfield和PPET8 NSTSn RUb subfield。这种情况下,对于EHT Capabilities中的PPE Thresholds field来说,第二设备可按照表5确定该部分PPET16 NSTSn RUb subfield和PPET8 NSTSn RUb subfield指示的内容,即选取的查询表5中PPE Thresholds field中的指示,EHT Capabilities中除该部分PPET16 NSTSn RUb subfield和PPET8 NSTSn RUb subfield指示的内容可根据表6来确定,即结合表5和表6来确定名义包填充值,而不是直接确定名义包填充值为0μs。
另外,需要说明的是,如果第一设备选取PPET16 NSTSn RUb subfield和PPET8 NSTSn RUb subfield是因为NSTS大于或等于第一NSTS门限,和/或b大于或等于第一RUb门限,那么没有被选取的PPET16 NSTSn RUb subfield和PPET8 NSTSn RUb subfield也不一定表示名义包填充值为0μs。
也就是上述表6还包括更多行,例如第4行、第5行等等,如下:
表6 PPET8和PPET16以及PPET20的PPE门限表
Figure PCTCN2021120204-appb-000009
应理解,图11示意PPET16 NSTSn RUb subfields和PPET8 NSTSn RUb subfields中保留NSTS小于第一NSTS门限的子字段和b小于第一RUb门限的子字段。即图11中阴影部分示意保留的子字段。如果PPET16 NSTSn RUb subfields和PPET8 NSTSn RUb subfields中保留的部分子字段(即图11中阴影部分)已在HE Capabilities元素中的PPE Thresholds field中指示,EHT Capabilities元素不再需要指示图11中的阴影部分。为此,可删除EHT Capabilities元素中对应图11阴影部分的子字段。
通常EHT Capabilities元素中的PPE Thresholds Info field中的PPETy NSTSn RUb subfields(y为8、16和20)包括的各个子字段按照802.11ax的排序方法进行排序(即先RU从小到大,再流从小到大)。EHT Capabilities元素可不包括图11阴影部分的子字段。对于第二设备来说,需要判断EHT Capabilities元素不包括哪些子字段,也就是判断图11中除阴影部分的子字段是哪些子字段,实现较为复杂。
为了降低接收机实现的复杂度,本申请实施例可指示图11中除阴影部分的子字段,例如将图11中的除阴影部分的子字段划分为多个子字段组合,每个子字段组合内的子字段对应的NSTS是连续的,每个子字段组合内的子字段对应的b是连续的。本申请实施例可分别指示这多个子字段组合,不需要接收机根据HE Capabilities元素中的PPE Thresholds field中的指示判断删除哪些子字段,从而降低接收机实现的复杂度。
作为一种示例,图11中除阴影部分的子字段之外的子字段可通过多个物理层包扩展门限信息字段来指示。例如,请参见图12,为PPDU的一种结构示意图。该PPDU可包括至少两个物理层包扩展门限信息字段。第一设备可向第二设备发送携带至少两个物理层包扩展门限信息字段。针对这至少两个物理层包扩展门限信息字段中的任意物理层包扩展门限信息字段来说,该物理层包扩展门限信息字段对应一个NSTS字段和一个RU索引掩码字段。该物理层包扩展门限信息字段包括的PPETy NSTSn RUb subfields(y为8、16和20)中n可以不从1开始遍历,同理,该物理层包扩展门限信息字段包括的PPETy NSTSn RUb subfields(y为8、16和20)中b也可以不从m开始遍历。这至少两个物理层包扩展门限信息字段指示的PPETy NSTSn RUb subfield可确定出图11的阴影部分。为了便于理解,下面结合图13A-图13C介绍图12所对应的PPDU结构。
示例性的,请参见图13A,图13A以至少两个物理层包扩展门限信息字段为两个物理层包扩展门限信息字段为例。为了便于描述,将这两个物理层包扩展门限信息字段称为第三物理层包扩展门限信息字段和第四物理层包扩展门限信息字段。为描述简便,本申请实施例将物理包扩展门限信息字段包括的PPETy NSTSn RUb subfields中n简称为物理包扩展门限信息字段对应的n,将物理包扩展门限信息字段包括的PPETy NSTSn RUb subfields中b简称为物理包扩展门限信息字段对应的b。
第三物理层包扩展门限信息字段对应的n位于第一集合,该第一集合为[1,…,N]的子集,第一集合内的取值是连续的;且,第三物理层包扩展门限信息字段对应的b位于第二集合,所述第二集合属于[q2,…,M]的子集,所述第二集合中的元素连续,q2大于m。第四物理层包扩展门限信息字段对应的n位于第一集合,该第一集合为[p2,…,N]的真子集,p2为大于1的整数,第一集合内的取值是连续的;且,第四物理层包扩展门限信息字段对应的b位于第二集合,所述第二集合属于[m,…,q2]的子集,且所述第二集合中的元素连续。
从图13A中可以看出,第三物理层包扩展门限信息字段包括的PPETy NSTSn RUb  subfields对应一个矩形区域,例如第一矩形内,第四物理层包扩展门限信息字段包括的PPETy NSTSn RUb subfields对应一个矩形区域,例如第二矩形内。第二设备根据第三物理层包扩展门限信息字段可确定第一矩形,根据第四物理层包扩展门限信息字段可确定第二矩形。第一矩形和第二矩形合并可确定出图11的阴影部分,不需要接收机根据HE Capabilities元素中的PPE Thresholds field中的指示判断删除哪些子字段,从而降低接收机实现的复杂度。
示例性的,请参见图13B,图13B也以至少两个物理层包扩展门限信息字段为两个物理层包扩展门限信息字段为例。
与图13A的不同之处在于,本申请实施例中,第三物理层包扩展门限信息字段对应的n位于第一集合,该第一集合为[p2,…,N]的子集,第一集合内的取值是连续的,p2为大于1的整数;且,第三物理层包扩展门限信息字段对应的b位于第二集合,所述第二集合为[m,…,M]的子集,所述第二集合中的元素连续。第四物理层包扩展门限信息字段对应的n位于第一集合,该第一集合为[1,…,p2]的真子集,p2为大于1的整数,第一集合内的取值是连续的;且,第四物理层包扩展门限信息字段对应的b位于第二集合,所述第二集合属于[m,…,q2]的子集,且所述第二集合中的元素连续。
从图13B中可以看出,第三物理层包扩展门限信息字段包括的PPETy NSTSn RUb subfields对应一个矩形区域,例如第一矩形内,第四物理层包扩展门限信息字段包括的PPETy NSTSn RUb subfields对应一个矩形区域,例如第二矩形内。第二设备根据第三物理层包扩展门限信息字段可确定第一矩形,根据第四物理层包扩展门限信息字段可确定第二矩形。第一矩形和第二矩形合并可确定出图11的阴影部分,不需要接收机根据HE Capabilities元素中的PPE Thresholds field中的指示判断删除哪些子字段,从而降低接收机实现的复杂度。
示例性的,请参见图13C,图13C以至少两个物理层包扩展门限信息字段为3个物理层包扩展门限信息字段为例。例如这3个物理层包扩展门限信息字段为第三物理层包扩展门限信息字段、第四物理层包扩展门限信息字段和第五物理层包扩展门限信息字段。
在本申请实施例中,第三物理层包扩展门限信息字段对应的n位于第一集合,该第三集合为[1,…,p2]的真子集,p2为大于1的整数,第一集合内的取值是连续的;且,第三物理层包扩展门限信息字段对应的b位于第二集合,所述第二集合属于[q2,…,M]的子集,且所述第二集合中的元素连续。第四物理层包扩展门限信息字段对应的n位于第一集合,该第一集合为[p2,…,N]的子集,第一集合内的取值是连续的,p2为大于1的整数;且,第二物理层包扩展门限信息字段对应的b位于第二集合,所述第二集合为[m,…,q2]的子集,所述第二集合中的元素连续,q2小于M。第五物理层包扩展门限信息字段对应的n位于第一集合,该第一集合为[p2,…,N]的子集,第一集合内的取值是连续的,p2为大于1的整数;且,第二物理层包扩展门限信息字段对应的b位于第二集合,所述第二集合属于[q2,…,M]的子集,且所述第二集合中的元素连续。
从图13B中可以看出,第三物理层包扩展门限信息字段包括的PPETy NSTSn RUb subfields对应一个矩形区域,例如第一矩形内,第四物理层包扩展门限信息字段包括的PPETy NSTSn RUb subfields对应一个矩形区域,例如第二矩形内。第五物理层包扩展门限信息字段包括的PPETy NSTSn RUb subfields对应一个矩形区域,例如第三矩形内。第二设备根据第三物理层包扩展门限信息字段可确定第一矩形,根据第四物理层包扩展门限信息 字段可确定第二矩形,根据第五物理层包扩展门限信息字段可确定第三矩形。第一矩形、第二矩形、和第三矩形合并可确定出图11的阴影部分,不需要接收机根据HE Capabilities元素中的PPE Thresholds field中的指示判断不包括哪些子字段,从而降低接收机实现的复杂度。
需要说明的是,本申请实施例不限制物理层包扩展门限信息字段的个数,只要多个物理层包扩展门限信息字段所示意的PPETy NSTSn RUb subfields合并之后是除图11中的除阴影部分的子字段即可。
上述实施例中,如图8所示,PPET20 NSTSn RUb subfields、PPET16 NSTSn RUb subfields和PPET8 NSTSn RUb subfields位于同一个PPE Thresholds Info field。但是为了降低PPE Thresholds field的开销,如前述,PPE Thresholds field在某些情况下包括PPET20NSTSn RUb subfields,不包括PPET16 NSTSn RUb subfields和PPET8 NSTSn RUb subfields。在某些情况下,PPE Thresholds field不包括PPET20 NSTSn RUb subfields,但是包括PPET16 NSTSn RUb subfields和PPET8 NSTSn RUb subfields。应理解,由于PPET16 NSTSn RUb subfields和PPET8 NSTSn RUb subfields的省略,或者PPET20 NSTSn RUb subfields的省略导致PPE Thresholds Info field的长度可能要么是3比特的倍数,要么是9比特的倍数,即PPE Thresholds Info field的长度不固定,不利用接收机的解析。
因此,在本申请实施例中,PPET20 NSTSn RUb subfields、PPET16 NSTSn RUb subfields和PPET8 NSTSn RUb subfields也可以位于不同的PPE Thresholds Info field,如图14所示。图14以PPDU包括两个PPE Thresholds Info field为例。为了便于描述,本申请实施例将两个物理层包扩展门限信息字段称为第一PPE Thresholds Info field和第二PPE Thresholds Info field。其中,PPET20 NSTSn RUb subfields位于第一PPE Thresholds Info field,PPET16 NSTSn RUb subfields和PPET8 NSTSn RUb subfields位于第二PPE Thresholds Info field。这样第一PPE Thresholds Info field的长度始终是3比特的倍数,第二PPE Thresholds Info field的长度始终是6比特的倍数,利用接收机的解析。
本申请实施例中PPE Thresholds field可根据不同的NSTS、RU大小、调制方式来指示不同的名义包填充值,更为灵活。但是对于PPE Thresholds field来说,如果PPET20 NSTSn RUb subfields、PPET16 NSTSn RUb subfields和PPET8 NSTSn RUb subfields中n从1遍历到N,b从m遍历到M,PPE Thresholds field的开销较大。尤其是随着NSTS的增多,RU大小的增多,更高阶的调制方式,PPE Thresholds field的开销将越来越大。
为了尽量降低PPE Thresholds field的开销,在本申请实施例中,NSTS可不采用连续累加1的方式从1开始遍历,也就是第一设备向第二设备上报的多个NSTS是不连续的,即多个NSTS是间隔的。相邻两个NSTS之间的间隔可相同,也可以不同。
作为一种示例,当第二设备采用的NSTS为第一取值,PPET20 NSTSn RUb subfields、PPET16 NSTSn RUb subfields和PPET8 NSTSn RUb subfields中n的取值范围是第一取值范围,该第一取值范围为[1,…,N]的真子集,且第一取值范围内的多个取值具有间隔,相邻两个取值之间的间隔可以相同,也可以不同。例如第二设备采用的NSTS为10,第一范围取值可包括偶数NSTS,也就是第一取值范围为[2,4,6,8,10]。即不上报奇数NSTS,可节约PPE Thresholds Info field约一半的开销。又例如第二设备采用的NSTS为10,第一取值范围为[2,6,8,10]。
同理,在本申请实施例中,可缩减RU的告知粒度。例如RU索引掩码字段占用6比 特,那么存在6种RU大小,即{242,484,996,2*996,3*996,4*996}。例如第一设备向第二设备发送的PPDU中RU索引掩码字段的长度可低于6比特,例如3比特,对应RU大小可为{242,484,996,2*996,3*996,4*996}的真子集,例如{996,2*996,4*996},以节约PPE Thresholds Info field的开销。
上述实施例在物理层包扩展门限信息字段中增加用于能够示意大于16μs的名义包填充值的子字段集合,例如PPET20 NSTSn RUb subfields,从而指示更大的名义包填充值。
作为一种可替换的方案,本申请实施例提供了另一种指示大于16μs的名义包填充值的方法。
在可能的实现方式中,可在PPDU中新增加与门限值有关的字段或子字段(在本申请实施例中统称为门限字段)指示名义包填充值。需要说明的是,这里门限值指的是NSTS门限、RU大小门限、调制门限。相应的,门限字段可用于指示NSTS门限、RU大小门限、调制门限中的一种或多种门限。或者也可以认为门限字段包括第三字段、第四字段和第五字段,其中,第三字段用于指示NSTS门限、第四字段用于指示RU大小门限、第五字段用于指示调制门限。需要说明的是,本申请实施例对第三字段、第四字段和第五字段的名称不作限制。由于第三字段用于指示NSTS门限,那么第三字段也可称为NSTS门限字段(Thres_NSTS field)。同理,第四字段可称为RU门限字段(Threshold_RU field),第五字段可称为调制门限字段(Thres_Constellation field)。需要说明的是,本申请实施例不限制门限的种类,例如门限值也可以是其他可能参数的门限。
请参见图15,为门限字段的一种结构示意图,本申请实施例对第三字段、第四字段和第五字段分别占用的比特数不作限制。图15以第三字段占用4比特,可最大指示16流为例。第四字段占用3比特,可指示8种RU大小,第五字段占用3比特,可指示8种调制方式。
可预先设置与20μs的名义包填充值相关的NSTS门限、RU大小门限、调制门限。例如,可定义与20μs的名义包填充值相关的NSTS门限为第一NSTS门限,与20μs的名义包填充值相关的RU大小门限为第一RU门限,与20μs的名义包填充值相关的调制门限为第一调制门限。第一设备向第二设备发送的PPDU中,第三字段指示第一NSTS门限,第四字段指示第一RU门限,第五字段指示第一调制门限。
第二设备可比较采用的NSTS与门限字段指示的NSTS门限,比较采用的RU与RU大小门限,以及比较采用的调制方式与调制门限,并根据比较结果,确定名义包填充值。例如如果第二设备发送数据采用的参数满足如下预设条件,那么第二设备确定名义包填充值为20μs。所述预设条件为如下条件的一种或多种:
条件1、第二设备采用的NSTS大于或等于第一NSTS门限;
条件2、第二设备采用的RU大于或等于第一RU门限;
条件3、第二设备采用的调制方式大于或等于第一调制门限。
示例性的,第二设备采用的NSTS大于或等于第三字段指示的NSTS门限,第二设备可确定名义包填充值为20μs。或者,第二设备采用的RU大于或等于第四字段指示的RU大小,第二设备可确定名义包填充值为20μs。或者,第二设备采用的调制方式大于或等于第五字段指示的调制门限第二设备可确定名义包填充值为20μs。
示例性的,第二设备采用的NSTS大于或等于第三字段指示的NSTS门限,且第二设备采用的RU大于或等于第四字段指示的RU大小,且第二设备采用的调制方式大于或等 于第五字段指示的调制门限,第二设备可确定名义包填充值为20μs。
在本申请实施例中,预先定义第一NSTS门限、第一RU门限、第一调制门限可以是预先定义的。对于第二设备来说,一旦满足上述条件1到条件3中的任意一条,那么确定名义包填充值是20μs。相对于前述通过PPETy NSTSn RUb subfields的指示方式来说,这种方式可认为是静态指示方式。应理解,静态指示方式中,图16所示的门限字段可不存在。
第一NSTS门限、第一RU门限、第一调制门限也可以是第一设备通知第二设备的。例如第一NSTS门限、第一RU门限、第一调制门限可承载于PPE Thresholds field中。也就是可在PPE Thresholds field新增加第三字段、第四字段和第五字段。相对于前述通过PPETy NSTSn RUb subfields的指示方式来说,这种方式可以理解为半静态指示方式。
需要说明的是,在PPDU中新增加门限字段的方案同样适用于前述直接指示方式,用于指示名义包填充字段指示的名义包填充值是否有效。也就是第二设备是否使用名义包填充字段指示的名义包填充值。
应理解,如果第一设备的处理能力较强,尽管预先设置了门限字段,即上述的第三字段、第四字段和第五字段。但是有可能不使用某个或某些字段,即第二设备不考虑某个或某些字段。例如针对RU来说,第一设备的处理能力较强,那么第一设备可向第二设备指示不需要考虑第四字段。
作为一种示例,第一设备可向第二设备指示第三字段、第四字段以及第五字段中的一个字段或多个字段是否生效。示例性的,第一设备可向第二设备发送第三指示信息,该第三指示信息可用于指示第三字段、第四字段以及第五字段中的一个字段或多个字段是否生效。
作为另一种示例,第一设备可向第二设备指示门限字段是否包括第三字段、第四字段以及第五字段中的一个字段或多个字段。
又或者,第一设备可向第二设备指示根据门限字段确定的名义包填充值无效。
与前述PPETy NSTSn RUb subfields的指示方式类似,在本申请实施例中,PPE Thresholds Info field也可保留PPET16 NSTSn RUb subfields和PPET8 NSTSn RUb subfields中部分子字段。例如PPE Thresholds Info field中无须出现NSTSn大于(或大于等于)第一NSTS门限的PPET16 NSTSn RUb subfields和PPET8 NSTSn RUb subfields;PPE Thresholds Info field中无须出现RUb大于(或大于等于)第一RU门限的PPET16 NSTSn RUb subfields和PPET8 NSTSn RUb subfields;PPE Thresholds Info field中无须出现调制方式大于(或大于等于)第一调制门限的PPET16 NSTSn RUb subfields和PPET8 NSTSn RUb subfields。具体可参考前述PPETy NSTSn RUb subfields的指示方式中对于PPETy NSTSn RUb subfields的实现描述,这里不再赘述。
应理解,如果HE Capabilities元素中已经指示了省略的PPET16 NSTSn RUb subfields和PPET8 NSTSn RUb subfields,那么这部分子字段在EHT Capabilities元素中同样可以省略。具体可参考前述通过PPETy NSTSn RUb subfields的指示方式中相关描述,这里不再赘述。
与前述通过PPETy NSTSn RUb subfields的指示方式类似,在本申请实施例中,也可以在EHT Capabilities元素中可以增加一个是否需要20μs的指示。例如在EHT Capabilities元素中新增加一个字段,该字段占用1比特。该字段指示存在20μs,第二设备可以获取第 一NSTS门限、第一RU门限、第一调制门限。该字段指示不存在20μs,那么第二设备可不使用第一NSTS门限、第一RU门限、第一调制门限。
需要说明的是,针对8μs的名义包填充值的指示也可以如8μs的名义包填充值的指示,即设置8μs的名义包填充值对应的NSTS门限、RU门限和调制门限中的一种或多种。例如设置RU=996时,名义包填充值为8μs,这样可以缩减PPET数目,降低开销。
上述本申请提供的实施例中,分别从第一设备和第二设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,第一设备和第二设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
下面结合附图介绍本申请实施例中用来实现上述方法的通信装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图16为本申请实施例提供的通信装置1600的示意性框图。该通信装置1600可以对应实现上述各个方法实施例中由第一设备或第二设备实现的功能或者步骤。该通信装置可以包括处理模块1610和收发模块1620。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。处理模块1610和收发模块1620可以与该存储单元耦合,例如,处理模块1610可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成。
在一些可能的实施方式中,通信装置1600能够对应实现上述方法实施例中第一设备的行为和功能。例如通信装置1600可以为STA或AP,也可以为应用于STA或AP中的部件(例如芯片或者电路)。收发模块1620可以用于执行图9所示的实施例中由第一设备所执行的全部接收或发送操作。例如图9所示的实施例中的S902,和/或用于支持本文所描述的技术的其它过程;其中,处理模块1610用于执行如图9所示的实施例中由第一设备所执行的除了收发操作之外的全部操作,例如图9所示的实施例中的S901,和/或用于支持本文所描述的技术的其它过程。
在示例一中,处理模块1610用于生成PPDU,收发模块1620用于向第二设备发送PPDU;其中,PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,物理层包扩展门限存在子字段的取值为1,物理层包扩展门限字段包括NSTS字段,以及用于指示NSTS为n,编号为b的RU对应的调制门限的第一子字段集合,n的取值范围为[1,…,N],N为大于8的整数,b的取值范围为[m,…,M],m和M为大于或等于1的整数;
第一子字段集合中的一个第一子字段用于指示一个与NSTS为n,编号为b的RU对应的第一调制门限,第一调制门限用于指示第二设备在调制方式大于或等于第一调制门限时使用的第一名义包填充值,第一名义包填充值为第一取值,第一取值大于16微秒。
在示例二中,收发模块1620用于向第二设备发送第一空时流数NSTS门限和/或第一资源单元RU门限,其中,第一NSTS门限用于指示第二设备采用的NSTS大于或等于第一NSTS门限时,使用第一名义包填充值;
第一RU门限用于指示第二设备采用的RU大小大于或等于第一RU门限时,使用第一名义包填充值,第一名义包填充值大于16微秒。
在示例二的一种可能的实现方式中,收发模块1620还用于向第二设备发送物理层协议数据单元PPDU,PPDU包括空时流数NSTS字段,以及用于指示NSTS为n,序号为b 的RU对应的调制门限的第一子字段集合;调制门限用于指示第二设备在调制方式大于或等于调制门限时使用的名义包填充值;其中,n的取值范围为[1,…,p],p小于或等于第一NSTS门限。
在示例二的一种可能的实现方式中,收发模块1620还用于向第二设备发送物理层协议数据单元PPDU,PPDU包括空时流数NSTS字段,以及用于指示NSTS为n,序号为b的RU对应的调制门限的第一子字段集合;调制门限用于指示第二设备在调制方式大于或等于调制门限时使用的名义包填充值;b的取值范围为[m,…,q],m为大于或等于1的整数,q小于或等于第一RU门限。
在示例二的一种可能的实现方式中,收发模块1620还用于向第二设备发送第一指示信息,第一指示信息用于指示第一NSTS是否生效。
在示例二的一种可能的实现方式中,收发模块1620还用于向第二设备发送第二指示信息,第二指示信息用于指示第一RU门限是否生效。
在示例一或示例二的一种可能的实现方式中,物理层包扩展门限字段还包括:
用于指示NSTS为n,编号为b的RU对应的调制门限的第二子字段集合,第二子字段集合中的一个第二子字段用于指示一个与NSTS为n,编号为b的RU对应的第二调制门限,第二调制门限用于指示第二设备在调制方式大于或等于第二调制门限时使用的第二名义包填充值,第二名义包填充值为16微秒;
用于指示NSTS为n,编号为b的RU对应的调制门限的第三子字段集合,第三子字段集合中的一个第三子字段用于指示一个与NSTS为n,编号为b的RU对应的第三调制门限,第三调制门限用于指示第二设备在调制方式大于或等于第三调制门限时使用的第三名义包填充值,第三名义包填充值为8微秒。
在示例一或示例二的一种可能的实现方式中,第一子字段集合、第二子字段集合和第三子字段集合位于物理层包扩展门限字段包括的第一物理层包扩展门限信息字段。或者,第一子字段集合位于物理层包扩展门限字段包括的第一物理层包扩展门限信息字段,第二子字段集合和第三子字段集合位于物理层包扩展门限字段包括的第二物理层包扩展门限信息字段。
在示例一或示例二的一种可能的实现方式中,第一子字段集合对应的n大于或等于第一NSTS门限,物理层包扩展门限字段不包括第二子字段集合和第三子字段集合。该方案可进一步节省PPDU的开销。
在示例一或示例二的一种可能的实现方式中,PPDU包括第三物理层包扩展门限信息字段和第四物理层包扩展门限信息字段,用于指示NSTS为n,编号为b的RU对应的调制门限的第一子字段集合分别位于第三物理层包扩展门限信息字段和第四物理层包扩展门限信息字段;其中,
第三物理层包扩展门限信息字段对应的n位于第二集合,第二集合为[1,…,N]的子集,第二集合内的元素是连续的,且第三物理层包扩展门限信息字段对应的b的位于第三集合,第三集合为[q,…,M]的子集,q大于m,[q,…,M]内的元素是连续的,第三集合内的元素是连续的;
第四物理层包扩展门限信息字段对应的n位于第四集合,第四集合为[p,…,N],p为大于1的整数,第四集合内的元素是连续的,且第四物理层包扩展门限信息字段对应的b的位于第五集合,第五集合为[m,…,q]的子集,q小于M,[m,…,q]内的元素是连 续的,第五集合内的元素是连续的。
在示例一或示例二的一种可能的实现方式中,PPDU包括第三物理层包扩展门限信息字段和第四物理层包扩展门限信息字段,用于指示NSTS为n,编号为b的RU对应的调制门限的第一子字段集合分别位于第三物理层包扩展门限信息字段和第四物理层包扩展门限信息字段;其中,
第三物理层包扩展门限信息字段对应的n位于第二集合,第二集合为[p,…,N]的子集,p为大于1的整数,第二集合内的元素是连续的,且第三物理层包扩展门限信息字段对应的b的位于第三集合,第三集合为[m,…,M]的子集,第三集合内的元素是连续的;
第四物理层包扩展门限信息字段对应的n位于第四集合,第四集合为[1,…,p],p小于N,第四集合内的元素是连续的,且第四物理层包扩展门限信息字段对应的b的位于第五集合,第五集合为[q,…,M]的子集,q大于m,[q,…,M]内的元素是连续的,第五集合内的元素是连续的。
在示例一或示例二的一种可能的实现方式中,PPDU包括第三物理层包扩展门限信息字段、第四物理层包扩展门限信息字段和第五物理层包扩展门限信息字段,用于指示NSTS为n,编号为b的RU对应的调制门限的第一子字段集合分别位于第三物理层包扩展门限信息字段、第四物理层包扩展门限信息字段和第五物理层包扩展门限信息字段,其中,
第三物理层包扩展门限信息字段对应的n位于第二集合,第二集合为[p,…,N]的子集,p为大于1的整数,第二集合内的元素是连续的,且第三物理层包扩展门限信息字段对应的b的位于第三集合,第三集合为[m,…,q]的子集,q小于M,[m,…,q]内的元素是连续的,第五集合内的元素是连续的;
第四物理层包扩展门限信息字段对应的n位于第四集合,第四集合为[1,…,p],p小于N,第四集合内的元素是连续的,且第四物理层包扩展门限信息字段对应的b的位于第五集合,第五集合为[q,…,M]的子集,q大于m,[q,…,M]内的元素是连续的,第五集合内的元素是连续的;
第五物理层包扩展门限信息字段对应的n位于第六集合,第六集合为[p,…N],p为大于1的整数,第六集合内的元素是连续的,且第五物理层包扩展门限信息字段对应的b的位于第七集合,第七集合为[q,…,M]的子集,q大于m,[q,…,M]内的元素是连续的,第七集合内的元素是连续的。
在示例一或示例二的一种可能的实现方式中,第二设备采用的NSTS为第二取值,n的取值范围为[1,…,N]的真子集;和/或,物理层包扩展门限字段包括的资源单元RU索引掩码指示的RU的索引属于第八集合的真子集,第一集合为{242,484,996,2*996,3*996,4*996}。
在示例三中,处理模块1610用于生成物理层协议数据单元PPDU,收发模块1620用于向第二设备发送PPDU,PPDU包括物理层包扩展门限存在子字段;其中,物理层包扩展门限存在子字段的取值为1,PPDU包括门限字段,门限字段用于指示第一NSTS门限、第一资源单元RU门限和第一调制门限中的一种或多种,在第二设备发送数据的参数满足预设条件时,名义包填充值为第一取值,且第一值大于16微秒;
预设条件为如下条件的一种或多种:
第二设备发送数据采用的NSTS大于或等于第一NSTS门限;
第二设备发送数据采用的RU大于或等于第一RU门限;
第二设备要采用的调制方式大于或等于第一调制门限。
在第十一方面的一种可能的实现方式中,PPDU不包括用于指示NSTS为n,序号为b对应的RU对应的调制门限的第二子字段集合和第三子字段集合,n的取值范围为[1,…,N],N为小于或等于8的整数,b的取值范围为[m,…,M],m和M为大于或等于1的整数。
在第十一方面的一种可能的实现方式中,收发模块1620还用于还向第二设备发送指示信息,其中,
门限字段包括NSTS门限子字段、RU门限子字段和调制门限子字段,指示信息用于指示门限字段中的一个或多个子字段是否生效;或者,
指示信息用于指示名义包填充值为第一取值无效;或者,
指示信息用于指示门限字段是否包括NSTS门限子字段、RU门限子字段和调制门限子字段中的一种或多种。
应理解,本申请实施例中的处理模块1610可以由处理器或处理器相关电路组件实现,收发模块1620可以由收发器或收发器相关电路组件或者通信接口实现。
在一些可能的实施方式中,通信装置1600能够对应实现上述方法实施例中第二设备的行为和功能。例如通信装置1600可以为STA或AP,也可以为应用于STA或AP中的部件(例如芯片或者电路)。收发模块1620可以用于执行图9所示的实施例中由第二设备所执行的全部接收或发送操作。例如图9所示的实施例中的S902,和/或用于支持本文所描述的技术的其它过程。其中,处理模块1610用于执行如图9所示的实施例中由第二设备所执行的除了收发操作之外的全部操作,例如图9所示的实施例中的S903,和/或用于支持本文所描述的技术的其它过程。
在示例四中,所述收发模块1620用于接收来自第一设备的物理层协议数据单元PPDU,其中,所述PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,所述物理层包扩展门限字段包括空时流数NSTS字段,以及用于指示NSTS为n,编号为b的RU对应的调制门限的第一子字段集合,n的取值范围为[1,…,N],N为大于8的整数,b的取值范围为[m,…,M],m和M为大于或等于1的整数;其中,所述第一子字段集合中的一个第一子字段用于指示一个与NSTS为n,编号为b的RU对应的第一调制门限,所述第一调制门限用于指示通信装置1600在调制方式大于或等于所述第一调制门限时使用的第一名义包填充值,所述第一名义包填充值为第一取值,所述第一取值大于16微秒;
所述处理模块1610用于若确定采用的调制方式大于或等于所述第一调制门限,则确定要使用的所述第一名义包填充值。
示例五,提供一种通信装置,例如该通信装置为如前所述的通信装置1600或设置在通信装置1600内的装置。所述通信装置可用于执行上述第四方面或第四方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第四方面或第四方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块1610和收发模块1620。示例性地,所述通信装置为前述的通信装置1600。其中,
所述处理模块1610用于确定至少满足以下两个条件的至少一个时,使用第一名义包填充值,所述第一名义包填充值大于16微秒;
通信装置1600采用的空时流数NSTS大于或等于第一NSTS门限;
通信装置1600确定采用的RU大小大于或等于第一RU门限。
在示例五的一种可能的实现方式中,所述处理模块1610还用于确定采用的NSTS小于所述第一NSTS门限时,使用第一子字段集合中NSTS为n,序号为b的RU对应的第一调制门限对应的名义包填充值,其中,n的取值范围为[1,…,第一NSTS门限],b的取值范围为[m,…,M],m和M为大于或等于1的整数。
在示例五的一种可能的实现方式中,所述处理模块1610还用于确定采用的RU大小小于所述第一RU门限时,使用第一子字段集合中NSTS为n,序号为b的RU对应的第一调制门限对应的名义包填充值,其中,n的取值范围为[1,…,N],N为大于8的整数,b的取值范围为[m,…,第一RU门限],m为大于或等于1的整数。
在示例五的一种可能的实现方式中,所述收发模块1620还用于:
接收所述第一设备发送的所述第一NSTS门限;和/或,
接收所述第一设备发送的所述第一RU门限。
在示例五的一种可能的实现方式中,所述收发模块1620还用于:
接收来自所述第一设备的第二指示信息,所述第二指示信息用于指示所述第一RU门限是否生效。
在示例四或示例五的一种可能的实现方式中,所述物理层包扩展门限字段还包括:
用于指示NSTS为n,序号为b的RU对应的调制门限的第二子字段集合,所述第二子字段集合中的一个第二子字段用于指示一个与NSTS为n,序号为b对应的RU对应的第二调制门限,所述第二调制门限用于指示通信装置1600使用的第二名义包填充值,在所述通信装置1600的调制方式大于或等于所述第二调制门限时,所述第二名义包填充值为16微秒;
用于指示NSTS为n,序号为b的RU对应的调制门限的第三子字段集合,所述第三子字段集合中的一个第三子字段用于指示一个与NSTS为n,序号为b对应的RU对应的第三调制门限,所述第三调制门限用于指示通信装置1600使用的第三名义包填充值,在所述通信装置1600的调制方式大于或等于所述第三调制门限时,所述第三名义包填充值为8微秒。
在示例四或示例五的一种可能的实现方式中,所述第一子字段集合、所述第二子字段集合和所述第三子字段集合位于所述物理层包扩展门限字段包括的第一物理层包扩展门限信息字段;或者,
所述第一子字段集合位于所述物理层包扩展门限字段包括的第一物理层包扩展门限信息字段,所述第二子字段集合和所述第三子字段集合位于所述物理层包扩展门限字段包括的第二物理层包扩展门限信息字段。
在第三方面或第四方面的一种可能的实现方式中,所述第一子字段集合对应的n大于或等于所述第一NSTS门限,所述物理层包扩展门限字段不包括所述第二子字段集合和所述第三子字段集合。
在示例四或示例五的一种可能的实现方式中,所述PPDU包括第三物理层包扩展门限信息字段和第四物理层包扩展门限信息字段,用于指示NSTS为n,序号为b的RU对应的调制门限的第一子字段集合分别位于所述第三物理层包扩展门限信息字段和第四物理层包扩展门限信息字段,其中,
所述第三物理层包扩展门限信息字段对应的n位于第二集合,所述第二集合为[1,…, N]的子集,所述第二集合内的元素是连续的,且所述第三物理层包扩展门限信息字段对应的b的位于第三集合,所述第三集合为[q,…,M]的子集,所述q大于所述m,[q,…,M]内的元素是连续的,所述第三集合内的元素是连续的;
所述第四物理层包扩展门限信息字段对应的n位于第四集合,所述第四集合为[p,…,N],p为大于1的整数,所述第四集合内的元素是连续的,且所述第四物理层包扩展门限信息字段对应的b的位于第五集合,所述第五集合为[m,…,q]的子集,所述q小于M,[m,…,q]内的元素是连续的,所述第五集合内的元素是连续的。
在示例四或示例五的一种可能的实现方式中,所述PPDU包括第三物理层包扩展门限信息字段和第四物理层包扩展门限信息字段,用于指示NSTS为n,序号为b对应的RU对应的调制门限的第一子字段集合分别位于所述第三物理层包扩展门限信息字段和第四物理层包扩展门限信息字段,其中,
所述第三物理层包扩展门限信息字段对应的n位于第二集合,所述第二集合为[p,…,N]的子集,p为大于1的整数,所述第二集合内的元素是连续的,且所述第三物理层包扩展门限信息字段对应的b的位于第三集合,所述第三集合为[m,…,M]的子集,所述第三集合内的元素是连续的;
所述第四物理层包扩展门限信息字段对应的n位于第四集合,所述第四集合为[1,…,p],p小于N,所述第四集合内的元素是连续的,且所述第四物理层包扩展门限信息字段对应的b的位于第五集合,所述第五集合为[q,…,M]的子集,所述q大于m,[q,…,M]内的元素是连续的,所述第五集合内的元素是连续的。
在示例四或示例五的一种可能的实现方式中,所述PPDU包括第三物理层包扩展门限信息字段、第四物理层包扩展门限信息字段和第五物理层包扩展门限信息字段,用于指示NSTS为n,序号为b对应的RU对应的调制门限的第一子字段集合分别位于所述第三物理层包扩展门限信息字段、第四物理层包扩展门限信息字段和第五物理层包扩展门限信息字段;其中,
所述第三物理层包扩展门限信息字段对应的n位于第二集合,所述第二集合为[p,…,N]的子集,p为大于1的整数,所述第二集合内的元素是连续的,且所述第三物理层包扩展门限信息字段对应的b的位于第三集合,所述第三集合为[m,…,q]的子集,所述q小于M,[m,…,q]内的元素是连续的,所述第五集合内的元素是连续的;
所述第四物理层包扩展门限信息字段对应的n位于第四集合,所述第四集合为[1,…,p],p小于N,所述第四集合内的元素是连续的,且所述第四物理层包扩展门限信息字段对应的b的位于第五集合,所述第五集合为[q,…,M]的子集,所述q大于m,[q,…,M]内的元素是连续的,所述第五集合内的元素是连续的;
所述第五物理层包扩展门限信息字段对应的n位于第六集合,所述第六集合为[p,…N],p为大于1的整数,所述第六集合内的元素是连续的,且所述第五物理层包扩展门限信息字段对应的b的位于第七集合,所述第七集合为[q,…,M]的子集,所述q大于m,[q,…,M]内的元素是连续的,所述第七集合内的元素是连续的。
在示例四或示例五的一种可能的实现方式中,所述通信装置1600采用的NSTS为第二取值,n的取值范围为[1,…,第一NSTS门限]的真子集;和/或,
所述物理层包扩展门限字段包括的资源单元RU索引掩码指示的RU的索引属于第八集合的真子集,所述第一集合为{242,484,996,2*996,3*996,4*996}。
在示例四的一种可能的实现方式中,满足如下第一条件、第二条件和第三条件,所述通信装置1600确定要使用的名义包填充值等于8微秒:
所述第一条件为所述通信装置1600要采用的调制方式大于或等于所述第三调制门限;
所述第二条件为所述通信装置1600要采用的调制方式小于所述第二调制门限,或者所述第二子字段集合的值为空(null);
所述第三条件为所述通信装置1600要采用的调制方式小于所述第一调制门限,或者所述第一子字段集合的值为空。
在示例四的一种可能的实现方式中,满足如下第四条件、第五条件和第六条件,所述通信装置1600确定要使用的名义包填充值等于16微秒:
所述第四条件为所述通信装置1600要采用的调制方式大于所述第三调制门限,或者所述第三子字段集合的值为空;
所述第五条件为所述通信装置1600要采用的调制方式大于或等于所述第二调制门限;
所述第六条件为所述通信装置1600要采用的调制方式小于所述第一调制门限,或者所述第一子字段集合的值为空(null)。
示例六,提供一种通信装置,例如该通信装置为如前所述的第一设备或设置在第一设备内的装置。所述通信装置可用于执行上述第六方面或第六方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第六方面或第六方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块1610和收发模块1620。示例性地,所述通信装置为前述的通信装置1600。其中,
所述收发模块1620用于接收来自第一设备的物理层协议数据单元PPDU,所述PPDU包括物理层包扩展门限存在子字段;其中,所述物理层包扩展门限存在子字段的取值为1,所述PPDU包括门限字段,所述门限字段用于指示第一NSTS门限、第一资源单元RU门限和第一调制门限中的一种或多种,
所述处理模块1610用于确定满足预设条件时,所述通信装置1600确定所述名义包填充值为第一取值,且所述第一值大于16微秒;所述预设条件为如下条件的一种或多种:
所述通信装置发送数据采用的NSTS大于或等于所述第一NSTS门限;
所述通信装置发送数据采用的RU大于或等于所述第一RU门限;
所述通信装置要采用的调制方式大于或等于所述第一调制门限。
在示例六的可能的实现方式中,所述PPDU不包括用于指示NSTS为n,序号为b对应的RU对应的调制门限的第二子字段集合和第三子字段集合,n的取值范围为[1,…,N],N为小于或等于8的整数,b的取值范围为[m,…,M],m和M为大于或等于1的整数。
在示例六的一种可能的实现方式中,所述收发模块1620还用于接收所述第一设备发送的指示信息,其中,
所述门限字段包括NSTS门限子字段、RU门限子字段和调制门限子字段,所述指示信息用于指示所述门限字段中的一个或多个子字段是否生效;或者,
所述指示信息用于指示所述名义包填充值为第一取值无效;或者,
所述指示信息用于指示所述门限字段是否包括NSTS门限子字段、RU门限子字段和调制门限子字段中的一种或多种。
应理解,本申请实施例中的处理模块1610可以由处理器或处理器相关电路组件实现, 收发模块1620可以由收发器或收发器相关电路组件或者通信接口实现。
如图17所示为本申请实施例提供的通信装置1700,其中,通信装置1700可以是AP或STA,能够实现本申请实施例提供的方法中第一设备或第二设备的功能;通信装置1700也可以是能够支持第一设备实现本申请实施例提供的方法中对应的功能的装置,或者能够支持第二设备实现本申请实施例提供的方法中对应的功能的装置。其中,该通信装置1700可以为芯片或芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
在硬件实现上,上述收发模块1620可以为收发器1710。
通信装置1700包括至少一个处理器1720,用于实现或用于支持通信装置1700实现本申请实施例提供的方法中第一设备或第二设备的功能,例如生成前述的PPDU。通信装置1700还可以包括至少一个存储器1730,用于存储程序指令和/或数据。存储器1730和处理器1720耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1720可能和存储器1730协同操作。处理器1720可能执行存储器1730中存储的程序指令和/或数据,以使得通信装置1700实现相应的方法。所述至少一个存储器中的至少一个可以位于处理器中。
通信装置1700还可以包括收发器1710,用于通过传输介质和其它设备进行通信,从而用于通信装置1700中的装置可以和其它设备进行通信。示例性地,当该通信装置为终端时,该其它设备为网络设备;或者,当该通信装置为网络设备时,该其它设备为终端。处理器1720可以利用收发器1710收发数据。收发器1710具体可以是收发器。该通信装置1700还可以射频单元,该射频单元可以独立于通信装置1700之外,也可以是集成在通信装置1700之内。当然,上述的该收发器1710还可以包括天线,例如独立于通信装置1700之外的拉远的天线,也可以是集成在通信装置1700之内的天线。
本申请实施例中不限定上述收发器1710、处理器1720以及存储器1730之间的具体连接介质。本申请实施例在图17中以存储器1730、处理器1720以及收发器1710之间通过总线1740连接,总线在图17中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图17中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器1720可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器1730可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
需要说明的是,上述实施例中的通信装置可以是终端也可以是电路,也可以是应用于 终端中的芯片或者其他具有上述终端功能的组合器件、部件等。当通信装置是终端时,收发模块可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理模块(central processing unit,CPU)。当通信装置是具有上述终端功能的部件时,收发模块可以是射频单元,处理模块可以是处理器。当通信装置是芯片或芯片系统时,收发模块可以是芯片或芯片系统的输入输出接口、处理模块可以是芯片或芯片系统的处理器。
作为一种可能的产品形态,本申请实施例所述的AP和STA,还可以使用下述来实现:一个或多个FPGA(现场可编程门阵列)、PLD(可编程逻辑器件)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
本申请实施例中的第一设备可以是AP,也可以是STA。第二设备可以是AP,也可以是STA。应理解,上述各种产品形态的AP,具有上述方法实施例中AP的任意功能,此处不再赘述;上述各种产品形态的STA,具有上述方法实施例中STA的任意功能,此处不再赘述。
本申请实施例还提供一种通信系统,具体的,通信系统包括第二设备和第一设备,或者还可以包括更多个第一设备和第二设备。示例性的,该通信系统包括用于实现上述图9的相关功能的第二设备和第一设备。
所述第一设备分别用于实现上述图9相关第一设备部分的功能。所述第二设备用于实现上述图9相关第二设备的功能。例如第二设备可执行例如图9所示的实施例中的S902-S903,第一设备可执行图9所示的实施例中的S901-S902。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行图9中第一设备或第二设备执行的方法。
本申请实施例中还提供一种计算机程序产品,包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行图8中第一设备或第二设备执行的方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述方法中第一设备或第二设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还提供了一种通信装置,包括处理器和接口;所述处理器,用于执行上述任一方法实施例所述的名义包填充值的指示方法。
应理解,上述通信装置可以是一个芯片,所述处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,改存储器可以集成在处理器中,可以位于所述处理器之外,独立存在。
应理解,本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个 对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一信息和第二信息,只是为了区分不同的指示信息,而并不是表示这两种信息的优先级、或者重要程度等的不同。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
另外,在本申请实施例中,“示例性的”一词用于表示例子或说明。本申请实施例汇总被描述为“示例”的任何实施例或实现方案不应被解释为比其他实施例或实现方案更优选。也就是,使用“示例”一词旨在以具体方式呈现概念。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (38)

  1. 一种名义包填充值的指示方法,其特征在于,包括:
    第一设备生成物理层协议数据单元PPDU,以及向第二设备发送所述PPDU,所述PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段;
    其中,所述物理层包扩展门限存在子字段的取值为1,所述物理层包扩展门限字段包括空时流数NSTS字段,以及用于指示NSTS为n,编号为b的RU对应的调制门限的第一子字段集合,n的取值范围为[1,…,N],N为大于8的整数,b的取值范围为[m,…,M],m和M为大于或等于1的整数;
    所述第一子字段集合中的一个第一子字段用于指示一个与NSTS为n,编号为b的RU对应的第一调制门限,所述第一调制门限用于指示第二设备在调制方式大于或等于所述第一调制门限时使用的第一名义包填充值,所述第一名义包填充值为第一取值,所述第一取值大于16微秒。
  2. 一种名义包填充值的指示方法,其特征在于,包括:
    第一设备向第二设备发送第一空时流数NSTS门限和/或第一资源单元RU门限,其中,所述第一NSTS门限用于指示所述第二设备采用的NSTS大于或等于所述第一NSTS门限时,使用第一名义包填充值;
    所述第一RU门限用于指示所述第二设备采用的RU大小大于或等于所述第一RU门限时,使用第一名义包填充值;
    所述第一名义包填充值大于16微秒。
  3. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送物理层协议数据单元PPDU,所述PPDU包括空时流数NSTS字段,以及用于指示NSTS为n,序号为b的RU对应的调制门限的第一子字段集合;所述调制门限用于指示第二设备在调制方式大于或等于所述调制门限时使用的名义包填充值;
    其中,n的取值范围为[1,…,p],p小于或等于所述第一NSTS门限。
  4. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送物理层协议数据单元PPDU,所述PPDU包括空时流数NSTS字段,以及用于指示NSTS为n,序号为b的RU对应的调制门限的第一子字段集合;所述调制门限用于指示第二设备在调制方式大于或等于所述调制门限时使用的名义包填充值;
    所述b的取值范围为[m,…,q],m为大于或等于1的整数,q小于或等于所述第一RU门限。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述物理层包扩展门限字段还包括:
    用于指示NSTS为n,编号为b的RU对应的调制门限的第二子字段集合,所述第二子字段集合中的一个第二子字段用于指示一个与NSTS为n,编号为b的RU对应的第二调制门限,所述第二调制门限用于指示第二设备在调制方式大于或等于所述第二调制门限时使用的第二名义包填充值,所述第二名义包填充值为16微秒;
    用于指示NSTS为n,编号为b的RU对应的调制门限的第三子字段集合,所述第三 子字段集合中的一个第三子字段用于指示一个与NSTS为n,编号为b的RU对应的第三调制门限,所述第三调制门限用于指示第二设备在调制方式大于或等于所述第三调制门限时使用的第三名义包填充值,所述第三名义包填充值为8微秒。
  6. 如权利要求5所述的方法,其特征在于,所述第一子字段集合、所述第二子字段集合和所述第三子字段集合位于所述物理层包扩展门限字段包括的第一物理层包扩展门限信息字段;或者,
    所述第一子字段集合位于所述物理层包扩展门限字段包括的第一物理层包扩展门限信息字段,所述第二子字段集合和所述第三子字段集合位于所述物理层包扩展门限字段包括的第二物理层包扩展门限信息字段。
  7. 如权利要求5或6所述的方法,其特征在于,所述第一子字段集合对应的n大于或等于所述第一NSTS门限,所述物理层包扩展门限字段不包括所述第二子字段集合和所述第三子字段集合。
  8. 如权利要求1所述的方法,其特征在于,所述第二设备采用的NSTS为第二取值,n的取值范围为[1,…,N]的真子集;和/或,
    所述物理层包扩展门限字段包括的资源单元RU索引掩码指示的RU的索引属于第八集合的真子集,所述第一集合为{242,484,996,2*996,3*996,4*996}。
  9. 一种名义包填充值的确定方法,其特征在于,包括:
    第二设备接收来自第一设备的物理层协议数据单元PPDU,其中,所述PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,所述物理层包扩展门限字段包括空时流数NSTS字段,以及用于指示NSTS为n,编号为b的RU对应的调制门限的第一子字段集合,n的取值范围为[1,…,N],N为大于8的整数,b的取值范围为[m,…,M],m和M为大于或等于1的整数;其中,所述第一子字段集合中的一个第一子字段用于指示一个与NSTS为n,编号为b的RU对应的第一调制门限,所述第一调制门限用于指示第二设备在调制方式大于或等于所述第一调制门限时使用的第一名义包填充值,所述第一名义包填充值为第一取值,所述第一取值大于16微秒;
    所述第二设备若确定采用的调制方式大于或等于所述第一调制门限,则确定要使用的所述第一名义包填充值。
  10. 一种名义包填充值的确定方法,其特征在于,包括:
    第二设备确定至少满足以下两个条件的至少一个时,使用第一名义包填充值,所述第一名义包填充值大于16微秒;
    所述第二设备采用的空时流数NSTS大于或等于第一NSTS门限;
    所述第二设备确定采用的RU大小大于或等于第一RU门限。
  11. 如权利要求10所述的方法,其特征在于,所述方法还包括:
    所述第二设备确定采用的NSTS小于所述第一NSTS门限时,使用第一子字段集合中NSTS为n,序号为b的RU对应的第一调制门限对应的名义包填充值,其中,n的取值范围为[1,…,第一NSTS门限],b的取值范围为[m,…,M],m和M为大于或等于1的整数。
  12. 如权利要求10所述的方法,其特征在于,所述方法还包括:
    所述第二设备确定采用的RU大小小于所述第一RU门限时,使用第一子字段集合中 NSTS为n,序号为b的RU对应的第一调制门限对应的名义包填充值,其中,n的取值范围为[1,…,N],N为大于8的整数,b的取值范围为[m,…,第一RU门限],m为大于或等于1的整数。
  13. 如权利要求10-12任一项所述的方法,其特征在于,所述物理层包扩展门限字段还包括:
    用于指示NSTS为n,编号为b的RU对应的调制门限的第二子字段集合,所述第二子字段集合中的一个第二子字段用于指示一个与NSTS为n,编号为b的RU对应的第二调制门限,所述第二调制门限用于指示第二设备使用的第二名义包填充值,在所述第二设备的调制方式大于或等于所述第二调制门限时,所述第二名义包填充值为16微秒;
    用于指示NSTS为n,编号为b的RU对应的调制门限的第三子字段集合,所述第三子字段集合中的一个第三子字段用于指示一个与NSTS为n,编号为b的RU对应的第三调制门限,所述第三调制门限用于指示第二设备使用的第三名义包填充值,在所述第二设备的调制方式大于或等于所述第三调制门限时,所述第三名义包填充值为8微秒。
  14. 如权利要求13所述的方法,其特征在于,所述第一子字段集合、所述第二子字段集合和所述第三子字段集合位于所述物理层包扩展门限字段包括的第一物理层包扩展门限信息字段;或者,
    所述第一子字段集合位于所述物理层包扩展门限字段包括的第一物理层包扩展门限信息字段,所述第二子字段集合和所述第三子字段集合位于所述物理层包扩展门限字段包括的第二物理层包扩展门限信息字段。
  15. 如权利要求13或14所述的方法,其特征在于,所述第一子字段集合对应的n大于或等于所述第一NSTS门限,所述物理层包扩展门限字段不包括所述第二子字段集合和所述第三子字段集合。
  16. 如权利要求10所述的方法,其特征在于,所述第二设备采用的NSTS为第二取值,n的取值范围为[1,…,N]的真子集;和/或,
    所述物理层包扩展门限字段包括的资源单元RU索引掩码指示的RU的索引属于第八集合的真子集,所述第一集合为{242,484,996,2*996,3*996,4*996}。
  17. 如权利要求10所述的方法,其特征在于,满足如下第一条件、第二条件和第三条件,所述第二设备确定要使用的名义包填充值等于8微秒:
    所述第一条件为所述第二设备要采用的调制方式大于或等于所述第三调制门限;
    所述第二条件为所述第二设备要采用的调制方式小于所述第二调制门限,或者所述第二子字段集合的值为空(null);
    所述第三条件为所述第二设备要采用的调制方式小于所述第一调制门限,或者所述第一子字段集合的值为空。
  18. 如权利要求10所述的方法,其特征在于,满足如下第四条件、第五条件和第六条件,所述第二设备确定要使用的名义包填充值等于16微秒:
    所述第四条件为所述第二设备要采用的调制方式大于所述第三调制门限,或者所述第三子字段集合的值为空;
    所述第五条件为所述第二设备要采用的调制方式大于或等于所述第二调制门限;
    所述第六条件为所述第二设备要采用的调制方式小于所述第一调制门限,或者所述第一子字段集合的值为空(null)。
  19. 一种通信装置,其特征在于,包括收发器和处理器,其中:
    所述处理器用于生成物理层协议数据单元PPDU,所述PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段;所述物理层包扩展门限存在子字段的取值为1,所述物理层包扩展门限字段包括空时流数NSTS字段,以及用于指示NSTS为n,编号为b的RU对应的调制门限的第一子字段集合,n的取值范围为[1,…,N],N为大于8的整数,b的取值范围为[m,…,M],m和M为大于或等于1的整数;
    所述第一子字段集合中的一个第一子字段用于指示一个与NSTS为n,编号为b的RU对应的第一调制门限,所述第一调制门限用于指示第二设备在调制方式大于或等于所述第一调制门限时使用的第一名义包填充值,所述第一名义包填充值为第一取值,所述第一取值大于16微秒;
    所述收发器,用于向第二设备发送所述PPDU。
  20. 一种通信装置,其特征在于,包括收发器,其中:
    所述收发器用于向第二设备发送第一空时流数NSTS门限和/或第一资源单元RU门限,其中,所述第一NSTS门限用于指示所述第二设备采用的NSTS大于或等于所述第一NSTS门限时,使用第一名义包填充值;
    所述第一RU门限用于指示所述第二设备采用的RU大小大于或等于所述第一RU门限时,使用第一名义包填充值;
    所述第一名义包填充值大于16微秒。
  21. 如权利要求20所述的通信装置,其特征在于,所述收发器还用于:
    向所述第二设备发送物理层协议数据单元PPDU,所述PPDU包括空时流数NSTS字段,以及用于指示NSTS为n,序号为b的RU对应的调制门限的第一子字段集合;所述调制门限用于指示第二设备在调制方式大于或等于所述调制门限时使用的名义包填充值;
    其中,n的取值范围为[1,…,p],p小于或等于所述第一NSTS门限。
  22. 如权利要求20所述的通信装置,其特征在于,所述收发器还用于:
    向所述第二设备发送物理层协议数据单元PPDU,所述PPDU包括空时流数NSTS字段,以及用于指示NSTS为n,序号为b的RU对应的调制门限的第一子字段集合;所述调制门限用于指示第二设备在调制方式大于或等于所述调制门限时使用的名义包填充值;
    所述b的取值范围为[m,…,q],m为大于或等于1的整数,q小于或等于所述第一RU门限。
  23. 如权利要求19-22任一项所述的通信装置,其特征在于,所述物理层包扩展门限字段还包括:
    用于指示NSTS为n,编号为b的RU对应的调制门限的第二子字段集合,所述第二子字段集合中的一个第二子字段用于指示一个与NSTS为n,编号为b的RU对应的第二调制门限,所述第二调制门限用于指示第二设备在调制方式大于或等于所述第二调制门限时使用的第二名义包填充值,所述第二名义包填充值为16微秒;
    用于指示NSTS为n,编号为b的RU对应的调制门限的第三子字段集合,所述第三子字段集合中的一个第三子字段用于指示一个与NSTS为n,编号为b的RU对应的第三调制门限,所述第三调制门限用于指示第二设备在调制方式大于或等于所述第三调制门限时使用的第三名义包填充值,所述第三名义包填充值为8微秒。
  24. 如权利要求23所述的通信装置,其特征在于,所述第一子字段集合、所述第二子 字段集合和所述第三子字段集合位于所述物理层包扩展门限字段包括的第一物理层包扩展门限信息字段;或者,
    所述第一子字段集合位于所述物理层包扩展门限字段包括的第一物理层包扩展门限信息字段,所述第二子字段集合和所述第三子字段集合位于所述物理层包扩展门限字段包括的第二物理层包扩展门限信息字段。
  25. 如权利要求23或24所述的通信装置,其特征在于,所述第一子字段集合对应的n大于或等于所述第一NSTS门限,所述物理层包扩展门限字段不包括所述第二子字段集合和所述第三子字段集合。
  26. 如权利要求19所述的通信装置,其特征在于,所述第二设备采用的NSTS为第二取值,n的取值范围为[1,…,N]的真子集;和/或,
    所述物理层包扩展门限字段包括的资源单元RU索引掩码指示的RU的索引属于第八集合的真子集,所述第一集合为{242,484,996,2*996,3*996,4*996}。
  27. 一种通信装置,其特征在于,包括收发器和处理器,其中:
    所述收发器用于接收来自第一设备的物理层协议数据单元PPDU,其中,所述PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,所述物理层包扩展门限字段包括空时流数NSTS字段,以及用于指示NSTS为n,编号为b的RU对应的调制门限的第一子字段集合,n的取值范围为[1,…,N],N为大于8的整数,b的取值范围为[m,…,M],m和M为大于或等于1的整数;其中,所述第一子字段集合中的一个第一子字段用于指示一个与NSTS为n,编号为b的RU对应的第一调制门限,所述第一调制门限用于指示通信装置在调制方式大于或等于所述第一调制门限时使用的第一名义包填充值,所述第一名义包填充值为第一取值,所述第一取值大于16微秒;
    所述处理器用于若确定采用的调制方式大于或等于所述第一调制门限,则确定要使用的所述第一名义包填充值。
  28. 一种通信装置,其特征在于,包括收发器和处理器,其中:
    所述处理器用于确定至少满足以下两个条件的至少一个时,使用第一名义包填充值,所述第一名义包填充值大于16微秒;
    所述通信装置采用的空时流数NSTS大于或等于第一NSTS门限;
    所述通信装置确定采用的RU大小大于或等于第一RU门限。
  29. 如权利要求28所述的通信装置,其特征在于,所述处理器还用于:
    确定采用的NSTS小于所述第一NSTS门限时,使用第一子字段集合中NSTS为n,序号为b的RU对应的第一调制门限对应的名义包填充值,其中,n的取值范围为[1,…,第一NSTS门限],b的取值范围为[m,…,M],m和M为大于或等于1的整数。
  30. 如权利要求28所述的通信装置,其特征在于,所述处理器还用于:
    确定采用的RU大小小于所述第一RU门限时,使用第一子字段集合中NSTS为n,序号为b的RU对应的第一调制门限对应的名义包填充值,其中,n的取值范围为[1,…,N],N为大于8的整数,b的取值范围为[m,…,第一RU门限],m为大于或等于1的整数。
  31. 如权利要求28-30任一项所述的通信装置,其特征在于,所述物理层包扩展门限字段还包括:
    用于指示NSTS为n,编号为b的RU对应的调制门限的第二子字段集合,所述第二子字段集合中的一个第二子字段用于指示一个与NSTS为n,编号为b的RU对应的第二调制门限,所述第二调制门限用于指示通信装置使用的第二名义包填充值,在所述通信装置的调制方式大于或等于所述第二调制门限时,所述第二名义包填充值为16微秒;
    用于指示NSTS为n,编号为b的RU对应的调制门限的第三子字段集合,所述第三子字段集合中的一个第三子字段用于指示一个与NSTS为n,编号为b的RU对应的第三调制门限,所述第三调制门限用于指示通信装置使用的第三名义包填充值,在所述通信装置的调制方式大于或等于所述第三调制门限时,所述第三名义包填充值为8微秒。
  32. 如权利要求31所述的通信装置,其特征在于,所述第一子字段集合、所述第二子字段集合和所述第三子字段集合位于所述物理层包扩展门限字段包括的第一物理层包扩展门限信息字段;或者,
    所述第一子字段集合位于所述物理层包扩展门限字段包括的第一物理层包扩展门限信息字段,所述第二子字段集合和所述第三子字段集合位于所述物理层包扩展门限字段包括的第二物理层包扩展门限信息字段。
  33. 如权利要求31或32所述的通信装置,其特征在于,所述第一子字段集合对应的n大于或等于所述第一NSTS门限,所述物理层包扩展门限字段不包括所述第二子字段集合和所述第三子字段集合。
  34. 如权利要求28所述的通信装置,其特征在于,所述通信装置采用的NSTS为第二取值,n的取值范围为[1,…,第一NSTS门限]的真子集;和/或,
    所述物理层包扩展门限字段包括的资源单元RU索引掩码指示的RU的索引属于第八集合的真子集,所述第一集合为{242,484,996,2*996,3*996,4*996}。
  35. 如权利要求28所述的通信装置,其特征在于,满足如下第一条件、第二条件和第三条件,所述处理器确定要使用的名义包填充值等于8微秒:
    所述第一条件为所述通信装置要采用的调制方式大于或等于所述第三调制门限;
    所述第二条件为所述通信装置要采用的调制方式小于所述第二调制门限,或者所述第二子字段集合的值为空(null);
    所述第三条件为所述通信装置要采用的调制方式小于所述第一调制门限,或者所述第一子字段集合的值为空。
  36. 如权利要求28所述的通信装置,其特征在于,满足如下第四条件、第五条件和第六条件,所述处理器确定要使用的名义包填充值等于16微秒:
    所述第四条件为所述通信装置要采用的调制方式大于所述第三调制门限,或者所述第三子字段集合的值为空;
    所述第五条件为所述通信装置要采用的调制方式大于或等于所述第二调制门限;
    所述第六条件为所述通信装置要采用的调制方式小于所述第一调制门限,或者所述第一子字段集合的值为空(null)。
  37. 一种芯片,其特征在于,所述芯片包括至少一个处理器和接口,所述处理器用于读取并执行存储器中存储的指令,当所述指令被运行时,使得所述芯片执行如权利要求1-18任一项所述的方法。
  38. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被计算机执行时,使所述计算机执行 如权利要求1-18任一项所述的方法。
PCT/CN2021/120204 2020-09-30 2021-09-24 一种名义包填充值的指示方法、确定方法及通信装置 WO2022068686A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112023006042A BR112023006042A2 (pt) 2020-09-30 2021-09-24 Método de indicação e método de determinação para valor de preenchimento de pacote nominal, e aparelho de comunicação

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011069848.1A CN114338829A (zh) 2020-09-30 2020-09-30 一种名义包填充值的指示方法、确定方法及通信装置
CN202011069848.1 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022068686A1 true WO2022068686A1 (zh) 2022-04-07

Family

ID=80951112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120204 WO2022068686A1 (zh) 2020-09-30 2021-09-24 一种名义包填充值的指示方法、确定方法及通信装置

Country Status (3)

Country Link
CN (1) CN114338829A (zh)
BR (1) BR112023006042A2 (zh)
WO (1) WO2022068686A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150189586A1 (en) * 2012-07-04 2015-07-02 Lars Westberg Method for handling the operation mode of a base station
CN108370285A (zh) * 2015-12-11 2018-08-03 马维尔国际贸易有限公司 高效率无线局域网(wlan)数据单元中的信号字段编码
CN110691114A (zh) * 2018-07-06 2020-01-14 华为技术有限公司 通信方法、装置及设备
CN111344981A (zh) * 2017-10-13 2020-06-26 高通股份有限公司 管理下一代极高吞吐量(eht)wi-fi系统中的大量空间时间流

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106936553B (zh) * 2015-12-31 2020-11-17 华为技术有限公司 一种无线局域网中帧传输的方法及装置
US20180198654A1 (en) * 2017-01-10 2018-07-12 Marvell World Trade Ltd. Signaling of Training Field Length and Guard Interval Duration
WO2018183081A1 (en) * 2017-03-27 2018-10-04 Intel IP Corporation Apparatus, system and method of communicating an edmg mu ppdu with a header b field
CN111726193B (zh) * 2019-03-18 2023-04-07 华为技术有限公司 信息指示方法及装置、数据传输系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150189586A1 (en) * 2012-07-04 2015-07-02 Lars Westberg Method for handling the operation mode of a base station
CN108370285A (zh) * 2015-12-11 2018-08-03 马维尔国际贸易有限公司 高效率无线局域网(wlan)数据单元中的信号字段编码
CN111344981A (zh) * 2017-10-13 2020-06-26 高通股份有限公司 管理下一代极高吞吐量(eht)wi-fi系统中的大量空间时间流
CN110691114A (zh) * 2018-07-06 2020-01-14 华为技术有限公司 通信方法、装置及设备

Also Published As

Publication number Publication date
CN114338829A (zh) 2022-04-12
BR112023006042A2 (pt) 2023-05-09

Similar Documents

Publication Publication Date Title
US9036728B2 (en) Group resource allocation techniques for IEEE 802.16M
US11387965B2 (en) Method for replying with acknowledgement frame, apparatus, and data transmission system
EP4017175A1 (en) Frequency domain resource allocation method and apparatus
WO2018228601A1 (zh) 一种数据处理方法及数据处理装置
US11979342B2 (en) Resource indication method, access point, and station
US20190349914A1 (en) Data transmission method and apparatus and information transmission method and apparatus
CN110536421B (zh) 通信方法和装置
US20240031088A1 (en) Data transmission method and related apparatus
WO2023020349A1 (zh) 发送物理层协议数据单元的方法和通信装置
WO2022068686A1 (zh) 一种名义包填充值的指示方法、确定方法及通信装置
WO2022184032A1 (zh) 一种资源分配方法及通信装置
WO2021244647A1 (zh) 发送触发帧的方法、接收触发帧的方法和通信装置
WO2021180231A1 (zh) 一种资源单元合并指示方法及通信装置
WO2022148445A1 (zh) 一种名义包填充值的指示方法、确定方法及通信装置
WO2023071901A1 (zh) 通信方法和通信装置
WO2022170851A1 (zh) 一种信息指示方法及装置
TWI839839B (zh) 實體層協定資料單元傳輸方法、通信裝置、電腦可讀儲存介質、電腦程式產品、晶片及通信系統
WO2023284644A1 (zh) 一种通信方法及通信装置
WO2024002080A1 (zh) 数据传输的方法和通信装置
WO2023036306A1 (zh) 物理层协议数据单元传输方法及装置
CN112423313B (zh) 传输块大小确定方法及装置
CN117595973A (zh) 数据传输的方法和通信装置

Legal Events

Date Code Title Description
REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023006042

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023006042

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230330

122 Ep: pct application non-entry in european phase

Ref document number: 21874347

Country of ref document: EP

Kind code of ref document: A1