WO2021244647A1 - 发送触发帧的方法、接收触发帧的方法和通信装置 - Google Patents

发送触发帧的方法、接收触发帧的方法和通信装置 Download PDF

Info

Publication number
WO2021244647A1
WO2021244647A1 PCT/CN2021/098448 CN2021098448W WO2021244647A1 WO 2021244647 A1 WO2021244647 A1 WO 2021244647A1 CN 2021098448 W CN2021098448 W CN 2021098448W WO 2021244647 A1 WO2021244647 A1 WO 2021244647A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
sta
resource unit
subfield
threshold
Prior art date
Application number
PCT/CN2021/098448
Other languages
English (en)
French (fr)
Inventor
狐梦实
于健
淦明
梁丹丹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21817101.5A priority Critical patent/EP4149192A4/en
Publication of WO2021244647A1 publication Critical patent/WO2021244647A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access
    • H04W74/06Scheduled access using polling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to a method for sending a trigger frame, a method for receiving a trigger frame, and a communication device.
  • WLAN Wireless Local Area Network, wireless local area network
  • the access point (Access Point, AP) first sends a trigger frame, where the trigger frame contains one or more user information fields, and each user information field corresponds to one STA, and the information carried by the user information field is used to indicate one or Multiple stations (Station, STA) send uplink sub-physical layer protocol data unit (PHY Protocol Data Unit, PPDU) resource scheduling and other parameters.
  • the trigger frame contains one or more user information fields, and each user information field corresponds to one STA, and the information carried by the user information field is used to indicate one or Multiple stations (Station, STA) send uplink sub-physical layer protocol data unit (PHY Protocol Data Unit, PPDU) resource scheduling and other parameters.
  • PHY Protocol Data Unit PHY Protocol Data Unit
  • the STA After receiving the trigger frame, the STA parses out its own user information field, and then sends uplink data according to the information carried by the user information field.
  • the user information field includes a spatial stream allocation subfield (Spatial Stream Allocation subfield, SS Allocation subfield), which is used to carry the spatial stream (Spatial Stream, SS) information allocated by the AP to the STA (abbreviated as spatial stream).
  • SS spatial stream
  • Allocation information for example, the spatial stream allocation information includes information about the number of SSs and information about the starting position of the SS.
  • the spatial stream allocation subfield includes 6 bits, of which the start position information occupies 3 bits, so the start position information can indicate 8 possible positions, and the quantity information occupies 3 bits, so the quantity information can indicate 8 possible quantities.
  • the maximum number of SSs of the STA is 8. Therefore, the aforementioned spatial stream allocation subfield can meet the requirements of the prior art.
  • the present application provides a method for sending a trigger frame, a method for receiving a trigger frame, and a communication device, which can reduce the overhead of spatial stream allocation information.
  • a method for sending a trigger frame includes: an access point AP generates a trigger frame, the trigger frame includes a first user information field corresponding to a first station STA, the first user information field It includes a first spatial stream allocation subfield and first information, where the first information is used to indicate the method used by the first STA to transmit data, and the method includes multi-user multiple-input multiple-output MU-MIMO or non-multi-user In a multiple-input multiple-output non-MU-MIMO mode, the spatial stream allocation information of the first STA carried by the first spatial stream allocation subfield corresponds to the content indicated by the first information; the AP sends the trigger frame.
  • the maximum number of STA spatial streams is 16
  • the maximum number of spatial streams per user in MU-MIMO mode is 4, 4 bits are required to indicate the number of spatial streams, and 4 bits are required to indicate the starting position, that is,
  • the overhead of the spatial stream allocation information is 8 bits, and the overhead of jointly indicating the spatial stream allocation information in the MU-MIMO mode and the non-MU-MIMO mode is shown in Table 1 below:
  • value indicated by index has the same meaning as "value of index” and "index value”, and represents the value corresponding to a binary index (that is, one or more bits), for example, a decimal value To avoid repetition, the description of the same or similar situations is omitted below.
  • the value of the index appearing in each table is a decimal number, but in practical applications, the index value is the binary bit value corresponding to the decimal value, for example, the decimal index value is 1.
  • decimal index value 2 corresponds to binary bit 1
  • decimal index value 16 corresponds to binary bit 1111, etc. To avoid repetition, the description of the same or similar situations is omitted below.
  • the overhead for jointly indicating the spatial stream allocation information in the MU-MIMO mode and the non-MU-MIMO mode is 8 bits (256 values need to be indicated), which is larger than the existing spatial stream allocation subfield including Of bits (6).
  • the maximum number of spatial streams of the STA is 16
  • the maximum number of spatial streams of each user in the MU-MIMO mode is 4.
  • 4 bits can be used to indicate the starting position of the stream, and 2 bits can be used to indicate the number of spatial streams.
  • 4 bits can be used to indicate the number of spatial streams.
  • the spatial stream allocation information corresponding to the first STA includes stream start position information and first stream number information
  • the stream start position information is used to indicate the start position of the stream corresponding to the first STA
  • the first stream number information is used to indicate the number of streams corresponding to the first STA.
  • the spatial stream allocation information corresponding to the first STA includes second stream number information, and the first STA The second stream number information is used to indicate the number of streams corresponding to the first STA.
  • the stream start position information occupies 4 bits
  • the first stream number information occupies 2 bits
  • the second stream number information occupies 4 bits.
  • the first spatial stream allocation subfield occupies 6 bits.
  • the first spatial stream allocation subfield occupies 4 bits.
  • the bits are reduced, so that the reduced bits can be used to carry other information.
  • the flexibility of communication can be improved, and the practicability of this application can be further improved.
  • one of the 2 bits saved compared to the existing spatial stream allocation field can be used to carry the first information.
  • the first information occupies at least one bit.
  • the first information is carried in a reserved subfield in the first user information field.
  • the existing reserved fields can be used to carry the first information without changing the structure of the existing trigger frame, which can further improve the practicability and compatibility of the present application.
  • the first information is carried in an uplink forward error correction code type subfield in the first user information field.
  • the uplink forward error correction code type subfield does not need to carry information about the coding method.
  • the first information may be carried in the uplink forward error correction code type subfield.
  • the user information field does not include the uplink forward error correction code type subfield, so that the saved field (or bits) can be used to carry the first information.
  • the first information is carried in a resource unit allocation subfield in the first user information field.
  • the resource unit allocation subfield includes 8 bits, where the 8 bits include 256 index values, where the 256 index values include reserved index values, so that the reservation can be The index value of realizes the function of the first information.
  • the resource unit allocation subfield includes 9 bits, where the 9 bits include 512 index values, and the 512 index values include reserved index values, so that the reserved index can be passed through The value realizes the function of the first information.
  • the first user information field includes a resource unit allocation subfield
  • the resource unit allocation subfield is used to carry a first resource unit group corresponding to the first STA
  • the first resource unit group includes at least One resource unit
  • the first user information field does not include the uplink forward error correction code type subfield
  • the first threshold is based on The number of sub-carriers corresponding to the data encoding method is required to be determined.
  • the first threshold is 242.
  • the first user information field includes a resource unit allocation subfield
  • the resource unit allocation subfield is used to carry a first resource unit group corresponding to the first STA
  • the first resource unit group includes at least One resource unit
  • the mode used by the first STA to transmit data is the non-MU-MIMO mode by default
  • the second threshold is based on the MU-MIMO mode. The number of sub-carriers corresponding to the MIMO mode must be determined.
  • the second threshold is 242 or 484.
  • the first user information field includes a resource unit allocation subfield
  • the resource unit allocation subfield is used to carry a first resource unit group corresponding to the first STA
  • the first resource unit group includes at least One resource unit, and when the number of subcarriers corresponding to the first resource unit group is equal to a first threshold, and the number of subcarriers corresponding to the first resource unit group is equal to a second threshold, the encoding information of the data is carried in the The resource unit allocation subfield in the first user information field.
  • the first user information field includes a resource unit allocation subfield
  • the resource unit allocation subfield is used to carry a first resource unit group corresponding to the first STA
  • the first resource The unit group includes at least one resource unit, and when the number of subcarriers corresponding to the first resource unit group is equal to a first threshold, and the number of subcarriers corresponding to the first resource unit group is equal to a second threshold, the first Information is carried in the resource unit allocation subfield in the first user information field, the first threshold is determined according to the number of subcarriers corresponding to the data encoding method, and the second threshold is corresponding to the MU-MIMO method The number of sub-carriers required to be determined.
  • the first user information field includes a resource unit allocation subfield
  • the resource unit allocation subfield is used to carry the first resource unit corresponding to the first STA, and when the common information field of the trigger frame
  • the resource unit allocation subfield includes 9 bits.
  • the third threshold is 160 MHz.
  • a method for receiving a trigger frame includes: a first station STA receives a trigger frame, the trigger frame includes a first user information field corresponding to the first STA, and the first user information
  • the field includes a first spatial stream allocation subfield and first information.
  • the first information is used to indicate the method used by the first STA to transmit data.
  • the method includes a multi-user multiple-input multiple-output MU-MIMO method or a non-multiple The user multiple-input multiple-output non-MU-MIMO mode, the spatial stream allocation information of the first STA carried by the first spatial stream allocation subfield corresponds to the content indicated by the first information; the AP first STA Send uplink data according to the information carried by the first user information field.
  • the spatial stream allocation information corresponding to the first STA includes stream start position information and first stream number information
  • the stream start position information is used to indicate the start position of the stream corresponding to the first STA
  • the first stream number information is used to indicate the number of streams corresponding to the first STA
  • the spatial stream allocation information corresponding to the first STA includes second stream number information
  • the second stream number information is used to indicate the first The number of streams corresponding to the STA.
  • the stream start position information occupies 4 bits
  • the first stream number information occupies 2 bits
  • the second stream number information occupies 4 bits.
  • the first spatial stream allocation subfield occupies 6 bits; when the first information is used for When the first STA is instructed to transmit data in a non-MU-MIMO manner, the first spatial stream allocation subfield occupies 4 bits.
  • the first information occupies at least one bit.
  • the first information is carried in a reserved subfield in the first user information field.
  • the first information is carried in an uplink forward error correction code type subfield in the first user information field.
  • the first information is carried in a resource unit allocation subfield in the first user information field.
  • the first user information field includes a resource unit allocation subfield
  • the resource unit allocation subfield is used to carry a first resource unit group corresponding to the first STA
  • the first resource unit group includes at least One resource unit
  • the first user information field does not include the uplink forward error correction code type subfield
  • the first threshold is based on The number of sub-carriers corresponding to the data encoding method is required to be determined.
  • the first threshold is 242.
  • the first user information field includes a resource unit allocation subfield
  • the resource unit allocation subfield is used to carry a first resource unit group corresponding to the first STA
  • the first resource unit group includes at least One resource unit
  • the mode used by the first STA to transmit data is the non-MU-MIMO mode by default
  • the second threshold is based on the MU-MIMO mode. The number of sub-carriers corresponding to the MIMO mode must be determined.
  • the second threshold is 242 or 484.
  • the first user information field includes a resource unit allocation subfield
  • the resource unit allocation subfield is used to carry a first resource unit group corresponding to the first STA
  • the first resource unit group includes at least One resource unit, and when the number of subcarriers corresponding to the first resource unit group is equal to a first threshold, and the number of subcarriers corresponding to the first resource unit group is equal to a second threshold, the encoding information of the data is carried in the The resource unit allocation subfield in the first user information field.
  • the first user information field includes a resource unit allocation subfield
  • the resource unit allocation subfield is used to carry a first resource unit group corresponding to the first STA
  • the first resource unit group includes at least One resource unit
  • the first threshold is determined according to the requirement for the number of subcarriers corresponding to the data encoding method
  • the second threshold is determined according to the number of subcarriers corresponding to the MU-MIMO method. The requirement is certain.
  • the first user information field includes a resource unit allocation subfield
  • the resource unit allocation subfield is used to carry the first resource unit corresponding to the first STA, and when the common information field of the trigger frame
  • the bandwidth indicated by the uplink bandwidth subfield in is less than the third threshold
  • the method used by the first STA to transmit data is the non-MU-MIMO mode by default; wherein, the third threshold is determined according to the bandwidth requirements corresponding to the MU-MIMO mode of.
  • the third threshold is 160 MHz.
  • a method for sending a trigger frame includes: an access point AP generates a trigger frame, the trigger frame includes a first user information field corresponding to a first station STA, the first user information field It includes a first spatial stream allocation subfield, the first spatial stream allocation subfield carrying a first index value in the first mapping information, wherein the first mapping relationship is used to indicate multiple index values and multiple spatial streams Correspondence of allocation information, each spatial stream allocation information includes stream start position information and stream number information, and the first index value corresponds to the spatial stream allocation information of the first STA, wherein multiple spatial stream allocation information It includes multiple first spatial stream allocation information, multiple second spatial stream allocation information, and multiple third spatial stream allocation information.
  • the first spatial stream allocation information is multi-user multiple-input multiple-output MU-MIMO mode and non-multiple User multiple input multiple output non-MU-MIMO mode shared spatial stream allocation information
  • the second spatial stream allocation information is non-MU-MIMO mode exclusive spatial stream allocation information
  • the third spatial stream allocation information is MU -Exclusive spatial stream allocation information in MIMO mode
  • the number of required index values can be reduced, thereby reducing Small is used to carry the bit overhead of the index value.
  • the first mapping relationship is shown in Table 2 below.
  • the spatial stream allocation information corresponding to the index value 0-3 is the first spatial stream allocation information
  • the spatial stream allocation information corresponding to the index value 4-57 is the third spatial stream allocation information
  • the Y indexes in the index value 58-X The value corresponds to the second spatial stream allocation information, where Y is determined according to the maximum number of streams in a non-MU-MIMO mode, and X is determined according to the number of bits included in the first spatial stream allocation subfield.
  • the range of the value of the stream start position information is [1, K], where the value of the stream start position information is the value of the spatial stream allocation information of k
  • the value range of the flow number information is [1, N], where k-1 flows include multiple allocation methods, and each allocation method corresponds to a first value, and the first value is the corresponding allocation method.
  • the number of flows of the user with the smallest number of allocated flows, the N is determined according to the maximum value among the plurality of first values, and K represents the maximum number of flows that can be used.
  • the trigger frame includes user information fields of multiple STAs, and when the multiple STAs are arranged in descending order according to the number of streams owned, the start position of the stream of the i-th STA is located at the i+th Before the start position of the stream of 1 STA.
  • the first mapping relationship is shown in Table 3 below.
  • the spatial stream allocation information corresponding to the index value 0-3 is the first spatial stream allocation information
  • the spatial stream allocation information corresponding to the index value 4-44 is the third spatial stream allocation information
  • the Y indexes in the index value 45-X The value corresponds to the second spatial stream allocation information, where Y is determined according to the maximum number of streams in a non-MU-MIMO mode, and X is determined according to the number of bits included in the first spatial stream allocation subfield.
  • a method for receiving a trigger frame includes: a first station STA receives a trigger frame from an access point AP, the trigger frame includes a first user information field corresponding to the first station STA, and The first user information field includes a first spatial stream allocation subfield, and the first spatial stream allocation subfield carries a first index value in the first mapping information, wherein the first mapping relationship is used to indicate multiple index values
  • each spatial stream allocation information includes stream start position information and stream number information
  • the first index value corresponds to the spatial stream allocation information of the first STA, where multiple A piece of spatial stream allocation information includes multiple first spatial stream allocation information, multiple second spatial stream allocation information, and multiple third spatial stream allocation information.
  • the first spatial stream allocation information is multi-user multiple input multiple output MU-
  • the second spatial stream allocation information is the spatial stream allocation information exclusive to the non-MU-MIMO mode
  • the third space The stream allocation information is spatial stream allocation information exclusive to the MU-MIMO mode; the first station STA sends uplink data according to the information carried by the first user information field.
  • the number of required index values can be reduced, thereby reducing Small is used to carry the bit overhead of the index value.
  • the first mapping relationship is as shown in Table 2.
  • the range of the value of the stream start position information is [1, K], where the value of the stream start position information is the value of the spatial stream allocation information of k
  • the value range of the flow number information is [1, N], where k-1 flows include multiple allocation methods, and each allocation method corresponds to a first value, and the first value is the corresponding allocation method.
  • the number of flows of the user with the smallest number of allocated flows, the N is determined according to the maximum value among the plurality of first values, and K represents the maximum number of flows that can be used.
  • the trigger frame includes user information fields of multiple STAs, and when the multiple STAs are arranged in descending order according to the number of streams owned, the start position of the stream of the i-th STA is located at the i+th Before the start position of the stream of 1 STA.
  • the first mapping relationship is as shown in Table 3 above.
  • a communication device which includes various modules or units for executing any one of the first to fourth aspects and the method in any one of its possible implementation manners.
  • a communication device including a processor, which is coupled with a memory and can be used to execute any one of the first to fourth aspects and the method in a possible implementation manner thereof.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication device is a device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • a communication device including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that any one of the first to fourth aspects and any one of the possible implementation manners of each of the aspects The method is implemented.
  • the above-mentioned communication device may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • the signal output by the output circuit may be, for example, but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit can be a different circuit or the same circuit. In this case, the circuit is used as an input circuit and an output circuit at different times.
  • the implementation manners of the present application do not limit the specific implementation manners of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, receive signals through a receiver, and transmit signals through a transmitter to execute any one of the first to fourth aspects and various possible implementations. Methods.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be set on different chips.
  • ROM read only memory
  • the implementation of the present application does not limit the type of memory and the setting mode of the memory and the processor.
  • sending instruction information may be a process of outputting instruction information from the processor
  • receiving capability information may be a process of the processor receiving input capability information.
  • the processed output data may be output to the transmitter, and the input data received by the processor may come from the receiver.
  • the transmitter and receiver can be collectively referred to as a transceiver.
  • the processor in the above eighth aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, When implemented, the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • a processing device comprising: a communication interface and a processing circuit, the communication interface is used to send a trigger frame according to the method in the first aspect or the third aspect and any one of its possible implementation manners, The processing circuit is used to generate the trigger frame.
  • a processing device including: a communication interface and a processing circuit, the communication interface is used to obtain a trigger frame to be processed, and the processing circuit is used in accordance with the second or fourth aspects and The method in any possible implementation manner processes the to-be-processed trigger frame.
  • a computer program product includes: a computer program (also called code, or instruction), which when the computer program is executed, causes a computer to execute the first aspect To any aspect of the fourth aspect and the method in any possible implementation manner of each aspect.
  • a computer program also called code, or instruction
  • a computer-readable medium stores a computer program (also called code, or instruction) when it runs on a computer, so that the computer executes the above-mentioned first Aspect to any one of the fourth aspect and the method in any one of the possible implementation manners of each aspect.
  • a computer program also called code, or instruction
  • a communication system including the aforementioned AP and STA.
  • Fig. 1 is a schematic diagram of an example of the communication system of the present application.
  • Fig. 2 is a schematic diagram of an example of channel distribution of the present application.
  • Fig. 3 is a schematic diagram of an example of the trigger frame transmission process of the present application.
  • Fig. 4 is a schematic diagram of an example of the frame structure of the trigger frame of the present application.
  • FIG. 5 is a schematic diagram of another example of the frame structure of the trigger frame of the present application.
  • Fig. 6 is a schematic diagram of an example of the user information field of the present application.
  • Fig. 7 is a schematic interaction diagram of an example of the trigger frame transmission process of the present application.
  • Fig. 8 is a schematic diagram of another example of the user information field of the present application.
  • Fig. 9 is a schematic diagram of another example of the user information field of the present application.
  • Fig. 10 is a schematic diagram of another example of the user information field of the present application.
  • FIG. 11 is a schematic interaction diagram of another example of the trigger frame transmission process of the present application.
  • FIG. 12 is a schematic diagram of an example of the communication device of the present application.
  • FIG. 13 is a schematic diagram of another example of the communication device of the present application.
  • FIG. 14 is a schematic diagram of another example of the communication device of the present application.
  • FIG. 15 is a schematic diagram of an example of AP of the present application.
  • FIG. 16 is a schematic diagram of an example of the STA of the present application.
  • WLAN wireless local area network
  • LTE long term evolution
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • WLAN system is taken as an example to describe the application scenarios of the embodiments of the present application and the methods of the embodiments of the present application.
  • the embodiments of this application can be applied to a WLAN system, and the embodiments of this application can be applied to any one of the IEEE 802.11 series protocols currently adopted by the Institute of Electrical and Electronics Engineers (IEEE). .
  • IEEE Institute of Electrical and Electronics Engineers
  • a WLAN may include one or more basic service sets (BSS), and the network nodes in the basic service set include access points (AP) and stations (station, STA).
  • BSS basic service sets
  • One STA can only access one AP (that is, the STA is associated with the AP), and one AP can be associated with multiple STAs.
  • beam training is required to obtain the optimal receiving beam and/or the optimal transmitting beam between the STA and the AP.
  • IEEE 802.11ad introduced a personal basic service set (PBSS) and a personal basic service set control node (PBSS control point, PCP).
  • PBSS personal basic service set
  • PCP personal basic service set control node
  • Each personal basic service set can include one PCP/AP and multiple stations associated with the PCP/AP.
  • the user station (STA) in WLAN can be called system, user unit, access terminal, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, user device or User equipment (user equipment, UE).
  • the STA can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and a wireless local area network (such as Wi-Fi) communication-enabled handheld devices, wearable devices, computing devices, or other processing devices connected to wireless modems.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • Wi-Fi wireless local area network
  • the PCP/AP in the WLAN can be used to communicate with the STA through a wireless local area network, and transmit data from the STA to the network side, or transmit data from the network side to the STA.
  • the communication system shown in FIG. 1 is taken as an example to describe in detail the communication system applicable to the embodiments of the present application.
  • the scenario system shown in FIG. 1 may be a WLAN system.
  • the WLAN system in FIG. 1 may include one or more APs and one or more STAs.
  • FIG. 1 takes one AP and three STAs as an example.
  • Various standards can be used for wireless communication between AP and STA. For example, single-user multiple-input multiple-output (SU-MIMO) technology or multi-user multiple-input multiple-output (MU) technology can be used between AP and STA.
  • SU-MIMO single-user multiple-input multiple-output
  • MU multi-user multiple-input multiple-output
  • -MIMO technology for wireless communication.
  • APs are also called wireless access points or hotspots.
  • APs are the access points for mobile users to enter the wired network. They are mainly deployed in homes, buildings, and campuses, and they can also be deployed outdoors.
  • AP is equivalent to a bridge connecting wired and wireless networks, and its main function is to connect various wireless network clients together, and then connect the wireless network to the Ethernet.
  • the AP may be a terminal device or a network device with a wireless fidelity (wireless fidelity, WiFi) chip.
  • the AP may be a device supporting multiple WLAN standards such as 802.11.
  • WLAN started from 802.11a/g, went through 802.11n, 802.11ac, and now is under discussion 802.11ax and 802.11be.
  • the allowable transmission bandwidth and the number of space-time streams are shown in Table 4 below.
  • Figure 2 shows an example of channel allocation in this application. As shown in Figure 2, the entire channel is divided into a primary 20MHz channel (or primary channel for short, Primary 20MHz, P20), and a secondary 20MHz channel (Secondary 20MHz, S20). 40MHz channel (S40), from 80MHz (S80) channel. In addition, there are corresponding P40 and P80. As the bandwidth increases, the data rate of data transmission also increases. Therefore, in the next generation of standards, larger bandwidths greater than 160MHz (such as 240MHz, 320MHz) will be considered.
  • spatial flow may also be called space-time flow, or simply called flow.
  • spatial flow space-time flow
  • flow simply called flow.
  • STAs perform uplink data transmission after obtaining the transmission right through channel competition, for example, channel grabbing based on enhanced distributed channel access (EDCA).
  • EDCA enhanced distributed channel access
  • 802.11ax introduces a scheduled uplink transmission method based on trigger frames.
  • FIG. 3 shows a schematic diagram of the uplink transmission process.
  • the AP first sends a trigger frame.
  • the trigger frame contains an uplink sub-physical layer protocol data unit (PHY Protocol Data Unit) for one or more stations , PPDU) resource scheduling information and other parameters.
  • PHY Protocol Data Unit uplink sub-physical layer protocol data unit
  • PPDU resource scheduling information
  • Fig. 4 shows an example of the frame structure of the trigger frame.
  • the trigger frame includes a common information (Common Info) field and a user information list (User Info List) field.
  • Common Info Common Information
  • User Info List User Info List
  • the public information field contains public information that all STAs need to read
  • FIG. 5 shows an example of the public information field.
  • the user information list field is composed of one or more user information fields, and each user information field contains information that each STA needs to read separately.
  • the association identification (Association Identification 12, AID12) indicates the association identification of a certain STA
  • the resource unit allocation subfield (RU Allocation) is used to indicate the specific allocation of this STA (the STA indicated by AID12) Resource Unit (RU) location.
  • Fig. 6 shows an example of a user information field.
  • the STA After the STA receives the trigger frame, it parses out the user information field matching its own AID, and then sends an efficient trigger-based PPDU on the RU indicated by the resource unit allocation subfield in the user information field.
  • the names and simple functions of each field of the PPDU are shown in Table 5 below.
  • the entire bandwidth can be divided into one or more resource units. It is worth noting that in the 802.11ax standard, one STA can only be allocated one RU. The next-generation 802.11be standard allows multiple RUs to be allocated to one STA.
  • the AP After the AP receives an uplink multi-user PPDU composed of uplink sub-PPDUs sent by one or more stations, it responds with an acknowledgement frame.
  • the acknowledgement frame for one or more stations can be transmitted through the downlink orthogonal frequency division multiple access , OFDMA) format transmission, can also be copied through non-HT transmission format.
  • Acknowledgement frames also include Ack frames and Block Ack frames.
  • Block Ack frames include compressed Block Ack frames and Multi-STA (Multi-STA) Block Ack frames. Among them, Ack frame and Block Ack frame are for one
  • Ack frame and Block Ack frame are for one
  • the confirmation of the information sent by the station, Multi-STA Block Ack is the confirmation of the information sent to one or more stations.
  • the trigger-based uplink multi-user transmission uses the same sub-carrier distribution as the downlink, as an example and not a limitation. For example, if the bandwidth is 160MHz, first use 1 bit (bit B12 in the user information field) to indicate whether the low frequency band is 80MHz or the high frequency band is 80MHz. (For the case where the bandwidth is less than or equal to 80MHz, the bit is set to 0 by default, indicating the low frequency band 80MHz), and then list all possible resource unit allocations of 80MHz in Table 6 below, and then use the index in the table (or, Index value or index information) to indicate.
  • the uplink bandwidth is up to 160 MHz is only an example, and the implementation of the present application is not limited to this.
  • the maximum uplink bandwidth can reach, for example, 240 MHz or 320 MHz or even higher.
  • one additional bit can be added to the RU Allocation subfield on the basis of Table 6 to extend the RU Allocation subfield to indicate the position of the selected 80MHz in 320MHz.
  • the 0th bit (B0) in the resource unit allocation subfield indicates whether it is the primary 80 MHz or the secondary 80 MHz.
  • the default indication of this bit is 0 (within the main 80MHz).
  • the resource unit allocation subfield When the bandwidth is increased to 320MHz, the resource unit allocation subfield is increased by 1 bit (or 1 bit), and the 0th and 1st bits added in conjunction with the existing resource unit allocation subfield indicate which 80MHz of 320MHz is specifically , Based on the determined 80MHz location, a 7-bit table is used to indicate which RU is specific.
  • the resource unit allocation subfield indicates whether the primary 160MHz or the secondary 160MHz.
  • B26-B31 in the user information field is the spatial stream allocation subfield (SS Allocation subfield), used to indicate the allocation to the The start position and number of the spatial stream of the STA corresponding to the user information field.
  • SS Allocation subfield spatial stream allocation subfield
  • MU-MIMO Multi-User Multiple Input Multiple Output
  • Non-Multiple User Multiple Input Multiple Output (non-MU-MIMO) mode supports up to 16 streams, that is, the maximum number of streams for a user in non-MU-MIMO mode is 16;
  • a resource unit group includes at least one RU.
  • the resource unit group can also be understood as a resource Unit, when the resource unit group includes two or more RUs, the resource unit group can be understood as a multiple resource allocation (MRU).
  • MRU multiple resource allocation
  • MU-MIMO can be used only on resource unit groups greater than or equal to 242, in other words, MU-MIMO mode can be used only when the number of subcarriers included in the resource unit group is greater than or equal to 242.
  • FIG. 7 shows a schematic interaction diagram of an example of a spatial flow indication process in an embodiment of the present application.
  • the AP generates a trigger frame #A, where the trigger frame #A includes user information fields of at least one STA, where the structure of the user information field of the at least one STA is similar, and the at least one STA is based on The operations performed by the trigger frame are similar.
  • a processing procedure for STA#A that is, an example of the first STA in the first aspect
  • STA#A is taken as an example for description.
  • the trigger frame #A includes the user information field of STA#A (denoted as user information field #A, that is, an example of the first user information field).
  • the user information field #A carries information #A (that is, an example of the first information).
  • the information #A is used to indicate the MIMO mode used by STA#A when transmitting data (for ease of understanding and distinction, it is marked as mode #A), that is, the mode #A is MU-MIMO mode or non-MU-MIMO mode.
  • the transmission mode indicated by the information #A is different (or the STA#A uses a different mode when transmitting data), and the information carried by the spatial stream allocation subfield (SS Allocation subfield) of the user information field #A ( For example, the number of bits occupied by the information or the way the information is interpreted) are also different.
  • the start position of the stream assigned to an STA (for example, STA#A) (may also be called spatial stream or space-time stream) has 16 It is possible, therefore, 4 bits are required to indicate the start position of the stream of the STA (for example, STA#A).
  • the number of streams allocated to an STA (for example, STA#A) has 4 possibilities, so 2bit is required to indicate the STA (for example, STA#A) The number of streams.
  • the SS Allocation subfield includes at least 6 bits (for example, B26-B31 in Figure 6), of which 4 bits are used to carry the starting position information of the spatial stream to indicate the allocation to the STA The start position of the spatial stream, and the other 2 bits are used to carry the number of spatial streams to indicate the number of spatial streams allocated to the STA.
  • the position of the starting position information of the spatial stream and the number of spatial streams in the SS Allocation subfield can adopt different structures as needed, as long as the AP and STA have the same understanding of the information carried in the SS Allocation subfield. .
  • the spatial stream allocation information of STA#A includes spatial stream start position information and spatial stream number information, where the spatial stream start position information occupies 4 bits, and the spatial stream number information occupies 2 bits. Bits.
  • the spatial stream indicated by the information carried by the SS Allocation subfield is allocated to an STA (for example, STA#A), and the starting position of the spatial stream allocated to the STA can be 1 by default. Therefore, There is no need to indicate the starting position of the spatial stream allocated to the STA.
  • the SS Allocation subfield includes at least 4 bits, which are used to carry information about the number of spatial streams to indicate the number of spatial streams allocated to the STA.
  • the spatial stream allocation information of STA#A includes spatial stream number information, and the spatial stream number information occupies 4 bits.
  • the SS Allocation subfield includes 6 bits (for example, B26-B31 in Figure 6), but the spatial stream allocation information of STA#A only occupies 4 bits, and the other two bits Can be used to indicate other information.
  • the location of the spatial stream allocation information (specifically, the number of spatial streams) in the SS Allocation subfield can be based on different methods, as long as the AP and STA are made to respond to the information carried in the SS Allocation subfield. The understanding of the information is consistent.
  • the SS Allocation subfield includes 4 bits (for example, B26-B29 in FIG. 8).
  • two bits for example, B30-B31 in FIG. 8) can be saved.
  • Two bits can be used to carry other information, for example, can be used as a reserved subfield.
  • the SS Allocation subfield (specifically, the number of bits included in the SS Allocation subfield) in the MU-MIMO mode and the non-MU-MIMO mode may be different.
  • the MU-MIMO mode and the SS Allocation subfield may be different.
  • the position of the SS Allocation subfield in the user information field can overlap or be different.
  • the implementation of this application is not particularly limited, as long as the STA and AP correspond to the MU-MIMO mode and the non-MU-MIMO mode
  • the understanding (or interpretation) of the user information field and the SS Allocation subfield field can be the same.
  • the information #A can be displayed in a display instruction manner or an implicit instruction manner to indicate the mode #A.
  • the information #A includes 1 bit, or in other words, the information #A occupies 1 bit.
  • the information #A is used to instruct the STA#A to use the MU-MIMO mode when transmitting data.
  • the message #A is used to instruct STA#A to use the non-MU-MIMO mode when transmitting data.
  • the information #A is used to instruct the STA#A to use the MU-MIMO mode when transmitting data.
  • the information #A is used to instruct STA#A to use the non-MU-MIMO mode when transmitting data.
  • the relationship between the value of the information #A and the indicated content listed above is only an exemplary description, and the implementation of this application is not particularly limited, as long as the AP and the STA have the content indicated by the different values of the information #A
  • the relationship between the value of message #A and the indicated content may be specified by the communication system or communication protocol, or the relationship between the value of message #A and the indicated content may also be instructed by the AP to the STA.
  • mode #A Since the possible situation of mode #A is 2, it only needs 1 bit to meet the requirements, thereby solving the bit overhead and further improving the practicability of this application.
  • information# A can also occupy 2 or more bits.
  • the following describes the bearing position of the information #A in the user information field.
  • the information #A is carried in a reserved subfield in the user information field, for example, B39 shown in FIG. 6.
  • STA#A can obtain information #A from a reserved subfield in user information field #A, that is, B39 in user information field #A.
  • the information carried in the uplink dual-carrier modulation subfield shown in FIG. 6 can be carried by the modulation and coding strategy subfield, and this method can be compared with the coding strategy subfield in the prior art to carry uplink information.
  • the method and process of dual-carrier modulation information are similar.
  • detailed description is omitted.
  • the trigger frame #A may not include the uplink dual-carrier modulation subfield bearer, so that the saved bits (for example, B25) can be used as the field for carrying the information #A, as shown in FIG. 9
  • the trigger frame does not include certain subfields in the prior art (for example, the uplink dual-carrier modulation subfield bearer) and save bits
  • some subfields in the trigger frame are in the trigger frame.
  • the position in the frame can be changed, that is, it is different from the position of the subfield in the trigger frame in the prior art.
  • the position of some subfields in the trigger frame in the trigger frame may not change, that is, the position of the subfields in the trigger frame in the prior art is the same. That is, the embodiment of the present application does not specifically limit the placement position of the saved bits in the trigger frame. In the following, in order to avoid redundant description, descriptions of the same or similar situations are omitted.
  • STA#A can obtain information #A from the bits saved by not including the uplink dual-carrier modulation subfield in the user information field #A, for example, B25 in the user information field #A.
  • the user information field shown in FIG. 6 includes the resource unit allocation subfield (RU Allocation subfield), that is, B12-B19, RU Allocation subfield in the user information field is used to carry the resource unit group allocated to the STA, for example, RU or MRU.
  • RU Allocation subfield resource unit allocation subfield
  • the user information field includes an uplink forward error correction code type subfield, that is, B20 in the user information field.
  • This subfield is used to carry coding mode information, which can indicate the uplink transmission
  • the coding method for example, a binary convolutional coding (BCC) method or a low density parity check code (LDPC).
  • the coding method needs to be indicated when the number of subcarriers included in the resource unit group allocated to the STA is less than or equal to a certain threshold (denoted as threshold #A, that is, an example of the first threshold).
  • the value of the threshold #A is 242.
  • threshold #A may be specified by a communication system or a communication protocol, and the implementation manner of the present application is not particularly limited.
  • the user information field #A may not include the uplink forward error correction code type subfield.
  • the saved bits (for example, B20) can be used as a field for carrying information #A, such as the MU-MIMO/non-MU-MIMO indicator subfield shown in FIG. 10.
  • the trigger frame does not include certain subfields in the prior art (for example, the uplink forward error correction code type subfield) and bits are saved, some subfields in the trigger frame
  • the position in the trigger frame can be changed, that is, it is different from the position of the subfield in the trigger frame in the prior art.
  • the position of some subfields in the trigger frame in the trigger frame may not change, that is, the position of the subfields in the trigger frame in the prior art is the same. That is, the embodiment of the present application does not specifically limit the placement position of the saved bits in the trigger frame. In the following, in order to avoid redundant description, descriptions of the same or similar situations are omitted.
  • STA#A can obtain information #A from the bits saved by not including the uplink forward error correction code type subfield in the user information field #A, for example, B20 in the user information field #A .
  • the embodiment of this application provides that the 1 bit saved because the UL FEC Coding Type subfield is not included is used to indicate information #A, the embodiment of this application is not limited to this, and the 1 bit saved is It can also be used to indicate other information.
  • the 1 bit can extend the RU Allocation subfield table, and can also be used to indicate MRU combined combination.
  • the user information field shown in FIG. 6 includes the resource unit allocation subfield (RU Allocation subfield), that is, B12-B19, RU Allocation subfield in the user information field is used to carry the resource unit group allocated to the STA, for example, RU or MRU.
  • RU Allocation subfield resource unit allocation subfield
  • the MU-MIMO method can only be used when the number of subcarriers included in the resource unit group allocated to the STA is greater than a certain threshold (denoted as threshold #B, that is, an example of the second threshold).
  • the value of the threshold #B is 242 or 484.
  • threshold #B may be specified by a communication system or a communication protocol, and the implementation manner of the present application is not particularly limited.
  • the resource unit group allocated to STA#A (or the resource unit group indicated by the information carried in the RU Allocation subfield of user information field #A) includes the number of subcarriers less than the threshold #B, it means that STA#A cannot Use MU-MIMO mode, that is, mode #A defaults to non-MU-MIMO mode.
  • the default is that the mode indicated by the information #A is non-MU-MIMO mode .
  • threshold #A and threshold #B can also be used in combination or alone, and the implementation of the present application is not particularly limited.
  • the threshold #B that can use the MU-MIMO mode
  • it can be further indicated/determined that the RU or MRU is in the MU-MIMO mode Or non-MU-MIMO mode.
  • any one of the above methods 1-3 can be used to realize the function of indicating information #A.
  • the threshold #B that can use the MU-MIMO mode
  • the threshold #A and the threshold #B are the same, for example, both are 242
  • the uplink forward error correction code field of the user information field #A needs to carry the information of the coding method, that is , The above method 3 cannot be used.
  • the embodiment of the present application may also provide the next way to implement the indication function of the information #A.
  • the purpose of telling the STA allocated the 242-tone RU whether it is MU-MIMO or non-MU-MIMO can be achieved.
  • threshold #A and threshold #B are the same (for example, both are 242), when the allocated resource block is equal to the threshold, less communication resources can be used to implement MU-MIMO/non-MU- Indication of MIMO transmission mode.
  • Table 7 shows an example of the corresponding relationship between the index values of the 242-tone RU allocation method.
  • the entry corresponding to the index value 61-64 can reuse the entry corresponding to the index value 61-64 in Table 6, that is, the entry corresponding to the index value 61-64 in Table 6 is added with the MIMO mode corresponding to the entry, For example, MU-MIMO.
  • the entry corresponding to the index value 69-72 can be a new entry.
  • threshold #A and threshold #B are the same, for example, both are 242
  • threshold #A and threshold #B are the same (for example, both are 242), when the allocated resource block is equal to the threshold, fewer communication resources can be implemented to indicate whether to use BCC encoding or LDPC encoding .
  • the user information field #A may not include the UL FEC Coding Type subfield. Therefore, as shown in FIG. 10, the saved bits (for example, B20) can be used to carry information #A.
  • the trigger frame does not include certain subfields in the prior art (for example, the uplink forward error correction code type subfield) and bits are saved, some subfields in the trigger frame
  • the position in the trigger frame can be changed, that is, it is different from the position of the subfield in the trigger frame in the prior art.
  • the position of some subfields in the trigger frame in the trigger frame may not change, that is, the position of the subfields in the trigger frame in the prior art is the same. That is, the embodiment of the present application does not specifically limit the placement position of the saved bits in the trigger frame. In the following, in order to avoid redundant description, descriptions of the same or similar situations are omitted.
  • STA#A can obtain information #A from the bits saved by not including the uplink forward error correction code type subfield in the user information field #A, for example, B20 in the user information field #A .
  • the embodiment of this application provides that the 1 bit saved because the UL FEC Coding Type subfield is not included is used to indicate information #A, the embodiment of this application is not limited to this, and the 1 bit saved is It can also be used to indicate other information.
  • the 1 bit can extend the RU Allocation subfield table, and can also be used to indicate MRU combined combination.
  • Table 8 shows another example of the corresponding relationship between the index values of the 242-tone RU allocation method.
  • the entry corresponding to the index value 61-64 can reuse the entry corresponding to the index value 61-64 in Table 6, that is, the encoding method corresponding to the entry is added to the entry corresponding to the existing index value 61-64, For example, BBC.
  • the entry corresponding to the index value 69-72 can be a new entry.
  • the user information field shown in Figure 6 and Figure 8-10 includes the resource unit allocation subfield (RU Allocation subfield), that is, B12-B19 in the user information field, the RU Allocation subfield is used to carry the resources allocated to the STA Unit group, for example, RU or MRU.
  • RU Allocation subfield resource unit allocation subfield
  • the RU Allocation subfield requires 9 bits to complete the indication.
  • the threshold #B may be 484.
  • the uplink forward error can be retained. Error code type subfield, and the message #A can be sent using the above method 1 or 2.
  • the size of the bandwidth indicated by the uplink bandwidth subfield in the common information field of the trigger frame #A is greater than 160 MHz, and the number of subcarriers included in the resource unit group allocated to STA#A is greater than the 242 threshold #A, it means that no indication is required
  • the encoding method that is, as shown in FIG. 10, the user information field #A may not include the uplink forward error correction code type subfield. Therefore, the saved bits (for example, B20) can be used to carry information #A.
  • the message #A can be sent using the above-mentioned method 1 or method 2.
  • threshold #B the corresponding threshold required by the MU-MIMO mode
  • the display mode needs to be used to indicate whether to use the MU-MIMO mode or the non-MU-MIMO mode, that is, in this case, the second embodiment above can be used Send the indication information of the MU-MIMO mode or the non-MU-MIMO mode in any one of mode 1, mode 2, or mode 3 (ie, information #A);
  • the non-MU-MIMO mode can be used implicitly by default, that is, in this case, the implicit mode in the third embodiment can be used. Indicate non-MU-MIMO mode;
  • the display mode needs to be used to indicate whether to use the MU-MIMO mode or the non-MU-MIMO mode, and if the coding mode requires the corresponding threshold (that is, the threshold #A) is 242, then the coding method needs to be indicated.
  • the MU-MIMO mode or non-MU-MIMO mode indication information ie, information #A
  • the coding mode can be sent in mode x or mode y. information.
  • threshold #B the corresponding threshold
  • the display mode needs to be used to indicate whether to use the MU-MIMO mode or the non-MU-MIMO mode, that is, in this case, the above-mentioned implementation mode can be used
  • any one of mode 1, mode 2, or mode 3 sends the indication information of the MU-MIMO mode or the non-MU-MIMO mode (ie, information #A);
  • the non-MU-MIMO mode can be used implicitly by default, that is, in this case, the implicit mode in the third embodiment can be used. Indicates non-MU-MIMO mode.
  • FIG. 11 shows a schematic interaction diagram of an example of a spatial flow indication process in an embodiment of the present application.
  • the AP generates trigger frame #1, where the trigger frame #1 includes user information fields of at least one STA, where the structure of the user information field of the at least one STA is similar, and the at least one STA is based on The operations performed by the trigger frame are similar.
  • the processing procedure for STA#1 that is, an example of the first STA in the second aspect
  • STA#1 is taken as an example for description.
  • the trigger frame #1 includes the user information field of STA#1 (denoted as user information field #1, that is, an example of the first user information field).
  • a mapping relationship #1 (that is, an example of the first mapping relationship in the third aspect) is configured in the AP and the STA, and the mapping relationship #1 includes multiple spatial stream allocation information and multiple index values
  • the index value may include 6 bits.
  • the spatial stream allocation information no longer separately indicates the number of streams and the starting position information of the streams, but a method of indexing the number information of the streams and the starting position information of the streams as a whole is used.
  • the user information field #1 includes a spatial stream allocation subfield (SS Allocation subfield), and the information carried by the SS Allocation subfield is used to carry the index value (denoted as index value #1) corresponding to the spatial stream configuration information #1.
  • the spatial stream configuration information #1 is used to indicate the information of the spatial stream #1 allocated to the STA #1, that is, the starting position of the spatial stream #1, and the number of the spatial stream #1.
  • the SS Allocation subfield may include 6 bits.
  • the mapping relationship #1 includes entries shared by MU-MIMO mode and non-MU-MIMO mode, entries dedicated to MU-MIMO mode, and entries dedicated to non-MU-MIMO mode.
  • the index (entry) dedicated to the MU-MIMO mode also indicates that the transmission is in the MU-MIMO mode
  • the index (entry) dedicated to the non-MU-MIMO mode also indicates that the transmission is in the non-MU-MIMO mode.
  • this implementation manner may combine the previous solutions with respect to the instructions of the MU-MIMO mode and the non-MU-MIMO mode, or may not adopt the previous technical solutions.
  • the WLAN in the implementation of this application satisfies the following conditions:
  • the maximum total number of streams supported in MU-MIMO mode is 8 or 16;
  • the maximum number of users supported by the MU-MIMO mode on each resource unit group is 8.
  • the MU-MIMO mode and the non-MU-MIMO mode can share the entries of the spatial stream configuration information indicating that the stream start position is 1 and the number of streams is 1 to 4.
  • the index values 1-4 in the following Table 9 to Table 11 The corresponding entry, that is, row 1 in Table 9 to Table 11.
  • the MU-MIMO mode and non-MU-MIMO mode can share the spatial stream configuration information indicating that the stream start position is 1 and the number of streams is 1 to 4.
  • the entry for example, the entry corresponding to the index value 1-4 in the following tables 9-11, that is, the first row in the tables 9-11. Therefore, only 4 additional entries are needed to indicate that the start stream of non-MU-MIMO is 1 and the number of streams is 5 to 8. In this case, the number of bits in the spatial stream allocation subfield is 6 bits.
  • mapping relationship #1 It is not necessary to include this entry.
  • Table 9 shows an example of the mapping relationship #1 in the embodiment of the present application.
  • each entry contains only one unique value.
  • Table 10 shows an example of mapping relationship #1 when the maximum number of supported spatial streams of non-MU-MIMO is 16.
  • the trigger frame #1 includes user information fields of at least two STAs, where the user information fields of the at least two STAs have similar structures; the number of streams allocated by the at least two STAs can be determined. Sorting, the STA (user) with the most streams should be assigned the smallest stream start position, and the number of streams of the STA should be indicated at the same time. In this way, the entries dedicated to the MU-MIMO mode can be further compressed.
  • the spatial stream allocation subfield in the user information field not only indicates the spatial stream allocation information of the STA, but also indicates the range of spatial streams allocated by other STAs, such as the range of the number of streams.
  • the number of streams allocated to the STA-a according to the above rules can only be 1 (cannot be greater than this The number of streams of STA-a).
  • the two streams may be allocated to the same STA or different STAs.
  • the number of flows allocated to the STA-b1 may be 2 (not greater than the number of flows of the STA-b2). Therefore, the possible value of the number of streams in the entry where the start position of the stream is the third stream is 1 or 2.
  • the starting position of the stream of a certain STA-c1 is the fourth stream, it is proved that the first 3 streams are allocated to other STAs. Therefore, the 3 streams may be allocated to the same STA or different STAs.
  • the number of flows allocated to the STA-c1 may be 3 (not greater than the number of flows of the STA-c2). Therefore, the possible value of the flow number in the entry where the start position of the flow is the fourth flow is 1, 2, or 3.
  • the starting position of the stream of a certain STA-d1 is the fifth stream
  • the 4 streams may be allocated to the same STA or different STAs.
  • the number of flows allocated to the STA-d1 may be 4 (not greater than the number of flows of the STA-d2). Therefore, the possible values of the number of streams in the entry where the start position of the stream is the fifth stream are 1, 2, 3, or 4.
  • the starting position of the stream of a certain STA-e1 is the sixth stream, it is proved that the first 5 streams are allocated to other STAs, and, as described above, the maximum number of streams allocated to the same STA in MU-MIMO mode is 4 , Because the 5 streams will not be allocated to the same STA, therefore, the possible allocation methods of the 5 streams include: ⁇ .3 streams are assigned to one STA-e2, and the other 2 streams are assigned to another STA-e3.
  • the number of flows allocated to the STA-e1 may be 2 (not greater than the number of flows in either STA-e2 or STA-e3).
  • the number of flows allocated to the STA may be 1 (not greater than STA-e4 and STA -The number of streams in any one of e5).
  • the flow allocated to the STA The number may be 2 (it cannot be greater than the number of streams in any one of STA-e6, STA-e7, and STA-e8).
  • the number of flows allocated to the STA may be 1 (not greater than the number of flows in any one of STA-e9 to STA-e12).
  • the allocation methods listed above are only exemplary descriptions, and the embodiments of the present application are not limited thereto.
  • the allocation methods may also include, for example, 5 streams may also be allocated to 5 STAs (that is, each STA is allocated 1 Article stream) and so on.
  • the possible value of the number of streams in the entry where the start position of the stream is the fifth stream is 1 or 2.
  • the allocation instructions are efficiently performed, which is beneficial to product realization on the one hand, and saves storage resources and communication resources on the other hand.
  • STA#1 when STA#1 receives the trigger frame #1, it can use the information carried by the SS Allocation subfield to carry the index value #1, and determine the spatial stream configuration information # corresponding to the index value #1 from the mapping relationship #1 1. Then determine the starting position and quantity of the spatial stream allocated by the AP to the STA#1.
  • the number of required index values can be reduced, thereby reducing Small is used to carry the bit overhead of the index value.
  • the embodiment of the present application provides a device for transmitting a physical layer protocol data unit.
  • the device is used to implement the steps or procedures corresponding to the receiving end in the foregoing method embodiments.
  • the device is used to implement the steps or procedures corresponding to the sending end in the foregoing method embodiments.
  • FIG. 12 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the device 100 may include a communication unit 110 and a processing unit 120.
  • the communication unit 110 can communicate with the outside, and the processing unit 120 is used for data processing.
  • the communication unit 110 may also be referred to as a communication interface or a transceiving unit.
  • the device 100 can implement the steps or processes executed by the AP (for example, AP#A or AP#1) in the above method embodiment, wherein the processing unit 120 is used to execute the above In the method embodiment, the AP processing related operations, and the communication unit 110 is configured to perform the AP receiving and sending related operations in the above method embodiment.
  • the AP for example, AP#A or AP#1
  • the processing unit 120 is used to execute the above In the method embodiment, the AP processing related operations
  • the communication unit 110 is configured to perform the AP receiving and sending related operations in the above method embodiment.
  • the device 100 can implement the steps or processes executed by the STA (for example, STA#A or STA#1) in the above method embodiment, wherein the communication unit 110 is used to execute the above
  • the processing unit 120 is configured to perform the operations related to the processing of the STA in the method embodiment above.
  • the device 100 here is embodied in the form of a functional unit.
  • the term "unit” here can refer to application specific integrated circuits (ASICs), electronic circuits, processors used to execute one or more software or firmware programs (such as shared processors, proprietary processors, or groups). Processor, etc.) and memory, merged logic circuits, and/or other suitable components that support the described functions.
  • ASICs application specific integrated circuits
  • processors used to execute one or more software or firmware programs (such as shared processors, proprietary processors, or groups).
  • the device 100 may be specifically the AP in the above-mentioned embodiment, and may be used to execute each process and/or step corresponding to the AP in the above-mentioned method embodiment, or the device 100 It may be specifically the STA in the foregoing embodiment, and may be used to execute each process and/or step corresponding to the STA in the foregoing method embodiment. To avoid repetition, details are not described herein again.
  • the apparatus 100 of each of the foregoing solutions has the function of implementing the corresponding steps performed by the AP in the foregoing method, or the apparatus 100 of the foregoing various solutions has the function of implementing the corresponding steps performed by the STA in the foregoing method.
  • the functions can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the communication unit can be replaced by a transceiver (for example, the sending unit in the communication unit can be replaced by a transmitter, and the receiving unit in the communication unit can be replaced by a receiver. Machine replacement), other units, such as the processing unit, etc., can be replaced by a processor to perform the transceiver operations and related processing operations in each method embodiment respectively.
  • the aforementioned communication unit may also be a transceiver circuit (for example, it may include a receiving circuit and a transmitting circuit), and the processing unit may be a processing circuit.
  • the device in FIG. 12 may be the AP or STA in the foregoing embodiment, or may be a chip or a chip system, such as a system on chip (system on chip, SoC).
  • the communication unit may be an input/output circuit or a communication interface; the processing unit is a processor, microprocessor, or integrated circuit integrated on the chip. There is no limitation here.
  • FIG. 13 shows a communication device 200 provided by an embodiment of the present application.
  • the device 200 includes a processor 210 and a transceiver 220.
  • the processor 210 and the transceiver 220 communicate with each other through an internal connection path, and the processor 210 is used to execute instructions to control the transceiver 220 to send signals and/or receive signals.
  • the device 200 may further include a memory 230, and the memory 230 communicates with the processor 210 and the transceiver 220 through an internal connection path.
  • the memory 230 is used to store instructions, and the processor 210 can execute the instructions stored in the memory 230.
  • the apparatus 200 is used to implement various processes and steps corresponding to the AP (for example, AP#A or AP#1) in the foregoing method embodiment.
  • the apparatus 200 is configured to implement various processes and steps corresponding to the STA (for example, STA#A or STA#1) in the foregoing method embodiment.
  • the apparatus 200 may be specifically the AP or STA in the foregoing embodiment, or may be a chip or a chip system.
  • the transceiver 220 may be the transceiver circuit of the chip, which is not limited here.
  • the apparatus 200 may be used to execute various steps and/or processes corresponding to the sending end or the receiving end in the foregoing method embodiments.
  • the memory 230 may include a read-only memory and a random access memory, and provide instructions and data to the processor. A part of the memory may also include a non-volatile random access memory.
  • the memory can also store device type information.
  • the processor 210 may be used to execute instructions stored in the memory, and when the processor 210 executes the instructions stored in the memory, the processor 210 is used to execute each step and/or of the method embodiment corresponding to the AP or STA. Or process.
  • each step of the above method can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. In order to avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • the processors in the embodiments of the present application may implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be a read-only memory (ROM), a programmable read-only memory (programmable ROM, PROM), an erasable programmable read-only memory (erasable PROM, EPROM), a Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • FIG. 14 shows a communication device 300 provided by an embodiment of the present application.
  • the device 300 includes a processing circuit 310 and a transceiver circuit 320.
  • the processing circuit 310 and the transceiver circuit 320 communicate with each other through an internal connection path, and the processing circuit 310 is used to execute instructions to control the transceiver circuit 320 to send signals and/or receive signals.
  • the device 300 may further include a storage medium 330, and the storage medium 330 communicates with the processing circuit 310 and the transceiver circuit 320 through an internal connection path.
  • the storage medium 330 is used to store instructions, and the processing circuit 310 can execute the instructions stored in the storage medium 330.
  • the apparatus 300 is used to implement various processes and steps corresponding to the AP (for example, AP#A or AP#1) in the foregoing method embodiment.
  • the apparatus 300 is configured to implement various processes and steps corresponding to the STA (for example, STA#A or STA#1) in the foregoing method embodiment.
  • FIG 15 shows the internal structure diagram of the AP product.
  • the AP can be multi-antenna or single-antenna.
  • the AP includes a physical layer (PHY) processing circuit and a media access control (media access control, MAC) layer processing circuit.
  • the physical layer processing circuit can be used to process physical layer signals
  • the MAC layer processing circuit can be used For processing MAC layer signals.
  • FIG. 16 shows the internal structure diagram of STA products.
  • STA products are usually terminal products that support the 802.11 series of standards, such as mobile phones, laptops, etc.
  • Figure 3 shows the STA structure diagram of a single antenna.
  • STA It can also be multi-antenna, and it can be a device with more than two antennas.
  • the STA may include a PHY layer processing circuit and a MAC layer processing circuit.
  • the physical layer processing circuit may be used to process physical layer signals
  • the MAC layer processing circuit may be used to process MAC layer signals.
  • the present application also provides a computer program product.
  • the computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute the steps shown in FIG. 7 or FIG. 11 Show the method in the embodiment.
  • the present application also provides a computer-readable medium that stores program code, and when the program code runs on a computer, the computer executes the steps shown in FIG. 7 or FIG. 11 Show the method in the embodiment.
  • the present application also provides a system, which includes the aforementioned one or more stations and one or more access points.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种发送触发帧的方法和通信装置,所述方法包括:接入点AP生成触发帧,触发帧包括第一站点STA对应的第一用户信息字段,第一用户信息字段包括第一空间流分配子字段和第一信息,第一信息用于指示第一STA传输数据使用的方式,所述方式包括MU-MIMO方式或non-MU-MIMO方式,第一空间流分配子字段承载的所述第一STA的空间流分配信息与所述第一信息指示的内容对应;所述AP发送所述触发帧。通过在用户信息字段中增加1比特的第一信息,能够实现对MU-MIMO方式和non-MU-MIMO方式下的空间流分配信息的独立指示,从而能够减小空间流分配信息的开销。

Description

发送触发帧的方法、接收触发帧的方法和通信装置
本申请要求于2020年06月5日提交中国专利局、申请号为202010505165.X、发明名称为“发送触发帧的方法、接收触发帧的方法和通信装置”的专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且更具体地,涉及发送触发帧的方法、接收触发帧的方法和通信装置。
背景技术
随着通信技术的发展,WLAN(Wireless Local Area Network,无线局域网)技术引入了基于触发帧的调度式上行传输方法。
即,接入点(Access Point,AP)首先发送触发帧,其中触发帧中包含一个或多个用户信息字段,每个用户信息字段对应一个STA,该用户信息字段承载的信息用于指示一个或多个站点(Station,STA)发送上行子物理层协议数据单元(PHY Protocol Data Unit,PPDU)的资源调度以及其他参数。
STA接收到触发帧以后,从中解析出其自身的用户信息字段,进而根据该用户信息字段承载的信息,发送上行数据。
在该现有技术中,用户信息字段包括空间流分配子字段(Spatial Stream Allocation subfield,SS Allocation subfield),用于承载AP为STA分配的空间流(Spatial Stream,SS)的信息(简称,空间流分配信息),例如,空间流分配信息包括SS的数量信息以及该SS的起始位置信息。
在现有技术中,该空间流分配子字段包括6个比特位,其中,起始位置信息占用3个比特位,从而,该起始位置信息能够指示8种可能的位置,并且,数量信息占用3个比特位,从而该数量信息能够指示8种可能的数量。
并且,在现有技术中,STA的SS的最大数量为8,因此,上述空间流分配子字段能够满足现有技术的需求。
但是,随着WLAN的版本的演进,上行传输的带宽增大,STA的空间流的最大数量增加为16甚至更多。
如何降低空间流分配信息的开销,成为业界亟需解决的问题。
发明内容
本申请提供一种发送触发帧的方法、接收触发帧的方法和通信装置,能够降低空间流分配信息的开销。
第一方面,提供一种发送触发帧的方法,所述方法包括:接入点AP生成触发帧,所 述触发帧包括第一站点STA对应的第一用户信息字段,所述第一用户信息字段包括第一空间流分配子字段和第一信息,所述第一信息用于指示所述第一STA传输数据使用的方式,所述方式包括多用户多输入多输出MU-MIMO方式或非多用户多输入多输出non-MU-MIMO方式,所述第一空间流分配子字段承载的所述第一STA的空间流分配信息与所述第一信息指示的内容对应;所述AP发送所述触发帧。
例如,当STA的空间流的最大数量为16时,MU-MIMO方式下每个用户的最大空间流的数目为4,需要4bit来指示空间流数,并需要4bit来指示起始位置,即,空间流分配信息的开销为8bit,联合指示MU-MIMO方式和non-MU-MIMO方式下的空间流分配信息的开销如以下表1所示:
表1
Figure PCTCN2021098448-appb-000001
在本申请实施方式中,“索引指示的值”与“索引的值”及“索引值”的意义相同,表示二进制的索引(即,一个或多个比特)对应的值,例如,十进制的值,为了避免赘述,以下省略对相同或相似情况的说明。
需要说明的是,在本申请实施方式中,各表中出现的索引的值为10进制数字,但是在实际应用中,索引值为十进制数值对应的二进制比特值,例如,十进制的索引值1对应二进制的比特0,再例如,十进制的索引值2对应二进制的比特1,依次类推,十进制的索引值16对应二进制的比特1111等,为了避免赘述,以下省略对相同或相似情况的说明。
即,如表1所示,联合指示MU-MIMO方式和non-MU-MIMO方式下的空间流分配信息的开销为8比特(需要指示256个值),大于现有的空间流分配子字段包括的比特位(6个)。
与此相对,在本申请实施方式中,通过在用户信息字段中增加1比特的第一信息,能够实现对MU-MIMO方式和non-MU-MIMO方式下的空间流分配信息的独立指示。
同样地,当STA的空间流的最大数量为16时,MU-MIMO方式下每个用户的最大空间流的数目为4。在MU-MIMO方式的空间流分配信息中,可以通过4比特指示流的起始位置,通过2比特指示空间流的数目。在non-MU-MIMO方式的空间流分配信息中,可以通过4比特指示空间流的数目。
即,根据本申请实施方式提供的方案,最多需要7个比特,便可以满足空间流分配信息的需求,从而,较现有技术相比,能够减小空间流分配信息的开销。
可选地,当所述第一信息用于指示所述第一STA根据MU-MIMO方式传输数据时,所述第一STA对应的空间流分配信息包括流起始位置信息和第一流数目信息,所述流起始位置信息用于指示所述第一STA对应的流的起始位置,所述第一流数目信息用于指示所述第一STA对应的流的数目。
可选地,当所述第一信息用于指示所述第一STA根据non-MU-MIMO方式传输数据时,所述第一STA对应的空间流分配信息包括第二流数目信息,所述第二流数目信息用于指示所述第一STA对应的流的数目。
可选地,所述流起始位置信息占用4个比特位,所述第一流数目信息占用2个比特位,所述第二流数目信息占用4个比特位。
可选地,当所述第一信息用于指示所述第一STA根据MU-MIMO方式传输数据时,所述第一空间流分配子字段占用6个比特位。
可选地,当所述第一信息用于指示所述第一STA根据non-MU-MIMO方式传输数据时,所述第一空间流分配子字段占用4个比特位。
从而,较现有的空间流分配子字段相比,比特位减小,从而能够将减小的比特位用于承载其他信息。能够提高通信的灵活性,进一步提高本申请的实用性。
例如,该较现有的空间流分配字段相比节省的2个比特位中的一个比特位可以用于承载第一信息。
可选地,所述第一信息占用至少一个比特位。
可选地,所述第一信息承载于所述第一用户信息字段中的预留子字段。
从而,能够利用现有的预留字段承载第一信息,无需改变现有的触发帧的结构,能够进一步提高本申请的实用性和兼容性。
可选地,所述第一信息承载于所述第一用户信息字段中的上行前向纠错码类型子字段。
具体地说,当资源单元分配子字段承载的信息指示资源单元组(包括至少一个资源单元)对应的子载波数量大于数据的编码方式对应的子载波数量要求(例如,242)时,无需指示编码方式,此情况下,即上行前向纠错码类型子字段无需承载编码方式的信息。
此情况下,可以在上行前向纠错码类型子字段中承载该第一信息。
或者,此情况下,用户信息字段不包括上行前向纠错码类型子字段,从而,节省出来的字段(或者说,比特位)可以用于承载该第一信息。
从而,无需占用预留字段,能够进一步提高本申请的实用性和兼容性。
可选地,所述第一信息承载于所述第一用户信息字段中的资源单元分配子字段。
具体地说,资源单元分配子字段包括8个比特位,其中,该8个比特位包括256个索引值,其中,该256个索引值中包括预留的索引值,从而,可以通过该预留的索引值实现第一信息的功能。
或者,资源单元分配子字段包括9个比特位,其中,该9个比特位包括512个索引值,其中,该512个索引值中包括预留的索引值,从而,可以通过该预留的索引值实现第一信息的功能。
可选地,所述第一用户信息字段包括资源单元分配子字段,所述资源单元分配子字段用于承载所述第一STA对应的第一资源单元组,所述第一资源单元组包括至少一个资源单元,以及当所述第一资源单元组对应的子载波数量大于第一阈值时,所述第一用户信息字段不包括上行前向纠错码类型子字段,所述第一阈值是根据数据的编码方式对应的子载波数量要求确定的。
可选地,所述第一阈值为242。
可选地,所述第一用户信息字段包括资源单元分配子字段,所述资源单元分配子字段用于承载所述第一STA对应的第一资源单元组,所述第一资源单元组包括至少一个资源单元,以及当所述第一资源单元组对应的子载波数量小于第二阈值时,第一STA传输数据使用的方式默认为non-MU-MIMO方式,所述第二阈值是根据MU-MIMO方式对应的子载波数量要求确定的。
可选地,所述第二阈值为242或484。
可选地,所述第一用户信息字段包括资源单元分配子字段,所述资源单元分配子字段用于承载所述第一STA对应的第一资源单元组,所述第一资源单元组包括至少一个资源单元,以及当所述第一资源单元组对应的子载波数量等于第一阈值,且所述第一资源单元组对应的子载波数量等于第二阈值时,数据的编码信息承载于所述第一用户信息字段中的资源单元分配子字段。
可选地,可选地,所述第一用户信息字段包括资源单元分配子字段,所述资源单元分配子字段用于承载所述第一STA对应的第一资源单元组,所述第一资源单元组包括至少一个资源单元,以及当所述第一资源单元组对应的子载波数量等于第一阈值,且所述第一资源单元组对应的子载波数量等于第二阈值时,所述第一信息承载于所述第一用户信息字段中的资源单元分配子字段,所述第一阈值是根据数据的编码方式对应的子载波数量要求确定的,所述第二阈值是根据MU-MIMO方式对应的子载波数量要求确定的。
可选地,所述第一用户信息字段包括资源单元分配子字段,所述资源单元分配子字段用于承载所述第一STA对应的第一资源单元,以及当所述触发帧的公共信息字段中的上行带宽子字段指示的带宽大于第三阈值时,所述资源单元分配子字段包括9个比特位。
可选地,所述第三阈值为160MHz。
第二方面,提供一种接收触发帧的方法,所述方法包括:第一站点STA接收触发帧,所述触发帧包括所述第一STA对应的第一用户信息字段,所述第一用户信息字段包括第一空间流分配子字段和第一信息,所述第一信息用于指示所述第一STA传输数据使用的方式,所述方式包括多用户多输入多输出MU-MIMO方式或非多用户多输入多输出 non-MU-MIMO方式,所述第一空间流分配子字段承载的所述第一STA的空间流分配信息与所述第一信息指示的内容对应;所述AP第一STA根据所述第一用户信息字段承载的信息,发送上行数据。
根据本申请提供的方案,在STA的空间流的最大数量为16的情况下,最多需要7个比特,便可以满足空间流分配信息的需求,从而,较现有技术相比,能够减小空间流分配信息的开销。
可选地,当所述第一信息用于指示所述第一STA根据MU-MIMO方式传输数据时,所述第一STA对应的空间流分配信息包括流起始位置信息和第一流数目信息,所述流起始位置信息用于指示所述第一STA对应的流的起始位置,所述第一流数目信息用于指示所述第一STA对应的流的数目;当所述第一信息用于指示所述第一STA根据non-MU-MIMO方式传输数据时,所述第一STA对应的空间流分配信息包括第二流数目信息,所述第二流数目信息用于指示所述第一STA对应的流的数目。
可选地,所述流起始位置信息占用4个比特位,所述第一流数目信息占用2个比特位,所述第二流数目信息占用4个比特位。
可选地,当所述第一信息用于指示所述第一STA根据MU-MIMO方式传输数据时,所述第一空间流分配子字段占用6个比特位;当所述第一信息用于指示所述第一STA根据non-MU-MIMO方式传输数据时,所述第一空间流分配子字段占用4个比特位。
可选地,所述第一信息占用至少一个比特位。
可选地,所述第一信息承载于所述第一用户信息字段中的预留子字段。
可选地,所述第一信息承载于所述第一用户信息字段中的上行前向纠错码类型子字段。
可选地,所述第一信息承载于所述第一用户信息字段中的资源单元分配子字段。
可选地,所述第一用户信息字段包括资源单元分配子字段,所述资源单元分配子字段用于承载所述第一STA对应的第一资源单元组,所述第一资源单元组包括至少一个资源单元,以及当所述第一资源单元组对应的子载波数量大于第一阈值时,所述第一用户信息字段不包括上行前向纠错码类型子字段,所述第一阈值是根据数据的编码方式对应的子载波数量要求确定的。
可选地,所述第一阈值为242。
可选地,所述第一用户信息字段包括资源单元分配子字段,所述资源单元分配子字段用于承载所述第一STA对应的第一资源单元组,所述第一资源单元组包括至少一个资源单元,以及当所述第一资源单元组对应的子载波数量小于第二阈值时,第一STA传输数据使用的方式默认为non-MU-MIMO方式,所述第二阈值是根据MU-MIMO方式对应的子载波数量要求确定的。
可选地,所述第二阈值为242或484。
可选地,所述第一用户信息字段包括资源单元分配子字段,所述资源单元分配子字段用于承载所述第一STA对应的第一资源单元组,所述第一资源单元组包括至少一个资源单元,以及当所述第一资源单元组对应的子载波数量等于第一阈值,且所述第一资源单元组对应的子载波数量等于第二阈值时,数据的编码信息承载于所述第一用户信息字段中的资源单元分配子字段。
可选地,所述第一用户信息字段包括资源单元分配子字段,所述资源单元分配子字段 用于承载所述第一STA对应的第一资源单元组,所述第一资源单元组包括至少一个资源单元,以及当所述第一资源单元组对应的子载波数量等于第一阈值,且所述第一资源单元组对应的子载波数量等于第二阈值时,所述第一信息承载于所述第一用户信息字段中的资源单元分配子字段,所述第一阈值是根据数据的编码方式对应的子载波数量要求确定的,所述第二阈值是根据MU-MIMO方式对应的子载波数量要求确定的。
可选地,所述第一用户信息字段包括资源单元分配子字段,所述资源单元分配子字段用于承载所述第一STA对应的第一资源单元,以及当所述触发帧的公共信息字段中的上行带宽子字段指示的带宽小于第三阈值时,第一STA传输数据使用的方式默认为non-MU-MIMO方式;其中,所述第三阈值是根据MU-MIMO方式对应的带宽要求确定的。
可选地,所述第三阈值为160MHz。
第三方面,提供一种发送触发帧的方法,所述方法包括:接入点AP生成触发帧,所述触发帧包括第一站点STA对应的第一用户信息字段,所述第一用户信息字段包括第一空间流分配子字段,所述第一空间流分配子字段承载第一映射信息中的第一索引值,其中,所述第一映射关系用于指示多个索引值与多个空间流分配信息的对应关系,每个空间流分配信息包括流起始位置信息和流数目信息,所述第一索引值与所述第一STA的空间流分配信息对应,其中,多个空间流分配信息包括多个第一空间流分配信息、多个第二空间流分配信息和多个第三空间流分配信息,所述第一空间流分配信息是多用户多输入多输出MU-MIMO方式和非多用户多输入多输出non-MU-MIMO方式共用的空间流分配信息,所述第二空间流分配信息是non-MU-MIMO方式独占的空间流分配信息,所述第三空间流分配信息是MU-MIMO方式独占的空间流分配信息;所述AP发送所述触发帧。
通过使用于指示索引值与空间流分配信息的对应关系的映射关系中包括MU-MIMO方式和non-MU-MIMO方式共用的空间流分配信息,能够减小所需要的索引值的数量,进而减小用于承载该索引值的比特位开销。
可选地,当MU-MIMO模式的总流数的最大值为16,MU-MIMO模式的每个STA的最大流数为4时,所述第一映射关系如下表2所示。
表2
Figure PCTCN2021098448-appb-000002
Figure PCTCN2021098448-appb-000003
其中,索引值0-3对应的空间流分配信息为第一空间流分配信息,索引值4-57对应的空间流分配信息为第三空间流分配信息,索引值58-X中的Y个索引值与所述第二空间流分配信息相对应,其中,Y是根据non-MU-MIMO方式的最大流数确定的,X是根据所述第一空间流分配子字段包括的比特数确定的。
通过从映射关系中排除不可能的空间流分配情况,例如,由于总流数不可能大于16,即,在第16流开始时该用户的流数目不可能大于1,从而,能够进一步减小所需要的索引值的数量,进而减小用于承载该索引值的比特位开销。
可选地,在MU-MIMO方式对应的空间流分配信息中,流起始位置信息的值的范围为[1,K],其中,流起始位置信息的值为k的空间流分配信息的流数目信息的值的范围为[1,N],其中,k-1个流包括多种分配方式,每种分配方式对应一个第一值,所述第一值是所对应的分配方式中被分配的流数最少的用户的流数,所述N是根据多个第一值中的最大值确定的,K表示能够使用的最大流数。
可选地,所述触发帧包括多个STA的用户信息字段,其中,所述多个STA按照拥有的流数从高到低排列时,第i个STA的流的起始位置位于第i+1个STA的流的起始位置之前。
可选地,所述第一映射关系如下表3所示,
表3
Figure PCTCN2021098448-appb-000004
Figure PCTCN2021098448-appb-000005
其中,索引值0-3对应的空间流分配信息为第一空间流分配信息,索引值4-44对应的空间流分配信息为第三空间流分配信息,索引值45-X中的Y个索引值与所述第二空间流分配信息相对应,其中,Y是根据non-MU-MIMO方式的最大流数确定的,X是根据所述第一空间流分配子字段包括的比特数确定的。
第四方面,提供一种接收触发帧的方法,所述方法包括:第一站点STA从接入点AP接收触发帧,所述触发帧包括第一站点STA对应的第一用户信息字段,所述第一用户信息字段包括第一空间流分配子字段,所述第一空间流分配子字段承载第一映射信息中的第一索引值,其中,所述第一映射关系用于指示多个索引值与多个空间流分配信息的对应关系,每个空间流分配信息包括流起始位置信息和流数目信息,所述第一索引值与所述第一STA的空间流分配信息对应,其中,多个空间流分配信息包括多个第一空间流分配信息、多个第二空间流分配信息和多个第三空间流分配信息,所述第一空间流分配信息是多用户多输入多输出MU-MIMO方式和非多用户多输入多输出non-MU-MIMO方式共用的空间流分配信息,所述第二空间流分配信息是non-MU-MIMO方式独占的空间流分配信息,所述第三空间流分配信息是MU-MIMO方式独占的空间流分配信息;所述第一站点STA根据所述第一用户信息字段承载的信息,发送上行数据。
通过使用于指示索引值与空间流分配信息的对应关系的映射关系中包括MU-MIMO方式和non-MU-MIMO方式共用的空间流分配信息,能够减小所需要的索引值的数量,进而减小用于承载该索引值的比特位开销。
可选地,当MU-MIMO模式的每个STA的最大流数为4时,所述第一映射关系如上述表2所示。
通过从映射关系中排除不可能的空间流分配情况,例如,由于总流数不可能大于16,即,在第16流开始时该用户的流数目不可能大于1,从而,能够进一步减小所需要的索引值的数量,进而减小用于承载该索引值的比特位开销。
可选地,在MU-MIMO方式对应的空间流分配信息中,流起始位置信息的值的范围为[1,K],其中,流起始位置信息的值为k的空间流分配信息的流数目信息的值的范围为 [1,N],其中,k-1个流包括多种分配方式,每种分配方式对应一个第一值,所述第一值是所对应的分配方式中被分配的流数最少的用户的流数,所述N是根据多个第一值中的最大值确定的,K表示能够使用的最大流数。
可选地,所述触发帧包括多个STA的用户信息字段,其中,所述多个STA按照拥有的流数从高到低排列时,第i个STA的流的起始位置位于第i+1个STA的流的起始位置之前。
可选地,所述第一映射关系如上述表3所示。
第五方面,提供了一种通信装置,包括用于执行第一方面至第四方面中的任一方面及其任一种可能实现方式中的方法的各个模块或单元。
第六方面,提供了一种通信设备,包括处理器,所述处理器与存储器耦合,可用于执行第一方面至第四方面中的任一方面及其可能实现方式中的方法。可选地,该通信设备还包括存储器。可选地,该通信设备还包括通信接口,处理器与通信接口耦合。可选地,该通信设备还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信设备为设备。此情况下,所述通信接口可以是收发器,或,输入/输出接口。在另一种实现方式中,该通信设备为芯片或芯片系统。此情况下,所述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
第七方面,提供了一种通信装置,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述第一方面至第四方面中的任一方面及其各方面的任一种可能实现方式中的方法被实现。
在具体实现过程中,上述通信装置可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是不同的电路,也可以是同一电路,这种情况下该电路在不同的时刻分别用作输入电路和输出电路。本申请实施方式对处理器及各种电路的具体实现方式不做限定。
第八方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行所述第一方面至第四方面中的任一方面及其各种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施方式对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第八方面中的处理器可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第九方面,提供了一种处理装置,包括:通信接口和处理电路,所述通信接口用于按照所述第一方面或第三方面及其任一种可能实现方式中的方法发送触发帧,所述处理电路用于产生所述触发帧。
第十方面,提供了一种处理装置,包括:通信接口和处理电路,所述通信接口用于获取待处理的触发帧,所述处理电路用于按照所述第二方面或第四方面及其任一种可能实现方式中的方法处理所述待处理的触发帧。
第十一方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行所述第一方面至第四方面中的任一方面及其各方面的任一种可能实现方式中的方法。
第十二方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述所述第一方面至第四方面中的任一方面及其各方面的任一种可能实现方式中的方法。
第十三方面,提供了一种通信系统,包括前述的AP和STA。
附图说明
图1是本申请的通信系统的一例的示意图。
图2是本申请的信道分布的一例的示意图。
图3是本申请的触发帧的传输流程的一例的示意图。
图4是本申请的触发帧的帧结构的一例的示意图。
图5是本申请的触发帧的帧结构的另一例的示意图。
图6是本申请的用户信息字段的一例的示意图。
图7是本申请的触发帧的传输过程的一例的示意性交互图。
图8是本申请的用户信息字段的另一例的示意图。
图9是本申请的用户信息字段的再一例的示意图。
图10是本申请的用户信息字段的再一例的示意图。
图11是本申请的触发帧的传输过程的另一例的示意性交互图。
图12是本申请的通信装置的一例的示意图。
图13是本申请的通信装置的另一例的示意图。
图14是本申请的通信装置的再一例的示意图。
图15是本申请的AP的一例的示意图。
图16是本申请的STA的一例的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:无线局域网(wireless local  area network,WLAN)通信系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
以下作为示例性说明,仅以WLAN系统为例,描述本申请实施例的应用场景以及本申请实施例的方法。
具体而言,本申请实施例可以应用于WLAN系统,并且本申请实施例可以适用于WLAN当前采用的电气与电子工程师协会(institute of electrical and electronics engineers,IEEE)802.11系列协议中的任意一种协议。
WLAN可以包括一个或多个基本服务集(basic service set,BSS),基本服务集中的网络节点包括接入点(access point,AP)和站点(station,STA)。一个STA只能接入一个AP(即将STA与AP关联),而一个AP下可以关联多个STA。STA和AP在进行数据传输之前,需要进行波束训练,获得该STA和AP之间的最优接收波束和/或最优发送波束。IEEE 802.11ad在原有的BSS基础上,引入了个人基本服务集(personal basic service set,PBSS)和个人基本服务集控制节点(PBSS control point,PCP)。每个个人基本服务集可以包含一个PCP/AP和多个关联于该PCP/AP的站点。
WLAN中的用户站点(STA)可以称为系统、用户单元、接入终端、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理、用户装置或用户设备(user equipment,UE)。该STA可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线局域网(例如Wi-Fi)通信功能的手持设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。
WLAN中的PCP/AP可用于与STA通过无线局域网进行通信,并将STA的数据传输至网络侧,或将来自网络侧的数据传输至STA。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。如图1所示的场景系统可以是WLAN系统,图1的WLAN系统可以包括一个或者多个AP,和一个或者多个STA,图1以一个AP和三个STA为例。AP和STA之间可以通过各种标准进行无线通信。例如,AP和STA之间可以采用单用户多入多出(single-user multiple-input multiple-output,SU-MIMO)技术或多用户多入多出(multi-users multiple-input multiple-output,MU-MIMO)技术进行无线通信。
其中,AP也称为无线访问接入点或热点等。AP是移动用户进入有线网络的接入点,主要部署于家庭、大楼内部以及园区内部,也可以部署于户外。AP相当于一个连接有线网和无线网的桥梁,其主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体地,AP可以是带有无线保真(wireless fidelity,WiFi)芯片的终端设备或者网络设备。可选地,AP可以为支持802.11等多种WLAN制式的设备。
WLAN从802.11a/g开始,历经802.11n、802.11ac,到现在正在讨论中的802.11ax和802.11be,其允许传输的带宽和空时流数分别如下表4所示。
表4
Figure PCTCN2021098448-appb-000006
图2示出了本申请的信道分配的一例,如图2所示,整个信道被分为主20MHz信道(或简称主信道,Primary 20MHz,P20),从20MHz信道(Secondary 20MHz,S20),从40MHz信道(S40),从80MHz(S80)信道。另外相对应的存在P40和P80。随着带宽增大,数据传输的数据速率也随之增加。因此在下一代标准,会考虑大于160MHz的更大带宽(如240MHz,320MHz)。
随着带宽增大和流数增加,数据传输的数据速率也随之增加。因此在下一代标准,将会考虑更大的带宽(如240MHz,320MHz),更大的流数,如9~16个空间流。
其中,空间流也可以称为空时流,或简称为流,在本申请中,术语“空间流”、“空时流”和“流”表示同一意义。
通常STA通过信道竞争获得发送权之后再进行上行数据传输的,比如基于加强分布式信道接入(enhanced distributed channel access,EDCA)方式抢信道。802.11ax引入了基于触发帧的调度式上行传输方法。
图3示出了该上行传输的过程的示意图,如图3所示,AP首先发送触发帧,该触发帧中包含用于一个或多个站点发送上行子物理层协议数据单元(PHY Protocol Data Unit,PPDU)的资源调度信息以及其他参数。
图4示出了触发帧的帧结构的一例,如图4所示,触发帧包含公共信息(Common Info)字段和用户信息列表(User Info List)字段。
其中,公共信息字段包含所有STA都需要读取的公共信息,图5示出了公共信息字段的一例。
用户信息列表字段由一个或多个用户信息字段构成,每个用户信息字段包含每个STA分别需要读取的信息。在用户信息字段中,关联标识(Association Identification 12,AID12)表示某一个STA的关联标识,资源单元分配子字段(RU Allocation)用来指示这个STA(AID12所指示的STA)所分配到的具体的资源单元(Resource Unit,RU)位置。图6示出了用户信息字段的一例。
STA接收到触发帧以后,从中解析出与自己的AID相匹配的用户信息字段,然后在该用户信息字段中的资源单元分配子字段所指示的RU上发送高效基于触发的PPDU。该PPDU的各个字段的名称和简单功能如下表5所示。
表5
Figure PCTCN2021098448-appb-000007
Figure PCTCN2021098448-appb-000008
从HE-STF到Data,整个带宽可以被划分为1个或多个资源单元,值得注意的是,在802.11ax标准中,一个STA只能允许被分配一个RU。下一代802.11be标准允许为一个STA分配多个RU。
AP接收到一个或多个站点发送的上行子PPDU组成的上行多用户PPDU后,回复确认帧,其中给一个或多个站点的确认帧可以通过下行正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)形式发送,也可以通过non-HT复制传输形式方式。确认帧又包括确认(Ack)帧和块确认(Block Ack)帧,其中Block Ack帧包括压缩Block Ack帧和多站点(Multi-STA)Block Ack帧,其中,Ack帧和Block Ack帧是给一个站点发送的信息的确认,Multi-STA Block Ack是给一个或多个站点发送的信息的确认。
下面,对触发帧中的用户信息字段中的资源单元分配子字段进行详细说明,该子字段位于触发帧的用户信息字段。基于触发的上行多用户传输采用同下行相同的子载波分布,作为示例而非限定,例如,带宽为160MHz,先通过1比特(用户信息字段的B12比特位)指示是低频段80MHz还是高频段80MHz(对于带宽小于等于80MHz的情况,默认将该比特置0,指示低频段80MHz),再通过以下表6将80MHz所有可能的资源单元的分配列举出来,然后通过该表格中的索引(或者说,索引值或索引信息)去指示。
表6
Figure PCTCN2021098448-appb-000009
Figure PCTCN2021098448-appb-000010
应理解以上列举的上行带宽最高为160MHz的情况仅为示例性说明,本申请实施方式并未限定于此,例如,上行带宽最高还可以达到例如240MHz或320MHz甚至更高。
另外,例如,如果上行带宽最高达到320MHz,可以在表6基础上在RU Allocation subfield另外增加1个比特用于扩展RU Allocation subfield指示所选择的80MHz在320MHz 中的位置。
其中,资源单元分配子字段(RU Allocation subfield)中的第0比特(B0)指示是主80MHz还是次80MHz。而对于带宽为20/40/80MHz时,该比特默认指示为0(主80MHz内)。
当带宽增大到320MHz,资源单元分配子字段增加1比特(或者说1个比特位),联合现有的资源单元分配子字段增的第0比特和第1比特指示具体是320MHz中的哪个80MHz,基于所确定的80MHz的位置,再通过7比特表去指示具体的哪个RU。其中资源单元分配子字段指示主160MHz还是次160MHz。
如图6所示,当不涉及随机接入时(即AID12不等于0和2045时),用户信息字段中的B26-B31为空间流分配子字段(SS Allocation subfield),用于指示分配给该用户信息字段对应的STA的空间流的起始位置和数量。
本申请实施方式适用于具有以下一种或多种特征的通信系统:
1)多用户多输入多输出(Multiple User Multiple Input Multiple Output,MU-MIMO)模式下最多支持的总流数为16,即,MU-MIMO模式下所有用户的流数之和的最大值为16;
2)非多用户多输入多输出(Non Multiple User Multiple Input Multiple Output,non-MU-MIMO)模式下最多支持16个流,即,non-MU-MIMO模式下一个用户的流数的最大值为16;
3)MU-MIMO模式中每个用户的最大空间流数目为4;
4)MU-MIMO模式在每个资源单元组上支持的最大用户数目为8,其中,一个资源单元组包括至少一个RU,当资源单元组包括一个RU时,该资源单元组也可以理解为资源单元,当资源单元组包括两个或两个以上RU时,资源单元组可以理解为一个多资源单元(MultipleResource allocation,MRU)。
5)MU-MIMO在大于或等于242的资源单元组上才可以使用,或者说,当资源单元组包括的子载波的数量大于或等于242时才能够使用MU-MIMO模式。
实施方式一
图7示出了本申请实施方式的空间流指示过程的一例的示意性交互图。
如图7所示,AP生成触发帧#A,其中,该触发帧#A包括至少一个STA的用户信息字段,其中,该至少一个STA的用户信息字段的结构相似,并且,该至少一个STA根据触发帧执行的操作相似,这里,为了便于理解,以针对STA#A(即,第一方面的第一STA的一例)的处理过程为例,进行说明。
即,该触发帧#A包括STA#A的用户信息字段(记做,用户信息字段#A,即,第一用户信息字段的一例)。
在本申请实施方式中,该用户信息字段#A中承载有信息#A(即,第一信息的一例)。
该信息#A用于指示STA#A传输数据时使用的MIMO模式(为了便于理解和区分,记做模式#A),即,该模式#A为MU-MIMO模式或non-MU-MIMO模式。
在本申请实施方式中,信息#A指示的传输模式不同(或者说,STA#A传输数据时使用模式不同),用户信息字段#A的空间流分配子字段(SS Allocation subfield)承载的信息(例如,信息占用的比特数或信息的解读方式)也不同。
下面,分别对MU-MIMO模式和non-MU-MIMO模式下SS Allocation subfield的结构进行详细说明。
1.MU-MIMO模式
在MU-MIMO模式中最多支持的总流数为16的情况下,分配给一个STA(例如,STA#A)的流(也可能称为,空间流或空时流)的起始位置有16种可能,因此,需要4bit来指示该STA(例如,STA#A)的流的起始位置。
在MU-MIMO模式中每个用户的最大空间流数目为4的情况下,分配给一个STA(例如,STA#A)的流的数量有4种可能,因此需要2bit来指示该STA(例如,STA#A)的流的数量。
即,MU-MIMO模式下,SS Allocation subfield包括至少6个比特位(例如,图6中的B26-B31),其中,4个比特位用于承载空间流起始位置信息以指示分配给STA的空间流的起始位置,另外2个比特位用于承载空间流数目信息以指示分配给STA的空间流的数目。
需要说明的是,空间流起始位置信息和空间流数目信息在SS Allocation subfield中的位置可以根据需要而采用不同的结构,只要使AP和STA对于SS Allocation subfield中承载的信息的理解一致即可。
即,在MU-MIMO模式,STA#A的空间流分配信息包括空间流起始位置信息和空间流数目信息,其中,空间流起始位置信息占用4个比特位,空间流数目信息占用2个比特位。
2.non-MU-MIMO模式
在non-MU-MIMO模式下,SS Allocation subfield承载的信息所指示的空间流被分配给一个STA(例如,STA#A),分配给STA的空间流的起始位置可以默认为1,因此,无需指示分配给STA的空间流的起始位置。
另外,在non-MU-MIMO模式中最多支持16个流的情况下,分配个一个STA(例如,STA#A)的流的数量有16种可能,因此需要4bit来指示该STA(例如,STA#A)的流的数量。
即,non-MU-MIMO模式下,SS Allocation subfield包括至少4个比特位,用于承载空间流数目信息以指示分配给STA的空间流的数目。
即,在non-MU-MIMO模式,STA#A的空间流分配信息包括空间流数目信息,并且,该空间流数目信息占用4个比特位。
在一种实现方式中,SS Allocation subfield包括6个比特位(例如,图6中的B26-B31),但STA#A的空间流分配信息仅占用其中的4个比特位,另两个比特位可以用于指示其他信息。
需要说明的是,此情况下,空间流分配信息(具体地说是,空间流数目信息)在SS Allocation subfield中的位置可以根据采用不同的方,只要使AP和STA对于SS Allocation subfield中承载的信息的理解一致即可。
在另一种实现方式中SS Allocation subfield包括4个比特位(例如,图8中的B26-B29),在本实施方式中可以节约两个比特(例如,图8中的B30-B31),这两个比特可以用于承载其他信息,例如,可以用做预留子字段。
另外,如上所示,MU-MIMO模式下和non-MU-MIMO模式下SS Allocation subfield(具体地说是,SS Allocation subfield包括的比特位数)可能不同,此情况下,MU-MIMO模式下和non-MU-MIMO模式下SS Allocation subfield在用户信息字段中的位置可以重叠也可以不同,本申请实施方式并未特别限定,只要使STA和AP对应MU-MIMO模式下和non-MU-MIMO模式下对于用户信息字段以及SS Allocation subfield字段的理解(或者说,解读)一致即可。
在本申请实施方式中,该信息#A可以采用显示指示方式或隐式指示方式来指示该模式#A。
实施方式二
本实施方式中,对显示指示模式#A的过程进行说明。
在本申请实施方式中,该信息#A包括1比特,或者说,该信息#A占用1个比特位。
例如,当信息#A对应的比特的值为“1”时,该信息#A用于指示STA#A传输数据时使用MU-MIMO模式。当信息#A对应的比特的值为“0”时,该信息#A用于指示STA#A传输数据时使用non-MU-MIMO模式。
或者,当信息#A对应的比特的值为“0”时,该信息#A用于指示STA#A传输数据时使用MU-MIMO模式。当信息#A对应的比特的值为“1”时,该信息#A用于指示STA#A传输数据时使用non-MU-MIMO模式。
应理解,以上列举的信息#A的取值与指示的内容的关系仅为示例性说明,本申请实施方式并未特别限定,只要使AP和STA对信息#A的不同取值所指示的内容的理解一直即可,例如,信息#A的取值与指示的内容的关系可以由通信系统或通信协议规定,或者,信息#A的取值与指示的内容的关系也可以由AP指示STA。
由于模式#A可能的情况为2中,因此仅需1比特便能够满足要求,从而,能够解决比特开销,进一步提高本申请的实用性,但是,本申请实施方式并未限定于此,信息#A也可以占用2个或2个以上比特位。
下面,对信息#A在用户信息字段中的承载位置进行说明。
方式1
在一种实现方式中,该信息#A承载于用户信息字段中的预留子字段,例如,图6所示的B39。
此情况下,STA#A可以从用户信息字段#A中的预留子字段,即,用户信息字段#A中的B39,获取信息#A。
方式2
在另一种实现方式中,图6所示的上行双载波调制子字段承载的信息可以利用调制与编码策略子字段来承载,并且,该方法可以与现有技术中编码策略子字段来承载上行双载波调制信息的方法和过程相似,这里,为了避免赘述,省略其详细说明。
因此,在本申请中,触发帧#A可以不包括上行双载波调制子字段承载,从而,可以利用所节省出来的比特位(例如,B25)作为用于承载信息#A的字段,例如图9所示的MU-MIMO/non-MU-MIMO指示子字段。
需要说明的是,在因触发帧不包括现有技术中的某些子字段(例如,上行双载波调制子字段承载)而节省出比特位的情况下,触发帧中的某些子字段在触发帧中的位置可以产 生变化,即与现有技术中该子字段在触发帧中的位置不同。或者,触发帧中的某些子字段在触发帧中的位置可以不产生变化,即与现有技术中该子字段在触发帧中的位置相同。即,本申请实施方式并未对节省出来的比特位在触发帧中的放置位置进行特别限定。以下,为了避免赘述,省略对相同或相似情况的说明。
此情况下,STA#A可以从用户信息字段#A中的通过不包括上行双载波调制子字段而节省出来的比特位,例如,用户信息字段#A中的B25,获取信息#A。
方式3
如图6所示的用户信息字段包括资源单元分配子字段(RU Allocation subfield),即,用户信息字段中的B12-B19,RU Allocation subfield用于承载分配给STA的资源单元组,例如,RU或MRU。
并且,如图6所示,用户信息字段包括上行前向纠错码类型子字段,即,用户信息字段中的B20,该子字段用于承载编码方式信息,该编码方式信息可以指示上行传输的编码方式,例如,二进制卷积码(binary convolutional coding,BCC)方式或低密度奇偶校验码(Low Density Parity Check Code,LDPC)。
并且,该编码方式是在分配给STA的资源单元组包括的子载波的数量小于或等于一定阈值(记做,阈值#A,即,第一阈值的一例)时才需要指示的。
作为示例而非限定,该阈值#A的值为242。
需要说明的是,该阈值#A可以由通信系统或通信协议规定,本申请实施方式并未特别限定。
例如,如果分配给STA#A的资源单元组(或者说,用户信息字段#A的RU Allocation subfield携带的信息指示的资源单元组)包括的子载波数量大于阈值#A,则代表不需要指示编码方式,即,如图10所示,用户信息字段#A可以不包括上行前向纠错码类型子字段。
从而,可以利用所节省出来的比特位(例如,B20),作为用于承载信息#A的字段,例如图10所示的MU-MIMO/non-MU-MIMO指示子字段。
需要说明的是,在因触发帧不包括现有技术中的某些子字段(例如,上行前向纠错码类型子字段)而节省出比特位的情况下,触发帧中的某些子字段在触发帧中的位置可以产生变化,即与现有技术中该子字段在触发帧中的位置不同。或者,触发帧中的某些子字段在触发帧中的位置可以不产生变化,即与现有技术中该子字段在触发帧中的位置相同。即,本申请实施方式并未对节省出来的比特位在触发帧中的放置位置进行特别限定。以下,为了避免赘述,省略对相同或相似情况的说明。
此情况下,STA#A可以从用户信息字段#A中的通过不包括上行前向纠错码类型子字段而节省出来的比特位,例如,用户信息字段#A中的B20,获取信息#A。
另外,尽管本申请实施方式中给出了因不包括UL FEC Coding Type子字段而节约出的1比特用于指示信息#A,但本申请实施方式并未限定于此,该节约出的1比特还可以用于其他信息的指示,如当8比特的RU Allocation subfield指示大于242的RU时,该1比特可以扩展RU Allocation subfield表格,也可以用于MRU合并组合的指示等。
实施方式三
本实施方式中,对隐式指示模式#A的过程进行说明。
如图6所示的用户信息字段包括资源单元分配子字段(RU Allocation subfield),即, 用户信息字段中的B12-B19,RU Allocation subfield用于承载分配给STA的资源单元组,例如,RU或MRU。
并且,MU-MIMO方式是在分配给STA的资源单元组包括的子载波的数量大于一定阈值(记做,阈值#B,即,第二阈值的一例)时才能够使用的。
作为示例而非限定,该阈值#B的值为242或484。
需要说明的是,该阈值#B可以由通信系统或通信协议规定,本申请实施方式并未特别限定。
例如,如果分配给STA#A的资源单元组(或者说,用户信息字段#A的RU Allocation subfield携带的信息指示的资源单元组)包括的子载波数量小于阈值#B,则代表STA#A不能使用MU-MIMO模式,即,模式#A默认为non-MU-MIMO模式。
此情况下,当STA#A确定用户信息字段#A中的RU Allocation subfield指示的RU或MRU包括的子载波数量小于阈值#B,则默认为信息#A指示的模式为non-MU-MIMO模式。
需要说明的是,上述阈值#A和阈值#B也可以联合使用也可以单独使用,本申请实施方式并未特别限定。
当用户信息字段#A中的RU Allocation subfield指示的RU或MRU包括的子载波数量大于能够使用MU-MIMO模式的阈值#B时,可以进一步指示/确定RU或MRU上采用的是MU-MIMO模式或者non-MU-MIMO模式。例如,可以采用上述方式1-3中的任意一种方式实现信息#A的指示功能。
另外,当用户信息字段#A中的RU Allocation subfield指示的RU或MRU包括的子载波数量等于能够使用MU-MIMO模式的阈值#B时,可以进一步指示/确定RU或MRU上采用的是MU-MIMO模式或者non-MU-MIMO模式,并且,当阈值#A与阈值#B相同,例如,均为242时,用户信息字段#A的上行前向纠错码字段需要承载编码方式的信息,即,上述方式3无法使用。
此情况下,除了通过上述方式1或方式2实现信息#A的指示功能以外,本申请实施方式还可以提供下一方式是实现信息#A的指示功能。
方式x
可以在RU Allocation subfield的7比特的80MHz具体指示(参考表6)中额外增加4个242-tone对应的条目,加上原有的4个242-tone对应的条目共有8个条目,设定其中4个条目对应MU-MIMO传输方式,另外4个条目对应non-MU-MIMO传输方式。通过选择不同的条目,可以达到告知分配了242-tone RU的STA是MU-MIMO还是non-MU-MIMO的目的。本方式x在阈值#A与阈值#B的值相同(例如,均为242)情况下,被分配的资源块等于该阈值时,可以采用较少的通信资源实现MU-MIMO/non-MU-MIMO传输方式的指示。
以下表7示出了242-tone RU的分配方式的索引值对应关系的一例。
表7
Figure PCTCN2021098448-appb-000011
Figure PCTCN2021098448-appb-000012
其中,索引的值61-64对应的条目可以复用表6中的索引值61-64对应的条目,即在表6的索引的值61-64对应的条目中增加该条目对应的MIMO模式,例如,MU-MIMO。
索引的值69-72对应的条目可以为新增条目。
方式y
当阈值#A与阈值#B的值相同,例如,均为242可以在RU Allocation subfield的7比特的80MHz具体指示中额外增加4个242-tone对应的条目,加上原有的4个242-tone对应的条目共有8个条目,设定其中4个条目对应BCC编码方式,另外4个条目对应LDPC编码方式。通过选择不同的条目,可以达到告知分配了242-tone RU的用户是采用BCC编码方式还是LDPC编码方式的目的。本方式y在阈值#A与阈值#B的值相同(例如,均为242)情况下,被分配的资源块等于该阈值时,可以实现较少的通信资源指示采用BCC编码方式还是LDPC编码方式。
具体的,这时用户信息字段#A可以不包括上行前向纠错码类型UL FEC Coding Type子字段。从而,如图10所示,可以利用所节省出来的比特位(例如,B20),承载信息#A。
需要说明的是,在因触发帧不包括现有技术中的某些子字段(例如,上行前向纠错码类型子字段)而节省出比特位的情况下,触发帧中的某些子字段在触发帧中的位置可以产生变化,即与现有技术中该子字段在触发帧中的位置不同。或者,触发帧中的某些子字段在触发帧中的位置可以不产生变化,即与现有技术中该子字段在触发帧中的位置相同。即,本申请实施方式并未对节省出来的比特位在触发帧中的放置位置进行特别限定。以下,为了避免赘述,省略对相同或相似情况的说明。
此情况下,STA#A可以从用户信息字段#A中的通过不包括上行前向纠错码类型子字段而节省出来的比特位,例如,用户信息字段#A中的B20,获取信息#A。
另外,尽管本申请实施方式中给出了因不包括UL FEC Coding Type子字段而节约出 的1比特用于指示信息#A,但本申请实施方式并未限定于此,该节约出的1比特还可以用于其他信息的指示,如当8比特的RU Allocation subfield指示大于242的RU时,该1比特可以扩展RU Allocation subfield表格,也可以用于MRU合并组合的指示等。
以下表8示出了242-tone RU的分配方式的索引值对应关系的另一例。
表8
Figure PCTCN2021098448-appb-000013
其中,索引的值61-64对应的条目可以复用表6中的索引值61-64对应的条目,即在现有的索引的值61-64对应的条目中增加该条目对应的编码方式,例如,BBC。
索引的值69-72对应的条目可以为新增条目。
另外,如图6、图8-10所示的用户信息字段包括资源单元分配子字段(RU Allocation subfield),即,用户信息字段中的B12-B19,RU Allocation subfield用于承载分配给STA的资源单元组,例如,RU或MRU。
并且,当触发帧的公共信息字段中的上行带宽子字段(如图5所示)指示的带宽大于160MHz时,RU Allocation subfield需要9个比特位才能够完成指示。
另外,当上行带宽子字段指示的上行带宽大于160MHz时,阈值#B可以为484。
即,设阈值#A=242,阈值#B=484。
则,如果触发帧#A的公共信息字段中的上行带宽子字段指示的带宽大于160MHz,且分配给STA#A的资源单元组包括的子载波数量小于或等于242,则可以保留上行前向纠错码类型子字段,并且可以采用上述方式1或方式2发送信息#A。
如果触发帧#A的公共信息字段中的上行带宽子字段指示的带宽的大小的大于160MHz,且分配给STA#A的资源单元组包括的子载波数量大于242阈值#A,则代表不需要指示编码方式,即,如图10所示,用户信息字段#A可以不包括上行前向纠错码类型子字段。从而,可以利用所节省出来的比特位(例如,B20),承载信息#A。
如果触发帧#A的公共信息字段中的上行带宽子字段指示的带宽的大小的小于或等于160MHz,则无需在表6基础上另外1个比特用于扩展RU Allocation subfield指示320MHz。并且,可以采用上述方式1或方式2发送信息#A。
综上所述,当MU-MIMO方式要求对应的阈值(即,阈值#B)为242时,
如果RU Allocation subfield指示的RU/MRU包括的子载波的数量大于242,则需要采用显示方式指示使用MU-MIMO方式还是non-MU-MIMO方式,即,此情况下,可以采用上述实施方式二中的方式1、方式2或方式3中的任意一种方式发送MU-MIMO方式或non-MU-MIMO方式的指示信息(即,信息#A);
如果RU Allocation subfield指示的RU/MRU包括的子载波的数量小于242,则可以采用隐式方式默认使用non-MU-MIMO方式,即,此情况下,可以采用上述实施方式三中的方式隐式指示non-MU-MIMO方式;
如果RU Allocation subfield指示的RU/MRU包括的子载波的数量等于242,则需要采用显示方式指示使用MU-MIMO方式还是non-MU-MIMO方式,并且,如果编码方式要求对应的阈值(即,阈值#A)为242,则还需要指示编码方式,此情况下,可以采用方式x或方式y发送MU-MIMO方式或non-MU-MIMO方式的指示信息(即,信息#A)以及编码方式的信息。
当MU-MIMO方式要求对应的阈值(即,阈值#B)为484时,
如果RU Allocation subfield指示的RU/MRU包括的子载波的数量大于或等于484,则需要采用显示方式指示使用MU-MIMO方式还是non-MU-MIMO方式,即,此情况下,可以采用上述实施方式二中的方式1、方式2或方式3中的任意一种方式发送MU-MIMO方式或non-MU-MIMO方式的指示信息(即,信息#A);
如果RU Allocation subfield指示的RU/MRU包括的子载波的数量小于484,则可以采用隐式方式默认使用non-MU-MIMO方式,即,此情况下,可以采用上述实施方式三中的方式隐式指示non-MU-MIMO方式。
实施方式四
图11示出了本申请实施方式的空间流指示过程的一例的示意性交互图。
如图11所示,AP生成触发帧#1,其中,该触发帧#1包括至少一个STA的用户信息字段,其中,该至少一个STA的用户信息字段的结构相似,并且,该至少一个STA根据触发帧执行的操作相似,这里,为了便于理解,以针对STA#1(即,第二方面的第一STA的一例)的处理过程为例,进行说明。
即,该触发帧#1包括STA#1的用户信息字段(记做,用户信息字段#1,即,第一用户信息字段的一例)。
在本申请实施方式中,在AP和STA中配置有映射关系#1(即,第三方面的第一映射关系的一例),该映射关系#1包括多个空间流分配信息与多个索引值的对应关系,在本申请实施方式中该索引值可以包括6个比特。与其他实施方式不同在于,空间流分配信息中不再分别指示流的数目信息和流的起始位置信息,而是采用针对流的数目信息和流的起始位置信息整体进行索引的方式。
并且,用户信息字段#1包括空间流分配子字段(SS Allocation subfield),该SS Allocation subfield承载的信息用于承载空间流配置信息#1对应的索引值(记做,索引值#1), 该空间流配置信息#1用于指示分配给STA#1的空间流#1的信息,即,该空间流#1的起始位置,以及该空间流#1的数量。该SS Allocation subfield可以包括6个比特位。
在本申请实施方式中,该映射关系#1包括由MU-MIMO模式和non-MU-MIMO模式共用的条目,以及MU-MIMO模式专用的条目,以及non-MU-MIMO模式专用的条目。相应的的,MU-MIMO模式专用的索引(条目)也指示了该传输是MU-MIMO模式,non-MU-MIMO模式专用的索引(条目)也是指示了该传输是non-MU-MIMO模式。对于共用条目的情况,本实施方式可以结合前面各个关于MU-MIMO模式和non-MU-MIMO模式的指示的方案,也可以不采用前面各个的技术方案。
具体地说,本申请实施方式的WLAN满足以下条件:
1)MU-MIMO模式下最多支持的总流数为8或16;
2)non-MU-MIMO模式下最多支持16个流;
3)MU-MIMO模式中每个用户的最大空间流数目为4;
4)MU-MIMO模式在每个资源单元组上支持的最大用户数目为8。
因此,MU-MIMO模式和non-MU-MIMO模式可以共用空间流配置信息指示流起始位置为1且流数目为1到4的条目,例如,以下表9~表11中索引值1-4对应的条目,即,表9~表11中的第1行。
即,当non-MU-MIMO的最大支持空间流数目为8时,MU-MIMO模式和non-MU-MIMO模式可以共用空间流配置信息指示流起始位置为1且流数目为1到4的条目,例如,下述表9~11中索引值1-4对应的条目,即,表9~11中的第1行。因此只需要额外4个条目就可以指示non-MU-MIMO的开始流为1且流数目为5到8流的指示。在该情况下,空间流分配子字段的比特数为6比特。
在一种可能的实现方式中,由于是总流数不可能大于16,如在第16流开始时该STA的流数目不可能大于1,这样总流数将超过16,因此,映射关系#1可以不包括该条目。以下表9示出了本申请实施方式的在映射关系#1的一例。
表9
Figure PCTCN2021098448-appb-000014
Figure PCTCN2021098448-appb-000015
需要说明的是,上述表格采用了压缩的记录方式,当然可以采用其他的记录方式,例如每个条目中仅包含一个唯一值。
需要说明的是,当non-MU-MIMO的最大支持空间流数目为16时,需要将上表拓展至7比特(因为6比特对应的64个索引值已不够指示额外需要的12个条目)。
以下表10示出了当non-MU-MIMO的最大支持空间流数目为16时的映射关系#1的一例。
表10
Figure PCTCN2021098448-appb-000016
Figure PCTCN2021098448-appb-000017
在另一种可能的实现方式中,触发帧#1包括至少两个STA的用户信息字段,其中,该至少两个STA的用户信息字段的结构相似;可以将至少两个STA分配的流数目进行排序,拥有最多流的STA(用户)应分配最小的流起始位置,同时指示出该STA的流数目。通过该方式可以进一步压缩MU-MIMO模式专用的条目。
具体地说,按照拥有最多流的用户应分配最小的流起始位置的规则。换言之,用户信息字段中的空间流分配子字段除了指示该STA的空间流分配信息,还指示了其他STA分配的空间流的范围,例如流数的范围。
例如,当某STA-a的流的起始位置为第2流,那么证明前面第1流分配给其他用户,因此根据上述规则分配给该STA-a的流数只能为1(不能大于该STA-a的流数目)。
再例如,当某STA-b1的流的起始位置为第3流,那么证明前面2流分配给其他用户,因此,该2流可能分配给同一STA,也可能分配给不同STA,当分配给同一STA-b2时,根据上述规则,分配给该STA-b1的流数可能为2(不能大于该STA-b2的流数目)。因此,流的起始位置为第3流的条目中的流数的可能的值为1或2。
再例如,当某STA-c1的流的起始位置为第4流,那么证明前面3流分配给其他STA,因此,该3流可能分配给同一STA,也可能分配给不同STA,当分配给同一STA-c2时,根据上述规则,分配给该STA-c1的流数可能为3(不能大于该STA-c2的流数目)。因此,流的起始位置为第4流的条目中的流数的可能的值为1、2或3。
再例如,当某STA-d1的流的起始位置为第5流,那么证明前面4流分配给其他STA,因此,该4流可能分配给同一STA,也可能分配给不同STA,当分配给同一STA-d2时,根据上述规则,分配给该STA-d1的流数可能为4(不能大于该STA-d2的流数目)。因此,流的起始位置为第5流的条目中的流数的可能的值为1、2、3或4。
再例如,当某STA-e1的流的起始位置为第6流,那么证明前面5流分配给其他STA,并且,如上所述,MU-MIMO模式下分配给同一STA的最大流数为4,因为不会出现把该5个流分给同一个STA的情况,因此,该5条流可能的分配方式包括:α.3条流分配给一个STA-e2,另外2条流分配给另一个STA-e3,此情况下,根据上述规则,分配给该STA-e1的流数可能为2(不能大于STA-e2和STA-e3中任意一个的流数目)。
β,4条流分配给一个STA-e4,另外1条流分配给另一个STA-e5,此情况下,根据上述规则,分配给该STA的流数可能为1(不能大于STA-e4和STA-e5中任意一个的流数目)。
γ,2条流分配给一个STA-e6,另外2条流分配给另一个STA-e7,另外2条流分配给再一个STA-e8,此情况下,根据上述规则,分配给该STA的流数可能为2(不能大于STA-e6、STA-e7和STA-e8中任意一个的流数目)。
ε,2条流分配给一个STA-e9,另外2条流分配给另一个STA-e10,另外1条流分配给再一个STA-e11,另外1条流分配给再一个STA-e12,此情况下,根据上述规则,分配给该STA的流数可能为1(不能大于STA-e9至STA-e12中任意一个的流数目)。
应理解,以上列举的分配方式仅为示例性说明,本申请实施方式并未限定于此,分配方式还可以包括例如,5条流还可以分别分配给5个STA(即,每个STA分配1条流)等。
因此,流的起始位置为第5流的条目中的流数的可能的值为1或2。
以此类推,以下表11示出了时的映射关系#1的再一例。
表11
Figure PCTCN2021098448-appb-000018
上述资源分配规则和空间流分配信息的方案中,高效的进行了分配指示,一方面利于产品实现,另一方面节省了存储资源和通信资源。
从而,STA#1在接收到触发帧#1时,可以根据SS Allocation subfield承载的信息用于承载索引值#1,从映射关系#1中确定与该索引值#1对应的空间流配置信息#1,进而确定AP分配给该STA#1的空间流的起始位置和数量。
通过使用于指示索引值与空间流分配信息的对应关系的映射关系中包括MU-MIMO方式和non-MU-MIMO方式共用的空间流分配信息,能够减小所需要的索引值的数量,进而减小用于承载该索引值的比特位开销。
本申请实施例提供了一种传输物理层协议数据单元的装置。在一种可能的实现方式中,该装置用于实现上述方法实施例中的接收端对应的步骤或流程。在另一种可能的实现方式中,该装置用于实现上述方法实施例中的发送端对应的步骤或流程。
图12是本申请实施例提供的通信装置的示意性框图。如图12所示,该装置100可以包括通信单元110和处理单元120。通信单元110可以与外部进行通信,处理单元120用于进行数据处理。通信单元110还可以称为通信接口或收发单元。
在一种可能的设计中,该装置100可实现对应于上文方法实施例中的AP(例如,AP#A或AP#1)执行的步骤或者流程,其中,处理单元120用于执行上文方法实施例中AP的处理相关的操作,通信单元110用于执行上文方法实施例中AP的收发相关的操作。
在又一种可能的设计中,该装置100可实现对应于上文方法实施例中的STA(例如,STA#A或STA#1)执行的步骤或者流程,其中,通信单元110用于执行上文方法实施例中STA的收发相关的操作,处理单元120用于执行上文方法实施例中STA的处理相关的操作。
应理解,这里的装置100以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置100可以具体为上述实施例中的AP,可以用于执行上述方法实施例中与AP对应的各个流程和/或步骤,或者,装置100可以具体为上述实施例中的STA,可以用于执行上述方法实施例中与STA对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置100具有实现上述方法中AP所执行的相应步骤的功能,或者,上述各个方案的装置100具有实现上述方法中STA所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如通信单元可以由收发机替代(例如,通信单元中的发送单元可以由发送机替代,通信单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述通信单元还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。在本申请的实施例,图12中的装置可以是前述实施例中的AP或STA,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,通信单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
图13示出了本申请实施例提供的通信装置200。该装置200包括处理器210和收发器220。其中,处理器210和收发器220通过内部连接通路互相通信,该处理器210用于执行指令,以控制该收发器220发送信号和/或接收信号。
可选地,该装置200还可以包括存储器230,该存储器230与处理器210、收发器220通过内部连接通路互相通信。该存储器230用于存储指令,该处理器210可以执行该存储器230中存储的指令。在一种可能的实现方式中,装置200用于实现上述方法实施例中的AP(例如,AP#A或AP#1)对应的各个流程和步骤。在另一种可能的实现方式中,装置 200用于实现上述方法实施例中的STA(例如,STA#A或STA#1)对应的各个流程和步骤。
应理解,装置200可以具体为上述实施例中的AP或STA,也可以是芯片或者芯片系统。对应的,该收发器220可以是该芯片的收发电路,在此不做限定。具体地,该装置200可以用于执行上述方法实施例中与发送端或接收端对应的各个步骤和/或流程。可选地,该存储器230可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器210可以用于执行存储器中存储的指令,并且当该处理器210执行存储器中存储的指令时,该处理器210用于执行上述与AP或STA对应的方法实施例的各个步骤和/或流程。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。本申请实施例中的处理器可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图14示出了本申请实施例提供的通信装置300。该装置300包括处理电路310和收发电路320。其中,处理电路310和收发电路320通过内部连接通路互相通信,该处理电路310用于执行指令,以控制该收发电路320发送信号和/或接收信号。
可选地,该装置300还可以包括存储介质330,该存储介质330与处理电路310、收发电路320通过内部连接通路互相通信。该存储介质330用于存储指令,该处理电路310可以执行该存储介质330中存储的指令。在一种可能的实现方式中,装置300用于实现上述方法实施例中的AP(例如,AP#A或AP#1)对应的各个流程和步骤。在另一种可能的实现方式中,装置300用于实现上述方法实施例中的STA(例如,STA#A或STA#1)对应的各个流程和步骤。
图15示出了AP产品的内部结构图,其中,AP可以是多天线的,也可以是单天线的。图2中,AP包括物理层(physical layer,PHY)处理电路和媒体接入控制(media access control,MAC)层处理电路,物理层处理电路可以用于处理物理层信号,MAC层处理电路可以用于处理MAC层信号。
图16示出了STA产品的内部结构图,其中,STA产品通常为支持802.11系列标准的终端产品,如手机、笔记本电脑等,图3示出了单个天线的STA结构图,实际场景中,STA也可以是多天线的,并且可以是两个以上天线的设备。图3中,STA可以包括PHY层处理电路和MAC层处理电路,物理层处理电路可以用于处理物理层信号,MAC层处理电路可以用于处理MAC层信号。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图7或图11所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图7或图11所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个站点以及一个或多个接入点。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种发送触发帧的方法,其特征在于,所述方法包括:
    接入点AP生成触发帧,所述触发帧包括第一站点STA对应的第一用户信息字段,所述第一用户信息字段包括第一空间流分配子字段和第一信息,所述第一信息用于指示所述第一STA传输数据使用的方式,所述方式包括多用户多输入多输出MU-MIMO方式或非多用户多输入多输出non-MU-MIMO方式,所述第一空间流分配子字段承载的所述第一STA的空间流分配信息与所述第一信息指示的内容对应;
    所述AP发送所述触发帧。
  2. 根据权利要求1所述的方法,其特征在于,当所述第一信息用于指示所述第一STA根据MU-MIMO方式传输数据时,所述第一STA对应的空间流分配信息包括流起始位置信息和第一流数目信息,所述流起始位置信息用于指示所述第一STA对应的流的起始位置,所述第一流数目信息用于指示所述第一STA对应的流的数目;
    当所述第一信息用于指示所述第一STA根据non-MU-MIMO方式传输数据时,所述第一STA对应的空间流分配信息包括第二流数目信息,所述第二流数目信息用于指示所述第一STA对应的流的数目。
  3. 根据权利要求2所述的方法,其特征在于,所述流起始位置信息占用4个比特位,所述第一流数目信息占用2个比特位,
    所述第二流数目信息占用4个比特位。
  4. 根据权利要求2或3所述的方法,其特征在于,当所述第一信息用于指示所述第一STA根据MU-MIMO方式传输数据时,所述第一空间流分配子字段占用6个比特位;
    当所述第一信息用于指示所述第一STA根据non-MU-MIMO方式传输数据时,所述第一空间流分配子字段占用4个比特位。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一信息占用至少一个比特位。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一信息承载于所述第一用户信息字段中的预留子字段;或者
    所述第一信息承载于所述第一用户信息字段中的上行前向纠错码类型子字段;或者
    所述第一信息承载于所述第一用户信息字段中的资源单元分配子字段。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一用户信息字段包括资源单元分配子字段,所述资源单元分配子字段用于承载所述第一STA对应的第一资源单元组,所述第一资源单元组包括至少一个资源单元,以及
    当所述第一资源单元组对应的子载波数量大于第一阈值时,所述第一用户信息字段不包括上行前向纠错码类型子字段,所述第一阈值是根据数据的编码方式对应的子载波数量要求确定的。
  8. 根据权利要求7所述的方法,其特征在于,所述第一阈值为242。
  9. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一用户信息字段包括资源单元分配子字段,所述资源单元分配子字段用于承载所述第一STA对应的第一 资源单元组,所述第一资源单元组包括至少一个资源单元,以及
    当所述第一资源单元组对应的子载波数量小于第二阈值时,第一STA传输数据使用的方式默认为non-MU-MIMO方式,所述第二阈值是根据MU-MIMO方式对应的子载波数量要求确定的。
  10. 根据权利要求9所述的方法,其特征在于,所述第二阈值为242或484。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第一用户信息字段包括资源单元分配子字段,所述资源单元分配子字段用于承载所述第一STA对应的第一资源单元组,所述第一资源单元组包括至少一个资源单元,以及
    当所述第一资源单元组对应的子载波数量等于第一阈值,且所述第一资源单元组对应的子载波数量等于第二阈值时,数据的编码信息承载于所述第一用户信息字段中的资源单元分配子字段;或者
    当所述第一资源单元组对应的子载波数量等于第一阈值,且所述第一资源单元组对应的子载波数量等于第二阈值时,所述第一信息承载于所述第一用户信息字段中的资源单元分配子字段,
    所述第一阈值是根据数据的编码方式对应的子载波数量要求确定的,所述第二阈值是根据MU-MIMO方式对应的子载波数量要求确定的。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述第一用户信息字段包括资源单元分配子字段,所述资源单元分配子字段用于承载所述第一STA对应的第一资源单元,以及
    当所述触发帧的公共信息字段中的上行带宽子字段指示的带宽大于第三阈值时,所述资源单元分配子字段包括9个比特位。
  13. 根据权利要求12所述的方法,其特征在于,所述第三阈值为160MHz。
  14. 一种接收触发帧的方法,其特征在于,所述方法包括:
    第一站点STA接收触发帧,所述触发帧包括所述第一STA对应的第一用户信息字段,所述第一用户信息字段包括第一空间流分配子字段和第一信息,所述第一信息用于指示所述第一STA传输数据使用的方式,所述方式包括多用户多输入多输出MU-MIMO方式或非多用户多输入多输出non-MU-MIMO方式,所述第一空间流分配子字段承载的所述第一STA的空间流分配信息与所述第一信息指示的内容对应;
    所述AP第一STA根据所述第一用户信息字段承载的信息,发送上行数据。
  15. 根据权利要求14所述的方法,其特征在于,当所述第一信息用于指示所述第一STA根据MU-MIMO方式传输数据时,所述第一STA对应的空间流分配信息包括流起始位置信息和第一流数目信息,所述流起始位置信息用于指示所述第一STA对应的流的起始位置,所述第一流数目信息用于指示所述第一STA对应的流的数目;
    当所述第一信息用于指示所述第一STA根据non-MU-MIMO方式传输数据时,所述第一STA对应的空间流分配信息包括第二流数目信息,所述第二流数目信息用于指示所述第一STA对应的流的数目。
  16. 根据权利要求15所述的方法,其特征在于,所述流起始位置信息占用4个比特位,所述第一流数目信息占用2个比特位,
    所述第二流数目信息占用4个比特位。
  17. 根据权利要求15或16所述的方法,其特征在于,当所述第一信息用于指示所述第一STA根据MU-MIMO方式传输数据时,所述第一空间流分配子字段占用6个比特位;
    当所述第一信息用于指示所述第一STA根据non-MU-MIMO方式传输数据时,所述第一空间流分配子字段占用4个比特位。
  18. 根据权利要求14至17中任一项所述的方法,其特征在于,所述第一信息占用至少一个比特位。
  19. 根据权利要求14至18中任一项所述的方法,其特征在于,所述第一信息承载于所述第一用户信息字段中的预留子字段;或者
    所述第一信息承载于所述第一用户信息字段中的上行前向纠错码类型子字段;或者
    所述第一信息承载于所述第一用户信息字段中的资源单元分配子字段。
  20. 根据权利要求14至19中任一项所述的方法,其特征在于,所述第一用户信息字段包括资源单元分配子字段,所述资源单元分配子字段用于承载所述第一STA对应的第一资源单元组,所述第一资源单元组包括至少一个资源单元,以及
    当所述第一资源单元组对应的子载波数量大于第一阈值时,所述第一用户信息字段不包括上行前向纠错码类型子字段,所述第一阈值是根据数据的编码方式对应的子载波数量要求确定的。
  21. 根据权利要求20所述的方法,其特征在于,所述第一阈值为242。
  22. 根据权利要求14至21中任一项所述的方法,其特征在于,所述第一用户信息字段包括资源单元分配子字段,所述资源单元分配子字段用于承载所述第一STA对应的第一资源单元组,所述第一资源单元组包括至少一个资源单元,以及
    当所述第一资源单元组对应的子载波数量小于第二阈值时,第一STA传输数据使用的方式默认为non-MU-MIMO方式,所述第二阈值是根据MU-MIMO方式对应的子载波数量要求确定的。
  23. 根据权利要求22所述的方法,其特征在于,所述第二阈值为242或484。
  24. 根据权利要求14至22中任一项所述的方法,其特征在于,所述第一用户信息字段包括资源单元分配子字段,所述资源单元分配子字段用于承载所述第一STA对应的第一资源单元组,所述第一资源单元组包括至少一个资源单元,以及
    当所述第一资源单元组对应的子载波数量等于第一阈值,且所述第一资源单元组对应的子载波数量等于第二阈值时,数据的编码信息承载于所述第一用户信息字段中的资源单元分配子字段;或者
    当所述第一资源单元组对应的子载波数量等于第一阈值,且所述第一资源单元组对应的子载波数量等于第二阈值时,所述第一信息承载于所述第一用户信息字段中的资源单元分配子字段,
    所述第一阈值是根据数据的编码方式对应的子载波数量要求确定的,所述第二阈值是根据MU-MIMO方式对应的子载波数量要求确定的。
  25. 根据权利要求14至24中任一项所述的方法,其特征在于,所述第一用户信息字段包括资源单元分配子字段,所述资源单元分配子字段用于承载所述第一STA对应的第一资源单元,以及
    当所述触发帧的公共信息字段中的上行带宽子字段指示的带宽大于第三阈值时,所述 资源单元分配子字段包括9个比特位。
  26. 根据权利要求25所述的方法,其特征在于,所述第三阈值为160MHz。
  27. 一种无线通信的装置,其特征在于,包括:
    用于实现权利要求1至13中任一项所述的方法的单元;或者
    用于实现权利要求14至26中任一项所述的方法的单元。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序运行时,
    使得装置执行如权利要求1至13中任意一项所述的方法,或者
    使得装置执行如权利要求14至26中任意一项所述的方法。
  29. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,
    使得安装有所述芯片系统的通信装置执行如权利要求1至13中任意一项所述的方法;或者
    使得安装有所述芯片系统的通信装置执行如权利要求14至16中任意一项所述的方法。
  30. 一种通信系统,其特征在于,包括:
    接入点AP,用于执行如权利要求1至13中任意一项所述的方法;
    至少一个站点STA,用于执行如权利要求14至26中任意一项所述的方法。
PCT/CN2021/098448 2020-06-05 2021-06-04 发送触发帧的方法、接收触发帧的方法和通信装置 WO2021244647A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21817101.5A EP4149192A4 (en) 2020-06-05 2021-06-04 TRIGGER FRAME SENDING METHOD, TRIGGER FRAME RECEIVING METHOD, AND COMMUNICATION APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010505165.X 2020-06-05
CN202010505165.XA CN113766647A (zh) 2020-06-05 2020-06-05 发送触发帧的方法、接收触发帧的方法和通信装置

Publications (1)

Publication Number Publication Date
WO2021244647A1 true WO2021244647A1 (zh) 2021-12-09

Family

ID=78784953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098448 WO2021244647A1 (zh) 2020-06-05 2021-06-04 发送触发帧的方法、接收触发帧的方法和通信装置

Country Status (3)

Country Link
EP (1) EP4149192A4 (zh)
CN (1) CN113766647A (zh)
WO (1) WO2021244647A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116707591A (zh) * 2022-02-24 2023-09-05 华为技术有限公司 一种天线模式切换方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107241798A (zh) * 2016-03-28 2017-10-10 华为技术有限公司 一种资源分配的指示方法及相关设备
CN109076596A (zh) * 2016-05-06 2018-12-21 高通股份有限公司 无线局域网中的触发帧
CN109413672A (zh) * 2017-08-17 2019-03-01 华为技术有限公司 一种数据传输的方法和装置
US20200091971A1 (en) * 2017-10-09 2020-03-19 Semiconductor Components Industries, Llc Wap uplink optimization by selection of mimo antennas spatial states

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030342A1 (ko) * 2015-08-19 2017-02-23 엘지전자(주) 무선 통신 시스템에서 트리거 프레임 전송 방법 및 이를 위한 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107241798A (zh) * 2016-03-28 2017-10-10 华为技术有限公司 一种资源分配的指示方法及相关设备
CN109076596A (zh) * 2016-05-06 2018-12-21 高通股份有限公司 无线局域网中的触发帧
CN109413672A (zh) * 2017-08-17 2019-03-01 华为技术有限公司 一种数据传输的方法和装置
US20200091971A1 (en) * 2017-10-09 2020-03-19 Semiconductor Components Industries, Llc Wap uplink optimization by selection of mimo antennas spatial states

Also Published As

Publication number Publication date
EP4149192A1 (en) 2023-03-15
CN113766647A (zh) 2021-12-07
EP4149192A4 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
US10887915B2 (en) Method and apparatus for transmitting downlink in wireless communication system
US9844037B2 (en) Method and apparatus for transmitting uplink in wireless communication system
CN113411831B (zh) 数据传输的方法和装置
CN109076531B (zh) 用于多bssid网络的随机接入资源单元分配
EP3691381B1 (en) Method and apparatus for transmitting downlink control information, and method and apparatus for obtaining number of blind detections
US11166273B2 (en) Method and apparatus for determining transport block size
EP4017175A1 (en) Frequency domain resource allocation method and apparatus
US20230388061A1 (en) Method for determining pucch repetition factor, and ue and base station
WO2018202163A1 (zh) 一种资源指示方法及装置
US11395272B2 (en) Method and device for receiving and sending control information
WO2020221321A1 (zh) 通信方法以及通信装置
US20220353025A1 (en) Information Indication Method and Communications Apparatus
WO2021142802A1 (zh) 一种上行控制信息的传输方法及装置
KR20230014778A (ko) 통신 방법 및 장치
WO2021244647A1 (zh) 发送触发帧的方法、接收触发帧的方法和通信装置
WO2023020349A1 (zh) 发送物理层协议数据单元的方法和通信装置
US20240196386A1 (en) Communication processing method and apparatus for carrier switching
WO2021032167A1 (zh) 传输块大小确定方法及装置
WO2023036050A1 (zh) 一种通信方法及装置
TWI826014B (zh) 一種通信方法、通信裝置、通信系統、電腦可讀存儲介質、電腦程式產品及晶片
WO2024067499A1 (zh) 通信方法及通信装置
WO2022237675A1 (zh) 信息发送的方法和装置
WO2022037674A1 (zh) 下行信道传输方法及装置
WO2020164140A1 (zh) 通信方法和装置
TW202420756A (zh) 一種天線通道探測方法、裝置和儲存介質

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817101

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021817101

Country of ref document: EP

Effective date: 20221208

NENP Non-entry into the national phase

Ref country code: DE