WO2022184032A1 - 一种资源分配方法及通信装置 - Google Patents

一种资源分配方法及通信装置 Download PDF

Info

Publication number
WO2022184032A1
WO2022184032A1 PCT/CN2022/078501 CN2022078501W WO2022184032A1 WO 2022184032 A1 WO2022184032 A1 WO 2022184032A1 CN 2022078501 W CN2022078501 W CN 2022078501W WO 2022184032 A1 WO2022184032 A1 WO 2022184032A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcarriers
sequence
interleaving matrix
pru
vru
Prior art date
Application number
PCT/CN2022/078501
Other languages
English (en)
French (fr)
Inventor
狐梦实
于健
淦明
李云波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112023017656A priority Critical patent/BR112023017656A2/pt
Priority to AU2022228403A priority patent/AU2022228403A1/en
Priority to JP2023554052A priority patent/JP2024510160A/ja
Priority to CA3212534A priority patent/CA3212534A1/en
Priority to KR1020237033947A priority patent/KR20230153452A/ko
Priority to EP22762497.0A priority patent/EP4294099A1/en
Publication of WO2022184032A1 publication Critical patent/WO2022184032A1/zh
Priority to US18/459,118 priority patent/US20240023099A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0041Frequency-non-contiguous
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth

Definitions

  • the present application relates to the field of mobile communication technologies, and in particular, to a resource allocation method and a communication device.
  • the power sent by the device is limited by both the maximum power and the maximum power spectral density, that is, the power sent by the device cannot exceed the maximum power value or the maximum power spectral density.
  • the corresponding transmission bandwidth can be widened, that is, the subcarriers allocated to the device become more discrete in the frequency domain, that is, the number of subcarriers per MHz decreases.
  • resource units may correspond to combinations of various discrete subcarriers, which requires defining more RUs or RU combinations.
  • resource units resource units, RUs
  • RUs resource units
  • the present application provides a resource allocation method and a communication device, which can enable a device to support higher transmit power.
  • a resource allocation method is provided.
  • the method can be executed by a first communication device, and the first communication device can be a communication device or a communication device capable of supporting functions required by the communication device to implement the method, such as a chip system.
  • the following description will be given by taking the communication device as the sending end, where the sending end is the first device, such as an access point (access point, AP) as an example.
  • the method includes:
  • the first device sends resource allocation information to the second device, where the resource allocation information is used to indicate a first (virtual resource unit, VRU), where the first VRU includes a plurality of subcarriers that are continuous in the frequency domain; the first device according to the VRU According to the mapping relationship with (physical resource unit, PRU), the first VRU is mapped to the first PRU, and data is transmitted on the first PRU, and the multiple subcarriers included in the first PRU are discontinuous in the frequency domain.
  • VRU virtual resource unit
  • PRU physical resource unit
  • the first device may inform the second device that the RU allocated to the second device is a VRU, but the first device sends data on discrete PRUs after continuous VRU mapping. Since the continuous VRUs are mapped to discrete PRUs, which is equivalent to reducing the number of subcarriers per MHz, the first device can support greater transmit power.
  • a resource allocation method is provided, the method can be executed by a second communication apparatus, and the second communication apparatus can be a communication apparatus or a communication apparatus capable of supporting the functions required by the communication apparatus to implement the method, such as a chip system.
  • the communication device may be the sending end, and the sending end is the second device, such as a station (station, STA), as an example for description here.
  • the method includes:
  • the second device receives resource allocation information from the first device, where the resource allocation information is used to indicate a first VRU, where the first VRU includes a plurality of subcarriers that are continuous in the frequency domain;
  • the second device determines a first PRU corresponding to the first VRU according to the mapping relationship between the VRU and the PRU, and the multiple subcarriers included in the first PRU are discontinuous in the frequency domain;
  • the second device receives data from the first device on the first PRU.
  • the resource allocation information sent by the first device to the second device indicates that the first VRU is allocated to the second device, and the second device can receive the first VRU on the first PRU after the first VRU is mapped.
  • the data of the first device can also be sent to the first device on the first PRU. Since the multiple subcarriers included in the first PRU are discontinuous in the frequency domain, which is equivalent to reducing the number of subcarriers per MHz, the second device can support greater transmit power.
  • the first device maps the first VRU to the first PRU according to an interleaving matrix, and the interleaving matrix satisfies the following formula:
  • N ROW is the number of rows of the interleaving matrix
  • N COL is the number of columns of the interleaving matrix
  • k is the sequence number of the sub-carrier input to the interleaving matrix
  • i is the sequence number of the sub-carrier with the sequence number k after the interleaving matrix is interleaved.
  • This solution provides a mapping manner in which the first VRU is mapped to the first PRU, that is, it is implemented by an interleaving matrix (also called an interleaver). That is, the sequence numbers of the multiple subcarriers included in the first frequency domain resource where the first VRU is located are transformed into rows and columns by using the interleaving matrix, and the sequence numbers of the subcarriers after the row and column transformations are output. Interleaving is implemented, for example, in a running-list manner.
  • a resource mapping method is provided, the method can be executed by a third communication apparatus, and the third communication apparatus may be a communication apparatus or a communication apparatus capable of supporting the functions required by the communication apparatus to implement the method, such as a chip system.
  • the communication device may be an interleaver.
  • the method includes:
  • the sequence numbers of the subcarriers of the first VRU are mapped to the sequence numbers of the subcarriers of the first PRU based on the interleaving matrix.
  • the first VRU includes a plurality of subcarriers that are continuous in the frequency domain, and the plurality of subcarriers included in the first PRU are in the frequency domain. Discontinuous;
  • the sequence number of the subcarrier of the first PRU is output.
  • the subcarrier whose sequence number is k of the first VRU is mapped to the sequence number of the subcarrier after the first PRU based on an interleaving matrix i, which satisfies the following formula:
  • N ROW is the number of rows of the interleaving matrix
  • N COL is the number of columns of the interleaving matrix
  • k is the sequence number of the sub-carrier input to the interleaving matrix
  • i is the sequence number of the sub-carrier with the sequence number k after the interleaving matrix is interleaved.
  • This solution provides a mapping manner in which the first VRU is mapped to the first PRU, that is, it is implemented by an interleaving matrix (also called an interleaver). That is, the sequence numbers of the multiple subcarriers included in the first frequency domain resource where the first VRU is located are transformed into rows and columns by using the interleaving matrix, and the sequence numbers of the subcarriers after the row and column transformations are output. Interleaving is implemented, for example, in a running-list manner.
  • any adjacent subcarriers included in the first PRU are discontinuous in the frequency domain.
  • any adjacent subcarriers included in the first PRU are discontinuous in the frequency domain, that is, the subcarriers included in the first PRU are more discrete, thereby enabling the first device to support greater transmit power.
  • the original row index sequence of the interleaving matrix becomes the target row index sequence
  • the original row index sequence is ⁇ 1, 2, 3, 4, 5, 6, 7, 8 ⁇
  • the target row index sequence is ⁇ 1, 5, 3, 7, 2, 6, 4, 8 ⁇ , or ⁇ 1, 6, 3, 8, 4, 7, 2, 5 ⁇ ;
  • the original row index sequence is ⁇ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ⁇
  • the target row index sequence is ⁇ 1 , 9, 5, 13, 3, 11, 7, 15, 2, 10, 6, 14, 4, 12, 8, 16 ⁇ , or ⁇ 1, 10, 3, 12, 5, 14, 7, 16, 8, 15, 6, 13, 4, 11, 2, 9 ⁇ .
  • This solution provides a possible implementation manner to make any adjacent subcarriers included in the first PRU discontinuous in the frequency domain, that is, before outputting the sequence numbers of the subcarriers included in the interleaving matrix, the interleaving matrix is row-changed. That is, the original row index sequence of the interleaving matrix is changed to the target row index sequence, and then the sequence numbers in the interleaving matrix are output according to the columns.
  • the first device maps the first VRU to the first PRU, including:
  • the first device sequentially inputs the sequence numbers of multiple subcarriers included in the first frequency domain resource where the first VRU is located into the rows of the interleaving matrix in a first order, and outputs the sequence numbers of each subcarrier in the interleaving matrix according to the column direction of the interleaving matrix,
  • the first order is from small to large, or the first order is from large to small.
  • This scheme provides an interleaving way of the interleaving matrix, that is, the way of marching and listing. Of course, it can also be listed in a manner, which is not limited in this application. In addition, the present application also does not limit the input order of the subcarrier sequence numbers, which is more flexible.
  • the number of rows of the interleaving matrix is predefined, and the number of columns of the interleaving matrix is the number of subcarriers to be input by the first device divided by the interleaving matrix the number of rows in the matrix; or,
  • the number of rows of the interleaving matrix is predefined, and the number of columns of the interleaving matrix is the number of subcarriers to be input by the first device divided by the number of rows of the interleaving matrix and rounded up.
  • the number of rows of the interleaving matrix can be predefined, which is simpler.
  • the number of columns of the interleaving matrix may also be predefined, or the number of rows or columns of the interleaving matrix may be negotiated or predetermined by the first device and the second device, which is not limited in this application.
  • the subcarriers input to the interleaving matrix are the first type subcarriers, or the input
  • the subcarriers of the interleaving matrix are first type subcarriers and second type subcarriers, the first type subcarriers are used to carry data, and the second type subcarriers include null subcarriers, DC subcarriers, guard subcarriers, pilots one or more of subcarriers;
  • the sequence number of the subcarriers input to the interleaving matrix is the sequence number of the first type of subcarriers in the multiple subcarriers included in the first frequency domain resource; or,
  • sequence numbers of the subcarriers input to the interleaving matrix are the sequence numbers of multiple subcarriers included in the first frequency domain resource, wherein the sequence numbers of the second type subcarriers in the multiple subcarriers are the first preset sequence numbers, and the subcarriers output from the interleaving matrix
  • the sequence number of the carrier does not include the first preset sequence number
  • the sequence numbers of the subcarriers input into the interleaving matrix are the sequence numbers of the multiple subcarriers included in the first frequency domain resource, wherein the sequence numbers of the second type subcarriers in the multiple subcarriers are all the first preset sequence numbers
  • the sequence number is that the sequence number of the first preset sequence number is located at a preset position of the interleaving matrix, and the sequence number of the subcarriers output from the interleaving matrix does not include the first preset sequence number.
  • This solution provides multiple mapping manners of multiple subcarriers included in the first frequency domain resource where the first VRU is located.
  • the second type of subcarriers may not participate in the mapping, that is, only the first type of subcarriers included in the first frequency domain resource are mapped.
  • the first type of subcarriers included in the first frequency domain resource may all participate in the mapping, or some of the first type of resources included in the first frequency domain resource may participate in the mapping, which is not limited in this application. This can make the content of the interleaving matrix less, thereby improving the interleaving efficiency
  • the second type of subcarrier is a pilot subcarrier
  • the pilot subcarrier is the largest pilot subcarrier of the 26 subcarriers RU in the first frequency domain resource carrier set.
  • the pilot subcarrier set of any 26-tone RU within 20MHz also includes the pilot subcarriers of 52-tone RU and 106-tone RU within the 20MHz. Therefore, the pilot subcarriers are the largest pilot subcarrier set of 26 subcarrier RUs in the first frequency domain resource, which enables all RUs in the interleaving range (the first frequency domain resource) to satisfy no matter which pilot subcarriers are selected. All can make the pilot position after mapping unchanged.
  • the number of subcarriers input to the interleaving matrix among the multiple subcarriers included in the first frequency domain resource is less than the number of subcarriers that the interleaving matrix supports input ;
  • the sequence numbers of the subcarriers input into the interleaving matrix are the sequence numbers of the subcarriers to be input into the interleaving matrix in the first frequency domain resource and the sequence numbers of the filled subcarriers, wherein the sequence numbers of the filled subcarriers are located at the preset positions of the interleaving matrix, and the sequence numbers of the filled subcarriers are located at the preset position of the interleaving matrix.
  • the sequence numbers are all second preset sequence numbers, and the sequence numbers of subcarriers output from the interleaving matrix do not include the second preset sequence numbers.
  • the interleaving matrix can be filled with the second preset sequence number, and the interleaving matrix can be obtained from the interleaving matrix.
  • the sequence numbers of the output subcarriers do not include the second preset sequence numbers. This will not affect the mapping positions of each subcarrier in the first VRU.
  • the number of multiple subcarriers included in the first frequency domain resource is determined according to a maximum bandwidth supported by the first device.
  • the solution determines the number of multiple subcarriers included in the first frequency domain resource according to the maximum bandwidth supported by the first device, and can ensure that the allocated VRU can be scheduled within the supported maximum bandwidth range.
  • the first device converts the The first VRU is mapped to the first PRU.
  • This application does not limit the specific implementation form of mapping the first VRU to the first PRU.
  • the first VRU can also be mapped according to the mapping relationship between the sequence numbers of the subcarriers included in the first VRU and the sequence numbers of the subcarriers included in the first PRU. For the first PRU, it is more flexible.
  • the sequence number of the subcarriers included in the first frequency domain resource starts from 0 or 1; or,
  • the sequence number of the subcarrier included in the first frequency domain resource is the subcarrier number in the actual frequency band corresponding to the subcarrier; or,
  • the sequence number of the subcarriers included in the first frequency domain resource is a preset sequence number plus a preset offset value.
  • mapping the VRU to the PRU in this application is to make the subcarriers more discrete, and both the VRU and the PRU can be indicated by the subcarrier sequence number, so the subcarrier sequence number sequence corresponding to the first frequency domain resource can be mapped.
  • the serial number of each sub-carrier can follow the sub-carrier number of the sub-carrier in the corresponding actual frequency band, or can be customized.
  • the embodiments of the present application do not limit the specific implementation form of the sequence number of the subcarriers.
  • the sequence numbers of the subcarriers corresponding to the first VRU are located in the first set, and the sequence numbers of the subcarriers corresponding to the first PRU are located in the first set ;or,
  • sequence numbers of the subcarriers corresponding to the first VRU are located in the first set
  • sequence numbers of the subcarriers corresponding to the first PRU are located in the second set
  • the first set and the second set have no intersection;
  • sequence numbers of the subcarriers corresponding to the first VRU are located in the first set, and the sequence numbers of the subcarriers corresponding to the first PRU are located in multiple second sets, and the multiple sets have no intersection.
  • This application does not limit the scope of the VRU and PRU participating in the mapping. That is, the first VRU and the first PRU may be located in the same frequency domain location range, or may be located in different frequency domain location ranges.
  • this embodiment of the present application does not limit whether the frequency range in which the PRU participates in the mapping is continuous, that is, the frequency domain range in which the PRU participates in the mapping may be continuous or discrete, as long as the size of the frequency range in which the PRU participates in the mapping is the same as that in the VRU participating in the mapping. The frequency range is the same.
  • a communication device is provided, for example, the communication device is the aforementioned first device or a device provided in the first device.
  • the communication device may be used to perform the method in the above-mentioned first aspect or any possible implementation manner of the first aspect.
  • the communication apparatus may include a module for performing the method in the first aspect or any possible implementation manner of the first aspect, for example, including a processing module and a transceiver module coupled with each other.
  • the communication apparatus is the aforementioned first device. in,
  • the transceiver module is configured to send resource allocation information to the second device, where the resource allocation information is used to indicate a first virtual resource unit VRU, and the first VRU includes a plurality of subcarriers that are continuous in the frequency domain;
  • the processing module is configured to map the first VRU to a first PRU according to the mapping relationship between the VRU and the physical resource unit PRU, and the multiple subcarriers included in the first PRU are discontinuous in the frequency domain;
  • the transceiver module is further configured to transmit data on the first PRU.
  • a communication device is provided, for example, the communication device is the aforementioned first device or a device provided in the first device.
  • the communication device may be configured to perform the method of the second aspect or any possible implementation of the second aspect.
  • the communication apparatus may include a module for executing the method in the second aspect or any possible implementation manner of the second aspect, for example, including a processing module and a transceiver module coupled with each other.
  • the communication device is the aforementioned second device. in,
  • the transceiver module is configured to receive resource allocation information from the first device, where the resource allocation information is used to indicate a first virtual resource unit VRU, and the first VRU includes a plurality of subcarriers that are continuous in the frequency domain;
  • the processing module is configured to determine a first PRU corresponding to the first VRU according to the mapping relationship between the VRU and the physical resource unit PRU, and the multiple subcarriers included in the first PRU are discontinuous in the frequency domain;
  • the transceiver module is further configured to receive data from the first device on the first PRU.
  • a communication device is provided, for example, the communication device is the aforementioned first device or a device provided in the first device.
  • the communication device may be configured to perform the method of the second aspect or any possible implementation of the second aspect.
  • the communication apparatus may include a module for executing the method in the second aspect or any possible implementation manner of the second aspect, for example, including a processing module and a transceiver module coupled with each other.
  • the communication device is the aforementioned second device. in,
  • the processing module is configured to map the sequence number of the subcarrier of the first VRU to the sequence number of the subcarrier of the first PRU based on the interleaving matrix, the first VRU includes a plurality of subcarriers that are continuous in the frequency domain, and the first VRU Multiple subcarriers included in a PRU are discontinuous in the frequency domain;
  • the transceiver module is configured to output the sequence number of the subcarrier of the first PRU.
  • the subcarrier with the sequence number k of the first VRU is mapped to the sequence number of the subcarrier after the first PRU based on an interleaving matrix i, the interleaving matrix satisfies the following formula:
  • N ROW is the number of rows of the interleaving matrix
  • N COL is the number of columns of the interleaving matrix
  • k is the sequence number of the sub-carrier input to the interleaving matrix
  • i is the sub-carrier whose sequence number is k passing through the interleaving matrix The sequence number after interleaving.
  • any adjacent subcarriers included in the first PRU are discontinuous in the frequency domain.
  • the original row index sequence of the interleaving matrix becomes the target row index sequence
  • the original row index sequence is ⁇ 1, 2, 3, 4, 5, 6, 7, 8 ⁇
  • the target row index sequence is ⁇ 1, 5, 3, 7, 2, 6, 4, 8 ⁇ , or ⁇ 1, 6, 3, 8, 4, 7, 2, 5 ⁇ ;
  • the original row index sequence is ⁇ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ⁇
  • the target row index sequence is ⁇ 1 , 9, 5, 13, 3, 11, 7, 15, 2, 10, 6, 14, 4, 12, 8, 16 ⁇ , or ⁇ 1, 10, 3, 12, 5, 14, 7, 16, 8, 15, 6, 13, 4, 11, 2, 9 ⁇ .
  • the communication apparatus maps the first VRU to the first PRU, including:
  • the subcarriers input to the interleaving matrix are the first type subcarriers
  • the subcarriers input to the interleaving matrix are the first type of subcarriers and the second type of subcarriers
  • the first type of subcarriers are used to carry data
  • the second type of subcarriers include null subcarriers, DC subcarriers, One or more of guard subcarriers and pilot subcarriers;
  • the sequence number of the subcarriers input into the interleaving matrix is the sequence number of the first type of subcarriers in the multiple subcarriers included in the first frequency domain resource; or,
  • sequence numbers of the subcarriers input into the interleaving matrix are the sequence numbers of the multiple subcarriers included in the first frequency domain resource, wherein the sequence numbers of the second type subcarriers in the multiple subcarriers are all the first A preset sequence number, the sequence number of the subcarrier output from the interleaving matrix does not include the first preset sequence number; or,
  • the sequence numbers of the subcarriers input into the interleaving matrix are the sequence numbers of the multiple subcarriers included in the first frequency domain resource, wherein the sequence numbers of the second type subcarriers in the multiple subcarriers are all the first preset sequence numbers
  • the sequence number is that the sequence number of the first preset sequence number is located at a preset position of the interleaving matrix, and the sequence number of the subcarriers output from the interleaving matrix does not include the first preset sequence number.
  • the second type of subcarriers are pilot subcarriers, and the pilot subcarriers are 26 in the first frequency domain resource The largest set of pilot subcarriers for a subcarrier RU.
  • the number of subcarriers input to the interleaving matrix among the multiple subcarriers included in the first frequency domain resource is smaller than that supported by the interleaving matrix the number of subcarriers entered;
  • the sequence numbers of the subcarriers input into the interleaving matrix are the sequence numbers of the subcarriers to be input into the interleaving matrix in the first frequency domain resource and the sequence numbers of the filler subcarriers, wherein the sequence numbers of the filler subcarriers are located in the interleaving matrix.
  • the preset position of the matrix, the sequence numbers of the filled subcarriers are all second preset sequence numbers, and the sequence numbers of the subcarriers output from the interleaving matrix do not include the second preset sequence number.
  • the number of multiple subcarriers included in the first frequency domain resource is determined according to a maximum bandwidth supported by the first device.
  • the first VRU is based on a sequence number of each subcarrier included in the first VRU and each subcarrier included in the first PRU The mapping relationship of the sequence numbers is mapped to the first PRU.
  • the sequence number of the subcarriers included in the first frequency domain resource starts from 0 or 1; or,
  • the sequence number of the subcarrier included in the first frequency domain resource is the subcarrier number in the actual frequency band corresponding to the subcarrier; or,
  • the sequence number of the subcarriers included in the first frequency domain resource is a preset sequence number plus a preset offset value.
  • the sequence number of the subcarrier corresponding to the first VRU is located in the first set, and the sequence number of the subcarrier corresponding to the first PRU is located in the the first set; or,
  • sequence numbers of the subcarriers corresponding to the first VRU are located in the first set
  • sequence numbers of the subcarriers corresponding to the first PRU are located in the second set
  • the first set and the second set have no intersection, or all
  • the sequence numbers of the parts in the first set and the second set are the same; or,
  • the sequence numbers of the subcarriers corresponding to the first VRU are located in the first set
  • the sequence numbers of the subcarriers corresponding to the first PRU are located in multiple second sets, and there is no intersection between the multiple second sets, and the first The set has no intersection with the plurality of second sets, or the first set has an intersection with some of the second sets in the plurality of second sets.
  • an embodiment of the present application provides a communication device, and the communication device may be the communication device of any one of the fourth to sixth aspects in the foregoing embodiments, or the communication device provided in the fourth to sixth aspects A chip in a communication device of any aspect.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store computer programs or instructions or data
  • the processor is coupled with the memory and the communication interface, and when the processor reads the computer program, instructions or data, the communication device is made to execute the above-mentioned first to third aspects A method performed by a first device or a second device or an interleaver in a method embodiment of any one of the aspects.
  • the communication interface can be realized by an antenna, a feeder, a codec, etc. in the communication device, or, if the communication device is a chip set in the first device or the second device or the interleaver, the communication interface can be is the input/output interface of the chip, such as input/output pins, etc.
  • the communication apparatus may also include a transceiver for the communication apparatus to communicate with other devices. Exemplarily, when the communication device is the first device, the other device is the second device; or, when the communication device is the second device, the other device is the first device, or when the communication device is the interleaver device, the other device is the first device and/or the second device.
  • an embodiment of the present application provides a chip system, where the chip system includes a processor, and may further include a memory, for implementing the method performed by the communication apparatus in any one of the fourth aspect to the seventh aspect.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a communication system, where the communication system includes the communication device according to the fourth aspect and the fifth aspect.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed, the method executed by the first device in the above aspects is implemented; or The method performed by the second device in the above aspects; or the method performed by the interleaver in the above aspects is implemented.
  • a computer program product comprising: computer program code, when the computer program code is executed, the method performed by the first device in the above aspects is performed, or The method performed by the second device in the above aspects is caused to be performed; or the method performed by the interleaver in the above aspects is caused to be performed.
  • FIG. 1 is a network architecture of a wireless local area network to which an embodiment of the application is applied;
  • FIG. 2 is a schematic diagram of subcarrier distribution and RU distribution of 20MHz
  • FIG. 3 is a schematic diagram of subcarrier distribution and RU distribution of 40MHz
  • 4 is a schematic diagram of subcarrier distribution and RU distribution of 80MHz
  • Figure 5 is a schematic diagram of multiple continuous RUs corresponding to discrete 26-tone RUs
  • FIG. 6 is a schematic diagram of multiple continuous RUs corresponding to discrete 996-tone RUs
  • FIG. 7 is a schematic diagram of the distribution of 26-tone RUs with discrete subcarriers
  • FIG. 8 is a schematic diagram of the distribution of 52-tone RUs with discrete subcarriers
  • FIG. 9 is a schematic flowchart of a resource allocation method provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a VRU and PRU mapping range provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a mapping manner from a VRU to a PRU provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of all 242 subcarriers within 20 MHz participating in mapping provided by an embodiment of the present application;
  • FIG. 13 is a schematic diagram of a second type of subcarrier not participating in mapping provided by an embodiment of the present application.
  • 15 is another schematic diagram of the second type of subcarriers not participating in mapping provided by an embodiment of the present application.
  • 16 is a schematic diagram of mapping a certain 20MHz VRU in 80MHz to a PRU according to an embodiment of the present application
  • FIG. 17 is another schematic diagram of mapping a certain 20MHz VRU in 80MHz to a PRU according to an embodiment of the present application.
  • FIG. 18 is a schematic diagram showing the location of pilot subcarriers in 80MHz
  • FIG. 19 is a schematic diagram of a row variation of an interleaving matrix provided by an embodiment of the present application.
  • FIG. 20 is a schematic diagram of a correspondence between an original row index sequence and a target row index sequence provided by an embodiment of the present application;
  • FIG. 21 is a schematic diagram of another correspondence between the original row index sequence and the target row index sequence provided by the embodiment of the present application.
  • 22 is a schematic diagram of another correspondence between the original row index sequence and the target row index sequence provided by the embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 24 is another schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the embodiments of the present application may be applicable to a wireless local area network (wireless local area network, WLAN) scenario, and may be applicable to IEEE 802.11 system standards, such as 802.11a/b/g, 802.11n, 802.11ac, 802.11ax, or the next generation thereof, For example in 802.11be or next generation standards.
  • IEEE 802.11 system standards such as 802.11a/b/g, 802.11n, 802.11ac, 802.11ax, or the next generation thereof, For example in 802.11be or next generation standards.
  • the embodiments of the present application may also be applied to a wireless local area network system such as an internet of things (Internet of things, IoT) network or a vehicle to X (Vehicle to X, V2X) network.
  • IoT internet of things
  • V2X vehicle to X
  • the embodiments of the present application may also be applicable to other possible communication systems, for example, an LTE system, an LTE frequency division duplex (FDD) system, an LTE time division duplex (TDD), a universal mobile communication system (universal mobile telecommunication system, UMTS), worldwide interoperability for microwave access (WiMAX) communication system, and future 5G communication system, etc.
  • LTE system an LTE system, an LTE frequency division duplex (FDD) system, an LTE time division duplex (TDD), a universal mobile communication system (universal mobile telecommunication system, UMTS), worldwide interoperability for microwave access (WiMAX) communication system, and future 5G communication system, etc.
  • WLAN started with the 802.11a/g standard and went through 802.11n, 802.11ac, 802.11ax and now 802.11be which is being discussed.
  • 802.11n can also be called high throughput (HT);
  • 802.11ac can also be called very high throughput (VHT);
  • 802.11ax can also be called high efficient (HE) or Wi-Fi -Fi 6;
  • 802.11be can also be called extremely high throughput (EHT) or (Wi-Fi 7), while for pre-HT standards, such as 802.11a/b/g, they are collectively referred to as non-high throughput (Non-HT).
  • HT high throughput
  • VHT very high throughput
  • 802.11ax can also be called high efficient (HE) or Wi-Fi -Fi 6
  • 802.11be can also be called extremely high throughput (EHT) or (Wi-Fi 7), while for pre-HT standards, such as 802.11a/b/g, they are collectively referred to
  • FIG. 1 a network architecture diagram of a WLAN to which the embodiments of the present application are applied is shown.
  • Figure 1 takes the WLAN including one wireless access point (access point, AP) and two stations (station, STA) as an example.
  • the STA associated with the AP can receive the radio frame sent by the AP, and can also send the radio frame to the AP.
  • the embodiments of the present application are also applicable to communication between APs.
  • APs can communicate with each other through a distributed system (DS), and the embodiments of the present application are also applicable to communication between STAs and STAs. .
  • DS distributed system
  • the number of APs and STAs in FIG. 1 is only an example, and may be more or less.
  • the STAs involved in the embodiments of the present application may be various user terminals, user equipment, access equipment, subscriber stations, subscriber units, mobile stations, user agents, user equipment or other names with wireless communication functions. Including various handheld devices, in-vehicle devices, wearable devices, computing devices or other processing devices connected to wireless modems with wireless communication capabilities, as well as various forms of user equipment (UE), mobile stations (mobile stations, MS), terminal, terminal equipment, portable communication device, handset, portable computing device, entertainment device, gaming device or system, global positioning system device or any other device configured to communicate over a wireless medium over a network other suitable equipment, etc.
  • a STA may be a router, a switch, a network bridge, etc.
  • the above-mentioned devices are collectively referred to as a station or a STA.
  • the APs and STAs involved in the embodiments of this application may be APs and STAs applicable to the IEEE 802.11 system standard.
  • An AP is a device deployed in a wireless communication network to provide wireless communication functions to its associated STAs.
  • the AP can be used as the center of the communication system, and is usually a network-side product that supports the MAC and PHY of the 802.11 system standard, such as a base station. , router, gateway, repeater, communication server, switch or bridge and other communication equipment, wherein, the base station may include various forms of macro base station, micro base station, relay station and so on.
  • the devices mentioned above are collectively referred to as APs.
  • a STA is usually a terminal product that supports the media access control (MAC) and physical layer (physical, PHY) of the 802.11 system standard, such as a mobile phone and a notebook computer.
  • MAC media access control
  • PHY physical layer
  • the AP communicates with the STA, the AP can allocate resources to the STA, and the STA transmits and receives data on the allocated resources.
  • OFDMA orthogonal frequency division multiple access
  • MU-MIMO multi-users multiple-input multiple-output
  • VRU refers to virtual RU, which is relative to PRU. If the resource allocated by the AP to the STA may be a VRU, after the STA receives the VRU, it can convert the VRU into a PRU, and then send data on the PRU.
  • the WLAN protocol divides the spectral bandwidth into several resource units (RUs).
  • the bandwidth configurations supported by the 802.11ax protocol include 20MHz, 40MHz, 80MHz, 160MHz, and 80+80MHz.
  • the bandwidth configuration supported by the 802.11be protocol can also support 320MHz in addition to the bandwidth configuration supported by the 802.11ax protocol.
  • the difference between 160MHz and 80+80MHz is that the former is a continuous frequency band, while the latter two 80MHz can be separated, that is, the 160MHz composed of 80+80MHz is discontinuous.
  • the IEEE 802.11ax protocol specifies that for 20MHz, 40MHz, 80MHz, and 160MHz, the spectrum bandwidth can be divided into multiple types of RUs, including 26 subcarrier RUs, 52 subcarrier RUs, 106 subcarrier RUs, and 242 subcarrier RUs (the largest in the 20MHz bandwidth).
  • RU 484 subcarrier RUs (maximum RU within 40MHz bandwidth), 996 subcarrier RUs (maximum RU within 80MHz bandwidth), and 2*996 subcarrier RUs (maximum RU within 160MHz bandwidth).
  • Each RU is composed of consecutive subcarriers, for example, a 26 subcarrier RU is composed of 26 consecutive subcarrier RUs.
  • a 26-subcarrier RU is denoted as a 26-tone RU
  • a 52-subcarrier RU is denoted as a 52-tone RU
  • the entire bandwidth also includes other sub-carriers, such as guard (Guard) sub-carriers, null sub-carriers, direct current (DC) sub-carriers, pilot sub-carriers one or more of.
  • guard (Guard) sub-carriers such as null sub-carriers, direct current (DC) sub-carriers, pilot sub-carriers one or more of.
  • the subcarriers used for data transmission are referred to as the first type of subcarriers
  • the other subcarriers are collectively referred to as the second type of subcarriers.
  • FIG. 2 is a schematic diagram of subcarrier distribution and RU distribution of 20 MHz.
  • the entire bandwidth can be composed of an entire 242-tone RU, or can be composed of various combinations of 26-tone RU, 52-tone RU, and 106-tone RU.
  • 20MHz can be composed of Composed of 8 26-tone RUs, 4 52-tone RUs or 2 106-tone RUs.
  • the bandwidth of one 242-tone RU is about 20MHz
  • the bandwidth of one 106-tone RU is about 8MHz
  • the bandwidth of one 52-tone RU is about 4MHz
  • the bandwidth of one 26-tone RU is about 4MHz.
  • the bandwidth is about 2MHz.
  • the entire bandwidth also includes some guard sub-carriers, null sub-carriers, and one or more of DC sub-carriers and pilot sub-carriers.
  • the 20MHz shown in Figure 2 also includes guard sub-carriers, null sub-carriers, and DC sub-carriers. subcarrier.
  • the bandwidth is 40MHz
  • the entire bandwidth is roughly equivalent to the replication of two 20MHz subcarrier distributions.
  • the entire bandwidth can be composed of a whole 484-tone RU, or 26-tone RU, 52-tone RU, 106-tone RU , various combinations of 242-tone RU, as shown in Figure 3.
  • "5DC" in FIG. 3 represents 5 DC subcarriers.
  • 40MHz also includes one or more of guard subcarriers, null subcarriers, and DC subcarriers. It should be understood that the bandwidth of a 484-tone RU is approximately 40MHz.
  • the entire bandwidth consists of four 242-tone RU resource units.
  • the entire bandwidth can be composed of the entire 996-tone RU, or it can be composed of various combinations of 26-tone RU, 52-tone RU, 106-tone RU, 242-tone RU, and 484-tone RU, as shown in Figure 4.
  • 484L and 484R in Figure 4 represent the left half and right half of the 484-tone RU, which respectively contain 242 subcarriers, which is another representation of "484+5DC" in Figure 3.
  • “5DC” in FIG. 4 represents 5 DC sub-carriers, and “23DC” represents 23 DC sub-carriers.
  • 80MHz also includes one or more of guard subcarriers, null subcarriers, and DC subcarriers. It should be understood that the bandwidth of a 996-tone RU is approximately 80MHz.
  • the bandwidth when the bandwidth is 160MHz, the entire bandwidth can be regarded as a copy of the distribution of two 80MHz sub-carriers, and the entire bandwidth can be composed of a whole 2*996-tone RU, or 26-tone RU, 52-tone RU RU, 106-tone RU, 242-tone RU, 484-tone RU, 996-tone RU of various combinations.
  • the bandwidth when the bandwidth is 320MHz, the entire bandwidth can be regarded as a copy of the distribution of four 80MHz subcarriers, and the entire bandwidth can be composed of four 996-tone RU resource units.
  • the sub-carrier distribution and RU distribution of 160 MHz and 320 MHz are not shown separately.
  • the above-mentioned various subcarrier distributions are in units of 242-tone RU.
  • the RU on the left side of Figure 4- Figure 6 corresponds to the lowest frequency, and the RU on the right side of Figure 4- Figure 6 corresponds to the highest frequency.
  • 242-tone RUs can be numbered: 1st, 2nd, ..., 16th. It should be noted that at most 16 242-tone RUs correspond one-to-one with 16 20MHz channels from low to high frequency.
  • a multi-RU is an RU composed of a plurality of RUs.
  • multiple RUs may be denoted as Multi-RUs, and may also be denoted as MRUs. It should be noted that, in this paper, multiple RUs are collectively recorded as MRUs.
  • the 802.11be protocol also introduces a variety of MRUs, such as 52+26-tone RU consisting of one 52-tone RU and one 26-tone RU; one 106-tone RU and one 26-tone RU consisting of 106+26-tone RU; 484+242-tone RU consisting of one 484-tone RU and one 242-tone RU; 996+484-tone RU consisting of one 996-tone RU and one 484-tone RU; 242+484+996-tone RU composed of 1 242-tone RU, 1 484-tone RU and 1 996-tone RU; 2*996+ composed of 2 996-tone RU and 1 484-tone RU 484-tone RU; 3*996-tone RU consisting of 3 996-tone RUs; 3*996+484-tone RU consisting of 3 996-tone RUs and 1 484-tone RU; and so on.
  • MRUs such as 52+26
  • Continuous RU continuous RU, CRU
  • a continuous RU refers to a RU composed of consecutive multiple subcarriers, or a continuous RU is an RU composed of two groups of consecutive subcarrier groups, and the multiple subcarriers included in each group of the continuous subcarrier group are continuous, Only one or more of guard subcarriers, null subcarriers, or DC subcarriers are spaced between the two subcarrier groups. All RUs supported in 802.11ax can be understood as continuous RUs. Consecutive RUs may also be referred to as regular RUs. Certainly, the continuous RU may also have other names, and the specific name of the continuous RU is not limited in this embodiment of the present application.
  • a continuous RU including K subcarriers is referred to as a continuous K-tone RU.
  • a continuous 26-tone RU refers to a continuous RU including 26 subcarriers. That is, the concept of continuous K-tone RU is the same as the concept of K-tone RU in the existing 802.11ax standard.
  • the multiple subcarriers of the consecutive RUs may be consecutive, and the consecutive RUs may also include two consecutive subcarrier groups, and the two consecutive subcarrier groups are not consecutive.
  • a 26-tone RU composed of a group of 13 consecutive subcarriers and another group of 13 consecutive subcarriers is a continuous RU.
  • a 996-tone RU composed of a group of 484 consecutive subcarriers and another group of 484 consecutive subcarriers is a continuous RU.
  • Such RUs may also be called special continuous RUs or generalized continuous RUs.
  • the continuous RU in this application also includes a special continuous RU or a generalized continuous RU.
  • DRU Distributed RU
  • a RU that includes multiple subcarrier groups that are discrete in the frequency domain may be called a discrete RU, that is, a discrete RU includes multiple subcarrier groups, and any two subcarrier groups are discrete in the frequency domain.
  • one subcarrier group includes one subcarrier, or, one subcarrier group includes at least two consecutive subcarriers, that is, one subcarrier group includes one subcarrier or includes multiple consecutive subcarriers.
  • Discrete RU can also be called distributed RU (distributed RU, DRU).
  • the discrete RU may also have other names, and this application does not limit the name of the discrete RU.
  • the number of subcarrier groups included in one discrete RU in this application is greater than or equal to 2.
  • a discrete RU including K subcarriers may be referred to as a discrete K-tone RU.
  • a discrete 26-tone RU refers to a discrete RU including 26 subcarriers.
  • the size of K may refer to the value of K used by the continuous RU.
  • the size of K may also be different from the value of K used by the continuous RU.
  • 20MHz may include a combination of one or more of discrete 26-tone RU, discrete 52-tone RU, discrete 106-tone RU, and discrete 242-tone RU.
  • one discrete RU may form a discrete MRU with another discrete RU.
  • the discrete MRU can be allocated to one or more sites.
  • discrete 242-tone RU and discrete 484-tone RU can form discrete 484+242-tone RU.
  • the special continuous RU or the generalized continuous RU mentioned above does not belong to the discrete RU involved in the embodiments of the present application.
  • the 26-tone RU composed of a group of consecutive 13 subcarriers and another group of consecutive 13 subcarriers in the above example is not a discrete RU as defined in this application, but a special continuous RU.
  • the numbers of subcarriers included in any two of the multiple subcarrier groups included in the discrete RU may be the same or different.
  • the number of subcarriers in each subcarrier group may be 1.
  • the number of subcarriers in some subcarrier groups is 1, and the number of subcarriers in another subcarrier group is 2, that is, a discrete RU may include 4 subcarrier groups, and the number of subcarriers in the 4 subcarrier groups may be sequentially 1, 1, 2, 2.
  • the interval between adjacent subcarrier groups is The number of subcarriers can be the same or different.
  • a pair of adjacent subcarrier groups refers to two adjacent subcarrier groups of a discrete RU.
  • subcarrier group #1 and subcarrier group #2 are adjacent, and subcarrier group #1 is adjacent to subcarrier group #2.
  • Group #2 is adjacent to subcarrier group #3, that is, the frequency of subcarriers included in subcarrier group #1 is smaller than the frequency of subcarriers included in subcarrier group #2, and the frequency of subcarriers included in subcarrier group #2 is The frequency is smaller than the frequency of the subcarriers included in the subcarrier group #3.
  • the subcarrier with the highest frequency in subcarrier group #1 and the subcarrier with the lowest frequency in subcarrier group #2 are discontinuous in frequency (or, frequency domain), that is, there are K1 (K1 ⁇ 1) subcarriers between them.
  • the carrier, or there are K1 subcarriers between the two, the subcarrier with the highest frequency in the subcarrier group #2 and the subcarrier with the lowest frequency in the subcarrier group #3 are discontinuous in frequency (or, frequency domain), that is, two There are K2 (K2 ⁇ 1) subcarriers between them, or there are K2 subcarriers between them.
  • K1 may be equal to K2, or may not be equal to K2.
  • subcarrier group #1, subcarrier group #2, subcarrier group #3, and subcarrier group #4 For another example, for a discrete RU that includes 4 discrete subcarrier groups (denoted as: subcarrier group #1, subcarrier group #2, subcarrier group #3, and subcarrier group #4), subcarrier group #1 and subcarrier group #4 #2 is adjacent, subcarrier group #2 is adjacent to subcarrier group #3, and subcarrier group #3 is adjacent to subcarrier group #4.
  • the subcarrier with the highest frequency in subcarrier group #1 and the subcarrier with the lowest frequency in subcarrier group #2 are separated by K1 (K1 ⁇ 1) subcarriers
  • the subcarrier and subcarrier with the highest frequency in subcarrier group #2 are separated by K2 (K2 ⁇ 1) subcarriers
  • the subcarriers with the highest frequency in subcarrier group #3 and the subcarriers with the lowest frequency in subcarrier group #4 are separated by K3 ( K3 ⁇ 1) subcarriers. All three of K1, K2, and K3 may be equal, or two of them may be equal, or none of the three may be equal.
  • the multiple continuous RUs corresponding to the discrete 26-tone RU shown in Figure 5 are the first continuous 26-tone RU (continuous RU#1) within the first 20MHz and the second within 20MHz.
  • the first consecutive 26-tone RU (Continuous RU#2).
  • the discrete RU is referred to as the discrete RU corresponding to the continuous RU#1 and the continuous RU#2, or the discrete RU is referred to as the discrete RU that has a mapping relationship with the continuous RU#1 and the continuous RU#2; or Continuous RU#1 and continuous RU#2 are continuous RUs occupied by the discrete RU.
  • the multiple continuous RUs corresponding to the discrete 996-tone RUs shown in FIG. 6 are the two continuous 996-tone RUs shown in the figure.
  • the U.S. Federal Communications Commission has promulgated regulations on the 6GHz spectrum, defining a low power indoor (LPI) communication method that limits the maximum power and maximum frequency spectral density sent.
  • LPI low power indoor
  • the maximum power transmitted by the AP is 36dBm (decibel-milliwatts, decibel milliwatts), and the maximum power spectral density is 5dBm/MHz (decibel-milliwatts/megahertz, decibel milliwatts/megahertz);
  • STA it is specified that the maximum power sent by the STA is 24dBm, and the maximum power spectral density is -1dBm/MHz.
  • the power sent by the device is limited by both the maximum power and the maximum power spectral density, that is, the power sent by the device cannot exceed the maximum power value or the maximum power spectral density, that is, the transmit power per MHz cannot exceed a given value.
  • Table 1 shows the correspondence between the maximum power sent by the device and the bandwidth in the LPI scenario.
  • the bandwidth corresponding to each subcarrier included in the continuous RU is smaller, and naturally the maximum power transmitted by the device cannot be increased by the transmission bandwidth.
  • 20MHz includes 2 subcarriers belonging to the 20MHz and multiple subcarriers belonging to other RUs.
  • the subcarriers allocated to the device are not increased.
  • the carrier becomes more discrete in the frequency domain, which reduces the number of subcarriers per MHz. From the perspective of subcarriers, it is equivalent to widening the bandwidth corresponding to each subcarrier, so the device can support greater transmit power .
  • FIG. 7 shows a schematic diagram of the distribution of 26-tone RUs with discrete subcarriers.
  • Figure 7 takes 80MHz as an example, where the 26-tone RU includes 24 data subcarriers and 2 pilot subcarriers.
  • the 24 data sub-carriers can be designed in a form that is not adjacent to each other, as shown in FIG. 7 .
  • FIG. 8 shows a schematic diagram of the distribution of 52-tone RUs with discrete subcarriers.
  • Figure 8 takes 80MHz as an example, where the 52-tone RU includes 48 data subcarriers and 4 pilot subcarriers.
  • the 48 data subcarriers can be designed in a form that is not adjacent to each other, as shown in FIG. 8 .
  • the discrete distribution (discrete design) manner of the data subcarriers in FIG. 7 and FIG. 8 is only an illustration, and the embodiment of the present application does not limit the discrete distribution of the data subcarriers.
  • the number of subcarriers per MHz is reduced due to the discrete distribution of data subcarriers on the RU. From the perspective of subcarriers, it is equivalent to widening the bandwidth corresponding to each subcarrier, so each subcarrier can have greater transmit power.
  • more RUs or RU combinations need to be defined, such as RUs or RU combinations formed by various discrete subcarriers.
  • MRUs including RUs or RU combinations formed by various discrete subcarriers
  • some predefined discrete subcarrier sets may have intersections, then a discrete RU (such as x-tone RU) is allocated, and another discrete RU (such as y-tone RU) is allocated. ) cannot be used for transmission; for another example, if the preamble is punctured, the predefined RU cannot be used, and the utilization rate of the RU is low.
  • a discrete RU such as x-tone RU
  • another discrete RU such as y-tone RU
  • the present application provides a resource allocation method, which essentially provides a mapping method from VRUs to PRUs, and the mapping method can map continuous VRUs into discrete PRUs.
  • the sender can inform the receiver that the RU allocated to the receiver is a VRU, but the sender sends data on discrete PRUs mapped by continuous VRUs. Since continuous VRUs are mapped to discrete PRUs, which is equivalent to reducing the number of subcarriers per MHz, the transmitting end can support greater transmit power.
  • the subcarriers that need to be discrete refer to subcarriers used to carry data (also referred to as data subcarriers herein).
  • the distribution of other subcarriers included in the RU, such as pilot subcarriers is not limited.
  • the distribution of pilot subcarriers may follow a traditional design or other possible designs.
  • the technical solutions provided by the embodiments of the present application are described below with reference to the accompanying drawings.
  • the first device may be an AP, and the second device may be a STA or an AP; or, the first device may be a STA, and the second device may also be a STA.
  • the first device is an AP and the second device is an STA as an example.
  • FIG. 9 is a schematic flowchart of a resource allocation method provided by an embodiment of the present application, and the process is described as follows.
  • the AP sends resource allocation information to the STA.
  • the STA receives the resource allocation information from the AP, where the resource allocation information is used to indicate a first VRU, and the first VRU is a continuous RU.
  • the AP maps the first VRU to the first PRU according to the mapping relationship between the VRU and the PRU.
  • the AP sends data on the first PRU, and the STA receives the data on the first PRU.
  • the resources allocated by the AP to the STA are continuous RUs.
  • the present application can map the continuous RUs to discrete RUs, and the AP sends data to the STA on the discrete RUs, so that the AP can obtain higher transmission power. high transmit power.
  • the AP sends data to the STA on the discrete RU, and the STA receives data from the AP on the discrete RU, and may also send data to the AP on the discrete RU.
  • the STA does not send and receive data on the continuous RU allocated by the AP, and it can be considered that the continuous RU allocated by the AP to the STA is a VRU, and the discrete RU is a PRU. It can be considered that the embodiments of the present application essentially provide a solution for mapping a VRU to a PRU. In this way, the transmitter can use a resource allocation method that divides the bandwidth into several resource units, without defining multiple distributed RUs, and without worrying about how to select and allocate distributed RUs, so as to increase the maximum transmit power of the device.
  • the AP may continue to use the current RU allocation method, that is, use a resource unit allocation subfield (RU Allocation subfield) to allocate resources.
  • RU Allocation subfield resource unit allocation subfield
  • the AP allocates resources to the STA through the resource unit allocation subfield, and the STA considers the allocated resources to be physical resources.
  • the AP sends resource allocation information to the STA, where the resource allocation information is carried in the resource unit allocation subfield, and is used to indicate the RU allocated by the AP to the STA.
  • the resources allocated to the STA through the resource unit allocation subfield are not the resources actually used by the AP to send data, so the AP allocates resources to the STA and informs the STA that the resource allocated by the AP to the STA is a VRU.
  • the AP may send resource allocation information to the STA, where the resource allocation information is used to indicate that the RU allocated by the AP to the STA is the first VRU.
  • the resource allocation information may be carried in the resource allocation subfield, for example, the resource allocation information may be a reserved bit sequence of the resource allocation subfield.
  • the resource allocation information may also be carried in a signaling field (signal field, SIG) included in a physical protocol data unit (physical protocol data unit, PPDU), such as a universal field (universal SIG, U-SIG) or an ultra-high throughput rate
  • SIG signal field
  • PPDU physical protocol data unit
  • U-SIG universal SIG
  • U-SIG universal SIG
  • U-SIG ultra-high throughput rate
  • EHT-SIG extreme high throughput signal field
  • the AP Before the AP sends data to the STA, it needs to map the VRU to the PRU, so as to send data on the PRU. It should be understood that the AP can allocate a VRU to one STA, or can allocate a VRU to multiple STAs at the same time. For example, the AP allocates a first VRU to STA1 and a second VRU to STA2. In this case, the AP can map the first VRU and the second VRU at the same time. For example, the AP maps the frequency domain resources where the first VRU and the second VRU are located. For convenience of description, the following takes the AP mapping the first frequency domain resource where the first VRU is located as an example.
  • the first frequency domain resource may also include one or more other VRUs.
  • the AP can allocate VRUs to some STAs, and can also allocate PRUs to other STAs. For example, the AP allocates a first VRU to a first STA and a second PRU to a second STA, where the first VRU and The second PRU is located in the first frequency domain resource.
  • the solution for mapping VRUs to PRUs provided in the embodiments of the present application may be applicable to downlink transmission (ie, transmission from AP to STA), and may also be applicable to uplink transmission (ie, transmission from STA to AP).
  • the scheme of mapping the VRU to the PRU can be used in combination with the scheme that the AP allocates arbitrary resources to the STA through the resource unit allocation subfield.
  • mapping the VRU to the PRU in the embodiment of the present application is to make the subcarriers more discrete, and both the VRU and the PRU can be indicated by the subcarrier sequence number. Therefore, the embodiments of the present application can map the subcarrier sequence number sequence corresponding to the first frequency domain resource, that is, map the subcarrier sequence number sequence (atomic carrier sequence number sequence) to another subcarrier sequence number sequence (target subcarrier sequence number sequence). That is, each sequence number in the sequence of atomic carrier sequence numbers is mapped to the corresponding elements in the sequence of sequence numbers of target subcarriers one by one.
  • the sequence number of each sub-carrier may follow the sub-carrier number of the sub-carrier in the corresponding actual frequency band, or may be customized.
  • the embodiments of the present application do not limit the specific implementation form of the sequence number of the subcarriers.
  • the sequence number of the subcarrier may be the subcarrier number of the subcarrier in the corresponding actual frequency band.
  • the sequence numbers of the 242 subcarriers corresponding to the first 20MHz of 80MHz are -500 to -259; the sequence numbers of the 242 subcarriers corresponding to the second 20MHz are -253 to -12; the sequence numbers of the 242 subcarriers corresponding to the third 20MHz are 12 to 253, and the sequence numbers of the 242 subcarriers corresponding to the fourth 20MHz are 259 to 500 in sequence.
  • sequence numbers of the subcarriers can be numbered from 0 or 1.
  • sequence numbers of the 242 subcarriers corresponding to the first 20MHz of 80MHz are 0 to 241, or 1 to 242.
  • the sequence number of the subcarriers is a preset sequence number plus a preset offset value.
  • the preset sequence number can be numbered from 0 or 1
  • the preset offset value can be determined according to the subcarrier number of the subcarrier in the corresponding actual frequency band.
  • the sequence numbers of the 242 subcarriers corresponding to the first 20MHz of 80MHz may be calculated according to the preset sequence number and the preset offset value. Assuming that the preset sequence number is 1, the preset offset value may be -501.
  • the embodiments of the present application do not limit the scope of the VRU and the PRU participating in the mapping. That is, the first VRU and the first PRU may be located in the same frequency domain location range, or may be located in different frequency domain location ranges.
  • this embodiment of the present application does not limit whether the frequency range in which the PRU participates in the mapping is continuous, that is, the frequency domain range in which the PRU participates in the mapping may be continuous or discrete, as long as the size of the frequency range in which the PRU participates in the mapping is the same as that in the VRU participating in the mapping. The frequency range is the same.
  • the embodiment of the present application does not limit the set where the atomic carrier sequence number sequence is located and the set where the target subcarrier sequence number is located.
  • the sequence numbers in the subcarrier sequence number sequence corresponding to the first frequency domain resource can be mapped to other sequence numbers in the same set.
  • the target subcarrier sequence number sequence is also located in the first set; or It is also possible to map the sequence numbers in the subcarrier sequence number sequence corresponding to the first frequency domain resource to other sequence numbers in another set. For example, if the atomic carrier sequence number sequence is located in the first set, then the target subcarrier sequence number sequence is also located in the second set.
  • the second set has no intersection with the first set; for another example, if the atomic carrier sequence number sequence is located in the first set, then the target subcarrier sequence number sequence is also located in the second set, and the second set has the same partial sequence number as the first set.
  • the embodiment of the present application does not limit whether the sequence of target subcarrier sequence numbers is continuous, that is, the sequence numbers included in the sequence of target subcarrier sequence numbers may be located in different sets. For example, if the atomic carrier sequence number sequence is located in the first set, the target subcarrier sequence number sequence may be located in multiple second sets, and there is no intersection between the multiple second sets, wherein the first set and the multiple second sets have no intersection. An intersection, or there is an intersection between the first set and a part of the second sets of the plurality of second sets.
  • the atomic carrier number sequence can correspond to the first 20MHz in 80MH, and the target subcarrier number sequence can also correspond to the first 20MHz in 80MHz; or, the atomic carrier number sequence can correspond to the first 20MHz in 80MH, and the target subcarrier number
  • the sequence can correspond to the third 20MHz in the 80MHz; it represents the first frequency domain resource; or, the atomic carrier sequence number sequence can correspond to the first 20MHz in the 80MHz, and the target subcarrier sequence number sequence can correspond to the second 20MHz in the 80MHz. Frequency and the third 20MHz part frequency in 80MH and the fourth 20MHz part frequency in 80MH.
  • the target subcarrier sequence number sequence can be located at ⁇ -500,...,-259 ⁇ ; or, if the atomic carrier sequence number sequence is located at ⁇ -500,..., -259 ⁇ , the target subcarrier sequence number sequence may be located at ⁇ -253,...,-12 ⁇ ; or, if the atomic carrier sequence number sequence is located at ⁇ -500,...,-259 ⁇ , the target subcarrier sequence number sequence may be located at ⁇ -253, ..., -106 ⁇ , ⁇ 50, ..., 88 ⁇ and ⁇ 270, ..., 326 ⁇ .
  • mapping the VRU to the PRU are introduced by taking the same frequency range in which the first VRU and the first PRU participate in the mapping as an example.
  • an interleaving matrix may be used to implement the mapping of a VRU to a PRU.
  • the number of rows of the interleaving matrix may be predefined, and then the number of columns of the interleaving matrix is an integer obtained by dividing the number of subcarriers to be input by the AP by the number of rows of the interleaving matrix. That is, if the value obtained by dividing the number of subcarriers to be input by the AP by the number of rows of the interleaving matrix is a decimal, the number of columns of the interleaving matrix is the number of subcarriers to be input by the AP divided by the number of rows of the interleaving matrix. all.
  • the number of columns of the interleaving matrix may be predefined, and then the number of rows of the interleaving matrix is an integer obtained by dividing the number of subcarriers to be input by the AP by the number of columns of the interleaving matrix. That is, if the value obtained by dividing the number of subcarriers to be input by the AP by the number of columns of the interleaving matrix is a decimal, then the number of rows of the interleaving matrix is the number of subcarriers to be input by the AP divided by the number of the interleaving matrix. all.
  • the embodiments of the present application do not limit the specific implementation of the number of rows and columns of the interleaving matrix.
  • the number of rows and columns of the interleaving matrix may be predefined, or the number of rows and columns of the interleaving matrix may be predefined. The number can be negotiated between the AP and the STA.
  • an interleaving matrix is used to perform row-column transformation on the sequence numbers of the multiple subcarriers, and the sequence numbers of the subcarriers after the row-column transformation are output. That is, the sequence numbers of the subcarriers of the first VRU are mapped to the sequence numbers of the subcarriers of the first PRU based on the interleaving matrix.
  • FIG. 11 a mapping manner of VRU to PRU is shown. In FIG. 11, the number of rows of the interleaving matrix is N and the number of columns is M as an example.
  • FIG. 11 takes the sequence number of the subcarriers being input into the interleaving matrix by row and output from the interleaving matrix by column as an example.
  • the AP can sequentially input the sequence numbers of the multiple subcarriers included in the first frequency domain resource into the rows of the interleaver (interleaving matrix) in the first order, and output the sequence numbers of the subcarriers included in the interleaving matrix according to the column direction of the interleaving matrix.
  • the AP may also input the sequence numbers of the multiple subcarriers included in the first frequency domain resource into the columns of the interleaver (interleaving matrix) in the first order, and output the sequence numbers of the subcarriers included in the interleaving matrix according to the row direction of the interleaving matrix.
  • the following is an example of inputting the sequence numbers of the subcarriers into the interleaving matrix in rows and outputting them in columns from the interleaving matrix.
  • the subcarrier with the sequence number k of the first VRU is mapped to the sequence number i of the subcarrier after the first PRU based on the interleaving matrix, and satisfies the following formula:
  • N ROW is the number of rows of the interleaving matrix
  • N COL is the number of columns of the interleaving matrix
  • k is the sequence number of the sub-carrier input to the interleaving matrix
  • i is the sequence number of the sub-carrier with the sequence number k after the interleaving matrix is interleaved.
  • the first order is from small to large; or the first order is from large to small; or the first order is obtained after reordering according to the preset rules in the order from small to large or from large to small order.
  • the first order is to select m sequence numbers from the n sequence numbers and shift them to the order before the smallest sequence number.
  • the sequence number sequence of the subcarriers is 123456
  • the first sequence is 345612. The following is in ascending order of the first order.
  • FIG. 12 shows VRU to PRU mapping in 20MHz.
  • 20MHz in FIG. 12 may be, for example, any one of 20MHz of 40MHz, 80MHz or 160MHz.
  • the numbers in each rectangle in FIG. 12 represent the number of subcarriers.
  • all 242 subcarriers included in 20 MHz participate in the mapping, and the number of rows of the interleaving matrix is 2 as an example.
  • most of the subcarriers represented by the same shaded parts are not adjacent, that is, the multiple consecutive subcarriers included in 20MHz should become discrete after mapping, that is, the subcarriers in each VRU are in the VRU although is continuous, but becomes discrete after mapping.
  • this mapping method can map the VRU formed by continuous subcarriers to the PRU formed by discrete subcarriers, which is equivalent to widening the bandwidth corresponding to each subcarrier, so although the AP uses the current RU allocation method to allocate resources to the STA, the AP can also Get more transmit power. And for the AP, the current RU allocation method is used, and there is no need to define a variety of distributed RUs, and there is no need to care about how to select and allocate distributed RUs.
  • the 242 subcarriers (that is, all the subcarriers) in the 20 MHz (first frequency domain resource) shown in FIG. 12 are all involved in the mapping. That is, both the first type of subcarriers and the second type of subcarriers included in the first frequency domain resource participate in the mapping. It should be understood that the embodiments of the present application aim to discrete the first type of subcarriers, so in some embodiments, the second type of subcarriers may not participate in the mapping, that is, only the first type of subcarriers included in the first frequency domain resources are mapped.
  • the first type of subcarriers included in the first frequency domain resource may all participate in the mapping, or some of the first type of resources included in the first frequency domain resource may participate in the mapping, which is not limited in this embodiment of the present application. In this way, the content of the interleaving matrix can be reduced, thereby improving the interleaving efficiency.
  • the following introduces several mapping manners in which the second type of subcarriers do not participate in the mapping.
  • Example 1 the sequence number of the second type of subcarriers is not input into the interleaving matrix.
  • FIG. 13 shows a schematic diagram of subcarriers of the second type not participating in the mapping.
  • the sequence numbers of the subcarriers included in the first frequency domain resource are obtained in ascending order as ⁇ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ⁇ , and the first The sequence numbers of the two types of subcarriers are 5 and 6. Since the second type of subcarriers do not participate in the mapping, when mapping the first frequency domain resource, ⁇ 1, 2, 3, 4, 7, 8, 9, 10 ⁇ may be input into the interleaving matrix.
  • the elements of the first row of the interleaving matrix are ⁇ 1, 2, 3, 4 ⁇ , and the elements of the second row are The sequence is ⁇ 7, 8, 9, 10 ⁇ .
  • the serial numbers of the subcarriers obtained after outputting in columns are ⁇ 1, 7, 2, 8, 3, 9, 4, 10 ⁇ . That is, the subcarriers with the sequence numbers ⁇ 1, 2, 3, 4, 7, 8, 9, 10 ⁇ in the VRU and the subcarriers with the sequence numbers ⁇ 1, 7, 2, 8, 3, 9, 4, 10 ⁇ in the PRU A correspondence. Since the subcarriers with the sequence numbers 5 and 6 do not participate in the mapping, the sequence numbers of the subcarriers with the sequence numbers 5 and 6 are still 5 and 6 in the PRU.
  • sequence numbers of the 242 subcarriers corresponding to the first 20MHz in 80MHz are -500 to -259, wherein, there are 18 pilot subcarriers in the first 20MHz in 80MHz, and the number of pilot subcarriers is 18.
  • the serial number is: ⁇ -238,-224,-212,-198,-184,-170,-158,-144,-130,-116,-104,-90,-78,-64,-50,- 36,-24,-10 ⁇ in each sequence number plus offset value (ie -256). That is: ⁇ -494,-480,-468,-454,-440,-426,-414,-400,-386,-372,-360,-346,-334,-320,-306,- 292,-280,-266 ⁇ .
  • the interleaving matrix can be designed to be an 8*28 matrix. Then, input the subcarriers participating in the mapping into the interleaving matrix, as shown in Table 2. It should be understood that the blank spaces in the table all correspond to the sub-carrier serial numbers. In order to save space, Table 2 only shows part of the sub-carrier serial numbers.
  • the sequence number of each row is output in sequence to obtain the mapped subcarrier sequence number.
  • the serial numbers of consecutive sub-carriers can be made discrete through the interleaving matrix. That is, the set of subcarrier numbers of the VRU ⁇ -500,-499,...,-259 ⁇ corresponds to the elements in the following sequence: ⁇ -500,-470,-439,-409,-379,-349,-318 ,-288,-499,...,-289,-259 ⁇ .
  • Example 2 Both the sequence number of the first type of subcarrier and the sequence number of the second type of subcarrier included in the first time-frequency resource are input into the interleaving matrix, but after the interleaving matrix, the sequence number of the first type of subcarrier in the interleaving matrix is output, and the second The sequence number of the type subcarrier is not output. That is, the sequence numbers of the subcarriers output from the interleaving matrix do not include the sequence numbers of the subcarriers of the second type. In order to distinguish which sequence numbers are output and which sequence numbers are not output, the sequence numbers of the second type of subcarriers may be uniformly defined as the first preset sequence numbers, such as "*".
  • the sequence number of the second type subcarrier in the sequence number sequence obtained by the sequence numbers of the multiple subcarriers included in the first time-frequency resource arranged in the first order, may be replaced with "*", and then the obtained sequence number may be replaced by "*".
  • the sequences are sequentially entered into the rows of the interleaving matrix. In other words, it can be considered that after the sequence numbers of the multiple subcarriers included in the first time-frequency resource are input into the interleaving matrix in rows in the first order, the sequence numbers of the second type subcarriers that do not participate in the mapping in the interleaving matrix are replaced with "*" .
  • the second type of subcarriers do not participate in the mapping.
  • the number of rows of the interleaving matrix is 2 and the number of columns is 4.
  • the sequence numbers of the subcarriers included in the first frequency domain resource are obtained in ascending order as ⁇ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ⁇ , and the second type of subcarriers
  • the serial numbers are 5 and 6. Since the second type of subcarriers participate in the mapping, but the sequence numbers of the second type of subcarriers are not output after passing through the interleaving matrix, the sequence numbers of the second type of subcarriers may be defined as "*".
  • mapping the first frequency domain resource ⁇ 1, 2, 3, 4, *, *, 7, 8, 9, 10 ⁇ can be input into the interleaving matrix. That is, the elements in the first row of the interleaving matrix are ⁇ 1, 2, 3, 4, * ⁇ in sequence, and the elements in the second row are ⁇ 7, 8, 9, 10, * ⁇ in sequence. Since the serial numbers of "*" are not output, the serial numbers of the subcarriers obtained after outputting in columns are ⁇ 1, 7, 2, 8, 3, 9, 4, 10 ⁇ . That is, the subcarriers with the sequence numbers ⁇ 1, 2, 3, 4, 7, 8, 9, 10 ⁇ in the VRU and the subcarriers with the sequence numbers ⁇ 1, 7, 2, 8, 3, 9, 4, 10 ⁇ in the PRU A correspondence. The sequence numbers of the subcarriers with the sequence numbers 5 and 6 are still 5 and 6 in the PRU.
  • the sequence number of the second type of subcarriers may be replaced with "*".
  • the sequence numbers of the second type of subcarriers are input into the preset positions of the interleaving matrix, and the sequence numbers of the first type of subcarriers are sequentially input in the rows of the interleaving matrix except the positions occupied by the sequence numbers of the second type of subcarriers in the first order.
  • the serial number of * can be input into the last column of each row of the interleaving matrix in sequence; or the serial number of * can be input into the first column of each row of the interleaving matrix in turn; or the serial number of * can be input into the interleaving matrix in sequence according to the preset Set the position obtained by the rule, etc.
  • This embodiment of the present application does not limit the specific position of the subcarrier sequence number of the second type in the interleaving matrix.
  • FIG. 15 shows yet another example in which the second type of subcarriers do not participate in the mapping.
  • the number of rows of the interleaving matrix is 2 and the number of columns is 4.
  • the sequence numbers of the subcarriers included in the first frequency domain resource are obtained in ascending order as ⁇ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ⁇ , and the second type of subcarriers
  • the serial numbers are 5 and 6. Since the second type of subcarriers participate in the mapping, but the sequence numbers of the second type of subcarriers are not output after passing through the interleaving matrix, the sequence numbers of the second type of subcarriers may be defined as "*".
  • sequence numbers that can be specified as * are sequentially input to the last column of each row of the interleaving matrix. Then, when mapping the first frequency domain resource, ⁇ 1, 2, 3, 4, *, *, 7, 8, 9, 10 ⁇ are input into the interleaving matrix. That is, the elements in the first row of the interleaving matrix are ⁇ 1, 2, 3, 4, * ⁇ in sequence, and the elements in the second row are ⁇ 7, 8, 9, 10, * ⁇ in sequence. Since the serial numbers of "*" are not output, the serial numbers of the subcarriers obtained after outputting in columns are ⁇ 1, 7, 2, 8, 3, 9, 4, 10 ⁇ .
  • the subcarriers with the sequence numbers ⁇ 1, 2, 3, 4, 7, 8, 9, 10 ⁇ in the VRU and the subcarriers with the sequence numbers ⁇ 1, 7, 2, 8, 3, 9, 4, 10 ⁇ in the PRU A correspondence.
  • the sequence numbers of the subcarriers with the sequence numbers 5 and 6 are still 5 and 6 in the PRU.
  • FIG. 16 shows an example of mapping of a certain 20MHz VRU in 80MHz to a PRU.
  • Figure 15 takes the example that the number of rows of the interleaving matrix is 2, and takes part of the first type of subcarriers participating in the mapping as an example, that is, the second type of subcarriers do not participate in the mapping, and some of the first type of subcarriers participate in the mapping.
  • the second type of subcarriers that do not participate in the mapping are empty subcarriers, that is, the second type of subcarriers that do not participate in the mapping include 1 empty subcarrier on the left and right sides of the 26-tone RU adjacent to the 106-tone RU, the first 26 - 1 Confucius sub-carrier to the left of the tone RU, and 1 null sub-carrier to the right of the 106-tone RU.
  • FIG. 17 another example of mapping a certain 20MHz VRU to a PRU in 80MHz is shown.
  • the difference between FIG. 17 and FIG. 16 is that in FIG. 17, the number of rows of the interleaving matrix is 4 as an example.
  • 106-1 and 106-2 in FIG. 17 illustrate two parts of the 106 subcarriers.
  • FIG. 16 and FIG. 17 take the second type of subcarriers not participating in the mapping as empty subcarriers as an example, and the embodiment of the present application does not limit the specific subcarriers of the second type of subcarriers.
  • the second type of sub-carriers may also be DC sub-carriers, pilot sub-carriers, or at least one of null sub-carriers, DC sub-carriers, guard sub-carriers and pilot sub-carriers.
  • sequence numbers of the 242 subcarriers corresponding to the first 20MHz in 80MHz are -500 to -259, wherein, there are 18 pilot subcarriers in the first 20MHz in 80MHz, and the number of pilot subcarriers is 18.
  • the serial number is: ⁇ -238,-224,-212,-198,-184,-170,-158,-144,-130,-116,-104,-90,-78,-64,-50,- 36,-24,-10 ⁇ in each sequence number plus offset value (ie -256). That is: ⁇ -494,-480,-468,-454,-440,-426,-414,-400,-386,-372,-360,-346,-334,-320,-306,- 292,-280,-266 ⁇ .
  • the interleaving matrix can be designed to be an 8*32 matrix, and the subcarriers participating in the mapping are input into the interleaving matrix, as shown in Table 3.
  • the gray part in Table 3 is the serial number of the pilot subcarrier. It should be understood that the blank spaces in the table all correspond to the sub-carrier serial numbers. In order to save space, Table 3 only shows part of the sub-carrier serial numbers.
  • the set of subcarrier sequence numbers of the VRU is: ⁇ -500,-499,...,-259 ⁇ - ⁇ -494,-480,-468,-454, -440,-426,-414,-400,-386,-372,-360,-346,-334,-320,-306,-292,-280,-266 ⁇ and elements in the following sequence Corresponds to: ⁇ -500,-436,-404,-340,...,-277 ⁇ .
  • pilot subcarriers the number and position of pilot subcarriers on different RUs are different. For example, see Figure 18, which shows the location of pilot sub-carriers in 80 MHz. As can be seen from Figure 18, the pilot subcarrier set of any 26-tone RU within 20MHz also includes the pilot subcarriers of 52-tone RU and 106-tone RU within the 20MHz. In order to satisfy all RUs within the interleaving range (the first frequency domain resource), no matter which pilot subcarriers are selected, the mapped pilot positions can be kept unchanged.
  • the largest pilot set within the interleaving range may be set as the set of pilot subcarriers that do not participate in the mapping, for example, the pilot subcarriers that do not participate in the mapping are the 26-tone RUs in the first frequency domain resource.
  • the largest set of pilot subcarriers are the mapping of 26-tone RU, 52-tone RU or 106-tone RU can be selected at will within the 20MHz range, and the position of the original pilot subcarrier in the VRU and PRU is not changed.
  • the number of subcarriers to be input into the interleaving matrix among the plurality of subcarriers included in the first frequency domain resource is less than the number of subcarriers supported by the interleaving matrix to be input.
  • the sequence numbers of the subcarriers included in the first frequency domain resource are obtained in ascending order as ⁇ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ⁇ , and the interleaving matrix is 2 A matrix with 6 rows and 6 columns. Then the AP can input the sequence numbers of multiple subcarriers included in the first frequency domain resource and the sequence numbers of the padding subcarriers into the interleaving matrix.
  • the sequence numbers of the padding subcarriers are not output after passing through the interleaving matrix, that is, the padding subcarriers do not participate in the mapping.
  • the sequence number of the padding subcarriers may be a second preset sequence number, such as "#".
  • the sequence number of the second type of subcarrier can be specified to be input into the preset position of the interleaving matrix, and the sequence numbers of the subcarriers to be input into the interleaving matrix in the remaining first frequency domain resources are sequentially input in the first order. Fill the position occupied by the sequence number of the subcarrier.
  • some rows (or columns) fixed in the interleaving matrix are sequentially input to the interleaving matrix starting from the first column (or first row); or; some rows (or columns) fixed in the interleaving matrix can be specified from the last column (or the last row) starts to be sequentially input to the interleaving matrix, etc.
  • This embodiment of the present application does not limit the specific position of the sequence number of the padding subcarrier in the interleaving matrix.
  • the first frequency domain resource is 20 MHz as an example, that is, the mapping granularity (interleaving granularity) of the RU is 242 subcarriers.
  • the size of the mapping granularity may be determined according to the maximum bandwidth supported by the device, that is, the number of subcarriers input to the interleaving matrix in the first frequency domain resource is determined according to the maximum bandwidth supported by the device. For example, if the bandwidth supported by the device is greater than the PPDU bandwidth, then various mapping granularities can be supported within the PPDU bandwidth, such as 20MHz, 40MHz, 80MHz, and so on.
  • the bandwidth supported by the device is smaller than the PPDU bandwidth, the PPDU bandwidth needs to be guaranteed to be within the bandwidth supported by the device.
  • the bandwidth supported by the device is 80MHz
  • the VRU allocated to the device is 996-tone RU, so it cannot be scheduled in the 160MHz mapping range, that is, if the 80MHz VRU is mapped to 160MHz, the allocated resources cannot be scheduled.
  • mapping method 1 that is, after the sequence numbers of the multiple subcarriers included in the first frequency domain resource are input into the rows of the interleaving matrix in the first order, the sequence numbers of the multiple subcarriers that the interleaving matrix participates in the mapping are directly output in the column direction, which may not make the sequence numbers of the multiple subcarriers involved in the mapping.
  • the subcarriers within some RUs are more discrete. For example, in Figure 17, after 106-tone RU mapping, there are still two consecutive adjacent subcarriers.
  • a row changing operation may be performed on the rows of the interleaving matrix. For example, shifting some rows in the interleaving matrix essentially changes the row index sequence of the interleaving matrix.
  • the row index sequence ⁇ 1, 2, 3, 4 ⁇ of the interleaving matrix in FIG. 17 can be changed to ⁇ 1, 3, 2, 4 ⁇ , as shown in FIG. 19 . It can be seen from FIG. 19 that the sub-carriers included in the 106-tone RU are more discrete in the right image in FIG. 19 than in the left image in FIG. 19 .
  • any two adjacent subcarriers included in the first PRU are discontinuous in the frequency domain. It should be understood that any two adjacent subcarriers included in the first PRU are discontinuous in the frequency domain, which means that the two subcarriers are discontinuous.
  • the subcarriers included in the PRU here include the first type of subcarriers and The second type of subcarriers.
  • the above embodiments describe discrete design with a single subcarrier as the granularity, that is to say, two subcarriers are not continuous.
  • the two subcarrier groups are discontinuous, and the subcarriers in the subcarrier group are continuous.
  • a matrix may be constructed according to the original row index sequence of the interleaving matrix, the elements in the matrix are each original row index, and the original row index sequence becomes the target row index sequence by performing multiple operations on the matrix.
  • a first matrix is constructed according to the original row index sequence of the interleaving matrix, the row number of the first matrix is 1, and the column number of the first matrix is greater than or equal to the number of row indices of the interleaving matrix.
  • each transformation operation is to first divide the matrix obtained by the previous change into a first sub-matrix and a second sub-matrix by column, and then move the second sub-matrix to the row added by the first sub-matrix to form a new matrix . Then there are:
  • the first matrix can be changed to:
  • the first matrix can be changed to:
  • the first matrix can become:
  • the original row index sequence is changed from ⁇ 1, 2, 3, 4, 5, 6, 7, 8 ⁇ to the target row index sequence ⁇ 1, 5, 3, 7, 2, 6, 4, 8 ⁇ . That is, when using the interleaving matrix to perform row-column transformation, when outputting by column, the output may not be in the order of the original row index sequence, but in the order of the target row index sequence. For example, when outputting the serial numbers of multiple subcarriers that the interleaving matrix participates in mapping in the column direction, the first row of the first column is output, then the fifth row of the first column is output, and then the third row of the first column is output. , ..., until all the rows of the first column are output, and then the serial number of the second column is output until the serial number of the 8th row of the last column is output.
  • Figure 20 shows a correspondence between the original row index sequence and the target row index sequence.
  • the number of rows of the interleaving matrix is 8.
  • the sequence numbers of the multiple subcarriers included in the first frequency domain resource are sequentially input into the interleaving matrix in the first order, to obtain the left image shown in FIG. 19 .
  • the left image in Fig. 20 is subjected to row change to obtain the right image in Fig. 20 .
  • the subcarrier sequence numbers in the interleaving matrix are output. It can be seen from FIG. 19 that, before outputting the subcarrier sequence numbers in the interleaving matrix, performing a row transformation operation on the interleaving matrix can make the subcarriers more discrete.
  • N 8 (even number) as an example.
  • the element in the N+1th column can be a predefined sequence number, such as *.
  • the original serial number sequence is ⁇ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ⁇
  • the obtained target row index sequence ⁇ 1, 9, 5, 13, 3, 11, 7, 15, 2, 10, 6, 14, 4, 12, 8, 16 ⁇ .
  • FIG. 20 illustrates the change of the row index, but it does not mean that the interleaving matrix has only one column, that is, each row in FIG. 20 corresponds to multiple columns of the interleaving matrix.
  • Table 2 when outputting the serial numbers of multiple subcarriers that the interleaving matrix participates in mapping according to the column direction, the first row of the first column is output, then the fifth row of the first column is output, and then the output The third row of the first column, ..., until all the rows of the first column are output, and then the serial number of the second column is output until the serial number of the eighth row of the last column is output.
  • the sequence numbers of the 242 subcarriers corresponding to the first 20MHz in the 80MHz are -500 to -259, and the sequence numbers of the 18 pilot subcarriers in the first 20MHz in the 80MHz Taking no input of the interleaving matrix as an example, before outputting the sequence numbers in Table 2, row index transformation can be performed on scalar 2 to obtain Table 4. It should be understood that the blank spaces in the table all correspond to the sub-carrier serial numbers. In order to save space, Table 4 only shows part of the sub-carrier serial numbers.
  • the sequence number of each row is output in sequence to obtain the mapped subcarrier sequence number. That is, the set of subcarrier sequence numbers of the VRU ⁇ -500,-499,...,-259 ⁇ corresponds to the elements in the following sequence: ⁇ -500,-379,-439,-318,-470,-349,-409 ,-288,,...,-380,-259 ⁇ .
  • the sequence numbers of the 242 subcarriers corresponding to the first 20MHz in 80MHz are -500 to -259, and the 18 pilot subcarriers in the first 20MHz in 80MHz are Taking the sequence number input interleaving matrix as an example, then before outputting the sequence numbers in Table 3, row index transformation can be performed on Table 3 to obtain Table 5.
  • the gray part in Table 5 is the serial number of the pilot subcarrier. It should be understood that the blank spaces in the table all correspond to the sub-carrier serial numbers. In order to save space, Table 5 only shows part of the sub-carrier serial numbers.
  • the sequence number of each row is output in sequence to obtain the mapped subcarrier sequence number. That is, the set of subcarrier sequence numbers of the VRU ⁇ -500,-499,...,-259 ⁇ corresponds to the elements in the following sequence: ⁇ -500,-436,-308,-340,-404,-276,..., -373,-245 ⁇ .
  • Variation 2 Construct a second matrix according to the original row index sequence of the interleaving matrix, the number of rows of the second matrix is greater than or equal to 2, and the row indices in the original row index sequence are indexed from the first row to the first column in the second matrix. It starts in an increasing order, starting from the first column of the second matrix, first in the order of increasing columns until the last column, and then in the order of decreasing columns, alternately outputting the row indices corresponding to each row to obtain the target row index sequence.
  • the number of rows of the second matrix is 2. If the original row index sequence is ⁇ 1, 2, . matrix. If N is odd, the last row index can be indicated by *.
  • Figure 21 shows an example of an output row index sequence.
  • the solid line in Fig. 21 indicates that the row indices corresponding to the first row and the second row are output alternately in the order of increasing columns, and the dotted line in Fig. 21 indicates that the row indices corresponding to the first row and the second row are alternately output in the order of decreasing columns. row index.
  • N 8
  • the number of rows of the second matrix is 2
  • the number of columns is 4, and the original row index sequence is ⁇ 1, 2, 3, 4, 5, 6, 7, 8 ⁇ , that is, the first matrix Can be:
  • the output target row index sequence ⁇ 1, 6, 3, 8, 4, 7, 2, 5 ⁇ .
  • FIG. 22 shows the correspondence between the original row index sequence and the target row index sequence.
  • the number of rows of the interleaving matrix is 8.
  • the sequence numbers of the multiple subcarriers included in the first frequency domain resource are sequentially input into the interleaving matrix in the first order, to obtain the left image shown in FIG. 22 .
  • the left picture in Fig. 22 is row-changed to obtain the right picture in Fig. 22 .
  • the subcarrier sequence numbers in the interleaving matrix are output. It can be seen from FIG. 22 that, before outputting the subcarrier sequence numbers in the interleaving matrix, performing a row transformation operation on the interleaving matrix can make the subcarriers more discrete.
  • the original serial number sequence is ⁇ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ⁇
  • the obtained target row index sequence ⁇ 1, 10, 3, 12, 5, 14, 7, 16, 8, 15, 6, 13, 4, 11, 2, 9 ⁇ .
  • the sequence numbers of the 242 subcarriers corresponding to the first 20MHz in the 80MHz are -500 to -259, and the sequence numbers of the 18 pilot subcarriers in the first 20MHz in the 80MHz Taking no input of the interleaving matrix as an example, then before outputting the sequence numbers in Table 2, row index transformation can be performed on scalar 2 to obtain Table 6. It should be understood that the blank spaces in the table all correspond to the sub-carrier serial numbers. In order to save space, Table 6 only shows part of the sub-carrier serial numbers.
  • the sequence number of each row is output in sequence to obtain the mapped subcarrier sequence number. That is, the set of subcarrier numbers of the VRU ⁇ -500,-499,...,-259 ⁇ corresponds to the elements in the following sequence: ⁇ -500,-349,-439-288,-409,-318,-470, -379,...,-441,-350 ⁇ .
  • the sequence numbers of the 242 subcarriers corresponding to the first 20MHz in 80MHz are -500 to -259, and the 18 pilot subcarriers in the first 20MHz in 80MHz are Taking the sequence number input interleaving matrix as an example, before outputting the sequence numbers in Table 3, row index transformation can be performed on Table 3 to obtain Table 7.
  • the gray part in Table 7 is the serial number of the pilot subcarrier. It should be understood that the blank spaces in the table all correspond to the sub-carrier serial numbers. In order to save space, Table 7 only shows part of the sub-carrier serial numbers.
  • the sequence number of each row is output in sequence to obtain the mapped subcarrier sequence number. That is, the set of subcarrier sequence numbers of the VRU ⁇ -500,-499,...,-259 ⁇ corresponds to the elements in the following sequence: ⁇ -500,-340,-436,-276,-404,-308,-468 ,-372,...,-437,-341 ⁇ .
  • an interleaving matrix with a fixed number of rows such as 4 rows, 8 rows, 16 rows, etc.
  • an interleaving matrix with a fixed number of columns such as 4 rows, 8 rows, 16 rows, etc.
  • the number of columns of the interleaving matrix can be 26 columns (even 24 columns regardless of the subcarriers), and the number of rows can be determined according to the total input size, and then the row transformation can be used for discrete processing.
  • the example of 8 rows in this embodiment is only an example, and may actually be an interleaver with a fixed number of rows, an interleaver with a fixed number of columns, an interleaver with a variable number of rows and columns, and the like.
  • the mapping relationship between the VRU and the PRU is a mapping relationship table between the sequence numbers of the subcarriers included in the VRU and the sequence numbers of the subcarriers included in the PRU. That is, the AP can map the first frequency domain resource according to the mapping relationship table. For example, subcarrier 1 in the VRU corresponds to subcarrier 5 in the PRU, subcarrier 2 in the VRU corresponds to subcarrier 8 in the PRU, and so on. In this mapping manner, the STA only needs to look up the mapping relation table to determine the position of each subcarrier in the PRU in the corresponding first frequency domain resource, which is relatively simple.
  • mapping relationship table may be the above-mentioned Table 2-Table 7. From a broad perspective, the mapping relationship table can be regarded as a sequence number sequence obtained by outputting from Tables 2 to 7 according to the columns.
  • mapping relationship between the VRU and the PRU may also be a mapping formula, for example,
  • N ROW is the number of rows of the matrix
  • N COL is the number of columns of the matrix
  • k is the sequence number of the sub-carrier of the input matrix
  • i is the sequence number of the sub-carrier whose sequence number is k after matrix interleaving.
  • the embodiment of the present application also provides a resource mapping method, and the resource mapping method can be implemented by a communication device, such as an interleaver or a chip provided in the interleaver.
  • the interleaver may be configured to map the sequence numbers of the subcarriers of the first VRU to the sequence numbers of the subcarriers of the first PRU.
  • the subcarrier with the sequence number k of the first VRU is mapped to the sequence number i of the subcarrier after the first PRU based on the interleaver, and satisfies the formula: Wherein, N ROW is the number of rows of the interleaver, N COL is the number of columns of the interleaver, k is the sequence number of the sub-carrier input to the interleaver, and i is the sequence number of the sub-carrier with the sequence number of k after being interleaved by the interleaver.
  • interleaver For the specific implementation of the interleaver, reference may be made to the implementation manner of the interleaving matrix in the foregoing method embodiments, which will not be repeated here.
  • mapping the VRU to the PRU by the interleaver reference may also be made to the foregoing related contents of the first and second mapping manners, which will not be repeated here.
  • the embodiment of the present application does not limit the number of interleaving stages of the interleaver.
  • directly outputting the sequence numbers of multiple subcarriers in the manner of advancing listing can be regarded as the first-level interleaving, and then outputting the sequence numbers of multiple subcarriers in the manner of advancing listing, as the aforementioned variation mode 1 or variation mode 2 It can be seen as the second level of interleaving.
  • the resource allocation method provided by the embodiments of the present application is essentially a mapping method from VRUs to PRUs, and the mapping method can map continuous VRUs to discrete PRUs.
  • the sender can inform the receiver that the RU allocated to the receiver is a VRU, but the sender sends data on discrete PRUs mapped by continuous VRUs. Since continuous VRUs are mapped to discrete PRUs, which is equivalent to reducing the number of subcarriers per MHz, the transmitting end can support greater transmit power.
  • the transmitter can use a resource allocation method in which the bandwidth is divided into several resource units, without defining multiple distributed RUs, and without worrying about how to select and allocate distributed RUs, the purpose of increasing the maximum transmit power of the device can be achieved.
  • the methods provided by the embodiments of the present application are respectively introduced from the perspective of interaction between the first device and the second device.
  • the first device and the second device may include hardware structures and/or software modules, and implement the above-mentioned functions in the form of hardware structures, software modules, or hardware structures plus software modules. each function. Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • FIG. 23 is a schematic block diagram of a communication apparatus 2300 provided by an embodiment of the present application.
  • the communication apparatus 2300 may correspondingly implement the functions or steps implemented by the first device or the second device in the foregoing method embodiments.
  • the communication apparatus may include a processing module 2310 and a transceiver module 2320 .
  • a storage unit may also be included, and the storage unit may be used to store instructions (codes or programs) and/or data.
  • the processing module 2310 and the transceiver module 2320 may be coupled with the storage unit, for example, the processing module 2310 may read instructions (codes or programs) and/or data in the storage unit to implement corresponding methods.
  • the above-mentioned units may be set independently, or may be partially or fully integrated.
  • the communication apparatus 2300 can correspondingly implement the behaviors and functions of the first device in the foregoing method embodiments.
  • the communication apparatus 2300 may be an AP, or may be a component (eg, a chip or a circuit) applied in the AP.
  • the transceiver module 2320 may be configured to perform all receiving or sending operations performed by the first device in the embodiment shown in FIG. 9 .
  • S901 and S903 in the embodiment shown in FIG. 9 and/or other processes used to support the technology described herein; wherein, the processing module 2310 is used to execute the first device in the embodiment shown in FIG. 9 . All operations performed except for transceiving operations, such as S902 in the embodiment shown in FIG. 9 , and/or other processes used to support the techniques described herein.
  • the transceiver module 2320 is configured to send resource allocation information to the second device, where the resource allocation information is used to indicate a first virtual resource unit VRU, and the first VRU includes a plurality of subcarriers that are continuous in the frequency domain; processing module 2310 is configured to map the first VRU to a first PRU according to the mapping relationship between the VRU and the physical resource unit PRU, and the multiple subcarriers included in the first PRU are discontinuous in the frequency domain; the transceiver module 2320 also uses for transmitting data on the first PRU.
  • the resource allocation information is used to indicate a first virtual resource unit VRU, and the first VRU includes a plurality of subcarriers that are continuous in the frequency domain
  • processing module 2310 is configured to map the first VRU to a first PRU according to the mapping relationship between the VRU and the physical resource unit PRU, and the multiple subcarriers included in the first PRU are discontinuous in the frequency domain; the transceiver module 2320 also uses for transmitting data on the first P
  • the communication apparatus 2300 can correspondingly implement the behaviors and functions of the second device in the foregoing method embodiments.
  • the communication apparatus 2300 may be a STA or an AP, or may be a component (eg, a chip or a circuit) applied in the STA or the AP.
  • the transceiver module 2320 can be used to perform all the receiving or sending operations performed by the second device in the embodiment shown in FIG. 9 .
  • S901 and S903 in the embodiment shown in FIG. 9 and/or other processes used to support the technology described herein; wherein, the processing module 2310 is used to execute the second device in the embodiment shown in FIG. 9 . All operations performed except for transceiving operations, such as S902 in the embodiment shown in FIG. 9 , and/or other processes used to support the techniques described herein.
  • the transceiver module 2320 is configured to receive resource allocation information from the first device, where the resource allocation information is used to indicate the first VRU, and the first VRU includes a plurality of subcarriers that are continuous in the frequency domain; the processing module 2310 uses In order to determine the first PRU corresponding to the first VRU according to the mapping relationship between the VRU and the physical resource unit PRU, the multiple subcarriers included in the first PRU are discontinuous in the frequency domain; the transceiver module 2320 is further configured to Data from the first device is received on the first PRU.
  • the communication apparatus 2300 can correspondingly implement the behaviors and functions of the interleaver in the foregoing method embodiments.
  • the communication apparatus 2300 may be an interleaver, or may be a component (eg, a chip or a circuit) applied in the interleaver.
  • the transceiver module 2320 may be configured to perform all reception or transmission operations performed by the interleaver in this embodiment of the present application.
  • the processing module 2310 is configured to perform all operations performed by the interleaver in this embodiment of the present application except for the transceiving operations.
  • the processing module 2310 is configured to map the sequence number of the subcarrier of the first VRU to the sequence number of the subcarrier of the first PRU based on the interleaving matrix, where the first VRU includes a plurality of consecutive subcarriers in the frequency domain, the The multiple subcarriers included in a PRU are discontinuous in the frequency domain; the transceiver module 2320 is configured to output the sequence number of the subcarriers of the first PRU.
  • the subcarrier with the sequence number k of the first VRU is mapped to the sequence number i of the subcarrier after the first PRU based on the interleaving matrix, and satisfies the following formula:
  • N ROW is the number of rows of the interleaving matrix
  • N COL is the number of columns of the interleaving matrix
  • k is the sequence number of the sub-carrier input to the interleaving matrix
  • i is the sub-carrier whose sequence number is k passing through the interleaving matrix The sequence number after interleaving.
  • any adjacent subcarriers included in the first PRU are discontinuous in the frequency domain.
  • the original row index sequence of the interleaving matrix becomes the target row index sequence
  • the original row index sequence is ⁇ 1, 2, 3, 4, 5, 6, 7, 8 ⁇
  • the target row index sequence is ⁇ 1, 5, 3, 7, 2, 6, 4, 8 ⁇ , or ⁇ 1, 6, 3, 8, 4, 7, 2, 5 ⁇ ;
  • the original row index sequence is ⁇ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ⁇
  • the target row index sequence is ⁇ 1 , 9, 5, 13, 3, 11, 7, 15, 2, 10, 6, 14, 4, 12, 8, 16 ⁇ , or ⁇ 1, 10, 3, 12, 5, 14, 7, 16, 8, 15, 6, 13, 4, 11, 2, 9 ⁇ .
  • the communication apparatus 2300 maps the first VRU to the first PRU, including:
  • the subcarriers input to the interleaving matrix are subcarriers of the first type, or the subcarriers input to the interleaving matrix
  • the carriers are first type subcarriers and second type subcarriers, the first type subcarriers are used to carry data, and the second type subcarriers include null subcarriers, DC subcarriers, guard subcarriers, and pilot subcarriers one or more of;
  • the sequence number of the subcarriers input into the interleaving matrix is the sequence number of the first type of subcarriers in the multiple subcarriers included in the first frequency domain resource; or,
  • sequence numbers of the subcarriers input into the interleaving matrix are the sequence numbers of the multiple subcarriers included in the first frequency domain resource, wherein the sequence numbers of the second type subcarriers in the multiple subcarriers are all the first A preset sequence number, the sequence number of the subcarrier output from the interleaving matrix does not include the first preset sequence number; or,
  • the sequence numbers of the subcarriers input into the interleaving matrix are the sequence numbers of the multiple subcarriers included in the first frequency domain resource, wherein the sequence numbers of the second type subcarriers in the multiple subcarriers are all the first preset sequence numbers
  • the sequence number is that the sequence number of the first preset sequence number is located at a preset position of the interleaving matrix, and the sequence number of the subcarriers output from the interleaving matrix does not include the first preset sequence number.
  • the second type of subcarrier is a pilot subcarrier
  • the pilot subcarrier is the largest pilot subcarrier of the 26 subcarriers RU in the first frequency domain resource carrier set.
  • the number of subcarriers to be input into the interleaving matrix among the multiple subcarriers included in the first frequency domain resource is less than the number of subcarriers supported by the interleaving matrix to be input;
  • the sequence numbers of the subcarriers input into the interleaving matrix are the sequence numbers of the subcarriers to be input into the interleaving matrix in the first frequency domain resource and the sequence numbers of the filler subcarriers, wherein the sequence numbers of the filler subcarriers are located in the interleaving matrix.
  • the preset position of the matrix, the sequence numbers of the filled subcarriers are all second preset sequence numbers, and the sequence numbers of the subcarriers output from the interleaving matrix do not include the second preset sequence number.
  • the number of multiple subcarriers included in the first frequency domain resource is determined according to a maximum bandwidth supported by the first device.
  • the first VRU is mapped to the first VRU based on a mapping relationship between the sequence numbers of the subcarriers included in the first VRU and the sequence numbers of the subcarriers included in the first PRU Describe the first PRU.
  • the sequence number of the subcarriers included in the first frequency domain resource starts from 0 or 1; or,
  • the sequence number of the subcarrier included in the first frequency domain resource is the subcarrier number in the actual frequency band corresponding to the subcarrier; or,
  • the sequence number of the subcarriers included in the first frequency domain resource is a preset sequence number plus a preset offset value.
  • the sequence numbers of the subcarriers corresponding to the first VRU are located in the first set, and the sequence numbers of the subcarriers corresponding to the first PRU are located in the first set; or,
  • sequence numbers of the subcarriers corresponding to the first VRU are located in the first set
  • sequence numbers of the subcarriers corresponding to the first PRU are located in the second set
  • the first set and the second set have no intersection, or all
  • the sequence numbers of the parts in the first set and the second set are the same; or,
  • the sequence numbers of the subcarriers corresponding to the first VRU are located in the first set
  • the sequence numbers of the subcarriers corresponding to the first PRU are located in multiple second sets, and there is no intersection between the multiple second sets, and the first The set has no intersection with the plurality of second sets, or the first set has an intersection with some of the second sets in the plurality of second sets.
  • processing module 2310 in this embodiment of the present application may be implemented by a processor or a processor-related circuit component
  • transceiver module 2320 may be implemented by a transceiver or a transceiver-related circuit component or a communication interface.
  • FIG. 24 shows a communication apparatus 2400 provided by this embodiment of the present application, where the communication apparatus 2400 may be an AP, a STA, or an interleaver, which can implement the first device or the second device or the interleaver in the method provided by the embodiment of the present application.
  • the communication device 2400 may also be a device capable of supporting the first device to implement the corresponding function in the method provided by the embodiment of the present application, or a device capable of supporting the second device to implement the corresponding function in the method provided by the embodiment of the present application, Or a device capable of supporting the interleaver to implement the corresponding functions in the methods provided in the embodiments of the present application.
  • the communication apparatus 2400 may be a chip or a chip system. In this embodiment of the present application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • the above-mentioned transceiver module 2320 may be the transceiver 2410 .
  • the communication apparatus 2400 includes at least one processor 2420, configured to implement or support the communication apparatus 2400 to implement the function of the first device or the second device in the method provided in this embodiment of the present application, for example, to generate the aforementioned PPDU.
  • Communication apparatus 2400 may also include at least one memory 2430 for storing program instructions and/or data. Memory 2430 and processor 2420 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 2420 may cooperate with the memory 2430.
  • the processor 2420 may execute program instructions and/or data stored in the memory 2430 to cause the communication device 2400 to implement the corresponding method. At least one of the at least one memory may be located in the processor.
  • the communication apparatus 2400 may also include a transceiver 2410 for communicating with other devices through a transmission medium, so that the devices used in the communication apparatus 2400 may communicate with other devices.
  • a transceiver 2410 for communicating with other devices through a transmission medium, so that the devices used in the communication apparatus 2400 may communicate with other devices.
  • the communication device when the communication device is a terminal, the other device is a network device; or, when the communication device is a network device, the other device is a terminal.
  • the processor 2420 may use the transceiver 2410 to transmit and receive data.
  • the transceiver 2410 may specifically be a transceiver.
  • the communication device 2400 may also be a radio frequency unit, and the radio frequency unit may be independent of the communication device 2400 or integrated within the communication device 2400 .
  • the above-mentioned transceiver 2410 may also include an antenna, such as a remote antenna independent of the communication device 2400 , or an antenna integrated in the communication device 2400 .
  • the specific connection medium between the transceiver 2410, the processor 2420, and the memory 2430 is not limited in the embodiments of the present application.
  • the memory 2430, the processor 2420, and the transceiver 2410 are connected through a bus 2440 in FIG. 24.
  • the bus is represented by a thick line in FIG. 24.
  • the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is shown in FIG. 24, but it does not mean that there is only one bus or one type of bus.
  • the processor 2420 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which can realize Alternatively, each method, step, and logic block diagram disclosed in the embodiments of the present application are executed.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory 2430 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), Such as random-access memory (random-access memory, RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • the communication device in the above-mentioned embodiment may be a terminal or a circuit, or may be a chip applied in the terminal or other combined devices or components having the above-mentioned terminal function.
  • the transceiver module may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (central processing unit, CPU).
  • the transceiver module may be a radio frequency unit
  • the processing module may be a processor.
  • the transceiver module may be an input/output interface of the chip or the chip system
  • the processing module may be a processor of the chip or the chip system.
  • the APs and STAs described in the embodiments of the present application can also be implemented using the following: one or more FPGAs (Field Programmable Gate Arrays), PLDs (Programmable Logic Devices), controllers , state machines, gate logic, discrete hardware components, any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • FPGAs Field Programmable Gate Arrays
  • PLDs Programmable Logic Devices
  • controllers state machines, gate logic, discrete hardware components, any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • the first device in this embodiment of the present application may be an AP or a STA.
  • the second device may be an AP or a STA.
  • the APs in the above various product forms have any functions of the APs in the above method embodiments, which will not be repeated here;
  • the STAs in the above various product forms have any functions of the STAs in the above method embodiments, which are not described here. Repeat.
  • An embodiment of the present application further provides a communication system.
  • the communication system includes a second device and a first device, or may further include more first devices and second devices.
  • the communication system includes a second device and a first device for implementing the above-mentioned related functions in FIG. 9 .
  • the first devices are respectively used to implement the functions of the above-mentioned part of the first device related to FIG. 9 .
  • the second device is used to implement the functions of the above-mentioned second device related to FIG. 9 .
  • the second device can execute S902-S903 in the embodiment shown in FIG. 9
  • the first device can execute S901-S902 in the embodiment shown in FIG. 9 .
  • Embodiments of the present application further provide a computer-readable storage medium, including instructions, which, when executed on a computer, cause the computer to execute the method executed by the first device or the second device in FIG. 9 .
  • the embodiment of the present application also provides a computer program product, including computer program code, when the computer program code runs on the computer, the computer executes the method performed by the first device or the second device in FIG. 9 .
  • An embodiment of the present application provides a chip system, where the chip system includes a processor, and may further include a memory, for implementing the function of the first device or the second device in the foregoing method.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • An embodiment of the present application further provides a communication apparatus, including a processor and an interface; the processor is configured to execute the resource allocation method or the resource mapping method described in any of the foregoing method embodiments.
  • the above communication device may be a chip, and the processor may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software
  • the processor can be a general-purpose processor, which is realized by reading the software codes stored in the memory, and the memory can be integrated in the processor, and can be located outside the processor and exist independently.
  • At least one (a) of a, b or c can represent: a, b, c, a and b, a and c, b and c, or a, b and c, where a, b, c Can be single or multiple.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, sequence, priority or priority of multiple objects. Importance.
  • the first information and the second information are only for differentiating different indication information, and do not indicate the difference in priority or importance of the two kinds of information.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the word "exemplary” is used to indicate an example or illustration. Any embodiment or implementation described in this application summary as an “example” should not be construed as preferred over other embodiments or implementations. That is, the use of the word “example” is intended to present concepts in a concrete manner.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present invention are generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable apparatus.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server or data center by means of wired (such as coaxial cable, optical fiber, digital subscriber line, DSL for short) or wireless (such as infrared, wireless, microwave, etc.)
  • a computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains an integration of one or more available media.
  • the available media can be magnetic media (eg, floppy disks, hard disks, magnetic tape), optical media (eg, digital video disc (DVD) for short), or semiconductor media (eg, SSD), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种资源分配方法及通信装置。该方法包括:第一设备发送资源分配信息给第二设备,该资源分配信息用于指示第一VRU,该第一VRU包括多个在频域上连续的子载波;第一设备根据VRU与PRU的映射关系,将第一VRU映射为第一PRU,并在第一PRU上传输数据,该第一PRU包括的多个子载波在频域上不连续。虽然第一设备为第二设备分配的RU是VRU,但是第一设备在连续VRU映射后的离散PRU上发送数据。由于连续VRU映射为离散PRU,相当于降低了每MHz上的子载波数,所以使得第一设备可支持更大的发送功率。

Description

一种资源分配方法及通信装置
相关申请的交叉引用
本申请要求在2021年03月05日提交中国专利局、申请号为202110247423.3、申请名称为“一种资源分配方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种资源分配方法及通信装置。
背景技术
设备发送的功率同时受最大功率和最大功率谱密度的限制,即设备发送的功率不能超过最大功率值,也不能超过最大功率谱密度。为了使得设备发送更大的功率,可拓宽相应的发送带宽,也就是使得分配给设备的子载波在频域上变得更加离散,即每MHz上的子载波数变少。
然而不同大小的资源单元(resource unit,RU)可对应多种离散子载波的组合,这就需要定义更多的RU或RU组合。且为了指示更多类型的离散式的RU或离散式的RU组合,需要改变现有的连续的子载波形成的RU的分配方法,对于发送端而言实现较为复杂。
发明内容
本申请提供一种资源分配方法及通信装置,能够使得设备支持更大的发送功率。
第一方面,提供一种资源分配方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备可为发送端,这里以发送端是第一设备,例如接入点(access point,AP)为例进行描述。该方法包括:
第一设备发送资源分配信息给第二设备,该资源分配信息用于指示第一(virtual resource unit,VRU),该第一VRU包括多个在频域上连续的子载波;第一设备根据VRU与(physical resource unit,PRU)的映射关系,将第一VRU映射为第一PRU,并在第一PRU上传输数据,该第一PRU包括的多个子载波在频域上不连续。
该方案中,第一设备可告知第二设备为第二设备分配的RU是VRU,但是第一设备在连续VRU映射后的离散PRU上发送数据。由于连续VRU映射为离散PRU,相当于降低了每MHz上的子载波数,所以使得第一设备可支持更大的发送功率。
第二方面,提供一种资源分配方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备可为发送端,这里以发送端是第二设备,例如站点(station,STA)为例进行描述。该方法包括:
第二设备接收来自第一设备的资源分配信息,该资源分配信息用于指示第一VRU,该第一VRU包括多个在频域上连续的子载波;
第二设备根据VRU与PRU的映射关系,确定与第一VRU对应的第一PRU,该第一PRU包括的多个子载波在频域上不连续;
第二设备在第一PRU上接收来自第一设备的数据。
与第一方面提供的方案对应,第一设备发送给第二设备的资源分配信息指示为第二设备分配的是第一VRU,第二设备可在第一VRU映射之后的第一PRU上接收来自第一设备的数据,当然也可以在第一PRU上向第一设备发送数据。由于第一PRU包括的多个子载波在频域上不连续,相当于降低了每MHz上的子载波数,所以可使得第二设备可支持更大的发送功率。
在第一方面或第二方面的一种可能的实现方式中,第一设备根据交织矩阵将第一VRU映射为第一PRU,所述交织矩阵满足如下公式:
Figure PCTCN2022078501-appb-000001
其中,N ROW为交织矩阵的行数,N COL为交织矩阵的列数,k为输入交织矩阵的子载波的序号,i为序号为k的子载波经过交织矩阵交织后的序号。
该方案提供了第一VRU映射到第一PRU的一种映射方式,即通过交织矩阵(也可以称为交织器)来实现。也就是,将第一VRU所在的第一频域资源包括的多个子载波的序号利用所述交织矩阵进行行列变换,输出个子载波经过行列变换后的序号。例如以行进列出的方式实现交织。
第三方面,提供一种资源映射方法,该方法可由第三通信装置执行,第三通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备可为交织器为例进行描述。该方法包括:
基于交织矩阵将第一VRU的子载波的序号映射为第一PRU的子载波的序号,第一VRU包括多个在频域上连续的子载波,第一PRU包括的多个子载波在频域上不连续;
输出所述第一PRU的子载波的序号。
在第一方面或第二方面或第三方面的一种可能的实现方式中,所述第一VRU的序号为k的子载波,基于交织矩阵映射为所述第一PRU后的子载波的序号i,满足如下公式:
Figure PCTCN2022078501-appb-000002
其中,N ROW为交织矩阵的行数,N COL为交织矩阵的列数,k为输入交织矩阵的子载波的序号,i为序号为k的子载波经过交织矩阵交织后的序号。
该方案提供了第一VRU映射到第一PRU的一种映射方式,即通过交织矩阵(也可以称为交织器)来实现。也就是,将第一VRU所在的第一频域资源包括的多个子载波的序号利用所述交织矩阵进行行列变换,输出个子载波经过行列变换后的序号。例如以行进列出的方式实现交织。
在第一方面或第二方面或第三方面的一种可能的实现方式中,第一PRU包括的任意相邻的子载波在频域上不连续。该方案中,第一PRU包括的任意相邻的子载波在频域上不连续,即第一PRU包括的子载波更加离散,从而使得第一设备支持更大的发送功率。
在第一方面或第二方面或第三方面的一种可能的实现方式中,在输出所述交织矩阵包括的各个子载波的序号之前,所述交织矩阵的原行索引序列变为目标行索引序列;其中,
所述原行索引序列为{1,2,3,4,5,6,7,8},所述目标行索引序列为{1,5,3,7, 2,6,4,8},或者{1,6,3,8,4,7,2,5};
所述原行索引序列为{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},所述目标行索引序列为{1,9,5,13,3,11,7,15,2,10,6,14,4,12,8,16},或者{1,10,3,12,5,14,7,16,8,15,6,13,4,11,2,9}。
该方案提供了使得第一PRU包括的任意相邻的子载波在频域上不连续的可能的实现方式,即在输出交织矩阵包括的各个子载波的序号之前,对交织矩阵进行行变化。也就是将交织矩阵的原行索引序列变为目标行索引序列,之后再按照列输出交织矩阵中的序号。
在第一方面或第二方面或第三方面的一种可能的实现方式中,第一设备将第一VRU映射为第一PRU,包括:
第一设备将所述第一VRU所在的第一频域资源包括的多个子载波的序号按照第一顺序依次输入交织矩阵的行,按照交织矩阵的列方向,输出交织矩阵中各个子载波序号,其中,第一顺序为从小到大的顺序,或者,第一顺序为从大到小的顺序。
该方案提供了一种交织矩阵的交织方式,即行进列出的方式。当然也可以是列进行出的方式,对此本申请不作限制。另外,对于子载波序号的输入顺序本申请也不作限制,更为灵活。
在第一方面或第二方面或第三方面的一种可能的实现方式中,交织矩阵的行数是预定义的,交织矩阵的列数为第一设备要输入的子载波的数量除以交织矩阵的行数;或者,
交织矩阵的行数是预定义的,交织矩阵的列数为第一设备要输入的子载波的数量除以交织矩阵的行数之后向上取整。
该方案中,交织矩阵的行数可以是预定义的,更为简单。当然交织矩阵的列数也可以是预定义的,或者交织矩阵的行数或列数可以是第一设备和第二设备协商或者预定的,对此本申请不作限制。
在第一方面或第二方面或第三方面的一种可能的实现方式中,第一频域资源包括的多个子载波中,输入所述交织矩阵的子载波为第一类型子载波,或输入所述交织矩阵的子载波为第一类型的子载波和第二类型子载波,第一类型子载波用于承载数据,第二类型子载波包括空子载波、直流子载波、保护子载波、导频子载波的一种或多种;
其中,输入交织矩阵的子载波的序号为第一频域资源包括的多个子载波中的第一类型子载波的序号;或者,
输入交织矩阵的子载波的序号为第一频域资源包括的多个子载波的序号,其中,多个子载波中的第二类型子载波的序号均为第一预设序号,从交织矩阵输出的子载波的序号不包括所述第一预设序号;或者,
输入所述交织矩阵的子载波的序号为所述第一频域资源包括的所述多个子载波的序号,其中,多个子载波中的所述第二类型子载波的序号均为第一预设序号,为所述第一预设序号的序号位于所述交织矩阵的预设位置,从交织矩阵输出的子载波的序号不包括所述第一预设序号。
该方案提供第一VRU所在的第一频域资源包括的多个子载波的多种映射方式。例如,第二类型子载波可不参与映射,即只映射第一频域资源包括的第一类型子载波。当然,第一频域资源包括的第一类型子载波可均参与映射,或者第一频域资源包括的部分第一类型资源参与映射,本申请对此不作限制。这样可以使得交织矩阵的内容更少,从而提高交织效率
在第一方面或第二方面的一种可能的实现方式中,第二类型子载波为导频子载波,所述导频子载波为第一频域资源内26子载波RU的最大导频子载波集合。
由于任意一个20MHz内的26-tone RU的导频子载波集合也包含了该20MHz内52-tone RU、106-tone RU的导频子载波。所以所述导频子载波为第一频域资源内26子载波RU的最大导频子载波集合,能够让交织范围(第一频域资源)内的所有RU都满足不管选择哪些导频子载波都可以使得映射后的导频位置不变。
在第一方面或第二方面或第三方面的一种可能的实现方式中,第一频域资源包括的多个子载波中输入交织矩阵的子载波的数量小于交织矩阵支持输入的子载波的数量;
输入交织矩阵的子载波的序号为第一频域资源中要输入交织矩阵的子载波的序号以及填充子载波的序号,其中,填充子载波的序号位于交织矩阵的预设位置,填充子载波的序号均为第二预设序号,从交织矩阵输出的子载波的序号不包括所述第二预设序号。
该方案中,如果第一频域资源包括的多个子载波中要输入交织矩阵的子载波的数量小于该交织矩阵支持输入的子载波的数量,可用第二预设序号填充交织矩阵,从交织矩阵输出的子载波的序号不包括所述第二预设序号。这样不会影响第一VRU中各个子载波映射的位置。
在第一方面或第二方面或第三方面的一种可能的实现方式中,第一频域资源包括的多个子载波的数量根据第一设备支持的最大带宽确定。
该方案根据第一设备支持的最大带宽确定第一频域资源包括的多个子载波的数量,可以保证被分配的VRU在支持的最大带宽范围内能够被调度。
在第一方面或第二方面或第三方面的一种可能的实现方式中,第一设备根据第一VRU包括的各个子载波的序号与第一PRU包括的各个子载波的序号的映射关系将第一VRU映射为第一PRU。本申请不限制第一VRU映射到第一PRU的具体实现形式,例如也可以根据第一VRU包括的各个子载波的序号与第一PRU包括的各个子载波的序号的映射关系将第一VRU映射为第一PRU,更为灵活。
在第一方面或第二方面或第三方面的一种可能的实现方式中,第一频域资源包括的子载波的序号从0或者1开始;或者,
第一频域资源包括的子载波的序号为所述子载波对应实际频带中的子载波编号;或者,
第一频域资源包括的子载波的序号为预设序号加预设偏移值。
本申请将VRU映射为PRU的目的在于使得子载波更加离散,而VRU和PRU都可以通过子载波序号来指示,因此可对第一频域资源对应的子载波序号序列进行映射。各个子载波的序号可以沿用该子载波在对应的实际频带中的子载波编号,也可以自定义。本申请实施例对子载波的序号的具体实现形式不作限制。
在第一方面或第二方面或第三方面的一种可能的实现方式中,第一VRU对应的子载波的序号位于第一集合,第一PRU对应的子载波的序号位于所述第一集合;或者,
第一VRU对应的子载波的序号位于第一集合,第一PRU对应的子载波的序号位于所述第二集合,所述第一集合和所述第二集合无交集;或者,
第一VRU对应的子载波的序号位于第一集合,第一PRU对应的子载波的序号位于多个第二集合,所述多个集合无交集。
本申请对VRU和PRU参与映射的范围不作限制。也就是,第一VRU和第一PRU可以处于同一频域位置范围,也可以处于不同频域位置范围。另外,本申请实施例对PRU参 与映射的频率范围是否连续不作限制,也就是PRU参与映射的频域范围可以是连续的,也可以是离散的,只要PRU参与映射的频率范围大小与VRU参与映射的频率范围大小相同即可。
第四方面,提供一种通信装置,例如该通信装置为如前所述的第一设备或设置在第一设备内的装置。所述通信装置可用于执行上述第一方面或第一方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第一方面或第一方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。示例性地,所述通信装置为前述的第一设备。其中,
所述收发模块,用于发送资源分配信息给第二设备,所述资源分配信息用于指示第一虚拟资源单元VRU,所述第一VRU包括多个在频域上连续的子载波;
所述处理模块,用于根据所述VRU与物理资源单元PRU的映射关系,将所述第一VRU映射为第一PRU,所述第一PRU包括的多个子载波在频域上不连续;
所述收发模块,还用于在所述第一PRU上传输数据。
第五方面,提供一种通信装置,例如该通信装置为如前所述的第一设备或设置在第一设备内的装置。所述通信装置可用于执行上述第二方面或第二方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第二方面或第二方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。示例性地,所述通信装置为前述的第二设备。其中,
所述收发模块,用于接收来自第一设备的资源分配信息,所述资源分配信息用于指示第一虚拟资源单元VRU,所述第一VRU包括多个在频域上连续的子载波;
所述处理模块用于根据所述VRU与物理资源单元PRU的映射关系,确定与所述第一VRU对应的第一PRU,所述第一PRU包括的多个子载波在频域上不连续;
所述收发模块还用于在所述第一PRU上接收来自所述第一设备的数据。
第六方面,提供一种通信装置,例如该通信装置为如前所述的第一设备或设置在第一设备内的装置。所述通信装置可用于执行上述第二方面或第二方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第二方面或第二方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。示例性地,所述通信装置为前述的第二设备。其中,
所述处理模块,用于基于交织矩阵将第一VRU的子载波的序号映射为第一PRU的子载波的序号,所述第一VRU包括多个在频域上连续的子载波,所述第一PRU包括的多个子载波在频域上不连续;
所述收发模块,用于输出所述第一PRU的子载波的序号。
在第四方面或第五方面或第六方面的一种可能的实现方式中,所述第一VRU的序号为k的子载波,基于交织矩阵映射为所述第一PRU后的子载波的序号i,所述交织矩阵满足如下公式:
Figure PCTCN2022078501-appb-000003
其中,N ROW为所述交织矩阵的行数,N COL为所述交织矩阵的列数,k为输入所述交织矩阵的子载波的序号,i为序号为k的子载波经过所述交织矩阵交织后的序号。
在第四方面或第五方面或第六方面的一种可能的实现方式中,所述第一PRU包括的任 意相邻的子载波在频域上不连续。
在第四方面或第五方面或第六方面的一种可能的实现方式中,在输出所述交织矩阵包括的各个子载波的序号之前,所述交织矩阵的原行索引序列变为目标行索引序列;其中,
所述原行索引序列为{1,2,3,4,5,6,7,8},所述目标行索引序列为{1,5,3,7,2,6,4,8},或者{1,6,3,8,4,7,2,5};
所述原行索引序列为{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},所述目标行索引序列为{1,9,5,13,3,11,7,15,2,10,6,14,4,12,8,16},或者{1,10,3,12,5,14,7,16,8,15,6,13,4,11,2,9}。
在第四方面或第五方面或第六方面的一种可能的实现方式中,所述通信装置将所述第一VRU映射为第一PRU,包括:
将所述第一VRU所在的第一频域资源包括的多个子载波的序号按照第一顺序依次输入交织矩阵的行,按照所述交织矩阵的列方向,输出所述交织矩阵中各个子载波序号,其中,所述第一顺序为从小到大的顺序,或者,所述第一顺序为从大到小的顺序。
在第四方面或第五方面或第六方面的一种可能的实现方式中,所述第一频域资源包括的多个子载波中,输入所述交织矩阵的子载波为第一类型子载波,或输入所述交织矩阵的子载波为第一类型的子载波和第二类型子载波,所述第一类型子载波用于承载数据,所述第二类型子载波包括空子载波、直流子载波、保护子载波、导频子载波的一种或多种;
其中,输入所述交织矩阵的子载波的序号为所述第一频域资源包括的所述多个子载波中的所述第一类型子载波的序号;或者,
输入所述交织矩阵的子载波的序号为所述第一频域资源包括的所述多个子载波的序号,其中,所述多个子载波中的所述第二类型子载波的序号均为第一预设序号,从所述交织矩阵输出的子载波的序号不包括所述第一预设序号;或者,
输入所述交织矩阵的子载波的序号为所述第一频域资源包括的所述多个子载波的序号,其中,多个子载波中的所述第二类型子载波的序号均为第一预设序号,为所述第一预设序号的序号位于所述交织矩阵的预设位置,从所述交织矩阵输出的子载波的序号不包括所述第一预设序号。
在第四方面或第五方面或第六方面的一种可能的实现方式中,所述第二类型子载波为导频子载波,所述导频子载波为所述第一频域资源内26子载波RU的最大导频子载波集合。
在第四方面或第五方面或第六方面的一种可能的实现方式中,所述第一频域资源包括的多个子载波中输入所述交织矩阵的子载波的数量小于所述交织矩阵支持输入的子载波的数量;
输入所述交织矩阵的子载波的序号为所述第一频域资源中要输入所述交织矩阵的子载波的序号以及填充子载波的序号,其中,所述填充子载波的序号位于所述交织矩阵的预设位置,所述填充子载波的序号均为第二预设序号,从所述交织矩阵输出的子载波的序号不包括所述第二预设序号。
在第四方面或第五方面或第六方面的一种可能的实现方式中,所述第一频域资源包括的多个子载波的数量根据所述第一设备支持的最大带宽确定。
在第四方面或第五方面或第六方面的一种可能的实现方式中,所述第一VRU基于所述第一VRU包括的各个子载波的序号与所述第一PRU包括的各个子载波的序号的映射关系映射为所述第一PRU。
在第四方面或第五方面或第六方面的一种可能的实现方式中,所述第一频域资源包括的子载波的序号从0或者1开始;或者,
所述第一频域资源包括的子载波的序号为所述子载波对应实际频带中的子载波编号;或者,
所述第一频域资源包括的子载波的序号为预设序号加预设偏移值。
在第四方面或第五方面或第六方面的一种可能的实现方式中,所述第一VRU对应的子载波的序号位于第一集合,所述第一PRU对应的子载波的序号位于所述第一集合;或者,
所述第一VRU对应的子载波的序号位于第一集合,所述第一PRU对应的子载波的序号位于所述第二集合,所述第一集合和所述第二集合无交集,或者所述第一集合和所述第二集合中部分序号相同;或者,
所述第一VRU对应的子载波的序号位于第一集合,所述第一PRU对应的子载波的序号位于多个第二集合,所述多个第二集合之间无交集,所述第一集合与所述多个第二集合无交集,或者所述第一集合与所述多个第二集合中部分第二集合存在交集。
第七方面,本申请实施例提供一种通信装置,该通信装置可以为上述实施例中第四方面至第六方面中任一方面的通信装置,或者为设置在第四方面至第六方面中任一方面的通信装置中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令或者数据,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令或数据时,使通信装置执行上述第一方面至第三方面中任一方面方法实施例中由第一设备或第二设备或交织器所执行的方法。
应理解,该通信接口可以通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果通信装置为设置在第一设备或第二设备或交织器中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。所述通信装置还可以包括收发器,用于该通信装置与其它设备进行通信。示例性地,当该通信装置为第一设备时,该其它设备为第二设备;或者,当该通信装置为第二设备时,该其它设备为第一设备,或者,当该通信装置为交织器,该其它设备为第一设备和/或第二设备。
第八方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现第四方面至第七方面中任一方面中的通信装置执行的方法。在一种可能的实现方式中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第九方面,本申请实施例提供了一种通信系统,所述通信系统包括第四方面和所述第五方面所述的通信装置。
第十方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由第一设备执行的方法;或实现上述各方面中由第二设备执行的方法;或实现上述各方面中由交织器执行的方法。
第十一方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述各方面中由第一设备执行的方法被执行,或使得上述各方面中由第二设备执行的方法被执行;或使得上述各方面中由交织器执行的方法被执行。
上述第七方面至第十一方面及其实现方式的有益效果可以参考对第一方面至第三方 面的方法及其实现方式的有益效果的描述。
附图说明
图1为本申请实施例适用的一种无线局域网的网络架构;
图2为20MHz的子载波分布及RU分布示意图;
图3为40MHz的子载波分布及RU分布示意图;
图4为80MHz的子载波分布及RU分布示意图;
图5为离散26-tone RU对应的多个连续RU的示意图;
图6为离散996-tone RU对应的多个连续RU的示意图;
图7为子载波离散的26-tone RU的分布示意图;
图8为子载波离散的52-tone RU的分布示意图;
图9为本申请实施例提供的资源分配方法的流程示意图;
图10为本申请实施例提供的VRU和PRU映射范围的示意图;
图11为本申请实施例提供的VRU到PRU的一种映射方式示意图;
图12为本申请实施例提供的20MHz内的242个子载波均参与映射的示意图;
图13为本申请实施例提供的第二类型子载波不参与映射的一种示意图;
图14为本申请实施例提供的第二类型子载波不参与映射的另一种示意图;
图15为本申请实施例提供的第二类型子载波不参与映射的又一种示意图;
图16为本申请实施例提供的80MHz中某个20MHz的VRU映射到PRU的一示意图;
图17为本申请实施例提供的80MHz中某个20MHz的VRU映射到PRU的另一示意图;
图18为示出了导频子载波在80MHz中的位置示意图;
图19为本申请实施例提供的交织矩阵行变化的一种示意图;
图20为本申请实施例提供的原行索引序列与目标行索引序列的一种对应关系示意图;
图21为本申请实施例提供的原行索引序列与目标行索引序列的另一种对应关系示意图;
图22为本申请实施例提供的原行索引序列与目标行索引序列的另一种对应关系示意图;
图23为本申请实施例提供的通信装置的一种结构示意图;
图24为本申请实施例提供的通信装置的另一种结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例可以适用于无线局域网(wireless local area network,WLAN)的场景,可以适用于IEEE 802.11系统标准,例如802.11a/b/g、802.11n、802.11ac、802.11ax,或其下一代,例如802.11be或更下一代的标准中。或者本申请实施例也可以适用于物联网(internet of things,IoT)网络或车联网(Vehicle to X,V2X)网络等无线局域网系统中。当然,本申请实施例还可以适用于其他可能的通信系统,例如,LTE系统、LTE频分双工 (frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、以及未来的5G通信系统等。
下文以本申请实施例可以适用于WLAN的场景为例。应理解,WLAN从802.11a/g标准开始,历经802.11n、802.11ac、802.11ax和如今正在讨论的802.11be。其中802.11n也可称为高吞吐率(high throughput,HT);802.11ac也可称为非常高吞吐率(very high throughput,VHT);802.11ax也可称为高效(high efficient,HE)或者Wi-Fi 6;802.11be也可称为极高吞吐率(extremely high throughput,EHT)或者(Wi-Fi 7),而对于HT之前的标准,如802.11a/b/g等统称叫做非高吞吐率(Non-HT)。
请参见图1,示出了本申请实施例适用的一种WLAN的网络架构图。图1以该WLAN包括1个无线接入点(access point,AP)和2个站点(station,STA)为例。与AP关联的STA,能够接收该AP发送的无线帧,也能够向该AP发送无线帧。另外,本申请实施例同样适用于AP与AP之间的通信,例如各个AP之间可通过分布式系统(distributed system,DS)相互通信,本申请实施例也适用于STA与STA之间的通信。应理解,图1中的AP和STA的数量仅是举例,还可以更多或者更少。
本申请实施例涉及到的STA可以是各种具有无线通信功能的用户终端、用户装置,接入装置,订户站,订户单元,移动站,用户代理,用户装备或其他名称,其中,用户终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(user equipment,UE),移动台(mobile station,MS),终端(terminal),终端设备(terminal equipment),便携式通信设备,手持机,便携式计算设备,娱乐设备,游戏设备或系统,全球定位系统设备或被配置为经由无线介质进行网络通信的任何其他合适的设备等。例如STA可以是路由器、交换机和网桥等,在此,为了描述方便,上面提到的设备统称为站点或STA。
本申请实施例所涉及到的AP和STA可以为适用于IEEE 802.11系统标准的AP和STA。AP是部署在无线通信网络中为其关联的STA提供无线通信功能的装置,该AP可用作该通信系统的中枢,通常为支持802.11系统标准的MAC和PHY的网络侧产品,例如可以为基站、路由器、网关、中继器,通信服务器,交换机或网桥等通信设备,其中,所述基站可以包括各种形式的宏基站,微基站,中继站等。在此,为了描述方便,上面提到的设备统称为AP。STA通常为支持802.11系统标准的介质访问控制(media access control,MAC)和物理层(physical,PHY)的终端产品,例如手机、笔记本电脑等。
AP与STA进行通信,AP可以为STA分配资源,STA在被分配的资源上进行数据的收发。例如AP和STA之间可以采用应用正交频分多址(orthogonal frequency division multiple access,OFDMA),也可以采用多用户多入多出(multi-users multiple-input multiple-output,MU-MIMO)技术进行无线通信。应理解,STA传输数据实际占用的资源为PRU,但是AP为STA分配的资源可以是PRU,也可以是虚拟资源单元VRU。VRU是指虚拟的RU,是相对PRU而言的。如果AP为STA分配的资源可能是VRU,STA接收到VRU之后,可将VRU转换为PRU,再在PRU上发送数据。
在OFDMA及MU-MIMO技术中,WLAN协议会将频谱带宽划分为若干个资源单元(resource unit,RU)。例如802.11ax协议支持的带宽配置包括20MHz、40MHz、80MHz、 160MHz及80+80MHz。例如802.11be协议支持的带宽配置除了802.11ax协议支持的带宽配置,还可以支持320MHz。其中,160MHz与80+80MHz的区别在于前者为连续频带,而后者的两个80MHz间可以分离,即80+80MHz组成的160MHz是不连续的。IEEE 802.11ax协议规定对于20MHz、40MHz、80MHz和160MHz,可将频谱带宽划分成多类RU,其中包括26子载波RU、52子载波RU、106子载波RU、242子载波RU(20MHz带宽内最大RU),484子载波RU(40MHz带宽内最大RU),996子载波RU(80MHz带宽内最大RU),和2*996子载波RU(160MHz带宽内最大RU)。每个RU由连续的子载波组成,比如26子载波RU由26个连续的子载波RU组成。在下文中,26子载波RU记为26-tone RU,52子载波RU记为52-tone RU,等等,以此类推。整个带宽除了用于传输数据的26-tone RU、52-tone RU等,还包括其他子载波,例如保护(Guard)子载波、空子载波以及直流(direct current,DC)子载波、导频子载波中的一种或多种。为方便描述,在本文中,将用于传输数据的子载波称为第一类型子载波,将其他子载波统称为第二类型子载波。
请参见图2,为20MHz的子载波分布及RU分布示意图。如图2所示,当带宽为20MHz时,整个带宽可以由一整个242-tone RU组成,也可以由26-tone RU,52-tone RU,106-tone RU的各种组合组成,例如20MHz可由8个26-tone RU、4个52-tone RU或者2个106-tone RU组成。从图2可以看出,1个242-tone RU的带宽大约为20MHz,1个106-tone RU的带宽大约为8MHz,1个52-tone RU的带宽大约为4MHz,1个26-tone RU的带宽大约为2MHz。需要说明的是,整个带宽还包括一些保护子载波、空子载波以及直流子载波、导频子载波中的一种或多种,例如图2所示的20MHz还包括保护子载波、空子载波以及直流子载波。
当带宽为40MHz时,整个带宽大致相当于2个20MHz的子载波分布的复制,整个带宽可以由一整个484-tone RU组成,也可以由26-tone RU,52-tone RU,106-tone RU,242-tone RU的各种组合组成,如图3所示。图3中的“5DC”表示5个直流子载波。与20MHz类似,40MHz也包括一些保护子载波、空子载波以及直流子载波中的一种或多种。应理解,484-tone RU的带宽大约为40MHz。
当带宽为80MHz时,整个带宽由4个242-tone RU为单位的资源单元组成。整个带宽可以由整个996-tone RU组成,也可以由26-tone RU,52-tone RU,106-tone RU,242-tone RU,484-tone RU的各种组合组成,如图4所示。图4中的484L,484R代表484-tone RU的左半部分和右半部分,分别包含242个子载波,是图3中“484+5DC”的另一种示意。图4中的“5DC”表示5个直流子载波,“23DC”表示23个直流子载波。与20MHz类似,80MHz也包括一些保护子载波、空子载波以及直流子载波中的一种或多种。应理解,996-tone RU的带宽大约为80MHz。
应理解,当带宽为160MHz时,整个带宽可以看作是2个80MHz的子载波分布的复制,整个带宽可以由一整个2*996-tone RU组成,也可以由26-tone RU,52-tone RU,106-tone RU,242-tone RU,484-tone RU,996-tone RU的各种组合组成。同理,当带宽为320MHz时,整个带宽可以看作是4个80MHz的子载波分布的复制,整个带宽可以由4个996-tone RU为单位的资源单元组成。为了简便,160MHz和320MHz的子载波分布及RU分布不再单独示意。
上述的各种子载波分布,以242-tone RU为单位,图4-图6的左边的RU对应最低频 率,图4-图6的右边的RU对应最高频率。从左到右,可以对242-tone RU进行标号:1st,2nd,…,16th。需要说明的是,至多16个242-tone RU与16个20MHz信道按照频率从低到高一一对应。
为了提高RU分配的灵活性和/或频率利用率,可能支持将多个连续或者不连续的RU分配给某一个或多个用户。在本文中,将多个连续或者不连续的RU称为多RU,应理解,多RU是由多个RU组成的RU。在一些实施例中,多RU可记为Multi-RU,也可记为MRU。需要说明的是,在本文中,将多RU统一记为MRU。
例如,802.11be协议还引入了多种MRU,例如1个52-tone RU和1个26-tone RU组成的52+26-tone RU;1个106-tone RU和1个26-tone RU组成的106+26-tone RU;1个484-tone RU和一个242-tone RU组成的484+242-tone RU;1个996-tone RU和1个484-tone RU组成的996+484-tone RU;1个242-tone RU、1个484-tone RU和1个996-tone RU组成的242+484+996-tone RU;2个996-tone RU和1个484-tone RU组成的2*996+484-tone RU;3个996-tone RU组成的3*996-tone RU;3个996-tone RU和1个484-tone RU组成的3*996+484-tone RU;等等。
在介绍本申请提供的方法之前,首先对本申请中涉及的相关概念进行说明。
1、连续RU(continuous RU,CRU)
在本文中,连续RU指,由连续的多个子载波组成的RU,或者连续RU是由两组连续子载波组组成的RU,每组所述连续子载波组包括的多个子载波是连续的,两组子载波组之间仅被保护子载波、空子载波、或者直流子载波中的一种或多种间隔。802.11ax中支持的RU均可理解为连续RU。连续RU又可称作常规RU。当然,连续RU也可以为其他名称,本申请实施例对连续RU的具体名称不作限定。
在本申请实施例中,将包括K个子载波的连续RU称为连续K-tone RU。比如,连续26-tone RU是指包括26个子载波的连续RU。即,连续K-tone RU的概念和现有的802.11ax标准中的K-tone RU的概念相同。
应理解,连续RU的多个子载波可以是连续的,连续RU也可以包括两组连续子载波组,该两组连续子载波组之间不连续。例如一组连续的13个子载波和另一组连续的13个子载波组成的26-tone RU为连续RU。类似的,一组连续的484个子载波和另一组连续的484个子载波组成的996-tone RU为连续RU。这样的RU也可以称为特殊的连续RU或者广义的连续RU。本申请中的连续RU也包括特殊的连续RU或者广义的连续RU。
2、离散RU(distribute RU,DRU)
相对连续RU而言,包括多个在频域上离散的子载波组的RU可称为离散RU,即离散RU包括多个子载波组,并且任意两个子载波组在频域上离散。其中,一个子载波组包括一个子载波,或者,一个子载波组至少包括两个连续的子载波,即,一个子载波组包括一个子载波或者包括多个连续的子载波。离散RU又可称作分布式RU(distributed RU,DRU)。当然在其他实施例中,离散RU也可以的名称也可以为其他名称,本申请不限定离散RU的名称。本申请中的一个离散RU包括的子载波组的数量大于或等于2。
在本申请实施例中,可将包括K个子载波的离散RU称为离散K-tone RU。比如,离散26-tone RU是指包括26个子载波的离散RU。其中,K的大小可以参照连续RU所采用的K的取值,当然,K的大小也可以和连续RU所采用的K的取值不同。例如,带宽为20MHz时,20MHz可包括离散26-tone RU、离散52-tone RU,离散106-tone RU,离散 242-tone RU中的一种或多种的组合。
本申请中,一个离散RU可以与另一个离散RU组成离散MRU)该离散MRU能够被分配给一个或多个站点。例如,离散242-tone RU和离散484-tone RU可组成离散484+242-tone RU。
需要说明的是,上文中提及的特殊的连续RU或者广义的连续RU并不属于本申请实施例涉及的离散RU。例如,上述示例中的一组连续的13个子载波和另一组连续的13个子载波组成的26-tone RU非本申请中所定义的离散RU,而是特殊的连续RU。
在一些示例中,离散RU所包括的多个子载波组中的任意两个子载波组所包括的子载波的数量可以是相同的也可以是不同的。例如,每个子载波组的子载波数量可以均为1。又如,一部分子载波组的子载波数量为1,另一部分子载波组的子载波数量为2,即,一个离散RU可以包括4个子载波组,4个子载波组中的子载波数量可以依次为1,1,2,2。
在一些示例中,在离散RU所包括的子载波组的数量大于或等于3的情况下,离散RU所包括的多个离散的子载波组中,两两相邻的子载波组之间间隔的子载波数量可以相同也可以不相同。两两相邻的子载波组是指一个离散RU的两个相邻的子载波组。
例如,对于包括3个离散子载波组(记为:子载波组#1、子载波组#2和子载波组#3)的离散RU,子载波组#1和子载波组#2相邻,子载波组#2和子载波组#3相邻,即,子载波组#1所包括的子载波的频率小于子载波组#2所包括的子载波的频率,子载波组#2所包括的子载波的频率小于子载波组#3所包括的子载波的频率。并且,子载波组#1中频率最大的子载波和子载波组#2中频率最小的子载波在频率(或,频域)上不连续,即二者之间间隔了K1(K1≥1)个子载波,或者说二者之间还存在K1个子载波,子载波组#2中频率最大的子载波和子载波组#3中频率最小的子载波在频率(或,频域)上不连续,即二者之间间隔了K2(K2≥1)个子载波,或者说二者之间还存在K2个子载波。其中,K1可以等于K2,也可以不等于K2。
再如,对于包括4个离散子载波组(记为:子载波组#1、子载波组#2、子载波组#3和子载波组#4)的离散RU,子载波组#1和子载波组#2相邻,子载波组#2和子载波组#3相邻,子载波组#3和子载波组#4相邻。并且,子载波组#1中频率最大的子载波和子载波组#2中频率最小的子载波之间间隔了K1(K1≥1)个子载波,子载波组#2中频率最大的子载波和子载波组#3中频率最小的子载波之间间隔了K2(K2≥1)个子载波,子载波组#3中频率最大的子载波和子载波组#4中频率最小的子载波之间间隔了K3(K3≥1)个子载波。K1、K2和K3三者可以相等,或者其中两者可以相等,或者三者中任意两者都不相等。
例如,请参见图5,图5所示的离散26-tone RU对应的多个连续RU为第一个20MHz内的第一个连续26-tone RU(连续RU#1)和第二个20MHz内的第一个连续26-tone RU(连续RU#2)。在本申请中,称该离散RU为与连续RU#1和连续RU#2对应的离散RU,或者称该离散RU为与连续RU#1和连续RU#2具有映射关系的离散RU;或者称连续RU#1和连续RU#2为该离散RU所占的连续RU。
再如,请参见图6,图6所示的离散996-tone RU对应的多个连续RU为图中所示的两个连续996-tone RU。
美国联邦通信委员会颁布了关于6GHz频谱的法规,定义了一种室内低功耗(low power indoor,LPI)的通信方式,对发送的最大功率和最大频率谱密度进行了限制。对于AP来说,规定AP发送的最大功率是36dBm(decibel-milliwatts,分贝毫瓦),最大功率谱密度为 5dBm/MHz(decibel-milliwatts/megahertz,分贝毫瓦/兆赫兹);对于STA来说,规定STA发送的最大功率是24dBm,最大功率谱密度为-1dBm/MHz。
设备发送的功率同时受最大功率和最大功率谱密度的限制,即设备发送的功率不能超过最大功率值,也不能超过最大功率谱密度,即每MHz的发送功率不能超过给定值。示例性的,请参见表1,示出了LPI场景下,设备发送的最大功率与带宽之间的对应关系。
表1
带宽 AP发送的最大功率 STA发送的最大功率
20MHz 18dBm 12dBm
40MHz 21dBm 15dBm
80MHz 24dBm 18dBm
160MHz 27dBm 21dBm
320MHz 30dBm 24dBm
应理解,以表1中的20MHz为例,18dBm–5dBm=13dB,13dB=10^1.3=19.95,约等于20MHz,可知某发送带宽下的最大功率约等于每MHz都达到最大发送功率时的值。在功率谱密度受限的情况下,可以通过拓宽相应的发送带宽使得设备发送更大的功率。从图2-图4中子载波分布及RU分布可以看出,带宽内的所有子载波是连续的,即图2-图4中的RU为连续RU。相较于离散RU,连续RU包括的每个子载波所对应的带宽较小,自然无法通过发送带宽来增大设备发送的最大功率。例如,20MHz包括属于该20MHz的2个子载波以及属于其他RU的多个子载波,相较于20MHz包括10个连续的子载波来说,尽管未增加分配给设备的子载波,但是分配给设备的子载波在频域上变得更加离散,使得每MHz上的子载波数变少,从子载波的角度而言,相当于扩宽了每个子载波对应的带宽,所以设备可支持更大的发送功率。
例如,请参见图7,示出了一个子载波离散的26-tone RU的分布示意图。图7以80MHz为例,其中,26-tone RU包括24个数据子载波和2个导频子载波。24个数据子载波可以设计为两两不相邻的形式,如图7所示。
又例如,请参见图8,示出了一个子载波离散的52-tone RU的分布示意图。图8以80MHz为例,其中,52-tone RU包括48个数据子载波和4个导频子载波。48个数据子载波可以设计为两两不相邻的形式,如图8所示。需要说明的是,图7和图8中数据子载波的离散分布(离散设计)方式仅是一种示意,本申请实施例对数据子载波的离散分布不作限制。
从图7和图8中可以看出,由于RU上的数据子载波离散分布,每MHz上子载波的数目减少。从子载波的角度而言,相当于扩宽了每个子载波对应的带宽,所以每个子载波可具有更大的发送功率。然而,采用如图7或图8的方式,需要定义更多的RU或RU组合,例如各种离散的子载波形成的RU或RU组合。且为了指示更多类型的RU或MRU(包括各种离散的子载波形成的RU或RU组合),需要改变现有的连续的子载波形成的RU的分配方法,对于发送端而言实现较为复杂。另外,在可能的情况中,例如预先定义的某些离散子载波集合可能有交集,那么分配了某个离散的RU(例如x-tone RU),另一个离散的RU(例如,y-tone RU)不能用来发送;又例如,如果出现前导码打孔,那么预先定义的RU将不能使用,RU的利用率较低。
鉴于此,本申请提供了一种资源分配方法,该方法实质上是提供一种VRU到PRU的映射方式,该映射方式可将连续VRU映射为离散PRU。基于该映射方式,发送端可告知接收端为接收端分配的RU是VRU,但是发送端在连续VRU映射后的离散PRU上发送数据。由于连续VRU映射为离散PRU,相当于降低了每MHz上的子载波数,所以发送端可支持更大的发送功率。
需要说明的是,在本申请实施例中,需要离散的子载波指的是用于承载数据的子载波(在本文中也称为数据子载波)。对于任意RU来说,该RU包括的其他子载波,例如导频子载波的分布不作限制,例如导频子载波的分布可沿用传统设计或者其他可能的设计。
下面结合附图介绍本申请实施例提供的技术方案。在下文的描述中,以发送端是第一设备,接收端是第二设备为例说明第一设备如何向第二设备指示分配的资源。其中,第一设备可以是AP,第二设备可以是STA或AP;或者,第一设备可以是STA,第二设备也可以是STA。为便于描述,在下文中,以第一设备是AP,第二设备是STA为例。请参见图9,为本申请实施例提供的资源分配方法的流程示意图,该流程描述如下。
S901、AP向STA发送资源分配信息,相应的,STA接收来自AP的资源分配信息,该资源分配信息用于指示第一VRU,所述第一VRU为连续RU。
S902、AP根据VRU和PRU的映射关系,将第一VRU映射为第一PRU。
S903、AP在第一PRU上发送数据,STA在第一PRU接收该数据。
通常来说,AP为STA分配的资源是连续RU,为了使得AP获得更大的发送功率,本申请可将连续RU映射为离散RU,AP在离散RU上向STA发送数据,可使得AP获得更大的发送功率。应理解,AP在离散RU向STA发送数据,STA在该离散RU上接收来自AP的数据,也可以在该离散RU上向AP发送数据。即STA不是在AP为其分配的连续RU上收发数据,可认为AP为STA分配的连续RU为VRU,离散RU为PRU。可以认为,本申请实施例实质上是提供了VRU映射到PRU的方案。这样发送端可用将带宽划分为若干个资源单元的资源分配方式,无需定义多种分布式RU,也无需关心如何选取与分配分布式RU,就可以实现增大设备的最大发送功率的目的。
在本申请实施例中,AP可沿用目前的RU分配方式,即采用资源单元分配子字段(RU Allocation subfield)来分配资源。通常AP通过资源单元分配子字段为STA分配资源,STA会认为所分配的资源是物理资源。例如AP向STA发送资源分配信息,该资源分配信息承载于资源单元分配子字段,用于指示AP为STA分配的RU。但是在本申请实施例中,通过资源单元分配子字段为STA分配的资源不是AP发送数据实际使用的资源,所以AP为STA分配资源,会告知STA,AP为STA分配的资源是VRU。例如,AP可向STA发送资源分配信息,该资源分配信息用于指示AP为STA分配的RU是第一VRU。示例性的,资源分配信息可以承载于资源分配子字段,例如资源分配信息可以是资源分配子字段的预留比特序列。或者,资源分配信息也可以承载于物理层协议数据单元(physical protocol data unit,PPDU)包括的信令字段(signal field,SIG),例如通用字段(universal SIG,U-SIG)或者超高吞吐率信令字段(extremely high throughput signal field,EHT-SIG)中的部分比特,例如生效(validate)比特等的预留比特。
AP在向STA发送数据之前,需将VRU映射为PRU,从而在PRU上发送数据。应理解,AP可为一个STA分配VRU,也可以同时为多个STA分配VRU,例如AP为STA1分配第一VRU,为STA2分配第二VRU。这种情况下,AP可同时映射第一VRU和第二 VRU。例如AP对第一VRU和第二VRU所在的频域资源进行映射。为了便于描述,下文以AP映射第一VRU所在的第一频域资源为例。应理解,该第一频域资源还可以包括其他一个或多个VRU。需要说明的是,AP可为某些STA分配VRU,同时也可以为另一些STA分配PRU,例如AP为第一STA分配第一VRU,为第二STA分配第二PRU,其中,第一VRU和第二PRU位于第一频域资源。本申请实施例提供的VRU映射到PRU的方案可适用于下行传输(即AP到STA的传输),也可以适用于上行传输(即STA到AP的传输)。该VRU映射到PRU的方案可与AP通过资源单元分配子字段为STA分配任意资源的方案结合使用。
本申请实施例将VRU映射为PRU的目的在于使得子载波更加离散,而VRU和PRU都可以通过子载波序号来指示,具体参见后续的附表1-附表5。因此,本申请实施例可对第一频域资源对应的子载波序号序列进行映射,即将该子载波序号序列(原子载波序号序列)映射为另一子载波序号序列(目标子载波序号序列)。也就是将原子载波序号序列中的各个序号一一映射到目标子载波序号序列中的相应元素。
其中,各个子载波的序号可以沿用该子载波在对应的实际频带中的子载波编号,也可以自定义。本申请实施例对子载波的序号的具体实现形式不作限制。
示例性的,子载波的序号可以为该子载波在对应的实际频带中的子载波编号。例如80MHz的第一个20MHz对应的242个子载波的序号依次为-500到-259;第二个20MHz对应242个子载波的序号为-253到-12;第三个20MHz对应的242个子载波的序号为12到253,第四个20MHz对应的242个子载波的序号依次为259到500。
示例性的,子载波的序号可以从0或1开始编号。例如80MHz的第一个20MHz对应的242个子载波的序号为0到241,或者1到242。
示例性的,子载波的序号为预设序号加预设偏移值。例如,预设序号可以从0或1开始编号,预设偏移值可以根据子载波在对应的实际频带中的子载波编号确定。例如80MHz的第一个20MHz对应的242个子载波的序号可以根据预设序号和预设偏移值计算。假设预设序号为1,那么预设偏移值可以是-501。
需要说明的是,本申请实施例对VRU和PRU参与映射的范围不作限制。也就是,第一VRU和第一PRU可以处于同一频域位置范围,也可以处于不同频域位置范围。另外,本申请实施例对PRU参与映射的频率范围是否连续不作限制,也就是PRU参与映射的频域范围可以是连续的,也可以是离散的,只要PRU参与映射的频率范围大小与VRU参与映射的频率范围大小相同即可。
也可以认为,本申请实施例对原子载波序号序列所在的集合和目标子载波序列序号所在的集合不作限制。例如,可将第一频域资源对应的子载波序号序列中的序号映射到同一集合中的其他序号,例如原子载波序号序列位于第一集合,那么目标子载波序号序列也位于第一集合;或者也可以将第一频域资源对应的子载波序号序列中的序号映射到另一集合中的其他序号,例如原子载波序号序列位于第一集合,那么目标子载波序号序列也位于第二集合,第二集合和第一集合无交集;又例如,原子载波序号序列位于第一集合,那么目标子载波序号序列也位于第二集合,第二集合和第一集合部分序号相同。同理,本申请实施例对目标子载波序号序列是否是连续不作限制,也就是目标子载波序号序列包括的序号可位于不同集合内。例如,原子载波序号序列位于第一集合,那么目标子载波序号序列可位于多个第二集合,这多个第二集合之间无交集,其中,第一集合与所述多个第二集合无 交集,或者所述第一集合与所述多个第二集合中部分第二集合存在交集。
示例性的,请参见图10,为VRU和PRU参与映射的频率范围的示意图。原子载波序号序列可对应80MH中的第一个20MHz,目标子载波序号序列也可对应80MHz中的第一个20MHz;或者,原子载波序号序列可对应80MH中的第一个20MHz,目标子载波序号序列可对应80MHz中的第三个20MHz;表示第一频域资源;或者,原子载波序号序列可对应80MH中的第一个20MHz,目标子载波序号序列可对应80MH中的第二个20MHz中部分频率和80MH中的第三个20MHz中部分频率以及80MH中的第四个20MHz中部分频率。
也就是,如果原子载波序号序列位于{-500,…,-259},目标子载波序号序列可位于{-500,…,-259};或者,如果原子载波序号序列位于{-500,…,-259},目标子载波序号序列可位于{-253,…,-12};或者,如果原子载波序号序列位于{-500,…,-259},目标子载波序号序列可位于{-253,…,-106}、{50,…,88}以及{270,…,326}。
下面以第一VRU和第一PRU参与映射的频率范围相同为例,介绍VRU映射为PRU的几种可能映射方式。
映射方式一,本申请实施例可通过交织矩阵来实现将VRU映射为PRU。
其中,交织矩阵的行数可以是预定义的,那么交织矩阵的列数为AP要输入的子载波的数量除以交织矩阵的行数获得的整数。即AP要输入的子载波的数量除以交织矩阵的行数获得的值如果是小数,那么交织矩阵的列数为AP要输入的子载波的数量除以交织矩阵的行数获得的值向上取整。或者,交织矩阵的列数可以是预定义的,那么交织矩阵的行数为AP要输入的子载波的数量除以交织矩阵的列数获得的整数。即AP要输入的子载波的数量除以交织矩阵的列数获得的值如果是小数,那么交织矩阵的行数为AP要输入的子载波的数量除以交织矩阵的例如数获得的值向上取整。需要说明的是,本申请实施例对交织矩阵的行数和列数的具体实现方式不作限制,例如,交织矩阵的行数和列数都可以是预定义的,或者交织矩阵的行数和列数可以是AP和STA协商的。
示例性的,将多个子载波的序号利用交织矩阵进行行列变换,输出个子载波经过行列变换后的序号。也就是,基于交织矩阵将第一VRU的子载波的序号映射为第一PRU的子载波的序号。请参见图11,示出了VRU到PRU的一种映射方式。图11以交织矩阵的行数是N,列数是M为例。图11以子载波的序号按照行输入交织矩阵,从交织矩阵按照列输出为例。即AP可将第一频域资源包括的多个子载波的序号按照第一顺序依次输入交织器(交织矩阵)的行,按照交织矩阵的列方向,输出交织矩阵包括的子载波的序号。或者,AP也可将第一频域资源包括的多个子载波的序号按照第一顺序依次输入交织器(交织矩阵)的列,按照交织矩阵的行方向,输出交织矩阵包括的子载波的序号。为了便于描述,下文以将子载波的序号按照行输入交织矩阵,从交织矩阵按照列输出为例。
示例性的,第一VRU的序号为k的子载波,基于交织矩阵映射为第一PRU后的子载波的序号i,满足如下公式:
Figure PCTCN2022078501-appb-000004
其中,N ROW为交织矩阵的行数,N COL为交织矩阵的列数,k为输入交织矩阵的子载波的序号,i为序号为k的子载波经过交织矩阵交织后的序号。
第一顺序为从小到大的顺序;或者第一顺序为从大到小的顺序;又或者第一顺序为按照从小到大的顺序或从大到小的顺序按照预设规则重新排序之后获得的顺序。例如共有n个子载波,这n个子载波的序号(即n个序号)按照从小到大的顺序排序,第一顺序为从n个序号中选取m个序号,移位到最小序号之前的顺序。例如,子载波的序号序列为123456,第一顺序为345612。下文以第一顺序是从小到大的顺序。
举例来说,请参见图12,示出了20MHz中VRU到PRU的映射。图12中的20MHz例如可以是40MHz、80MHz或160MHz中的任意一个20MHz。图12中每个矩形中的数字表示子载波个数,图12以20MHz包括的242个子载波均参与映射,且交织矩阵的行数是2为例。从图12可以看出,相同阴影部分表示的子载波大部分不相邻,即20MHz中包括的多个连续子载波应该映射后变得离散,也就是每个VRU中的子载波在VRU中尽管是连续的,但是在映射后变得离散。由于该映射方式可将连续子载波形成的VRU映射为离散子载波形成的PRU,相当于扩宽了每个子载波对应的带宽,所以尽管AP沿用目前的RU分配方式为STA分配资源,AP也可以获得更大的发送功率。且对于AP而言,沿用目前的RU分配方式,无需定义多种分布式的RU,也无需关心如何选取与分配分布式的RU。
上述图12示意的20MHz(第一频域资源)内的242个子载波(即全部子载波)均参与映射。也就是第一频域资源包括的第一类型子载波和第二类型子载波均参与映射。应理解,本申请实施例旨在离散第一类型子载波,所以在一些实施例中,第二类型子载波可不参与映射,即只映射第一频域资源包括的第一类型子载波。当然,第一频域资源包括的第一类型子载波可均参与映射,或者第一频域资源包括的部分第一类型资源参与映射,本申请实施例对此不作限制。这样可以使得交织矩阵的内容更少,从而提高交织效率。下面介绍几种第二类型子载波不参与映射的几种映射方式。
示例一,第二类型子载波的序号不输入交织矩阵。
请参见图13,示出了第二类型子载波不参与映射的示意图。举例来说,第一频域资源包括的子载波的序号按照从小到大的顺序获得的序号序列为{1,2,3,4,5,6,7,8,9,10},且第二类型子载波的序号为5和6。由于第二类型子载波不参与映射,所以映射第一频域资源时,可将{1,2,3,4,7,8,9,10}输入交织矩阵。假设交织矩阵的行数是2,列数是4(即N=2,M=4),那么交织矩阵的第一行的元素依次为{1,2,3,4},第二行的元素依次为{7,8,9,10}。按列输出后获得的子载波的序号为{1,7,2,8,3,9,4,10}。即VRU中的序号为{1,2,3,4,7,8,9,10}的子载波与PRU中序号为{1,7,2,8,3,9,4,10}的一一对应。由于序号为5和6的子载波不参与映射,所以序号为5和6的子载波在PRU中的序号仍然为5和6。
举例来说,以80MHz中的第一个20MHz对应的242个子载波的序号为-500到-259,其中,80MHz中的第一个20MHz中的导频子载波有18个,导频子载波的序号为:{-238,-224,-212,-198,-184,-170,-158,-144,-130,-116,-104,-90,-78,-64,-50,-36,-24,-10}中各个序号加上偏移值(即-256)。即为:{-494,-480,-468,-454,-440,-426,-414,-400,-386,-372,-360,-346,-334,-320,-306,-292,-280,-266}。
在映射80MHz中的第一个20MHz,可确定18个导频子载波不参与映射。即这18个导频子载波不输入交织矩阵,参与映射的子载波个数为242-18=224个子载波,那么可设计交织矩阵为8*28的矩阵。那么将参与映射的子载波输入交织矩阵,如表2。应理解,表中空白之处均对应子载波序号,为了节约篇幅,表2只示意了部分子载波序号。
表2
Figure PCTCN2022078501-appb-000005
按照列是输出方向,依次输出各行的序号可获得映射后的子载波序号。可见通过交织矩阵可使得连续的子载波序号变得离散。即VRU的子载波序号集合{-500,-499,…,-259}与下列序列中的元素一一对应:{-500,-470,-439,-409,-379,-349,-318,-288,-499,…,-289,-259}。
示例二、第一时频资源包括的第一类型子载波的序号和第二类型子载波的序号都输入交织矩阵,但是经过交织矩阵后,输出交织矩阵中第一类型子载波的序号,第二类型子载波的序号不输出。也就是从交织矩阵输出的子载波的序号中不包括第二类型子载波的序号。为了区分输出哪些序号,不输出哪些序号,可将第二类型子载波的序号统一定义为第一预设序号,例如“*”。
在一些实施例中,可将按照第一顺序排列的第一时频资源包括的多个子载波的序号获得的序号序列中,第二类型子载波的序号更换为“*”,之后将获得的序号序列依次输入交织矩阵的行。换句话说,可认为按照第一顺序将第一时频资源包括的多个子载波的序号按行输入交织矩阵后,将交织矩阵中不参与映射的第二类型子载波的序号更换为“*”。
例如,请参见图14,示出第二类型子载波不参与映射的另一示例。例如,沿用上述的例子,即交织矩阵的行数是2,列数是4。第一频域资源包括的子载波的序号按照从小到大的顺序获得的序号序列为{1,2,3,4,5,6,7,8,9,10},且第二类型子载波的序号为5和6。由于第二类型子载波参与映射,但是第二类型子载波的序号经过交织矩阵后不输出,所以第二类型子载波的序号可定义为“*”。那么映射第一频域资源时,可将{1,2,3,4,*,*,7,8,9,10}输入交织矩阵。即交织矩阵的第一行的元素依次为{1,2,3,4,*},第二行的元素依次为{7,8,9,10,*}。由于为“*”的序号不输出,所以按列输出后获得的子载波的序号为{1,7,2,8,3,9,4,10}。即VRU中的序号为{1,2,3,4,7,8,9,10}的子载波与PRU中序号为{1,7,2,8,3,9,4,10}的一一对应。序号为5和6的子载波在PRU中的序号仍然为5和6。
在另一些实施例中,可将按照第一顺序排列的第一时频资源包括的多个子载波的序号获得的序号序列中,第二类型子载波的序号更换为“*”。但是第二类型子载波的序号输入交织矩阵的预设位置,第一类型子载波的序号按照第一顺序依次输入交织矩阵的行中除第二类型子载波的序号占用的位置。例如,可规定为*的序号依次输入到交织矩阵每行的最后一列;或者,为*的序号依次输入到交织矩阵每行的第一列;又或者为*的序号依次输入到交织矩阵按照预设规则获得的位置等。本申请实施例对第二类型子载波序号在交织矩阵 的具体位置不作限制。
例如,请参见图15,示出第二类型子载波不参与映射的又一示例。沿用上述的例子,即交织矩阵的行数是2,列数是4。第一频域资源包括的子载波的序号按照从小到大的顺序获得的序号序列为{1,2,3,4,5,6,7,8,9,10},且第二类型子载波的序号为5和6。由于第二类型子载波参与映射,但是第二类型子载波的序号经过交织矩阵后不输出,所以第二类型子载波的序号可定义为“*”。可规定为*的序号依次输入到交织矩阵每行的最后一列。那么映射第一频域资源时,将{1,2,3,4,*,*,7,8,9,10}输入交织矩阵。即交织矩阵的第一行的元素依次为{1,2,3,4,*},第二行的元素依次为{7,8,9,10,*}。由于为“*”的序号不输出,所以按列输出后获得的子载波的序号为{1,7,2,8,3,9,4,10}。即VRU中的序号为{1,2,3,4,7,8,9,10}的子载波与PRU中序号为{1,7,2,8,3,9,4,10}的一一对应。序号为5和6的子载波在PRU中的序号仍然为5和6。
举例来说,请参见图16,示出了80MHz中某个20MHz的VRU映射到PRU的一示例。图15以交织矩阵的行数是2行为例,且以参与映射的是部分第一类型子载波为例,即第二类型子载波不参与映射,部分第一类型子载波参与映射。其中,不参与映射的第二类型子载波为空子载波,即不参与映射的第二类子载波包括与106-tone RU相邻的26-tone RU左右两边的1个空子载波、第一个26-tone RU左边的1个孔子载波、以及106-tone RU右边的1个空子载波。不参与映射的第一类型子载波为与106-tone RU相邻的26-tone RU包括的全部子载波。从图16可以看出,参与映射的子载波数目为242-2-2-26=212,即交织矩阵的内容更少,从而提高交织效率。
请参见图17,示出了80MHz中某个20MHz的VRU映射到PRU的另一示例。图17与图16的不同之处在于,图17以交织矩阵的行数是4行为例。应理解,图17中106-1和106-2示意106个子载波的两个部分。
需要说明的是,图16和图17以不参与映射的第二类型子载波是空子载波为例,本申请实施例不限制第二类型子载波具体是何种子载波。例如,第二类型子载波还可以是直流子载波,也可以是导频子载波,又或者是空子载波、直流子载波、保护子载波和导频子载波中的至少一种。
举例来说,以80MHz中的第一个20MHz对应的242个子载波的序号为-500到-259,其中,80MHz中的第一个20MHz中的导频子载波有18个,导频子载波的序号为:{-238,-224,-212,-198,-184,-170,-158,-144,-130,-116,-104,-90,-78,-64,-50,-36,-24,-10}中各个序号加上偏移值(即-256)。即为:{-494,-480,-468,-454,-440,-426,-414,-400,-386,-372,-360,-346,-334,-320,-306,-292,-280,-266}。
在映射80MHz中的第一个20MHz,可确定18个导频子载波不参与映射。例如,这18个导频子载波的序号输入交织矩阵,但是在输出时,不输出这18个导频子载波的序号。那么可设计交织矩阵为8*32的矩阵,将参与映射的子载波输入交织矩阵,如表3,表3中的灰色部分为导频子载波的序号。应理解,表中空白之处均对应子载波序号,为了节约篇幅,表3只示意了部分子载波序号。
表3
Figure PCTCN2022078501-appb-000006
在输出交织矩阵中的序号时,按列输出即可,即VRU的子载波序号集合为:{-500,-499,…,-259}-{-494,-480,-468,-454,-440,-426,-414,-400,-386,-372,-360,-346,-334,-320,-306,-292,-280,-266}与下列序列中的元素一一对应:{-500,-436,-404,-340,…,-277}。
应理解,对于导频子载波而言,导频子载波在不同的RU上的数目位置不同。例如,请参见图18,示出了导频子载波在80MHz中的位置。从图18可以看出,任意一个20MHz内的26-tone RU的导频子载波集合也包含了该20MHz内52-tone RU、106-tone RU的导频子载波。为了让交织范围(第一频域资源)内的所有RU都满足不管选择哪些导频子载波都可以使得映射后的导频位置不变。本申请实施例可将该交织范围内最大的导频集合设为不参与映射的导频子载波集合,例如不参与映射的导频子载波为第一频域资源内的26-tone RU内的最大导频子载波集合。这样就可以在该20MHz范围内随意选取26-tone RU、52-tone RU或106-tone RU的映射,且不改变原来导频子载波在VRU和PRU中的位置。
应理解,如果第一频域资源包括的多个子载波中要输入交织矩阵的子载波的数量小于该交织矩阵支持输入的子载波的数量。例如,第一频域资源包括的子载波的序号按照从小到大的顺序获得的序号序列为{1,2,3,4,5,6,7,8,9,10},交织矩阵为2行6列的矩阵。那么AP可向交织矩阵输入第一频域资源包括的多个子载波的序号以及填充子载波的序号,填充子载波的序号在经过交织矩阵后不输出,即填充子载波不参与映射。为了区分填充子载波和第一类型子载波以及第二类型子载波,填充子载波的序号可以为第二预设序号,例如“#”。这种情况下,可规定第二类型子载波的序号输入交织矩阵的预设位置,其余第一频域资源中要输入交织矩阵的子载波的序号按照第一顺序依次输入交织矩阵的行中除填充子载波的序号占用的位置。例如,可规定在交织矩阵固定的一些行(或列)从第一列(或第一行)开始依次输入到交织矩阵;或者;可规定在交织矩阵固定的一些行(或列)从最后一列(或最后一行)开始依次输入到交织矩阵等。本申请实施例对填充子载波的序号在交织矩阵的具体位置不作限制。
需要说明的是,前述示例以第一频域资源为20MHz为例,即RU的映射粒度(交织粒度)为242个子载波。应理解,映射粒度的大小可根据设备支持的最大带宽确定,也就是第一频域资源中输入交织矩阵的子载波的数量根据设备支持的最大带宽确定。例如,设备支持的带宽大于PPDU带宽,那么该PPDU带宽内可支持各种映射粒度,例如20MHz、40MHz、80MHz等等。如果设备支持的带宽小于PPDU带宽,那么PPDU带宽需要确保是在该设备支持的带宽下。例如设备支持的带宽是80MHz,该设备被分配的VRU是996-tone RU,那么就无法在160MHz映射范围中被调度,即如果将80MHz的VRU映射到160MHz,就无法调度被分配的资源。
前述的映射方式一中,即第一频域资源包括的多个子载波的序号按照第一顺序输入交织矩阵的行之后,按照列方向直接输出交织矩阵参与映射的多个子载波的序号,可能无法 使得某些RU内的子载波更加离散。例如图17中,106-tone RU映射后,还存在连续的相邻两个子载波。
为此,在一些实施例中,在按照列方向输出交织矩阵参与映射的多个子载波的序号之前,可对交织矩阵的行进行行变化操作。例如,对交织矩阵中的某些行进行移位操作,实质上是改变交织矩阵的行索引序列。沿用图17的例子,例如可将图17中交织矩阵的行索引序列{1,2,3,4}变为{1,3,2,4},如图19所示。从图19可以看出,图19中的右图,相较于图19中的左图来说,106-tone RU包括的子载波更加离散。也就是,第一PRU包括的任意相邻两个子载波在频域上不连续。应理解,第一PRU包括的任意相邻两个子载波在频域上不连续,指的是两两子载波之间不连续,这里的PRU所包括的子载波,包括第一类型的子载波和第二类型的子载波。
上述实施例描述的是以单个子载波为粒度进行离散设计,也就是说两两子载波之间不连续,在其他的实现方式中,离散粒度也可以以子载波组进行,一个子载波组包括两个及其以上的子载波,两两子载波组之间不连续,子载波组内的子载波连续。
作为一种示例,可根据交织矩阵的原始行索引序列构建矩阵,该矩阵中的元素为各个原始行索引,通过对该矩阵进行多次操作,来使得原始行索引序列变为目标行索引序列。下面提供两种可能的变化方式。
变化方式一、根据交织矩阵的原始行索引序列构建第一矩阵,该第一矩阵的行数是1,第一矩阵的列数大于或等于交织矩阵的行索引的个数。例如,交织矩阵的行索引的个数为N,如果N为奇数,那么第一矩阵的列数可以为N+1;如果N为偶数,那么第一矩阵的列数可以为N。举例来说,N=8,那么第一矩阵的行数是1,列数为8,第一矩阵中的元素为行索引。即第一矩阵可为:
1 2 3 4 5 6 7 8
对该第一矩阵进行多次变换操作,直到第一矩阵变为N行1列的目标矩阵。那么按照先行后列的顺序输出该目标矩阵中的行索引,可获得目标行索引序列。
例如,每次变换操作为先将前一次变化得到的矩阵按列均分为第一子矩阵和第二子矩阵,再将第二子矩阵移动到第一子矩阵增加的行,形成新的矩阵。那么有:
1 2 3 4 5 6 7 8
经过第一次行变化,那么第一矩阵可变为:
1 2 3 4
5 6 7 8
经过第二次行变化,那么第一矩阵可变为:
1 2
5 6
3 4
7 8
经过第三次行变化,那么第一矩阵可变为:
1
5
3
7
2
6
4
8
根据变化方式一,那么原行索引序列由{1,2,3,4,5,6,7,8}变为目标行索引序列{1,5,3,7,2,6,4,8}。也就是,在利用交织矩阵进行行列变换的时候,可以在按列输出的时候,不按照原行索引序列的顺序输出,而是按照目标行索引序列的顺序输出。举例来说,在按照列方向输出交织矩阵参与映射的多个子载波的序号时,先输出第一列的第1行,再输出第一列的第5行,再输出第一列的第3行,…,直到输出第一列的所有行,再对第二列的序号进行输出,直到输出最后一列第8行的序号。
通过这种方式可以使得子载波更加离散,如图20所示。图20示出了原始行索引序列与目标行索引序列的一种对应关系。图20以交织矩阵的行数为8。在映射第一频域资源时,将第一频域资源包括的多个子载波的序号按照第一顺序依次输入交织矩阵,得到图19所示的左图。在按照列方向,输出交织矩阵中的子载波序号之前,对图20中的左图进行行变化,得到如图20中的右图。之后再按照列方向,输出交织矩阵中的子载波序号。从图19可以看出,在输出交织矩阵中的子载波序号之前,对交织矩阵进行行变换操作,能够使得子载波更加离散。
应理解,前述以N=8(偶数)为例。当N为奇数,那么第N+1列的元素可以是预定义的序号,例如*。
同理,如果N=16,那么原始序号序列为{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},经过第一变化方式,获得的目标行索引序列{1,9,5,13,3,11,7,15,2,10,6,14,4,12,8,16}。
需要说明的是,图20示意的是行索引的变化,但是并不是代表交织矩阵只有一列,即图20中每一行对应交织矩阵的多列。这种方式下,沿用表2的例子,在按照列方向输出交织矩阵参与映射的多个子载波的序号时,先输出第一列的第1行,再输出第一列的第5行,再输出第一列的第3行,…,直到输出第一列的所有行,再对第二列的序号进行输出,直到输出最后一列第8行的序号。
例如,沿用上述表2的例子,即以80MHz中的第一个20MHz对应的242个子载波的序号为-500到-259,且80MHz中的第一个20MHz中的18个导频子载波的序号不输入交织矩阵为例,那么在对表2中的序号输出之前,可对标2进行行索引变换,得到表4。应理解,表中空白之处均对应子载波序号,为了节约篇幅,表4只示意了部分子载波序号。
表4
Figure PCTCN2022078501-appb-000007
按照列是输出方向,依次输出各行的序号可获得映射后的子载波序号。即VRU的子载波序号集合{-500,-499,…,-259}与下列序列中的元素一一对应:{-500,-379,-439,-318,-470,-349,-409,-288,,…,-380,-259}。
再例如,沿用上述表3的例子,即以80MHz中的第一个20MHz对应的242个子载波的序号为-500到-259,且80MHz中的第一个20MHz中的18个导频子载波的序号输入交织矩阵为例,那么在对表3中的序号输出之前,可对表3进行行索引变换,得到表5。表5中灰色部分为导频子载波的序号。应理解,表中空白之处均对应子载波序号,为了节约篇幅,表5只示意了部分子载波序号。
表5
Figure PCTCN2022078501-appb-000008
按照列是输出方向,依次输出各行的序号可获得映射后的子载波序号。即VRU的子载波序号集合{-500,-499,…,-259}与下列序列中的元素一一对应:{-500,-436,-308,-340,-404,-276,…,-373,-245}。
变化方式二、根据交织矩阵的原始行索引序列构建第二矩阵,该第二矩阵的行数大于或等于2,对原始行索引序列中的行索引在第二矩阵中从第一行第一列开始为递增顺序,从第二矩阵的第一列开始,先按照列递增的顺序,直到最后一列,再按照列递减的顺序,交替输出各行对应的行索引,可获得目标行索引序列。
示例性的,第二矩阵的行数为2,如果原始行索引序列为{1,2,…,N},可将原始行索引序列中的各个行索引按照先行后列的顺序依次输入第二矩阵。如果N为奇数,那么最后一个行索引可采用*示意。对原始行索引序列进行变换操作时,可从第二矩阵的第一列开始,先按照列递增的顺序,再按照列递减的顺序,交替输出各行对应的行索引,获得目标行索引序列
例如,请参见图21,示出了输出行索引序列的示例。其中,图21中的实线示意按照 列递增的顺序交替输出第一行和第二行对应的行索引,图21中的虚线示意按照列递减的顺序交替输出第一行和第二行对应的行索引。
举例来说,N=8,那么第二矩阵的行数是2,列数为4,原始行索引序列为{1,2,3,4,5,6,7,8},即第一矩阵可为:
1 2 3 4
5 6 7 8
按照图21行索引序列的映射方式,输出的目标行索引序列{1,6,3,8,4,7,2,5}。
通过这种方式同样可以使得子载波更加离散,如图22所示。图22示出了原始行索引序列与目标行索引序列的对应关系。图22以交织矩阵的行数为8。在映射第一频域资源时,将第一频域资源包括的多个子载波的序号按照第一顺序依次输入交织矩阵,得到图22所示的左图。在按照列方向,输出交织矩阵中的子载波序号之前,对图22中的左图进行行变化,得到如图22中的右图。之后再按照列方向,输出交织矩阵中的子载波序号。从图22可以看出,在输出交织矩阵中的子载波序号之前,对交织矩阵进行行变换操作,能够使得子载波更加离散。
同理,如果N=16,那么原始序号序列为{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},经过第二变化方式,获得的目标行索引序列{1,10,3,12,5,14,7,16,8,15,6,13,4,11,2,9}。
例如,沿用上述表2的例子,即以80MHz中的第一个20MHz对应的242个子载波的序号为-500到-259,且80MHz中的第一个20MHz中的18个导频子载波的序号不输入交织矩阵为例,那么在对表2中的序号输出之前,可对标2进行行索引变换,得到表6。应理解,表中空白之处均对应子载波序号,为了节约篇幅,表6只示意了部分子载波序号。
表6
Figure PCTCN2022078501-appb-000009
按照列是输出方向,依次输出各行的序号可获得映射后的子载波序号。即VRU的子载波序号集合{-500,-499,…,-259}与下列序列中的元素一一对应:{-500,-349,-439-288,-409,-318,-470,-379,…,-441,-350}。
再例如,沿用上述表3的例子,即以80MHz中的第一个20MHz对应的242个子载波的序号为-500到-259,且80MHz中的第一个20MHz中的18个导频子载波的序号输入交织矩阵为例,那么在对表3中的序号输出之前,可对表3进行行索引变换,得到表7。表 7中灰色部分为导频子载波的序号。应理解,表中空白之处均对应子载波序号,为了节约篇幅,表7只示意了部分子载波序号。
表7
Figure PCTCN2022078501-appb-000010
按照列是输出方向,依次输出各行的序号可获得映射后的子载波序号。即VRU的子载波序号集合{-500,-499,…,-259}与下列序列中的元素一一对应:{-500,-340,-436,-276,-404,-308,-468,-372,…,-437,-341}。
需要说明的是,上述两种行索引的变换方法可适用于任意大小的VRU到PRU的交织矩阵的行变换。例如,行数固定的交织矩阵,如4行、8行、16行等,也可以是列数固定的交织矩阵。由于最小RU为26个子载波的RU,因此交织矩阵的列数可以为26列(不考虑子载波甚至可以是24列),并可以根据总输入大小确定行数,再采用行变换进行离散即可。综上,本实施例中的8行举例仅是示例,实际可以是行数固定的交织器、列数固定的交织器、行列数可变的交织器等。
映射方式二、VRU与PRU的映射关系为VRU包括的各个子载波的序号与PRU包括的各个子载波的序号的映射关系表。即AP可根据该映射关系表对第一频域资源进行映射。例如,VRU中的子载波1对应PRU中的子载波5,VRU中的子载波2对应PRU中的子载波8,等等。该映射方式下,STA只需要查找映射关系表就可以确定PRU中各个子载波在对应第一频域资源中的位置,较为简单。
例如,该映射关系表可以是上述的表2-表7。从广义的角度来说,该映射关系表可认为是表2-表7按照列输出得到的序号序列。
需要说明的是,本申请实施例对VRU与PRU的映射关系的具体实现形式不作限制,例如可以是上述的交织矩阵(也认为是映射矩阵),也可以是上述的映射关系表。在一些实施例中,VRU与PRU的映射关系也可以是映射公式,例如,
Figure PCTCN2022078501-appb-000011
其中,N ROW为矩阵的行数,N COL为矩阵的列数,k为输入矩阵的子载波的序号,i为序号为k的子载波经过矩阵交织后的序号。
本申请实施例还提供了一种资源映射方法,该资源映射方法可以由通信装置,例如交织器或者设置在交织器内的芯片实现。
作为一种示例,该交织器可用于将第一VRU的子载波的序号映射为第一PRU的子载波的序号。示例性的,第一VRU的序号为k的子载波,基于交织器映射为第一PRU后的子载波的序号i,满足公式:
Figure PCTCN2022078501-appb-000012
其中,N ROW为交织器的行数,N COL为交织器的列数,k为输入交织器的子载波的序号,i为序号为k的子载波经过交织 器交织后的序号。关于交织器的具体实现可参考前述方法实施例中交织矩阵的实现方式,这里不在赘述。且交织器将VRU映射为PRU的具体实现方式也可参考前述映射方式一和映射方式二的相关内容,这里不再赘述。
需要说明的是,本申请实施例对交织器的交织级数不作限制。例如将多个子载波的序号按照行进列出的方式直接输出可以看作是第一级交织,在将多个子载波的序号按照行进列出的方式输出,作如前述的变化方式一或变化方式二可以看作是第二级交织。
本申请实施例提供的资源分配方法,实质上是VRU到PRU的映射方式,该映射方式可将连续VRU映射为离散PRU。基于该映射方式,发送端可告知接收端为接收端分配的RU是VRU,但是发送端在连续VRU映射后的离散PRU上发送数据。由于连续VRU映射为离散PRU,相当于降低了每MHz上的子载波数,所以发送端可支持更大的发送功率。且发送端可用将带宽划分为若干个资源单元的资源分配方式,无需定义多种分布式RU,也无需关心如何选取与分配分布式RU,就可以实现增大设备的最大发送功率的目的。
上述本申请提供的实施例中,分别从第一设备和第二设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,第一设备和第二设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
下面结合附图介绍本申请实施例中用来实现上述方法的通信装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图23为本申请实施例提供的通信装置2300的示意性框图。该通信装置2300可以对应实现上述各个方法实施例中由第一设备或第二设备实现的功能或者步骤。该通信装置可以包括处理模块2310和收发模块2320。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。处理模块2310和收发模块2320可以与该存储单元耦合,例如,处理模块2310可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成。
在一些可能的实施方式中,通信装置2300能够对应实现上述方法实施例中第一设备的行为和功能。例如通信装置2300可以为AP,也可以为应用于AP中的部件(例如芯片或者电路)。收发模块2320可以用于执行图9所示的实施例中由第一设备所执行的全部接收或发送操作。例如图9所示的实施例中的S901和S903,和/或用于支持本文所描述的技术的其它过程;其中,处理模块2310用于执行如图9所示的实施例中由第一设备所执行的除了收发操作之外的全部操作,例如图9所示的实施例中的S902,和/或用于支持本文所描述的技术的其它过程。
例如,收发模块2320用于发送资源分配信息给第二设备,所述资源分配信息用于指示第一虚拟资源单元VRU,所述第一VRU包括多个在频域上连续的子载波;处理模块2310用于根据所述VRU与物理资源单元PRU的映射关系,将所述第一VRU映射为第一PRU,所述第一PRU包括的多个子载波在频域上不连续;收发模块2320还用于在所述第一PRU上传输数据。
在一些可能的实施方式中,通信装置2300能够对应实现上述方法实施例中第二设备的行为和功能。例如通信装置2300可以为STA或AP,也可以为应用于STA或AP中的部件(例如芯片或者电路)。收发模块2320可以用于执行图9所示的实施例中由第二设备所 执行的全部接收或发送操作。例如图9所示的实施例中的S901和S903,和/或用于支持本文所描述的技术的其它过程;其中,处理模块2310用于执行如图9所示的实施例中由第二设备所执行的除了收发操作之外的全部操作,例如图9所示的实施例中的S902,和/或用于支持本文所描述的技术的其它过程。
例如,收发模块2320用于接收来自第一设备的资源分配信息,所述资源分配信息用于指示第一VRU,所述第一VRU包括多个在频域上连续的子载波;处理模块2310用于根据所述VRU与物理资源单元PRU的映射关系,确定与所述第一VRU对应的第一PRU,所述第一PRU包括的多个子载波在频域上不连续;收发模块2320还用于在所述第一PRU上接收来自所述第一设备的数据。
在一些可能的实施方式中,通信装置2300能够对应实现上述方法实施例中交织器的行为和功能。例如通信装置2300可以为交织器,也可以为应用于交织器中的部件(例如芯片或者电路)。收发模块2320可以用于执行本申请实施例中由交织器所执行的全部接收或发送操作。其中,处理模块2310用于执行本申请实施例中由交织器所执行的除了收发操作之外的全部操作。
例如,处理模块2310用于基于交织矩阵将第一VRU的子载波的序号映射为第一PRU的子载波的序号,所述第一VRU包括多个在频域上连续的子载波,所述第一PRU包括的多个子载波在频域上不连续;收发模块2320用于输出第一PRU的子载波的序号。
在通信装置2300的一种可能的实现方式中,第一VRU的序号为k的子载波,基于交织矩阵映射为第一PRU后的子载波的序号i,满足如下公式:
Figure PCTCN2022078501-appb-000013
其中,N ROW为所述交织矩阵的行数,N COL为所述交织矩阵的列数,k为输入所述交织矩阵的子载波的序号,i为序号为k的子载波经过所述交织矩阵交织后的序号。
在通信装置2300一种可能的实现方式中,所述第一PRU包括的任意相邻的子载波在频域上不连续。
在通信装置2300的一种可能的实现方式中,在输出所述交织矩阵包括的各个子载波的序号之前,所述交织矩阵的原行索引序列变为目标行索引序列;其中,
所述原行索引序列为{1,2,3,4,5,6,7,8},所述目标行索引序列为{1,5,3,7,2,6,4,8},或者{1,6,3,8,4,7,2,5};
所述原行索引序列为{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},所述目标行索引序列为{1,9,5,13,3,11,7,15,2,10,6,14,4,12,8,16},或者{1,10,3,12,5,14,7,16,8,15,6,13,4,11,2,9}。
在通信装置2300的一种可能的实现方式中,通信装置2300将所述第一VRU映射为第一PRU,包括:
将所述第一VRU所在的第一频域资源包括的多个子载波的序号按照第一顺序依次输入交织矩阵的行,按照所述交织矩阵的列方向,输出所述交织矩阵中各个子载波序号,其中,所述第一顺序为从小到大的顺序,或者,所述第一顺序为从大到小的顺序。
在通信装置2300的一种可能的实现方式中,所述第一频域资源包括的多个子载波中,输入所述交织矩阵的子载波为第一类型子载波,或输入所述交织矩阵的子载波为第一类型的子载波和第二类型子载波,所述第一类型子载波用于承载数据,所述第二类型子载波包 括空子载波、直流子载波、保护子载波、导频子载波的一种或多种;
其中,输入所述交织矩阵的子载波的序号为所述第一频域资源包括的所述多个子载波中的所述第一类型子载波的序号;或者,
输入所述交织矩阵的子载波的序号为所述第一频域资源包括的所述多个子载波的序号,其中,所述多个子载波中的所述第二类型子载波的序号均为第一预设序号,从所述交织矩阵输出的子载波的序号不包括所述第一预设序号;或者,
输入所述交织矩阵的子载波的序号为所述第一频域资源包括的所述多个子载波的序号,其中,多个子载波中的所述第二类型子载波的序号均为第一预设序号,为所述第一预设序号的序号位于所述交织矩阵的预设位置,从所述交织矩阵输出的子载波的序号不包括所述第一预设序号。
在通信装置2300的一种可能的实现方式中,所述第二类型子载波为导频子载波,所述导频子载波为所述第一频域资源内26子载波RU的最大导频子载波集合。
在通信装置2300的一种可能的实现方式中,所述第一频域资源包括的多个子载波中要输入所述交织矩阵的子载波的数量小于所述交织矩阵支持输入的子载波的数量;
输入所述交织矩阵的子载波的序号为所述第一频域资源中要输入所述交织矩阵的子载波的序号以及填充子载波的序号,其中,所述填充子载波的序号位于所述交织矩阵的预设位置,所述填充子载波的序号均为第二预设序号,从所述交织矩阵输出的子载波的序号不包括所述第二预设序号。
在通信装置2300的一种可能的实现方式中,所述第一频域资源包括的多个子载波的数量根据所述第一设备支持的最大带宽确定。
在通信装置2300的一种可能的实现方式中,所述第一VRU基于所述第一VRU包括的各个子载波的序号与所述第一PRU包括的各个子载波的序号的映射关系映射为所述第一PRU。
在通信装置2300的一种可能的实现方式中,所述第一频域资源包括的子载波的序号从0或者1开始;或者,
所述第一频域资源包括的子载波的序号为所述子载波对应实际频带中的子载波编号;或者,
所述第一频域资源包括的子载波的序号为预设序号加预设偏移值。
在通信装置2300的一种可能的实现方式中,所述第一VRU对应的子载波的序号位于第一集合,所述第一PRU对应的子载波的序号位于所述第一集合;或者,
所述第一VRU对应的子载波的序号位于第一集合,所述第一PRU对应的子载波的序号位于所述第二集合,所述第一集合和所述第二集合无交集,或者所述第一集合和所述第二集合中部分序号相同;或者,
所述第一VRU对应的子载波的序号位于第一集合,所述第一PRU对应的子载波的序号位于多个第二集合,所述多个第二集合之间无交集,所述第一集合与所述多个第二集合无交集,或者所述第一集合与所述多个第二集合中部分第二集合存在交集。
应理解,本申请实施例中的处理模块2310可以由处理器或处理器相关电路组件实现,收发模块2320可以由收发器或收发器相关电路组件或者通信接口实现。
如图24所示为本申请实施例提供的通信装置2400,其中,通信装置2400可以是AP或STA或交织器,能够实现本申请实施例提供的方法中第一设备或第二设备或交织器的功 能;通信装置2400也可以是能够支持第一设备实现本申请实施例提供的方法中对应的功能的装置,或者能够支持第二设备实现本申请实施例提供的方法中对应的功能的装置,或者能够支持交织器实现本申请实施例提供的方法中对应的功能的装置。其中,该通信装置2400可以为芯片或芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
在硬件实现上,上述收发模块2320可以为收发器2410。
通信装置2400包括至少一个处理器2420,用于实现或用于支持通信装置2400实现本申请实施例提供的方法中第一设备或第二设备的功能,例如生成前述的PPDU。通信装置2400还可以包括至少一个存储器2430,用于存储程序指令和/或数据。存储器2430和处理器2420耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器2420可能和存储器2430协同操作。处理器2420可能执行存储器2430中存储的程序指令和/或数据,以使得通信装置2400实现相应的方法。所述至少一个存储器中的至少一个可以位于处理器中。
通信装置2400还可以包括收发器2410,用于通过传输介质和其它设备进行通信,从而用于通信装置2400中的装置可以和其它设备进行通信。示例性地,当该通信装置为终端时,该其它设备为网络设备;或者,当该通信装置为网络设备时,该其它设备为终端。处理器2420可以利用收发器2410收发数据。收发器2410具体可以是收发器。该通信装置2400还可以射频单元,该射频单元可以独立于通信装置2400之外,也可以是集成在通信装置2400之内。当然,上述的该收发器2410还可以包括天线,例如独立于通信装置2400之外的拉远的天线,也可以是集成在通信装置2400之内的天线。
本申请实施例中不限定上述收发器2410、处理器2420以及存储器2430之间的具体连接介质。本申请实施例在图24中以存储器2430、处理器2420以及收发器2410之间通过总线2440连接,总线在图24中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图24中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器2420可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器2430可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
需要说明的是,上述实施例中的通信装置可以是终端也可以是电路,也可以是应用于终端中的芯片或者其他具有上述终端功能的组合器件、部件等。当通信装置是终端时,收发模块可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央 处理模块(central processing unit,CPU)。当通信装置是具有上述终端功能的部件时,收发模块可以是射频单元,处理模块可以是处理器。当通信装置是芯片或芯片系统时,收发模块可以是芯片或芯片系统的输入输出接口、处理模块可以是芯片或芯片系统的处理器。
作为一种可能的产品形态,本申请实施例所述的AP和STA,还可以使用下述来实现:一个或多个FPGA(现场可编程门阵列)、PLD(可编程逻辑器件)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
本申请实施例中的第一设备可以是AP,也可以是STA。第二设备可以是AP,也可以是STA。应理解,上述各种产品形态的AP,具有上述方法实施例中AP的任意功能,此处不再赘述;上述各种产品形态的STA,具有上述方法实施例中STA的任意功能,此处不再赘述。
本申请实施例还提供一种通信系统,具体的,通信系统包括第二设备和第一设备,或者还可以包括更多个第一设备和第二设备。示例性的,该通信系统包括用于实现上述图9的相关功能的第二设备和第一设备。
所述第一设备分别用于实现上述图9相关第一设备部分的功能。所述第二设备用于实现上述图9相关第二设备的功能。例如第二设备可执行例如图9所示的实施例中的S902-S903,第一设备可执行图9所示的实施例中的S901-S902。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行图9中第一设备或第二设备执行的方法。
本申请实施例中还提供一种计算机程序产品,包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行图9中第一设备或第二设备执行的方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述方法中第一设备或第二设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还提供了一种通信装置,包括处理器和接口;所述处理器,用于执行上述任一方法实施例所述的资源分配方法或资源映射方法。
应理解,上述通信装置可以是一个芯片,所述处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,改存储器可以集成在处理器中,可以位于所述处理器之外,独立存在。
应理解,本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一信息和第二信息,只是为了区分不同的指示信息,而并不是表示这两种信息的优先级、或者 重要程度等的不同。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
另外,在本申请实施例中,“示例性的”一词用于表示例子或说明。本申请实施例汇总被描述为“示例”的任何实施例或实现方案不应被解释为比其他实施例或实现方案更优选。也就是,使用“示例”一词旨在以具体方式呈现概念。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
附表1:20MHz的EHT PPDU的各个RU的数据和导频子载波索引表
Data and pilot subcarrier indices for RUs in an 20MHz EHT PPDU
Figure PCTCN2022078501-appb-000014
附表2:40MHz的EHT PPDU的各个RU的数据和导频子载波索引表
Data and pilot subcarrier indices for RUs in an 40MHz EHT PPDU
Figure PCTCN2022078501-appb-000015
附表3:80MHz的EHT PPDU的各个RU的数据和导频子载波索引表
Data and pilot subcarrier indices for RUs in an 80MHz EHT PPDU
Figure PCTCN2022078501-appb-000016
附表4:160MHz的EHT PPDU的各个RU的数据和导频子载波索引表
Data and pilot subcarrier indices for RUs in an 160MHz EHT PPDU
Figure PCTCN2022078501-appb-000017
Figure PCTCN2022078501-appb-000018
附表5:320MHz的EHT PPDU的各个RU的数据和导频子载波索引表
Data and pilot subcarrier indices for RUs in an 320MHz EHT PPDU
Figure PCTCN2022078501-appb-000019
其中:
Figure PCTCN2022078501-appb-000020
Figure PCTCN2022078501-appb-000021
Figure PCTCN2022078501-appb-000022

Claims (30)

  1. 一种资源分配方法,其特征在于,包括:
    第一设备发送资源分配信息给第二设备,所述资源分配信息用于指示第一虚拟资源单元VRU,所述第一VRU包括多个在频域上连续的子载波;
    所述第一设备根据所述VRU与物理资源单元PRU的映射关系,将所述第一VRU映射为第一PRU,并在所述第一PRU上传输数据,所述第一PRU包括的多个子载波在频域上不连续。
  2. 一种资源分配方法,其特征在于,包括:
    第二设备接收来自第一设备的资源分配信息,所述资源分配信息用于指示第一虚拟资源单元VRU,所述第一VRU包括多个在频域上连续的子载波;
    所述第二设备根据所述VRU与物理资源单元PRU的映射关系,确定与所述第一VRU对应的第一PRU,所述第一PRU包括的多个子载波在频域上不连续;
    所述第二设备在所述第一PRU上接收来自所述第一设备的数据。
  3. 一种资源映射方法,其特征在于,包括:
    基于交织矩阵将第一虚拟资源单元VRU的子载波的序号映射为第一物理资源单元PRU的子载波的序号,所述第一VRU包括多个在频域上连续的子载波,所述第一PRU包括的多个子载波在频域上不连续;
    输出所述第一PRU的子载波的序号。
  4. 如权利要求1、2或3所述的方法,其特征在于,所述第一VRU的序号为k的子载波,基于交织矩阵映射为所述第一PRU后的子载波的序号i,满足如下公式:
    Figure PCTCN2022078501-appb-100001
    其中,N ROW为所述交织矩阵的行数,N COL为所述交织矩阵的列数,k为输入所述交织矩阵的子载波的序号,i为序号为k的子载波经过所述交织矩阵交织后的序号。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述第一PRU包括的任意相邻的子载波在频域上不连续。
  6. 如权利要求3-5任一项所述的方法,其特征在于,在输出所述交织矩阵包括的各个子载波的序号之前,所述交织矩阵的原行索引序列变为目标行索引序列;其中,
    所述原行索引序列为{1,2,3,4,5,6,7,8},所述目标行索引序列为{1,5,3,7,2,6,4,8},或者{1,6,3,8,4,7,2,5};
    所述原行索引序列为{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},所述目标行索引序列为{1,9,5,13,3,11,7,15,2,10,6,14,4,12,8,16},或者{1,10,3,12,5,14,7,16,8,15,6,13,4,11,2,9}。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述第一设备将所述第一VRU映射为第一PRU,包括:
    所述第一设备将所述第一VRU所在的第一频域资源包括的多个子载波的序号按照第一顺序依次输入交织矩阵的行,按照所述交织矩阵的列方向,输出所述交织矩阵中各个子载波序号,其中,所述第一顺序为从小到大的顺序,或者,所述第一顺序为从大到小的顺序。
  8. 如权利要求7所述的方法,其特征在于,所述第一频域资源包括的多个子载波中, 输入所述交织矩阵的子载波为第一类型子载波,或输入所述交织矩阵的子载波为第一类型的子载波和第二类型子载波,所述第一类型子载波用于承载数据,所述第二类型子载波包括空子载波、直流子载波、保护子载波、导频子载波的一种或多种;
    其中,输入所述交织矩阵的子载波的序号为所述第一频域资源包括的所述多个子载波中的所述第一类型子载波的序号;或者,
    输入所述交织矩阵的子载波的序号为所述第一频域资源包括的所述多个子载波的序号,其中,所述多个子载波中的所述第二类型子载波的序号均为第一预设序号,从所述交织矩阵输出的子载波的序号不包括所述第一预设序号;或者,
    输入所述交织矩阵的子载波的序号为所述第一频域资源包括的所述多个子载波的序号,其中,多个子载波中的所述第二类型子载波的序号均为第一预设序号,为所述第一预设序号的序号位于所述交织矩阵的预设位置,从所述交织矩阵输出的子载波的序号不包括所述第一预设序号。
  9. 如权利要求8所述的方法,其特征在于,所述第二类型子载波为导频子载波,所述导频子载波为所述第一频域资源内26子载波RU的最大导频子载波集合。
  10. 如权利要求7-9任一项所述的方法,其特征在于,所述第一频域资源包括的多个子载波中输入所述交织矩阵的子载波的数量小于所述交织矩阵支持输入的子载波的数量;
    输入所述交织矩阵的子载波的序号为所述第一频域资源中要输入所述交织矩阵的子载波的序号以及填充子载波的序号,其中,所述填充子载波的序号位于所述交织矩阵的预设位置,所述填充子载波的序号均为第二预设序号,从所述交织矩阵输出的子载波的序号不包括所述第二预设序号。
  11. 如权利要求7-10任一项所述的方法,其特征在于,所述第一频域资源包括的多个子载波的数量根据所述第一设备支持的最大带宽确定。
  12. 如权利要求1-11任一项所述的方法,其特征在于,所述第一VRU基于所述第一VRU包括的各个子载波的序号与所述第一PRU包括的各个子载波的序号的映射关系映射为所述第一PRU。
  13. 如权利要求7-12任一项所述的方法,其特征在于,所述第一频域资源包括的子载波的序号从0或者1开始;或者,
    所述第一频域资源包括的子载波的序号为所述子载波对应实际频带中的子载波编号;或者,
    所述第一频域资源包括的子载波的序号为预设序号加预设偏移值。
  14. 如权利要求1-13任一项所述的方法,其特征在于,所述第一VRU对应的子载波的序号位于第一集合,所述第一PRU对应的子载波的序号位于所述第一集合;或者,
    所述第一VRU对应的子载波的序号位于第一集合,所述第一PRU对应的子载波的序号位于所述第二集合,所述第一集合和所述第二集合无交集,或者所述第一集合和所述第二集合中部分序号相同;或者,
    所述第一VRU对应的子载波的序号位于第一集合,所述第一PRU对应的子载波的序号位于多个第二集合,所述多个第二集合之间无交集,所述第一集合与所述多个第二集合无交集,或者所述第一集合与所述多个第二集合中部分第二集合存在交集。
  15. 一种通信装置,其特征在于,包括处理模块和收发模块,其中,
    所述收发模块,用于发送资源分配信息给第二设备,所述资源分配信息用于指示第一 虚拟资源单元VRU,所述第一VRU包括多个在频域上连续的子载波;
    所述处理模块,用于根据所述VRU与物理资源单元PRU的映射关系,将所述第一VRU映射为第一PRU,所述第一PRU包括的多个子载波在频域上不连续;
    所述收发模块,还用于在所述第一PRU上传输数据。
  16. 一种通信装置,其特征在于,包括处理模块和收发模块,其中,
    所述收发模块,用于接收来自第一设备的资源分配信息,所述资源分配信息用于指示第一虚拟资源单元VRU,所述第一VRU包括多个在频域上连续的子载波;
    所述处理模块用于根据所述VRU与物理资源单元PRU的映射关系,确定与所述第一VRU对应的第一PRU,所述第一PRU包括的多个子载波在频域上不连续;
    所述收发模块还用于在所述第一PRU上接收来自所述第一设备的数据。
  17. 一种通信装置,其特征在于,包括处理模块和收发模块,其中,
    所述处理模块,用于基于交织矩阵将第一虚拟资源单元VRU的子载波序号映射为第一物理资源单元PRU的子载波的序号,所述第一VRU包括多个在频域上连续的子载波,所述第一PRU包括的多个子载波在频域上不连续;
    所述收发模块,用于输出所述第一PRU的子载波的序号。
  18. 如权利要求15、16或17所述的通信装置,其特征在于,所述第一VRU的序号为k的子载波,基于交织矩阵映射为所述第一PRU后的子载波的序号i满足如下公式:
    Figure PCTCN2022078501-appb-100002
    其中,N ROW为所述交织矩阵的行数,N COL为所述交织矩阵的列数,k为输入所述交织矩阵的子载波的序号,i为序号为k的子载波经过所述交织矩阵交织后的序号。
  19. 如权利要求15-18任一项所述的通信装置,其特征在于,所述第一PRU包括的任意相邻的子载波在频域上不连续。
  20. 如权利要求17-19任一项所述的通信装置,其特征在于,在输出所述交织矩阵包括的各个子载波的序号之前,所述交织矩阵的原行索引序列变为目标行索引序列;其中,
    所述原行索引序列为{1,2,3,4,5,6,7,8},所述目标行索引序列为{1,5,3,7,2,6,4,8},或者{1,6,3,8,4,7,2,5};
    所述原行索引序列为{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},所述目标行索引序列为{1,9,5,13,3,11,7,15,2,10,6,14,4,12,8,16},或者{1,10,3,12,5,14,7,16,8,15,6,13,4,11,2,9}。
  21. 如权利要求15-20任一项所述的通信装置,其特征在于,所述通信装置将所述第一VRU映射为第一PRU,包括:
    将所述第一VRU所在的第一频域资源包括的多个子载波的序号按照第一顺序依次输入交织矩阵的行,按照所述交织矩阵的列方向,输出所述交织矩阵中各个子载波序号,其中,所述第一顺序为从小到大的顺序,或者,所述第一顺序为从大到小的顺序。
  22. 如权利要求21所述的通信装置,其特征在于,所述第一频域资源包括的多个子载波中,输入所述交织矩阵的子载波为第一类型子载波,或输入所述交织矩阵的子载波为第一类型的子载波和第二类型子载波,所述第一类型子载波用于承载数据,所述第二类型子载波包括空子载波、直流子载波、保护子载波、导频子载波的一种或多种;
    其中,输入所述交织矩阵的子载波的序号为所述第一频域资源包括的所述多个子载波 中的所述第一类型子载波的序号;或者,
    输入所述交织矩阵的子载波的序号为所述第一频域资源包括的所述多个子载波的序号,其中,所述多个子载波中的所述第二类型子载波的序号均为第一预设序号,从所述交织矩阵输出的子载波的序号不包括所述第一预设序号;或者,
    输入所述交织矩阵的子载波的序号为所述第一频域资源包括的所述多个子载波的序号,其中,多个子载波中的所述第二类型子载波的序号均为第一预设序号,为所述第一预设序号的序号位于所述交织矩阵的预设位置,从所述交织矩阵输出的子载波的序号不包括所述第一预设序号。
  23. 如权利要求22所述的通信装置,其特征在于,所述第二类型子载波为导频子载波,所述导频子载波为所述第一频域资源内26子载波RU的最大导频子载波集合。
  24. 如权利要求21-23任一项所述的通信装置,其特征在于,所述第一频域资源包括的多个子载波中要输入所述交织矩阵的子载波的数量小于所述交织矩阵支持输入的子载波的数量;
    输入所述交织矩阵的子载波的序号为所述第一频域资源中要输入所述交织矩阵的子载波的序号以及填充子载波的序号,其中,所述填充子载波的序号位于所述交织矩阵的预设位置,所述填充子载波的序号均为第二预设序号,从所述交织矩阵输出的子载波的序号不包括所述第二预设序号。
  25. 如权利要求21-24任一项所述的通信装置,其特征在于,所述第一频域资源包括的多个子载波的数量根据所述第一设备支持的最大带宽确定。
  26. 如权利要求15或16所述的通信装置,其特征在于,所述第一VRU基于所述第一VRU包括的各个子载波的序号与所述第一PRU包括的各个子载波的序号的映射关系映射为所述第一PRU。
  27. 如权利要求22-26任一项所述的通信装置,其特征在于,所述第一频域资源包括的子载波的序号从0或者1开始;或者,
    所述第一频域资源包括的子载波的序号为所述子载波对应实际频带中的子载波编号;或者,
    所述第一频域资源包括的子载波的序号为预设序号加预设偏移值。
  28. 如权利要求15-27任一项所述的通信装置,其特征在于,所述第一VRU对应的子载波的序号位于第一集合,所述第一PRU对应的子载波的序号位于所述第一集合;或者,
    所述第一VRU对应的子载波的序号位于第一集合,所述第一PRU对应的子载波的序号位于所述第二集合,所述第一集合和所述第二集合无交集,或者所述第一集合和所述第二集合中部分序号相同;或者,
    所述第一VRU对应的子载波的序号位于第一集合,所述第一PRU对应的子载波的序号位于多个第二集合,所述多个第二集合之间无交集,所述第一集合与所述多个第二集合无交集,或者所述第一集合与所述多个第二集合中部分第二集合存在交集。
  29. 一种芯片,其特征在于,所述芯片包括至少一个处理器和接口,所述处理器用于读取并执行存储器中存储的指令,当所述指令被运行时,使得所述芯片执行如权利要求1-14任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被计算机执行时,使所述计算机执行 如权利要求1-14任一项所述的方法。
PCT/CN2022/078501 2021-03-05 2022-02-28 一种资源分配方法及通信装置 WO2022184032A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112023017656A BR112023017656A2 (pt) 2021-03-05 2022-02-28 Método de alocação de recurso e aparelho de comunicação
AU2022228403A AU2022228403A1 (en) 2021-03-05 2022-02-28 Resource allocation method and communication device
JP2023554052A JP2024510160A (ja) 2021-03-05 2022-02-28 リソース割り当て方法および通信装置
CA3212534A CA3212534A1 (en) 2021-03-05 2022-02-28 Resource allocation method and communication apparatus
KR1020237033947A KR20230153452A (ko) 2021-03-05 2022-02-28 자원 할당 방법 및 통신 장치
EP22762497.0A EP4294099A1 (en) 2021-03-05 2022-02-28 Resource allocation method and communication device
US18/459,118 US20240023099A1 (en) 2021-03-05 2023-08-31 Resource allocation method and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110247423.3A CN115038157A (zh) 2021-03-05 2021-03-05 一种资源分配方法及通信装置
CN202110247423.3 2021-03-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/459,118 Continuation US20240023099A1 (en) 2021-03-05 2023-08-31 Resource allocation method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2022184032A1 true WO2022184032A1 (zh) 2022-09-09

Family

ID=83117830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078501 WO2022184032A1 (zh) 2021-03-05 2022-02-28 一种资源分配方法及通信装置

Country Status (9)

Country Link
US (1) US20240023099A1 (zh)
EP (1) EP4294099A1 (zh)
JP (1) JP2024510160A (zh)
KR (1) KR20230153452A (zh)
CN (1) CN115038157A (zh)
AU (1) AU2022228403A1 (zh)
BR (1) BR112023017656A2 (zh)
CA (1) CA3212534A1 (zh)
WO (1) WO2022184032A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117835425A (zh) * 2022-09-29 2024-04-05 华为技术有限公司 一种通信方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101779432A (zh) * 2007-08-13 2010-07-14 高通股份有限公司 无线通信系统中的频率多样化传输
WO2020032700A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
CN111247849A (zh) * 2017-11-17 2020-06-05 松下电器(美国)知识产权公司 基站、用户设备和无线通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101779432A (zh) * 2007-08-13 2010-07-14 高通股份有限公司 无线通信系统中的频率多样化传输
CN111247849A (zh) * 2017-11-17 2020-06-05 松下电器(美国)知识产权公司 基站、用户设备和无线通信方法
WO2020032700A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치

Also Published As

Publication number Publication date
US20240023099A1 (en) 2024-01-18
KR20230153452A (ko) 2023-11-06
EP4294099A1 (en) 2023-12-20
AU2022228403A1 (en) 2023-09-21
CA3212534A1 (en) 2022-09-09
BR112023017656A2 (pt) 2023-11-14
CN115038157A (zh) 2022-09-09
JP2024510160A (ja) 2024-03-06

Similar Documents

Publication Publication Date Title
EP3611989B1 (en) Method and apparatus for transmitting wireless local area network information
JP5847922B2 (ja) 40MHzチャネルのためのビット割当
TW202002550A (zh) 具有每站經刪餘的傳輸的無線通訊
US11979342B2 (en) Resource indication method, access point, and station
US11212789B2 (en) Information sending method and device
EP4185047A1 (en) Resource scheduling method and related apparatus
WO2022166240A1 (zh) 一种通信方法及装置
JP2023517093A (ja) データ伝送方法及び装置、チップシステム及びコンピュータ読み取り可能記憶媒体
WO2022184032A1 (zh) 一种资源分配方法及通信装置
US20230016355A1 (en) Resource unit combination indication method and communication apparatus
WO2022179378A1 (zh) 物理层协议数据单元的传输方法和通信装置
WO2019052370A1 (zh) 用于进行数据传输的方法和装置
WO2022068686A1 (zh) 一种名义包填充值的指示方法、确定方法及通信装置
WO2024016962A1 (zh) 一种无线局域网中的通信方法及通信装置
WO2022252679A1 (zh) 一种物理层协议数据单元、触发帧的传输方法以及装置
US20240121040A1 (en) Resource indication method and apparatus
WO2023024897A1 (zh) 一种长训练字段序列的传输方法及通信装置
WO2022170851A1 (zh) 一种信息指示方法及装置
CN111602457A (zh) 信息传输方法、通信装置及存储介质
WO2022268084A1 (zh) 用于通信的方法、设备、存储介质和程序产品
WO2023284548A1 (zh) 发送物理层协议数据单元的方法和装置
WO2024001762A1 (zh) 一种通信方法及装置
WO2024027404A1 (zh) 一种资源配置的方法和通信装置
WO2022135426A1 (zh) 通信方法、装置及系统
WO2020199814A1 (zh) 通信的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762497

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022228403

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/010344

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2023554052

Country of ref document: JP

Ref document number: 3212534

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022762497

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023017656

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022228403

Country of ref document: AU

Date of ref document: 20220228

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022762497

Country of ref document: EP

Effective date: 20230911

ENP Entry into the national phase

Ref document number: 20237033947

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237033947

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202306552Q

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 112023017656

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230831