WO2024007937A1 - 调制编码的方法和装置 - Google Patents

调制编码的方法和装置 Download PDF

Info

Publication number
WO2024007937A1
WO2024007937A1 PCT/CN2023/103740 CN2023103740W WO2024007937A1 WO 2024007937 A1 WO2024007937 A1 WO 2024007937A1 CN 2023103740 W CN2023103740 W CN 2023103740W WO 2024007937 A1 WO2024007937 A1 WO 2024007937A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
bit
bit information
modulation
communication device
Prior art date
Application number
PCT/CN2023/103740
Other languages
English (en)
French (fr)
Inventor
唐云帅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024007937A1 publication Critical patent/WO2024007937A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
    • H04L27/2053Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases
    • H04L27/206Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers
    • H04L27/2067Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers with more than two phase states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits

Definitions

  • Binary phase shift keying is a method that uses complex wave combinations that deviate from the phase to express information keying and phase shifting. It can convert analog signals into data values and is widely used in medium and high-speed data transmission. Scenes. However, in fading channel and circuit switch data (CSD) scenarios, since the low-order modulation and coding scheme (MCS) usually works under low signal-to-noise ratio (signal noise ratio, SNR) conditions, especially MCS 0 usually corresponds to the scene with the lowest signal-to-noise ratio. At this time, in order to improve the link quality, it is usually sent as a single stream to improve the strength of the received signal. In this case, the diversity effect of the signal in the two dimensions of in-phase (I) and quadrature (Q) cannot be fully utilized, which may lead to decoding failure when fading is severe.
  • MCS modulation and coding scheme
  • This application provides a modulation coding method and device, which helps to improve the performance of modulation coding.
  • a modulation and coding method which includes: a first communication device modulating and coding first bit information according to a first modulation method to obtain second bit information.
  • the first modulation method includes mapping the first bit information in the frequency domain to obtain the third bit information, forming a bit pair with the third bit information and the first bit information, and performing quadrature phase shift keying on the bit pair. shift keying (QPSK) modulation encoding to obtain the second bit information; the first communication device sends the second bit information.
  • QPSK shift keying
  • the modulation encoding of the first bit information according to the first modulation method is performed before the inverse fast Fourier transform.
  • the mapping includes but is not limited to cyclic shift or other typical mapping methods, such as one-to-one mapping, one-to-many mapping. Mapping, many-to-one mapping, etc.
  • mapping the first bit information in the frequency domain includes: mapping the first bit information according to the transmission mode of the first communication device transmitting the second bit information. Perform circular shifts in the frequency domain.
  • the first bit information includes M bits of information, M is a positive integer, and cyclically shifting the first bit information in the frequency domain includes: The bit information is cyclically shifted in the frequency domain in a continuous manner.
  • the above method further includes: the first communication device sending indication information, the indication information being used to indicate the first modulation method.
  • the indication information is carried in a discard bit (Disregard bit), a check bit (Validate bit) or a reserved bit (Reserved bit).
  • the indication information includes a modulation coding strategy MCS.
  • the above method before sending the indication information, further includes: the first communication device receives capability information of the second communication device, and the capability information is used to indicate that the second communication device supports The first modulation method.
  • a modulation and coding method which is characterized in that it includes: the second communication device receives the second bit information, and demodulates the second bit information according to the first modulation method to obtain the first bit information,
  • the first modulation method includes mapping the first bit information in the frequency domain to obtain the third bit information, forming a bit pair with the third bit information and the first bit information, and performing quadrature phase shift keying QPSK modulation encoding on the bit pair. Get the second bit of information.
  • the third bit information is obtained by cyclically shifting the first bit information in the frequency domain according to the transmission mode of the first communication device for transmitting the second bit information.
  • the first bit of information includes M bits of information, M is a positive integer, and the third bit of information is the M bits of information in a continuous manner in the frequency domain. Obtained by circular shift.
  • the first bit of information includes M bits of information, M is a positive integer, and the third bit of information is the M bits of information separated by N bits of information. Obtained by cyclic displacement in the frequency domain, N is a positive integer less than M.
  • the above method further includes: the second communication device receiving indication information, the indication information being used to indicate the first modulation method.
  • the indication information is carried in a discard bit (Disregard bit), a check bit (Validate bit) or a reserved bit (Reserved bit).
  • the indication information includes a modulation coding strategy MCS.
  • the above method before receiving the indication information, the above method further includes: the second communication device sends capability information, and the capability information is used to instruct the second communication device to support the first modulation method.
  • a modulation and coding method including: the first communication device modulates and codes the first information bits according to a first modulation method to obtain second information bits, and the first modulation method includes modulating the first information bits in Perform cyclic shifting in the frequency domain to obtain the third information bit, form a bit pair with the third information bit and the first information bit, and perform quadrature phase shift keying (QPSK) modulation coding on the bit pair to obtain the third information bit.
  • QPSK quadrature phase shift keying
  • the above method further includes: the first communication device sending indication information, the indication information being used to indicate the first modulation method.
  • a modulation and coding method including: a second communication device receiving a second information bit; the second communication device demodulating the second information bit according to the first modulation method to obtain the first information bit,
  • the first modulation method includes cyclically shifting the first information bits in the frequency domain to obtain third information bits, forming a bit pair with the third information bits and the first information bits, and performing quadrature phase shift keying (QPSK) on the bit pairs.
  • QPSK quadrature phase shift keying
  • the above method further includes: the second communication device receiving indication information, the indication information being used to indicate the first modulation method.
  • a modulation and coding device including: a processing unit configured to modulate and code the first bit information according to a first modulation method to obtain second bit information, and the first modulation method includes converting the first bit information into Mapping is performed in the frequency domain to obtain the third bit of information, the third bit of information and the first bit of information are combined into a bit pair, and the bit pair is QPSK modulated and encoded to obtain the second bit of information; the transceiver unit is used to send the second bit of information. .
  • the processing unit is specifically configured to cyclically shift the first bit information in the frequency domain according to the transmission mode in which the first communication device transmits the second bit information. Bit.
  • the first bit information includes M bit information, M is a positive integer, and the processing unit is specifically used to process the M bit information in the frequency domain in a continuous manner. Perform circular shifts.
  • the first bit of information includes M bits of information, where M is a positive integer
  • the processing unit is specifically used to cyclically shift M bits of information in the frequency domain in a manner spaced by N bits of information, where N is a positive integer less than M.
  • the transceiver unit is further configured to send indication information, and the indication information is used to indicate the first modulation method.
  • the indication information is carried in a discard bit (Disregard bit), a check bit (Validate bit) or a reserved bit (Reserved bit).
  • the indication information includes a modulation coding strategy MCS.
  • the transceiver unit is further configured to receive capability information of the second communication device, and the capability information is used to indicate that the second communication device supports the first modulation method.
  • a modulation and coding device including: a transceiver unit for receiving second bit information; a processing unit for demodulating the second bit information according to the first modulation method to obtain the first bit Information, the first modulation method includes mapping the first bit information in the frequency domain to obtain the third bit information, forming a bit pair with the third bit information and the first bit information, and performing quadrature phase shift keying QPSK on the bit pair. Modulation coding obtains the second bit of information.
  • the third bit information is obtained by cyclically shifting the first bit information in the frequency domain according to the transmission mode of the first communication device for transmitting the second bit information.
  • the first bit of information includes M bits of information, M is a positive integer, and the third bit of information is the M bits of information in a continuous manner in the frequency domain. Obtained by circular shift.
  • the first bit of information includes M bits of information, M is a positive integer, and the third bit of information is the M bits of information separated by N bits of information. Obtained by cyclic displacement in the frequency domain, N is a positive integer less than M.
  • the transceiver unit is further configured to receive indication information, where the indication information is used to indicate the first modulation method.
  • the indication information is carried in a discard bit (Disregard bit), a check bit (Validate bit) or a reserved bit (Reserved bit).
  • the indication information includes a modulation coding strategy MCS.
  • the transceiver unit is further configured to send capability information, and the capability information is used to indicate that the second communication device supports the first modulation method.
  • a communication device including a processor and an interface circuit.
  • the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or to send signals from the processor.
  • the processor is used to implement the method in any possible implementation manner of the foregoing first aspect or third aspect through logic circuits or execution of code instructions.
  • a communication device including a processor and an interface circuit.
  • the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or to send signals from the processor.
  • the processor is used to implement the method in any possible implementation manner of the foregoing second aspect or fourth aspect through logic circuits or execution code instructions.
  • a computer-readable storage medium In a ninth aspect, a computer-readable storage medium is provided. Computer programs or instructions are stored in the computer-readable storage medium. When the computer program or instructions are executed, any possibility of the first to fourth aspects can be realized. method in the implementation.
  • a computer program product containing instructions is provided. When the instructions are executed, the method in any possible implementation manner of the foregoing first to fourth aspects is implemented.
  • a computer program in an eleventh aspect, includes codes or instructions. When the codes or instructions are executed, the method in any possible implementation manner of the first to fourth aspects is implemented.
  • a twelfth aspect provides a chip system, which includes a processor and a memory for implementing the method in any possible implementation manner of the first to fourth aspects.
  • the chip system is composed of chips and also contains chips and other discrete devices.
  • a communication system including a first communication device and a second communication device.
  • the first communication device is used to implement the method in each implementation manner of the above-mentioned first aspect or the second aspect
  • the second communication device is used to implement the method in each implementation manner of the above-mentioned second aspect or the fourth aspect.
  • the communication system also includes a first communication device or a second communication device in the solution provided by the embodiment of the present application.
  • Other devices with which the device interacts are also included.
  • FIG. 1 is a schematic diagram of a communication system 100 to which this application is applicable.
  • Figure 2 is a schematic diagram of some sub-carriers currently under a fading channel.
  • Figure 3 is a schematic flow chart of a modulation and coding method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an example of frequency domain cyclic shift provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of another example of frequency domain cyclic shift provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of an example sending and receiving process provided by the embodiment of the present application.
  • Figure 7 is a schematic diagram of an example of the modulation and coding equipment provided by this application.
  • Figure 8 is a schematic diagram of an example of the modulation and coding device provided by this application.
  • FIG. 1 is a schematic diagram of a communication system 100 suitable for an embodiment of the present application.
  • the communication system 100 may include one or more network devices, such as the network device 101 shown in FIG. 1 .
  • the communication system 100 may also include one or more terminal devices (which may also be called user equipment (UE)), such as the terminal device 102, the terminal device 103 and the terminal device 104 shown in Figure 1.
  • UE user equipment
  • the communication system 100 may support sidelink communication technology, for example, sidelink communication between the terminal device 102 and the terminal device 103, sidelink communication between the terminal device 102 and the terminal device 104, etc.
  • FIG. 1 is only a schematic diagram, and the communication system may also include other network devices, such as the core network device 105 and wireless relay devices and wireless backhaul devices not shown in FIG. 1 .
  • the embodiments of the present application do not limit the number of network devices and terminal devices included in the mobile communication system.
  • the terminal equipment in the embodiment of this application may refer to user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, wireless communication equipment, user agent or user device .
  • the terminal in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, an industrial Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety Wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop ( wireless local loop (WLL) station, personal digital assistant (PDA), handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, vehicle-mounted device, wearable device, in 5G network Terminals or terminals in future evolution networks, etc.
  • SIP session initiation protocol
  • wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction. Broadly defined wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones. Use, such as various types of smart bracelets, smart jewelry, etc. for physical sign monitoring.
  • the terminal device can also be a terminal device in an Internet of Things (IoT) system.
  • IoT Internet of Things
  • the technical characteristic of IoT is to connect objects to the network through communication technology, thereby realizing an intelligent network of human-machine interconnection and object-object interconnection. This application does not limit the specific form of the terminal equipment.
  • the terminal device may be a device for realizing the function of the terminal device, or a device that can support the terminal device to realize the function, such as a chip system, and the device may be installed in the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the network device in the embodiment of this application can be any device with wireless transceiver function.
  • the equipment includes but is not limited to: evolved Node B (eNB), home base station (for example, home evolved nodeB, or home node B, HNB), Baseband unit (BBU), access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) in wireless fidelity (WIFI) system Or a transmission and reception point (TRP), etc., or it can also be the fifth generation (5G), such as the next generation base station (next generation node B) in the new generation wireless communication system (new radio, NR) , gNB), or transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of a base station in a 5G system, or it can also be a network node that constitutes a gNB or transmission point, such as a baseband Unit (BBU), or distributed unit (DU), etc.
  • eNB evolved Node B
  • BBU Baseband Unit
  • gNB may include centralized units (CUs) and DUs.
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, media access control (MAC) layer and physical (physical, PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • gNB can also include an active antenna unit (active antenna unit, AAU for short).
  • AAU implements some physical layer processing functions, radio frequency processing and active antenna related functions.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in the access network (radio access network, RAN), or the CU can be divided into network equipment in the core network (core network, CN), which is not limited in this application.
  • the network device may be a device used to implement the function of the network device, or may be a device capable of supporting the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • LTE frequency division duplex (FDD) system LTE time division duplex (TDD), 5G system
  • V2X vehicle-to-X
  • V2X can include vehicle to Internet (vehicle to network, V2N), vehicle to vehicle (vehicle to vehicle (V2V), vehicle to infrastructure (V2I), vehicle to pedestrian (V2P), etc.
  • inter-vehicle communication long term evolution-vehicle (LTE-V) Internet of Vehicles, machines Machine type communication (MTC), Internet of things (IoT), long term evolution-machine (LTE-M), machine to machine (M2M), equipment Device to device (D2D), etc. or future evolved communication systems, such as the sixth generation (6G) system.
  • MTC Machine type communication
  • IoT Internet of things
  • LTE-M Internet of things
  • M2M machine to machine
  • D2D equipment Device to device
  • future evolved communication systems such as the sixth generation (6G) system.
  • the 802.11 modulation format supports binary phase shift keying (BPSK)/quadrature phase shift keying (QPSK)/16 quadrature amplitude modulation (quadrature amplitude modulation, QAM)/.../ 4096 quadrature amplitude modulation (QAM), of which low-order (BPSK, superimposable DCM technology) modulation is mainly used in far-coverage and interference scenarios.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • QAM quadrature amplitude modulation
  • QAM quadrature amplitude modulation
  • QAM quadrature amplitude modulation
  • QAM quadrature amplitude modulation
  • BPSK low-order modulation
  • the signal noise ratio (SNR) of some subcarriers is greater than the SNR required for decoding, resulting in a waste of signal power; the SNR of some subcarriers is smaller than the SNR required for decoding.
  • MCS 0 in current 802.11b/a/n/ac/ax/be is BPSK modulation.
  • Table 1 The situation in which MCS 0 indicates BPSK modulation in the current 802.11 partial protocol
  • MCS usually works under low SNR conditions, especially MCS 0 usually corresponds to the scene with the lowest signal-to-noise ratio, at this time, in order to improve the link quality, it is usually sent as a single stream to improve The strength of the received signal. In this case, the diversity effect of the signal in the I/Q dimensions cannot be fully utilized, which may lead to decoding failure when fading is severe.
  • this application proposes a channel coding method, which is expected to reduce the power consumption and complexity of channel coding while ensuring a certain channel coding performance.
  • the first communication device may be the terminal device (such as terminal device 102, terminal device 103 or terminal device 104) in Figure 1
  • the second communication device may be the network device 101 in Figure 1; optionally, the first communication device
  • the device and the second communication device can also both be terminal devices.
  • the communication system supports sidelink communication technology.
  • the first communication device is the terminal device 102 and the second communication device is the terminal device 103 or the terminal device 104, or the first communication device
  • the device is the terminal device 103 and the second communication device is the terminal device 104 or the terminal device 102 or the like.
  • Figure 3 shows an example of a schematic flow chart of the modulation and coding method of the present application.
  • the first communication device modulates and codes the first bit information according to the first modulation method to obtain the second bit information.
  • the first modulation method includes mapping the first bit information in the frequency domain to obtain the third bit information.
  • the third bit of information and the first bit of information form a bit pair, and the bit pair is QPSK modulated and encoded to obtain the second bit of information.
  • the mapping includes but is not limited to cyclic shift or other typical mapping methods, such as one-to-one mapping, one-to-many mapping, many-to-one mapping, etc.
  • Mapping the first bit information in the frequency domain may specifically include: cyclically shifting the first bit information in the frequency domain according to a transmission mode in which the first communication device sends the second bit information.
  • the first bit of information includes M bits of information, and M is a positive integer.
  • cyclically shifting the first bit information in the frequency domain may specifically include: cyclically shifting the M bits of information in the frequency domain in a continuous manner. For example, as shown in Figure 4, within a user's resource unit (RU) within an orthogonal frequency division multiplexing (OFDM) symbol, compared to traditional BPSK modulation, the method provided by this application The first modulation method cyclically shifts all the bit information of the user in the frequency domain, that is, in a bit sequence, b(0), b(1), b(2), etc. are adjacent, b(n) , b(n+1), b(n+2), etc.
  • b(0), b(1), b(2), etc. are adjacent, b(n) , b(n+1), b(n+2), etc.
  • cyclically shifting the first bit of information in the frequency domain may specifically include: cyclically shifting M bits of information in the frequency domain at intervals of N bits of information, where N is less than M positive integer.
  • N is less than M positive integer.
  • the first modulation method provided by this application converts the bit information of the user into frequency intervals of 1 bit. Cyclic shift is performed on the domain, that is, in a bit sequence, b(0), b(2), b(4), etc. are adjacent, and b(1), b(3), b(5), etc.
  • the first communication device sends the second bit information.
  • the second communication device receives the second bit information and demodulates the second bit information according to the first modulation method to obtain the first bit information.
  • the sending end device that is, the first communication device only needs to map the bit information of the corresponding user in the frequency domain during modulation and coding (modulation), then form a bit pair with the original bit information, call QPSK modulation, and then apply the conventional reverse fast Fourier Leaf transform (inverse fast fourier transform, IFFT) and other sending configurations are enough.
  • LDPC low density parity check code
  • the receiving end equipment i.e., the second communication device only needs to add multiple input multiple output (MIMO) demodulation according to QPSK in the conventional receiving and decoding process, and perform the log likelihood ratio (log likelihood ratio) , LLR) (can be called soft information bits) and then reverse operation (demap) to merge the LLR soft information.
  • MIMO multiple input multiple output
  • LLR log likelihood ratio
  • demap reverse operation
  • the first communication device may also send indication information, where the indication information is used to indicate the first modulation method.
  • the second communication device receives the indication information and acquires the first modulation method according to the indication information.
  • the indication information can be a field or signaling
  • the first communication device indicates the first modulation mode to the second communication device through this field or signaling.
  • the first communication device and the second communication device need to first exchange capability information and confirm that both support the enhanced modulation and coding strategy (including the first modulation mode).
  • the first communication device may indicate enhanced modulation and coding capabilities through "Extended Capabilities" in the Association Request frame (Association Request frame format) or the Re-Association Request frame (Association Request frame format).
  • some Reserved bits in the Extend Capabilities element can be extended to enhance modulation and coding capability indication.
  • the Extend Capabilities element carries information about the capabilities of the first communication device.
  • the specified capabilities can be indicated through the capability information field (Extend Capabilities) in Table 3 or Table 4 below, where “Octets” represents the eight bits used by the Internet standard. group, “Element ID” is used to represent the ID of the element, “Length” is used to represent the length, and “Extend Capabilities” can be used to indicate the specified capabilities of the first sending device (for example, enhanced modulation and coding strategy, including the first Modulation mode), "The Extended Capabilities element is present if any of the fields in this element are nonzero” that is, if any field in this element is nonzero, there is an extended capabilities element. For another example, as shown in Table 5, there is a "Reserved bit” in the table, so the “Reserved bit” can be used to indicate the specified capability (for example, enhanced modulation and coding strategy, including the first modulation method) .
  • Table 5 there is a "Reserved bit” in the table, so the “Reserved bit” can be used
  • the first communication device takes the first communication device as an example to introduce the possible indication methods of the capability information of the first communication device.
  • the second communication device can also indicate the capability information of the second communication device in the same manner.
  • the first communication device may indicate the first modulation mode to the second communication device in the following three ways:
  • Method 1 Extend the U-SIG field to indicate the first modulation method. Specifically, as shown in Table 6 and Table 7 below, through the Disregard bit (ignore bit) or Validate bit (check bit) in U-SIG, such as B20-B24, B25 in U-SIG1; B2 in U-SIG2 , B8) indicates the first modulation mode. In this mode, Ethernet (ETH) frames are uniformly indicated without distinguishing users. When the bit is 0 (or 1), it indicates that when the MCS is MCS 0 (or MCS 1), it is the first modulation mode. .
  • ETH Ethernet
  • Table 6 indicates the first modulation mode through B20-B24, B25
  • Table 7 indicates the first modulation mode through B2 and B8
  • Method 2 Extend the EHT-SIG field to indicate the first modulation method. Specifically, as shown in Table 8 and Table 9 below, the first modulation mode is indicated by the Disregard bit in the common field in EHT-SIG, such as B13-B16. In this method, Ethernet (ETH) frames are uniformly indicated without distinguishing users. When this bit is 0 (or 1), it indicates that when the MCS is MCS0 (or MCS 1), it is the first modulation mode.
  • ETH Ethernet
  • Table 8 indicates example 1 of the first modulation mode through B13-B16
  • Table 9 indicates example 2 of the first modulation mode through B13-B16
  • Method 3 Extend the EHT-SIG field to indicate the first modulation method. Specifically, as shown in Table 10 below, it is indicated by the Reserved bit in the User field in EHT-SIG. For example, B15 indicates the first modulation method. This scheme distinguishes users and only supports non-multi-user multiple input and multiple output. (non multi-user multiple-input multiple-output, non-MU-MIMO), when this bit is 0 (or 1), it indicates that when MCS is MCS 0 (or MCS 1), it is the first modulation method.
  • Table 10 indicates the first modulation mode through B15
  • the two possible cyclic shift modes shown in Figure 4 and Figure 5 above correspond to different first modulation modes, and when indicating, different indication methods can be used to distinguish them, for example, as shown in Table 6
  • the first modulation method shown in Figure 4 can be indicated through MCS 20 (obtained through B20 expansion)
  • the first modulation method shown in Figure 5 can be indicated through MCS 25 (obtained through B25 expansion); for another example, in Among the indication methods shown in Table 7, the first modulation method shown in Figure 4 can be indicated through MCS 2 (obtained through B2 expansion), and the first modulation method shown in Figure 5 can be indicated through MCS 8 (obtained through B8 expansion).
  • the technical solution of this application after the user's bit information is mapped in the frequency domain, it is formed into a bit pair with the original bit information, and quadrature phase shift keying modulation is called, which helps to improve the modulation without adding additional resources. Encoding performance.
  • the technical solution of this application can improve the coverage capability of WIFI products and the throughput under low signal-to-noise ratio (about 2dB gain in CSD and fading channel scenarios). The solution is simple and basically does not require additional resources.
  • the method implemented by the communication device can also be implemented by components (such as chips or circuits) that can be configured inside the communication device.
  • Embodiments of the present application can divide the transmitting end device or the receiving end device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module. middle.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that this application The division of modules in the embodiment is schematic and is only a logical function division. There may be other division methods in actual implementation. The following is an example of dividing each functional module according to each function.
  • FIG. 7 is a schematic block diagram of a modulation and coding device 700 provided by this application. Any equipment involved in either method 300 and method 400 above, such as the first communication device and the second communication device, can be implemented by the modulation and coding device shown in FIG. 7 .
  • the modulation and coding device 700 may be a physical device, a component of the physical device (for example, an integrated circuit, a chip, etc.), or a functional module in the physical device.
  • the modulation and coding device 700 includes: one or more processors 710.
  • the processor 710 can call an interface to implement the receiving and sending functions.
  • the interface may be a logical interface or a physical interface, which is not limited.
  • the interface may be a transceiver circuit, an input-output interface, or an interface circuit.
  • Transceiver circuits, input and output interfaces or interface circuits used to implement receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit or interface circuit can be used for reading and writing code/data, or the above-mentioned transceiver circuit or interface circuit can be used for signal transmission or transfer.
  • the interface can be implemented via transceivers.
  • the modulation and coding device 700 may also include a transceiver 730.
  • the transceiver 730 may also be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the modulation and encoding device 700 may also include a memory 720.
  • the embodiment of the present application does not specifically limit the specific deployment location of the memory 720.
  • the memory may be integrated in the processor or independent of the processor.
  • the modulation and coding device 700 only needs to have a processing function, and the memory can be deployed in other locations (such as a cloud system).
  • the processor 710, the memory 720 and the transceiver 730 communicate with each other through internal connection paths to transmit control and/or data signals.
  • the modulation and encoding device 700 may also include other devices, such as an input device, an output device, a battery, and the like.
  • the memory 720 may store execution instructions for executing the methods of embodiments of the present application.
  • the processor 710 can execute the instructions stored in the memory 720 and combine with other hardware (such as the transceiver 730) to complete the steps of the method shown below.
  • other hardware such as the transceiver 730
  • the methods disclosed in the embodiments of this application can be applied to the processor 710 or implemented by the processor 710 .
  • the processor 710 may be an integrated circuit chip with signal processing capabilities. During the implementation process, each step of the method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (field programmable gate array, FPGA), or other available processors.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • programmed logic devices discrete gate or transistor logic devices, discrete hardware components.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • Software modules can be located in random access memory (random access memory, RAM), flash memory, read-only memory (read-only memory, ROM), programmable read-only memory or electrically erasable programmable memory, registers, etc. that are mature in this field. in the storage medium.
  • the storage medium is located in the memory, and the processor reads the instructions in the memory and completes the steps of the above method in combination with its hardware.
  • memory 720 may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory ROM, programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory RAM, which acts as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • Figure 8 is a schematic block diagram of the modulation and coding device 800 provided by this application.
  • the specific form of the modulation and encoding device 800 may be a general computer device or a chip in a general computer device, which is not limited in the embodiment of the present application.
  • the modulation and coding device includes a processing unit 810 and a transceiver unit 820.
  • the modulation and coding device 800 can be any device involved in this application, and can implement the functions that the device can implement. It should be understood that the modulation and encoding device 800 may be a physical device, a component of the physical device (for example, an integrated circuit, a chip, etc.), or a functional module in the physical device.
  • the modulation and coding device 800 may be the first communication device in the above method embodiment, or may be a chip used to implement the functions of the first communication device in the above method embodiment.
  • the communication device is used to perform the actions performed by the first communication device in FIG. 3 above, the transceiver unit 820 is used to perform S420, and the processing unit 810 is used to perform S410.
  • the processing unit 810 is configured to modulate and encode the first information bits according to a first modulation method to obtain the second information bits.
  • the first modulation method includes mapping the first information bits in the frequency domain to obtain the third information bits. , the third information bit and the first information bit are formed into a bit pair, and the bit pair is QPSK modulated and encoded to obtain the second information bit; the transceiver unit 520 is used to send the second information bit.
  • the processing unit 810 is specifically configured to cyclically shift the first information bits in the frequency domain according to the transmission mode in which the first communication device transmits the second information bits.
  • the first information bits include M information bits, M is a positive integer, and the processing unit 810 is specifically configured to cyclically shift the M information bits in the frequency domain in a continuous manner.
  • the first information bits include M information bits, M is a positive integer, and the processing unit 810 is specifically configured to cyclically shift the M information bits in the frequency domain at intervals of N information bits, where N is less than M. positive integer.
  • the transceiver unit 820 is also configured to send indication information, where the indication information is used to indicate the first modulation mode.
  • the indication information is carried in a discard bit (Disregard bit), a check bit (Validate bit) or a reserved bit (Reserved bit).
  • the indication information includes the modulation and coding strategy MCS.
  • the transceiver unit 820 is also configured to receive capability information of the second communication device, where the capability information is used to indicate that the second communication device supports the first modulation method.
  • the transceiver unit 820 in the modulation and coding device 800 can be implemented through a communication interface (such as a transceiver or an input/output interface).
  • the processing in the modulation and coding device 800 Unit 810 may be implemented by at least one processor, which may correspond to processor 710 shown in FIG. 7 , for example.
  • the modulation and encoding device 800 may also include a storage unit, which may be used to store instructions or data, and the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • a storage unit which may be used to store instructions or data
  • the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • the modulation and coding device 800 may be the second communication device in the above method embodiment, or may be a chip used to implement the functions of the second communication device in the above method embodiment.
  • the communication device is used to perform the actions performed by the second communication device in FIG. 4 above.
  • the transceiver unit 820 is configured to receive the second information bit; the processing unit 810 is configured to demodulate the second information bit according to a first modulation method to obtain the first information bit.
  • the first modulation method includes converting the first information bit in Mapping is performed in the frequency domain to obtain the third information bit, the third information bit and the first information bit are formed into a bit pair, and the bit pair is subjected to quadrature phase shift keying QPSK modulation encoding to obtain the second information bit.
  • the third information bit is obtained by cyclically shifting the first information bit in the frequency domain according to the transmission mode of the first communication device for transmitting the second information bit.
  • the first information bits include M information bits, M is a positive integer, and the third information bits are obtained by cyclically shifting the M information bits in the frequency domain in a continuous manner.
  • the first information bits include M information bits, M is a positive integer, and the third information bits are obtained by cyclically shifting the M information bits in the frequency domain at intervals of N information bits, and N is less than M is a positive integer.
  • the transceiver unit 820 is also configured to receive indication information, where the indication information is used to indicate the first modulation method.
  • the indication information is carried in a discard bit (Disregard bit), a check bit (Validate bit) or a reserved bit (Reserved bit).
  • the indication information includes the modulation and coding strategy MCS.
  • the transceiver unit 820 is also configured to send capability information, and the capability information is used to indicate that the second communication device supports the first modulation method.
  • the transceiver unit 820 in the modulation and coding device 800 can be implemented through a communication interface (such as a transceiver or an input/output interface), for example, it can correspond to the one shown in Figure 7
  • the processing unit 810 in the modulation and coding apparatus 800 may be implemented by at least one processor, for example, may correspond to the processor 710 shown in FIG. 7 .
  • the modulation and encoding device 800 may also include a storage unit, which may be used to store instructions or data, and the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • a storage unit which may be used to store instructions or data
  • the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • the modulation and coding device 800 is presented in the form of a functional module.
  • Module here may refer to an application specific integrated circuit (ASIC), a circuit, a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above functions.
  • ASIC application specific integrated circuit
  • the device 800 can take the form shown in FIG. 8 .
  • the processing unit 810 may be implemented by the processor 710 shown in FIG. 7 .
  • the computer device shown in FIG. 7 includes a memory 720
  • the processing unit 810 may be implemented by the processor 710 and the memory 720.
  • the transceiver unit 820 may be implemented by the transceiver 730 shown in FIG.
  • the transceiver 730 includes a receive function and a transmit function.
  • the processor is implemented by executing the computer program stored in the memory.
  • the memory may be a storage unit within the chip, such as a register, cache, etc.
  • the storage unit may also be a storage unit located outside the chip in the modulation encoding device, such as the memory shown in Figure 7 720, or it may be a storage unit deployed in other systems or devices, not within the computer device.
  • computer-readable media may include, but are not limited to: magnetic storage devices (e.g., hard disks, floppy disks, tapes, etc.), optical disks (e.g., compact discs (CD), digital versatile discs (DVD)) etc.), smart cards and flash memory devices (e.g. erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • the various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, various other media capable of storing, containing and/or carrying instructions and/or data.
  • the present application also provides a computer program product.
  • the computer program product includes: a computer program or a set of instructions.
  • the computer program or a set of instructions When the computer program or a set of instructions is run on a computer, the computer causes the computer to execute Any possible method in the embodiment shown in Figure 3.
  • the present application also provides a computer-readable storage medium.
  • the computer-readable medium stores a program or a set of instructions.
  • the program or a set of instructions is run on a computer, the computer Perform any possible method in the embodiment shown in Figure 3.
  • the present application also provides a communication system, which includes the aforementioned device or equipment.
  • a component may be, but is not limited to, a process, a processor, an object, an executable file, a thread of execution, a program and/or a computer running on a processor.
  • applications running on the computing device and the computing device may be components.
  • One or more components can reside in a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers. Additionally, these components can execute from various computer-readable media having various data structures stored thereon.
  • a component may pass a signal based on a signal having one or more data packets (e.g., data from two components interacting with another component on a local system, a distributed system, and/or on a network, such as the Internet, which interacts with other systems via signals).
  • data packets e.g., data from two components interacting with another component on a local system, a distributed system, and/or on a network, such as the Internet, which interacts with other systems via signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种调制编码的方法和装置,可应用于增强无线保真(wireless fidelity,Wi-Fi)场景,尤其是应用于衰落信道或者电路交换数据业务(circuit switch data,CSD)场景中,有助于在不增加额外资源的同时,提升调制编码的性能。该方法包括:第一通信装置将用户的全部比特信息在频域上进行映射后,与原始比特信息组成比特对,调用正交相移键控(quadrature phase shift keying,QPSK)调制编码得到第二比特信息,向第二通信装置发送第二比特信息。

Description

调制编码的方法和装置
本申请要求于2021年7月8日提交中国专利局、申请号为202210801533.4、申请名称为“调制编码的方法和装置”的中国专利申请的优先权,以及2021年11月23日提交中国专利局、申请号为202211476283.8、申请名称为“调制编码的方法和装置”的中国专利申请的优先权。其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种调制编码的方法和装置。
背景技术
二进制移相键控(binary phase shift keying,BPSK)是利用偏离相位的复数波浪组合来表现信息键控移相方式的一种,可以将模拟信号转换成数据值,广泛应用于中、高速数据传输场景。但是在衰落信道和电路交换数据业务(circuit switch data,CSD)场景中,由于低阶调制编码策略(modulation and codingscheme,MCS)通常工作在低信噪比(signal noise ratio,SNR)条件下,特别是MCS 0通常是对应信噪比最低的场景,这时,为了提升链路质量,通常按照单流进行发送,以提升接收信号的强度。在此种情形下,无法充分利用信号在同相(in-phase,I)/正交(quadrature,Q)两个维度的分集效应,在衰落严重时会导致译码失败的问题。
因此,亟需一种调制编码的方法,既能降低信道编码功耗和复杂度,又能保证一定的信道编码性能。
发明内容
本申请提供一种调制编码的方法和装置,有助于提升调制编码的性能。
第一方面,提供了一种调制编码的方法,包括:第一通信装置根据第一调制方式对第一比特信息进行调制编码,得到第二比特信息。第一调制方式包括将第一比特信息在频域上进行映射,得到第三比特信息,将第三比特信息与第一比特信息组成比特对,对比特对进行正交相移键控(quadrature phase shift keying,QPSK)调制编码得到第二比特信息;第一通信装置发送第二比特信息。其中,根据第一调制方式对第一比特信息进行调制编码在反向快速傅里叶变换之前执行,映射包括但不限于循环移位或者其他典型的映射方式,例如一对一映射、一对多映射、多对一映射等。
根据本申请的技术方案,将用户的比特信息在频域上进行映射后,与原始比特信息组成比特对,调用正交相移键控调制,有助于在不增加额外资源的同时,提升调制编码的性能。
结合第一方面,在第一方面的某些实现方式中,上述将第一比特信息在频域上进行映射,包括:根据第一通信装置发送第二比特信息的发送模式,将第一比特信息在频域上进行循环移位。
结合第一方面,在第一方面的某些实现方式中,第一比特信息包括M个比特信息,M为正整数,将第一比特信息在频域上进行循环移位,包括:将M个比特信息按照连续的方式在频域上进行循环移位。
结合第一方面,在第一方面的另一些实现方式中,第一比特信息包括M个比特信息,M为正整数,将第一比特信息在频域上进行循环移位,包括:将M个比特信息按照间隔N个比特信息的方式在频域上进行循环位移,N为小于M的正整数。
结合第一方面,在第一方面的某些实现方式中,上述方法还包括:第一通信装置发送指示信息,指示信息用于指示第一调制方式。
结合第一方面,在第一方面的某些实现方式中,指示信息承载于丢弃比特(Disregard bit)、校验比特(Validate bit)或保留比特(Reserved bit)。
结合第一方面,在第一方面的某些实现方式中,指示信息包括调制编码策略MCS。
结合第一方面,在第一方面的某些实现方式中,在发送指示信息之前,上述方法还包括:第一通信装置接收第二通信装置的能力信息,能力信息用于指示第二通信装置支持第一调制方式。
第二方面,提供了一种调制编码的方法,其特征在于,包括:第二通信装置接收第二比特信息,根据第一调制方式对第二比特信息进行解调处理,得到第一比特信息,第一调制方式包括将第一比特信息在频域上进行映射,得到第三比特信息,将第三比特信息与第一比特信息组成比特对,对比特对进行正交相移键控QPSK调制编码得到第二比特信息。
根据本申请的技术方案,将用户的比特信息在频域上进行映射后,与原始比特信息组成比特对,调用正交相移键控调制,有助于在不增加额外资源的同时,提升调制编码的性能。
结合第二方面,在第二方面的某些实现方式中,第三比特信息是根据第一通信装置发送第二比特信息的发送模式对第一比特信息在频域上进行循环移位得到的。
结合第二方面,在第二方面的某些实现方式中,第一比特信息包括M个比特信息,M为正整数,第三比特信息是将M个比特信息按照连续的方式在频域上进行循环移位得到的。
结合第二方面,在第二方面的另一些实现方式中,第一比特信息包括M个比特信息,M为正整数,第三比特信息是将M个比特信息按照间隔N个比特信息的方式在频域上进行循环位移得到的,N为小于M的正整数。
结合第二方面,在第二方面的某些实现方式中,上述方法还包括:第二通信装置接收指示信息,指示信息用于指示第一调制方式。
结合第二方面,在第二方面的某些实现方式中,指示信息承载于丢弃比特(Disregard bit)、校验比特(Validate bit)或保留比特(Reserved bit)。
结合第二方面,在第二方面的某些实现方式中,指示信息包括调制编码策略MCS。
结合第二方面,在第二方面的某些实现方式中,在接收指示信息之前,上述方法还包括:第二通信装置发送能力信息,能力信息用于指示第二通信装置支持第一调制方式。
第三方面,提供了一种调制编码的方法,包括:第一通信装置根据第一调制方式对第一信息比特进行调制编码,得到第二信息比特,第一调制方式包括将第一信息比特在频域上进行循环移位,得到第三信息比特,将第三信息比特与第一信息比特组成比特对,对比特对进行正交相移键控(quadrature phase shift keying,QPSK)调制编码得到第二信息比特;第一通信装置发送第二信息比特。
根据本申请的技术方案,将用户的比特信息在频域上进行循环移位后,与原始比特信息组成比特对,调用正交相移键控调制,有助于在不增加额外资源的同时,提升调制编码的性能。
结合第三方面,在第三方面的某些实现方式中,上述方法还包括:第一通信装置发送指示信息,指示信息用于指示第一调制方式。
第四方面,提供了一种调制编码的方法,包括:第二通信装置接收第二信息比特;第二通信装置根据第一调制方式对第二信息比特进行解调处理,得到第一信息比特,第一调制方式包括将第一信息比特在频域上进行循环移位,得到第三信息比特,将第三信息比特与第一信息比特组成比特对,对比特对进行正交相移键控QPSK调制编码得到第二信息比特。
根据本申请的技术方案,将用户的比特信息在频域上进行循环移位后,与原始比特信息组成比特对,调用正交相移键控调制,有助于在不增加额外资源的同时,提升调制编码的性能。
结合第四方面,在第四方面的某些实现方式中,上述方法还包括:第二通信装置接收指示信息,指示信息用于指示第一调制方式。
第五方面,提供了一种调制编码的装置,包括:处理单元,用于根据第一调制方式对第一比特信息进行调制编码,得到第二比特信息,第一调制方式包括将第一比特信息在频域上进行映射,得到第三比特信息,将第三比特信息与第一比特信息组成比特对,对比特对进行QPSK调制编码得到第二比特信息;收发单元,用于发送第二比特信息。
结合第五方面,在第五方面的某些实现方式中,处理单元,具体用于根据第一通信装置发送所述第二比特信息的发送模式,将第一比特信息在频域上进行循环移位。
结合第五方面,在第五方面的某些实现方式中,第一比特信息包括M个比特信息,M为正整数,处理单元,具体用于将M个比特信息按照连续的方式在频域上进行循环移位。
结合第五方面,在第五方面的另一些实现方式中,第一比特信息包括M个比特信息,M为正整数, 处理单元,具体用于将M个比特信息按照间隔N个比特信息的方式在频域上进行循环位移,N为小于M的正整数。
结合第五方面,在第五方面的某些实现方式中,收发单元,还用于发送指示信息,指示信息用于指示第一调制方式。
结合第五方面,在第五方面的某些实现方式中,指示信息承载于丢弃比特(Disregard bit)、校验比特(Validate bit)或保留比特(Reserved bit)。
结合第五方面,在第五方面的某些实现方式中,指示信息包括调制编码策略MCS。
结合第五方面,在第五方面的某些实现方式中,收发单元还用于接收第二通信装置的能力信息,能力信息用于指示第二通信装置支持第一调制方式。
第六方面,提供了一种调制编码的装置,包括:收发单元,用于接收第二比特信息;处理单元,用于根据第一调制方式对第二比特信息进行解调处理,得到第一比特信息,第一调制方式包括将第一比特信息在频域上进行映射,得到第三比特信息,将第三比特信息与第一比特信息组成比特对,对比特对进行正交相移键控QPSK调制编码得到第二比特信息。
结合第六方面,在第六方面的某些实现方式中,第三比特信息是根据第一通信装置发送第二比特信息的发送模式对第一比特信息在频域上进行循环移位得到的。
结合第六方面,在第六方面的某些实现方式中,第一比特信息包括M个比特信息,M为正整数,第三比特信息是将M个比特信息按照连续的方式在频域上进行循环移位得到的。
结合第六方面,在第六方面的另一些实现方式中,第一比特信息包括M个比特信息,M为正整数,第三比特信息是将M个比特信息按照间隔N个比特信息的方式在频域上进行循环位移得到的,N为小于M的正整数。
结合第六方面,在第六方面的某些实现方式中,收发单元,还用于接收指示信息,指示信息用于指示第一调制方式。
结合第六方面,在第六方面的某些实现方式中,指示信息承载于丢弃比特(Disregard bit)、校验比特(Validate bit)或保留比特(Reserved bit)。
结合第六方面,在第六方面的某些实现方式中,指示信息包括调制编码策略MCS。
结合第六方面,在第六方面的某些实现方式中,收发单元还用于发送能力信息,能力信息用于指示第二通信装置支持第一调制方式。
第七方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第一方面或第三方面的任意可能的实现方式中的方法。
第八方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第二方面或第四方面的任意可能的实现方式中的方法。
第九方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现前述第一方面至第四方面的任意可能的实现方式中的方法。
第十方面,提供了一种包含指令的计算机程序产品,当该指令被运行时,实现前述第一方面至第四方面的任意可能的实现方式中的方法。
第十一方面,提供了一种计算机程序,该计算机程序包括代码或指令,当该代码或指令被运行时,实现前述第一方面至第四方面的任意可能的实现方式中的方法。
第十二方面,提供一种芯片系统,该芯片系统包括处理器,还包括存储器,用于实现前述第一方面至第四方面的任意可能的实现方式中的方法。该芯片系统由芯片构成,也包含芯片和其他分立器件。
第十三方面,提供了一种通信系统,包括第一通信装置和第二通信装置。
其中,第一通信装置用于实现上述第一方面或第二方面中的各实现方式的方法,第二通信装置用于实现上述第二方面或第四方面中各实现方式中的方法。
在一种可能的设计中,该通信系统还包括本申请实施例提供的方案中与第一通信装置或第二通信 装置进行交互的其他设备。
附图说明
图1是本申请适用的通信系统100的示意图。
图2是当前在衰落信道下部分子载波的示意图。
图3是本申请实施例提供的调制编码方法的一例示意性流程图。
图4是本申请实施例提供的一例频域循环移位示意图。
图5是本申请实施例提供的另一例频域循环移位示意图。
图6是本申请实施例提供的一例发送接收流程示意图。
图7是本申请提供的调制编码设备的一例示意图。
图8是本申请提供的调制编码装置的一例示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是适用于本申请实施例的通信系统100的示意图。
如图1所示,该通信系统100可以包括一个或多个网络设备,例如,图1所示的网络设备101。该通信系统100还可以包括一个或多个终端设备(也可以称为用户设备(user equipment,UE)),例如,图1所示的终端设备102、终端设备103以及终端设备104等。其中,通信系统100可以支持侧行链路(sidelink)通信技术,例如,终端设备102和终端设备103之间的侧行通信,终端设备102和终端设备104之间的侧行通信等。
应理解,图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括核心网设备105以及在图1中未画出的无线中继设备和无线回传设备。本申请的实施例对该移动通信系统中包括的网络设备和终端设备的数量不做限定。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端或者未来演进网络中的终端等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备。IoT的技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。本申请对于终端设备的具体形式不作限定。
应理解,本申请实施例中,终端设备可以是用于实现终端设备功能的装置,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、 基带单元(base band unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为第五代(5th generation,5G),如,新一代无线通信系统(new radio,NR)中的下一代基站(next generation node B,gNB),或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。gNB还可以包括有源天线单元(active antenna unit,简称AAU)。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
应理解,本申请实施例中,网络设备可以是用于实现网络设备功能的装置,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。
本申请实施例的技术方案可以应用于NR通信系统中的反向散射通信、无源物联通信等业务场景以及各种通信系统,例如:LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、5G系统、车到其它设备(vehicle-to-X,V2X),其中V2X可以包括车到互联网(vehicle to network,V2N)、车到车(vehicle to vehicle,V2V)、车到基础设施(vehicle to infrastructure,V2I)、车到行人(vehicle to pedestrian,V2P)等、车间通信长期演进技术(long term evolution-vehicle,LTE-V)、车联网、机器类通信(machine type communication,MTC)、物联网(Internet of things,IoT)、机器间通信长期演进技术(long term evolution-machine,LTE-M),机器到机器(machine to machine,M2M),设备到设备(device to device,D2D)等或未来演进的通信系统,例如第六代(6th generation,6G)系统。
当前,802.11调制格式支持二进制相移键控(binary phase shift keying,BPSK)/正交相移键控(quadrature phase shift keying,QPSK)/16正交振幅调制(quadrature amplitude modulation,QAM)/…/4096正交振幅调制(quadrature amplitude modulation,QAM),其中低阶(BPSK,可叠加DCM技术)调制主要用作远覆盖、干扰场景使用。在衰落信道条件下BPSK并没有充分利用I/Q两路信号的分集收益。如图2所示在衰落信道下部分子载波,部分子载波信噪比(signal noise ratio,SNR)大于解码需要的SNR,导致信号功率浪费;部分子载波SNR小于解码需要的SNR,当这种深衰子载波占比较大时会导致解码失败,性能退化。
如下表1和表2所示,当前802.11b/a/n/ac/ax/be中MCS 0均为BPSK调制。
表1当前802.11部分协议中MCS 0指示BPSK调制的情形
表2当前802.11部分协议中MCS 0指示BPSK调制的情形

在衰落信道和CSD场景中,由于MCS通常工作在低SNR条件下,特别是MCS 0通常是对应信噪比最低的场景,这时,为了提升链路质量,通常按照单流进行发送,以提升接收信号的强度。在此种情形下,无法充分利用信号在I/Q两个维度的分集效应,在衰落严重时会导致译码失败的问题。
基于此,本申请提出了一种信道编码的方法,以期望能够降低信道编码功耗和复杂度的同时,又能保证一定的信道编码性能。
下面以第一通信装置和第二通信装置的之间的交互为例,对本申请的技术方案进行详细描述。其中,第一通信装置可以是图1中的终端设备(例如终端设备102、终端设备103或终端设备104),第二通信装置可以是图1中的网络设备101;可选地,第一通信装置和第二通信装置还可以均为终端设备,此时该通信系统支持sidelink通信技术,例如第一通信装置是终端设备102和第二通信装置是终端设备103或终端设备104,或者第一通信装置是终端设备103和第二通信装置是终端设备104或终端设备102等。
图3示出了本申请调制编码方法的一例示意性流程图。
S310,第一通信装置根据第一调制方式对第一比特信息进行调制编码,得到第二比特信息,第一调制方式包括将第一比特信息在频域上进行映射,得到第三比特信息,将第三比特信息与第一比特信息组成比特对,对比特对进行QPSK调制编码得到第二比特信息。
其中,映射包括但不限于循环移位或者其他典型的映射方式,例如一对一映射、一对多映射、多对一映射等。
其中,将第一比特信息在频域上进行映射,具体可以包括:根据第一通信装置发送所述第二比特信息的发送模式,将第一比特信息在频域上进行循环移位。
可选的,第一比特信息包括M个比特信息,M为正整数。作为第一种可能的实现方式,将第一比特信息在频域上进行循环位移具体可以包括:将M个比特信息按照连续的方式在频域上进行循环移位。例如,图4所示,在一个正交频分复用(orthogonal frequency divisition multiplexing,OFDM)符号内的一个用户的资源单元(resource unit,RU)内,相对于传统的BPSK调制,本申请所提供的第一调制方式将该用户的所有比特信息在频域上进行循环移位,即在一个比特序列中,b(0)、b(1)、b(2)等相邻,b(n)、b(n+1)、b(n+2)等相邻,每个子载波上循环移位后的比特同原始比特合并进行QPSK调制。作为第二种可能的实现方式,将第一比特信息在频域上进行循环位移具体可以包括:将M个比特信息按照间隔N个比特信息的方式在频域上进行循环位移,N为小于M的正整数。例如,如图5所示,在一个OFDM符号内的一个用户的RU内,相对于传统的BPSK调制,本申请所提供的第一调制方式将该用户的比特信息按照间隔1个比特信息在频域上进行循环移位,即在一个比特序列中,b(0)、b(2)、b(4)等相邻,b(1)、b(3)、b(5)等相邻,每个子载波上循环移位后的比特同原始比特合并进行QPSK调制。这样做,针对于在CSD场景下,频域衰落成周期的特点,可以降低邻近的比特信息均落入深衰子载波,提升调制编码的性能。
应理解,上述间隔1个比特信息只是一种可能的示例,在实际应用中可以根据不同的资源配置情况,间隔不同个数的比特信息,包括但不限于间隔1个比特信息、间隔2个比特信息等等。
S320,第一通信装置发送第二比特信息。
对应的,第二通信装置接收第二比特信息,并根据第一调制方式对第二比特信息进行解调处理,得到第一比特信息。
如图6所示,在本申请所提供的调制编码的方法中,在常规的信道编码、交织/低密度奇偶校验码(low density parity check code,LDPC)子载波映射之后,发送端设备(即第一通信装置)只需要在调制编码(modulation)时将对应用户的比特信息在频域上进行映射,然后与原始比特信息组成比特对,调用QPSK调制,随后施加常规的反向快速傅里叶变换(inverse fast fourier transform,IFFT)以及其他发送配置即可。接收端设备(即第二通信装置)只需要在常规的接收解码过程中新增按照QPSK进行多输入多输出(multiple input multiple output,MIMO)解调,且在对数似然比(log likelihood ratio,LLR)(可称为软信息比特)之后反向操作(demap),对LLR软信息进行合并即可。
可选的,第一通信装置还可以发送指示信息,指示信息用于指示第一调制方式。对应的,第二通信装置接收指示信息,并根据指示信息获取第一调制方式。其中,指示信息可以是一个字段或者信令, 第一通信装置通过该字段或者信令向第二通信装置指示第一调制方式。
其中,在通过指示信息指示第一调制方式之前,第一通信装置和第二通信装置需要首先交互能力信息,确认均支持增强的调制编码策略(包括第一调制方式)。具体的,第一通信装置可以通过关联请求帧(Association Request frame format)或重关联请求帧(Association Request frame format)中的“Extended Capabilities”(拓展能力)进行增强调制编码能力指示。其中,Extend Capabilities element(元素)中有的Reserved bit(保留比特)可以扩展为增强调制编码能力指示。例如,Extend Capabilities element携带有关第一通信装置的能力的信息,具体的可如下表3或表4通过能力信息字段(Extend Capabilities)指示指定的能力,其中,“Octets”表示因特网标准使用的八位组,“Element ID”用于表示该元素的ID,“Length”用于表示长度,“Extend Capabilities”可以用于指示第一发送装置的指定的能力(例如,增强的调制编码策略,包括第一调制方式),“The Extended Capabilities element is present if any of the fields inthis element are nonzero”即如果该元素中的任何字段为非零,则存在扩展功能元素。又例如,还可以如表5所示,该表格中存在“Reserved bit”(保留比特),因此可通过“Reserved bit”指示指定的能力(例如,增强的调制编码策略,包括第一调制方式)。
表3第一通信装置能力信息可能的指示方式
表4第一通信装置能力信息可能的指示方式
表5第一通信装置能力信息可能的指示方式
应理解,上述以第一通信装置为例,对第一通信装置能力信息可能的指示方式进行了介绍。对应的,第二通信装置也可以通过相同的方式,对第二通信装置的能力信息进行指示。
在第一通信装置和第二通信装置交换能力信息均指示支持增强的调制编码策略(包括第一调制方式)后,可在接下来的信息传输中进行对应调制编码方式的发送和接收。其中,第一通信装置向第二通信装置指示第一调制方式可以由如下三种方式:
方式1:将U-SIG的字段进行拓展,用于指示第一调制方式。具体的,如下表6和表7所示,通过U-SIG中的Disregard bit(忽视比特)或Validate bit(检验比特),例如U-SIG1中的B20-B24、B25;U-SIG2中的B2、B8)指示第一调制方式。在该方式中,对以太网(ethernet,ETH)帧进行统一指示,不区分用户,当该bit为0(或1)时,指示当MCS为MCS 0(或MCS 1)时为第一调制方式。
表6通过B20-B24、B25指示第一调制方式
表7通过B2、B8指示第一调制方式
方式2:将EHT-SIG的字段进行拓展,用于指示第一调制方式。具体的,如下表8和表9中所示,通过EHT-SIG中common field中的Disregard bit,例如B13-B16指示第一调制方式。在该方式中,对以太网(ethernet,ETH)帧进行统一指示,不区分用户,当该bit为0(或1)时,指示当MCS为MCS0(或MCS 1)时为第一调制方式。
表8通过B13-B16指示第一调制方式的示例1
表9通过B13-B16指示第一调制方式的示例2
方式3:将EHT-SIG的字段进行拓展,用于指示第一调制方式。具体的,如下表10中所示,通过EHT-SIG中User field中的Reserved bit(保留比特)进行指示,例如B15指示第一调制方式,该方案区分用户,只支持非多用户多输入多输出(non multi-user multiple-input multiple-output,non-MU-MIMO),当该bit为0(或1)时,指示当MCS为MCS 0(或MCS 1)时为第一调制方式。
表10通过B15指示第一调制方式
应理解,上述列举的几种指示方式仅作为示例,不应作为对本申请技术方案的限定,本领域人员可知,通过其他信令或字段的方式均可以指示第一调制方式。
还应理解,上述图4和图5所示的两种可能的循环移位方式对应不同的第一调制方式,在进行指示时,可以采用不同的指示方式加以区分,例如,在表6所示的指示方式中,可以通过MCS 20(通过B20拓展得到)指示图4所示的第一调制方式,通过MCS 25(通过B25拓展得到)指示图5所示的第一调制方式;又例如,在表7所示的指示方式中,可以通过MCS 2(通过B2拓展得到)指示图4所示的第一调制方式,通过MCS 8(通过B8拓展得到)指示图5所示的第一调制方式。
根据本申请的技术方案,将用户的比特信息在频域上进行映射后,与原始比特信息组成比特对,调用正交相移键控调制,有助于在不增加额外资源的同时,提升调制编码的性能。本申请的技术方案,能够提升WIFI产品覆盖能力和低信噪比下的吞吐量(CSD和衰落信道场景约有2dB的增益),方案简单,基本不需要增加资源。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,本申请上述实施例中,由通信设备实现的方法,也可以由可配置于通信设备内部的部件(例如芯片或者电路)实现。
以下,结合图7和图8详细说明本申请实施例提供的调制编码装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,部分内容不再赘述。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申 请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图7是本申请提供的调制编码设备700的一例示意性框图。上述方法300和方法400中任一方法所涉及的任一设备,如第一通信装置和第二通信装置等都可以由图7所示的调制编码设备来实现。
应理解,调制编码设备700可以是实体设备,也可以是实体设备的部件(例如,集成电路,芯片等等),还可以是实体设备中的功能模块。
如图7所示,该调制编码设备700包括:一个或多个处理器710。可选地,处理器710中可以调用接口实现接收和发送功能。所述接口可以是逻辑接口或物理接口,对此不作限定。例如,接口可以是收发电路,输入输出接口,或是接口电路。用于实现接收和发送功能的收发电路、输入输出接口或接口电路可以是分开的,也可以集成在一起。上述收发电路或接口电路可以用于代码/数据的读写,或者,上述收发电路或接口电路可以用于信号的传输或传递。
可选地,接口可以通过收发器实现。可选地,该调制编码设备700还可以包括收发器730。所述收发器730还可以称为收发单元、收发机、收发电路等,用于实现收发功能。
可选地,该调制编码设备700还可以包括存储器720。本申请实施例对存储器720的具体部署位置不作具体限定,该存储器可以集成于处理器中,也可以是独立于处理器之外。对于该调制编码装置700不包括存储器的情形,该调制编码设备700具备处理功能即可,存储器可以部署在其他位置(如,云系统)。
处理器710、存储器720和收发器730之间通过内部连接通路互相通信,传递控制和/或数据信号。
可以理解的是,尽管并未示出,调制编码设备700还可以包括其他装置,例如输入装置、输出装置、电池等。
可选地,在一些实施例中,存储器720可以存储用于执行本申请实施例的方法的执行指令。处理器710可以执行存储器720中存储的指令结合其他硬件(例如收发器730)完成下文所示方法执行的步骤,具体工作过程和有益效果可以参见上文方法实施例中的描述。
本申请实施例揭示的方法可以应用于处理器710中,或者由处理器710实现。处理器710可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的指令,结合其硬件完成上述方法的步骤。
可以理解,存储器720可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器ROM、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器RAM,其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图8是本申请提供的调制编码装置800的示意性框图。
可选地,所述调制编码装置800的具体形态可以是通用计算机设备或通用计算机设备中的芯片,本申请实施例对此不作限定。如图8所示,该调制编码装置包括处理单元810和收发单元820。
具体而言,调制编码装置800可以是本申请涉及的任一设备,并且可以实现该设备所能实现的功能。应理解,调制编码装置800可以是实体设备,也可以是实体设备的部件(例如,集成电路,芯片等等),还可以是实体设备中的功能模块。
在一种可能的设计中,该调制编码装置800可以是上文方法实施例中的第一通信装置,也可以是用于实现上文方法实施例中第一通信装置的功能的芯片。
作为一种示例,该通信装置用于执行上文图3中第一通信装置所执行的动作,收发单元820用于执行S420,处理单元810用于执行S410。
例如,处理单元810,用于根据第一调制方式对第一信息比特进行调制编码,得到第二信息比特,第一调制方式包括将第一信息比特在频域上进行映射,得到第三信息比特,将第三信息比特与第一信息比特组成比特对,对比特对进行QPSK调制编码得到第二信息比特;收发单元520,用于发送第二信息比特。
可选的,处理单元810,具体用于根据第一通信装置发送所述第二信息比特的发送模式,将第一信息比特在频域上进行循环移位。
可选的,第一信息比特包括M个信息比特,M为正整数,处理单元810具体用于将M个信息比特按照连续的方式在频域上进行循环移位。
可选的,第一信息比特包括M个信息比特,M为正整数,处理单元810具体用于将M个信息比特按照间隔N个信息比特的方式在频域上进行循环位移,N为小于M的正整数。
可选的,收发单元820还用于发送指示信息,指示信息用于指示第一调制方式。
可选的,指示信息承载于丢弃比特(Disregard bit)、校验比特(Validate bit)或保留比特(Reserved bit)。
可选的,指示信息包括调制编码策略MCS。
可选的,收发单元820还用于接收第二通信装置的能力信息,能力信息用于指示第二通信装置支持第一调制方式。
还应理解,该调制编码装置800为第一通信装置时,该调制编码装置800中的收发单元820可通过通信接口(如收发器或输入/输出接口)实现,该调制编码装置800中的处理单元810可通过至少一个处理器实现,例如可对应于图7中示出的处理器710。
可选地,调制编码装置800还可以包括存储单元,该存储单元可以用于存储指令或者数据,处理单元可以调用该存储单元中存储的指令或者数据,以实现相应的操作。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
在另一种可能的设计中,该调制编码装置800可以是上文方法实施例中的第二通信装置,也可以是用于实现上文方法实施例中第二通信装置功能的芯片。
作为一种示例,该通信装置用于执行上文图4中第二通信装置所执行的动作。
例如,收发单元820用于接收第二信息比特;处理单元810用于根据第一调制方式对第二信息比特进行解调处理,得到第一信息比特,第一调制方式包括将第一信息比特在频域上进行映射,得到第三信息比特,将第三信息比特与第一信息比特组成比特对,对比特对进行正交相移键控QPSK调制编码得到第二信息比特。
可选的,第三信息比特是根据第一通信装置发送第二信息比特的发送模式对第一信息比特在频域上进行循环移位得到的。
可选的,第一信息比特包括M个信息比特,M为正整数,第三信息比特是将M个信息比特按照连续的方式在频域上进行循环移位得到的。
可选的,第一信息比特包括M个信息比特,M为正整数,第三信息比特是将M个信息比特按照间隔N个信息比特的方式在频域上进行循环位移得到的,N为小于M的正整数。
可选的,收发单元820还用于接收指示信息,指示信息用于指示第一调制方式。
可选的,指示信息承载于丢弃比特(Disregard bit)、校验比特(Validate bit)或保留比特(Reserved bit)。
可选的,指示信息包括调制编码策略MCS。
可选的,收发单元820还用于发送能力信息,能力信息用于指示第二通信装置支持第一调制方式。
还应理解,该调制编码装置800为第二通信装置时,该调制编码装置800中的收发单元820可通过通信接口(如收发器或输入/输出接口)实现,例如可对应于图7中示出的通信接口,该调制编码装置800中的处理单元810可通过至少一个处理器实现,例如可对应于图7中示出的处理器710。
可选地,调制编码装置800还可以包括存储单元,该存储单元可以用于存储指令或者数据,处理单元可以调用该存储单元中存储的指令或者数据,以实现相应的操作。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
另外,在本申请中,调制编码装置800是以功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路ASIC、电路、执行一个或多个软件或固件程序的处理器和存储器、集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到装置800可以采用图8所示的形式。处理单元810可以通过图7所示的处理器710来实现。可选地,如果图7所示的计算机设备包括存储器720,处理单元810可以通过处理器710和存储器720来实现。收发单元820可以通过图7所示的收发器730来实现。所述收发器730包括接收功能和发送功能。具体的,处理器通过执行存储器中存储的计算机程序来实现。可选地,当所述装置800是芯片时,那么收发单元820的功能和/或实现过程还可以通过管脚或电路等来实现。可选地,所述存储器可以为所述芯片内的存储单元,比如寄存器、缓存等,所述存储单元还可以是调制编码装置内的位于所述芯片外部的存储单元,如图7所的存储器720,或者,也可以是部署在其他系统或设备中的存储单元,不在所述计算机设备内。
本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,能够存储、包含和/或承载指令和/或数据的各种其它介质。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序或一组指令,当该计算机程序或一组指令在计算机上运行时,使得该计算机执行图3所示实施例中任意一个可能的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读介质存储有程序或一组指令,当该程序或一组指令在计算机上运行时,使得该计算机执行图3所示实施例中任意一个可能的方法。
根据本申请实施例提供的方法,本申请还提供一种通信系统,其包括前述的装置或设备。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还应理解,本申请实施例中引入编号“第一”、“第二”等只是为了区分不同的对象,比如,区分不同的“信息”,或,“设备”,或,“单元”,对具体对象以及不同对象间的对应关系的理解应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还应理解,本申请实施例中引入编号“第一”、“第二”等只是为了区分不同的对象,比如,区分不同的“信息”,或,“设备”,或,“单元”,对具体对象以及不同对象间的对应关系的理解应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种调制编码的方法,其特征在于,包括:
    第一通信装置根据第一调制方式对第一比特信息进行调制编码,得到第二比特信息,所述第一调制方式包括将第一比特信息在频域上进行映射,得到第三比特信息,将所述第三比特信息与所述第一比特信息组成比特对,对所述比特对进行正交相移键控QPSK调制编码得到所述第二比特信息;
    所述第一通信装置发送所述第二比特信息。
  2. 根据权利要求1所述的方法,其特征在于,所述将第一比特信息在频域上进行映射,包括:
    根据所述第一通信装置发送所述第二比特信息的发送模式,将所述第一比特信息在频域上进行循环移位。
  3. 根据权利要求2所述的方法,其特征在于,所述第一比特信息包括M个比特信息,所述M为正整数,
    所述将第一比特信息在频域上进行循环移位,包括:
    将所述M个比特信息按照连续的方式在频域上进行循环移位。
  4. 根据权利要求2所述的方法,其特征在于,所述第一比特信息包括M个比特信息,所述M为正整数,
    所述将第一比特信息在频域上进行循环移位,包括:
    将所述M个比特信息按照间隔N个比特信息的方式在频域上进行循环位移,所述N为小于M的正整数。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置发送指示信息,所述指示信息用于指示所述第一调制方式。
  6. 根据权利要求5所述的方法,其特征在于,所述指示信息承载于丢弃比特、校验比特或保留比特。
  7. 根据权利要求5或6所述的方法,其特征在于,所述指示信息包括调制编码策略MCS。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置接收所述第二通信装置的能力信息,所述能力信息用于指示所述第二通信装置支持所述第一调制方式。
  9. 一种调制编码的方法,其特征在于,包括:
    第二通信装置接收第二比特信息;
    所述第二通信装置根据第一调制方式对所述第二比特信息进行解调处理,得到第一比特信息,所述第一调制方式包括将第一比特信息在频域上进行映射,得到第三比特信息,将所述第三比特信息与所述第一比特信息组成比特对,对所述比特对进行正交相移键控QPSK调制编码得到所述第二比特信息。
  10. 根据权利要求9所述的方法,其特征在于,所述第三比特信息是根据第一通信装置发送所述第二比特信息的发送模式对所述第一比特信息在频域上进行循环移位得到的。
  11. 根据权利要求10所述的方法,其特征在于,所述第一比特信息包括M个比特信息,所述M为正整数,所述第三比特信息是将所述M个比特信息按照连续的方式在频域上进行循环移位得到的。
  12. 根据权利要求10所述的方法,其特征在于,所述第一比特信息包括M个比特信息,所述M为正整数,所述第三比特信息是将所述M个比特信息按照间隔N个比特信息的方式在频域上进行循环位移得到的,所述N为小于M的正整数。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置接收指示信息,所述指示信息用于指示所述第一调制方式。
  14. 根据权利要求13所述的方法,其特征在于,所述指示信息承载于丢弃比特、校验比特或保留比特。
  15. 根据权利要求13或14所述的方法,其特征在于,所述指示信息包括调制编码策略MCS。
  16. 根据权利要求9至15中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置发送能力信息,所述能力信息用于指示所述第二通信装置支持所述第一调制方式。
  17. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机程序或指令;
    处理器,用于执行所述存储器中存储的计算机程序或指令,使得所述通信装置执行如权利要求1至8中任一项所述的方法,或者,
    使得所述通信装置执行如权利要求9至16中任一项所述的方法。
  18. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序或指令,所述计算机程序或指令被通信装置执行时,使得如权利要求1至16中任一项所述方法被执行。
  19. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得如权利要求1至16中任一项所述方法被执行。
  20. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序或指令,使得安装有所述芯片系统的通信装置实现如权利要求1至16中任一项所述的方法。
PCT/CN2023/103740 2022-07-08 2023-06-29 调制编码的方法和装置 WO2024007937A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210801533.4 2022-07-08
CN202210801533 2022-07-08
CN202211476283.8 2022-11-23
CN202211476283.8A CN117376071A (zh) 2022-07-08 2022-11-23 调制编码的方法和装置

Publications (1)

Publication Number Publication Date
WO2024007937A1 true WO2024007937A1 (zh) 2024-01-11

Family

ID=89404729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103740 WO2024007937A1 (zh) 2022-07-08 2023-06-29 调制编码的方法和装置

Country Status (2)

Country Link
CN (1) CN117376071A (zh)
WO (1) WO2024007937A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120027122A1 (en) * 2009-04-16 2012-02-02 Maxim Belotserkovsky Apparatus and method for encoding a signal
CN108574560A (zh) * 2017-03-13 2018-09-25 华为技术有限公司 一种编码方法、译码方法、装置和设备
CN108809880A (zh) * 2018-04-23 2018-11-13 东南大学 一种低复杂度的mimo-fbmc系统数据收发方法及装置
CN109690989A (zh) * 2016-09-21 2019-04-26 高通股份有限公司 传达信息加上对传输时间的指示
CN110233813A (zh) * 2019-06-11 2019-09-13 东南大学 一种改进的高阶qam调制发送方法
CN110868280A (zh) * 2018-08-28 2020-03-06 北京三星通信技术研究有限公司 数据发送方法、数据接收方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120027122A1 (en) * 2009-04-16 2012-02-02 Maxim Belotserkovsky Apparatus and method for encoding a signal
CN109690989A (zh) * 2016-09-21 2019-04-26 高通股份有限公司 传达信息加上对传输时间的指示
CN108574560A (zh) * 2017-03-13 2018-09-25 华为技术有限公司 一种编码方法、译码方法、装置和设备
CN108809880A (zh) * 2018-04-23 2018-11-13 东南大学 一种低复杂度的mimo-fbmc系统数据收发方法及装置
CN110868280A (zh) * 2018-08-28 2020-03-06 北京三星通信技术研究有限公司 数据发送方法、数据接收方法和装置
CN110233813A (zh) * 2019-06-11 2019-09-13 东南大学 一种改进的高阶qam调制发送方法

Also Published As

Publication number Publication date
CN117376071A (zh) 2024-01-09

Similar Documents

Publication Publication Date Title
US10924211B2 (en) Non-orthogonal data transmission method and device
WO2017000291A1 (zh) 传输上行数据的方法和设备
WO2018053692A1 (zh) 数据传输方法、装置及系统
US20230224083A1 (en) Data transmission method and apparatus
WO2021018209A1 (zh) 一种dmrs端口指示方法及装置
WO2017000900A1 (zh) 传输信息的方法和设备
WO2018228522A1 (zh) 发送参考信号的方法、接收参考信号的方法和通信装置
WO2022036529A1 (zh) 一种相位跟踪参考信号的发送方法、接收方法及通信装置
WO2023078358A1 (zh) 通信的方法和装置
CN115380588A (zh) 信息传输方法及装置
WO2023016359A1 (zh) 一种通信方法及通信装置
WO2024007937A1 (zh) 调制编码的方法和装置
WO2022228117A1 (zh) 一种确定ptrs图案的方法和装置
US11258533B2 (en) Joint transmission method and apparatus
WO2022141106A1 (zh) 重复传输数据信道的方法和设备
JP2023517603A (ja) データ伝送方法及び関連機器
WO2019191911A1 (zh) 数据传输的方法和设备
WO2023284647A1 (zh) 信息传输的方法和装置
WO2022001781A1 (zh) 无线通信方法和通信装置
WO2023207271A1 (zh) 一种信号传输方法及装置
US20220329379A1 (en) Signal sending method, signal receiving method, and apparatus
WO2022206271A1 (zh) 一种确定资源的方法和装置
WO2024061076A1 (zh) 侧行链路通信的方法及装置
WO2024092575A1 (zh) 通信方法及相关装置
WO2023011008A1 (zh) 一种加扰、解扰方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834704

Country of ref document: EP

Kind code of ref document: A1