WO2022206634A1 - 一种相位噪声的确定方法及相关装置 - Google Patents

一种相位噪声的确定方法及相关装置 Download PDF

Info

Publication number
WO2022206634A1
WO2022206634A1 PCT/CN2022/083220 CN2022083220W WO2022206634A1 WO 2022206634 A1 WO2022206634 A1 WO 2022206634A1 CN 2022083220 W CN2022083220 W CN 2022083220W WO 2022206634 A1 WO2022206634 A1 WO 2022206634A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
ptrs
value
interference
communication device
Prior art date
Application number
PCT/CN2022/083220
Other languages
English (en)
French (fr)
Inventor
马千里
费迪南德奴王•苏雷什
黄煌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22778816.3A priority Critical patent/EP4311174A1/en
Publication of WO2022206634A1 publication Critical patent/WO2022206634A1/zh
Priority to US18/474,889 priority patent/US20240022382A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03159Arrangements for removing intersymbol interference operating in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26524Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation
    • H04L27/26526Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation with inverse FFT [IFFT] or inverse DFT [IDFT] demodulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] receiver or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method for determining phase noise and a related device.
  • High frequency (frequency bands above 6G, mainly including 28G, 39G, 60G, 73G, etc.) has become a research and development hotspot in the industry to solve the growing communication needs due to its rich frequency band resources.
  • High frequencies can provide communications with large bandwidth, highly integrated antenna arrays for high throughput.
  • PPN phase noise
  • the phase noise (PHN) problem in the high frequency band is very prominent.
  • the Phase-Tracking Reference Signal (PTRS) is introduced into the high-frequency communication of the fifth generation mobile communication technology (5G), which is used for estimation and compensation of phase noise.
  • 5G fifth generation mobile communication technology
  • the corresponding optimization design of the filter of the receiving device can be carried out.
  • the non-Nyquist filter will introduce intersymbol crosstalk between adjacent symbols in the signal, the introduction of the non-Nyquist filter results in the inability to determine the phase noise effectively.
  • the present application provides a method and a related device for determining phase noise, which can effectively determine the phase noise in a signal.
  • the present application provides a method for determining phase noise.
  • the method includes: acquiring a first signal by a first communication device, where the first signal includes a data signal and K phase tracking reference signals PTRS, wherein the K PTRS
  • the value of the mth PTRS is determined by the value of the first interference, the value of the second interference, and the preset reception value of the mth PTRS
  • the first interference is the code generated by the data signal for the mth PTRS inter-symbol crosstalk
  • the second interference is the inter-symbol crosstalk generated by the PTRS other than the m-th PTRS among the K PTRSs to the m-th PTRS
  • K and m are positive integers, 1 ⁇ m ⁇ K
  • the first communication The device sends a second signal to the second communication device, where the second signal is a signal processed by the baseband signal of the first signal.
  • the K PTRS values in the first signal can be preprocessed, so that under the assumption of no phase noise, the PTRS values received by the receiving end can be determined according to the pre-agreed preset receiving values, The effect of inter-symbol interference on the value of PTRS is eliminated. Since the value of the PTRS received by the actual receiving end is also affected by phase noise, the phase noise can be calculated from the actual received value of the PTRS and the preset received value.
  • the value of the first interference and the value of the second interference are determined based on the receiver type.
  • the first communication apparatus may determine a calculation method for calculating the inter-symbol interference based on the receiver type.
  • the method further includes: the first communication apparatus acquires first indication information sent by the second communication apparatus, the first indication Information is used to indicate the receiver type.
  • the second communication device determines the type of the receiver and informs the first communication device.
  • the method further includes: the first communication apparatus sends second indication information to the second communication apparatus, where the second indication information is used to indicate the receiver type.
  • the first communication device determines the type of the receiver and informs the second communication device.
  • the value of the mth PTRS in the K PTRS is determined by the value of the first interference, the value of the second interference, and the preset reception value of the mth PTRS , including: the value of the mth PTRS is determined by the value of the first interference, the value of the second interference, the preset reception value of the mth PTRS and a first parameter, the first parameter being related to the signal amplitude value of .
  • the requirements on the values of the K PTRSs can be relaxed through the first parameter.
  • the method further includes: the first communication apparatus sends third indication information to the second communication apparatus, where the third indication information is used to indicate the first parameter.
  • the value of the mth PTRS in the K PTRS is determined by the value of the first interference, the value of the second interference, and the preset reception value of the mth PTRS , including: the value of the mth PTRS is determined by the value of the first interference, the value of the second interference, the preset reception value of the mth PTRS, and a second parameter, and the second parameter is related to the signal phase value of .
  • the requirements on the values of the K PTRSs can be relaxed through the second parameter.
  • the method includes: the first communication apparatus sends fourth indication information to the second communication apparatus, where the fourth indication information is used to indicate the second parameter.
  • the present application provides a method for determining phase noise, the method comprising: acquiring a third signal by a second communication device, where the third signal is a signal after introducing phase noise into the second signal sent by the first communication device,
  • the third signal includes a data signal and K phase tracking reference signals PTRS;
  • the second signal is a baseband signal processed signal of the first signal
  • the first signal includes a data signal and K PTRS
  • the first signal The value of the mth PTRS among the K PTRSs in is determined by the value of the first interference, the value of the second interference, and the preset reception value of the mth PTRS
  • the first interference is the data in the first signal
  • the second interference is the inter-symbol cross-talk generated by the PTRS except the m-th PTRS among the K PTRSs in the first signal to the m-th PTRS, K , m are
  • the second communication device determines the phase noise according to the values of K PTRSs in the third signal and the preset received values of K PTRSs in the first signal
  • the method further includes: the second communication device converts the third signal into a first frequency domain signal; the second communication device performs channel equalization on the first frequency domain signal to obtain a second frequency domain signal; the second communication device The receiver preprocesses the second frequency domain signal, and converts the processed second frequency domain signal into a first time domain signal; the second communication device obtains the third signal from the first time domain signal The K PTRS values.
  • the method further includes: the second communication apparatus sends first indication information to the first communication apparatus, where the first indication information is used to indicate the type of the receiver.
  • the second communication device determines the type of the receiver and informs the first communication device.
  • the method further includes: the second communication apparatus obtains second indication information sent by the first communication apparatus, where the second indication information is used to indicate the type of the receiver.
  • the first communication device determines the type of the receiver and informs the second communication device.
  • the method further includes: the second communication device converts the first frequency domain signal into a second time domain signal; the second communication device converts the second time domain signal according to the phase noise The time domain signal is compensated for phase noise.
  • the method further includes: the second communication apparatus receives third indication information sent by the first communication apparatus, where the third indication information is used to indicate the first parameter, the first The parameter is a value related to the signal amplitude; the second communication device determines the phase noise according to the value of K PTRS in the third signal and the preset received value of K PTRS in the first signal, including: second communication The apparatus determines the phase noise according to the values of the K PTRSs in the third signal, the preset received values of the K PTRSs in the first signal, and the first parameter.
  • the method further includes: the second communication device receives fourth indication information sent by the first communication device, where the fourth indication information is used to indicate the second parameter, the second The parameter is a value related to the phase of the signal; the second communication device determines the phase noise according to the value of K PTRS in the third signal and the preset received value of K PTRS in the first signal, including: second communication The apparatus determines the phase noise according to the values of the K PTRSs in the third signal, the preset received values of the K PTRSs in the first signal, and the second parameter.
  • the present application provides a communication device, the communication device includes a transceiver unit and a processing unit, wherein: the transceiver unit is configured to acquire a first signal, where the first signal includes a data signal and K phase tracking reference signals PTRS , wherein the value of the mth PTRS in the K PTRS is determined by the value of the first interference, the value of the second interference, and the preset reception value of the mth PTRS, and the first interference is the data signal to the The intersymbol interference generated by the mth PTRS, the second interference is the intersymbol interference generated by the mth PTRS by PTRSs other than the mth PTRS among the K PTRSs, K and m are positive integers, 1 ⁇ m ⁇ K; the processing unit is configured to perform baseband signal processing on the first signal to obtain a second signal; the transceiver unit is further configured to send the second signal to the second communication device.
  • the transceiver unit is configured to acquire
  • the value of the first interference and the value of the second interference are determined based on a receiver type.
  • the transceiver unit is further configured to: acquire first indication information sent by the second communication apparatus, where the first indication information is used to indicate the receiver type.
  • the transceiver unit is further configured to: send second indication information to the second communication apparatus, where the second indication information is used to indicate the receiver type.
  • the value of the mth PTRS in the K PTRS is determined by the value of the first interference, the value of the second interference, and the preset received value of the mth PTRS , including: the value of the mth PTRS is determined by the value of the first interference, the value of the second interference, the preset reception value of the mth PTRS and the first parameter, the first parameter is related to the signal amplitude value of .
  • the transceiver unit is further configured to: send third indication information to the second communication apparatus, where the third indication information is used to indicate the first parameter.
  • the value of the mth PTRS in the K PTRS is determined by the value of the first interference, the value of the second interference, and the preset received value of the mth PTRS , including: the value of the mth PTRS is determined by the value of the first interference, the value of the second interference, the preset reception value of the mth PTRS and a second parameter, and the second parameter is related to the signal phase value of .
  • the transceiver unit is further configured to: send fourth indication information to the second communication apparatus, where the fourth indication information is used to indicate the second parameter.
  • the present application provides yet another communication device, the communication device includes a transceiver unit and a processing unit, wherein: the transceiver unit is configured to acquire a third signal, where the third signal is a second signal sent by the first communication device The signal after phase noise is introduced into the signal, the third signal includes a data signal and K phase tracking reference signals PTRS; wherein, the second signal is a signal after the baseband signal processing of the first signal, and the first signal includes a data signal and K PTRSs, the value of the mth PTRS among the K PTRSs in the first signal is determined by the value of the first interference, the value of the second interference, and the preset reception value of the mth PTRS, and the first The interference is the inter-symbol crosstalk generated by the data signal in the first signal to the mth PTRS, and the second interference is the PTRS other than the mth PTRS among the K PTRSs in the first signal to the mth PTRS.
  • K, m are positive integers, 1 ⁇ m ⁇ K; the processing unit is configured to, according to the values of the K PTRSs in the third signal and the values of the K PTRSs in the first signal, A preset received value determines this phase noise.
  • the processing unit is further configured to: convert the third signal into a first frequency domain signal; perform channel equalization on the first frequency domain signal to obtain a second frequency domain signal signal; preprocess the second frequency domain signal based on the receiver, and convert the processed second frequency domain signal into a first time domain signal; obtain K in the third signal from the first time domain signal value of PTRS.
  • the transceiver unit is further configured to: send first indication information to the first communication apparatus, where the first indication information is used to indicate the type of the receiver.
  • the transceiver unit is further configured to: acquire second indication information sent by the first communication device, where the second indication information is used to indicate the type of the receiver.
  • the processing unit is further configured to: convert the first frequency domain signal into a second time domain signal; perform phase noise on the second time domain signal according to the phase noise compensation.
  • the transceiver unit is further configured to: acquire third indication information sent by the first communication device, where the third indication information is used to indicate a first parameter, and the first parameter is A value related to the signal amplitude; the processing unit is specifically configured to: determine the phase noise according to the values of the K PTRSs in the third signal, the preset received values of the K PTRSs in the first signal, and the first parameter .
  • the transceiver unit is further configured to: acquire fourth indication information sent by the first communication device, where the fourth indication information is used to indicate a second parameter, and the second parameter is a value related to the phase of the signal; the processing unit is specifically configured to: determine the phase noise according to the value of K PTRS in the third signal, the preset received value of K PTRS in the first signal, and the second parameter .
  • the present application provides yet another communication device, comprising a processor coupled with a memory; the memory for storing program codes; the processor for calling the program codes from the memory to execute such as The method described in the foregoing first aspect or any possible implementation manner of the first aspect; or the method described in the foregoing second aspect or any possible implementation manner of the second aspect is performed.
  • the present application provides another communication device, the communication device includes a logic circuit and an input-output interface, the input-output interface is used for inputting a first signal; the input-output interface is also used for outputting a second signal; the logic The circuit is configured to process the first signal and the second signal, and to perform the method as described in the above first aspect or any possible implementation manner of the first aspect.
  • the present application provides yet another communication device, the communication device includes a logic circuit and an input-output interface, where the input-output interface is used for inputting a third signal; the logic circuit is used for processing the third signal, and executing A method as described in the above second aspect or any possible implementation manner of the second aspect.
  • the present application provides a computer-readable storage medium, where the computer-readable storage medium is used to store an instruction, and when the instruction is executed, the first aspect or any possible implementation manner of the first aspect is as described above.
  • the described method; or the method described in the above second aspect or any possible implementation manner of the second aspect is implemented.
  • the present application provides a computer program product, the computer program product includes a computer program or an instruction, when the computer program or instruction is run on a computer, the computer executes the first aspect or any one of the first aspect.
  • the signal transmitter may preprocess the K PTRS values in the first signal, so that under the assumption of no phase noise, the PTRS values received by the signal receiver can
  • the agreed preset reception value is determined to eliminate the influence of inter-symbol interference on the value of PTRS. Since the K PTRS values in the third signal received by the actual receiving end are also affected by phase noise, the receiving end may calculate the phase noise according to the actual received values and the preset received values of the K PTRSs.
  • FIG. 1 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a processing flow of a DFT-s-OFDM technology provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a processing flow of a DFT-s-OFDM with FDSS technology provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of a processed signal in a Nyquist filter provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a processed signal in a non-Nyquist filter provided by an embodiment of the present application.
  • FIG. 6 is a flowchart of a method for determining phase noise provided by an embodiment of the present application.
  • Block-PTRS of some DFT-s-OFDM signals provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a first communication device generating a second signal according to an embodiment of the present application
  • FIG. 9 is a schematic flowchart of a second communication device processing a third signal according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a PTRS with adjustable amplitude provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a phase-adjustable PTRS provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • the embodiments of the present application can be applied to the network architecture shown in FIG. 1 .
  • the network architecture shown in FIG. 1 is the network architecture of a wireless communication system.
  • the network architecture usually includes terminal equipment and network equipment. Limitations of application examples.
  • a single carrier may be used for communication between the terminal device and the network device.
  • the wireless communication systems mentioned in the embodiments of the present application include, but are not limited to, the Internet of Things (Internet of Things, IoT), the Long Term Evolution (LTE), the fifth-generation mobile communication (5th- generation, 5G) system, sixth generation mobile communication (6th-generation, 6G) system and future mobile communication system.
  • the technical solutions of the embodiments of the present application may also be applied to a wireless local area network (Wireless Local Area Network, WLAN) network, a Vehicle-to-X (V2X) network, and a Non-terrestrial networks (NTN), satellites and high-altitude platforms (HAP), enhanced Internet of Things (LTE enhanced MTO, eMTC), and can also be applied to other networks.
  • the technical solutions of the embodiments of the present application may also be applied to the integration of communication radars, terahertz, and higher frequency communication systems, etc., which are not specifically limited in this application.
  • the network device involved in the embodiments of the present application may be a base station (Base Station, BS).
  • the base station may provide communication services to multiple terminal devices, and multiple base stations may also provide communication services to the same terminal device.
  • a base station is a device deployed in a wireless access network to provide a wireless communication function for a terminal device.
  • the base station equipment can be a base station, a relay station or an access point.
  • the base station may be an eNB or an eNodeB (Evolutional NodeB) in Long Term Evolution (Long Term Evolution, LTE).
  • the base station device may also be a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN) scenario.
  • CRAN Cloud Radio Access Network
  • the base station equipment may also be the base station equipment in the future 5G network or the network equipment in the future evolved PLMN network.
  • the base station device may also be a wearable device or a vehicle-mounted device.
  • the apparatus for implementing the function of the network device may be a network device; it may also be an apparatus capable of supporting the network device to implement the function, such as a chip system, and the apparatus may be installed in the network device.
  • the terminal device involved in the embodiments of the present application may also be referred to as a terminal, which may be a device with a wireless transceiver function.
  • the terminal devices involved in the embodiments of the present application may include various user equipment (UE) with wireless communication functions, access terminals, UE units, UE stations, mobile stations, mobile stations, remote stations, and remote terminals , mobile device, UE terminal, terminal, wireless communication device, UE proxy or UE device, etc.
  • UE user equipment
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, unmanned aerial vehicles (or simply drones) (unmanned aerial vehicles/drones, UVA), in-vehicle devices, wearable devices, in future 5G networks terminal equipment or terminal equipment in the future evolved PLMN network, etc.
  • the device for realizing the function of the terminal may be a terminal; it may also be a device capable of supporting the terminal to realize the function, such as a chip system, and the device may be installed in the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the embodiments of the present application can be applied to a device to device (device to device, D2D) system, a machine to machine (machine to machine, M2M) system, a vehicle to everything (V2X) system in which a vehicle communicates with anything, and the like.
  • D2D device to device
  • M2M machine to machine
  • V2X vehicle to everything
  • the embodiments of the present application may be applied to next-generation microwave scenarios, NR-based microwave scenarios, or integrated access backhaul (IAB) scenarios, and the like.
  • next-generation microwave scenarios NR-based microwave scenarios
  • IAB integrated access backhaul
  • the embodiments of the present application can be applied to an uplink transmission scenario, that is, a scenario in which a terminal device sends an uplink signal to a network device; and can also be applied to a downlink transmission scenario, that is, a scenario in which the network device sends a downlink signal to a terminal device.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • Peak to average power ratio Peak to average power ratio
  • the wireless signal observed in the time domain is a sine wave with changing amplitude, and the amplitude is not constant.
  • the peak amplitude of the signal in one cycle is different from the peak amplitude in other cycles, so the average power and peak power of each cycle are Different.
  • the peak power is the maximum transient power that occurs with a certain probability, usually the probability is taken as 0.01% (ie 10 ⁇ -4).
  • the ratio of the peak power at this probability to the total average power of the system is PAPR.
  • a power amplifier To transmit the signal of the wireless communication system to a distant place, power amplification is required. Due to the limitation of technology and equipment cost, a power amplifier often only amplifies linearly in a range, and if it exceeds this range, it will cause signal distortion. Signal distortion can cause the receiving end receiving the signal to be unable to parse the signal correctly. In order to ensure that the peak value of the signal is still within the linear range of the power that the power amplifier can normally amplify, the average power of the transmitted signal must be reduced. In this way, the efficiency of the power amplifier will be low, or equivalently, the coverage will be reduced.
  • the orthogonal frequency division multiplexing (OFDM) signal on a certain carrier is embodied as a sinc function, there will be tails on the left and right sides.
  • the tails of multiple carriers may be superimposed at a distance to form a point with high peak power under a certain probability, that is to say, the use of OFDM waveforms is likely to cause the problem of excessive PAPR.
  • a single carrier has a lower PAPR than an OFDM waveform, and the present invention considers a scenario where a single carrier-based waveform is used to transmit data.
  • Single carrier includes but is not limited to the following waveforms: single carrier-quadrature amplitude modulation (SC-QAM) waveform, single carrier-offset quadrature amplitude modulation (SC- OQAM) waveform; DFT-s-OFDM waveform, adopting orthogonal frequency division multiplexing (discrete fourier transform spread orthogonal frequency division multiplexing, DFT-s-OFDM with FTSS) waveform based on single carrier transform extension, carrying real and imaginary parts separated DFT-s-OFDM signal, DFT-s-OFDM signal carrying pulse amplitude modulation (PAM) constellation, DFT-S-OFDM signal carrying real and imaginary part separation of additive filter, carrying DFT-s-OFDM signal of PAM constellation additive filter; unique word discrete fourier transform spreading OFDM (uw-DFT-s-OF
  • DFT-s-OFDM is a single-carrier waveform technology based on the OFDM implementation architecture. Under the same amplifier, DFT-s-OFDM waveform can provide greater output power and higher power amplifier efficiency than OFDM waveform, which can improve coverage and reduce energy consumption.
  • the frequency band of high-frequency communication can be 24250MHz to 52600MHz in the NR system, it can also be the frequency band above 52600MHz supported by the subsequent evolution of the NR system, or it can also be a higher frequency band of the next generation communication system, such as terahertz (THz) frequency band.
  • THz terahertz
  • the DFT-s-OFDM technology has an additional discrete Fourier transform (discrete Fourier transform, DFT) processing before the OFDM processing process, so the DFT-s-OFDM technology can also be called a linear precoding OFDM technology.
  • DFT discrete Fourier transform
  • FIG. 2 it is a schematic diagram of a processing flow of a DFT-s-OFDM technology provided by an embodiment of the present application.
  • the transmitter performs serial-to-parallel conversion, N-point discrete Fourier transform (DFT), sub-carrier mapping, and M-point inverse discrete Fourier transform on the discrete sequence in the time domain.
  • Fourier transform (IDFT) parallel-to-serial (parallel-to-serial) conversion, adding cyclic prefix (CP) and digital to analog converter (DAC) processing, and then send through the antenna port and channel (channel) Signal.
  • IDFT discrete Fourier transform
  • CP cyclic prefix
  • DAC digital to analog converter
  • the receiving end When the receiving end receives the signal through the channel and the antenna port, it sequentially performs analog-to-digital conversion (ADC), cyclic prefix removal, serial-to-parallel conversion, M-point DFT, and subcarrier removal. Mapping, N-point IDFT, and parallel-to-serial conversion to obtain time-domain discrete sequences.
  • ADC analog-to-digital conversion
  • cyclic prefix removal cyclic prefix removal
  • serial-to-parallel conversion serial-to-parallel conversion
  • M-point DFT Serial-to-parallel conversion
  • subcarrier removal subcarrier removal
  • the sender can obtain the frequency-domain sequence of the discrete sequence in the time-domain through N-point DFT.
  • the frequency domain sequence subcarriers are mapped and input to IDFT, and M-point IDFT is performed, N ⁇ M. Since the length of IDFT is greater than that of DFT, the part with more IDFT is filled with zeros when input. After IDFT, adding a cyclic prefix can avoid symbol interference.
  • DFT-s-OFDM Compared with OFDM, DFT-s-OFDM has a lower PAPR, which can improve the power transmission efficiency of mobile terminals, prolong battery life, and reduce terminal costs.
  • Orthogonal frequency division multiplexing with frequency domain shaping (discrete fourier transform spread orthogonal frequency division multiplexing with frequency domain spectrum shaping, DFT-s-OFDM with FDSS)
  • DFT-s-OFDM with FDSS waveform is a special DFT-s-OFDM waveform. Compared with DFT-s-OFDM, DFT-s-OFDM with FDSS technology adds a frequency domain shaping operation.
  • FIG. 3 it is a schematic diagram of a processing flow of a DFT-s-OFDM with FDSS technology provided by an embodiment of the present application.
  • the transmitter performs discrete Fourier transform (DFT), frequency domain spectrum shaping (FDSS), subcarrier mapping (subcarrier mapping), and fast Fourier inverse on the modulated signal in turn.
  • Transform inversefast Fourier transform, IFFT
  • add cyclic prefix cyclic prefix, CP
  • the DFT-S-OFDM with FDSS technology makes an additional spectrum copy after DFT, and then uses a filter to process the copied signal to achieve the effect of frequency domain shaping. Due to the frequency domain shaping, the waveform equivalent to the time domain is changed from the Sinc waveform of DFT-S-OFDM to another waveform with a more limited time length/lower sideband envelope, thereby further reducing the DFT-
  • the PAPR of the S-OFDM waveform is an alternative waveform technology for future mobile communications (6G+) and high-frequency scenarios.
  • a filter is a filter circuit composed of capacitors, inductors and resistors.
  • the filter can effectively filter the frequency point of a specific frequency in the power line or the frequency other than the frequency point to obtain a signal of a specific frequency, or to eliminate a signal of a specific frequency. Using this frequency selection function of the filter, the interference noise in the signal can be filtered out or the spectrum analysis can be performed.
  • the filters can be mainly divided into Nyquist filters and non-Nyquist filters.
  • Nyquist filter The definition of the Nyquist filter is as follows: the waveform of the previous symbol has attenuated to 0 when the decision time of the next symbol is reached, and the transmission can be transmitted without eliminating the inter-symbol crosstalk; this filter is called a Nyquist filter.
  • filters that do not have the above characteristics can be collectively referred to as non-Nyquist filters.
  • FIG. 4 it is a schematic diagram of a processed signal in a Nyquist filter provided by an embodiment of the present application.
  • signal A is the previous signal of signal B.
  • Ts decision time
  • FIG. 5 it is a schematic diagram of a processed signal in a non-Nyquist filter provided by an embodiment of the present application.
  • the signal C is the previous signal of the signal D.
  • the value of the signal C is not 0, that is to say, the signal C has an influence on the signal D, and the signal C and the signal There is intersymbol interference between D.
  • the Nyquist filter is not the best choice for performance.
  • the criterion of minimizing the variance of the sideband envelope of the waveform can be used to design a filter that meets the optimal PAPR under the criterion.
  • the filter designed in this way is: The filter is a non-Nyquist filter.
  • non-Nyquist filter can reduce the PAPR of the signal.
  • non-Nyquist filters can be designed to have better frequency-domain flatness than Nyquist filters, resulting in better channel estimation performance; alternatively, non-Nyquist filters can be designed to have higher-energy smears than Nyquist filters , resulting in better performance at the trailing signal. It can be seen that the non-Nyquist filter is an excellent filter for high frequency signals.
  • Phase noise phase noise
  • Phase noise refers to the random change of the phase of the output signal of the communication device caused by the action of various noises by the communication device (such as various radio frequency devices) that transmits the signal.
  • the communication device such as various radio frequency devices
  • phase noise refers to the random change of the phase of the output signal of the communication device caused by the action of various noises by the communication device (such as various radio frequency devices) that transmits the signal.
  • high-frequency frequency bands above 6G, mainly including 28G, 39G, 60G, 73G, etc.
  • phase noise problem in the high frequency band is very prominent. As the frequency band increases, the higher the phase noise power spectral density, the greater the impact on the received signal.
  • phase-tracking reference signal PTRS
  • Equation 1-1 the effect of phase noise can be shown in Equation 1-1:
  • phase noise is to generate a random phase value at each sampling point n.
  • the basic principle of PTRS estimation of phase noise is to put the known PTRS (that is, the known x(n) at the transmitting end, and read the received PTRS (that is, the known y(n)) at the receiving end.
  • x(n) and y(n) can calculate the phase noise value (ie theta value).
  • the signal receiving end uses a non-Nyquist filter to process the signal.
  • FIG. 6 is a flowchart of a method for determining phase noise provided by an embodiment of the present application.
  • the method can be implemented based on the network architecture shown in FIG. 1 .
  • the first communication apparatus may be the network device shown in FIG. 1
  • the second communication apparatus may be the terminal device shown in FIG. 1 ; in another implementation manner, the first communication apparatus may be the network device shown in FIG. 1 .
  • the terminal device, and the second communication apparatus may be the network device in FIG. 1 .
  • the method includes the following steps.
  • a first communication device acquires a first signal.
  • the first communication apparatus may generate the first signal by itself, and the first communication apparatus may also receive the first signal from other communication apparatuses.
  • the first communication device may also generate a part of the first signal, and receive a part of the first signal from another communication device.
  • the first communication apparatus may receive data signals sent by other communication apparatuses to the first communication apparatus, and the first communication apparatus then generates M phase tracking reference signals (PTRS) according to the data signals.
  • PTRS phase tracking reference signals
  • the first signal may be a DFT-s-OFDM signal.
  • the first signal includes one or more DFT-s-OFDM signals, one DFT-s-OFDM signal includes at least one phase tracking reference signal block (Block-PTRS) pattern, and one DFT-s-OFDM signal includes data signal and K PTRS.
  • Block-PTRS phase tracking reference signal block
  • the DFT-s-OFDM signal can be at least one of the following signals: Orthogonal Frequency Division Multiplexing DFT-s-OFDM with FDSS signal using frequency domain shaping, non-Nyquist filter-based single-carrier- Quadrature amplitude modulation (single carrier-quadrature amplitude modulation, SC-QAM) signal, DFT-s-OFDM signal based on non-Nyquist filter, DFT-s-OFDM signal based on non-Nyquist filter plus frequency domain shaping (DFT-s-OFDM signal) s-OFDM with FDSS), uw-DFT-s-OFDM signal based on non-Nyquist filter based additive type filter, based on non-Nyquist filter based zero-added discrete Fourier transform spread spectrum orthogonal frequency division multiplexing (zero tail discrete fourier transform spreading OFDM, zt-DFT-s-OFDM) signal, spectrum
  • FIG. 7 it is a schematic diagram of Block-PTRS of some DFT-s-OFDM signals provided by the embodiments of the present application.
  • each lattice represents a sample point (or a quadrature amplitude modulation (QAM) symbol or pi/2 binary phase shift keying (BPSK) symbol or quadrature Phase shift keying (quadrature phase shift keying, QPSK symbol).
  • the parameters of the Block-PTRS pattern ie 2*2, 2*4, 4*2, 4*4, 8*4) are used to represent the number of groups P of PTRS in a DFT-s-OFDM signal and the samples within the group
  • the number of points Q that is, the total number of PTRS is P*Q.
  • the specific mapping position of the PTRS is related to the two parameters and the scheduling bandwidth.
  • the scheduling bandwidth is evenly divided into P segments or P intervals, and a PTRS group is mapped in the middle of each segment, as shown in the first and third rows in Figure 4;
  • the scheduling bandwidth is evenly divided into P segments or P intervals, and then each segment or each interval is mapped to a PTRS group, and the PTRS group of the first segment is mapped to the header of the first segment.
  • the PTRS group of the P-th segment is mapped at the end of the P-th segment, and the PTRS groups of other segments (or intervals) are mapped in the middle, as shown in the second row of Figure 4 (because there are only two segments at this time, there is no mapping in the segment. PTRS group in the middle), fourth row, fifth row.
  • N RB0 to N RB4 are pre-configured values
  • the first signal in this embodiment of the present application may be a DFT-s-OFDM signal generated according to the above-described position mapping method of PTRS and data signals.
  • the location mapping of the PTRS and the data signal in the first signal may also be in other manners, which are not limited in this embodiment of the present application.
  • the above content introduces the location mapping manner of the PTRS in the first signal; the following specifically describes the manner for determining the value of the PTRS in the first signal in the embodiments of the present application.
  • the first signal includes a data signal and K phase tracking reference signals PTRS, wherein the value of the m th PTRS in the K PTRS is determined by the value of the first interference, the value of the second interference, and the m th PTRS
  • the preset reception value of determines that the first interference is the intersymbol interference generated by the data signal for the mth PTRS, and the second interference is the PTRS other than the mth PTRS among the K PTRSs to the mth PTRS.
  • K and m are positive integers, and 1 ⁇ m ⁇ K.
  • the value of PTRS includes the amplitude and phase of the PTRS. It should be noted that the mth PTRS may be any one of the K PTRSs.
  • the preset received value of the PTRS is pre-agreed by the first communication device and the second communication device. That is to say, for both the first communication device and the second communication device, the preset received value of the PTRS is known.
  • the first communication device preprocesses the K PTRS values, so that under the assumption of no phase noise, the PTRS values received by the receiver (ie, the second communication device) can be
  • the agreed preset reception value is determined to eliminate the influence of inter-symbol interference on the value of PTRS. It should be noted that the value of PTRS received by the actual receiving end will not be equal to the preset received value due to the influence of phase noise; the purpose of this solution is to eliminate the influence of inter-symbol interference on the value of PTRS, so that The phase noise can be calculated from the actual received value of the PTRS and the preset received value.
  • the sum of the value of the mth PTRS, the value of the first interference, and the value of the second interference is equal to the preset received value of the mth PTRS.
  • the first signal includes N data signals.
  • mth PTRS in the first signal is the intersymbol interference generated by the N data signals for the mth PTRS, that is, the first interference.
  • S(m) is the preset received value of the mth PTRS.
  • m is the index value of the PTRS (or called serial number, number, label, etc.). It should be noted that the index value of PTRS can also be designed from 0. In this case, the value of the first PTRS is expressed as In addition, there may also be other design methods of index values, and the embodiments of the present application do not limit the design methods of index values.
  • the values of the N data signals and the preset received values of the K PTSRs are known.
  • K PTRS signals in the first signal then the formula 1-2 has a total of K unknowns
  • a preset interference value or an interference calculation formula may also be added to the left part of formula 1-2 to compensate for other interference received by the signal during the transmission process.
  • the value of the first interference and the value of the second interference may be determined based on the receiver type.
  • receiver types may include matched filter receivers, rectangular window receivers, RC receivers, and the like.
  • the first communication device may determine, based on the receiver type, a calculation method for calculating inter-symbol interference (or inter-symbol interference, ISI) (exemplarily, it may be a calculation formula), according to the calculation method, N values of data signals and K That is, the specific value of the first interference and the expression of the value of the second interference can be obtained; then, the expression of the value of the first interference and the value of the second interference can be substituted into formula 1-2 for calculation, and K can be calculated. indivual value of .
  • ISI inter-symbol interference
  • the receiver type may be determined by the second communication device.
  • the receiver type may be the type of the receiver configured on the second communication apparatus and used to receive signals. It should be noted that the receiver type can still be other types.
  • the method further includes: the first communication apparatus acquires first indication information sent by the second communication apparatus, where the first indication information is used to indicate reception machine type.
  • the manner in which the first communication apparatus obtains the first indication information may be that the first communication apparatus receives the first indication information sent by the second communication apparatus; it may also be that the first communication apparatus sends a request to the second communication apparatus. The request for the first indication information, and then the first indication information sent by the second communication apparatus in response to the request is received. In this way, the first communication apparatus can process the first signal according to the receiver type indicated by the first indication information.
  • the receiver type may also be determined by the first communication apparatus.
  • the receiver type may be a type of a receiver configured on the first communication apparatus and used to receive signals. It should be noted that the receiver type can still be other types.
  • the method further includes: the first communication apparatus sends second indication information to the second communication apparatus, where the second indication information is used to indicate the receiver type.
  • the second communication apparatus obtains the second indication information sent by the first communication apparatus.
  • the first communication apparatus may first receive a request sent by the second communication apparatus for the second indication information, and in response to the request, the first communication apparatus sends the second indication information to the second communication apparatus.
  • the first communication apparatus may send the second indication information to the second communication apparatus before sending the second signal; and may also send the second indication information to the second communication apparatus after sending the second signal; The second indication information may also be sent to the second communication apparatus while sending the second signal.
  • This embodiment of the present application does not limit the timing at which the first communication device sends the second indication information. In this way, the first communication device can inform the second communication device of the type of receiver on which the first signal was generated.
  • the first communication device sends a second signal to the second communication device, where the second signal is a signal obtained by processing the baseband signal of the first signal.
  • the first signal After the first signal is processed by the baseband signal, it can be sent to the second communication apparatus through the antenna.
  • FIG. 8 it is a schematic flowchart of a first communication apparatus generating a second signal according to an embodiment of the present application.
  • the first communication device performs PTRS preprocessing on the pre-received PTRS (it can be understood as the PTRS whose value is a preset received value) and the data signal, so as to obtain K PTRSs in the first signal; after that, the first communication device Signal mapping is performed on the K PTRS and data signals to generate the first signal.
  • the first communication apparatus performs baseband signal processing on the first signal to obtain a second signal.
  • Step a1 Perform discrete Fourier transform (DFT) on the first signal to obtain a frequency domain signal f1 corresponding to the first signal.
  • DFT discrete Fourier transform
  • Step b1 Perform frequency domain shaping (FDSS) on the frequency domain signal f1 to obtain a frequency domain signal f2.
  • FDSS frequency domain shaping
  • Step c1 perform subcarrier mapping on the frequency domain signal f2, and perform an inverse fast Fourier transform (IFFT) on the mapped signal to obtain a time domain signal f3.
  • IFFT inverse fast Fourier transform
  • Step d1 After adding a cyclic prefix (add CP) to the time domain signal f3, a second signal is obtained.
  • the second communication device acquires a third signal, where the third signal is a signal after phase noise is introduced into the second signal sent by the first communication device.
  • the third signal also includes a data signal and K PTRSs.
  • the values of the data signal and the K PTRSs in the third signal are different from the values of the data signal and the K PTRSs in the second signal due to the influence of phase noise.
  • the second communication apparatus determines phase noise according to the values of the K PTRSs in the third signal and the preset received values of the K PTRSs in the first signal.
  • the second communication apparatus can determine the phase noise by using the values of the K PTRSs in the third signal and the preset received values of the K PTRSs in the first signal.
  • the second communication device uses a non-Nyquist filter to process the signal, which will cause inter-symbol interference in the signal and phase noise in the received signal.
  • the PTRS signal received by the second communication device is based on the third signal. Taking the mth PTRS as an example, the actual received value of the mth PTRS can be expressed as formula 1-3:
  • phase noise actually received by the second communication device Affected PTRS.
  • x(m) is the PTRS that the second communication device should receive under the condition of no phase noise.
  • S(m) is the preset received value of the mth PTRS.
  • the second communication device determines the phase noise according to the values of the M PTRSs in the third signal and the preset received values of the M PTRSs in the first signal.
  • the second communication device determines the phase noise.
  • the third signal needs to be processed to obtain M PTRS values in the third signal.
  • FIG. 9 it is a schematic flowchart of a second communication apparatus processing a third signal according to an embodiment of the present application.
  • FIG. 9 includes a process for the second communication apparatus to acquire the values of the M PTRSs in the third signal.
  • the process can include the following steps:
  • Step a2 The second communication device converts the third signal into a first frequency domain signal.
  • the second communication device performs a cyclic prefix (-CP) removal process on the third signal; next, performs a fast Fourier transform (FFT); and then performs subcarrier de-mapping (subcarrier de-mapping) to obtain The first frequency domain signal.
  • -CP cyclic prefix
  • FFT fast Fourier transform
  • subcarrier de-mapping subcarrier de-mapping
  • Step b2 The second communication device performs channel equalization on the first frequency domain signal to obtain a second frequency domain signal.
  • the channel equalization processing is performed to eliminate the influence of the channel transmitting the third signal on the third signal.
  • Step c2 The second communication device preprocesses the second frequency domain signal based on the receiver, and converts the processed second frequency domain signal into a first time domain signal.
  • the receiver is a preset or predefined receiver.
  • the type of the receiver is the receiver type indicated in the first indication information or the second indication information introduced in the above content.
  • the inter-symbol interference in the actually received PTRS value is the same as the inter-symbol interference calculated in the design process of the first signal, that is to say, in the above formula 1-3, then x(m ) is equal to the preset reception value S(m).
  • the second communication apparatus after preprocessing the second frequency domain signal based on the receiver, performs an inverse discrete Fourier transform (IDFT) on the preprocessed signal, so as to convert the processed second frequency domain signal into an inverse discrete Fourier transform (IDFT).
  • IDFT inverse discrete Fourier transform
  • the signal is converted into a first time domain signal.
  • Step d2 The second communication apparatus obtains the values of M PTRSs in the third signal from the first time-domain signal.
  • the second communication apparatus samples the first time-domain signal, and obtains the values of M PTRSs in the third signal from the first time-domain signal.
  • the second communication device may determine the location mapping relationship between the PTRS and the data signal in the third signal by using the value of the scheduling bandwidth N RB (see the mapping relationship in Table 1); A time domain signal is sampled, and the M PTRS values in the third signal are obtained from the first time domain signal. It should be noted that this method is only an example. For different design methods of location mapping between PTRS and data signals, the values of the M PTRSs in the third signal acquired by the second communication device may be changed accordingly. No restrictions apply.
  • the second communication apparatus may, based on the method described in Equation 1-3, according to the values of the K PTRSs in the third signal and the first signal The preset received values of the K PTRS in determine the phase noise.
  • the method may further include (refer to the process shown in FIG. 9 ): the second communication device uses the first frequency The domain signal is converted into a second time domain signal; the second communication device performs phase noise compensation on the second time domain signal according to the phase noise.
  • the processing method may be: performing discrete Fourier transform (DFT) on the time-domain signal after phase noise compensation to transform it into a frequency-domain signal, and then processing the frequency-domain signal based on an intersymbol-free receiver to obtain: The frequency domain signal without intersymbol interference.
  • DFT discrete Fourier transform
  • IDFT inverse discrete Fourier transform
  • the K calculated by Equation 1-2 may be inappropriate.
  • the calculated value is too large, which will make the peak average power introduced by PTRS relatively large, which affects the quality of the signal; it is also possible that the calculated value is too small, which will make PTRS susceptible to other interference (for example, white noise). ), which is not conducive to the subsequent calculation of the phase noise according to the actual received value of the PTRS, and affects the determination of the phase noise.
  • a further scheme is proposed in order to relax the K , so that the values of the K PTRSs in the first signal are in a suitable value range, and the quality of the first signal is improved.
  • the value of the mth PTRS in the K PTRS is determined by the value of the first interference, the value of the second interference, and the preset reception value of the mth PTRS, including: the mth PTRS
  • the value of the PTRS is determined by the value of the first interference, the value of the second interference, the preset received value of the mth PTRS, and a first parameter, where the first parameter is a value related to the signal amplitude.
  • the first parameter is used to indicate the relationship between the actual received value of the mth PTRS and the magnitude of the preset received value of the mth PTRS under the assumption of no phase noise. In this way, the requirements on the values of the K PTRSs are relaxed by the first parameter.
  • the first communication device preprocesses the K PTRS values, so that under the assumption of no phase noise, the PTRS values received by the receiving end (ie, the second communication device)
  • the agreed preset reception value and the first parameter are determined to eliminate the influence of the inter-symbol interference on the value of the PTRS.
  • the sum of the value of the mth PTRS, the value of the first interference, and the value of the second interference is equal to the product of the preset received value of the mth PTRS and the first parameter.
  • the relationship between the value of the PTRS in the first signal and the preset received value of the PTRS may refer to Formula 1-4.
  • the first signal includes N data signals.
  • mth PTRS in the first signal is the intersymbol interference generated by the N data signals for the mth PTRS, that is, the first interference.
  • S(m) is the preset received value of the mth PTRS.
  • A is a first parameter, the first parameter is a value related to the amplitude, and A may be a real number.
  • m is the index value of the PTRS (or called serial number, number, label, etc.). It should be noted that the index value of PTRS can also be designed from 0. In this case, the value of the first PTRS is expressed as In addition, there may also be other design methods of index values, and the embodiments of the present application do not limit the design methods of index values.
  • the values of the N data signals and the preset received values of the K PTSRs are known.
  • K PTRS signals in the first signal then the formula 1-4 has a total of K unknowns
  • a preset interference value or an interference calculation formula may also be added to the left part of formulas 1-4 to compensate for other interference received by the signal during the transmission process.
  • FIG. 10 is a schematic diagram of a PTRS with adjustable amplitude provided by an embodiment of the present application.
  • the PTRS to be sent by the transmitting end is PTRS-2.
  • This PTRS-2 requires a relatively large amount of energy (as shown in the PTRS-2 in the figure). However, since high-energy signals will increase PAPR, PTRS-2 will affect the PAPR of the system.
  • the PTRS sent by the transmitting end can be designed to be PTRS-3, so that the phase of the signal obtained after adding the PTRS-4 and the ISI signal (an example is PTRS-4) is consistent with the phase of the preset received value of PTRS, but The amplitude is smaller than the phase of the preset received value, which can alleviate the PAPR problem caused by high-energy signals.
  • the amplitude of the PTRS-2 that the sender needs to send may be too small.
  • the PTRS sent by the sender can be designed to be PTRS-3, so that the PTRS-3 and ISI signals
  • the phase of the signal obtained after the addition is consistent with the preset received value of PTRS, but the amplitude is greater than the phase of the preset received value, which can improve the anti-interference (for example, white noise) of the PTRS-3 sent by the sender. performance.
  • the value of A (that is, the first parameter) can be one of the following values: 1, 1.5, 0.5, and so on.
  • the value of A can be one of the following values: 1, 1.5, 0.5, sqrt(2), sqrt(10), sqrt(42), sqrt(170), sqrt(648) , and so on.
  • the value of A can be an approximate value of the values listed above, for example, It can be taken as 1.414 (or 1.41, 1.4).
  • the value of the first parameter refers to the energy value of the existing constellation points.
  • the signaling overhead of informing the receiving end of the first parameter can be reduced by this way of taking the value of the first parameter. This is because the energy of the constellation point is defined by the protocol, so it can be easily obtained.
  • the value of the first parameter can be associated with the constellation point of the transmitted signal. In this way, the receiving end can obtain the determined value of the first parameter according to the received signal. In addition, if the value of the first parameter comes from the constellation point (data signal selection), it can be ensured that the energy of the first signal will not be too high.
  • the first communication device may preset the K range of values.
  • the value in this value range will not be too large to cause the PAPR of the first signal to be large, nor will it be too small to affect the calculation of the subsequent phase noise.
  • the maximum value in this value range may not be greater than the energy of the outermost constellation point, or not greater than the unit signal energy (for example, 1), or the maximum value is such that the time domain signal energy generated at the PTRS is not higher than the maximum value. the peak signal energy, etc.
  • the minimum value in the value range may not be less than 3dB times the signal-to-noise ratio of the demodulation of the PTRS signal.
  • the first communication apparatus may select one value from a plurality of possible values of the first parameter based on the above-mentioned requirement of the value range. That is to say, the value of the first parameter can make the K The value of falls within this value range.
  • the method further includes: the first communication apparatus sends third indication information to the second communication apparatus, where the third indication information is used to indicate the first parameter.
  • the second communication apparatus acquires the third indication information sent by the first communication apparatus.
  • the third indication message may include an index corresponding to the first parameter.
  • Table 2 illustrates a possible correspondence between the value of the first parameter and the index provided by the embodiment of the present application.
  • the second communication device determines the phase noise according to the value of K PTRS in the third signal and the preset received value of K PTRS in the first signal, including: the second communication device according to the third signal.
  • Phase noise is determined by the values of the K PTRSs in the signal, the preset received values of the K PTRSs in the first signal, and the first parameter.
  • the actual received value of the mth PTRS can be expressed as formula 1-5:
  • the value of the mth PTRS in the K PTRS is determined by the value of the first interference, the value of the second interference, and the preset reception value of the mth PTRS, including: the mth PTRS
  • the value of the first PTRS is determined by the value of the first interference, the value of the second interference, the preset received value of the m-th PTRS, and a second parameter, where the second parameter is a value related to the signal phase.
  • the second parameter is used to indicate the relationship between the actual received value of the mth PTRS and the phase of the preset received value of the mth PTRS under the assumption of no phase noise. In this manner, the requirements for the values of the K PTRSs are relaxed by the second parameter.
  • the first communication device preprocesses the K PTRS values, so that under the assumption of no phase noise, the PTRS values received by the receiving end (ie, the second communication device)
  • the agreed preset reception value and the second parameter are determined to eliminate the influence of the inter-symbol interference on the value of the PTRS.
  • the sum of the value of the mth PTRS, the value of the first interference, and the value of the second interference is equal to the preset received value of the mth PTRS and the phase offset indicated by the second parameter product of quantities.
  • the relationship between the value of the PTRS in the first signal and the preset received value of the PTRS may refer to formulas 1-6.
  • the first signal includes N data signals.
  • m is the value of the mth PTRS in the first signal, is the intersymbol interference generated by the N data signals for the mth PTRS, that is, the first interference. is the intersymbol interference generated by the PTRS other than the m-th PTRS among the K PTRSs to the m-th PTRS, that is, the second interference.
  • S(m) is the preset received value of the mth PTRS.
  • the second parameter is ⁇ m
  • the second parameter is a value related to the phase
  • the second parameter may be an angle value.
  • m is the index value of the PTRS (or called serial number, number, label, etc.).
  • index value of PTRS can also be designed from 0.
  • value of the first PTRS is expressed as
  • the values of the N data signals and the preset received values of the K PTSRs are known.
  • K PTRS signals in the first signal then the formula 1-6 has a total of K unknowns
  • a preset interference value or an interference calculation formula may also be added to the left part of formulas 1-6 to compensate for other interference suffered by the signal during the transmission process.
  • FIG. 11 is a schematic diagram of a phase-adjustable PTRS provided by an embodiment of the present application.
  • the PTRS to be sent by the transmitting end is PTRS-6.
  • This PTRS-6 requires a relatively large energy (as shown in the PTRS-6 in the figure).
  • high-energy signals will bring about an increase in PAPR, PTRS-6 will affect the PAPR of the system.
  • the PTRS sent by the transmitting end can be designed to be PTRS-7, so that the amplitude of the signal obtained after adding the PTRS-8 and the ISI signal (an example is PTRS-8) is consistent with the amplitude of the preset received value of PTRS, but The phase is opposite to that of the preset received value, which alleviates the PAPR problem caused by high-energy signals.
  • the amplitude of PTRS-6 that the sender needs to send may be too small.
  • the PTRS sent by the sender can be designed to be PTRS-7, so that PTRS-7 and ISI signals
  • the signal obtained after the addition has the same amplitude as the preset received value of the PTRS, but has a different phase, which can improve the anti-interference (eg, white noise) performance of the PTRS-8 sent by the sender.
  • the value of the second parameter can be one of the following values:
  • the value of the second parameter mainly refers to the following factors: 1.
  • the amplitude coefficient of the reference transmission constellation point for example: the amplitude coefficient of the constellation point such as QPSK signal, 16QAM, 64QAM, etc.
  • the increase in the amplitude of a certain signal of the reference single-carrier signal does not affect the typical value of PAPR. This way of setting the value of the second parameter can simultaneously ensure the accuracy of the phase noise estimation at the PTRS without causing nonlinear loss.
  • the second communication device may preset the K range of values.
  • the value in this value range will not be too large to cause the PAPR of the second signal to be large, nor will it be too small to affect the calculation of the subsequent phase noise.
  • the maximum value in this value range may not be greater than the energy of the outermost constellation point, or not greater than the unit signal energy (for example, 1), or the maximum value is such that the time domain signal energy generated at the PTRS is not higher than the maximum value. the peak signal energy, etc.
  • the minimum value in the value range may not be less than 3dB times the signal-to-noise ratio of the demodulation of the PTRS signal.
  • the second communication apparatus may select one value from a plurality of possible values of the second parameter based on the above-mentioned requirement of the value range. That is to say, the value of the second parameter can make the K The value of falls within the value range.
  • the method further includes: the first communication apparatus sends fourth indication information to the second communication apparatus, where the fourth indication information is used to indicate the second parameter.
  • the second communication apparatus acquires the fourth indication information sent by the first communication apparatus.
  • the fourth indication message may include an index corresponding to the second parameter.
  • Table 3 illustrates a possible correspondence between the value of the second parameter and the index provided by the embodiment of the present application.
  • Table 4 illustrates a possible correspondence between a set of values of the second parameter and an index provided by the embodiment of the present application.
  • index The set of values for the second parameter 1 ⁇ 0,pi ⁇ 2 ⁇ 0,pi/2,pi,3/2pi ⁇ 3 ⁇ 0,pi/4,pi/2,3pi/4,pi,5pi/4,3pi/2,7pi/4 ⁇ 4 ⁇ 0,pi/8,2pi/8,3pi/8,pi/2,...,15pi/8 ⁇ 5 ⁇ 0,pi/16,2pi/16,3pi/16,...,31pi/16 ⁇ ... ...
  • the phase offset caused by the phase noise has a possible value range (for example, [-30°, 30°], that is, [-pi/6, pi/6]).
  • the second communication device can calculate The phase offset of the phase noise and the value range determine the second parameter used in the actual first signal from the value set of the second parameter.
  • the final phase noise is then determined based on the second parameter.
  • the phase offset of the phase noise calculated by the second communication device is 7pi/6, and the value set of the second parameter is ⁇ 0, pi ⁇ . Since the phase offset caused by the phase noise is in the range of [-pi/6,pi/6], the second communication device can determine that the second parameter used by the actual first signal is pi; the phase noise should be pi/6.
  • the second communication device determines the phase noise according to the value of K PTRS in the third signal and the preset received value of K PTRS in the first signal, including: the second communication device according to the third signal.
  • the value of the K PTRS in the first signal, the preset received value of the K PTRS in the first signal, and the second parameter determine the phase noise.
  • the actual received value of the mth PTRS can be expressed as formula 1-7:
  • the value of the mth PTRS in the K PTRS is determined by the value of the first interference, the value of the second interference, and the preset reception value of the mth PTRS, including: the mth PTRS
  • the value of each PTRS is determined by the value of the first interference, the value of the second interference, the preset reception value of the mth PTRS, and the first parameter and the second parameter, where the first parameter is a value related to the signal amplitude, and the The second parameter is a value related to the phase of the signal.
  • the first parameter is used to indicate the relationship between the actual received value of the mth PTRS and the amplitude of the preset received value of the mth PTRS under the assumption of no phase noise; is indicative of the relationship between the actual received value of the mth PTRS and the phase of the preset received value of the mth PTRS under the assumption of no phase noise.
  • the amplitude requirements for the values of the K PTRSs are relaxed through the first parameter, and the phase requirements for the values of the K PTRSs are relaxed through the second parameter.
  • the first communication device preprocesses the K PTRS values, so that under the assumption of no phase noise, the PTRS values received by the receiving end (ie, the second communication device)
  • the agreed preset reception value and the first parameter and the second parameter are determined to eliminate the influence of the inter-symbol interference on the value of the PTRS.
  • the sum of the value of the mth PTRS, the value of the first interference, and the value of the second interference is equal to the preset received value of the mth PTRS and the first parameter and the second parameter.
  • the product of the indicated phase offsets may refer to formulas 1-8.
  • the first signal includes N data signals.
  • the value of the mth PTRS in the first signal is the intersymbol interference generated by the N data signals for the mth PTRS, that is, the first interference.
  • S(m) is the preset received value of the mth PTRS.
  • A is a first parameter, the first parameter is a value related to the amplitude, and A may be a real number.
  • the second parameter is ⁇ m , the second parameter is a value related to the phase, and the second parameter may be an angle value.
  • m is the index value of the PTRS (or called serial number, number, label, etc.). It should be noted that the index value of PTRS can also be designed from 0. In this case, the value of the first PTRS is expressed as In addition, there may also be other design methods of index values, and the embodiments of the present application do not limit the design methods of index values.
  • the values of the N data signals and the preset received values of the K PTSRs are known.
  • K PTRS signals in the first signal then the formula 1-8 has a total of K unknowns
  • a preset interference value or an interference calculation formula may also be added to the left part of formulas 1-8 to compensate for other interference received by the signal during the transmission process.
  • the possible values of the first parameter and the second parameter and the manner of determining the values reference may be made to the description in the above method. It should be noted that, in the process of determining the values of the first parameter and the second parameter, two parameters need to be considered at the same time for the K parameters. the effect of the value. The finally determined values of the first parameter and the second parameter can make the K The value of falls within its suitable range of values.
  • the method further includes: the first communication apparatus sends fifth indication information to the second communication apparatus, where the fifth indication information is used to indicate the first parameter and the second parameter.
  • the second communication apparatus acquires the fifth indication information sent by the first communication apparatus.
  • the first communication apparatus may also send the third indication information and the fourth indication information to the second communication apparatus successively or simultaneously, wherein the introduction of the third indication information and the fourth indication information Reference may be made to the introduction in the above content, which will not be repeated here.
  • the fifth indication message may include an index corresponding to the first parameter and an index corresponding to the second parameter.
  • an index corresponding to the first parameter and the index For the corresponding relationship between the value of the first parameter and the index, and the corresponding relationship between the value of the second parameter and the index, reference may be made to the introduction in the above content, which will not be repeated here.
  • the second communication device determines the phase noise according to the value of K PTRS in the third signal and the preset received value of K PTRS in the first signal, including: the second communication device according to the third signal.
  • the value of the K PTRS in the first signal, the preset received value of the K PTRS in the first signal, and the first parameter and the second parameter determine the phase noise.
  • the actual received value of the mth PTRS can be expressed as Formula 1-9:
  • the first communication device and the second communication device may include a hardware structure and a software module, and implement the above-mentioned in the form of a hardware structure, a software module, or a hardware structure plus a software module. each function.
  • a certain function among the above functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 12 is a schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication device 120 includes a transceiving unit 1201 and a processing unit 1202, which will be described in detail below.
  • the transceiver unit 1201 is configured to acquire a first signal, where the first signal includes a data signal and K phase tracking reference signals PTRS.
  • the value of the mth PTRS among the K PTRSs is determined by the value of the first interference, the value of the second interference, and the preset received value of the mth PTRS.
  • the first interference is the intersymbol interference generated by the data signal to the mth PTRS
  • the second interference is the pair of PTRSs other than the mth PTRS among the K PTRSs.
  • K and m are positive integers, and 1 ⁇ m ⁇ K.
  • the processing unit 1202 is configured to perform baseband signal processing on the first signal to obtain a second signal.
  • the transceiver unit 1201 is further configured to send the second signal to the second communication device.
  • the value of the first interference and the value of the second interference are determined based on the receiver type.
  • the transceiver unit 1201 is further configured to: acquire first indication information sent by the second communication apparatus, where the first indication information is used to indicate the receiver type.
  • the transceiver unit 1201 is further configured to: send second indication information to the second communication apparatus, where the second indication information is used to indicate the receiver type.
  • the value of the mth PTRS in the K PTRS is determined by the value of the first interference, the value of the second interference, and the preset received value of the mth PTRS, including:
  • the value of the m-th PTRS is determined by the value of the first interference, the value of the second interference, the preset reception value of the m-th PTRS, and a first parameter, and the first parameter is an AND signal. Amplitude-dependent value.
  • the transceiver unit 1201 is further configured to: send third indication information to the second communication apparatus, where the third indication information is used to indicate the first parameter.
  • the value of the mth PTRS in the K PTRS is determined by the value of the first interference, the value of the second interference, and the preset received value of the mth PTRS, including:
  • the value of the m-th PTRS is determined by the value of the first interference, the value of the second interference, the preset reception value of the m-th PTRS, and a second parameter, and the second parameter is an AND signal. Phase-dependent value.
  • the transceiver unit 1201 is further configured to: send fourth indication information to the second communication apparatus, where the fourth indication information is used to indicate the second parameter.
  • the communication device 120 may be a network device, a device in a network device, or a device that can be matched with the network device.
  • the communication device 1201 may also be a terminal device, may also be a device in the terminal device, or may be a device that can be matched and used with the terminal device.
  • each unit of the communication apparatus 120 shown in FIG. 12 For operations performed by each unit of the communication apparatus 120 shown in FIG. 12 , reference may be made to the relevant content about the first communication apparatus in the method embodiment corresponding to FIG. 6 above, which will not be described in detail here.
  • the above-mentioned units may be implemented in hardware, software or a combination of software and hardware.
  • the functions of the transceiver unit 1201 and the processing unit 1202 in the above content may be implemented by one or more processors in the communication device 120 .
  • the K PTRS values in the first signal can be preprocessed, so that under the assumption of no phase noise, the PTRS values received by the receiver can be based on the pre-agreed value.
  • the preset received value is determined to eliminate the influence of inter-symbol interference on the value of PTRS. Since the value of the PTRS received by the actual receiving end is also affected by phase noise, the phase noise can be calculated from the actual received value of the PTRS and the preset received value.
  • the transceiver unit 1201 is configured to acquire a third signal, where the third signal is a signal after phase noise is introduced into the second signal sent by the first communication device, and the third signal includes a data signal and K phase tracking reference signals PTRS .
  • the second signal is a signal obtained by the baseband signal processing of the first signal.
  • the first signal includes a data signal and K PTRSs, and the value of the mth PTRS among the K PTRSs in the first signal is determined by the value of the first interference, the value of the second interference, and the mth PTRS The preset receive value is determined.
  • the first interference is the intersymbol interference generated by the data signal in the first signal to the m-th PTRS
  • the second interference is divided by the K PTRS in the first signal
  • the intersymbol interference generated by PTRSs other than the mth PTRS to the mth PTRS, K, m is a positive integer, 1 ⁇ m ⁇ K.
  • the processing unit 1202 is configured to determine the phase noise according to values of the K PTRSs in the third signal and preset received values of the K PTRSs in the first signal.
  • the processing unit 1202 is further configured to: convert the third signal into a first frequency domain signal; perform channel equalization on the first frequency domain signal to obtain a second frequency domain signal ; Preprocess the second frequency domain signal based on the receiver, and convert the processed second frequency domain signal into a first time domain signal; Obtain the third signal from the first time domain signal The K PTRS values.
  • the transceiver unit 1201 is further configured to: send first indication information to the first communication apparatus, where the first indication information is used to indicate the type of the receiver.
  • the transceiver unit 1201 is further configured to: acquire second indication information sent by the first communication apparatus, where the second indication information is used to indicate the type of the receiver.
  • the processing unit 1202 is further configured to: convert the first frequency domain signal into a second time domain signal; perform phase noise on the second time domain signal according to the phase noise compensation.
  • the transceiver unit 1201 is further configured to: acquire third indication information sent by the first communication device, where the third indication information is used to indicate a first parameter, the first parameter is a value related to the signal amplitude; the processing unit is specifically configured to: according to the values of the K PTRSs in the third signal, the preset received values of the K PTRSs in the first signal, and the first A parameter determines the phase noise.
  • the transceiver unit 1201 is further configured to: acquire fourth indication information sent by the first communication device, where the fourth indication information is used to indicate a second parameter, and the second parameter is a value related to the signal phase; the processing unit is specifically configured to: according to the value of K PTRS in the third signal, the preset received value of K PTRS in the first signal, and the second A parameter determines the phase noise.
  • the communication device 120 may be a network device, a device in a network device, or a device that can be matched with the network device.
  • the communication device 1201 may also be a terminal device, may also be a device in the terminal device, or may be a device that can be matched and used with the terminal device.
  • each unit of the communication apparatus 120 shown in FIG. 12 For operations performed by each unit of the communication apparatus 120 shown in FIG. 12 , reference may be made to the related content about the second communication apparatus in the method embodiment corresponding to FIG. 6 above, which will not be described in detail here.
  • the above-mentioned units may be implemented in hardware, software or a combination of software and hardware.
  • the functions of the transceiver unit 1201 and the processing unit 1202 in the above content may be implemented by one or more processors in the communication device 120 .
  • the third signal sent by the transmitting end can be acquired, and according to the actual received values of the K PTRSs in the third signal and the preset reception values of the K PTRSs in the first signal agreed in advance value to calculate the phase noise in the third signal.
  • FIG. 13 it is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 130 may be used to implement the methods described in the foregoing method embodiments, and for details, reference may be made to the descriptions in the foregoing method embodiments.
  • Communication device 130 may include one or more processors 1301 .
  • the processor 1301 may be a general-purpose processor or a special-purpose processor or the like.
  • the processor 1301 can be used to control communication devices (eg, network equipment, network equipment chips, terminal equipment, terminal equipment chips, etc.), execute software programs, and process data of software programs.
  • the communication device 130 may include one or more memories 1302 on which program codes 1304 may be stored, and the program codes may be executed on the processor 1301 to cause the communication device 130 to execute The method described in the above method embodiment.
  • the memory 1302 may also store data.
  • the processor 1301 and the memory 1302 can be provided separately or integrated together.
  • the communication device 130 may further include a transceiver 1305 and an antenna 1306 .
  • the transceiver 1305 may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., for implementing a transceiver function.
  • the transceiver 1305 may include a receiver and a transmitter, the receiver may be called a receiver or a receiving circuit, etc., for implementing a receiving function; the transmitter may be called a transmitter or a transmitting circuit, etc., for implementing a transmitting function.
  • the processor 1301 is configured to obtain a first signal through the transceiver 1305, where the first signal includes a data signal and K phase tracking reference signals PTRS.
  • the value of the mth PTRS among the K PTRSs is determined by the value of the first interference, the value of the second interference, and the preset received value of the mth PTRS.
  • the first interference is the intersymbol interference generated by the data signal on the mth PTRS
  • the second interference is the pair of PTRSs other than the mth PTRS among the K PTRSs.
  • K and m are positive integers, and 1 ⁇ m ⁇ K.
  • the processor 1301 is further configured to send a second signal to the second communication device through the transceiver 1305, where the second signal is a signal obtained by processing the baseband signal of the first signal.
  • the value of the first interference and the value of the second interference are determined based on the receiver type.
  • the processor 1301 is further configured to call the program code 1304 from the memory 1302 to perform the following operation: obtain first indication information sent by the second communication device, where the first indication information is used to indicate the Receiver type.
  • the processor 1301 is further configured to call the program code 1304 from the memory 1302 to perform the following operation: send second indication information to the second communication apparatus, where the second indication information is used to indicate the the receiver type.
  • the value of the mth PTRS in the K PTRS is determined by the value of the first interference, the value of the second interference, and the preset received value of the mth PTRS, including:
  • the value of the m-th PTRS is determined by the value of the first interference, the value of the second interference, the preset reception value of the m-th PTRS, and a first parameter, where the first parameter is an AND signal. Amplitude-dependent value.
  • the processor 1301 is further configured to call the program code 1304 from the memory 1302 to perform the following operation: the first communication device sends third indication information to the second communication device, the third The indication information is used to indicate the first parameter.
  • the value of the mth PTRS in the K PTRS is determined by the value of the first interference, the value of the second interference, and the preset received value of the mth PTRS, including:
  • the value of the m-th PTRS is determined by the value of the first interference, the value of the second interference, the preset received value of the m-th PTRS, and a second parameter, where the second parameter is an AND signal. Phase-dependent value.
  • the processor 1301 is further configured to call the program code 1304 from the memory 1302 to perform the following operation: send fourth indication information to the second communication apparatus, where the fourth indication information is used to indicate the the second parameter.
  • the communication device 130 may be a network device, a terminal device, a chip, a chip system, or a processor that supports the network device to implement the above method, or a support terminal
  • the device implements a chip, a chip system, or a processor and the like for implementing the above method.
  • the K PTRS values in the first signal can be preprocessed, so that under the assumption of no phase noise, the PTRS values received by the receiver can be based on the pre-agreed value.
  • the preset received value is determined to eliminate the influence of inter-symbol interference on the value of PTRS. Since the value of the PTRS received by the actual receiver also has the influence of phase noise, the phase noise can be calculated from the actual received value of the PTRS and the preset received value.
  • the processor 1301 is configured to obtain a third signal through the transceiver 1305, where the third signal is a signal after phase noise is introduced into the second signal sent by the first communication device, and the third signal includes a data signal and K phases Tracking reference signal PTRS.
  • the second signal is a baseband signal processed signal of the first signal
  • the first signal includes a data signal and K PTRSs.
  • the value of the mth PTRS among the K PTRSs in the first signal is determined by the value of the first interference, the value of the second interference, and the preset received value of the mth PTRS.
  • the first interference is the intersymbol interference generated by the data signal in the first signal to the m-th PTRS
  • the second interference is divided by the K PTRS in the first signal
  • K and m are positive integers, and 1 ⁇ m ⁇ K.
  • the processor 1301 is further configured to determine phase noise according to values of the K PTRSs in the third signal and preset received values of the K PTRSs in the first signal.
  • the processor 1301 is further configured to call the program code 1304 from the memory 1302 to perform the following operations: convert the third signal into a first frequency domain signal; perform the first frequency domain signal on the channel equalization to obtain a second frequency domain signal; preprocessing the second frequency domain signal based on the receiver, and converting the processed second frequency domain signal into a first time domain signal; from the first time domain signal
  • the values of the K PTRSs in the third signal are obtained from the signal.
  • the processor 1301 is further configured to call the program code 1304 from the memory 1302 to perform the following operation: send first indication information to the first communication device, where the first indication information is used to indicate the Describe the type of receiver.
  • the processor 1301 is further configured to call the program code 1304 from the memory 1302 to perform the following operation: acquire second indication information sent by the first communication device, where the second indication information is used to indicate The type of receiver.
  • the processor 1301 is further configured to call the program code 1304 from the memory 1302 to perform the following operations: convert the first frequency domain signal into a second time domain signal; Phase noise compensation is performed on the second time domain signal.
  • the processor 1301 is further configured to call the program code 1304 from the memory 1302 to perform the following operation: receive third indication information sent by the first communication device, where the third indication information is used to indicate The first parameter, the first parameter is a value related to the signal amplitude; according to the value of the K PTRS in the third signal, the preset received value of the K PTRS in the first signal, and the first A parameter determines the phase noise.
  • the processor 1301 is further configured to call the program code 1304 from the memory 1302 to perform the following operation: receive fourth indication information sent by the first communication device, where the fourth indication information is used to indicate The second parameter, the second parameter is a value related to the phase of the signal; according to the value of the K PTRS in the third signal, the preset received value of the K PTRS in the first signal, and the first Two parameters determine the phase noise.
  • the communication device 130 may be a network device, a terminal device, a chip, a chip system, or a processor that supports the network device to implement the above method, or a support terminal
  • the device implements a chip, a chip system, or a processor and the like for implementing the above method.
  • the third signal sent by the transmitting end can be acquired, and according to the actual received value of K PTRS in the third signal and the preset reception value of K PTRS in the first signal agreed in advance value to calculate the phase noise in the third signal.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • Transceiver circuits, interfaces or interface circuits used to implement receiving and transmitting functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transmission.
  • the processor 1301 may store program code 1303, and the program code 1303 runs on the processor 1301, so that the communication device 130 can execute the method described in the above method embodiments.
  • the program code 1303 may be solidified in the processor 1301, in which case the processor 1301 may be implemented by hardware.
  • the communication apparatus 130 may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • processors and transceivers described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • ICs integrated circuits
  • RFICs radio frequency integrated circuits
  • ASICs application specific integrated circuits
  • PCB printed circuit board
  • electronic equipment etc.
  • the communication device described in the above embodiments may be a network device or a terminal device, but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 13 .
  • the communication apparatus may be a stand-alone device or may be part of a larger device.
  • the communication means may be:
  • the IC set can also include a storage unit for storing data and program codes;
  • ASIC such as modem (Modem);
  • Receivers smart terminals, wireless devices, handsets, mobile units, vehicle-mounted devices, cloud devices, artificial intelligence devices, etc.;
  • the communication device may be a chip or a chip system
  • the chip 140 shown in FIG. 14 includes a logic circuit 1401 and an input/output interface 1402 .
  • the number of logic circuits 1401 may be one or more, and the number of input and output interfaces 1402 may be multiple.
  • the input and output interface 1402 is used for inputting the first signal.
  • the input and output interface 1402 is also used for outputting the second signal.
  • the logic circuit 1401 is used to process the first signal and the second signal, and perform the following operations: obtain a first signal through the input and output receiving 1402, the first signal includes a data signal and K phase tracking reference signals PTRS .
  • the value of the mth PTRS among the K PTRSs is determined by the value of the first interference, the value of the second interference, and the preset received value of the mth PTRS.
  • the first interference is the intersymbol interference generated by the data signal on the mth PTRS
  • the second interference is the pair of PTRSs other than the mth PTRS among the K PTRSs.
  • K and m are positive integers, and 1 ⁇ m ⁇ K.
  • a second signal is sent to the second communication device through the input and output interface 1402, where the second signal is a signal processed by the baseband signal of the first signal.
  • the input and output interface 1402 is used for inputting the third signal.
  • the logic circuit 1401 is configured to process the third signal, and perform the following operations: obtain a third signal through the input and output interface 1402, where the third signal is after phase noise is introduced into the second signal sent by the first communication device
  • the third signal includes a data signal and K phase tracking reference signals PTRS.
  • the second signal is a baseband signal processed signal of the first signal, and the first signal includes a data signal and K PTRSs.
  • the value of the mth PTRS among the K PTRSs in the first signal is determined by the value of the first interference, the value of the second interference, and the preset received value of the mth PTRS.
  • the first interference is the intersymbol interference generated by the data signal in the first signal to the m-th PTRS
  • the second interference is divided by the K PTRS in the first signal
  • K and m are positive integers, and 1 ⁇ m ⁇ K.
  • the phase noise is determined according to the values of the K PTRSs in the third signal and the preset received values of the K PTRSs in the first signal.
  • the present application further provides a computer-readable storage medium on which a computer program is stored, and when the computer-readable storage medium is executed by a computer, implements the functions of any of the foregoing method embodiments.
  • the present application also provides a computer program product, which implements the functions of any of the above method embodiments when the computer program product is executed by a computer.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored on or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be transmitted over a wire from a website site, computer, server or data center (eg coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) means to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, high-density digital video discs (DVDs)), or semiconductor media (eg, solid state disks (SSDs) ))Wait.
  • magnetic media eg, floppy disks, hard disks, magnetic tapes
  • optical media eg, high-density digital video discs (DVDs)
  • DVDs high-density digital video discs
  • semiconductor media eg, solid state disks (SSDs)
  • the corresponding relationships shown in each table in this application may be configured or predefined.
  • the values of the information in each table are only examples, and can be configured with other values, which are not limited in this application.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the headings in the above tables may also adopt other names that can be understood by the communication device, and the values or representations of the parameters may also be other values or representations that the communication device can understand.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.
  • Predefined in this application may be understood as defining, predefining, storing, pre-storing, pre-negotiating, pre-configuring, curing, or pre-firing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Noise Elimination (AREA)

Abstract

本申请实施例公开了一种相位噪声的确定方法及相关装置,方法包括:第一通信装置获取第一信号,该第一信号包括数据信号和K个相位跟踪参考信号PTRS,其中,该K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及该第m个PTRS的预设接收值确定,该第一干扰为该数据信号对该第m个PTRS产生的码间串扰,该第二干扰为该K个PTRS中除该第m个PTRS外的PTRS对该第m个PTRS产生的码间串扰,K、m为正整数,1≤m≤K;第一通信装置向第二通信装置发送第二信号,第二信号为该第一信号经过基带信号处理后的信号。通过本方法,可以确定信号中的相位噪声。

Description

一种相位噪声的确定方法及相关装置
本申请要求于2021年3月30日提交中国国家知识产权局、申请号为202110341555.2、申请名称为“一种相位噪声的确定方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种相位噪声的确定方法及相关装置。
背景技术
高频(6G以上频段,主要包括28G、39G、60G、73G等)因其丰富的频段资源成为业界用于解决日益增长的通信需求,而研究和开发的热点。高频可以为通信提供大带宽,高集成天线阵列,以实现高吞吐量。然而,高频段的相位噪声(phase noise,PHN)问题非常突出。现阶段,第五代移动通信技术(5G)的高频段通信中引入相位跟踪参考信号(Phase-Tracking Reference Signal,PTRS),用作相位噪声的估计和补偿。
为了进一步降低高频通信中的峰值平均功率比(peak-to-average power ratio,PAPR),可对接收设备的滤波器进行对应的优化设计,通常设计出的滤波器是非奈奎斯特(Nyquist)滤波器。由于非Nyquist滤波器会引入信号中邻近码元的码间串扰,非Nyquist滤波器的引入导致无法有效地确定出相位噪声。
发明内容
本申请提供一种相位噪声的确定方法及相关装置,可以有效地确定出信号中的相位噪声。
第一方面,本申请提供了一种相位噪声的确定方法,方法包括:第一通信装置获取第一信号,该第一信号包括数据信号和K个相位跟踪参考信号PTRS,其中,该K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及该第m个PTRS的预设接收值确定,该第一干扰为该数据信号对该第m个PTRS产生的码间串扰,该第二干扰为该K个PTRS中除该第m个PTRS外的PTRS对该第m个PTRS产生的码间串扰,K、m为正整数,1≤m≤K;第一通信装置向第二通信装置发送第二信号,该第二信号为该第一信号经过基带信号处理后的信号。通过这种方式,可以对第一信号中的K个PTRS的值进行预处理,使得在无相位噪声的假设条件下,接收端接收到的PTRS的值可以根据事先约定的预设接收值确定,消除码间干扰对PTRS的值的影响。由于实际接收端接收到的PTRS的值还会存在相位噪声的影响,这样可以通过PTRS的实际接收值和预设接收值计算出相位噪声。
结合第一方面,在一种可能的实现方式中,该第一干扰的值和该第二干扰的值基于接收机类型确定。可选的,第一通信装置可以基于接收机类型确定出计算码间干扰的计算方式。
结合第一方面,在一种可能的实现方式中,在第一通信装置获取第一信号之前,该方法还包括:第一通信装置获取第二通信装置发送的第一指示信息,该第一指示信息用于指示该接收机类型。通过这种方式,第二通信装置确定该接收机的类型,并告知给第一通信装置。
结合第一方面,在一种可能的实现方式中,该方法还包括:第一通信装置向第二通信装 置发送第二指示信息,该第二指示信息用于指示该接收机类型。通过这种方式,第一通信装置确定该接收机的类型,并告知给第二通信装置。
结合第一方面,在一种可能的实现方式中,该K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及该第m个PTRS的预设接收值确定,包括:该第m个PTRS的值由该第一干扰的值、该第二干扰的值、该第m个PTRS的预设接收值以及第一参数确定,该第一参数为与信号幅度相关的值。通过这种方式,可以通过该第一参数,放宽对该K个PTRS的值的要求。
结合第一方面,在一种可能的实现方式中,该方法还包括:第一通信装置向第二通信装置发送第三指示信息,该第三指示信息用于指示该第一参数。
结合第一方面,在一种可能的实现方式中,该K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及该第m个PTRS的预设接收值确定,包括:该第m个PTRS的值由该第一干扰的值、该第二干扰的值、该第m个PTRS的预设接收值以及第二参数确定,该第二参数为与信号相位相关的值。通过这种方式,可以通过该第二参数,放宽对该K个PTRS的值的要求。
结合第一方面,在一种可能的实现方式中,该方法包括:第一通信装置向第二通信装置发送第四指示信息,该第四指示信息用于指示该第二参数。
第二方面,本申请提供了一种相位噪声的确定方法,方法包括:第二通信装置获取第三信号,该第三信号为第一通信装置发送的第二信号中引入相位噪声之后的信号,该第三信号包括数据信号和K个相位跟踪参考信号PTRS;其中,该第二信号为第一信号经过基带信号处理后的信号,该第一信号包括数据信号和K个PTRS,该第一信号中的K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及该第m个PTRS的预设接收值确定,该第一干扰为该第一信号中的数据信号对该第m个PTRS产生的码间串扰,该第二干扰为该第一信号中的K个PTRS中除该第m个PTRS外的PTRS对该第m个PTRS产生的码间串扰,K、m为正整数,1≤m≤K;第二通信装置根据该第三信号中的K个PTRS的值和该第一信号中的K个PTRS的预设接收值确定该相位噪声。通过这种方法,可以获取发送端发送的第三信号,根据第三信号中的K个PTRS的实际接收值和事先约定的第一信号中的K个PTRS的预设接收值,计算出第三信号中的相位噪声。
结合第二方面,在一种可能的实现方式中,在第二通信装置根据该第三信号中的K个PTRS的值和该第一信号中的K个PTRS的预设接收值确定该相位噪声之前,该方法还包括:第二通信装置将该第三信号转换为第一频域信号;第二通信装置对该第一频域信号进行信道均衡,得到第二频域信号;第二通信装置基于接收机对该第二频域信号进行预处理,并将处理后的第二频域信号转换为第一时域信号;第二通信装置从该第一时域信号中获取该第三信号中的K个PTRS的值。
结合第二方面,在一种可能的实现方式中,该方法还包括:第二通信装置向第一通信装置发送第一指示信息,该第一指示信息用于指示该接收机的类型。通过这种方式,第二通信装置确定该接收机的类型,并告知给第一通信装置。
结合第二方面,在一种可能的实现方式中,该方法还包括:第二通信装置获取第一通信装置发送的第二指示信息,该第二指示信息用于指示该接收机的类型。通过这种方式,第一通信装置确定该接收机的类型,并告知给第二通信装置。
结合第二方面,在一种可能的实现方式中,该方法还包括:第二通信装置将该第一频域信号转换为第二时域信号;第二通信装置根据该相位噪声对该第二时域信号进行相位噪声的 补偿。
结合第二方面,在一种可能的实现方式中,该方法还包括:第二通信装置接收第一通信装置发送的第三指示信息,该第三指示信息用于指示第一参数,该第一参数为与信号幅度相关的值;第二通信装置根据该第三信号中的K个PTRS的值和该第一信号中的K个PTRS的预设接收值确定该相位噪声,包括:第二通信装置根据该第三信号中的K个PTRS的值、该第一信号中的K个PTRS的预设接收值和该第一参数确定该相位噪声。
结合第二方面,在一种可能的实现方式中,该方法还包括:第二通信装置接收第一通信装置发送的第四指示信息,该第四指示信息用于指示第二参数,该第二参数为与信号相位相关的值;第二通信装置根据该第三信号中的K个PTRS的值和该第一信号中的K个PTRS的预设接收值确定该相位噪声,包括:第二通信装置根据该第三信号中的K个PTRS的值、该第一信号中的K个PTRS的预设接收值和该第二参数确定该相位噪声。
第三方面,本申请提供了一种通信装置,通信装置包括收发单元和处理单元,其中:该收发单元,用于获取第一信号,该第一信号包括数据信号和K个相位跟踪参考信号PTRS,其中,该K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及该第m个PTRS的预设接收值确定,该第一干扰为该数据信号对该第m个PTRS产生的码间串扰,该第二干扰为该K个PTRS中除该第m个PTRS外的PTRS对该第m个PTRS产生的码间串扰,K、m为正整数,1≤m≤K;该处理单元,用于对该第一信号进行基带信号处理,以得到第二信号;该收发单元,还用于向第二通信装置发送该第二信号。
结合第三方面,在一种可能的实现方式中,该第一干扰的值和该第二干扰的值基于接收机类型确定。
结合第三方面,在一种可能的实现方式中,该收发单元还用于:获取第二通信装置发送的第一指示信息,该第一指示信息用于指示该接收机类型。
结合第三方面,在一种可能的实现方式中,该收发单元还用于:向第二通信装置发送第二指示信息,该第二指示信息用于指示该接收机类型。
结合第三方面,在一种可能的实现方式中,该K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及该第m个PTRS的预设接收值确定,包括:该第m个PTRS的值由该第一干扰的值、该第二干扰的值,该第m个PTRS的预设接收值以及第一参数确定,该第一参数为与信号幅度相关的值。
结合第三方面,在一种可能的实现方式中,该收发单元还用于:向第二通信装置发送第三指示信息,该第三指示信息用于指示该第一参数。
结合第三方面,在一种可能的实现方式中,该K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及该第m个PTRS的预设接收值确定,包括:该第m个PTRS的值由该第一干扰的值、该第二干扰的值,该第m个PTRS的预设接收值以及第二参数确定,该第二参数为与信号相位相关的值。
结合第三方面,在一种可能的实现方式中,该收发单元还用于:向第二通信装置发送第四指示信息,该第四指示信息用于指示该第二参数。
第四方面,本申请提供了又一种通信装置,该通信装置包括收发单元和处理单元,其中:该收发单元,用于获取第三信号,该第三信号为第一通信装置发送的第二信号中引入相位噪声之后的信号,该第三信号包括数据信号和K个相位跟踪参考信号PTRS;其中,该第二信号为第一信号经过基带信号处理后的信号,该第一信号包括数据信号和K个PTRS,该第一信号中的K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及该第m个 PTRS的预设接收值确定,该第一干扰为该第一信号中的数据信号对该第m个PTRS产生的码间串扰,该第二干扰为该第一信号中的K个PTRS中除该第m个PTRS外的PTRS对该第m个PTRS产生的码间串扰,K,m为正整数,1≤m≤K;该处理单元,用于根据该第三信号中的K个PTRS的值和该第一信号中的K个PTRS的预设接收值确定该相位噪声。
结合第四方面,在一种可能的实现方式中,该处理单元还用于:将该第三信号转换为第一频域信号;对该第一频域信号进行信道均衡,得到第二频域信号;基于接收机对该第二频域信号进行预处理,并将处理后的第二频域信号转换为第一时域信号;从该第一时域信号中获取该第三信号中的K个PTRS的值。
结合第四方面,在一种可能的实现方式中,该收发单元还用于:向第一通信装置发送第一指示信息,该第一指示信息用于指示该接收机的类型。
结合第四方面,在一种可能的实现方式中,该收发单元还用于:获取第一通信装置发送的第二指示信息,该第二指示信息用于指示该接收机的类型。
结合第四方面,在一种可能的实现方式中,该处理单元还用于:将该第一频域信号转换为第二时域信号;根据该相位噪声对该第二时域信号进行相位噪声的补偿。
结合第四方面,在一种可能的实现方式中,该收发单元还用于:获取第一通信装置发送的第三指示信息,该第三指示信息用于指示第一参数,该第一参数为与信号幅度相关的值;该处理单元具体用于:根据该第三信号中的K个PTRS的值、该第一信号中的K个PTRS的预设接收值和该第一参数确定该相位噪声。
结合第四方面,在一种可能的实现方式中,该收发单元还用于:获取第一通信装置发送的第四指示信息,该第四指示信息用于指示第二参数,该第二参数为与信号相位相关的值;该处理单元具体用于:根据该第三信号中的K个PTRS的值、该第一信号中的K个PTRS的预设接收值和该第二参数确定该相位噪声。
第五方面,本申请提供了又一种通信装置,包括处理器,该处理器与存储器耦合;该存储器,用于存储程序代码;该处理器,用于从该存储器中调用该程序代码执行如上述第一方面或者第一方面的任一可能的实现方式所描述的方法;或者执行如上述第二方面或者第二方面的任一可能的实现方式所描述的方法。
第六方面,本申请提供了又一种通信装置,通信装置包括逻辑电路和输入输出接口,该输入输出接口用于输入第一信号;该输入输出接口,还用于输出第二信号;该逻辑电路用于对该第一信号和该第二信号进行处理,以及执行如上述第一方面或者第一方面的任一可能的实现方式所描述的方法。
第七方面,本申请提供了又一种通信装置,通信装置包括逻辑电路和输入输出接口,该输入输出接口用于输入第三信号;该逻辑电路用于对该第三信号进行处理,以及执行如上述第二方面或者第二方面的任一可能的实现方式所描述的方法。
第八方面,本申请提供了一种计算机可读存储介质,计算机可读存储介质用于存储指令,当该指令被执行时,使得如上述第一方面或者第一方面的任一可能的实现方式所描述的方法;或者如上述第二方面或者第二方面的任一可能的实现方式所描述的方法被实现。
第九方面,本申请提供了一种计算机程序产品,计算机程序产品包括计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得计算机执行如上述第一方面或者第一方面的任一可能的实现方式所描述的方法;或者执行如上述第二方面或者第二方面的任一可能的实现方式所描述的方法。
在本申请实施例中,信号的发送端可以对第一信号中的K个PTRS的值进行预处理,使 得在无相位噪声的假设条件下,信号的接收端接收到的PTRS的值可以根据事先约定的预设接收值确定,消除码间干扰对PTRS的值的影响。由于实际接收端接收到第三信号中的K个PTRS的值还会存在相位噪声的影响,接收端可以通过K个PTRS的实际接收值和预设接收值计算出相位噪声。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1是本申请实施例提供的一种网络架构的示意图;
图2是本申请实施例提供的一种DFT-s-OFDM技术的处理流程示意图;
图3是本申请实施例提供的一种DFT-s-OFDM with FDSS技术的处理流程示意图;
图4是本申请实施例提供的一种Nyquist滤波器中的处理信号的示意图;
图5是本申请实施例提供的一种非Nyquist滤波器中的处理信号的示意图;
图6是本申请实施例提供的一种相位噪声的确定方法的流程图;
图7是本申请实施例提供的一些DFT-s-OFDM信号的Block-PTRS的示意图;
图8是本申请实施例提供的一种第一通信装置生成第二信号的流程示意图;
图9是本申请实施例提供的一种第二通信装置处理第三信号的流程示意图;
图10是本申请实施例提供的一种幅度可调的PTRS的示意图;
图11是本申请实施例提供的一种相位可调的PTRS的示意图;
图12是本申请实施例提供的一种通信装置的结构示意图;
图13是本申请实施例提供的另一种通信装置的结构示意图;
图14是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
下面对本申请实施例中的技术方案进行更详细地描述。
本申请以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”“一种”“所述”“上述”“该”和“这一”旨在也包括复数表达形式,除非其上下文中明确地有相反指示。还应当理解,本申请中使用的术语“和/或”是指并包含一个或多个所列出项目的任何或所有可能组合。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
本申请实施例可以应用于图1所示的网络架构,图1所示的网络架构为无线通信系统的网络架构,该网络架构通常包括终端设备和网络设备,各个设备数量以及形态并不构成对本申请实施例的限定。在本申请实施例中,终端设备和网络设备之间可以采用单载波进行通信。
需要说明的是,本申请实施例提及的无线通信系统包括但不限于:物联网系统(internet of things,IoT)、长期演进系统(long term evolution,LTE)、第五代移动通信(5th-generation,5G)系统、第六代移动通信(6th-generation,6G)系统以及未来移动通信系统。在一些实施例中,本申请实施例的技术方案还可以应用于无线局域网(Wireless Local Area Network,WLAN)网络,还可以应用于车联网(Vehicle-to-X,V2X)网络,还可以应用于非陆域 (non-terrestrial networks,NTN)、卫星和高空平台(satellites and High-Altitude Platforms,HAP)、增强物联网(LTE enhanced MTO,eMTC),还可以应用于其他网络等。在另一些实施例中,本申请实施例的技术方案还可以应用于通信雷达一体化,太赫兹,以及更高频率的通信系统,等等,本申请并不具体限定。
本申请实施例涉及到的网络设备可以是基站(Base Station,BS),基站可以向多个终端设备提供通信服务,多个基站也可以向同一个终端设备提供通信服务。在本申请实施例中,基站是一种部署在无线接入网中用以为终端设备提供无线通信功能的装置。基站设备可以是基站、中继站或接入点。基站可以是长期演进(Long Term Evolution,LTE)中的eNB或eNodeB(Evolutional NodeB)。基站设备还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器。基站设备还可以是未来5G网络中的基站设备或者未来演进的PLMN网络中的网络设备。基站设备还可以是可穿戴设备或车载设备等。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。
本申请实施例涉及到的终端设备还可以称为终端,可以是一种具有无线收发功能的设备。本申请实施例中所涉及到的终端设备可以包括各种具有无线通信功能的用户设备(user equipment,UE)、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、终端、无线通信设备、UE代理或UE装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、无人驾驶飞机(或简称为无人机)(unmanned aerial vehicle/drones,UVA)、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。本申请实施例中,用于实现终端的功能的装置可以是终端;也可以是能够支持终端实现该功能的装置,例如芯片系统,该装置可以被安装在终端中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例可以应用于设备到设备(device to device,D2D)系统,机器到机器(machine to machine,M2M)系统、车与任何事物通信的车联网(vehicleto everything,V2X)系统等。
本申请实施例可以应用于下一代微波场景、基于NR的微波场景或回传(integrated access backhaul,IAB)场景等。
本申请实施例既可以应用于上行传输场景,即终端设备向网络设备发送上行信号的场景;也可以应用于下行传输场景,即网络设备向终端设备发送下行信号的场景。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
以下对本申请实施例涉及到的一些概念进行介绍。
(1)峰值平均功率比(peak to average power ratio,PAPR)
无线信号从时域上观测是幅度不断变化的正弦波,幅度并不恒定,一个周期内的信号幅度峰值和其他周期内的幅度峰值是不一样的,因此每个周期的平均功率和峰值功率是不一样的。在一个较长的时间内,峰值功率是以某种概率出现的最大瞬态功率,通常概率取为0.01% (即10^-4)。在这个概率下的峰值功率跟系统总的平均功率的比就是PAPR。
无线通信系统的信号要发往远处,需要进行功率放大。由于技术和设备成本的限制,一个功率放大器往往只在一个范围内是线性放大的,如果超过这个范围会导致信号失真。信号失真会导致接收信号的接收端无法正确解析信号。为了保证信号的峰值仍然在功率放大器可以正常放大功率的线性范围内,就必须降低发送信号的平均功率。这种方式会导致功率放大器的效率低,或者等效为覆盖范围变小。
由于正交频分复用(orthogonal frequency division multiplexing,OFDM)在某一个载波上的信号体现为辛格(sinc)函数,在左右两侧会有拖尾。多个载波的拖尾在一定概率下可能在远处叠加形成一个峰值功率很大的点,也即是说,采用OFDM波形容易引起PAPR过高的问题。
(2)单载波
单载波具有比OFDM波形更低的PAPR,本发明考虑使用基于单载波的波形传输数据的场景。单载波包含但不限于以下波形:单载波-正交幅度调制(single carrier-quadrature amplitude modulation,SC-QAM)波形,单载波-偏移正交幅度调制(Single carrier-Offset quadrature amplitude modulation,SC-OQAM)波形;DFT-s-OFDM波形,采用基于单载波变换扩展的正交频分复用(discrete fourier transform spread orthogonal frequency division multiplexing,DFT-s-OFDM with FTSS)波形,携带实虚部分离的DFT-s-OFDM信号、携带的是脉冲振幅调制(pulse amplitude modulation,PAM)星座的DFT-s-OFDM信号、加成型滤波器的携带实虚部分离的DFT-S-OFDM信号、携带的是PAM星座加成型滤波器的DFT-s-OFDM信号;单一码字的离散傅里叶变换扩频的正交频分复用(unique word discrete fourier transform spreading OFDM,uw-DFT-s-OFDM)波形,频域截断的频谱成型的uw-DFT-s-OFDM波形(uw-DFT-s-OFDM with FTSS),携带实虚部分离的uw-DFT-s-OFDM信号、携带的是脉冲振幅调制星座的uw-DFT-s-OFDM信号、加成型滤波器的携带实虚部分离的uw-DFT-s-OFDM信号、携带的是PAM星座加成型滤波器的uw-DFT-s-OFDM信号;添零的离散傅里叶变换扩频的正交频分复用(zero tail discrete fourier transform spreading OFDM,zt-DFT-s-OFDM)波形,频域截断的频谱成型的zt-DFT-s-OFDM波形(zt-DFT-s-OFDM with FTSS),携带实虚部分离的zt-DFT-s-OFDM信号、携带的是脉冲振幅调制星座的zt-DFT-s-OFDM信号、加成型滤波器的携带实虚部分离的zt-DFT-s-OFDM信号、携带的是PAM星座加成型滤波器的zt-DFT-s-OFDM信号,等等。
DFT-s-OFDM是基于OFDM实现架构的单载波波形技术。在相同的功放下,DFT-s-OFDM波形相比OFDM波形,可以提供更大的输出功率和更高的功放效率,从而可以提升覆盖和降低能耗。
目前在长期演进(long term evolution,LTE)系统和第五代(5 th-generation,5G)(或称为新空口(new radio,NR))通信系统中,DFT-s-OFDM波形可以应用于上行传输,但在高频通信中,由于器件能力受限,PAPR问题较严重,因此未来也可能将DFT-s-OFDM波形应用于下行传输。其中,高频通信的频段可以是NR系统中的24250MHz至52600MHz,还可以是NR系统后续演进所支持的52600MHz以上频段,或者还可以是下一代通信系统的更高频段,例如太赫兹(THz)频段。
DFT-s-OFDM技术在OFDM处理过程之前有一个额外的离散傅里叶变换(discrete Fouriertransform,DFT)处理,因此DFT-s-OFDM技术也可以称为线性预编码OFDM技术。
参见图2,是本申请实施例提供的一种DFT-s-OFDM技术的处理流程示意图。发送端对 时域离散序列依次进行串并(serial-to-parallel)转换、N点离散傅里叶变换(discrete Fourier transformation,DFT)、子载波映射、M点反离散傅里叶变换(inverse discrete Fourier transform,IDFT)、并串(parallel-to-serial)转换、添加循环前缀(cyclic prefix,CP)以及数模转换(digital to analog converter,DAC)处理,之后通过天线端口以及信道(channel)发送信号。接收端通过信道和天线端口接收到信号时,对信号依次进行模数转换(analog to digital converter,ADC)、去循环前缀、串并(serial-to-parallel)转换、M点DFT、去子载波映射、N点IDFT以及并串(parallel-to-serial)转换,以得到时域离散序列。
发送端通过N点DFT,可以获取时域离散序列的频域序列。该频域序列子载波映射后输入IDFT,进行M点IDFT,N<M。由于IDFT的长度大于DFT的长度,因此IDFT多的那一部分输入时用零补齐。在IDFT之后,添加循环前缀可以避免符号干扰。
DFT-s-OFDM相比于OFDM,PAPR比较低,可以提高移动终端的功率发射效率,延长电池的使用时间,降低终端成本。
(3)采用频域赋形的正交频分复用(discrete fourier transform spread orthogonal frequency division multiplexing with frequency domain spectrum shaping,DFT-s-OFDM with FDSS)
DFT-s-OFDM with FDSS波形是一种特殊的DFT-s-OFDM波形,相比于DFT-s-OFDM,DFT-s-OFDM with FDSS技术中增加了一个频域赋形的操作。
参见图3,是本申请实施例提供的一种DFT-s-OFDM with FDSS技术的处理流程的示意图。发送端对调制(modulation)的信号依次进行离散傅里叶变换(discrete Fourier transform,DFT)、频域赋形(frequency domain spectrum shaping,FDSS)、子载波映射(subcarrier mapping)、快速傅里叶逆变换(inversefast Fourier transform,IFFT),以及添加循环前缀(cyclic prefix,CP)等操作。
在这个过程中,可以看出,DFT-S-OFDM with FDSS技术在DFT之后,做了一个额外的频谱复制,然后使用一个滤波器去处理该复制后的信号,达到频域赋形的效果。由于做了频域赋形,等价于时域上的波形由DFT-S-OFDM的Sinc波形变成了一个其他的时间长度更有限/边带包络更低的波形,从而进一步降低DFT-S-OFDM波形的PAPR,是未来移动通信(6G+)以及高频场景下的备选波形技术。
(4)滤波器
滤波器是由电容、电感和电阻组成的滤波电路。滤波器可以对电源线中特定频率的频点或该频点以外的频率进行有效滤除,得到一个特定频率的信号,或消除一个特定频率后的信号。利用滤波器的这种选频作用,可以滤除信号中的干扰噪声或进行频谱分析。
以是否存在码间串扰(inter-symbol interference,ISI)为分类依据,滤波器主要可以分为奈奎斯特(Nyquist)滤波器和非Nyquist滤波器。
Nyquist滤波器定义如下:前一个码元的波形到后一个码元判决时刻时已衰减到0,就能无消除码间串扰传输;这种滤波器称之为Nyquist滤波器。相对应的,不具备上述特性的滤波器可以统称为非Nyquist滤波器。
参见图4,是本申请实施例提供的一种Nyquist滤波器中的处理信号的示意图。在图4中,信号A为信号B的前一个信号,在信号B的判决时刻(Ts),信号A已经衰减到0,也即是说,信号A对信号B不产生影响,信号A和信号B之间不存在码间串扰。
参见图5,是本申请实施例提供的一种非Nyquist滤波器中的处理信号的示意图。在图5中,信号C为信号D的前一个信号,在信号D的判决时刻(Td),信号C的值不为0,也即是说,信号C对信号D产生影响,信号C和信号D之间存在码间串扰。
而对于DFT-S-OFDM with FDSS波形而言,Nyquist滤波器并非性能最优的选择。示例性的,为了进一步降低高频通信中的峰值平均功率比,可以利用波形的边带包络方差最小化准则,设计出一个符合该准则下PAPR最优的滤波器,通常这样设计出来的滤波器为非Nyquist滤波器。
相比于Nyquist滤波器而言,非Nyquist滤波器可以降低信号的PAPR。另外,可以设计非Nyquist滤波器使得比Nyquist滤波器具有更好的频域平坦性,从而具有更好的信道估计性能;或者,可以设计非Nyquist滤波器使得比Nyquist滤波器具有高能量的拖尾,从而使得拖尾信号处的性能更好。可以看出,非Nyquist滤波器是一种优秀的高频信号滤波器。
(5)相位噪声(phase noise,PN)
相位噪声(或简称为相噪)是指发送信号的通信设备(如各种射频器件)在各种噪声的作用下引起的通信设备的输出信号相位的随机变化。为了解决日益增长的通信需求,通信系统中越来越多使用高频(6G以上频段,主要包括28G、39G、60G、73G等)的频段资源来传输信号。高频可以为通信提供大带宽,高集成天线阵列,以实现高吞吐量。然而,高频段的相位噪声问题非常突出,随着频段的增加,相位噪声功率谱密度越高,对接收信号影响越大。当发送信号的频段较高时,相位噪声的恶化将导致信号的解调性能变差,降低通信质量。为了估计以及补偿信号的相位噪声,本领域引入了相位跟踪参考信号(phase-tracking reference signal,PTRS)。
示例性的,相位噪声的影响可以参照公式1-1所示:
Figure PCTCN2022083220-appb-000001
其中,n=0,1,…,N-1,为时域采样点。简单而言,相位噪声即是在每一个采样点n上产生一个随机的相位值。PTRS估计相位噪声的基本原理是,在发送端放入已知的PTRS(即已知的x(n),在接收端读取出接收到的PTRS(即已知的y(n)),根据x(n)和y(n)可以计算出相位噪声值(即θ值)。
但由于非Nyquist滤波器会引入信号中邻近码元的码间串扰,通过上述公式1-1计算出的相位噪声实际还包含了码间串扰的影响,无法有效地确定出相位噪声,进而会导致信号的解调性能变差,降低通信质量。鉴于此,提出本申请实施例的方案。在本申请实施例中,信号接收端采用非Nyquist滤波器对信号进行处理。
下面基于上述内容中介绍的网络架构、终端设备以及网络设备,对本申请实施例提供的一种相位噪声的确定方法进行介绍。参见图6,图6是本申请实施例提供的一种相位噪声的确定方法的流程图。该方法可以基于图1所示的网络架构来实现。在一种实现方式中,第一通信装置可以为图1中的网络设备,第二通信装置可以为图1中的终端设备;在另一种实现方式中,第一通信装置可以为图1中终端设备,第二通信装置可以为图1中的网络设备。该方法包括以下步骤。
S101、第一通信装置获取第一信号。
在一种可能的实现方式中,第一通信装置可以自身生成该第一信号,第一通信装置还可以从其他通信装置接收该第一信号。在一种可能的实现方式中,第一通信装置还可以生成该第一信号中的部分信号,从其他通信装置接收该第一信号的部分信号。示例性的,第一通信装置可以接收其他通信装置向该第一通信装置发送的数据信号,第一通信装置再根据数据信号生成M个相位跟踪参考信号(PTRS)。
在本申请实施例中,第一信号可以为DFT-s-OFDM信号。可选的,第一信号包括一个或多个DFT-s-OFDM信号,一个DFT-s-OFDM信号包括至少一个相位跟踪参考信号块(Block-PTRS)图案,一个DFT-s-OFDM信号包括数据信号和K个PTRS。
可选的,DFT-s-OFDM信号可以是下列信号中的至少一种:采用频域赋形的正交频分复用DFT-s-OFDM with FDSS信号、基于非Nyquist滤波器的单载波-正交幅度调制(single carrier-quadrature amplitude modulation,SC-QAM)信号,基于非Nyquist滤波器的DFT-s-OFDM,基于非Nyquist滤波器的加频域成型的DFT-s-OFDM信号(DFT-s-OFDM with FDSS),基于非Nyquist滤波器的加成型滤波器的uw-DFT-s-OFDM信号,基于非Nyquist滤波器的添零的离散傅里叶变换扩频的正交频分复用(zero tail discrete fourier transform spreading OFDM,zt-DFT-s-OFDM)信号,基于非Nyquist滤波器的频域成型的频谱成型的zt-DFT-s-OFDM信号(zt-DFT-s-OFDM with FDSS),等等。
示例性的,参见图7,是本申请实施例提供的一些DFT-s-OFDM信号的Block-PTRS的示意图。在图7中,每个格子表示一个采样点(或者称为一个正交振幅调制(quadrature amplitude modulation,QAM)符号或pi/2二进制相移键控(binary phase shift keying,BPSK)符号或正交相移键控(quadrature phase shift keying,QPSK)符号)。Block-PTRS图案的参数(即2*2、2*4、4*2、4*4、8*4)用于表示一个DFT-s-OFDM信号中的PTRS的组数P和组内的采样点数Q,即总的PTRS数量为P*Q。需要说明的是,PTRS具体的映射位置与这两个参数和调度带宽有关。
当组内采样点数Q=2时,则将调度带宽均匀分成P段或P个间隔,在每段的中间映射一个PTRS组,如图4中第一行和第三行所示;当组内采样点数Q=4时,则将调度带宽均匀分成P段或P个间隔,然后每段或每个间隔均会映射一个PTRS组,其中第一段的PTRS组映射在第一段的头部,第P段的PTRS组映射在第P段的尾部,其他段(或称为间隔)的PTRS组映射在中间,如图4的第二行(由于此时只有两段,因此不存在映射在段中间的PTRS组)、第四行、第五行所示。
上述两个参数在传输过程中会基于预配置的映射关系(调度带宽与参数的对应的关系,如表1所示,N RB0~N RB4为预配置的值),由当前的调度带宽N RB隐式确定。
表1
Figure PCTCN2022083220-appb-000002
可选的,本申请实施例的第一信号可以是按照上述介绍PTRS和数据信号的位置映射方式生成的DFT-s-OFDM信号。可选的,第一信号中PTRS和数据信号的位置映射还可以按照其他方式,本申请实施例不作限制。
上述内容对第一信号中PTRS的位置映射方式作出了介绍;以下对本申请实施例中,第一信号中PTRS的值的确定方式作具体的介绍。
具体的,第一信号包括数据信号和K个相位跟踪参考信号PTRS,其中,该K个PTRS 中的第m个PTRS的值由第一干扰的值、第二干扰的值以及该第m个PTRS的预设接收值确定,该第一干扰为该数据信号对该第m个PTRS产生的码间串扰,该第二干扰为该K个PTRS中除该第m个PTRS外的PTRS对该第m个PTRS产生的码间串扰,K、m为正整数,1≤m≤K。
其中,PTRS的值包括PTRS的幅度以及相位。需要说明的是,该第m个PTRS可以是该K个PTRS中的任意一个。PTRS的预设接收值由第一通信装置和第二通信装置预先约定。也即是说,对于第一通信装置和第二通信装置而言,均已知PTRS的预设接收值。
在这种方式中,第一通信装置通过对该K个PTRS的值进行预处理,使得在无相位噪声的假设条件下,接收端(即第二通信装置)接收到的PTRS的值可以根据事先约定的预设接收值确定,消除码间干扰对PTRS的值的影响。需要说明的是,实际接收端接收到的PTRS的值由于还会存在相位噪声的影响,并不会与预设接收值相等;本方案的目的是消除码间干扰对PTRS的值的影响,这样可以通过PTRS的实际接收值和预设接收值计算出相位噪声。
在一种可能的实现方式中,第m个PTRS的值与第一干扰的值、第二干扰的值的和等于该第m个PTRS的预设接收值。示例性的,第一信号中PTRS的值和PTRS的预设接收值的关系可以参照公式1-2。在该示例中,第一信号包括N个数据信号。
Figure PCTCN2022083220-appb-000003
其中,
Figure PCTCN2022083220-appb-000004
是第一信号中第m个PTRS的值,
Figure PCTCN2022083220-appb-000005
是N个数据信号对该第m个PTRS产生的码间串扰,即第一干扰。
Figure PCTCN2022083220-appb-000006
是K个PTRS中除该第m个PTRS外的PTRS对该第m个PTRS产生的码间串扰,即第二干扰。S(m)是第m个PTRS的预设接收值。其中,m为PTRS的索引值(或者称为序号、编号、标号,等等)。需要说明的是,PTRS的索引值也可以从0开始设计,在这种情况下,第1个PTRS的值即表示为
Figure PCTCN2022083220-appb-000007
另外,还可以存在其他的索引值设计方式,本申请实施例对索引值的设计方式不作限制。
对于第一通信装置而言,N个数据信号的值与K个PTSR的预设接收值是已知的。第一信号中有K个PTRS信号,则该公式1-2一共有K个未知数
Figure PCTCN2022083220-appb-000008
有K个方程,通过这K个方程可以求解得出
Figure PCTCN2022083220-appb-000009
也即是说每个PTRS的值。
在一种可能的实现方式中,公式1-2的左侧部分还可以加入预设的干扰值或者干扰计算公式,用于补偿传输过程中信号所受到的其他干扰。
需要说明的是,在本申请实施例中,第一干扰的值与第二干扰的值可以基于接收机类型 确定。示例性的,接收机类型可以包括匹配滤波接收机、矩形窗接收机、RC接收机,等等。第一通信装置可以基于接收机类型确定出计算码间干扰(或者称为符号间干扰)(inter symbol interference,ISI)的计算方式(示例性的,可以是计算公式),根据该计算方式、N个数据信号的值和K个
Figure PCTCN2022083220-appb-000010
即可以得到第一干扰具体的值,以及第二干扰的值的表达式;之后,将第一干扰的值、第二干扰的值的表达式代入公式1-2进行计算,可以计算得出K个
Figure PCTCN2022083220-appb-000011
的值。
在一种可能的实现方式中,该接收机类型可以由第二通信装置来确定。可选的,该接收机类型可以是第二通信装置上配置的用来接收信号的接收机的类型。需要说明的是,该接收机类型还是可以其他类型。
在这种情况下,可选的,在第一通信装置获取第一信号之前,方法还包括:第一通信装置获取第二通信装置发送的第一指示信息,该第一指示信息用于指示接收机类型。示例性的,第一通信装置获取该第一指示信息的方式可以是,第一通信装置接收第二通信装置发送的第一指示信息;还可以是,第一通信装置向第二通信装置发送请求第一指示信息的请求,再接收第二通信装置响应于该请求发送的第一指示信息。通过这种方式,第一通信装置可以根据该第一指示信息指示的接收机类型,对第一信号进行处理。
在另一种可能的实现方式中,该接收机类型还可以由第一通信装置来确定。可选的,该接收机类型可以是第一通信装置上配置的用来接收信号的接收机的类型。需要说明的是,该接收机类型还是可以其他类型。
在这种情况下,可选的,方法还包括:第一通信装置向第二通信装置发送第二指示信息,该第二指示信息用于指示接收机类型。相应的,第二通信装置获取第一通信装置发送的第二指示信息。示例性的,第一通信装置可以先接收到第二通信装置发送的请求该第二指示信息的请求,响应于该请求,第一通信装置向第二通信装置发送第二指示信息。
需要说明的是,第一通信装置可以在发送第二信号之前,向第二通信装置发送该第二指示信息;还可以在发送第二信号之后,向第二通信装置发送该第二指示信息;还可以在发送第二信号的同时,向第二通信装置发送该第二指示信息。本申请实施例对第一通信装置发送第二指示信息的时机不作限制。通过这种方式,第一通信装置可以告知第二通信装置,生成第一信号所依据的接收机类型。
S102、第一通信装置向第二通信装置发送第二信号,该第二信号为该第一信号经过基带信号处理后的信号。
第一信号经过基带信号处理之后,可以经过天线,向第二通信装置发送。
示例性的,参见图8,是本申请实施例提供的一种第一通信装置生成第二信号的流程示意图。首先,第一通信装置对预接收的PTRS(可以理解为,值为预设接收值的PTRS)和数据信号进行PTRS预处理,以得到第一信号中的K个PTRS;之后,第一通信装置对该K个PTRS和数据信号进行信号映射,以生成该第一信号。具体的,第一信号中该K个PTRS的值的确定方式,以及第一信号中PTRS和数据信号的位置映射方式可以参照上述内容中的描述。接下来,第一通信装置对该第一信号进行基带信号处理,得到第二信号。
基带信号处理的流程示例如下:
步骤a1:对第一信号进行离散傅里叶变换(DFT),得到第一信号对应的频域信号f1。
步骤b1:对频域信号f1进行频域赋形(FDSS),得到频域信号f2。
步骤c1:对频域信号f2进行子载波映射,并对映射后的信号进行快速傅里叶逆变换(IFFT)得到时域信号f3。
步骤d1:对时域信号f3添加循环前缀(add CP)后得到第二信号。
S103、第二通信装置获取第三信号,该第三信号为第一通信装置发送的第二信号中引入相位噪声之后的信号。
可以理解的是,对应于第二信号,该第三信号也包括数据信号和K个PTRS。由于相位噪声的影响,第三信号中的数据信号和K个PTRS的值与第二信号中的数据信号和K个PTRS的值不同。
S104、第二通信装置根据该第三信号中的K个PTRS的值和该第一信号中的K个PTRS的预设接收值确定相位噪声。
首先对第二通信装置可以通过第三信号中的K个PTRS的值和该第一信号中的K个PTRS的预设接收值确定出相位噪声的原理进行介绍。
第二通信装置中使用非Nyquist滤波器对信号进行处理,会使得信号中存在码间干扰,同时接收到的信号中存在相位噪声的影响,第二通信装置接收到的PTRS信号,以第三信号中第m个PTRS为例,第m个PTRS的实际接收值可以表示为公式1-3:
Figure PCTCN2022083220-appb-000012
其中,
Figure PCTCN2022083220-appb-000013
是第二通信装置实际接收到的含有相位噪声
Figure PCTCN2022083220-appb-000014
影响的PTRS。x(m)是无相位噪声条件下该第二通信装置应接收到的PTRS。S(m)是第m个PTRS的预设接收值。结合上述内容的介绍,由于S(m)的值已经考虑了码间干扰的影响,则x(m)应该与预设接收值S(m)相等。也即是说,在公式1-3中,
Figure PCTCN2022083220-appb-000015
与S(m)是已知的,那么可以求解出相位噪声
Figure PCTCN2022083220-appb-000016
接下来,再对第二通信装置通过第三信号中的K个PTRS的值和该第一信号中的K个PTRS的预设接收值确定出相位噪声的方法进行介绍。
在一种可能的实现方式中,在第二通信装置根据该第三信号中的M个PTRS的值和该第一信号中的M个PTRS的预设接收值确定相位噪声之前,第二通信装置需要对第三信号进行处理,以获取该第三信号中的M个PTRS的值。
示例性的,参见图9,是本申请实施例提供的一种第二通信装置处理第三信号的流程示意图。其中,图9包括了第二通信装置获取该第三信号中的M个PTRS的值的流程。该流程可以包含以下步骤:
步骤a2:第二通信装置将该第三信号转换为第一频域信号。
首先,第二通信装置对第三信号进行去除循环前缀(-CP)处理;接下来,再进行快速傅里叶变换(FFT);之后,再进行子载波解映射(subcarrier de-mapping)后得到第一频域信号。
步骤b2:第二通信装置对该第一频域信号进行信道均衡(channel equalization),得到第二频域信号。
需要说明的是,进行信道均衡处理,即是为了消除传输第三信号的信道对该第三信号的影响。
步骤c2:第二通信装置基于接收机对该第二频域信号进行预处理,并将处理后的第二频域信号转换为第一时域信号。
其中,接收机为预设或者是预定义的接收机。可选的,接收机的类型为上述内容中介绍 的第一指示信息或者第二指示信息中指示的接收机类型。通过这种方式,实际接收到的PTRS的值中所受到的码间干扰与第一信号的设计过程中计算的码间干扰相同,也即是说,上述公式1-3中,则x(m)与预设接收值S(m)相等。
示例性的,第二通信装置基于接收机对该第二频域信号进行预处理之后,再对预处理之后的信号进行离散傅里叶逆变换(IDFT),以将处理后的第二频域信号转换为第一时域信号。
步骤d2:第二通信装置从该第一时域信号中获取该第三信号中的M个PTRS的值。
示例性的,第二通信装置对第一时域信号进行采样,从第一时域信号中获取该第三信号中的M个PTRS的值。可选的,第二通信装置可以通过调度带宽N RB的取值(参见表1的映射关系),确定第三信号中PTRS和数据信号的位置映射关系;根据确定出的PTRS映射位置,对第一时域信号进行采样,从第一时域信号中获取该第三信号中的M个PTRS的值。需要说明的是,这种方式仅为示例,对于不同的PTRS和数据信号的位置映射的设计方式,第二通信装置获取该第三信号中的M个PTRS的值可以相应改变,本申请实施例不作限制。
在第二通信装置获取该第三信号中的M个PTRS的值之后,第二通信装置可以基于公式1-3介绍的方式,根据该第三信号中的K个PTRS的值和该第一信号中的K个PTRS的预设接收值确定相位噪声。
在一种可能的实现方式中,为了从第三信号中获取出原本第一信号中的数据信号,方法还可以包括(可以参照图9所示的流程):第二通信装置将该第一频域信号转换为第二时域信号;第二通信装置根据该相位噪声对该第二时域信号进行相位噪声的补偿。
可选的,相位噪声补偿之后,去除了第三信号中相位噪声的影响,之后,可以再对补偿相位噪声后的时域信号进行处理,得到最终的数据信号。示例性的,处理方式可以为:将补偿相位噪声后的时域信号进行离散傅里叶变换(DFT)以变换为频域信号,再对该频域信号基于无码间干扰接收机进行处理,得到无码间干扰后的频域信号。之后,在对处理后的频域信号进行离散傅里叶逆变换(IDFT)以变换为时域信号,再信号进行解调(de-modulation)以得到数据信号,或者还可以再根据数据信号进行后续操作。
由于数据信号的值的不确定性,通过公式1-2计算出的K个
Figure PCTCN2022083220-appb-000017
的值可能会不太恰当。示例性的,有可能计算出的值过大,会使得PTRS引入的峰值平均功率比较大,影响信号的质量;也有可能计算出来的值过小,会使得PTRS容易受到其他干扰(例如,白噪声)的影响,不利于后续根据PTRS的实际接收值计算相位噪声,影响相位噪声的确定。鉴于此,结合上述内容的介绍,提出进一步的方案,以便放宽对K个
Figure PCTCN2022083220-appb-000018
的值的要求,使得第一信号中的K个PTRS的值处于合适的取值范围,提升第一信号的质量。
在一种实施例中,该K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及该第m个PTRS的预设接收值确定,包括:该第m个PTRS的值由该第一干扰的值、该第二干扰的值、该第m个PTRS的预设接收值以及第一参数确定,该第一参数为与信号幅度相关的值。需要说明的是,第一参数用于指示在无相位噪声的假设条件下,第m个PTRS的实际接收值与该第m个PTRS的预设接收值的幅度之间的关系。在这种方式中,通过第一参数放宽对该K个PTRS的值的要求。
在这种方式中,第一通信装置通过对该K个PTRS的值进行预处理,使得在无相位噪声的假设条件下,接收端(即第二通信装置)接收到的PTRS的值可以通过事先约定的预设接收值和第一参数确定,消除码间干扰对PTRS的值的影响。
在一种可能的实现方式中,第m个PTRS的值与第一干扰的值、第二干扰的值的和等于该第m个PTRS的预设接收值与该第一参数的乘积。示例性的,第一信号中PTRS的值和PTRS的预设接收值的关系可以参照公式1-4。在该示例中,第一信号包括N个数据信号。
Figure PCTCN2022083220-appb-000019
其中,
Figure PCTCN2022083220-appb-000020
是第一信号中第m个PTRS的值,
Figure PCTCN2022083220-appb-000021
是N个数据信号对该第m个PTRS产生的码间串扰,即第一干扰。
Figure PCTCN2022083220-appb-000022
是K个PTRS中除该第m个PTRS外的PTRS对该第m个PTRS产生的码间串扰,即第二干扰。S(m)是第m个PTRS的预设接收值。A为第一参数,该第一参数是与幅度相关的值,A可以为实数。其中,m为PTRS的索引值(或者称为序号、编号、标号,等等)。需要说明的是,PTRS的索引值也可以从0开始设计,在这种情况下,第1个PTRS的值即表示为
Figure PCTCN2022083220-appb-000023
另外,还可以存在其他的索引值设计方式,本申请实施例对索引值的设计方式不作限制。
对于第一通信装置而言,N个数据信号的值与K个PTSR的预设接收值是已知的。第一信号中有K个PTRS信号,则该公式1-4一共有K个未知数
Figure PCTCN2022083220-appb-000024
有K个方程,通过这K个方程可以求解得出
Figure PCTCN2022083220-appb-000025
也即是说每个PTRS的值。
在一种可能的实现方式中,公式1-4的左侧部分还可以加入预设的干扰值或者干扰计算公式,用于补偿传输过程中信号所受到的其他干扰。
对上述方式的原理进行分析,示例性的,参见图10,是本申请实施例提供的一种幅度可调的PTRS的示意图。其中,为了使得消除码间干扰(示例为ISI信号)影响后的PTRS完全等于PTRS的预设接收值(示例为PTRS-1),发送端需要发送的PTRS为PTRS-2。这个PTRS-2需要一个比较大的能量(如图中的PTRS-2所示)。但由于高能量的信号会带来PAPR的抬升,PTRS-2会影响系统的PAPR。因此,可以设计发送端发送的PTRS为PTRS-3,使得PTRS-4和ISI信号相加之后得到的信号(示例为PTRS-4)的相位与PTRS的预设接收值的相位是一致的,但是幅度上小于预设接收值的相位,这样可以缓解高能量信号所带来的PAPR问题。
另一种情况相反的示例中,可能发送端需要发送的PTRS-2的幅度过小,在这种情况下,可以通过设计发送端所发送PTRS的为PTRS-3,使得PTRS-3和ISI信号相加之后得到的信号与PTRS的预设接收值的相位是一致的,但是幅度上大于预设接收值的相位,这样可以提升发送端所发送的PTRS-3的抗干扰(例如,白噪声)性能。
可选的,A(即第一参数)的取值可以为下列值中的一个:1、1.5、0.5、
Figure PCTCN2022083220-appb-000026
Figure PCTCN2022083220-appb-000027
等等中的一个。在另一种表达方式中,用平方根函数
Figure PCTCN2022083220-appb-000028
表达A的取值,那么,A的取值可以为下列值中的一个:1、1.5、0.5、sqrt(2)、sqrt(10)、sqrt(42)、sqrt(170)、sqrt(648),等等中的一个。需要说明的是,在实际应用中,A的取值可以取上述列举出的这些值的近似值,例如,
Figure PCTCN2022083220-appb-000029
可以取为1.414(或者1.41、1.4)。在这种取值方式中,第一参数的取值参考了已有星座点的能量值。通过第一参数的这种取值方式,可以降低告知接收端第一参数的信令开销。这是因为星座点的能量是协议已经定义了的,因此可以简单获取。此外,可以将第一参数的取值与发送信号的星座点联系起来。这样,接收端可以根据接收到的信号,即可获取第一参数的确定取值。另外,第一参数的取值来自于星座点(数据信号选择),则可保证该第一信号的能量不会太高。
以下对确定第一参数的取值的确定方式进行介绍。
第一通信装置可以预先设定该K个
Figure PCTCN2022083220-appb-000030
的取值范围。该取值范围中的值,不会过大导致第一信号的PAPR较大,也不会过小影响后续相位噪声的计算。示例性的,该取值范围中的最大值可以不大于最外层星座点的能量,或者不大于单位信号能量(例如1),或者最大值使得PTRS处产生的时域信号能量不高于最大的峰值信号能量,等等。该取值范围中的最小值可以不小于PTRS信号解调的信噪比的3dB倍。
第一通信装置可以基于上述取值范围的要求,从多个第一参数的可能的取值中选取一个取值。也即是说,第一参数的取值,能够使得该K个
Figure PCTCN2022083220-appb-000031
的取值落入该取值范围中。
在这种实施方式中,方法还包括:第一通信装置向第二通信装置发送第三指示信息,该第三指示信息用于指示该第一参数。相应的,第二通信装置获取第一通信装置发送的第三指示信息。
可选的,第三指示消息可以包括第一参数所对应的索引。参见表2,表2示意了本申请实施例提供的一种可能的第一参数的值与索引的对应关系。
表2
索引 第一参数的值
1 1
2 1.5
3 0.5
4 sqrt(2)
5 sqrt(10)
6 sqrt(42)
7 sqrt(170)
8 sqrt(648)
可选的,第二通信装置根据该第三信号中的K个PTRS的值和该第一信号中的K个PTRS的预设接收值确定相位噪声,包括:该第二通信装置根据该第三信号中的K个PTRS的值、该第一信号中的K个PTRS的预设接收值和该第一参数确定相位噪声。
示例性的,以第三信号中第m个PTRS为例,第m个PTRS的实际接收值可以表示为公式1-5:
Figure PCTCN2022083220-appb-000032
其中,
Figure PCTCN2022083220-appb-000033
是第二通信装置实际接收到的含有相位噪声
Figure PCTCN2022083220-appb-000034
影响的PTRS。由上述分析可知,则x(m)应该与AS(m)相等。也即是说,在公式1-5中,
Figure PCTCN2022083220-appb-000035
与AS(m)是已知的,那么可以求解出相位噪声
Figure PCTCN2022083220-appb-000036
需要说明的是,第二通信装置确定相位噪声的方式,以及对第三信号的处理流程可以参照上述图9所对应实施例的介绍。不同的是,本方式中计算相位噪声的公式参照公式1-5所示。
在又一种实施例中,该K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及该第m个PTRS的预设接收值确定,包括:该第m个PTRS的值由第一干扰的值、第二干扰的值、该第m个PTRS的预设接收值以及第二参数确定,该第二参数为与信号相位相关的值。需要说明的是,第二参数用于指示在无相位噪声的假设条件下,第m个PTRS的实际接收值与该第m个PTRS的预设接收值的相位之间的关系。在这种方式中,通过第二参数放宽对该K个PTRS的值的要求。
在这种方式中,第一通信装置通过对该K个PTRS的值进行预处理,使得在无相位噪声的假设条件下,接收端(即第二通信装置)接收到的PTRS的值可以通过事先约定的预设接收值和第二参数确定,消除码间干扰对PTRS的值的影响。
在一种可能的实现方式中,第m个PTRS的值与第一干扰的值、第二干扰的值的和等于该第m个PTRS的预设接收值与该第二参数指示的相位偏移量的乘积。示例性的,第一信号中PTRS的值和PTRS的预设接收值的关系可以参照公式1-6。在该示例中,第一信号包括N个数据信号。
Figure PCTCN2022083220-appb-000037
其中,
Figure PCTCN2022083220-appb-000038
是第一信号中第m个PTRS的值,
Figure PCTCN2022083220-appb-000039
是N个数据信号对该第m个PTRS产生的码间串扰,即第一干扰。
Figure PCTCN2022083220-appb-000040
是K个PTRS中除该第m个PTRS外的PTRS对该第m个PTRS产生的码间串扰,即第二干扰。S(m)是第m个PTRS的预设接收值。
Figure PCTCN2022083220-appb-000041
为该第二参数指示的相位偏移量。第二参数为β m,该第二参数是与相位相关的值,第二参数可以为一个角度值。其中,m为PTRS的索引值(或者称为序号、编号、标号,等 等)。需要说明的是,PTRS的索引值也可以从0开始设计,在这种情况下,第1个PTRS的值即表示为
Figure PCTCN2022083220-appb-000042
另外,还可以存在其他的索引值设计方式,本申请实施例对索引值的设计方式不作限制。
对于第一通信装置而言,N个数据信号的值与K个PTSR的预设接收值是已知的。第一信号中有K个PTRS信号,则该公式1-6一共有K个未知数
Figure PCTCN2022083220-appb-000043
有K个方程,通过这K个方程可以求解得出
Figure PCTCN2022083220-appb-000044
也即是说每个PTRS的值。
在一种可能的实现方式中,公式1-6的左侧部分还可以加入预设的干扰值或者干扰计算公式,用于补偿传输过程中信号所受到的其他干扰。
对上述方式的原理进行分析,示例性的,参见图11,是本申请实施例提供的一种相位可调的PTRS的示意图。其中,为了使得消除码间干扰(示例为ISI信号)影响后的PTRS完全等于PTRS的预设接收值(示例为PTRS-5),发送端需要发送的PTRS为PTRS-6。这个PTRS-6需要一个比较大的能量(如图中的PTRS-6所示)。但由于高能量的信号会带来PAPR的抬升,PTRS-6会影响系统的PAPR。因此,可以设计发送端发送的PTRS为PTRS-7,使得PTRS-8和ISI信号相加之后得到的信号(示例为PTRS-8)的幅度与PTRS的预设接收值的幅度是一致的,但相位与预设接收值的相位相反,这样可以缓解高能量信号所带来的PAPR问题。
另一种情况相反的示例中,可能发送端需要发送的PTRS-6的幅度过小,在这种情况下,可以通过设计发送端所发送的PTRS为PTRS-7,使得PTRS-7和ISI信号相加之后得到的信号与PTRS的预设接收值的幅度是一致的,但是相位不相同,这样可以提升发送端所发送的PTRS-8的抗干扰(例如,白噪声)性能。
可选的,第二参数的取值可以为下列值中的一个:
Figure PCTCN2022083220-appb-000045
或者,
Figure PCTCN2022083220-appb-000046
示例性的,第二参数的取值主要参考以下因素:1、参考发送星座点的幅度系数(例如:QPSK信号,16QAM,64QAM等星座点的幅度系数);2、参考滤波器的系数:例如afa=1的RRC滤波器在匹配接收后是干扰值是0.5;3、参考单载波信号某信号幅度增加不影响PAPR的典型值。通过第二参数的这种取值方式,可以同时保证PTRS处相位噪声估计的精准度和不造成非线性损失。
以下对确定第二参数的取值的确定方式进行介绍。
第二通信装置可以预先设定该K个
Figure PCTCN2022083220-appb-000047
的取值范围。该取值范围中的值,不会过大导致第二信号的PAPR较大,也不会过小影响后续相位噪声的计算。示例性的,该取值范围中的最大值可以不大于最外层星座点的能量,或者不大于单位信号能量(例如1),或者最大值使得PTRS处产生的时域信号能量不高于最大的峰值信号能量,等等。该取值范围中的最小值可以不小于PTRS信号解调的信噪比的3dB倍。
第二通信装置可以基于上述取值范围的要求,从多个第二参数的可能的取值中选取一个取值。也即是说,第二参数的取值,能够使得该K个
Figure PCTCN2022083220-appb-000048
的取值落入该取值范围。
在这种实施方式中,方法还包括:第一通信装置向第二通信装置发送第四指示信息,该 第四指示信息用于指示该第二参数。相应的,第二通信装置获取第一通信装置发送的第四指示信息。
可选的,第四指示消息可以包括第二参数所对应的索引。参见表3,表3示意了本申请实施例提供的一种可能的第二参数的值与索引的对应关系。
表3
索引 第二参数的值
1 0
2 pi(即π)
3 pi/2
4 3/2pi
可选的,参见表4,表4示意了本申请实施例提供的一种可能的第二参数的取值集合与索引的对应关系。
表4
索引 第二参数的取值集合
1 {0,pi}
2 {0,pi/2,pi,3/2pi}
3 {0,pi/4,pi/2,3pi/4,pi,5pi/4,3pi/2,7pi/4}
4 {0,pi/8,2pi/8,3pi/8,pi/2,…,15pi/8}
5 {0,pi/16,2pi/16,3pi/16,…,31pi/16}
在这种方式中,索引所需的数据量较少。由于相位噪声所造成的相位偏移有一个可能的取值范围(例如,[-30°,30°],也即是[-pi/6,pi/6])第二通信装置可以根据计算出的相位噪声的相位偏移和该取值范围从第二参数的取值集合中确定出实际第一信号中使用的第二参数。再基于该第二参数确定出最终的相位噪声。示例性的,第二通信装置计算出的相位噪声的相位偏移为7pi/6,第二参数的取值集合为{0,pi}。由于相位噪声所造成的相位偏移在[-pi/6,pi/6]范围内,第二通信装置可确定出实际第一信号使用的第二参数为pi;相位噪声应该为pi/6。
可选的,第二通信装置根据该第三信号中的K个PTRS的值和该第一信号中的K个PTRS的预设接收值确定相位噪声,包括:第二通信装置根据该第三信号中的K个PTRS的值、该第一信号中的K个PTRS的预设接收值和该第二参数确定相位噪声。
示例性的,以第三信号中第m个PTRS为例,第m个PTRS的实际接收值可以表示为公式1-7:
Figure PCTCN2022083220-appb-000049
其中,
Figure PCTCN2022083220-appb-000050
是第二通信装置实际接收到的含有相位噪声
Figure PCTCN2022083220-appb-000051
影响的PTRS。由上述分析可知,则x(m)应该与
Figure PCTCN2022083220-appb-000052
相等。也即是说,在公式1-7中,
Figure PCTCN2022083220-appb-000053
Figure PCTCN2022083220-appb-000054
是已知的,那么可以求解出相位噪声
Figure PCTCN2022083220-appb-000055
需要说明的是,第二通信装置确定相位噪声的方式,以及对第三信号的处理流程可以参照上述图9所对应实施例的介绍。不同的是,本方式中计算相位噪声的公式参照公式1-7所示。
在又一种实施例中,该K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及该第m个PTRS的预设接收值确定,包括:该第m个PTRS的值由第一干扰的值、第二干扰的值、该第m个PTRS的预设接收值以及第一参数、第二参数确定,该第一参数为与信号幅度相关的值,该第二参数为与信号相位相关的值。需要说明的是,第一参数用于指示在无相位噪声的假设条件下,第m个PTRS的实际接收值与该第m个PTRS的预设接收值的幅度之间的关系;第二参数用于指示在无相位噪声的假设条件下,第m个PTRS的实际接收值与该第m个PTRS的预设接收值的相位之间的关系。在这种方式中,通过第一参数放宽对该K个PTRS的值的幅度要求,通过第二参数放宽对该K个PTRS的值的相位要求。
在这种方式中,第一通信装置通过对该K个PTRS的值进行预处理,使得在无相位噪声的假设条件下,接收端(即第二通信装置)接收到的PTRS的值可以通过事先约定的预设接收值和第一参数、第二参数确定,消除码间干扰对PTRS的值的影响。
在一种可能的实现方式中,第m个PTRS的值与第一干扰的值、第二干扰的值的和等于该第m个PTRS的预设接收值与该第一参数、该第二参数指示的相位偏移量的乘积。示例性的,第一信号中PTRS的值和PTRS的预设接收值的关系可以参照公式1-8。在该示例中,第一信号包括N个数据信号。
Figure PCTCN2022083220-appb-000056
其中,
Figure PCTCN2022083220-appb-000057
是第一信号中第m个PTRS的值,
Figure PCTCN2022083220-appb-000058
是N个数据信号对该第m个PTRS产生的码间串扰,即第一干扰。
Figure PCTCN2022083220-appb-000059
是K个PTRS中除该第m个PTRS外的PTRS对该第m个PTRS产生的码间串扰,即第二干扰。S(m)是第m个PTRS的预设接收值。A为第一参数,该第一参数是与幅度相关的值,A可以为实数。
Figure PCTCN2022083220-appb-000060
为该第二参数指示的相位偏移量。第二参数为β m,该第二参数是与相位相关的值,第二参数可以为一个角度值。其中,m为PTRS的索引值(或者称为序号、编号、标号,等等)。需要说明的是,PTRS的索引值也可以从0开始设计,在这种情况下,第1个PTRS的值即表示为
Figure PCTCN2022083220-appb-000061
另外,还可以存在其他的索引值设计方式,本申请实施例对索引值的设计方式不作限制。
对于第一通信装置而言,N个数据信号的值与K个PTSR的预设接收值是已知的。第一信号中有K个PTRS信号,则该公式1-8一共有K个未知数
Figure PCTCN2022083220-appb-000062
有K个方程,通过这 K个方程可以求解得出
Figure PCTCN2022083220-appb-000063
也即是说每个PTRS的值。
在一种可能的实现方式中,公式1-8的左侧部分还可以加入预设的干扰值或者干扰计算公式,用于补偿传输过程中信号所受到的其他干扰。
这种方式的原理分析可以参照上述内容中的介绍,该方式同时考虑了幅度的调整和相位的偏移,此处不再赘述。
另外,第一参数、第二参数的可能的取值以及取值的确定方式,均可以参照上述方法中的介绍。需要说明的是,第一参数、第二参数的取值的确定过程中,需要同时考虑两个参数对该K个
Figure PCTCN2022083220-appb-000064
的取值的影响。最终确定出的第一参数、第二参数的取值,能够使得该K个
Figure PCTCN2022083220-appb-000065
的取值落入其适合的取值范围中。
在这种实施方式中,方法还包括:第一通信装置向第二通信装置发送第五指示信息,该第五指示信息用于指示该第一参数和该第二参数。相应的,第二通信装置获取第一通信装置发送的第五指示信息。可选的,在这种实施方式中,第一通信装置也可以先后或者同时向第二通信装置发送第三指示信息和第四指示信息,其中,该第三指示信息和第四指示信息的介绍可以参照上述内容中的介绍,此处不再赘述。
可选的,第五指示消息可以包括第一参数所对应的索引和第二参数所对应的索引。该第一参数的值与索引的对应关系,以及该第二参数的值与索引的对应关系可以参照上述内容中的介绍,此处不再赘述。
可选的,第二通信装置根据该第三信号中的K个PTRS的值和该第一信号中的K个PTRS的预设接收值确定相位噪声,包括:第二通信装置根据该第三信号中的K个PTRS的值、该第一信号中的K个PTRS的预设接收值和该第一参数、该第二参数确定相位噪声。
示例性的,以第三信号中第m个PTRS为例,第m个PTRS的实际接收值可以表示为公式1-9:
Figure PCTCN2022083220-appb-000066
其中,
Figure PCTCN2022083220-appb-000067
是第二通信装置实际接收到的含有相位噪声
Figure PCTCN2022083220-appb-000068
影响的PTRS。由上述分析可知,则x(m)应该与
Figure PCTCN2022083220-appb-000069
相等。也即是说,在公式1-9中,
Figure PCTCN2022083220-appb-000070
Figure PCTCN2022083220-appb-000071
是已知的,那么可以求解出相位噪声
Figure PCTCN2022083220-appb-000072
需要说明的是,第二通信装置确定相位噪声的方式,以及对第三信号的处理流程可以参照上述图9所对应实施例的介绍。不同的是,本方式中计算相位噪声的公式参照公式1-9所示。
为了实现上述本申请实施例提供的方法中的各功能,第一通信装置、第二通信装置可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。参见图12,图12是本申请实施例提供的一种通信装置的结构示意图。通信装置120包括收发单元1201和处理单元1202,以下对这两个单元作出具体的介绍。
在一种实施例中:
收发单元1201,用于获取第一信号,所述第一信号包括数据信号和K个相位跟踪参考信号PTRS。其中,所述K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及所述第m个PTRS的预设接收值确定。具体的,所述第一干扰为所述数据信号对所述第m 个PTRS产生的码间串扰,所述第二干扰为所述K个PTRS中除所述第m个PTRS外的PTRS对所述第m个PTRS产生的码间串扰,K、m为正整数,1≤m≤K。
处理单元1202,用于对所述第一信号进行基带信号处理,以得到第二信号。
收发单元1201,还用于向第二通信装置发送所述第二信号。
在一种可能的实现方式中,所述第一干扰的值和所述第二干扰的值基于接收机类型确定。
在一种可能的实现方式中,所述收发单元1201还用于:获取所述第二通信装置发送的第一指示信息,所述第一指示信息用于指示所述接收机类型。
在一种可能的实现方式中,所述收发单元1201还用于:向所述第二通信装置发送第二指示信息,所述第二指示信息用于指示所述接收机类型。
在一种可能的实现方式中,所述K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及所述第m个PTRS的预设接收值确定,包括:所述第m个PTRS的值由所述第一干扰的值、所述第二干扰的值,所述第m个PTRS的预设接收值以及第一参数确定,所述第一参数为与信号幅度相关的值。
在一种可能的实现方式中,所述收发单元1201还用于:向所述第二通信装置发送第三指示信息,所述第三指示信息用于指示所述第一参数。
在一种可能的实现方式中,所述K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及所述第m个PTRS的预设接收值确定,包括:所述第m个PTRS的值由所述第一干扰的值、所述第二干扰的值,所述第m个PTRS的预设接收值以及第二参数确定,所述第二参数为与信号相位相关的值。
在一种可能的实现方式中,所述收发单元1201还用于:向所述第二通信装置发送第四指示信息,所述第四指示信息用于指示所述第二参数。
需要说明的是,在上述实施例中,该通信装置120可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。该通信设备1201还可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。
具体的,图12所示的通信装置120的各个单元执行的操作可以参照上述图6对应的方法实施例中有关于第一通信装置的相关内容,此处不再详述。上述各个单元可以以硬件,软件或者软硬件结合的方式来实现。在一个实施例中,上述内容中的收发单元1201以及处理单元1202的功能可以由通信装置120中的一个或多个处理器来实现。
通过这种实施例中的通信装置120,可以对第一信号中的K个PTRS的值进行预处理,使得在无相位噪声的假设条件下,接收端接收到的PTRS的值可以根据事先约定的预设接收值确定,消除码间干扰对PTRS的值的影响。由于实际接收端接收到的PTRS的值还会存在相位噪声的影响,这样可以通过PTRS的实际接收值和预设接收值计算出相位噪声。
在又一种实施例中:
收发单元1201,用于获取第三信号,所述第三信号为第一通信装置发送的第二信号中引入相位噪声之后的信号,所述第三信号包括数据信号和K个相位跟踪参考信号PTRS。
其中,所述第二信号为第一信号经过基带信号处理后的信号。所述第一信号包括数据信号和K个PTRS,所述第一信号中的K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及所述第m个PTRS的预设接收值确定。具体的,所述第一干扰为所述第一信号中的数据信号对所述第m个PTRS产生的码间串扰,所述第二干扰为所述第一信号中的K个PTRS中除所述第m个PTRS外的PTRS对所述第m个PTRS产生的码间串扰,K,m为 正整数,1≤m≤K。
所述处理单元1202,用于根据所述第三信号中的K个PTRS的值和所述第一信号中的K个PTRS的预设接收值确定所述相位噪声。
在一种可能的实现方式中,所述处理单元1202还用于:将所述第三信号转换为第一频域信号;对所述第一频域信号进行信道均衡,得到第二频域信号;基于接收机对所述第二频域信号进行预处理,并将处理后的第二频域信号转换为第一时域信号;从所述第一时域信号中获取所述第三信号中的K个PTRS的值。
在一种可能的实现方式中,所述收发单元1201还用于:向所述第一通信装置发送第一指示信息,所述第一指示信息用于指示所述接收机的类型。
在一种可能的实现方式中,所述收发单元1201还用于:获取所述第一通信装置发送的第二指示信息,所述第二指示信息用于指示所述接收机的类型。
在一种可能的实现方式中,所述处理单元1202还用于:将所述第一频域信号转换为第二时域信号;根据所述相位噪声对所述第二时域信号进行相位噪声的补偿。
在一种可能的实现方式中,所述收发单元1201还用于:获取所述第一通信装置发送的第三指示信息,所述第三指示信息用于指示第一参数,所述第一参数为与信号幅度相关的值;所述处理单元具体用于:根据所述第三信号中的K个PTRS的值、所述第一信号中的K个PTRS的预设接收值和所述第一参数确定所述相位噪声。
在一种可能的实现方式中,所述收发单元1201还用于:获取所述第一通信装置发送的第四指示信息,所述第四指示信息用于指示第二参数,所述第二参数为与信号相位相关的值;所述处理单元具体用于:根据所述第三信号中的K个PTRS的值、所述第一信号中的K个PTRS的预设接收值和所述第二参数确定所述相位噪声。
需要说明的是,在上述实施例中,该通信装置120可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。该通信设备1201还可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。
具体的,图12所示的通信装置120的各个单元执行的操作可以参照上述图6对应的方法实施例中有关于第二通信装置的相关内容,此处不再详述。上述各个单元可以以硬件,软件或者软硬件结合的方式来实现。在一个实施例中,上述内容中的收发单元1201以及处理单元1202的功能可以由通信装置120中的一个或多个处理器来实现。
通过这种实施例中的通信装置120,可以获取发送端发送的第三信号,根据第三信号中的K个PTRS的实际接收值和事先约定的第一信号中的K个PTRS的预设接收值,计算出第三信号中的相位噪声。
参见图13,是本申请实施例提供的又一种通信装置的结构示意图。该通信装置130可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置130可以包括一个或多个处理器1301。所述处理器1301可以是通用处理器或者专用处理器等。所述处理器1301可以用于对通信装置(如,网络设备、网络设备芯片、终端设备、终端设备芯片等)进行控制,执行软件程序,处理软件程序的数据。
可选的,所述通信装置130中可以包括一个或多个存储器1302,其上可以存有程序代码1304,所述程序代码可在所述处理器1301上被运行,使得所述通信装置130执行上述方法实施例中描述的方法。可选的,所述存储器1302中还可以存储有数据。所述处理器1301和存储器1302可以单独设置,也可以集成在一起。
可选的,所述通信装置130还可以包括收发器1305、天线1306。所述收发器1305可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1305可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
在一种实施例中:
处理器1301,用于通过收发器1305获取第一信号,所述第一信号包括数据信号和K个相位跟踪参考信号PTRS。其中,所述K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及所述第m个PTRS的预设接收值确定。具体的,所述第一干扰为所述数据信号对所述第m个PTRS产生的码间串扰,所述第二干扰为所述K个PTRS中除所述第m个PTRS外的PTRS对所述第m个PTRS产生的码间串扰,K、m为正整数,1≤m≤K。
处理器1301,还用于通过收发器1305向第二通信装置发送第二信号,所述第二信号为所述第一信号经过基带信号处理后的信号。
在一种可能的实现方式中,所述第一干扰的值和所述第二干扰的值基于接收机类型确定。
在一种可能的实现方式中,处理器1301还用于从存储器1302中调用程序代码1304执行如下操作:获取第二通信装置发送的第一指示信息,所述第一指示信息用于指示所述接收机类型。
在一种可能的实现方式中,处理器1301还用于从存储器1302中调用程序代码1304执行如下操作:向所述第二通信装置发送第二指示信息,所述第二指示信息用于指示所述接收机类型。
在一种可能的实现方式中,所述K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及所述第m个PTRS的预设接收值确定,包括:所述第m个PTRS的值由所述第一干扰的值、所述第二干扰的值、所述第m个PTRS的预设接收值以及第一参数确定,所述第一参数为与信号幅度相关的值。
在一种可能的实现方式中,处理器1301还用于从存储器1302中调用程序代码1304执行如下操作:所述第一通信装置向所述第二通信装置发送第三指示信息,所述第三指示信息用于指示所述第一参数。
在一种可能的实现方式中,所述K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及所述第m个PTRS的预设接收值确定,包括:所述第m个PTRS的值由所述第一干扰的值、所述第二干扰的值、所述第m个PTRS的预设接收值以及第二参数确定,所述第二参数为与信号相位相关的值。
在一种可能的实现方式中,处理器1301还用于从存储器1302中调用程序代码1304执行如下操作:向所述第二通信装置发送第四指示信息,所述第四指示信息用于指示所述第二参数。
需要说明的是,在上述实施例中,通信装置130可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。
具体的,通信装置130执行的操作可以参照上述图6对应的方法实施例中有关第一通信装置的相关内容,此处不再详述。通过这种实施例中的通信装置130,可以对第一信号中的K个PTRS的值进行预处理,使得在无相位噪声的假设条件下,接收端接收到的PTRS的值可以根据事先约定的预设接收值确定,消除码间干扰对PTRS的值的影响。由于实际接收端接收到的PTRS的值还会存在相位噪声的影响,这样可以通过PTRS的实际接收值和预设接收 值计算出相位噪声。
在又一种实施例中:
处理器1301,用于通过收发器1305获取第三信号,所述第三信号为第一通信装置发送的第二信号中引入相位噪声之后的信号,所述第三信号包括数据信号和K个相位跟踪参考信号PTRS。
其中,所述第二信号为第一信号经过基带信号处理后的信号,所述第一信号包括数据信号和K个PTRS。所述第一信号中的K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及所述第m个PTRS的预设接收值确定。具体的,所述第一干扰为所述第一信号中的数据信号对所述第m个PTRS产生的码间串扰,所述第二干扰为所述第一信号中的K个PTRS中除所述第m个PTRS外的PTRS对所述第m个PTRS产生的码间串扰,K、m为正整数,1≤m≤K。
处理器1301,还用于根据所述第三信号中的K个PTRS的值和所述第一信号中的K个PTRS的预设接收值确定相位噪声。
在一种可能的实现方式中,处理器1301还用于从存储器1302中调用程序代码1304执行如下操作:将所述第三信号转换为第一频域信号;对所述第一频域信号进行信道均衡,得到第二频域信号;基于接收机对所述第二频域信号进行预处理,并将处理后的第二频域信号转换为第一时域信号;从所述第一时域信号中获取所述第三信号中的K个PTRS的值。
在一种可能的实现方式中,处理器1301还用于从存储器1302中调用程序代码1304执行如下操作:向所述第一通信装置发送第一指示信息,所述第一指示信息用于指示所述接收机的类型。
在一种可能的实现方式中,处理器1301还用于从存储器1302中调用程序代码1304执行如下操作:获取所述第一通信装置发送的第二指示信息,所述第二指示信息用于指示所述接收机的类型。
在一种可能的实现方式中,处理器1301还用于从存储器1302中调用程序代码1304执行如下操作:将所述第一频域信号转换为第二时域信号;根据所述相位噪声对所述第二时域信号进行相位噪声的补偿。
在一种可能的实现方式中,处理器1301还用于从存储器1302中调用程序代码1304执行如下操作:接收所述第一通信装置发送的第三指示信息,所述第三指示信息用于指示第一参数,所述第一参数为与信号幅度相关的值;根据所述第三信号中的K个PTRS的值、所述第一信号中的K个PTRS的预设接收值和所述第一参数确定相位噪声。
在一种可能的实现方式中,处理器1301还用于从存储器1302中调用程序代码1304执行如下操作:接收所述第一通信装置发送的第四指示信息,所述第四指示信息用于指示第二参数,所述第二参数为与信号相位相关的值;根据所述第三信号中的K个PTRS的值、所述第一信号中的K个PTRS的预设接收值和所述第二参数确定所述相位噪声。
需要说明的是,在上述实施例中,通信装置130可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。
具体的,通信装置130执行的操作可以参照上述图6对应的方法实施例中有关第二通信装置的相关内容,此处不再详述。通过这种实施例中的通信装置130,可以获取发送端发送的第三信号,根据第三信号中的K个PTRS的实际接收值和事先约定的第一信号中的K个 PTRS的预设接收值,计算出第三信号中的相位噪声。
在另一种可能的设计中,该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在又一种可能的设计中,可选的,处理器1301可以存有程序代码1303,程序代码1303在处理器1301上运行,可使得所述通信装置130执行上述方法实施例中描述的方法。程序代码1303可能固化在处理器1301中,该种情况下,处理器1301可能由硬件实现。
在又一种可能的设计中,通信装置130可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。
以上实施例描述中的通信装置可以是网络设备或者终端设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图13的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,程序代码的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、智能终端、无线设备、手持机、移动单元、车载设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图14所示的芯片的结构示意图。图14所示的芯片140包括逻辑电路1401和输入输出接口1402。其中,逻辑电路1401的数量可以是一个或多个,输入输出接口1402的数量可以是多个。
对于芯片用于实现本申请实施例中第一通信装置的功能的情况:
输入输出接口1402,用于输入第一信号。
输入输出接口1402,还用于输出第二信号。
逻辑电路1401,用于对该第一信号和该第二信号进行处理,以及执行如下操作:通过输入输出接收1402获取第一信号,所述第一信号包括数据信号和K个相位跟踪参考信号PTRS。其中,所述K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及所述第m个PTRS的预设接收值确定。具体的,所述第一干扰为所述数据信号对所述第m个PTRS产生的码间串扰,所述第二干扰为所述K个PTRS中除所述第m个PTRS外的PTRS对所述第m个PTRS产生的码间串扰,K、m为正整数,1≤m≤K。
通过输入输出接口1402向第二通信装置发送第二信号,所述第二信号为所述第一信号经过基带信号处理后的信号。
具体的,在这种情况中,逻辑电路1401所执行的操作可以参照上述图6所对应的实施例中有关第一通信装置的介绍。
对于芯片用于实现本申请实施例中第二通信装置的功能的情况:
输入输出接口1402,用于输入第三信号。
逻辑电路1401,用于对所述第三信号进行处理,以及执行如下操作:通过输入输出接口1402获取第三信号,所述第三信号为第一通信装置发送的第二信号中引入相位噪声之后的信号,所述第三信号包括数据信号和K个相位跟踪参考信号PTRS。其中,所述第二信号为第一信号经过基带信号处理后的信号,所述第一信号包括数据信号和K个PTRS。所述第一信号中的K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及所述第m个PTRS的预设接收值确定。具体的,所述第一干扰为所述第一信号中的数据信号对所述第m个PTRS产生的码间串扰,所述第二干扰为所述第一信号中的K个PTRS中除所述第m个PTRS外的PTRS对所述第m个PTRS产生的码间串扰,K、m为正整数,1≤m≤K。根据所述第三信号中的K个PTRS的值和所述第一信号中的K个PTRS的预设接收值确定相位噪声。
具体的,在这种情况中,逻辑电路1401所执行的操作可以参照上述图6所对应的实施例中有关第二通信装置的介绍。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机可读存储介质被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机指令时,全部或部分地产生按照本申请实施例该的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,先后顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的 对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。

Claims (35)

  1. 一种相位噪声的确定方法,其特征在于,包括:
    第一通信装置获取第一信号,所述第一信号包括数据信号和K个相位跟踪参考信号PTRS,其中,所述K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及所述第m个PTRS的预设接收值确定,所述第一干扰为所述数据信号对所述第m个PTRS产生的码间串扰,所述第二干扰为所述K个PTRS中除所述第m个PTRS外的PTRS对所述第m个PTRS产生的码间串扰,K、m为正整数,1≤m≤K;
    所述第一通信装置向第二通信装置发送第二信号,所述第二信号为所述第一信号经过基带信号处理后的信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一干扰的值和所述第二干扰的值基于接收机类型确定。
  3. 根据权利要求1或2所述的方法,其特征在于,在所述第一通信装置获取第一信号之前,所述方法还包括:
    所述第一通信装置获取所述第二通信装置发送的第一指示信息,所述第一指示信息用于指示所述接收机类型。
  4. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置向所述第二通信装置发送第二指示信息,所述第二指示信息用于指示所述接收机类型。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及所述第m个PTRS的预设接收值确定,包括:
    所述第m个PTRS的值由所述第一干扰的值、所述第二干扰的值、所述第m个PTRS的预设接收值以及第一参数确定,所述第一参数为与信号幅度相关的值。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置向所述第二通信装置发送第三指示信息,所述第三指示信息用于指示所述第一参数。
  7. 根据权利要求1-4任一项所述的方法,其特征在于,所述K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及所述第m个PTRS的预设接收值确定,包括:
    所述第m个PTRS的值由所述第一干扰的值、所述第二干扰的值、所述第m个PTRS的预设接收值以及第二参数确定,所述第二参数为与信号相位相关的值。
  8. 根据权利要求7所述的方法,其特征在于,所述方法包括:
    所述第一通信装置向所述第二通信装置发送第四指示信息,所述第四指示信息用于指示所述第二参数。
  9. 一种相位噪声的确定方法,其特征在于,包括:
    第二通信装置获取第三信号,所述第三信号为第一通信装置发送的第二信号中引入相位噪声之后的信号,所述第三信号包括数据信号和K个相位跟踪参考信号PTRS;
    其中,所述第二信号为第一信号经过基带信号处理后的信号,所述第一信号包括数据信号和K个PTRS,所述第一信号中的K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及所述第m个PTRS的预设接收值确定,所述第一干扰为所述第一信号中的数据信号对所述第m个PTRS产生的码间串扰,所述第二干扰为所述第一信号中的K个PTRS中除所述第m个PTRS外的PTRS对所述第m个PTRS产生的码间串扰,K、m为正整数,1≤m≤K;
    所述第二通信装置根据所述第三信号中的K个PTRS的值和所述第一信号中的K个PTRS的预设接收值确定所述相位噪声。
  10. 根据权利要求9所述的方法,其特征在于,在所述第二通信装置根据所述第三信号中的K个PTRS的值和所述第一信号中的K个PTRS的预设接收值确定所述相位噪声之前,所述方法还包括:
    所述第二通信装置将所述第三信号转换为第一频域信号;
    所述第二通信装置对所述第一频域信号进行信道均衡,得到第二频域信号;
    所述第二通信装置基于接收机对所述第二频域信号进行预处理,并将处理后的第二频域信号转换为第一时域信号;
    所述第二通信装置从所述第一时域信号中获取所述第三信号中的K个PTRS的值。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置向所述第一通信装置发送第一指示信息,所述第一指示信息用于指示所述接收机的类型。
  12. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置获取所述第一通信装置发送的第二指示信息,所述第二指示信息用于指示所述接收机的类型。
  13. 根据权利要求10-12任一项所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置将所述第一频域信号转换为第二时域信号;
    所述第二通信装置根据所述相位噪声对所述第二时域信号进行相位噪声的补偿。
  14. 根据权利要求9-13任一项所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置接收所述第一通信装置发送的第三指示信息,所述第三指示信息用于指示第一参数,所述第一参数为与信号幅度相关的值;
    所述第二通信装置根据所述第三信号中的K个PTRS的值和所述第一信号中的K个PTRS的预设接收值确定所述相位噪声,包括:
    所述第二通信装置根据所述第三信号中的K个PTRS的值、所述第一信号中的K个PTRS的预设接收值和所述第一参数确定所述相位噪声。
  15. 根据权利要求9-13任一项所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置接收所述第一通信装置发送的第四指示信息,所述第四指示信息用于指示第二参数,所述第二参数为与信号相位相关的值;
    所述第二通信装置根据所述第三信号中的K个PTRS的值和所述第一信号中的K个PTRS的预设接收值确定所述相位噪声,包括:
    所述第二通信装置根据所述第三信号中的K个PTRS的值、所述第一信号中的K个PTRS的预设接收值和所述第二参数确定所述相位噪声。
  16. 一种通信装置,其特征在于,所述通信装置包括收发单元和处理单元,其中:
    所述收发单元,用于获取第一信号,所述第一信号包括数据信号和K个相位跟踪参考信号PTRS,其中,所述K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及所述第m个PTRS的预设接收值确定,所述第一干扰为所述数据信号对所述第m个PTRS产生的码间串扰,所述第二干扰为所述K个PTRS中除所述第m个PTRS外的PTRS对所述第m个PTRS产生的码间串扰,K、m为正整数,1≤m≤K;
    所述处理单元,用于对所述第一信号进行基带信号处理,以得到第二信号;
    所述收发单元,还用于向第二通信装置发送所述第二信号。
  17. 根据权利要求16所述的通信装置,其特征在于,所述第一干扰的值和所述第二干扰的值基于接收机类型确定。
  18. 根据权利要求17所述的通信装置,其特征在于,所述收发单元还用于:
    获取所述第二通信装置发送的第一指示信息,所述第一指示信息用于指示所述接收机类型。
  19. 根据权利要求17所述的通信装置,其特征在于,所述收发单元还用于:
    向所述第二通信装置发送第二指示信息,所述第二指示信息用于指示所述接收机类型。
  20. 根据权利要求16-19任一项所述的通信装置,其特征在于,所述K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及所述第m个PTRS的预设接收值确定,包括:
    所述第m个PTRS的值由所述第一干扰的值、所述第二干扰的值,所述第m个PTRS的预设接收值以及第一参数确定,所述第一参数为与信号幅度相关的值。
  21. 根据权利要求20所述的通信装置,其特征在于,所述收发单元还用于:
    向所述第二通信装置发送第三指示信息,所述第三指示信息用于指示所述第一参数。
  22. 根据权利要求16-19任一项所述的通信装置,其特征在于,所述K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及所述第m个PTRS的预设接收值确定,包括:
    所述第m个PTRS的值由所述第一干扰的值、所述第二干扰的值,所述第m个PTRS的预设接收值以及第二参数确定,所述第二参数为与信号相位相关的值。
  23. 根据权利要求22所述的通信装置,其特征在于,所述收发单元还用于:
    向所述第二通信装置发送第四指示信息,所述第四指示信息用于指示所述第二参数。
  24. 一种通信装置,其特征在于,所述通信装置包括收发单元和处理单元,其中:
    所述收发单元,用于获取第三信号,所述第三信号为第一通信装置发送的第二信号中引入相位噪声之后的信号,所述第三信号包括数据信号和K个相位跟踪参考信号PTRS;
    其中,所述第二信号为第一信号经过基带信号处理后的信号,所述第一信号包括数据信号和K个PTRS,所述第一信号中的K个PTRS中的第m个PTRS的值由第一干扰的值、第二干扰的值以及所述第m个PTRS的预设接收值确定,所述第一干扰为所述第一信号中的数据信号对所述第m个PTRS产生的码间串扰,所述第二干扰为所述第一信号中的K个PTRS中除所述第m个PTRS外的PTRS对所述第m个PTRS产生的码间串扰,K,m为正整数,1≤m≤K;
    所述处理单元,用于根据所述第三信号中的K个PTRS的值和所述第一信号中的K个PTRS的预设接收值确定所述相位噪声。
  25. 根据权利要求24所述的通信装置,其特征在于,所述处理单元还用于:
    将所述第三信号转换为第一频域信号;
    对所述第一频域信号进行信道均衡,得到第二频域信号;
    基于接收机对所述第二频域信号进行预处理,并将处理后的第二频域信号转换为第一时域信号;
    从所述第一时域信号中获取所述第三信号中的K个PTRS的值。
  26. 根据权利要求25所述的通信装置,其特征在于,所述收发单元还用于:
    向所述第一通信装置发送第一指示信息,所述第一指示信息用于指示所述接收机的类型。
  27. 根据权利要求25所述的通信装置,其特征在于,所述收发单元还用于:
    获取所述第一通信装置发送的第二指示信息,所述第二指示信息用于指示所述接收机的类型。
  28. 根据权利要求25-27任一项所述的通信装置,其特征在于,所述处理单元还用于:
    将所述第一频域信号转换为第二时域信号;
    根据所述相位噪声对所述第二时域信号进行相位噪声的补偿。
  29. 根据权利要求24-28任一项所述的通信装置,其特征在于,所述收发单元还用于:
    获取所述第一通信装置发送的第三指示信息,所述第三指示信息用于指示第一参数,所述第一参数为与信号幅度相关的值;
    所述处理单元具体用于:
    根据所述第三信号中的K个PTRS的值、所述第一信号中的K个PTRS的预设接收值和所述第一参数确定所述相位噪声。
  30. 根据权利要求24-28任一项所述的通信装置,其特征在于,所述收发单元还用于:
    获取所述第一通信装置发送的第四指示信息,所述第四指示信息用于指示第二参数,所述第二参数为与信号相位相关的值;
    所述处理单元具体用于:
    根据所述第三信号中的K个PTRS的值、所述第一信号中的K个PTRS的预设接收值和所述第二参数确定所述相位噪声。
  31. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合;
    所述存储器,用于存储程序代码;
    所述处理器,用于从所述存储器中调用所述程序代码执行如权利要求1-15任一项所述的方法。
  32. 一种通信装置,其特征在于,所述通信装置包括逻辑电路和输入输出接口,
    所述输入输出接口用于输入第一信号;
    所述输入输出接口,还用于输出第二信号;
    所述逻辑电路用于对所述第一信号和所述第二信号进行处理,以及执行如权利要求1-8任一项所述的方法。
  33. 一种通信装置,其特征在于,所述通信装置包括逻辑电路和输入输出接口,
    所述输入输出接口用于输入第三信号;
    所述逻辑电路用于对所述第三信号进行处理,以及执行如权利要求9-15中任一项所述的方法。
  34. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储指令,当所述指令被执行时,使得如权利要求1-8或者权利要求9-1 5中任一项所述的方法被实现。
  35. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得计算机执行如权利要求1-8或者权利要求9-15中任一项所述的方法。
PCT/CN2022/083220 2021-03-30 2022-03-26 一种相位噪声的确定方法及相关装置 WO2022206634A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22778816.3A EP4311174A1 (en) 2021-03-30 2022-03-26 Method for determining phase noise and related device
US18/474,889 US20240022382A1 (en) 2021-03-30 2023-09-26 Phase noise determining method and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110341555.2A CN115150234A (zh) 2021-03-30 2021-03-30 一种相位噪声的确定方法及相关装置
CN202110341555.2 2021-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/474,889 Continuation US20240022382A1 (en) 2021-03-30 2023-09-26 Phase noise determining method and related apparatus

Publications (1)

Publication Number Publication Date
WO2022206634A1 true WO2022206634A1 (zh) 2022-10-06

Family

ID=83404040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083220 WO2022206634A1 (zh) 2021-03-30 2022-03-26 一种相位噪声的确定方法及相关装置

Country Status (4)

Country Link
US (1) US20240022382A1 (zh)
EP (1) EP4311174A1 (zh)
CN (1) CN115150234A (zh)
WO (1) WO2022206634A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222462A (zh) * 2007-01-10 2008-07-16 英华达(上海)电子有限公司 准静态信道均衡方法、系统和装置
CN104618280A (zh) * 2015-02-02 2015-05-13 华为技术有限公司 消除码间串扰的方法及一种判决反馈序列预测器
CN105577598A (zh) * 2014-10-17 2016-05-11 中兴通讯股份有限公司 在干扰条件下的lte上行系统的信号检测方法和装置
CN106330795A (zh) * 2015-06-30 2017-01-11 展讯通信(上海)有限公司 移动终端及其接收信号处理方法及装置
US20200045653A1 (en) * 2017-03-24 2020-02-06 Samsung Electronics Co., Ltd Method and apparatus for phase tracking reference signal in a wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222462A (zh) * 2007-01-10 2008-07-16 英华达(上海)电子有限公司 准静态信道均衡方法、系统和装置
CN105577598A (zh) * 2014-10-17 2016-05-11 中兴通讯股份有限公司 在干扰条件下的lte上行系统的信号检测方法和装置
CN104618280A (zh) * 2015-02-02 2015-05-13 华为技术有限公司 消除码间串扰的方法及一种判决反馈序列预测器
CN106330795A (zh) * 2015-06-30 2017-01-11 展讯通信(上海)有限公司 移动终端及其接收信号处理方法及装置
US20200045653A1 (en) * 2017-03-24 2020-02-06 Samsung Electronics Co., Ltd Method and apparatus for phase tracking reference signal in a wireless communication system

Also Published As

Publication number Publication date
CN115150234A (zh) 2022-10-04
US20240022382A1 (en) 2024-01-18
EP4311174A1 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
JP7102417B2 (ja) 基準信号を伝送するための方法およびデバイス
CN112398773B (zh) 数据传输方法及其装置
CN112449429B (zh) 信号传输方法及通信装置
US20110280117A1 (en) Backward-compatible long training sequences for wireless communication networks
CN103444146A (zh) 一种基于ofdm的数据传输方法和系统
CN108289069B (zh) 一种参考信号的传输方法、发送端和接收端
US10999108B2 (en) Wireless communication method, apparatus, and system
JP6718523B2 (ja) 送信装置、受信装置及び通信方法
WO2023040621A1 (zh) 一种通信方法及相关装置
WO2017190289A1 (zh) 数据处理方法及装置
WO2022206634A1 (zh) 一种相位噪声的确定方法及相关装置
WO2023011560A1 (zh) 一种通信方法及相关装置
CN104486274B (zh) 一种多天线单载波频分多址系统的信号传输方法
WO2022253116A1 (zh) 一种多用户通信的方法及相关通信装置
WO2023207762A1 (zh) 一种通信的方法及设备
WO2022127775A1 (zh) 一种相位噪声的抑制方法及相关装置
US20140334285A1 (en) Base station apparatus for decreasing amount of transmission data with cloud radio access network
WO2023066117A1 (zh) 一种数据传输方法及其装置
WO2023197931A1 (zh) 一种信号传输方法及装置
WO2023011551A1 (zh) 一种相位跟踪参考信号的传输方法及装置
WO2023036051A1 (zh) 一种通信方法及装置
WO2023174353A1 (zh) 一种安全ltf序列确定方法及相关装置
Miyamoto et al. Low latency symbol level transmission scheme for mobile fronthaul with intra PHY split RAN architecture
JP2023142237A (ja) 通信装置、及び、通信方法
Zhongyi et al. Modulation and demodulation technique of constant envelope OFDM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778816

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022778816

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022778816

Country of ref document: EP

Effective date: 20231016

NENP Non-entry into the national phase

Ref country code: DE