WO2021097597A1 - 信号传输的方法和装置、反射器以及接收器 - Google Patents

信号传输的方法和装置、反射器以及接收器 Download PDF

Info

Publication number
WO2021097597A1
WO2021097597A1 PCT/CN2019/119111 CN2019119111W WO2021097597A1 WO 2021097597 A1 WO2021097597 A1 WO 2021097597A1 CN 2019119111 W CN2019119111 W CN 2019119111W WO 2021097597 A1 WO2021097597 A1 WO 2021097597A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
signals
time domain
excitation
excitation signals
Prior art date
Application number
PCT/CN2019/119111
Other languages
English (en)
French (fr)
Inventor
颜矛
黄煌
邵华
高宽栋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19953167.4A priority Critical patent/EP4044483A4/en
Priority to KR1020227018943A priority patent/KR20220098371A/ko
Priority to PCT/CN2019/119111 priority patent/WO2021097597A1/zh
Priority to CN201980101275.5A priority patent/CN114556842B/zh
Publication of WO2021097597A1 publication Critical patent/WO2021097597A1/zh
Priority to US17/746,681 priority patent/US20220278886A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26544Demodulators for signals generated by symbol repetition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/026Co-operative diversity, e.g. using fixed or mobile stations as relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/145Passive relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/22Scatter propagation systems, e.g. ionospheric, tropospheric or meteor scatter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communications, and more specifically, to a method and device for signal transmission, a reflector, and a receiver.
  • Reflective communication does not require special radio frequency devices that consume a lot of power. Reflective communication is a technology that can rely on the antenna to receive wireless signals to obtain energy and rely on the wireless signals received by the antenna to communicate. Reflective communication is also a very low-power, low-cost passive communication technology suitable for IoT applications.
  • reflection is based on data packets, and each reflection data has a packet header (Preamble).
  • the receiving end generally performs channel estimation through the preamble sequence of the data packet header.
  • the channel estimation performance is poor.
  • the present application provides a method and device for signal transmission, a reflector, and a receiver, in order to improve the performance of channel estimation and data demodulation.
  • a signal transmission method is provided.
  • the method may be executed by a reflector, or may also be executed by a chip or a chip system or circuit configured in the reflector, which is not limited in this application.
  • the method may include: the reflector receives W excitation signals; the reflector reflects data and L reference signals to the receiver, the L reference signals are respectively carried in the L excitation signals of the W excitation signals; wherein , W and L are both integers greater than or equal to 1, and L is less than or equal to W.
  • the reference signal is carried in the excitation signal. It can be understood that each excitation signal can be loaded with a reference signal. Loaded in the signal domain, for example, can be embodied as the multiplication of two signals.
  • the reference signal in the reflection communication that is, when the reflector reflects the data, the reference signal is reflected, which can effectively improve the channel estimation performance of the receiving end and increase the gain.
  • the W excitation signals include T excitation signals, and the T excitation signals do not carry the reference signal and/or data, where T Is an integer greater than 0.
  • no reference signal is carried on the T excitation signals.
  • no reflection data is carried on the T excitation signals.
  • no reference signal and reflection data are carried on the T excitation signals.
  • the W excitation signals include T excitation signals, and the T excitation signals do not carry reference signals and/or reflection data.
  • L excitation signals are used to carry L reference signals, T reference signals are not sent.
  • all (L+T) excitation signals are used to carry the reference signal, and the reflector uses the L excitation signals to reflect the reference signal, and the T excitation signals do not reflect the signal.
  • the time unit of T excitation signals can be used to estimate the channel between the exciter and the receiver, that is, at this time, there is no reflected signal in the received signal, or only low power in the received signal Reflected signal. This supports the receiver to use the estimated exciter-receiver channel to eliminate excitation signals on other received signals that have reflected reference signals and/or reflected data signals, and then acquire reflector data.
  • W and L are integers greater than 2 or equal to 2.
  • the reflector reflects at least two reference signals, or in other words, reflects the reference signal at least in two time units.
  • T and L satisfy any one of the following: T is greater than L, or, T is equal to L, or, T is less than L.
  • the reference signal and the excitation signal in the T excitation signals alternately appear at the position of the time domain resource.
  • the positions of the T excitation signals in the time domain resource are located before the positions of the L excitation signals in the time domain resource; or, the T excitation signals The position of the signal in the time domain resource is behind the position of the L excitation signals in the time domain resource.
  • the interval between the positions of the T excitation signals in the time domain resource is smaller than the interval between the positions of the L excitation signals in the time domain resource; or, the The interval between the positions of the T excitation signals in the time domain resource is greater than the interval between the positions of the L excitation signals in the time domain resource.
  • the interval between the positions of the T excitation signals in the time domain resource is less than the interval between the positions of the L excitation signals in the time domain resource.
  • the time interval between occurrences is shorter.
  • "non-reflected" signals appear more closely in time (for example, reflected communication time slots, or reflected communication subframes, or reflected communication frames).
  • the interval between time-adjacent "non-reflective" signals is smaller than the interval between time-adjacent reference signals. In this case, the excitation signal can be estimated more accurately, thereby reducing the interference caused by the residual excitation signal.
  • the interval between the positions of the T excitation signals in the time domain resource is greater than the interval between the positions of the L excitation signals in the time domain resource.
  • the time interval between occurrences is longer.
  • "non-reflected" signals appear more sparsely in time (for example, reflected communication time slots, or reflected communication subframes, or reflected communication frames).
  • the interval between time-adjacent "non-reflective" signals is greater than the interval between time-adjacent reference signals. In this case, it is possible to more accurately estimate the channel experienced by the reflected data, and improve the detection performance.
  • the interval between the positions of the T excitation signals in the time domain resource may also be equal to the interval between the positions of the L excitation signals in the time domain resource.
  • the L reference signals are carried on L time domain units, each time domain unit carries one reference signal, and two adjacent time domain units The two reference signals carried on it have opposite signs.
  • Two adjacent reference signals have opposite numbers, that is, opposite signs.
  • the L time domain units satisfy any one of the following: the interval between the L time domain units is the same; or, the L time domain units The intervals between the units are different; or, the L time-domain units are continuous.
  • the interval can be zero or greater than zero.
  • the interval placement method that is, there is an interval between L time domain units
  • the continuous placement method is similar to the placement method of the reference signal in NR.
  • the continuous placement method is more closely spaced in time and position of the reference signal, and is less affected by the time variability of the channel. Therefore, it is beneficial to eliminate the excitation signal when recovering the reflector data.
  • the method before the reflector reflects data and L reference signals to the receiver, the method further includes: the reflector receives configuration information, and the configuration
  • the information includes one or more of the following information: the format of the reference signal, the position of the reference signal on the time domain resource, the number L of the reference signal, the information that does not carry the reference signal and/or the data
  • the position of the excitation signal on the time domain resource, the number of excitation signals that do not carry the reference signal and/or the data, the position of the excitation signal that carries the reference signal on the time domain resource, and the reference signal that carries the reference signal The number of excitation signals and the demodulation mode of the data.
  • each excitation signal carries a reference signal.
  • each excitation signal is loaded with a reference signal.
  • the time unit of the reflection signal (that is, including the reflection data and the reference signal) may be the same as that of the excitation signal, or may be a fractional multiple or an integer multiple of the time unit of the excitation signal.
  • the reference signal is used by the receiver to cancel the excitation signal and/or demodulate data of the reflector.
  • the reflector receiving W excitation signals includes: in a reflection communication time slot, the reflector receives the W excitation signals.
  • a signal transmission method is provided.
  • the method may be executed by a reflector, or may also be executed by a chip or a chip system or circuit configured in the reflector, which is not limited in this application.
  • the method may include: in the reflection communication time slot, the reflector receives W excitation signals; the reflector reflects at least two of the following to the receiver: L reference signals, T excitation signals, data, wherein the L Reference signals are carried in the L excitation signals in the W excitation signals, the T excitation signals belong to the W excitation signals, and the T excitation signals do not carry the reference signal and/or the In the data, W and L are both integers greater than 1 or equal to 1, T is an integer greater than 0 or equal to 0, and L and T are both less than W.
  • no reference signal is carried on the T excitation signals.
  • no reflection data is carried on the T excitation signals.
  • no reference signal and reflection data are carried on the T excitation signals.
  • bearing can also be referred to as loading.
  • Carrying or loading in the signal domain can be embodied as the multiplication of two signals.
  • the T excitation signals may also be referred to as "non-reflected” signals.
  • the reflector reflects at least two of the following to the receiver: “reflected" reference signals (that is, L reference signals), “non-reflected” signals, and data.
  • the "not reflected” signal can mean that the reference signal and/or data are not reflected.
  • the reflector can reflect data on part of the excitation signal, reflect the reference signal on part of the excitation signal, and reflect neither the reference signal nor the data on the part of the excitation signal. .
  • the reflective communication time slot represents a time unit used for reflective communication, and may include at least one reflective communication symbol time (that is, the time required for the reflector to complete the transmission of one data symbol).
  • the time for a reflector to complete a complete reflection communication may be one or more reflection communication time slots, and/or several reflection communication symbol times.
  • the time unit of T excitation signals can be used to estimate the channel between the exciter and the receiver, that is, at this time, there is no reflected signal in the received signal, or only low power in the received signal Reflected signal. Therefore, the support receiver uses the estimated exciter-receiver channel to eliminate excitation signals on other received signals that have reflected reference signals and/or reflected data signals, and then acquire reflector data. Therefore, not only can the channel estimation performance of the receiving end be improved, but also the data can be received better and the data demodulation performance can be improved.
  • W and L are integers greater than 2 or equal to 2.
  • T and L satisfy any one of the following: T is greater than L, or, T is equal to L, or, T is less than L.
  • the reference signal and the excitation signal in the T excitation signals alternately appear at the position of the time domain resource.
  • the positions of the T excitation signals in the time domain resource are located before the positions of the L excitation signals in the time domain resource; or, the T excitation signals The position of the signal in the time domain resource is behind the position of the L excitation signals in the time domain resource.
  • the interval between the positions of the T excitation signals in the time domain resource is smaller than the interval between the positions of the L excitation signals in the time domain resource; or, the The interval between the positions of the T excitation signals in the time domain resource is greater than the interval between the positions of the L excitation signals in the time domain resource.
  • the L reference signals are carried on L time domain units, each time domain unit carries one reference signal, and two adjacent time domain units are The two reference signals carried on it have opposite signs.
  • the L time domain units satisfy any one of the following: the interval between the L time domain units is the same; or, the L time domain units The intervals between the units are different; or, the L time-domain units are continuous.
  • the method before the reflector reflects data and L reference signals to the receiver, the method further includes: the reflector receives configuration information, and the configuration
  • the information includes one or more of the following information: the format of the reference signal, the position of the reference signal on the time domain resource, the number L of the reference signal, the information that does not carry the reference signal and/or the data
  • the position of the excitation signal on the time domain resource, the number of excitation signals that do not carry the reference signal and/or the data, the position of the excitation signal that carries the reference signal on the time domain resource, and the reference signal that carries the reference signal The number of excitation signals and the demodulation mode of the data.
  • each excitation signal carries a reference signal.
  • the reference signal is used by the receiver to cancel the excitation signal and/or demodulate data of the reflector.
  • the reflector receiving W excitation signals includes: in a reflection communication time slot, the reflector receives the W excitation signals.
  • a signal transmission method is provided.
  • the method may be executed by the receiver, or may also be executed by a chip or chip system or circuit configured in the receiver, which is not limited in this application.
  • the method may include: a receiver receiving multiple signals, each signal including data and L reference signals, the L reference signals being carried in L excitation signals; and the receiver demodulating the multiple signals.
  • the reference signal in the reflection communication that is, when the reflector reflects the data, the reference signal is reflected, which can effectively improve the channel estimation performance of the receiving end and increase the gain.
  • the multiple signals include a first signal and a second signal, and time domain units carrying the first signal and the second signal are adjacent; so
  • the demodulation of the plurality of signals by the receiver includes: the receiver performs subtraction processing on the first signal and the second signal.
  • the interference of the excitation signal to the reflected data signal can be greatly reduced, and the demodulation performance can be improved.
  • a signal transmission device is provided, and the device is configured to execute the method provided in the first aspect or the second aspect described above.
  • the device may include a module, such as a circuit, for executing the method provided in the first aspect or the second aspect.
  • the device is a reflector.
  • a signal transmission device is provided, and the device is configured to execute the method provided in the third aspect.
  • the device may include a module, such as a circuit, for executing the method provided in the third aspect.
  • the device is a receiver.
  • a signal transmission device including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory to implement the foregoing first aspect or second aspect, and the method in any one of the first aspect or the second aspect.
  • the device further includes a memory.
  • the device further includes a communication interface, the processor is coupled with the communication interface, and the communication interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the device is a reflector.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip or a chip system.
  • the communication interface may be an input/output interface, which may be an input/output interface, interface circuit, output circuit, input circuit, pin, or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the device is a chip or chip system configured in the reflector.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a signal transmission device including a processor.
  • the processor is coupled with the memory and can be used to execute instructions in the memory to implement the third aspect and the method in any one of the possible implementation manners of the third aspect.
  • the device further includes a memory.
  • the device further includes a communication interface, the processor is coupled with the communication interface, and the communication interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the device is a receiver.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the device is a chip or a chip system configured in the receiver.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a computer-readable storage medium on which a computer program is stored.
  • the apparatus realizes the first aspect or the second aspect, and the first or second aspect Any possible implementation of the method.
  • a computer-readable storage medium is provided with a computer program stored thereon, and when the computer program is executed by an apparatus, the apparatus realizes the third aspect and any of the possible implementation manners of the third aspect method.
  • a computer program product containing instructions that, when executed by a computer, cause an apparatus to implement the method provided in the first aspect or the second aspect.
  • a computer program product containing instructions which when executed by a computer, causes an apparatus to implement the method provided in the third aspect.
  • a reflection system including: the aforementioned reflector and exciter; or, the aforementioned reflector and receiver; or, the aforementioned reflector, receiver, and exciter.
  • FIGS 1 and 2 are schematic diagrams of communication systems applicable to the present application
  • FIG. 3 is a schematic diagram of subcarriers applicable to an embodiment of the present application.
  • FIG. 4 is a schematic interaction diagram of a signal transmission method provided by an embodiment of the present application.
  • Fig. 5 shows a schematic diagram of a time-frequency structure of an excitation signal applicable to an embodiment of the present application
  • FIG. 6 shows another schematic diagram of the time-frequency structure of the excitation signal applicable to the embodiment of the present application
  • FIG. 7 shows a schematic diagram of the reflected signal of the reflector applicable to the embodiment of the present application.
  • FIG. 8 shows a schematic diagram of a time domain structure of an excitation signal applicable to an embodiment of the present application
  • FIG. 9 shows a schematic diagram of a time domain structure of reflection data applicable to an embodiment of the present application.
  • FIG. 15 shows a schematic diagram of a reference signal applicable to an embodiment of the present application.
  • FIG. 16 shows another schematic diagram of a reference signal applicable to an embodiment of the present application.
  • FIG. 17 shows a schematic diagram of another reference signal applicable to an embodiment of the present application.
  • FIG. 18 shows another schematic diagram of another reference signal applicable to an embodiment of the present application.
  • FIG. 19 shows another schematic diagram of another reference signal applicable to an embodiment of the present application.
  • FIG. 20 shows a schematic diagram of a time domain structure of a signal received by a receiver applicable to an embodiment of the present application
  • FIG. 21 shows a schematic diagram of demodulating data by a receiver applicable to an embodiment of the present application
  • FIG. 22 shows another schematic diagram of demodulating data by a receiver applicable to an embodiment of the present application
  • FIG. 23 is a schematic block diagram of a device for signal transmission according to an embodiment of the present application.
  • FIG. 24 is a schematic block diagram of another device for signal transmission according to an embodiment of the present application.
  • FIG. 25 shows a schematic diagram of a reflector provided by an embodiment of the present application.
  • FIG. 26 shows a schematic diagram of a receiver provided by an embodiment of the present application.
  • Fig. 27 shows a schematic diagram of an exciter provided by an embodiment of the present application.
  • FIG. 1 and FIG. 2 show schematic architecture diagrams of reflective communication that can be applied to embodiments of the present application.
  • Reflective communication does not require special radio frequency devices that consume a lot of power.
  • Reflective communication is a technology that can rely on antennas to receive wireless signals (or, rely on limited power supply) to obtain energy, and rely on the wireless signals received by the reflective antenna to communicate.
  • Reflective communication is also a very low-power, low-cost passive communication technology suitable for IoT applications.
  • the reflection communication system includes: an exciter 110, a reflector 120, and a receiver 130.
  • the exciter 110 may send a wireless signal, and the wireless signal may also be referred to as an energy signal.
  • the reflector 120 receives the wireless signal of the exciter 110 and can reflect the signal. When the signal is reflected, the reflector 120 can carry its own signal on the reflected signal.
  • the receiver 130 can demodulate the data carried on the reflected signal.
  • the reflection communication system includes: a first device 210 and a second device 220.
  • the first device may include an exciter and a receiver, that is, the exciter and the receiver may be one device, or in other words, the exciter and the receiver may be integrated into the same device. It can be understood that the first device may include both the function of an exciter and the function of a receiver.
  • the second device 220 may be a reflector.
  • the first device 210 may send a wireless signal, and the wireless signal may also be referred to as an energy signal.
  • the second device 220 receives the wireless signal of the first device 210 and may reflect the signal. When the signal is reflected, the second device 220 may carry its own signal on the reflected signal.
  • the first device 210 can demodulate the data carried on the reflected signal.
  • the data reflected by the reflector may include identification, such as radio-frequency identification (RFID); or may also include other data, such as sensor collection Temperature, humidity and other data.
  • RFID radio-frequency identification
  • other data such as sensor collection Temperature, humidity and other data.
  • FIG. 1 and FIG. 2 are only exemplary illustrations, and the present application is not limited thereto.
  • the embodiments of the present application may also be applied to any communication scenario capable of reflection communication.
  • the incentive The exciter and receiver can include at least the following four situations: the exciter is a terminal device and the receiver is a network device; the exciter is a network device and the receiver is a terminal device; both the exciter and the receiver are terminal devices; the exciter and the receiver are terminal devices; The receivers are all network devices.
  • terminal devices such as receivers and/or exciters
  • UE user equipment
  • MS mobile station
  • mobile terminal mobile terminal
  • MT mobile access terminal
  • user unit user station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • user agent or user device etc.
  • the terminal device may be a device that provides voice/data connectivity to the user, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and so on.
  • a handheld device with a wireless connection function for example, a vehicle-mounted device, and so on.
  • some examples of terminals are: mobile phones (mobile phones), tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, and augmented reality.
  • Wireless terminals in transportation safety transportation safety
  • wireless terminals in smart city smart city
  • wireless terminals in smart home smart home
  • cellular phones cordless phones
  • session initiation protocol session initiation protocol
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • handheld device with wireless communication function computing device or other processing device connected to wireless modem
  • vehicle Devices wearable devices
  • terminal devices in a 5G network or terminal devices in a public land mobile network (PLMN) that will evolve in the future, etc., which are not limited in the embodiment of the present application.
  • PLMN public land mobile network
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design everyday wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the terminal device may also be a terminal device in the Internet of Things (IoT) system.
  • IoT Internet of Things
  • Its main technical feature is to pass items through communication technology. Connect with the network to realize the intelligent network of human-machine interconnection and interconnection of things.
  • the IoT technology can achieve massive connections, deep coverage, and power saving of terminals through, for example, narrowband (narrowband, NB) technology.
  • the terminal equipment may also include sensors such as smart printers, train detectors, gas stations, etc.
  • the main functions include collecting data (part of the terminal equipment), receiving control information and downlink data from network equipment, and sending electromagnetic waves. , To transmit uplink data to network equipment.
  • the network device (such as a receiver and/or exciter) mentioned in the embodiments of the present application may be a device for communicating with a terminal device (such as an exciter and/or receiver), and the network device may be LTE
  • the evolved NodeB (eNB or eNodeB) in the system can also be a wireless controller in the cloud radio access network (CRAN) scenario, or the network device can be a relay station, access point, In-vehicle devices, wearable devices, network devices in the future 5G network or network devices in the future evolved PLMN network, etc., are not limited in the embodiment of the present application.
  • the network device in the embodiment of the present application may be a device in a wireless network, for example, a radio access network (RAN) node that connects a terminal to the wireless network.
  • RAN nodes are: next-generation base station gNB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), home base station, baseband unit (BBU), or Access point (AP) in the WiFi system, etc.
  • a network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node, or a control plane CU node (CU).
  • CU centralized unit
  • DU distributed unit
  • RAN device including a CU node and a DU node, or a control plane CU node (CU).
  • -CP node user plane CU node
  • CU-UP node user plane CU node
  • RAN equipment of DU node may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node, or a control plane CU node (CU).
  • -CP node user plane CU node (CU-UP node) and RAN equipment of DU node.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided in accordance with the embodiments of the application.
  • the execution subject of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or the network device that can call and execute the program.
  • any of the exciter, reflector, and receiver can be interpreted as: network equipment, terminal equipment, and terminal equipment in the 3rd Generation Partnership Project (3rd Generation Partnership Project, 3GPP) network.
  • 3rd Generation Partnership Project 3rd Generation Partnership Project
  • any one of the exciter, reflector, and receiver can be interpreted as a reader and tag in a radio-frequency identification (RFID) network.
  • RFID radio-frequency identification
  • any one of the exciter, reflector, and receiver can be interpreted as a dedicated receiver.
  • a dedicated receiver can mean a device dedicated to receiving reflected signals, which can be connected to a network device or directly connected to a cellular network.
  • any one of the exciter, reflector, and receiver can be interpreted as a dedicated exciter.
  • the dedicated exciter can mean a dedicated device that sends an excitation signal, and it can be connected to a network device or directly connected to a cellular network. It should be understood that this application does not exclude the future agreement to define new device types/names.
  • the exciter can also be called: Helper, interrogator, reader, or user equipment, and so on.
  • Reflector can also be called: reflective device (backscatter device), passive device (battery-less device), passive device (passive device), semi-active device (semi-passive device), scattered signal device (ambient signal device) , Or tags (Tag) and so on.
  • Reflective communication can also be called: passive communication, passive communication, or ambient communication, and so on. It should be understood that this application does not exclude the future agreement to define a new name.
  • Modulation refers to the process of processing the information of the signal source and adding it to the carrier so that it becomes a form suitable for channel transmission. Different modes can correspond to different modulation methods. Modulation methods may include, but are not limited to: multi-carrier modulation, single-carrier modulation, phase-shift keying (PSK) modulation, amplitude-shift keying (ASK) modulation, and so on.
  • PSK phase-shift keying
  • ASK amplitude-shift keying
  • Demodulation the inverse process of modulation, recovers the original data bits or symbols from the signal. Demodulation can also be called detection.
  • Reference signal reference signal
  • Reference signals can include but are not limited to: demodulation reference signal (DMRS), channel state information reference signal (CSI-RS), phase tracking reference signal (PTRS), etc. .
  • DMRS demodulation reference signal
  • CSI-RS channel state information reference signal
  • PTRS phase tracking reference signal
  • DMRS and CSI-RS can be used to obtain channel information
  • PTRS can be used to obtain phase change information.
  • the transmitting end or the receiving end can infer according to known or predetermined rules: the time and frequency position of the signal, and the signal or symbol carried on the time and frequency, and so on.
  • the reference signal may represent a known signal provided by the transmitting end to the receiving end for channel estimation or channel sounding.
  • the reference signal refers to a known signal that is used to obtain a signal that is affected by the outside world (for example, spatial channel, transmission or receiving device imperfections) during transmission, and is generally used for auxiliary signal demodulation and detection.
  • DMRS and CSI-RS are used to obtain channel information
  • PTRS is used to obtain phase change information.
  • OFDM Orthogonal frequency division multiplexing
  • OFDM is a type of frequency division multiplexing (FDM) multi-carrier transmission waveform, and each channel of signals involved in multiplexing (for example, it may also be called each channel of carriers or each channel of sub-carriers) is orthogonal.
  • FDM frequency division multiplexing
  • One possible OFDM technology is to convert a high-speed data stream into multiple parallel low-speed data streams through serial/parallel conversion, and then distribute them to several sub-carriers of different frequencies for transmission. OFDM technology uses mutually orthogonal sub-carriers, so that the frequency spectrum of the sub-carriers overlap. In the traditional FDM multi-carrier modulation system, a guard interval is required between sub-carriers. Compared with this, OFDM technology can improve spectrum utilization.
  • the transmitted signal is a bandwidth signal, and there are many signals of different frequencies in the bandwidth signal.
  • the intervals of these frequencies are the same, and these different frequencies are called subcarriers.
  • the data transmitted between the network equipment and the terminal equipment is modulated onto these sub-carriers, and these sub-carriers may be orthogonal within a period of time.
  • each space in the frequency domain can be a subcarrier, which can be used to transmit data.
  • Scrambling is a processing method for digital signals. For example, a data signal and a certain sequence signal are XORed, or the data signal and a certain sequence signal are added together and then modulo 2 is performed to obtain a new signal. . Compared with the original signal, the new signal is broken up in time and frequency. Through scrambling, the purpose of interference randomization can be achieved.
  • the sequence signal is a scrambled signal.
  • the sequence signal may be a known binary sequence signal, or a sequence signal generated based on certain information, such information may include, but is not limited to, cell identification and/or terminal identification, for example.
  • the data information may include, for example, data information obtained by encoding original data information bits. Alternatively, the data information may also include unencoded data information. Alternatively, the data information may also include sequence information, for example, preamble information of the frame header, preamble information of random access, and the like.
  • Pseudo-random signal also called pseudo-noise (PN) sequence or pseudo-random code
  • PN pseudo-noise
  • the pseudo-random signal can be generated from any of the following sequences: m sequence, Gold sequence, secondary residue sequence, double prime sequence, ZC sequence, Frank sequence, Golomb sequence, Chirp sequence, or P4 sequence.
  • time-frequency resources may include resources in the time domain and resources in the frequency domain.
  • the time-frequency resource may include one or more time-domain units (or, it may also be called a time unit or time-domain unit), and in the frequency domain, the time-frequency resource may include one or more frequency domains. unit.
  • a time domain unit can be a symbol, or a mini-slot, or a slot, or a subframe, where the duration of a subframe in the time domain It can be 1 millisecond (ms), a slot consists of 7 or 14 symbols, and a mini slot can include at least one symbol (for example, 2 symbols or 4 symbols or 7 symbols or 14 symbols, or other Any number of symbols less than or equal to 14 symbols).
  • ms millisecond
  • a slot consists of 7 or 14 symbols
  • a mini slot can include at least one symbol (for example, 2 symbols or 4 symbols or 7 symbols or 14 symbols, or other Any number of symbols less than or equal to 14 symbols).
  • the above-mentioned time-domain unit sizes are only for the convenience of understanding the solutions of this application, and should not be understood as limiting the application. It is understandable that the above-mentioned time-domain unit sizes can be other values, which are not limited in this application.
  • the reflection communication time slot represents a time unit used for reflection communication, and may include at least one reflection communication symbol time (that is, the time required for the reflector to complete the transmission of one data symbol).
  • the time for a reflector to complete a complete reflection communication may be one or more reflection communication time slots, and/or several reflection communication symbol times.
  • a frequency domain unit can be a resource element (RE), a resource block (RB), or a resource block group (RBG), or a predefined subband (subband). ), or a precoding resource block group (PRG), or a bandwidth part (bandwidth part, BWP), or a carrier, or a serving cell.
  • RE resource element
  • RB resource block
  • RBG resource block group
  • subband subband
  • PRG precoding resource block group
  • BWP bandwidth part
  • the time unit, the time domain unit, and the time domain unit sometimes alternate with the time domain, which means the same meaning.
  • data or “information” can be understood as bits generated after information blocks are coded, or “data” or “information” can also be understood as modulation symbols generated after information blocks are coded and modulated.
  • the signal sent by the exciter includes two functions: charging and acting as a reflective data carrier.
  • the signal sent by the exciter can be a single-tone signal (ie, a continuous sine wave) or a single-carrier signal, or a multi-tone signal (for example, a signal with a certain bandwidth).
  • the signal sent by the exciter is a known signal or a data signal sent to the receiver.
  • the reader sending excitation signal
  • CW continuous wave
  • reflectors such as tags
  • ASK signals or on-off keying (OOK)
  • OSK on-off keying
  • this application proposes a method that can improve the performance of channel estimation and reflection data detection.
  • FIG. 4 is a schematic interaction diagram of a method 400 for signal transmission according to an embodiment of the present application.
  • the method 400 may include the following steps.
  • the exciter sends an excitation signal to the reflector. Accordingly, the reflector receives the excitation signal.
  • the exciter sends W excitation signals to the reflector, and the reflector receives the W excitation signals. Or, it can also be understood that in the reflection communication time slot, the reflector receives the W excitation signals.
  • W is an integer greater than or equal to 1.
  • the exciter and the reflector may be different devices, and may also be integrated on the same device, which is not limited.
  • FIG. 4 only shows the case where the exciter and the reflector are different devices, and it should be understood that the embodiment of the present application is not limited thereto.
  • the excitation signal may be based on orthogonal frequency division multiplexing (OFDM) modulation.
  • the excitation signal can also be modulated based on discrete Fourier transform extended orthogonal frequency division multiplexing (discrete fourier transformation-spread-orthogonal frequency division multiplexing, DFT-s-OFDM), that is, discrete fourier transform (discrete fourier transformation). , DFT) precoding/converted OFDM modulation.
  • the excitation signal may also be based on single carrier-quadrature amplitude modulation (SC-QAM) modulation (also called linear filtered single carrier), and so on.
  • SC-QAM single carrier-quadrature amplitude modulation
  • the excitation signal can also be based on a single carrier symbol block, that is, a data block is composed of multiple data symbols in the time domain, and a cyclic prefix can be added in front of each data block.
  • the time unit of the excitation signal may be, for example, a single carrier symbol block.
  • time unit of the excitation signal can have various forms, which are not limited here.
  • the time unit of the excitation signal can be expressed as an OFDM symbol or a single carrier symbol block.
  • the OFDM symbol of the excitation signal is mentioned many times, which is used to indicate that the waveform taken based on the excitation signal is OFDM or a variant of OFDM (for example, DFT-s-OFDM).
  • the excitation signal can be other forms of waveform, such as a linear filtered single carrier.
  • the linear filtered single carrier is transmitted and received in units of data blocks. Therefore, in the embodiment of the present application, OFDM may correspond to the data block in the linear filtered single carrier.
  • W excitation signals can be used to represent excitation signals carried in W time units. Or, it can also be used to indicate that the excitation signal carried in W time units in the reflection communication time slot.
  • the time-frequency structure of the excitation signal may be as shown in FIG. 5 or FIG. 6.
  • FIG. 5 shows a schematic diagram of the frequency domain resources occupied by the excitation signal without intervals
  • FIG. 6 shows a schematic diagram of the frequency domain resources occupied by the excitation signal with intervals.
  • L represents the number of OFDM symbols in a reflection communication slot, and N or NM represents the number of REs.
  • M represents the number of RE (resource elements) that do not release the excitation signal.
  • CP is optional, that is, CP may or may not exist.
  • the RE can also be called resource element, or subcarrier.
  • one RE can correspond to one time domain symbol in the time domain, and can correspond to one subcarrier in the frequency domain.
  • the time-frequency resource of the RE may be an example of a resource unit.
  • the time domain symbol may be an orthogonal frequency division multiple access (OFDMA) symbol or a single carrier frequency division multiple access (SC-FDMA) symbol.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • K, L, N, and M may be predefined constants, or constants indicated by receivers, exciters, or other devices, which are not limited. There are no restrictions on the values of K, L, N, and M.
  • K, L, and P are integers.
  • the reflector when the reflector reflects data, it can multiply the received excitation signal by a data symbol.
  • s i,j represent the scrambling sequence or the symbol corresponding to the scrambling sequence, and are the symbols carried in the signal sent by the exciter.
  • the symbol may be known by the receiver, or the receiver may reproduce it in a preset manner, which is not limited.
  • the K repetitions may not be a simple copy, but there is a phase difference between adjacent symbols.
  • s i,j can be preprocessed data, such as data after Discrete Fourier Transform (DFT) or a known sequence at the receiving end (or a part of the known data s i,j at the receiving end). ).
  • the si,j carried can be zero correlation sequence (Zadoff-Chu sequence), Gold sequence, m sequence and so on.
  • FIG. 5 and FIG. 6 are only an example, and do not limit the protection scope of the embodiments of the present application.
  • the time-frequency structure of the excitation signal may also include other forms, which are not limited here.
  • the reflector reflects the data and reference signals.
  • the reflector can reflect the received excitation signal and modulate the reflector's data and reference signals on the reflected signal.
  • the reflector reflects data and L reference signals to the receiver, and the L reference signals are carried in the L excitation signals among the W excitation signals, where L is an integer greater than or equal to 1, and L Less than or equal to W.
  • L is an integer greater than or equal to 1
  • L Less than or equal to W For example, W and L are both integers greater than 2 or equal to 2.
  • the L reference signals are carried in the L excitation signals among the W excitation signals, which can mean that the L reference signals are carried in the L excitation signals respectively. That is, each of the L excitation signals is loaded with a reference signal. It can also be understood that the excitation signal except for the L excitation signals among the W excitation signals can be used to carry reflection data.
  • the time unit is a time slot
  • the number of data symbols can be, for example, any one of the following: 6, 8, 10, 12, 14, 16, 18, 24, 32, 48, 64, 80.
  • loading or bearing is mentioned multiple times.
  • Loaded or carried in the signal domain for example, can be embodied as the multiplication of two signals.
  • one or more of the following processing may be performed on the data reflected by the reflector: channel coding, scrambling, and modulation.
  • Fig. 7 shows a schematic diagram of the signal reflected by the reflector.
  • Reflected signal means the signal reflected by the reflector, such as reflector data and reference signal.
  • the original bit data is modulated and superimposed with the reference signal such as time division, space division or code division, and then loaded on the received excitation signal and reflected.
  • the reflector data may also include: channel coding and scrambling operations. Through channel coding and scrambling, the ability to resist channel fading and interference can be further improved.
  • the excitation signal sent by the exciter and the reflector reflection data and reference signal can be synchronized.
  • the reflector when the reflector receives the exciter, it reflects the data and/or reference signal.
  • the reflector reflects the data and/or reference signal while receiving the exciter signal.
  • the reference signal and reflection data are described in detail below.
  • the method 400 may further include step 430.
  • the receiver demodulates the reflected data.
  • the receiver After the receiver receives the reflected signal, it can demodulate the data on the reflected signal and obtain the reflector data.
  • the method 400 may further include: step 4401 and/or step 4402.
  • the receiver feeds back the communication result to the exciter.
  • the receiver after the receiver receives the reflected signal and demodulates the reflected data, it can feed back the communication result to the reflector and/or exciter.
  • the receiver sends a feedback signal to the reflector.
  • this method can be applied to situations where the reflector has strong capability or the receiver is relatively close to the reflector.
  • the receiver feeds back the communication result to the exciter.
  • the exciter can perform some operations based on the feedback communication result, for example, stop sending the excitation signal, or query other reflectors. For example, this method can be applied to the situation where the receiver is far from the reflector.
  • the receiver feeds back the communication result to the exciter, and the exciter informs the reflector of the communication result.
  • the reflector may perform some operations according to the feedback communication result, for example, determine whether to continue the reflection communication, or determine the parameters of the continued reflection communication. For example, this method can be applied to the situation where the receiver is far from the reflector.
  • the method 400 may further include: the reflector receives configuration information, and the configuration information may include one or more of the following information: reference signal format, reference The position of the signal on the time domain resource, the number of reference signals L, the position of the excitation signal that does not carry the reference signal and/or data on the time domain resource, the number of the excitation signal that does not carry the reference signal and/or data, the bearing The position of the excitation signal of the reference signal on the time domain resource, the number of excitation signals carrying the reference signal, and the data demodulation mode.
  • reference signal format reference The position of the signal on the time domain resource, the number of reference signals L, the position of the excitation signal that does not carry the reference signal and/or data on the time domain resource, the number of the excitation signal that does not carry the reference signal and/or data
  • the bearing The position of the excitation signal of the reference signal on the time domain resource, the number of excitation signals carrying the reference signal, and the data demodulation mode.
  • the receiver or exciter or other equipment can be configured with relevant parameters of reflection communication.
  • the reflector can be configured with any one or more of the above parameters so that the reflector can reflect data and reference signals.
  • the configuration information may include the format of the reference signal, for example, may include format 1 or format 2.
  • the reflector can determine whether the format of the reference signal is format 1 or format 2 according to the configuration information.
  • format 1 and format 2 detailed descriptions are given below.
  • the configuration information may include the position of the reference signal on the time domain resource.
  • the reflector can determine the position of the time domain resource carrying the reference signal according to the configuration information. For example, it is determined which symbols carrying reference signals include.
  • the configuration information may include the number L of reference signals.
  • the reflector may determine the number of symbols of the reference signal on one or more reflection communication time units according to the configuration information.
  • the number of symbols of the reference signal can take any of the following values: 2, 3, 4, 8.
  • the configuration information may include the position on the time domain resource of the excitation signal that does not carry the reference signal and/or data.
  • the reflector can determine the time position where the reflected signal is not carried according to the configuration information.
  • the configuration information can include “reflective” information and “non-reflective information”.
  • “Reflection” information includes information related to the reflected reference signal, for example, it may include time position, time length, quantity, and so on.
  • “Non-reflected” information includes information related to non-reflected signals, for example, it may include time position, time length, quantity, and so on.
  • the configuration information may include the number of excitation signals that do not carry reference signals and/or data.
  • the reflector may determine the time unit for not reflecting the signal on one or more reflecting communication time units according to the configuration information.
  • the configuration information may also include the number F of the reflection symbols in the reflection communication time unit, and F may or may not include L. F is greater than L.
  • the value of F is an integer.
  • F can be any integer between 6 and 80.
  • the embodiment of the present application does not limit it.
  • Aspect 1 the time-frequency structure of the reflected data.
  • the reflected signal means the signal reflected by the reflector, for example, including the reference signal and the reflected data.
  • the frequency domain structure of the reflected signal is similar to that of the excitation signal, and the bandwidth is the same.
  • the frequency positions f1 and f2 of the reflected signal and the excitation signal may be different.
  • the reflector may shift the frequency of the received excitation signal.
  • the time unit of the reflected signal may be the same as that of the excitation signal, or may be a fractional or integer multiple of the excitation signal time, which is not limited.
  • the relationship between the reflected signal in the time domain and the excitation signal can be as shown in FIG. 8 and FIG. 9, for example.
  • s 0 , s 1 , s 2 , ..., s K-1, etc. represent excitation signals
  • d 0 , d 1 , ..., d L-1, etc. represent reflection data.
  • si can be a vector; si can also be a single data bit or symbol.
  • there may be a phase difference between two s i and s j at different times. For example, s i+1 s i e -j ⁇ .
  • the excitation signal is a single carrier, it is a single data bit or a single symbol.
  • si and e- j ⁇ can be any of data bits or symbols.
  • L reflection data can be reflected.
  • the reflector When the reflector reflects data, it can be multiplied by (or, also referred to as loading or carrying) a data symbol on the received excitation signal.
  • Figure 9 shows the time interval between reflector data symbols.
  • the length of the interval can be zero or greater than zero.
  • the interval between the L data symbols may be of equal length or unequal length.
  • the difference between the intervals is less than or equal to a preset value or a predetermined constant.
  • the design scheme of the time-frequency structure of the excitation signal and the reflected signal can be compatible with the existing network, such as the OFDM system in the cellular network, and can effectively use the existing 4G and 5G mature terminal and base station technologies to reduce the exciter and receiving Cost and threshold.
  • it is easy to implement frequency division multiplexing and achieve good out-of-band and demodulation performance.
  • Aspect 2 the modulation method of the reflected data.
  • the reflection data can be modulated by at least any of the following methods.
  • Modulation Mode 1 Data modulation symbol (2 M -PSK or 2 M -QAM or 2 M -ASK).
  • FIG. 10 shows a schematic diagram of modulation method 1. That is to say, a single reflection symbol, such as reflection symbol 1, reflection symbol 2, reflection symbol 3, reflection symbol 4, is loaded with common data modulation symbols, such as phase shift keying (PSK), quadrature amplitude modulation ( quadrature amplitude modulation, QAM), ASK, etc.
  • PSK phase shift keying
  • QAM quadrature amplitude modulation
  • ASK ASK
  • Modulation scheme 2 negative reflection modulation symbols (2 M -PSK or 2 M -QAM or 2 M -ASK). Or, whether there is reflection (that is, within a bit/symbol, high level-low level is reflected successively, or low level-high level is successively reflected, representing different bits/symbols).
  • FIG. 11 shows a schematic diagram of modulation method 2. The same modulation symbol can be loaded on multiple reflection symbols.
  • the modulation symbol is reflected positively and negatively.
  • Modulation method 3 Modified Miller modulation method.
  • FIG. 12 shows a schematic diagram of modulation mode 3. The same modulation symbol can be loaded on multiple reflection symbols.
  • the modulation method may include, for example, pi/2-binary phase shift keying (BPSK), ASK, binary on-off keying (OOK), and the like.
  • BPSK pi/2-binary phase shift keying
  • ASK binary on-off keying
  • OK binary on-off keying
  • Modulation method 4 offset modulation (offset modulation).
  • FIG. 13 shows a schematic diagram of Modulation Mode 4. The same modulation symbol can be loaded on multiple reflection symbols.
  • Modulation method 5 Offset phase modulation (e j ⁇ -2 M -PSK or e j ⁇ -2 M -QAM or e j ⁇ -2 M -ASK).
  • FIG. 14 shows a schematic diagram of modulation mode 5.
  • the data symbols between multiple reflection symbols can be shifted in phase and constellation according to a predefined pattern.
  • Aspect 1 the format of the reference signal.
  • the reflected signal is carried by the reflection of the excitation signal.
  • the reflected data can be loaded (or multiplied or carried) on the excitation signal received by the reflector for reflection.
  • the reference signal can also be loaded (or multiplied or carried) on the excitation signal received by the reflector for reflection.
  • L reference signals can be carried on one reflective communication time unit (for example, any one of a time slot, a subframe, and a frame).
  • L reference signals can be carried.
  • the format of the reference signal is format 1, all the L reference signals are loaded on the excitation signal.
  • L reference signals Among W excitation signals, L excitation signals are used to carry L reference signals, and the remaining (W-L) excitation signals can be used to carry data. Among them, L is greater than or equal to 2, and L is less than W.
  • L reference signals are carried on L time units, each time unit carries one reference signal, and two reference signals carried on two adjacent time units have opposite signs.
  • Two adjacent reference signals have opposite numbers, that is, opposite signs. This kind of opposite design between adjacent symbols can make the channel estimation corresponding to the reflection data more accurate (that is, the signal-to-noise ratio will be higher).
  • FIG. 15 and FIG. 16 show schematic diagrams that the format of the reference signal applicable to the embodiment of the present application is format 1.
  • s 0 , s 1 , s 2 , s 3 and so on represent excitation signals
  • RS represents a reference signal. It can be seen that the signs of adjacent reference signals are opposite.
  • the format of the reference signal is format 1
  • the difference between the two reflection symbols can be supported, thereby eliminating the excitation signal.
  • W excitation signals include T excitation signals, and the T excitation signals do not carry reference signals and/or reflection data, where T is an integer greater than zero.
  • T is an integer greater than zero.
  • L excitation signals are used to carry L reference signals, and T reference signals are not sent.
  • all (L+T) excitation signals are used to carry the reference signal, and the reflector uses the L excitation signals to reflect the reference signal, and the T excitation signals do not reflect the signal.
  • T is greater than L.
  • T is less than L.
  • T is equal to L.
  • the reference signal and the excitation signal in the T excitation signals may alternately appear at the position of the time unit.
  • no reference signal or data is carried on the T excitation signals, that is, no signal is reflected on the T excitation signals.
  • only low-power auxiliary signals are reflected on the T excitation signals (that is, compared with the symbol positions of other reflected reference signals).
  • the time unit in which T excitation signals are located can be used to estimate the channel between the exciter and the receiver, that is, at this time, there is no reflected signal in the received signal, or there is only a low-power reflected signal in the received signal. Therefore, the support receiver uses the estimated exciter-receiver channel to eliminate excitation signals on other received signals that have reflected reference signals and/or reflected data signals, and then acquire reflector data.
  • the format of the reference signal is format 2
  • differential demodulation can also be supported.
  • FIGS 17 to 19 show schematic diagrams where the format of the reference signal applicable to the embodiments of the present application is format 2.
  • s 0 , s 1 , s 2 , s 3 and so on represent excitation signals
  • RS represents a reference signal. It can be seen that some excitation signals do not reflect signals. Among them, for the sake of clarity, the dashed frame in the figure indicates that no signal is reflected, or only low-power auxiliary signals are reflected (compared to other symbol positions marked as reflected reference signals).
  • the format of the reference signal is format 2
  • a reflected communication time unit time slot, subframe, frame
  • the format of the reference signal when the format of the reference signal is format 2, it can also be configured: reference signal type ("non-reflected” and “reflected") information, time length (or number) of various reference signal types, and reference Time and location information of the signal type, etc.
  • non-reflective means that the reference signal is not reflected and the data signal is not reflected
  • reflected means that the reference signal is reflected
  • the "non-reflective" signal is used to indicate that the excitation signal does not reflect the signal or the time position does not reflect the information, or only reflects the low-power auxiliary signal.
  • a possible situation is that the time interval for the occurrence of the "non-reflective" signal can be shorter than the time interval for the reference signal.
  • non-reflected signals appear more closely in time (for example, reflected communication time slots, or reflected communication subframes, or reflected communication frames).
  • the interval between time-adjacent "non-reflective" signals is smaller than the interval between time-adjacent reference signals.
  • s 0 , s 2 , s 5 and so on are all "non-reflected" signals, and their intervals are smaller than the interval of "reflected" reference signals.
  • the excitation signal can be estimated more accurately, thereby reducing the interference caused by the residual excitation signal.
  • the time interval for the occurrence of the "non-reflective" signal may be longer than the time interval for the occurrence of the reference signal.
  • non-reflected signals appear more sparsely in time (for example, reflected communication time slots, or reflected communication subframes, or reflected communication frames).
  • the interval between time-adjacent "non-reflective" signals is greater than the interval between time-adjacent reference signals.
  • s 0 , s 2 , s 5 and so on all reflect the reference signal, and the interval is smaller than the interval of the "non-reflected" signal.
  • the reflector will reflect the data signal at other times when the reference signal is reflected or not.
  • the time interval at which the "non-reflective" signal appears may be the same as the time interval at which the reference signal appears.
  • the position of the T excitation signals in the time domain resource is located before the position of the L excitation signals in the time domain resource; or, the position of the T excitation signals in the time domain resource is located in the L excitation signal in the time domain resource After the location.
  • the time when the "non-reflected" signal first appears is before the time when the reference signal first appears.
  • the time when the "non-reflective" signal first appeared is after the time when the reference signal first appeared.
  • the time when all or part of the "non-reflected” signal appears is before the time when all or part of the reference signal appears.
  • the time when all or part of the "non-reflected” signal appears is after the time when all or part of the reference signal appears.
  • the format of the reference signal When the format of the reference signal is format 2, it can be used to estimate the channel between the exciter and the receiver by not reflecting the time unit of the signal, so as to support the receiver to eliminate the excitation signal, and then obtain the reflector data.
  • the format of the reference signal is format 2
  • differential demodulation can also be supported.
  • the format of the reference signal may be any of the above-mentioned formats.
  • the time unit of the reference signal may be the same as that of the excitation signal, or may be a fractional multiple or an integer multiple of the time unit of the excitation signal, etc., which is not limited.
  • the placement mode of the reference signal may include at least the following possible modes.
  • Placement method 1. Interval placement.
  • the interval between the reference signals can be recorded as a gap.
  • This spaced placement method is similar to the existing LTE reference signal placement method, so it can be better compatible.
  • Placement 2 continuous placement.
  • the L time units where the L reference signals are located are continuous.
  • the L reflection communication reference signals on a reflection communication time unit can be placed consecutively in time between the L reference signals.
  • the time unit is a time slot, and a reflective communication time slot can carry 12 symbols.
  • the two reference symbols can be located at the third symbol and the fourth symbol, respectively.
  • the time unit is a time slot, and a reflective communication time slot can carry 12 symbols.
  • the two reference symbols can be located at the 6th symbol and the 7th symbol, respectively.
  • the reflection communication time slot two reference signals adjacent in time position are continuous.
  • the time unit of s 0 and s 1 is continuous.
  • the time unit of s 2 and s 3 is continuous.
  • the time unit of the reflected reference signal and the non-reflected signal are continuous.
  • the time unit of s 0 and s 1 is continuous.
  • the time unit of s 2 and s 3 is continuous.
  • This continuous placement is similar to the placement of the reference signal in NR.
  • the continuous placement method is more closely spaced in time and position of the reference signal, and is less affected by the time variability of the channel. Therefore, it is beneficial to eliminate the excitation signal when recovering the reflector data.
  • Placement method 3. Place evenly.
  • the L time unit intervals where the L reference signals are located are the same.
  • the interval can be 0, that is continuous; or, the interval can also be greater than 0.
  • the L reference signals on a reflective communication time unit can be placed at intervals in time, and are separated within a reflective communication time unit Evenly.
  • the time unit is a time slot
  • Placement method 4 Non-uniform placement.
  • the L time unit intervals where the L reference signals are located are different.
  • the placement of the L reference signals in time is not evenly spaced within a reflective communication time unit.
  • the time unit is a time slot, and one reflective communication time slot can carry 12 symbols.
  • L 3rd symbol, the 4th symbol, and the 9th symbol, respectively.
  • the reflection data and reference signal are introduced in detail above, and the demodulation method of the reflection data is introduced below.
  • the time-frequency format of the signal acquired by the receiver can be as shown in FIG. 20.
  • y 0 , y 1 , ..., y F-2 , y F-1 represent the signals received in different time units.
  • the signal model can be expressed as Equation 1.
  • s i represents the excitation data, and i is the time index.
  • b i represents reflector data. * Indicates convolution.
  • f represents the channel from the reflector to the receiver.
  • g represents the channel from the exciter to the reflector.
  • h represents the channel from the exciter to the receiver.
  • n i represents noise.
  • the recovery of the reflected data by the receiver can at least be achieved by any of the following schemes.
  • FIG. 21 shows a schematic diagram of Scheme 1.
  • the symbol index i is not marked in the figure.
  • the received signal after receiving the signal y, the received signal can be multiplied by the excitation data conjugate, thus formula 2 can be obtained. For example, if it is a vector, perform an inner product.
  • the superscript H represents the conjugate transpose, for example, A H represents the conjugate transpose of the matrix (or vector) A.
  • excitation signal cancellation is performed.
  • two different time indexes i and j are differentiated, as shown in formula 3.
  • the format of the reference signal is format 1
  • b i -b j
  • the format of the reference signal is format 2
  • one of them is 0.
  • the signal (b i- b j ) can also be demodulated.
  • the manner of detecting b i or (b i -b j ) from the noisy signal is not limited.
  • the existing manner can be referred to.
  • FIG. 22 shows a schematic diagram of Scheme 2.
  • the scheme 2 is similar to scheme 1, except that the order of eliminating the conjugation of the excitation signal and the excitation data is different, and will not be repeated here.
  • the excitation data conjugation is an optional operation. For example, if h* si can be estimated or eliminated, then there may be no need to perform excitation data conjugate multiplication separately.
  • the format of the reference signal is format 2
  • the estimation of h*s i can be well supported.
  • f*g* si can be estimated as a whole and the reflection data can be demodulated.
  • the design of the reference signal for example, the format 1 or the format 2 described above, helps to assist the coherent demodulation of the reflected data, realize the elimination of the excitation signal, and facilitate the demodulation of the data at the receiving end.
  • the method of demodulating data at the receiving end proposed in this application can greatly reduce the interference of the excitation signal to the reflected data signal and improve the demodulation performance.
  • the methods and operations implemented by devices may also be implemented by components (for example, chips or circuits) that can be used in devices.
  • the methods and operations implemented by the reflector can also be implemented by components (such as chips or circuits) that can be used for the reflector.
  • the methods and operations implemented by the receiver can also be implemented by components (such as chips or circuits) that can be used in the receiver.
  • the methods and operations implemented by the exciter can also be implemented by components (such as chips or circuits) that can be used in the exciter.
  • the embodiments of the present application can divide the transmitting end device or the receiving end device into functional modules according to the foregoing method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of dividing each function module corresponding to each function as an example.
  • FIG. 23 is a schematic block diagram of a device for signal transmission according to an embodiment of the present application.
  • the device 2300 may include a receiving unit 2310 and a reflecting unit 2320.
  • the device 2300 can implement the steps or processes performed by the reflector in the above method embodiment.
  • it can be a reflector, or a chip or chip system or circuit configured in the reflector. .
  • the device 2300 can be referred to as a reflector.
  • the receiving unit 2310 is used to perform the receiving related operations on the reflector side in the above method embodiment
  • the reflecting unit 2320 is used to perform the reflection related operations on the reflector in the above method embodiment.
  • the receiving unit and the reflecting unit can be realized by one circuit, or can be realized by one circuit respectively, which is not limited.
  • the receiving unit 2310 is used for: receiving W excitation signals; the reflection unit 2320 is used for: reflecting data and L reference signals to the receiver, and the L reference signals are respectively carried in the W excitation signals.
  • the L excitation signals where W and L are both integers greater than or equal to 1, and L is less than or equal to W.
  • the W excitation signals include T excitation signals, and the T excitation signals do not carry reference signals and/or data, where T is an integer greater than zero.
  • the receiving unit 2310 is configured to: receive W excitation signals in the reflection communication time slot; the reflection unit 2320 is configured to reflect at least two of the following to the receiver: L reference signals, T excitation signals Signals and data, where L reference signals are carried in L excitation signals among W excitation signals, T excitation signals belong to W excitation signals, and T excitation signals do not carry reference signals and/or data; wherein , W and L are both integers greater than or equal to 1, and L is less than or equal to W.
  • W and L are integers greater than 2 or equal to 2.
  • T and L satisfy any one of the following: T is greater than L, or, T is equal to L, or, T is less than L
  • the reference signal and the excitation signal in the T excitation signals alternately appear at the position of the time domain resource.
  • the position of the T excitation signals in the time domain resource is before the position of the L excitation signals in the time domain resource; or, the position of the T excitation signals in the time domain resource is positioned at the position of the L excitation signals in the time domain resource after that.
  • the interval between the positions of the T excitation signals in the time domain resource is less than the interval between the positions of the L excitation signals in the time domain resource; or, the interval between the positions of the T excitation signals in the time domain resource is greater than that of the L excitation signals The interval of the location of the time domain resource.
  • L reference signals are carried on L time domain units, each time domain unit carries one reference signal, and two reference signals carried on two adjacent time domain units have opposite signs.
  • the L time domain units satisfy any one of the following: the interval between the L time domain units is the same; or, the interval between the L time domain units is different; or, the L time domain units are continuous.
  • the receiving unit 2310 is further configured to: receive configuration information, where the configuration information includes one or more of the following information: the format of the reference signal, the position of the reference signal on the time domain resource, the number of reference signals L, and the reference signal is not carried.
  • the position of the signal and/or data excitation signal on the time domain resource, the number of excitation signals that do not carry the reference signal and/or data, the position of the excitation signal carrying the reference signal on the time domain resource, and the excitation carrying the reference signal The number of signals and the way of data demodulation.
  • each excitation signal carries a reference signal.
  • the reference signal is used by the receiver to cancel the excitation signal and/or demodulate the data of the reflector.
  • the receiving unit 2310 is specifically configured to receive W excitation signals in the reflected communication time slot.
  • the device 2300 may implement the steps or processes performed by the reflector in FIGS. 4 to 22 corresponding to the embodiments of the present application, and the device 2300 may include a unit for executing the method performed by the reflector in FIGS. 4 to 22 .
  • each unit in the device 2300 and other operations and/or functions described above are used to implement the corresponding processes of the reflector in FIGS. 4-22.
  • FIG. 24 is a schematic block diagram of another device for signal transmission according to an embodiment of the present application.
  • the device 2400 may include a transceiver unit 2410 and a processing unit 2420.
  • the transceiver unit and the processing unit can be implemented by one circuit, or can be implemented by one circuit respectively, which is not limited.
  • the device 2400 can implement the steps or processes performed by the receiver in the above method embodiment.
  • it can be a receiver, or a chip or chip system or circuit configured in the receiver.
  • the device 2400 may be referred to as a receiver.
  • the transceiver unit 2410 is used to: receive multiple signals, each signal includes data and L reference signals, the L reference signals are carried in L excitation signals; the processing unit 2420 is used to: demodulate Multiple signals.
  • the multiple signals include a first signal and a second signal, and the time domain units carrying the first signal and the second signal are adjacent; the processing unit 2420 is specifically configured to: perform subtraction processing on the first signal and the second signal .
  • the device 2400 may implement steps or processes executed by the receiver in FIGS. 4-22 according to an embodiment of the present application, and the device 2400 may include a unit for executing the method executed by the receiver in FIGS. 4-22 .
  • each unit in the device 2400 and other operations and/or functions described above are used to implement the corresponding processes of the receiver in FIGS. 4-22.
  • FIG. 25 shows a schematic diagram of a reflector provided by an embodiment of the present application.
  • the internal circuit of the reflector When receiving energy, the internal circuit of the reflector can be connected with the charging module; when reflecting the signal, the internal circuit of the reflector can be connected with the reflection and modulation module.
  • the sensor is optional.
  • the microprocessor in the reflector mainly performs receiving data processing and reflection data processing.
  • FIG. 25 is only an exemplary illustration.
  • the reflector can also be a terminal device or a network device.
  • FIG. 26 shows a schematic diagram of a receiver provided by an embodiment of the present application.
  • the receiver may include: a signal receiving unit and a signal processing unit.
  • the signal processing unit of the receiver can be used to process the received signal.
  • the signal receiving unit and the signal processing unit can be implemented by one circuit, or can be implemented by one circuit respectively, which is not limited.
  • FIG. 26 is only an exemplary illustration.
  • the receiver can also be a terminal device or a network device.
  • Fig. 27 shows a schematic diagram of an exciter provided by an embodiment of the present application.
  • the exciter may include: an excitation signal generating unit, a data signal generating unit, a signal transmitting and a signal receiving unit.
  • the excitation signal generating unit, the data signal generating unit, the signal transmitting and the signal receiving unit may be realized by one circuit, or may be realized by one circuit respectively, and there is no limitation on this.
  • the signal transmission and signal reception unit can be used for signal transmission and reception.
  • the excitation signal generating unit can be used to generate the transmitted excitation signal.
  • the data signal generating unit may be used to generate the transmitted data signal.
  • FIG. 27 is only an exemplary illustration.
  • the exciter can also be a terminal device or a network device.
  • the embodiment of the present application also provides a processing device, including a processor and an interface.
  • the processor may be used to execute the method in the foregoing method embodiment.
  • the processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or It is a central processor unit (CPU), it can also be a network processor (NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or it can be a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller unit microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • each step of the above method can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer executes the steps shown in FIGS. 4 to 22 The method of any one of the embodiments is shown.
  • the present application also provides a computer-readable medium that stores program code.
  • the program code runs on a computer, the computer executes the steps shown in FIGS. 4 to 22. The method of any one of the embodiments is shown.
  • the present application also provides a system, which includes the aforementioned receiver, reflector, and exciter.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc), SSD)) etc.
  • the network equipment in the foregoing device embodiments corresponds to the network equipment or terminal equipment in the terminal equipment and method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the communication unit transmits the receiving or sending in the method embodiments.
  • other steps can be executed by the processing unit (processor).
  • the processing unit processor
  • the functions of specific units refer to the corresponding method embodiments. Among them, there may be one or more processors.
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed between two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component can be based on, for example, a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

本申请提供了一种信号传输的方法和装置、反射器以及接收器。该方法可以包括:反射器接收W个激励信号,该W个激励器可用于承载反射器反射的数据和参考信号;该反射器向接收器反射数据和L个参考信号,该L个参考信号分别承载与W个激励信号中的L个激励信号中,其中,W、L均为大于1或等于1的整数,L小于或等于W。基于本申请,可以提高接收端的信道估计和数据解调性能。

Description

信号传输的方法和装置、反射器以及接收器 技术领域
本申请涉及通信领域,并且更具体地,涉及一种信号传输的方法和装置、反射器以及接收器。
背景技术
反射通信(backscatter communication)不需要专用的、需要大量耗电的射频器件。反射通信为一种可以依靠天线接收无线信号获取能量,依靠反射天线端接收到的无线信号进行通信的技术。反射通信也是一种适用于物联网应用的极低功耗、低成本的被动式通信技术。
现有反射通信中,反射是基于数据包,每个反射数据具有一个包头(前导(Preamble))。接收端一般是通过数据包头的前导序列,进行信道估计。但是,这种方式,信道估计性能较差。
那么,在反射通信中,如何可以提高接收端的信道估计性能。
发明内容
本申请提供一种信号传输的方法和装置、反射器以及接收器,以期可以提高信道估计和数据解调性能。
第一方面,提供了一种信号传输的方法。该方法可以由反射器执行,或者,也可以由配置于反射器中的芯片或芯片系统或电路执行,本申请对此不作限定。
该方法可以包括:反射器接收W个激励信号;反射器向接收器反射数据和L个参考信号,所述L个参考信号分别承载于所述W个激励信号中的L个激励信号中;其中,W、L均为大于1或等于1的整数,L小于或等于W。
可选地,参考信号承载于激励信号中,可以理解为,每个激励信号上可以加载一个参考信号。加载在信号域,例如可以体现为两个信号相乘。
基于上述技术方案,通过在反射通信中设计参考信号,即反射器反射数据时,反射参考信号,可以有效地提高接收端信道估计性能,提升增益。
结合第一方面,在第一方面的某些实现方式中,所述W个激励信号中包括T个激励信号,所述T个激励信号上不承载所述参考信号和/或数据,其中,T为大于0的整数。
示例地,该T个激励信号上不承载参考信号。或者,该T个激励信号上不承载反射数据。或者,该T个激励信号上不承载参考信号和反射数据。
W个激励信号中包括T个激励信号,该T个激励信号上不承载参考信号和/或反射数据,或者,也可以理解为,(L+T)个参考信号:L个激励信号用于承载L个参考信号,T个参考信号不发送。或者,也可以理解为,(L+T)个激励信号均用于承载参考信号,反射器使用其中L个激励信号反射参考信号,T个激励信号不反射信号。
基于上述技术方案,T个激励信号所在的时间单位,可以用于估计激励器与接收器之间的信道,也就是说,此时,接收信号中没有反射信号,或者接收信号中仅有低功率反射信号。从而支持接收器利用估计的激励器-接收器信道,在其它有反射参考信号和/或反射数据信号的接收信号,进行激励信号消除,然后再获取反射器数据。
结合第一方面,在第一方面的某些实现方式中,W、L为大于2或等于2的整数。
也就是说,反射器至少反射两个参考信号,或者说,至少在两个时间单位反射参考信号。
结合第一方面,在第一方面的某些实现方式中,T与L满足以下任意一项:T大于L,或,T等于L,或,T小于L。
结合第一方面,在第一方面的某些实现方式中,在T等于L的情况下,所述参考信号和所述T个激励信号中的激励信号在时域资源的位置交替出现。
结合第一方面,在第一方面的某些实现方式中,所述T个激励信号在时域资源的位置位于所述L个激励信号在时域资源的位置之前;或,所述T个激励信号在时域资源的位置位于所述L个激励信号在时域资源的位置之后。
结合第一方面,在第一方面的某些实现方式中,所述T个激励信号在时域资源的位置的间隔小于所述L个激励信号在时域资源的位置的间隔;或,所述T个激励信号在时域资源的位置的间隔大于所述L个激励信号在时域资源的位置的间隔。
示例地,T个激励信号在时域资源的位置的间隔小于所述L个激励信号在时域资源的位置的间隔,也可以理解为,“不反射”信号出现的时间间隔,可以比参考信号出现的时间间隔更短。也就是说,“不反射”信号,在时间上(例如,反射通信时隙,或反射通信子帧,或反射通信帧)出现更加紧密。例如,时间上相邻的“不反射”信号之间的间隔小于时间上相邻的参考信号之间的间隔。该情况下,可以更加精确地估计激励信号,从而降低残余激励信号带来的干扰。
示例地,T个激励信号在时域资源的位置的间隔大于所述L个激励信号在时域资源的位置的间隔,也可以理解为,“不反射”信号出现的时间间隔,可以比参考信号出现的时间间隔更长。也就是说,“不反射”信号,在时间上(例如,反射通信时隙,或反射通信子帧,或反射通信帧)出现更加稀疏。例如,时间上相邻的“不反射”信号之间的间隔大于时间上相邻的参考信号之间的间隔。该情况下,可以更精确地估计反射数据经历的信道,提高检测性能。
示例地,T个激励信号在时域资源的位置的间隔也可以等于所述L个激励信号在时域资源的位置的间隔。
结合第一方面,在第一方面的某些实现方式中,所述L个参考信号承载于L个时域单元上,每个时域单元承载一个所述参考信号,相邻两个时域单元上承载的两个参考信号符号相反。
相邻两个参考信号之间互为相反数,即符号相反。
基于上述技术方案,两个参考信号之间互为相反数的情况下,可以支持两个反射符号之间的差分,从而对激励信号进行消除。这种相邻符号之间相反的设计,可以使得反射数据对应的信道估计更加准确(即,信噪比会更高)。
结合第一方面,在第一方面的某些实现方式中,所述L个时域单元满足以下任意一项: 所述L个时域单元之间的间隔相同;或,所述L个时域单元之间的间隔不同;或,所述L个时域单元连续。
示例地,该间隔可以为0,也可以大于0。
基于上述技术方案,间隔放置的方式,即L个时域单元之间存在间隔,与已有LTE参考信号的放置方式类似,从而可以更好地兼容。连续放置的方式,与NR中参考信号的放置方式类似。此外,连续放置的方式,由于参考信号所在的时间位置时间相隔更近,受到信道时变性影响更小,因此,有利于在恢复反射器数据时,对激励信号的消除。
结合第一方面,在第一方面的某些实现方式中,在所述反射器向接收器反射数据和L个参考信号之前,所述方法还包括:所述反射器接收配置信息,所述配置信息包括以下一项或多项信息:所述参考信号的格式、所述参考信号在时域资源上的位置、所述参考信号的数量L、没有承载所述参考信号和/或所述数据的激励信号在时域资源上的位置、没有承载所述参考信号和/或所述数据的激励信号的个数、承载所述参考信号的激励信号在时域资源上的位置、承载所述参考信号的激励信号的个数、所述数据的解调方式。
结合第一方面,在第一方面的某些实现方式中,每个激励信号承载一个参考信号。
也就是说,每个激励信号上加载一个参考信号。
示例地,反射信号(即包括反射数据和参考信号)的时间单位,可以与激励信号相同,也可以是激励信号时间单位的分数倍或者整数倍。
结合第一方面,在第一方面的某些实现方式中,所述参考信号用于所述接收器消除所述激励信号和/或解调所述反射器的数据。
结合第一方面,在第一方面的某些实现方式中,所述反射器接收W个激励信号,包括:在反射通信时隙中,所述反射器接收所述W个激励信号。
第二方面,提供了一种信号传输的方法。该方法可以由反射器执行,或者,也可以由配置于反射器中的芯片或芯片系统或电路执行,本申请对此不作限定。
该方法可以包括:在反射通信时隙中,反射器接收W个激励信号;所述反射器向接收器反射以下至少两项:L个参考信号、T个激励信号、数据,其中,所述L个参考信号承载于所述W个激励信号中的L个激励信号中,所述T个激励信号属于所述W个激励信号,所述T个激励信号上不承载所述参考信号和/或所述数据,其中,W、L均为大于1或等于1的整数,T为大于0或等于0的整数,L、T均小于W。
示例地,该T个激励信号上不承载参考信号。
示例地,该T个激励信号上不承载反射数据。
示例地,该T个激励信号上不承载参考信号和反射数据。
应理解,承载,也可以称为加载。承载或加载在信号域,例如可以体现为两个信号相乘。
示例地,该T个激励信号,也可以称为“不反射”信号。也就是说,反射器向接收器反射以下至少两项:“反射”的参考信号(即L个参考信号)、“不反射”信号、数据。其中,“不反射”信号,可以表示不反射参考信号和/或数据。或者,也可以理解为,反射器接收到W个激励信号后,可以在部分激励信号上反射数据,在部分激励信号上反射参考信号,在部分激励信号上既不反射参考信号,也不反射数据。
示例地,反射通信时隙,表示用于反射通信的时间单位,可以包含至少一个反射通信 符号时间(即反射器完成一个数据符号传输所需要的时间)。一个反射器完成一次完整的反射通信的时间可以为一个或者多个反射通信时隙,和/或若干反射通信符号时间。
基于上述技术方案,T个激励信号所在的时间单位,可以用于估计激励器与接收器之间的信道,也就是说,此时,接收信号中没有反射信号,或者接收信号中仅有低功率反射信号。从而,支持接收器利用估计的激励器-接收器信道,在其它有反射参考信号和/或反射数据信号的接收信号,进行激励信号消除,然后再获取反射器数据。从而,不仅可以提高接收端的信道估计性能,而且可以更好地接收数据,提高数据解调性能。
结合第二方面,在第二方面的某些实现方式中,W、L为大于2或等于2的整数。
结合第二方面,在第二方面的某些实现方式中,T与L满足以下任意一项:T大于L,或,T等于L,或,T小于L。
结合第二方面,在第二方面的某些实现方式中,在T等于L的情况下,所述参考信号和所述T个激励信号中的激励信号在时域资源的位置交替出现。
结合第二方面,在第二方面的某些实现方式中,所述T个激励信号在时域资源的位置位于所述L个激励信号在时域资源的位置之前;或,所述T个激励信号在时域资源的位置位于所述L个激励信号在时域资源的位置之后。
结合第二方面,在第二方面的某些实现方式中,所述T个激励信号在时域资源的位置的间隔小于所述L个激励信号在时域资源的位置的间隔;或,所述T个激励信号在时域资源的位置的间隔大于所述L个激励信号在时域资源的位置的间隔。
结合第二方面,在第二方面的某些实现方式中,所述L个参考信号承载于L个时域单元上,每个时域单元承载一个所述参考信号,相邻两个时域单元上承载的两个参考信号符号相反。
结合第二方面,在第二方面的某些实现方式中,所述L个时域单元满足以下任意一项:所述L个时域单元之间的间隔相同;或,所述L个时域单元之间的间隔不同;或,所述L个时域单元连续。
结合第二方面,在第二方面的某些实现方式中,在所述反射器向接收器反射数据和L个参考信号之前,所述方法还包括:所述反射器接收配置信息,所述配置信息包括以下一项或多项信息:所述参考信号的格式、所述参考信号在时域资源上的位置、所述参考信号的数量L、没有承载所述参考信号和/或所述数据的激励信号在时域资源上的位置、没有承载所述参考信号和/或所述数据的激励信号的个数、承载所述参考信号的激励信号在时域资源上的位置、承载所述参考信号的激励信号的个数、所述数据的解调方式。
结合第二方面,在第二方面的某些实现方式中,每个激励信号承载一个参考信号。
结合第二方面,在第二方面的某些实现方式中,所述参考信号用于所述接收器消除所述激励信号和/或解调所述反射器的数据。
结合第二方面,在第二方面的某些实现方式中,所述反射器接收W个激励信号,包括:在反射通信时隙中,所述反射器接收所述W个激励信号。
第三方面,提供了一种信号传输的方法。该方法可以由接收器执行,或者,也可以由配置于接收器中的芯片或芯片系统或电路执行,本申请对此不作限定。
该方法可以包括:接收器接收多个信号,每个信号包括数据和L个参考信号,所述L个参考信号承载于L个激励信号中;所述接收器解调所述多个信号。
基于上述技术方案,通过在反射通信中设计参考信号,即反射器反射数据时,反射参考信号,可以有效地提高接收端信道估计性能,提升增益。
结合第三方面,在第三方面的某些实现方式中,所述多个信号包括第一信号和第二信号,承载所述第一信号和所述第二信号的时域单元相邻;所述接收器解调所述多个信号,包括:所述接收器对所述第一信号和所述第二信号进行相减处理。
基于上述技术方案,可以极大降低激励信号对反射数据信号的干扰,提升解调性能。
第四方面,提供一种信号传输的装置,所述装置用于执行上述第一方面或第二方面提供的方法。具体地,所述装置可以包括用于执行第一方面或第二方面提供的方法的模块,如电路。
可选地,该装置为反射器。
第五方面,提供一种信号传输的装置,所述装置用于执行上述第三方面提供的方法。具体地,所述装置可以包括用于执行第三方面提供的方法的模块,如电路。
可选地,该装置为接收器。
第六方面,提供一种信号传输的装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面或第二方面、以及第一方面或第二方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。
在一种实现方式中,该装置为反射器。当该装置为反射器时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为芯片或芯片系统。当该装置为芯片或芯片系统时,所述通信接口可以是输入/输出接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该装置为配置于反射器中的芯片或芯片系统。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第七方面,提供一种信号传输的装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第三方面以及第三方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。
在一种实现方式中,该装置为接收器。当该装置为接收器时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为芯片或芯片系统。当该装置为芯片或芯片系统时,所述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该装置为配置于接收器中的芯片或芯片系统。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第八方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序 被装置执行时,使得所述装置实现第一方面或第二方面、以及第一方面或第二方面的任一可能的实现方式中的方法。
第九方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被装置执行时,使得所述装置实现第三方面以及第三方面的任一可能的实现方式中的方法。
第十方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得装置实现第一方面或第二方面提供的方法。
第十一方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得装置实现第三方面提供的方法。
第十二方面,提供了一种反射系统,包括:前述的反射器和激励器;或,前述的反射器和接收器;或,前述的反射器、接收器以及激励器。
附图说明
图1和图2是适用于本申请的通信系统的示意图;
图3是适用于本申请实施例的子载波的示意图;
图4是本申请实施例提供的信号传输的方法的示意性交互图;
图5示出了适用于本申请实施例的激励信号的时频结构的一示意图;
图6示出了适用于本申请实施例的激励信号的时频结构的又一示意图;
图7示出了适用于本申请实施例的反射器反射信号的一示意图;
图8示出了适用于本申请实施例的激励信号的时域结构的示意图;
图9示出了适用于本申请实施例的反射数据的时域结构的示意图;
图10至图14示出了适用于本申请实施例的反射数据调制方式的示意图;
图15示出了适用于本申请实施例的一参考信号的一示意图;
图16示出了适用于本申请实施例的一参考信号的又一示意图;
图17示出了适用于本申请实施例的又一参考信号的一示意图;
图18示出了适用于本申请实施例的又一参考信号的又一示意图;
图19示出了适用于本申请实施例的又一参考信号的另一示意图;
图20示出了适用于本申请实施例的接收器接收到的信号的时域结构的示意图;
图21示出了适用于本申请实施例的接收器解调数据的一示意图;
图22示出了适用于本申请实施例的接收器解调数据的又一示意图;
图23是本申请实施例提供的信号传输的一装置的示意性框图;
图24是本申请实施例提供的信号传输的又一装置的示意性框图;
图25示出了本申请实施例提供的反射器的示意图;
图26示出了本申请实施例提供的接收器的示意图;
图27示出了本申请实施例提供的激励器的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术 人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
为了更好地理解本申请实施例,下面先介绍本申请实施例可适用的通信系统,以及涉及到的概念。
图1和图2示出了本申请实施例可以应用的反射通信的示意性架构图。
反射通信(backscatter communication)不需要专用的、需要大量耗电的射频器件。反射通信为一种可以依靠天线接收无线信号(或者,依靠有限的电源供应)获取能量,依靠反射天线端接收到的无线信号进行通信的技术。反射通信也是一种适用于物联网应用的极低功耗、低成本的被动式通信技术。
在图1中所示的结构中,反射通信系统包括:激励器110、反射器120、以及接收器130。激励器110可以发送无线信号,该无线信号也可以称为能量信号。反射器120接收激励器110的无线信号,并可以将信号反射。在反射信号时,反射器120可以将自身信号承载于反射信号上。接收器130可以解调出承载于反射信号上的数据。
在图2中所示的结构中,反射通信系统包括:第一设备210和第二设备220。第一设备可以包括激励器和接收器,也就是说,激励器和接收器可以为一个设备,或者说,激励器和接收器可以集成到同一设备上。可以理解,第一设备可以既包括激励器的功能,又包括接收器的功能。第二设备220可以为反射器。
第一设备210可以发送无线信号,该无线信号也可以称为能量信号。第二设备220接收第一设备210的无线信号,并可以将信号反射。在反射信号时,第二设备220可以将自身信号承载于反射信号上。第一设备210可以解调出承载于反射信号上的数据。
示例地,在上述图1或图2所示的系统中,反射器反射的数据可以包括标识,如射频标识(radio-frequency identification,RFID);或者也可以包括其它数据,如传感器(sensor)采集的温度、湿度等数据。
应理解,上述图1和图2仅是示例性说明,本申请并未限定于此。例如,本申请实施例还可以应用于能够进行反射通信的任何通信场景。
还应理解,根据激励器、接收器与长期演进(long term evolution,LTE)或第五代(5th generation,5G)或新无线(new radio,NR)网络的对应关系,在本申请中,激励器和接收器至少可以包括以下四种情况:激励器为终端设备,接收器为网络设备;激励器为网络设备,接收器为终端设备设备;激励器和接收器均为终端设备;激励器和接收器均为网络设备。
还应理解,本申请实施例中提及的终端设备(如接收器和/或激励器)也可以称为:用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程 手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。在本申请实施例中,IoT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,在本申请实施例中,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
另外,本申请实施例中提及的网络设备(如接收器和/或激励器)可以是用于与终端设备(如激励器和/或接收器器)通信的设备,该网络设备可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
本申请实施例中的网络设备可以是无线网络中的设备,例如将终端接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:下一代基站gNB、发送接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、家庭基站、基带单元(baseband unit,BBU),或WiFi系统中的接入点(access point,AP)等。
在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备、或者控制面CU节点(CU-CP节点)和用户面CU节点(CU-UP节点)以及DU节点的RAN设备。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统 层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
此外,在本申请实施例中,激励器、反射器、接收器,三者中任意一个可以解释为:第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)网络中的网络设备、终端设备、IoT设备、设备(device)等中的任意一种。或者,激励器、反射器、接收器,三者中任意一个,可以解释为,射频标识(Radio-frequency identification,RFID)网络中的读写器(Reader)、标签(Tag)。或者,激励器、反射器、接收器,三者中任意一个,可以解释为,专用接收器。专用接收器可以表示专用接收反射信号的设备,可以和网络设备相连,也可以直接连入蜂窝网络中。或者,激励器、反射器、接收器,三者中任意一个,可以解释为,专用激励器。专用激励器可以表示专用发送激励信号的设备,可以和网络设备相连,也可以直接连入蜂窝网络中。应理解,本申请不排除将来协议定义新的设备类型/名称。
此外,激励器也可以称为:Helper,询问器(interrogator)、读写器(reader)、或用户设备等等。反射器也可以称为:反射设备(backscatter device)、无源设备(battery-less device)、被动设备(passive device),半有源设备(semi-passive device)、散射信号设备(ambient signal device)、或标签(Tag)等等。反射通信也可以称为:被动通信(passive communication)、无源通信、或散射通信(ambient communication)等等。应理解,本申请不排除将来协议定义新的名称。
为便于理解本申请实施例,下面首先对本申请中涉及的几个术语做简单介绍。
1、调制与解调
调制,表示对信号源的信息进行处理加到载波上,使其变为适合于信道传输的形式的过程。不同的模式,可以对应于不同的调制方法。调制方法可以包括但不限于:多载波调制、单载波调制、相移键控(phase-shift keying,PSK)调制、振幅键控(amplitude-shift keying,ASK)调制等等。
解调,即调制的逆过程,从信号中恢复原始数据比特或符号。解调也可以称为检测。
2、参考信号(reference signal,RS)
参考信号可以包括但不限于:解调参考信号(demodulation reference signal,DMRS)、信道状态信息参考信号(channel state information reference signal,CSI-RS)、相位跟踪参考信号(phase tracking reference signal,PTRS)等。不同的参考信号可有不同的功能。例如,DMRS和CSI-RS可以用于获取信道信息,PTRS可以用于获取相位变化信息。
基于参考信号,发送端或者接收端根据已知或按照预定的规则可以推断:信号所在的时间和频率位置,以及时间和频率上承载的信号或符号等等。参考信号可以表示由发送端 提供给接收端用于信道估计或信道探测的一种已知信号。换句话说,参考信号表示用于获取信号在传输中所受外界(例如,空间信道、发送或接收端器件非理想性)影响的已知信号,一般用于辅助信号解调、检测。例如DMRS和CSI-RS用于获取信道信息,PTRS用于获取相位变化信息。
3、正交复用(orthogonal frequency division multiplexing,OFDM)
OFDM是一种频分复用(frequency division multiplexing,FDM)的多载波传输波形,参与复用的各路信号(如也可以称为各路载波或各路子载波)是正交的。一种可能的OFDM技术,可以是通过串/并转换将高速的数据流变成多路并行的低速数据流,再将它们分配到若干个不同频率的子载波上传输。OFDM技术利用了相互正交的子载波,从而子载波的频谱是重叠的。在传统的FDM多载波调制系统中,子载波间需要保护间隔,与之相比,OFDM技术可以提高频谱利用率。
4、子载波
在多载波传输波形当中,传输的信号为带宽信号,带宽信号中有很多不同频率的信号,这些频率的间隔都是相同的,这些不同频率的称为子载波。网络设备与终端设备之间传输的数据调制到这些子载波上,这些子载波之间在一段时间内可以是正交的。
以图3为例,子载波间隔(subcarrier spacing,SCS)为15KHz、30KHz、60KHz下,每一个频域的空格可以为一个子载波,可以用来传输数据。
5、加扰(scrambling)
加扰是一种数字信号的加工处理方法,例如,数据信号与一定的序列信号采用异或,或者,数据信号与一定的序列信号两者相加之后进行模2求余,从而得到新的信号。与原始信号相比,新的信号在时间上、频率上被打散。通过加扰,可以达到干扰随机化的目的。其中,该序列信号为加扰信号。该序列信号可以是已知的二进制序列信号,也可以是根据某些信息生成的序列信号,这些信息例如可以包括但不限于:小区标识和/或终端标识等。数据信息例如可以包括对原始的数据信息比特进行编码之后的数据信息。或者,数据信息也可以包括未编码的数据信息。或者,数据信息也可以包括序列信息,例如,帧头的前导信息、随机接入的前导信息等。
6、伪随机信号
伪随机信号,又可以称为伪随机(pseudo-noise,PN)序列或伪随机码,它具有类似于随机噪声的某些统计特性,它可以重复产生和处理。伪随机信号可以由以下任意一序列生成:m序列、Gold序列、二次剩余序列、双素数序列、ZC序列、Frank序列、Golomb序列、Chirp序列或者P4序列等。
7、时频资源
在本申请实施例中,数据或信息可以通过时频资源来承载,其中,该时频资源可以包括时域上的资源和频域上的资源。其中,在时域上,时频资源可以包括一个或多个时域单位(或者,也可以称为时间单位或时域单元),在频域上,时频资源可以包括一个或多个频域单位。
其中,一个时域单位可以是一个符号,或者一个迷你时隙(mini-slot),或者一个时隙(slot),或者一个子帧(subframe),其中,一个子帧在时域上的持续时间可以是1毫秒(ms),一个时隙由7个或者14个符号组成,一个迷你时隙可以包括至少一个符号 (例如,2个符号或者4个符号或者7个符号或者14个符号,或者其他小于等于14个符号的任意数目符号)。列举的上述时域单位大小仅仅是为了方便理解本申请的方案,不应理解对本申请的限定,可以理解的是,上述时域单位大小可以为其它值,本申请不做限定。
反射通信时隙表示用于反射通信的时间单位,可以包含至少一个反射通信符号时间(即反射器完成一个数据符号传输所需要的时间)。一个反射器完成一次完整的反射通信的时间可以为一个或者多个反射通信时隙,和/或若干反射通信符号时间。
一个频域单位可以是一个资源粒子(resource element,RE),集配站一个资源块(resource block,RB),或者一个资源块组(resource block group,RBG),或者一个预定义的子带(subband),或者一个预编码资源块组(precoding resource block group,PRG),或者一个带宽部分(bandwidth part,BWP),或者一个载波,或者一个服务小区。
在本申请实施例中,时间单位、时域单元、时域单位,有时交替时域,其表示含义一样。
在本申请实施例中,“数据”或“信息”可以理解为信息块经过编码后生成的比特,或者,“数据”或“信息”还可以理解为信息块经过编码调制后生成的调制符号。
一般地,激励器发送的信号包括两个作用:充电和充当反射数据载体。从所占据频带宽度的角度来看,激励器发送的信号,可以为单音信号(即连续的正弦波)或单载波信号,也可以为多音信号(例如,具有一定带宽的信号)。一般来说,激励器发送的信号为已知信号或者为发送给接收器的数据信号。在反射通信系统中,读写器(发送激励信号)发送的为单音信号,又称为连续波(continuous wave,CW),不承载任何数据。反射器反射数据时,原始数据直接承载于信号中。
现有反射系统中,反射器(如标签)反射ASK信号(或者通-断键控信号(on-off keying,OOK))。反射是基于数据包,每个反射数据具有一个包头(前导(Preamble)),供接收端(即读写器)进行同步。基于数据包头的前导序列,虽然可以用来进行信道估计,但是性能比较差且开销大。
有鉴于此,本申请提出一种方法,可以提高信道估计和反射数据检测的性能。
下面将结合附图详细说明本申请提供的各个实施例。
图4本申请实施例提供的一种信号传输的方法400的示意性交互图。方法400可以包括如下步骤。
410,激励器向反射器发送激励信号。相应地,反射器接收激励信号。
也就是说,激励器向反射器发送W个激励信号,反射器接收该W个激励信号。或者,也可以理解为,在反射通信时隙中,反射器接收该W个激励信号。其中,W为大于1或等于1的整数。
应理解,激励器和反射器可以为不同设备,也可以集成在同一设备上,对此不作限定。图4中为便于理解,仅示出了激励器和反射器为不同设备的情况,应理解,本申请实施例并未限定于此。
示例地,激励信号可以基于正交频分复用(orthogonal frequency division multiplexing,OFDM)调制。或者,激励信号也可以基于离散傅里叶变换扩展正交频分复用(discrete fourier transformation-spread-orthogonal frequency division multiplexing,DFT-s-OFDM)调制,即有离散傅里叶变换(discrete fourier transformation,DFT)预编码/转换的OFDM调 制。或者,激励信号也可以基于单载波正交幅度调制(Single carrier-quadrature amplitude modulation,SC-QAM)调制(又称为线性滤波单载波),等等。
示例地,激励信号还可以基于单载波(single carrier)符号块(block),即由时域上的多个数据符号组成一个数据块,每个数据块前面可以添加循环前缀。该示例下,激励信号的时间单位例如可以为单载波符号块。
应理解,关于激励信号的时间单位,可以有多种形式,此处不作限定。例如,激励信号的时间单位可以表示为OFDM符号或单载波符号块。
还应理解,本申请实施例中多次提及,激励信号的OFDM符号,其用于表示基于激励信号采取的波形是OFDM或者OFDM的变形(例如,DFT-s-OFDM)。此外,激励信号可以是其他形式波形,例如线性滤波单载波。此时,线性滤波单载波以数据块为单位来进行发送和接收,因此,本申请实施例中,OFDM可以对应为线性滤波单载波中数据块。
示例地,W个激励信号,可以用于表示,承载于W个时间单位的激励信号。或者,也可以用于表示,在反射通信时隙,承载于W个时间单位的激励信号。
示例地,激励信号的时频结构可以如图5或图6所示。图5示出了激励信号所占的频域资源无间隔的示意图,图6示出了激励信号所占的频域资源有间隔的示意图。这两种结构,在时域可以达到类似的效果。
其中,K表示同一个OFDM符号的重复次数,例如K=15。L表示一个反射通信时隙中的OFDM符号数量,N或者NM表示RE的个数。M表示不放激励信号的RE(resource element)的个数。CP为可选项,即CP可以有,也可以没有。
RE也可以称为资源元素,或者子载波。在基于OFDM的通信系统中,例如LTE或5G中,一个RE在时域上可以对应一个时域符号,在频域上可以对应一个子载波。在本申请实施例中,RE的时频资源可以是资源单元的一例。例如,时域符号可以是正交频分多址(orthogonal frequency division multiple access,OFDMA)符号或单载波频分多址(single carrier frequency division multiple access,SC-FDMA)符号。
应理解,K、L、N、M,可以是预定义的常数,也可以是接收器或激励器或其他设备等指示的常数,对此不作限定。关于K、L、N、M的取值,也不作限定。
其中,在K次OFDM符号重复的时间内,例如可以反射L个反射器的数据符号;或者,可以在多个不同的K次激励信号OFDM符号重复上反射一个反射数据符号;或者,可以在P个不同的K次激励信号OFDM符号重复上反射L个反射数据符号。其中,K、L、P为整数。例如,K=2,L=2,P=1;又如,K=1,P=1,L=1;又如,K=2,L=1,P=1。
示例地,反射器在反射数据时,可以是在接收到的激励信号上乘以一个数据符号。
其中,s i,j表示加扰序列或者加扰序列对应的符号,是激励器发送信号中承载的符号。在一种可能的实现方式中,符号可以是接收器已知,或者接收器可以根据预设的方式重现,对此不作限定。
如图5所示的结构中,K次重复可以不是简单的复制,是在相邻符号之间有一个相位差。例如,相位s i,j可以表示为:s i,j=e s (i+1),j,或者,相位s i,j可以等价写为:s (i+1),j=e -jφs i,j,其中,0≤i≤L-2,0≤j≤N-1。
其中,s i,j可以是经过预处理的数据,例如经过离散傅里叶变换(Discrete Fourier  Transform,DFT)之后的数据或接收端已知序列(或者接收端已知数据s i,j中一部分)。s i,j承载的可以是零相关序列(Zadoff-Chu序列)、Gold序列、m序列等等。
应理解,上述图5与图6仅是一种示例,并不对本申请实施例的保护范围造成限定。关于激励信号的时频结构还可能包括其他形式,此处不作限定。
420,反射器反射数据和参考信号。
反射器可以对接收到的激励信号进行反射,并且在反射信号上调制反射器的数据和参考信号。
也就是说,反射器向接收器反射数据和L个参考信号,该L个参考信号承载于W个激励信号中的L个激励信号中,其中,L为大于1或等于1的整数,且L小于或等于W。例如,W、L均为大于2或等于2的整数。
L个参考信号承载于W个激励信号中的L个激励信号中,可以表示,L个参考信号分别承载于L个激励信号中。也就是说,L个激励信号中的每个激励信号上加载一个参考信号。也可以理解,在W个激励信号中的除L个激励信号以为的激励信号,可以用于承载反射数据。
示例地,时间单元为时隙,一个反射通信时隙内,数据符号数量例如可以为以下任意一个:6,8,10,12,14,16,18,24,32,48,64,80。
应理解,本申请实施例中,多次提及加载或承载。加载或承载在信号域,例如可以体现为两个信号相乘。
可选地,在反射器反射信号之前,可以对反射器反射的数据进行以下一项或多项处理:信道编码、加扰、调制。
图7示出了反射器反射信号的一个示意图。反射信号,表示反射器反射的信号,如可以包括反射器数据和参考信号。
如图7所示,原始比特数据经过调制后,与参考信号采取如时分或空分或码分的叠加后,加载到接收到的激励信号上并反射。在反射器数据进行调制前,还可以包括:信道编码和加扰操作。通过信道编码和加扰,可以进一步提高抵抗信道衰落和干扰的能力。
应理解,激励器发送激励信号和反射器反射数据和参考信号可以同步进行。也就是说,反射器接收到激励器,就反射数据和/或参考信号。或者,反射器在接收激励器信号的同时,也反射数据和/或参考信号。
关于参考信号、反射数据,下文详细描述。
可选地,方法400还可以包括步骤430。
430,接收器解调反射数据。
接收器接收到反射信号后,可以对反射信号上的数据进行解调并获取反射器数据。
关于接收器解调反射数据的方式,下文详细描述。
可选地,方法400还可以包括:步骤4401和/或步骤4402。
4401,接收器向反射器反馈通信结果。
4402,接收器向激励器反馈通信结果。
也就是说,接收器接收到反射信号,并解调反射数据后,可以向反射器和/或激励器反馈通信结果。
一种可能的方式,接收器向反射器发送反馈信号。示例地,该方式可以适用于反射器 能力较强、或接收器离反射器比较近的情况。
又一种可能的方式,接收器向激励器反馈通信结果。激励器可以根据反馈的通信结果进行一些操作,例如,停止发送激励信号,或者查询其它反射器等。示例地,该方式可以适用于接收器离反射器较远的情况。
又一种可能的方式,接收器向激励器反馈通信结果,激励器再将通信结果通知给反射器。反射器可以根据反馈的通信结果进行一些操作,例如,确定是否继续反射通信,或者确定继续反射通信的参数。示例地,该方式可以适用于接收器离反射器较远的情况。
可选地,在反射器向接收器反射数据和L个参考信号之前,方法400还可以包括:反射器接收配置信息,该配置信息可以包括以下一项或多项信息:参考信号的格式、参考信号在时域资源上的位置、参考信号的数量L、没有承载参考信号和/或数据的激励信号在时域资源上的位置、没有承载参考信号和/或数据的激励信号的个数、承载参考信号的激励信号在时域资源上的位置、承载参考信号的激励信号的个数、数据的解调方式。
也就是说,接收器或激励器或者其它设备可以配置反射通信的相关参数,如可以为反射器配置上述任意一项或多项参数,以便反射器反射数据和参考信号。
其中,配置信息可以包括参考信号的格式,例如可以包括格式1或格式2。也就是说,反射器可以根据配置信息,确定参考信号的格式为格式1还是格式2。关于格式1和格式2,下文详细描述。
其中,配置信息可以包括参考信号在时域资源上的位置。也就是说,反射器可以根据配置信息,确定承载参考信号的时域资源的位置。例如,确定承载参考信号的符号包括哪些。
其中,配置信息可以包括参考信号的数量L。例如,反射器可以根据配置信息,确定在一个或多个反射通信时间单元上,参考信号的符号数量。示例地,参考信号的符号数量可以取以下任意数值:2,3,4,8。
其中,配置信息可以包括没有承载参考信号和/或数据的激励信号在时域资源上的位置。例如,反射器可以根据配置信息,确定不承载反射信号的时间位置。
一种可能的形式,配置信息中可以包括“反射”信息和“不反射信息”。“反射”信息,即包括与反射参考信号相关的信息,例如可以包括时间位置、时间长度、数量等等。“不反射”信息,即包括与不反射信号相关的信息,例如可以包括时间位置、时间长度、数量等等。
其中,配置信息可以包括没有承载参考信号和/或数据的激励信号的个数。例如,反射器可以根据配置信息,确定在一个或多个反射通信时间单元上,不反射信号的时间单位。
应理解,上述仅是示例性说明,本申请实施例并未限定于此。例如,配置信息中还可以包括反射通信时间单元中反射符号的数量F,F可以包括L,也可以不包括L。F大于L。F取值为整数。例如,F可以为6~80之间的任一整数。关于F的取值,本申请实施例不作限定。
上文结合图4介绍了适用于本申请实施例的一个示意性流程,下面详细介绍反射数据、参考信号、以及接收器解调反射数据的方式。应理解,下文介绍的反射数据、参考信号、以及接收器解调反射数据的方式,可以单独使用,也可以结合使用,对此不作限定。
一、反射数据
下面从两个方面介绍反射数据。
方面1,反射数据的时频结构。
反射信号,即表示反射器反射的信号,例如包括参考信号和反射数据。反射信号的频域结构与激励信号类似,带宽一致。如图8和图9所示,反射信号和激励信号的频率位置f1和f2可以不相同,例如,在反射时,反射器对接收到的激励信号可能会进行频率搬移。
示例地,反射信号的时间单位,可以与激励信号相同,也可以是激励信号时间的分数倍或者整数倍,对此不作限定。
反射信号在时域和激励信号的关系,例如可以如图8和图9所示。图中,s 0、s 1、s 2、……、s K-1等表示激励信号,d 0、d 1、……、d L-1等表示反射数据。其中,s i可以为向量;s i也可以为单个数据比特或者符号。此外,两个不同时间上的s i和s j之间可以有相位差。例如,s i+1=s i e -jφ。例如,如果激励信号是单载波时,则为单个数据比特或者单个符号。又如,如果激励信号为带宽信号时,则s i和e -jφ可以为数据比特或者符号中的任意一种。在K次激励信号上,可以反射L个反射数据。例如,K=2,L=2;又如,K=1,L=1,P=1;又如,K=2,L=1。
反射器在反射数据时,可以是在接收到的激励信号上乘以(或者,也可以称为加载或承载)一个数据符号。
如图9所示的反射器数据符号之间的时间间隔。该间隔长度可以为0,也可以大于0。在该间隔大于0时,L个数据符号之间的间隔可以等长,也可以不等长。L个数据符号之间的间隔不等长的情况下,各个间隔之间相差小于或等于预设值或者说预定常数。
本申请中,激励信号、反射信号时频结构的设计方案,可以与现有网络,如蜂窝网中OFDM体系兼容,可以有效利用现有4G和5G成熟的终端和基站技术,降低激励器、接收器代价和门槛。此外,还便于实现频分复用,并取得良好的带外、解调性能。
方面2,反射数据的调制方式。
可选地,反射数据至少可以通过以下任一方式调制。
调制方式1:数据调制符号(2 M-PSK或2 M-QAM或2 M-ASK)。
图10示出了调制方式1的一示意图。也就是说,单个反射符号,如反射符号1、反射符号2、反射符号3、反射符号4,上加载普通数据调制符号,如相移键控(phase shift keying,PSK)、正交振幅调制(quadrature amplitude modulation,QAM)、ASK等。
调制方式2:调制符号正负反射(2 M-PSK或2 M-QAM或2 M-ASK)。或者,有无反射(即一个比特/符号的时间内,先后反射高电平-低电平,或者先后反射低电平-高电平,代表不同的比特/符号)。
图11示出了调制方式2的一示意图。同一调制符号可以在多个反射符号上加载。
如图11所示,调制符号正负反射。
调制方式3:修正米勒调制方式。
图12示出了调制方式3的一示意图。同一调制符号可以在多个反射符号上加载。
该调制方式例如可以包括:pi/2-二进制相移键控(binary phase shift keying,BPSK)、ASK、二进制启闭键控(On-Off Keying,OOK)等。
调制方式4:偏移调制(offset modulation)。
图13示出了调制方式4的一示意图。同一调制符号可以在多个反射符号上加载。
调制方式5:偏移相位调制(e -2 M-PSK或e -2 M-QAM或e -2 M-ASK)。
图14示出了调制方式5的一示意图。多个反射符号之间的数据符号,可以按预定义的图案进行相位、星座图的偏移。
应理解,关于上述几种调制方式仅是示例性说明,具体的实现方式可以参考现有的操作,对此不作限定。任何可以调制反射符号的方式都落入本申请实施例的保护范围。
二、参考信号
下面从两个方面介绍参考信号。
方面1,参考信号的格式。
格式1:反射器的参考信号都需要发送。
反射信号是通过对激励信号的反射进行承载。反射数据时,可以将反射数据加载到(或者说乘到或者说承载到)反射器接收的激励信号上进行反射。参考信号也可以加载到(或者说乘到或者说承载到)反射器接收的激励信号上进行反射。在一个反射通信时间单元上(例如,时隙、子帧、帧中的任意一种),可以承载L个参考信号。参考信号的格式为格式1时,该L个参考信号全部被加载到激励信号上。
也就是说,L个参考信号:W个激励信号中,L个激励信号用于承载L个参考信号,剩余的(W-L)个激励信号可以用于承载数据。其中,L大于或等于2,且L小于W。
可选地,L个参考信号承载于L个时间单位上,每个时间单位承载一个参考信号,相邻两个时间单位上承载的两个参考信号符号相反。
相邻两个参考信号之间互为相反数,即符号相反。这种相邻符号之间相反的设计,可以使得反射数据对应的信道估计更加准确(即,信噪比会更高)。
图15和图16示出了适用于本申请实施例的参考信号的格式为格式1的示意图。
图中,s 0、s 1、s 2、s 3等表示激励信号,RS表示参考信号。可以看出,相邻参考信号的符号相反。
参考信号的格式为格式1的情况下,可以支持两个反射符号之间的差分,从而对激励信号进行消除。
格式2:部分激励信号不反射信号。
也就是说,W个激励信号中包括T个激励信号,该T个激励信号上不承载参考信号和/或反射数据,其中,T为大于0的整数。或者,也可以理解为,(L+T)个参考信号:L个激励信号用于承载L个参考信号,T个参考信号不发送。或者,也可以理解为,(L+T)个激励信号均用于承载参考信号,反射器使用其中L个激励信号反射参考信号,T个激励信号不反射信号。
可选地,T大于L。
可选地,T小于L。
可选地,T等于L。
可选地,在T等于L的情况下,参考信号和T个激励信号中的激励信号在时间单位的位置可以交替出现。
例如,T个激励信号上不承载参考信号,也不承载数据,即T个激励信号上不反射信号。或者,T个激励信号上仅反射低功率的辅助信号(即与其他反射参考信号的符号位置相比)。
T个激励信号所在的时间单位,可以用于估计激励器与接收器之间的信道,也就是说,此时,接收信号中没有反射信号,或者接收信号中仅有低功率反射信号。从而,支持接收器利用估计的激励器-接收器信道,在其它有反射参考信号和/或反射数据信号的接收信号,进行激励信号消除,然后再获取反射器数据。此外,参考信号的格式为格式2时,也可以支持差分解调。
图17至图19示出了适用于本申请实施例的参考信号的格式为格式2的示意图。
图中,s 0、s 1、s 2、s 3等表示激励信号,RS表示参考信号。可以看出,有些激励信号上不反射信号。其中,为便于清楚,图中虚线框表示不反射信号,或者,仅反射低功率的辅助信号(相比于其它标注为反射参考信号的符号位置)。
可选地,在参考信号的格式为格式2的情况下,在一个反射通信时间单元中(时隙、子帧、帧)中,可以有多个如图示中标注为“不反射信号”的符号,其余为“反射信号”的符号,数量分别为T和L。
可选地,在参考信号的格式为格式2的情况下,还可以配置:参考信号类型(“不反射”和“反射”)信息、各种参考信号类型的时间长度(或者数量)、各参考信号类型的时间位置信息等。
其中,“不反射”,即表示不反射参考信号和不反射数据信号,“反射”,即表示反射参考信号。
在本申请实施例中,“不反射”信号,用于表示,该激励信号不反射信号或者该时间位置不反射信息,或者,仅反射低功率的辅助信号。
一种可能的情况,“不反射”信号出现的时间间隔,可以比参考信号出现的时间间隔更短。
也就是说,“不反射”信号,在时间上(例如,反射通信时隙,或反射通信子帧,或反射通信帧)出现更加紧密。例如,时间上相邻的“不反射”信号之间的间隔小于时间上相邻的参考信号之间的间隔。
如图17所示,s 0、s 2、s 5等,均“不反射”信号,其间隔小于“反射”参考信号的间隔。
该情况下,可以更加精确地估计激励信号,从而降低残余激励信号带来的干扰。
又一种可能的情况,“不反射”信号出现的时间间隔,可以比参考信号出现的时间间隔更长。
也就是说,“不反射”信号,在时间上(例如,反射通信时隙,或反射通信子帧,或反射通信帧)出现更加稀疏。例如,时间上相邻的“不反射”信号之间的间隔大于时间上相邻的参考信号之间的间隔。
如图19所示,s 0、s 2、s 5等,均反射参考信号,其间隔小于“不反射”信号的间隔。
该情况下,可以更精确地估计反射数据经历的信道,提高检测性能。应该理解,这些实施例中,反射或不反射的参考信号的其它时间上,反射器会反射数据信号。
应理解,上述两种情况仅是示例性说明,本申请实施例并未限定于此。例如,“不反射”信号出现的时间间隔,可以与参考信号出现的时间间隔相同。
此外,可选地,T个激励信号在时域资源的位置位于L个激励信号在时域资源的位置之前;或,T个激励信号在时域资源的位置位于L个激励信号在时域资源的位置之后。可以理解为,“不反射”信号首次出现的时间位于参考信号首次出现的时间之前。或者,“不 反射”信号首次出现的时间位于参考信号首次出现的时间之后。或者,也可以理解为,全部或部分“不反射”信号出现的时间位于全部或部分参考信号出现的时间之前。或者,全部或部分“不反射”信号出现的时间位于全部或部分参考信号出现的时间之后。
参考信号的格式为格式2的情况下,通过不反射信号所在的时间单位,可以用于估计激励器与接收器之间的信道,从而支持接收器进行激励信号消除,然后再获取反射器数据。此外,参考信号的格式为格式2时,也可以支持差分解调。
上述介绍了参考信号的两种可能的格式,下面介绍参考信号可能的几种放置方式。
方面2,参考信号的放置方式。
可选地,参考信号的格式可以为上述任一种格式。
可选地,在本申请实施例中,参考信号的时间单位,可以与激励信号相同,也可以是激励信号时间单位的分数倍或者整数倍等等,对此不作限定。
可选地,参考信号的放置方式至少可以包括以下几种可能的方式。
下面描述L个符号在时间上的分布,即L个参考信号在时域资源的放置方式。
放置方式1、间隔放置。
参考信号之间的间隔可以记为间隔(gap)。
一示例,如图15所示,时间位置相邻的两个参考信号之间有间隔。例如,s 0与s 1所在的时间单位之间有间隔。例如,每4个之间间隔为12个符号或者24个符号等等。
又一示例,如图17所示,反射参考信号与不反射信号所在的时间单位之间有间隔。例如,s 0与s 1所在的时间单位之间有间隔。
这种间隔放置的方式,与已有LTE参考信号的放置方式类似,从而可以更好地兼容。
放置方式2、连续放置。
也就是说,L个参考信号所在的L个时间单位连续。
在一个反射通信时间单元上(例如,时隙、子帧、帧中的任意一种)的L个反射通信参考信号,L个参考信号之间在时间上可以连续放置。例如,时间单元为时隙,一个反射通信时隙内,可以承载12个符号,假设L=2,则两个参考符号可以分别位于第3个符号和第4个符号。又如,时间单元为时隙,一个反射通信时隙内可以承载12个符号,假设L=2,则两个参考符号可以分别位于第6个符号和第7个符号。又如,时间单元为时隙,一个反射通信时隙内可以承载12个符号,假设L=2,则两个参考符号可以分别位于第1个符号和第2个符号。
一示例,如图16所示,在反射通信时隙中,时间位置相邻的两个参考信号连续。例如,在反射通信时隙1中,s 0与s 1所在的时间单位连续。又如,在反射通信时隙2中,s 2与s 3所在的时间单位连续。
又一示例,如图18所示,反射参考信号与不反射信号所在的时间单位连续。例如,在反射通信时隙1中,s 0与s 1所在的时间单位连续。又如,在反射通信时隙2中,s 2与s 3所在的时间单位连续。
这种连续放置的方式,与NR中参考信号的放置方式类似。此外,连续放置的方式,由于参考信号所在的时间位置时间相隔更近,受到信道时变性影响更小,因此,有利于在恢复反射器数据时,对激励信号的消除。
放置方式3、均匀放置。
也就是说,L个参考信号所在的L个时间单位间隔相同。其中,间隔可以为0,即连续;或者,间隔也可以大于0。
在一个反射通信时间单元上(例如,时隙、子帧、帧中的任意一种)的L个参考信号,L个参考信号之间在时间上可以间隔放置,在一个反射通信时间单元内间隔均匀。
例如,时间单元为时隙,一个反射通信时隙内可以承载12个符号,假设L=2,则两个参考符号分别位于第3个符号和9个符号。
放置方式4、非均匀放置。
也就是说,L个参考信号所在的L个时间单位间隔不同。
L个参考信号之间在时间上的放置,在一个反射通信时间单元内间隔不均匀。例如,时间单元为时隙,一个反射通信时隙内可以承载12个符号,假设L=3,则三个参考信号可以分别位于第3个符号、第4个符号、和第9个符号。
应理解,上述各种放置方式中列举的示例仅是示例性说明,并不对本申请实施例的保护范围造成限定。
还应理解,上述列举的几种放置方式仅是示例性说明,本申请实施例并未限定于此。
上文详细介绍了反射数据和参考信号,下面介绍反射数据的解调方式。
三、反射数据的解调
在反射通信系统中,接收器获取的信号时频格式可以如图20所示。如图所示,y 0、y 1、……、y F-2、y F-1,表示在不同时间单位接收到的信号。
以激励器、接收器、反射器都是单天线的系统为例,信号模型可以表示为公式1。
y i=f*b i*g*s i+h*s i+n i
                                      公式1
其中,s i表示激励数据,i为时间索引。b i表示反射器数据。*表示卷积。f表示反射器到接收器的信道。g表示激励器到反射器的信道。h表示激励器到接收器的信道。n i表示噪声。
接收器对反射数据的恢复,至少可以通过以下任一方案实现。
方案1,先激励数据共轭后消除激励信号。
在该方案下,需要对激励器-接收器之间的信道进行估计。
图21示出了方案1的一示意图。为了表述简便,图中没有标记符号索引i。
如图21所示,接收信号y后,可以对接收到的信号进行激励数据共轭相乘,从而可以得到公式2。例如,如果是向量,则进行内积。
Figure PCTCN2019119111-appb-000001
其中,上角标H表示共轭转置,如,A H表示矩阵(或向量)A的共轭转置。
进一步,进行激励信号相消。示例地,两个不同时间索引i和j进行差分,如公式3。
Figure PCTCN2019119111-appb-000002
例如,参考信号的格式为格式1的情况下,b i=-b j。又如,参考信号的格式为格式2的情况下,其中一个为0。则在估计激励器-接收器之间的信道(即f*g)时,可以取得 良好的性能。同样地,数据信号采用上述调制方式1至调制方式5中的任一调制方式时,也可以对信号(b i-b j)进行解调。
在激励信号消除后,可以得到公式4。
y i-h*s i=f*b i*g*s i+n i
                                     公式4
然后,将消除激励的信号,与激励数据共轭相乘,如公式5。
Figure PCTCN2019119111-appb-000003
最后,估计激励器-接收器之间的信道(即f*g),并解调反射数据b i
应理解,在获取信道f*g后,关于从带噪声的信号中检测b i或(b i-b j)的方式不作限定,例如可以参考现有的方式。
方案2,先消除激励信号后激励数据共轭。
图22示出了方案2的一示意图。该方案2同方案1类似,只是消除激励信号和激励数据共轭的顺序不一样,此处不再赘述。
应理解,不管是方案1还是方案2,激励数据共轭是可选的操作。例如,如果可以估计或消除h*s i,那么,可以不需要单独进行激励数据共轭相乘。例如,参考信号的格式为格式2时,可以很好地支持估计h*s i。此时,可以将f*g*s i作为一个整体进行估计并进行反射数据解调。
在本申请中,通过在反射通信中设计参考信号,即反射器反射数据时,反射参考信号,可以有效地提高接收端信道估计性能,提升增益。
此外,参考信号的设计,例如,上文所述的格式1或格式2,均有助于辅助反射数据的相干解调,实现对激励信号的消除,进而便于接收端解调数据。
此外,本申请提出的接收端解调数据的方式,可以极大降低激励信号对反射数据信号的干扰,提升解调性能。
应本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由设备实现的方法和操作,也可以由可用于设备的部件(例如芯片或者电路)实现。例如,由反射器实现的方法和操作,也可以由可用于反射器的部件(例如芯片或者电路)实现。又如,由接收器实现的方法和操作,也可以由可用于接收器的部件(例如芯片或者电路)实现。又如,由激励器实现的方法和操作,也可以由可用于激励器的部件(例如芯片或者电路)实现。
以上,结合图7至图22详细说明了本申请实施例提供的方法。以下,结合图23至图27详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能 模块为例进行说明。
图23是本申请实施例提供的信号传输的一装置的示意性框图。如图所示,该装置2300可以包括接收单元2310和反射单元2320。
在一种可能的设计中,该装置2300可实现对应于上文方法实施例中的反射器执行的步骤或者流程,例如,可以为反射器,或者配置于反射器中的芯片或芯片系统或电路。这时,该装置2300可以称为反射器。接收单元2310用于执行上文方法实施例中反射器侧的接收相关操作,反射单元2320用于执行上文方法实施例中反射器的反射相关操作。例如,接收单元和反射单元可以通过一个电路实现,也可以分别通过一个电路实现,对此不作限定。
一种可能的实现方式,接收单元2310用于:接收W个激励信号;反射单元2320用于:向接收器反射数据和L个参考信号,该L个参考信号分别承载于W个激励信号中的L个激励信号中;其中,W、L均为大于1或等于1的整数,L小于或等于W。
可选地,W个激励信号中包括T个激励信号,该T个激励信号上不承载参考信号和/或数据,其中,T为大于0的整数。
又一种可能的实现方式,接收单元2310用于:在反射通信时隙中,接收W个激励信号;反射单元2320用于:向接收器反射以下至少两项:L个参考信号、T个激励信号、数据,其中,L个参考信号承载于W个激励信号中的L个激励信号中,T个激励信号属于W个激励信号,T个激励信号上不承载参考信号和/或数据,;其中,W、L均为大于1或等于1的整数,L小于或等于W。
可选地,W、L为大于2或等于2的整数。
可选地,T与L满足以下任意一项:T大于L,或,T等于L,或,T小于L
可选地,在T等于L的情况下,参考信号和T个激励信号中的激励信号在时域资源的位置交替出现。
可选地,T个激励信号在时域资源的位置位于L个激励信号在时域资源的位置之前;或,T个激励信号在时域资源的位置位于L个激励信号在时域资源的位置之后。
可选地,T个激励信号在时域资源的位置的间隔小于L个激励信号在时域资源的位置的间隔;或,T个激励信号在时域资源的位置的间隔大于L个激励信号在时域资源的位置的间隔。
可选地,L个参考信号承载于L个时域单元上,每个时域单元承载一个所述参考信号,相邻两个时域单元上承载的两个参考信号符号相反。
可选地,L个时域单元满足以下任意一项:L个时域单元之间的间隔相同;或,L个时域单元之间的间隔不同;或,L个时域单元连续。
可选地,接收单元2310还用于:接收配置信息,配置信息包括以下一项或多项信息:参考信号的格式、参考信号在时域资源上的位置、参考信号的数量L、没有承载参考信号和/或数据的激励信号在时域资源上的位置、没有承载参考信号和/或数据的激励信号的个数、承载参考信号的激励信号在时域资源上的位置、承载参考信号的激励信号的个数、数据的解调方式。
可选地,每个激励信号承载一个参考信号。
可选地,参考信号用于接收器消除激励信号和/或解调反射器的数据。
可选地,接收单元2310具体用于:在反射通信时隙中,接收W个激励信号。
该装置2300可实现对应于根据本申请实施例的图4至图22中的反射器执行的步骤或者流程,该装置2300可以包括用于执行图4至图22中的反射器执行的方法的单元。并且,该装置2300中的各单元和上述其他操作和/或功能分别为了实现图4至图22中的反射器的相应流程。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
图24是本申请实施例提供的信号传输的又一装置的示意性框图。如图所示,该装置2400可以包括收发单元2410和处理单元2420。例如,收发单元和处理单元可以通过一个电路实现,也可以分别通过一个电路实现,对此不作限定。
在一种可能的设计中,该装置2400可实现对应于上文方法实施例中的接收器执行的步骤或者流程,例如,可以为接收器,或者配置于接收器中的芯片或芯片系统或电路。这时,该装置2400可以称为接收器。
一种可能的实现方式,收发单元2410用于:接收多个信号,每个信号包括数据和L个参考信号,该L个参考信号承载于L个激励信号中;处理单元2420用于:解调多个信号。
可选地,多个信号包括第一信号和第二信号,承载第一信号和第二信号的时域单元相邻;处理单元2420具体用于:对第一信号和第二信号进行相减处理。
该装置2400可实现对应于根据本申请实施例的图4至图22中的接收器执行的步骤或者流程,该装置2400可以包括用于执行图4至图22中的接收器执行的方法的单元。并且,该装置2400中的各单元和上述其他操作和/或功能分别为了实现图4至图22中的接收器的相应流程。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
图25示出了本申请实施例提供的反射器的示意图。
在接收能量时,反射器内部电路可以与充电模块连接;在反射信号时,反射器内部电路可以与反射、调制模块连通。其中,传感器为可选。反射器中的微处理器主要进行接收数据处理和反射数据处理。
应理解,图25仅是示例性说明。反射器也可以为终端设备或网络设备。
图26示出了本申请实施例提供的接收器的示意图。如图26所示,接收器可以包括:信号接收单元和信号处理单元。接收器的信号处理单元可以用于处理接收到的信号。例如,信号接收单元和信号处理单元可以通过一个电路实现,也可以分别通过一个电路实现,对此不作限定。
应理解,图26仅是示例性说明。接收器也可以为终端设备或网络设备。
图27示出了本申请实施例提供的激励器的示意图。如图27所示,激励器可以包括:激励信号生成单元、数据信号生成单元、信号发射和信号接收单元。例如,激励信号生成单元、数据信号生成单元、信号发射和信号接收单元可以通过一个电路实现,也可以分别通过一个电路实现,对此不作限定。
激励器中,信号发射和信号接收单元可以用于信号的发射和接收。激励信号生成单元 可以用于产生发射的激励信号。数据信号生成单元可以用于产生发射的数据信号。
应理解,图27仅是示例性说明。激励器也可以为终端设备或网络设备。
本申请实施例还提供了一种处理装置,包括处理器和接口。所述处理器可用于执行上述方法实施例中的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图4至图22所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图4至图22所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的接收器、反射器、激励器。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种信号传输的方法,其特征在于,包括:
    反射器接收W个激励信号;
    所述反射器向接收器反射数据和L个参考信号,所述L个参考信号分别承载于所述W个激励信号中的L个激励信号中;
    其中,W、L均为大于1或等于1的整数,L小于或等于W。
  2. 根据权利要求1所述的方法,其特征在于,所述W个激励信号中包括T个激励信号,所述T个激励信号上不承载所述参考信号和/或数据,其中,T为大于0的整数。
  3. 一种信号传输的方法,其特征在于,包括:
    在反射通信时隙中,反射器接收W个激励信号;
    所述反射器向接收器反射以下至少两项:L个参考信号、所述T个激励信号、数据,
    其中,所述L个参考信号承载于所述W个激励信号中的L个激励信号中,所述T个激励信号属于所述W个激励信号,所述T个激励信号上不承载所述参考信号和/或数据,
    其中,W、L均为大于1或等于1的整数,T为大于0或等于0的整数,L、T均小于W。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,
    W、L为大于2或等于2的整数。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,T与L满足以下任意一项:
    T大于L,或,T等于L,或,T小于L。
  6. 根据权利要求5所述的方法,其特征在于,
    在T等于L的情况下,所述参考信号和所述T个激励信号中的激励信号在时域资源的位置交替出现。
  7. 根据权利要求2至5中任一项所述的方法,其特征在于,
    所述T个激励信号在时域资源的位置位于所述L个激励信号在时域资源的位置之前;或,
    所述T个激励信号在时域资源的位置位于所述L个激励信号在时域资源的位置之后。
  8. 根据权利要求2至7中任一项所述的方法,其特征在于,
    所述T个激励信号在时域资源的位置的间隔小于所述L个激励信号在时域资源的位置的间隔;或,
    所述T个激励信号在时域资源的位置的间隔大于所述L个激励信号在时域资源的位置的间隔。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述L个参考信号承载于L个时域单元上,每个时域单元承载一个所述参考信号,
    相邻两个时域单元上承载的两个参考信号符号相反。
  10. 根据权利要求9所述的方法,其特征在于,
    所述L个时域单元满足以下任意一项:
    所述L个时域单元之间的间隔相同;或,
    所述L个时域单元之间的间隔不同;或,
    所述L个时域单元连续。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,在所述反射器向接收器反射数据和L个参考信号之前,所述方法还包括:
    所述反射器接收配置信息,所述配置信息包括以下一项或多项信息:
    所述参考信号的格式、所述参考信号在时域资源上的位置、所述参考信号的数量L、没有承载所述参考信号和/或所述数据的激励信号在时域资源上的位置、没有承载所述参考信号和/或所述数据的激励信号的个数、承载所述参考信号的激励信号在时域资源上的位置、承载所述参考信号的激励信号的个数、所述数据的解调方式。
  12. 根据权利要求1或2所述的方法,其特征在于,所述反射器接收W个激励信号,包括:
    在反射通信时隙中,所述反射器接收所述W个激励信号。
  13. 一种信号传输的方法,其特征在于,包括:
    接收器接收多个信号,每个信号包括数据和L个参考信号,所述L个参考信号承载于L个激励信号中;
    所述接收器解调所述多个信号。
  14. 根据权利要求13所述的方法,其特征在于,所述多个信号包括第一信号和第二信号,承载所述第一信号和所述第二信号的时域单元相邻;
    所述接收器解调所述多个信号,包括:
    所述接收器对所述第一信号和所述第二信号进行相减处理。
  15. 一种反射器,其特征在于,包括:接收单元和反射单元,
    所述接收单元用于:接收W个激励信号;
    所述反射单元用于:向接收器反射数据和L个参考信号,所述L个参考信号分别承载于所述W个激励信号中的L个激励信号中;
    其中,W、L均为大于1或等于1的整数,L小于或等于W。
  16. 根据权利要求15所述的反射器,其特征在于,所述W个激励信号中包括T个激励信号,所述T个激励信号上不承载所述参考信号和/或数据,
    其中,T为大于0的整数。
  17. 一种反射器,其特征在于,包括:接收单元和反射单元,
    所述接收单元用于:在反射通信时隙中,接收W个激励信号;
    所述反射单元用于:向接收器反射以下至少两项:L个参考信号、T个激励信号、数据,
    其中,所述L个参考信号承载于所述W个激励信号中的L个激励信号中,所述T个激励信号属于所述W个激励信号,所述T个激励信号上不承载所述参考信号和/或数据,
    其中,W、L均为大于1或等于1的整数,T为大于0或等于0的整数,L、T均小于W。
  18. 根据权利要求15至17中任一项所述的反射器,其特征在于,
    W、L为大于2或等于2的整数。
  19. 根据权利要求16至18中任一项所述的反射器,其特征在于,T与L满足以下任意一项:
    T大于L,或,T等于L,或,T小于L。
  20. 根据权利要求19所述的反射器,其特征在于,
    在T等于L的情况下,所述参考信号和所述T个激励信号中的激励信号在时域资源的位置交替出现;或,
    所述T个激励信号在时域资源的位置位于所述L个激励信号在时域资源的位置之前;或,
    所述T个激励信号在时域资源的位置位于所述L个激励信号在时域资源的位置之后。
  21. 根据权利要求16至20中任一项所述的反射器,其特征在于,
    所述T个激励信号在时域资源的位置的间隔小于所述L个激励信号在时域资源的位置的间隔;或,
    所述T个激励信号在时域资源的位置的间隔大于所述L个激励信号在时域资源的位置的间隔。
  22. 根据权利要求15至21中任一项所述的反射器,其特征在于,所述L个参考信号承载于L个时域单元上,每个时域单元承载一个所述参考信号,
    相邻两个时域单元上承载的两个参考信号符号相反。
  23. 根据权利要求22所述的反射器,其特征在于,
    所述L个时域单元满足以下任意一项:
    所述L个时域单元之间的间隔相同;或,
    所述L个时域单元之间的间隔不同;或,
    所述L个时域单元连续。
  24. 根据权利要求15至23中任一项所述的反射器,其特征在于,所述接收单元还用于:接收配置信息,所述配置信息包括以下一项或多项信息:
    所述参考信号的格式、所述参考信号在时域资源上的位置、所述参考信号的数量L、没有承载所述参考信号和/或所述数据的激励信号在时域资源上的位置、没有承载所述参考信号和/或所述数据的激励信号的个数、承载所述参考信号的激励信号在时域资源上的位置、承载所述参考信号的激励信号的个数、所述数据的解调方式。
  25. 根据权利要求15或16所述的反射器,其特征在于,所述接收单元具体用于:
    在反射通信时隙中,接收所述W个激励信号。
  26. 一种接收器,其特征在于,包括:收发单元和处理单元,
    所述收发单元用于:接收多个信号,每个信号包括数据和L个参考信号,所述L个参考信号承载于L个激励信号中;
    所述处理单元用于:解调所述多个信号。
  27. 根据权利要求26所述的接收器,其特征在于,所述多个信号包括第一信号和第二信号,承载所述第一信号和所述第二信号的时域单元相邻;
    所述处理单元具体用于:
    对所述第一信号和所述第二信号进行相减处理。
  28. 一种信号传输的装置,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述存储器中存储的计算机指令,使得所述装置执行如权利要求1至12中任一项所述的方法,或者,使得所述装置执行如权利要求13或14所述的方法。
  29. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被装置执行时,使得所述装置执行如权利要求1至12中任一项所述的方法,或者,使得所述装置执行如权利要求13或14所述的方法。
  30. 一种通信系统,其特征在于,包括反射器和激励器,所述反射器用于执行如权利要求1至12中任一项所述的方法。
PCT/CN2019/119111 2019-11-18 2019-11-18 信号传输的方法和装置、反射器以及接收器 WO2021097597A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19953167.4A EP4044483A4 (en) 2019-11-18 2019-11-18 METHOD AND DEVICE FOR SIGNAL TRANSMISSION, REFLECTOR AND RECEIVER
KR1020227018943A KR20220098371A (ko) 2019-11-18 2019-11-18 신호 전송 방법 및 장치, 반사기 및 수신기
PCT/CN2019/119111 WO2021097597A1 (zh) 2019-11-18 2019-11-18 信号传输的方法和装置、反射器以及接收器
CN201980101275.5A CN114556842B (zh) 2019-11-18 2019-11-18 信号传输的方法和装置、反射器以及接收器
US17/746,681 US20220278886A1 (en) 2019-11-18 2022-05-17 Signal transmission method and apparatus, reflector, and receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/119111 WO2021097597A1 (zh) 2019-11-18 2019-11-18 信号传输的方法和装置、反射器以及接收器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/746,681 Continuation US20220278886A1 (en) 2019-11-18 2022-05-17 Signal transmission method and apparatus, reflector, and receiver

Publications (1)

Publication Number Publication Date
WO2021097597A1 true WO2021097597A1 (zh) 2021-05-27

Family

ID=75980274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119111 WO2021097597A1 (zh) 2019-11-18 2019-11-18 信号传输的方法和装置、反射器以及接收器

Country Status (5)

Country Link
US (1) US20220278886A1 (zh)
EP (1) EP4044483A4 (zh)
KR (1) KR20220098371A (zh)
CN (1) CN114556842B (zh)
WO (1) WO2021097597A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023202632A1 (zh) * 2022-04-22 2023-10-26 维沃移动通信有限公司 资源分配方法、设备及可读存储介质
WO2023246685A1 (zh) * 2022-06-24 2023-12-28 维沃移动通信有限公司 信息发送方法、接收方法、装置、设备及可读存储介质
WO2024045851A1 (zh) * 2022-08-30 2024-03-07 华为技术有限公司 一种通信方法和装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112532342B (zh) * 2019-09-17 2023-05-16 华为技术有限公司 一种背反射通信中的数据传输方法和装置
US11463288B2 (en) * 2021-06-14 2022-10-04 Ultralogic 6G, Llc Amplitude-variation encoding for high-density 5G/6G modulation
WO2023245598A1 (en) * 2022-06-24 2023-12-28 Qualcomm Incorporated Transmitting reflected signals that indicate data multiplexed with reference signals
CN117639909A (zh) * 2022-08-17 2024-03-01 维沃移动通信有限公司 反向散射通信处理方法、装置、通信设备及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032349A1 (en) * 2002-10-02 2004-04-15 Batelle Memorial Institute Radio frequency identification devices, backscatter communication device wake-up methods, communication device wake-up methods and a radio frequency identification device wake-up method
CN103226170A (zh) * 2012-01-31 2013-07-31 安捷伦科技有限公司 用于测量残余相位噪声的系统
WO2017194333A1 (en) * 2016-05-10 2017-11-16 Carl Zeiss Smt Gmbh Apparatus and method for detecting ions
US20180062905A1 (en) * 2016-08-26 2018-03-01 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Concept for enhancing performance in backscatter systems or load systems
CN108151641A (zh) * 2017-12-14 2018-06-12 北京无线电计量测试研究所 一种射频传输线的长度测量方法及设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080079547A1 (en) * 2006-09-29 2008-04-03 Sensormatic Electronics Corporation Radio frequency identification reader having a signal canceller and method thereof
CN110224965B (zh) * 2019-06-17 2021-02-12 电子科技大学 一种基于ofdm反向散射通信系统的半盲接收机设计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032349A1 (en) * 2002-10-02 2004-04-15 Batelle Memorial Institute Radio frequency identification devices, backscatter communication device wake-up methods, communication device wake-up methods and a radio frequency identification device wake-up method
CN103226170A (zh) * 2012-01-31 2013-07-31 安捷伦科技有限公司 用于测量残余相位噪声的系统
WO2017194333A1 (en) * 2016-05-10 2017-11-16 Carl Zeiss Smt Gmbh Apparatus and method for detecting ions
US20180062905A1 (en) * 2016-08-26 2018-03-01 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Concept for enhancing performance in backscatter systems or load systems
CN108151641A (zh) * 2017-12-14 2018-06-12 北京无线电计量测试研究所 一种射频传输线的长度测量方法及设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AZIMI-SADJADI M. R., ET AL.: "CORRESPONDENCE A NEW TIME DELAY ESTIMATION IN SUBBANDS FOR RESOLVING MULTIPLE SPECULAR REFLECTIONS.", IEEE TRANSACTIONS ON SIGNAL PROCESSING., IEEE SERVICE CENTER, NEW YORK, NY., US, vol. 46., no. 12., 1 December 1998 (1998-12-01), US, pages 3398 - 3403., XP000878041, ISSN: 1053-587X, DOI: 10.1109/78.735312 *
See also references of EP4044483A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023202632A1 (zh) * 2022-04-22 2023-10-26 维沃移动通信有限公司 资源分配方法、设备及可读存储介质
WO2023246685A1 (zh) * 2022-06-24 2023-12-28 维沃移动通信有限公司 信息发送方法、接收方法、装置、设备及可读存储介质
WO2024045851A1 (zh) * 2022-08-30 2024-03-07 华为技术有限公司 一种通信方法和装置

Also Published As

Publication number Publication date
KR20220098371A (ko) 2022-07-12
EP4044483A4 (en) 2023-01-11
EP4044483A1 (en) 2022-08-17
CN114556842A (zh) 2022-05-27
US20220278886A1 (en) 2022-09-01
CN114556842B (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
WO2021097597A1 (zh) 信号传输的方法和装置、反射器以及接收器
WO2021169586A1 (zh) 一种通信方法及装置
WO2022033555A1 (zh) 信号传输方法和装置
CN115001923B (zh) 基于序列的信号处理方法及装置
WO2021119987A1 (zh) 反射通信方法、激励器、反射器和接收器
CN109802908B (zh) 基于序列的信号处理方法、信号处理装置及计算机可读存储介质
CN114079555A (zh) 信号传输方法和装置
CN110830212B (zh) 一种参考信号发送、接收方法及装置
CN116073965A (zh) 发送信号的方法和装置
WO2021195975A1 (zh) 传输参考信号的方法和装置
WO2020143649A1 (zh) 基于序列的信号处理方法与装置
CN114731701B (zh) 一种序列检测方法及设备
WO2023078358A1 (zh) 通信的方法和装置
CN114902774A (zh) 一种确定参考信号的方法及装置
US20220173953A1 (en) Communication method and apparatus
CN110868279B (zh) 一种信号发送、接收方法及装置
CN116266806A (zh) 一种通信方法及装置
TWI715883B (zh) Pucch傳輸方法、終端及網路側設備
WO2018137219A1 (zh) 一种信息传输方法及装置
WO2024114563A1 (zh) 一种通信方法及装置
WO2024032229A1 (zh) 通信方法、装置、设备以及存储介质
WO2023142831A1 (zh) 通信方法、装置、设备以及存储介质
WO2024098403A1 (zh) 无线通信的方法及设备
WO2021142756A1 (zh) 一种信号处理方法和相关装置
WO2024067252A1 (zh) 一种通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953167

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019953167

Country of ref document: EP

Effective date: 20220511

ENP Entry into the national phase

Ref document number: 20227018943

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE