WO2024032229A1 - 通信方法、装置、设备以及存储介质 - Google Patents

通信方法、装置、设备以及存储介质 Download PDF

Info

Publication number
WO2024032229A1
WO2024032229A1 PCT/CN2023/104287 CN2023104287W WO2024032229A1 WO 2024032229 A1 WO2024032229 A1 WO 2024032229A1 CN 2023104287 W CN2023104287 W CN 2023104287W WO 2024032229 A1 WO2024032229 A1 WO 2024032229A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency domain
sub
frequency
window
Prior art date
Application number
PCT/CN2023/104287
Other languages
English (en)
French (fr)
Inventor
曲韦霖
吴毅凌
金哲
陈俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024032229A1 publication Critical patent/WO2024032229A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/22Scatter propagation systems, e.g. ionospheric, tropospheric or meteor scatter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method, device, equipment and storage medium.
  • IoT Internet of Things
  • 5G fifth generation wireless system
  • 5.5G 5.5G communication system
  • IoT devices are implemented as based on Terminal for backscatter communications.
  • Backscatter communication terminals often enable amplitude shift keying modulation signals (such as OOK or ASK modulation), and the amplitude shift keying modulation signal is a double-sideband modulation signal, and its effective spectrum efficiency is low.
  • amplitude shift keying modulation signals such as OOK or ASK modulation
  • the amplitude shift keying modulation signal is a double-sideband modulation signal, and its effective spectrum efficiency is low.
  • how to improve the effective spectral efficiency of amplitude shift keying modulation signals in backscatter communications is an urgent problem that needs to be solved.
  • Embodiments of the present application provide a communication method, device, equipment and storage medium, in order to improve the effective spectrum efficiency of amplitude shift keying modulation signals in backscatter communication.
  • embodiments of the present application provide a communication method.
  • the method includes: performing window processing on a frequency domain signal of a first signal through a window signal to obtain a first frequency domain signal.
  • the first signal carries M amplitudes.
  • Orthogonal frequency division multiplexing OFDM signal of shift keying modulation symbols where M is a positive integer;
  • the second frequency domain signal is the frequency domain signal mapped by the first frequency domain signal in the first frequency domain resource, and the first frequency domain signal is The domain resource is the upper half or the lower half of the frequency domain resource occupied by the first frequency domain signal.
  • the second signal is the time domain signal of the second frequency domain signal.
  • the second signal carries the M amplitude shift keys. control the OFDM signal of modulated symbols; and send the second signal.
  • the frequency domain signal of the first signal is windowed through the window signal, so that the frequency domain single sideband signal of the first signal obtained by windowing is the time domain waveform of the second signal. It is closer to the time domain waveform of the double-sideband first signal, and maintains the characteristic that the transmission spectrum efficiency of the single-sideband amplitude-shift modulated signal is increased to 100%. Furthermore, under the principle of ensuring orthogonality with OFDM system subcarriers, it not only improves the transmission spectrum efficiency of downlink signals, but also ensures the transmission performance of downlink signals, and avoids additional implementation complexity and power consumption of the receiving end.
  • the window signal is applied to the frequency domain signal of the first signal to obtain the first frequency domain signal, including: the third frequency domain signal is the frequency domain signal of the window signal in the third frequency domain signal.
  • the second frequency domain resource occupies the same frequency domain resource as the frequency domain signal of the first signal.
  • the frequency domain resource occupied by the frequency domain signal of the window signal is greater than or equal to the third frequency domain signal.
  • the frequency domain resources occupied by the frequency domain signal of a signal; the frequency domain signal of the first signal is multiplied by the signal mapped on the same subcarrier of the third frequency domain signal to obtain the first frequency domain signal.
  • the frequency domain resources occupied by the third frequency domain signal are the same as the frequency domain resources occupied by the frequency domain signal of the first signal.
  • windowing processing of the first signal based on the window signal is implemented, which improves the effectiveness of the windowing processing.
  • the windowing process on the first signal can effectively shape the time domain waveform of the first signal, so that the time domain waveform of the subsequent single sideband signal and the second signal is close to the time domain waveform of the first signal, thereby improving the performance of the downlink signal. Transmission performance.
  • the window signal includes at least one first sub-signal and/or at least one second sub-signal; the time domain length of the first sub-signal is the same as a continuous third segment carried in the first signal.
  • the duration length of a modulation symbol is the same; and/or the time domain length of the second sub-signal is the same as the duration length of a continuous second modulation symbol carried in the first signal; wherein, the M amplitude shifts
  • the keyed modulation symbols include the first modulation symbol and/or the second modulation symbol.
  • different window signals are segmented based on the continuous modulation symbol length, so that the time domain waveform of the second signal obtained by subsequent windowing processing based on the window signal is closer to the time domain waveform of the first signal. , further improving the transmission performance of downlink signals.
  • the window signal includes at least one first sub-signal and/or at least one second sub-signal; the frequency of the first sub-signal is consistent with a period of continuous first modulation carried in the first signal.
  • the number of symbols is related; and/or the frequency of the second sub-signal is related to the number of a continuous second modulation symbol carried in the first signal.
  • the correlation range of the frequency components included in the window signal is determined, and the specific window signal is initially and effectively defined, so that the time domain waveform of the second signal obtained after windowing processing based on the window signal is closer to the first The time domain waveform of a signal.
  • the frequency of the first sub-signal is inversely proportional to the number of consecutive first modulation symbols carried in the first signal; and/or the frequency of the second sub-signal is inversely proportional to the number of the first modulation symbols carried in the first signal; The number of consecutive second modulation symbols carried in the first signal is inversely proportional to the number.
  • the specific correlation relationship between the corresponding frequencies of the window signal is determined, so that the time domain waveform of the second signal obtained by windowing based on the window signal is closer to the time domain waveform of the first signal.
  • the frequency of the first sub-signal is equal to the reciprocal of the duration of a continuous first modulation symbol carried in the first signal; and/or the frequency of the second sub-signal is equal to the The reciprocal of the duration of a continuous second modulation symbol carried in the first signal.
  • the frequency components included in the window signal are further determined, and the characteristics of the window signal are effectively defined and obtained, so that the time domain waveform of the second signal obtained by windowing processing based on the window signal is closer to the first signal. time domain waveform.
  • any sub-signal of the window signal includes at least one of the following: cosine signal; sine signal; power of cosine signal; power of sine signal.
  • any sub-signal of the window signal includes at least one of the following: the power of the cosine signal; the power of the sine signal; the coefficient of the power of the cosine signal and the power of the sine signal. At least one of the coefficients of the power is less than or equal to 1.
  • the waveform of the power of the sine signal or cosine signal has flat characteristics, and the smaller the power coefficient,
  • the waveform of the sine signal or the power of the cosine signal presents flatter characteristics, effectively defining and obtaining effective window signals, and is closer to the ideal OOK/ASK signal waveform.
  • the window signal is a raised cosine roll-off window signal.
  • the raised cosine roll-off function is a waveform-shaped window signal with a higher probability of use, that is, a window signal that is easier to reach consensus.
  • the first signal is windowed using a raised cosine roll-off window signal to obtain the second signal, and a time domain waveform of the first signal that is closer to the time domain waveform of the first signal can also be obtained.
  • embodiments of the present application provide a communication method.
  • the method includes: receiving a second signal.
  • the second signal is an OFDM signal carrying M amplitude shift keying modulation symbols.
  • the second signal is in the second frequency domain.
  • the time domain signal of the signal, the second frequency domain signal is the frequency domain signal mapped by the first frequency domain signal in the first frequency domain resource, and the first frequency domain resource is a portion of the frequency domain resource occupied by the first frequency domain signal.
  • the first frequency domain signal is a frequency domain signal obtained by windowing the first signal through a window signal
  • the first signal is an OFDM signal carrying M amplitude shift keying modulation symbols; determined M amplitude shift keying modulation symbols carried in the second signal.
  • the third frequency domain signal is a frequency domain signal in which the frequency domain signal of the window signal is mapped in the second frequency domain resource, and the second frequency domain resource is the same as the frequency domain signal of the first signal.
  • the frequency domain resources occupied by the window signal are the same.
  • the frequency domain resources occupied by the frequency domain signal of the window signal are greater than or equal to the frequency domain resources occupied by the frequency domain signal of the first signal.
  • the frequency domain signal of the first signal is the same as that of the third frequency domain signal.
  • the signal obtained by multiplying the signals mapped on the same subcarrier is equal to the signal of the first frequency domain signal on the same subcarrier.
  • the window signal includes at least one first sub-signal and/or at least one second sub-signal; the time domain length of the first sub-signal is the same as a continuous third segment carried in the first signal.
  • the duration length of a modulation symbol is the same; and/or the time domain length of the second sub-signal is the same as the duration length of a continuous second modulation symbol carried in the first signal.
  • the M amplitude shift keying modulation symbols include the first modulation symbol and/or the second modulation symbol.
  • the window signal includes at least one first sub-signal and/or at least one second sub-signal; the frequency of the first sub-signal is consistent with a period of continuous first modulation carried in the first signal.
  • the number of symbols is related; and/or the frequency of the second sub-signal is related to the number of a continuous second modulation symbol carried in the first signal.
  • the frequency of the first sub-signal is inversely proportional to the number of consecutive first modulation symbols carried in the first signal; and/or the frequency of the second sub-signal is inversely proportional to the number of the first modulation symbols carried in the first signal; The number of consecutive second modulation symbols carried in the first signal is inversely proportional to the number.
  • the frequency of the first sub-signal is equal to the reciprocal of the duration of a continuous first modulation symbol carried in the first signal; and/or the frequency of the second sub-signal is equal to the The reciprocal of the duration of a continuous second modulation symbol carried in the first signal.
  • any sub-signal of the window signal includes at least one of the following: a cosine signal; a sine signal; a power raised to the cosine signal; or a power raised to the sine signal.
  • any sub-signal of the window signal includes at least one of the following: the power of the cosine signal; the power of the sine signal; the coefficient of the power of the cosine signal and the power of the sine signal. At least one of the coefficients of the power is less than or equal to 1.
  • the window signal is a raised cosine roll-off window signal.
  • inventions of the present application provide a communication method.
  • the method includes: the first device performs window processing on the frequency domain signal of the first signal through the window signal to obtain the first frequency domain signal.
  • the first signal is a carrier OFDM signal of M amplitude shift keying modulation symbols, where M is a positive integer;
  • the second frequency domain signal is the frequency domain signal mapped by the first frequency domain signal in the first frequency domain resource, and the first frequency domain resource is The first frequency domain signal occupies the upper half or the lower half of the frequency domain resource.
  • the second signal is the time domain signal of the second frequency domain signal.
  • the second signal carries the M amplitude shift keying modulation symbols. OFDM signal; the first device sends the second signal to the second device; the second device determines M amplitude shift keying modulation symbols carried in the second signal.
  • the first device performs window processing on the frequency domain signal of the first signal through the window signal to obtain the first frequency domain signal, including: the third frequency domain signal is the frequency domain of the window signal A frequency domain signal in which the signal is mapped in a second frequency domain resource.
  • the second frequency domain resource is the same as the frequency domain resource occupied by the frequency domain signal of the first signal.
  • the frequency domain resource occupied by the frequency domain signal of the window signal is greater than or It is equal to the frequency domain resource occupied by the frequency domain signal of the first signal; the frequency domain signal of the first signal is multiplied by the signal mapped on the same subcarrier of the third frequency domain signal to obtain the first frequency domain signal.
  • the window signal includes at least one first sub-signal and/or at least one second sub-signal; the time domain length of the first sub-signal is the same as a continuous third segment carried in the first signal.
  • the duration length of a modulation symbol is the same; and/or the time domain length of the second sub-signal is the same as the duration length of a continuous second modulation symbol carried in the first signal; wherein, the M amplitude shifts
  • the keyed modulation symbols include the first modulation symbol and/or the second modulation symbol.
  • the window signal includes at least one first sub-signal and/or at least one second sub-signal; the frequency of the first sub-signal is consistent with a period of continuous first modulation carried in the first signal.
  • the number of symbols is related; and/or the frequency of the second sub-signal is related to the number of a continuous second modulation symbol carried in the first signal.
  • the frequency of the first sub-signal is inversely proportional to the number of consecutive first modulation symbols carried in the first signal; and/or the frequency of the second sub-signal is inversely proportional to the number of the first modulation symbols carried in the first signal; The number of consecutive second modulation symbols carried in the first signal is inversely proportional to the number.
  • any sub-signal of the window signal includes at least one of the following: a cosine signal; a sine signal; a power raised to the cosine signal; or a power raised to the sine signal.
  • any sub-signal of the window signal includes at least one of the following: the power of the cosine signal; the power of the sine signal; the coefficient of the power of the cosine signal and the power of the sine signal. At least one of the coefficients of the power is less than or equal to 1.
  • embodiments of the present application provide a communication device, including: a processing unit configured to process a first signal through a window signal.
  • the frequency domain signal is windowed to obtain the first frequency domain signal, which is an orthogonal frequency division multiplexing OFDM signal carrying M amplitude shift keying modulation symbols, where M is a positive integer;
  • the second frequency domain signal is The signal is a frequency domain signal mapped by the first frequency domain signal in a first frequency domain resource, and the first frequency domain resource is the upper half or the lower half of the frequency domain resource occupied by the first frequency domain signal, and the second frequency domain signal is The signal is a time domain signal of the second frequency domain signal, and the second signal is an OFDM signal carrying the M amplitude shift keying modulation symbols;
  • a transceiver unit is used to send the second signal.
  • the processing unit is specifically configured to: the third frequency domain signal is a frequency domain signal in which the frequency domain signal of the window signal is mapped in the second frequency domain resource, and the second frequency domain resource is the same as the frequency domain signal.
  • the frequency domain resources occupied by the frequency domain signals of the first signal are the same, and the frequency domain resources occupied by the frequency domain signals of the window signal are greater than or equal to the frequency domain resources occupied by the frequency domain signals of the first signal; the frequency domain resources occupied by the frequency domain signals of the first signal are The signal is multiplied by the signal mapped on the same subcarrier of the third frequency domain signal to obtain the first frequency domain signal.
  • the window signal includes at least one first sub-signal and/or at least one second sub-signal; the time domain length of the first sub-signal is the same as a continuous third segment carried in the first signal.
  • the duration length of a modulation symbol is the same; and/or the time domain length of the second sub-signal is the same as the duration length of a continuous second modulation symbol carried in the first signal; wherein, the M amplitude shifts
  • the keyed modulation symbols include the first modulation symbol and/or the second modulation symbol.
  • the window signal includes at least one first sub-signal and/or at least one second sub-signal; the frequency of the first sub-signal is consistent with a period of continuous first modulation carried in the first signal.
  • the number of symbols is related; and/or the frequency of the second sub-signal is related to the number of a continuous second modulation symbol carried in the first signal.
  • the frequency of the first sub-signal is inversely proportional to the number of consecutive first modulation symbols carried in the first signal; and/or the frequency of the second sub-signal is inversely proportional to the number of the first modulation symbols carried in the first signal; The number of consecutive second modulation symbols carried in the first signal is inversely proportional to the number.
  • the frequency of the first sub-signal is equal to the reciprocal of the duration of a continuous first modulation symbol carried in the first signal; and/or the frequency of the second sub-signal is equal to the The reciprocal of the duration of a continuous second modulation symbol carried in the first signal.
  • the first sub-signal and the second sub-signal when the first sub-signal and the second sub-signal have the same time domain length, the first sub-signal and the second sub-signal are different.
  • any sub-signal of the window signal includes at least one of the following:
  • any sub-signal of the window signal includes at least one of the following:
  • At least one of the coefficient of the power of the cosine signal and the coefficient of the power of the sine signal is less than or equal to 1.
  • the window signal is a raised cosine roll-off window signal.
  • embodiments of the present application provide a communication device, including: a transceiver unit configured to receive a second signal, where the second signal is an OFDM signal carrying M amplitude shift keying modulation symbols, and the second signal is the A time domain signal of a second frequency domain signal.
  • the second frequency domain signal is a frequency domain signal mapped by the first frequency domain signal in a first frequency domain resource.
  • the first frequency domain resource is the frequency occupied by the first frequency domain signal.
  • the first half or the lower half of the domain resource, the first frequency domain signal is a frequency domain signal obtained by windowing the first signal through a window signal, and the first signal is OFDM carrying M amplitude shift keying modulation symbols.
  • signal a processing unit configured to determine M amplitude shift keying modulation symbols carried in the second signal.
  • the third frequency domain signal is a frequency domain signal in which the frequency domain signal of the window signal is mapped in the second frequency domain resource, and the second frequency domain resource is the same as the frequency domain signal of the first signal.
  • the frequency domain resources occupied by the window signal are the same.
  • the frequency domain resources occupied by the frequency domain signal of the window signal are greater than or equal to the frequency domain resources occupied by the frequency domain signal of the first signal.
  • the frequency domain signal of the first signal is the same as that of the third frequency domain signal.
  • the signal obtained by multiplying the signals mapped on the same subcarrier is equal to the signal of the first frequency domain signal on the same subcarrier.
  • the window signal includes at least one first sub-signal and/or at least one second sub-signal; the time domain length of the first sub-signal is the same as a continuous third segment carried in the first signal.
  • the duration length of a modulation symbol is the same; and/or the time domain length of the second sub-signal is the same as the duration length of a continuous second modulation symbol carried in the first signal; wherein, the M amplitude shifts
  • the keyed modulation symbols include the first modulation symbol and/or the second modulation symbol.
  • the window signal includes at least one first sub-signal and/or at least one second sub-signal; the frequency of the first sub-signal is consistent with a period of continuous first modulation carried in the first signal.
  • the number of symbols is related; and/or the frequency of the second sub-signal is related to the number of a continuous second modulation symbol carried in the first signal.
  • the frequency of the first sub-signal is inversely proportional to the number of consecutive first modulation symbols carried in the first signal; and/or the frequency of the second sub-signal is inversely proportional to the number of the first modulation symbols carried in the first signal; The number of consecutive second modulation symbols carried in the first signal is inversely proportional to the number.
  • the frequency of the first sub-signal is equal to the reciprocal of the duration of a continuous first modulation symbol carried in the first signal; and/or the frequency of the second sub-signal is equal to the The reciprocal of the duration of a continuous second modulation symbol carried in the first signal.
  • any sub-signal of the window signal includes at least one of the following:
  • any sub-signal of the window signal includes at least one of the following:
  • At least one of the coefficient of the power of the cosine signal and the coefficient of the power of the sine signal is less than or equal to 1.
  • the window signal is a raised cosine roll-off window signal.
  • embodiments of the present application provide a communication device, including: a processor and a memory.
  • the memory is used to store a computer program.
  • the processor is used to call and run the computer program stored in the memory to perform the following steps: Methods in the second aspect or possible implementations.
  • embodiments of the present application provide a communication system, including: a first device and a second device; the first device is used to implement the method in the first aspect or possible implementations, and the second device is used Implement the method in the second aspect or each possible implementation manner.
  • embodiments of the present application provide a chip, including: a processor configured to call and run computer instructions from a memory, so that a device installed with the chip executes the first aspect, the second aspect, or each possible implementation. method within the method.
  • embodiments of the present application provide a computer-readable storage medium for storing computer program instructions.
  • the computer program causes the computer to execute the method in the first aspect, the second aspect, or each possible implementation manner.
  • embodiments of the present application provide a computer program product, including computer program instructions, which cause a computer to execute the method in the first aspect, the second aspect, or each possible implementation manner.
  • Figure 1 shows a schematic diagram of a communication system suitable for the communication method according to the embodiment of the present application
  • Figure 2 is a schematic structural diagram of a passive IoT system provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of the bandwidth of amplitude shift keying modulation provided by an embodiment of the present application.
  • Figure 4 is a schematic interaction flow diagram of a communication method provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of the time domain waveform of an amplitude shift keying signal provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of the time domain waveform of another amplitude shift keying signal provided by an embodiment of the present application.
  • Figure 7a is a schematic diagram of the time domain waveform of a window signal provided by an embodiment of the present application.
  • Figure 7b is a schematic diagram of the time domain waveform of another window signal provided by an embodiment of the present application.
  • Figure 7c is a schematic diagram of a frequency domain signal of a window signal provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of a double-sideband frequency domain signal provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of the time domain waveform of a single sideband signal provided by an embodiment of the present application.
  • Figure 10 is a schematic block diagram of a device provided by an embodiment of the present application.
  • Figure 11 is another schematic block diagram of a device provided by an embodiment of the present application.
  • the communication method provided by this application can be applied to various communication systems, such as: Global System of Mobile communication (GSM) system, Code Division Multiple Access (Code Division Multiple Access, CDMA) system, Broadband Code Division Multiple Access ( Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system, New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed) on unlicensed spectrum spectrum, NR-U) system, non-terrestrial communication network (Non-Terrestrial Networks, NTN) system, universal mobile communication system (Universal Mobile Telecommunication System, UMTS), wireless local area network (Wireless Local Area Networks, WLAN), wireless fidelity ( Wireless Fidelity (WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) scenario. ) netting scene.
  • Carrier Aggregation CA
  • DC Dual Connectivity
  • SA standalone
  • the embodiments of this application describe various embodiments in combination with network equipment and terminal equipment.
  • the terminal equipment may also be called user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • User Equipment User Equipment
  • the terminal device can be a station (STATION, ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, or a personal digital assistant.
  • PDA Personal Digital Assistant
  • handheld devices with wireless communication capabilities computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or in the future Terminal equipment in the evolved Public Land Mobile Network (PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites). superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, or an augmented reality (Augmented Reality, AR) terminal.
  • Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, Wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones.
  • the network device may be a device used to communicate with mobile devices, and the network device may be an Access Point (AP) in WLAN, or a Base Station (Base Transceiver Station, BTS) in GSM or CDMA.
  • AP Access Point
  • BTS Base Transceiver Station
  • NB base station
  • Evolutional Node B, eNB or eNodeB evolutionary base station
  • gNB Network equipment or base station (gNB) or network equipment in the future evolved PLMN network or network equipment in the NTN network, etc.
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • network devices may be satellites or balloon stations.
  • the satellite can be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geosynchronous orbit (geostationary earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite ) satellite, etc.
  • the network device may also be a base station installed on land, water, or other locations.
  • network equipment can provide services for a cell, and terminal equipment communicates with the network equipment through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell can be a network equipment ( For example, the cell corresponding to the base station), the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • the small cell here can include: urban cell (Metro cell), micro cell (Micro cell), pico cell ( Pico cell), femto cell (Femto cell), etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
  • FIG. 1 shows a schematic diagram of a communication system suitable for the communication method according to the embodiment of the present application.
  • the communication system 100 may include network devices and terminal devices.
  • the number of network devices and terminal devices may be one or more, such as network devices 111 and 112 and terminal devices 121 to 128 shown in FIG. 1 , in the communication system 100, the network device 111 can communicate with one or more of the terminal devices 121 to 126 through the wireless air interface, and the network device 111 can communicate with one or more of the terminal devices 127 and 128 through the network device 112. communicate with terminal devices.
  • the terminal devices 124 to 126 can form a communication system 101.
  • the terminal device 124 can communicate with one or more of the terminal devices 125 and 126 through wireless air interfaces
  • the network device 112 can communicate with the terminal device 127.
  • and 128 may form a communication system 102, in which the network device 112 may communicate with one or more of the terminal devices 127 and 128 through a wireless air interface.
  • FIG. 1 is only an example, showing two network devices and eight terminal devices in the communication system 100, three terminal devices in the communication system 101, and one network device and two terminal devices in the communication system 102. . But this shall not constitute any limitation on this application. Any of the above communication systems may include more or fewer network devices, or more or fewer terminal devices. The embodiments of the present application do not limit this.
  • IoT Internet of Things
  • the exciter 210 can send an excitation signal to the reflector 220 through a downlink (hereinafter also referred to as a downlink signal, including downlink signaling and/or downlink data).
  • the reflector 220 obtains energy based on the excitation signal to transmit a reflected signal in the uplink (hereinafter also referred to as an uplink signal).
  • the exciter 210 may be any device used to excite passive/semi-passive terminal equipment, such as a reader (Reader), a helper (Helper), etc.
  • the actuator 210 can be implemented as a network device, or the actuator 210 can be deployed on a network device.
  • the network device can be any of the network devices in the foregoing examples, such as base station equipment (including macro stations/small stations/ A series of base station equipment such as micro stations/pole stations); of course, this application does not exclude the case where the exciter 210 is implemented as a terminal device or is deployed on a terminal device.
  • the terminal device may be any of the terminal devices in the aforementioned examples.
  • the reflector 220 can be used for backscatter communication.
  • RFID radio frequency identification
  • the reflector 220 can be a tag in the RFID technology, and further can include passive tags and semi-passive tags.
  • the reflector 220 can be implemented as a terminal device, or the reflector 220 can be deployed on a terminal device, which can be called a terminal of backscatter communication in a passive physical system, and the terminal device can be the terminal device of the aforementioned example. any of them.
  • passive tags or passive backscatter communication terminals have no energy supply equipment/circuit, but only rely on the received excitation signal to obtain energy. For example, through a filter circuit, etc., the DC voltage of the excitation signal is obtained to obtain energy supply, enabling subsequent Demodulation of downlink signals and/or transmission of uplink signals in the uplink.
  • the power consumption of such terminals may be limited to a hundred microwatts ( ⁇ W) or a target power consumption less than 100 ⁇ W.
  • this type of terminal is likely to not have the ability to generate local high-frequency local oscillators, that is, the terminal does not have the ability to generate local carriers corresponding to the transmitted radio frequency.
  • this type of terminal can only demodulate the signal.
  • the signal is demodulated by non-coherent demodulation.
  • the most commonly used non-coherent demodulation method in communication principles is envelope detection, which uses a rectifier diode to achieve self-mixing (also called self-multiplication) of the received high-frequency radio frequency signal.
  • the signal is then passed through a baseband low-pass RC filter to filter out the high-frequency components to obtain an effective baseband modulation signal envelope.
  • the further obtained baseband modulation signal can then be digitally sampled and followed by a signal energy (amplitude) comparator for information analysis. judgment.
  • Amplitude shift keying (ASK) modulation is also called amplitude keying modulation, among which 2ASK is also called on-off keying or on-off keying (OOK).
  • OOK/ASK modulation is an effective modulation method that enables such envelope detection demodulation without the need for local high-frequency local oscillators. It is different from PSK/QAM, which is frequently used in NR, and requires in-phase/quadrature, I /Q) orthogonal modulation method, OOK/ASK has only one modulation. Taking OOK/ASK modulation as an example, the transmitter modulates 0/1 information bits into two signal amplitudes, such as information bits 0 and 1 are modulated into amplitude 0 respectively.
  • OOK/ASK modulation has a common problem. Because there is only one real signal, the spectrum function of the OOK/ASK modulated signal is conjugate symmetrical about the center 0 frequency, and the power spectrum function is symmetrical about the center 0 frequency axis. With OOK For example, the /ASK signal symbol rate is R, and the signal frequency domain main lobe bandwidth is 2R.
  • the transmission OOK/ASK bandwidth is 180kHz
  • the actual effective signal bandwidth is only 90kHz
  • the peak symbol rate is only 1/90kHz ⁇ 11.1 ⁇ s.
  • OFDM orthogonal frequency division multiplexing
  • This transformed I/Q transformed signal is called single sideband signal.
  • the single-sideband signal only retains the upper half or lower half of the double-sideband signal, and the actual bandwidth of the signal is also R.
  • the spectrum efficiency is increased to 100%.
  • up to 12 OOK/ASK symbols can be carried, and the symbol rate is compared to double sideband signals Double the improvement.
  • the receiver For single-sideband signals and double-sideband signals, if the receiver has a high-frequency local oscillator and can perform coherent demodulation, the effective original baseband signal s(t) can be correctly restored.
  • the above-mentioned terminal equipment in passive IoT or backscatter communication can only perform non-coherent envelope detection, so the single sideband signal envelope here and original signal envelope There is distortion between them, so in the non-coherent demodulation envelope detection method, the single sideband signal is introduced The harmonic terms of may make the original The demodulation of the baseband signal s(t) is greatly affected, and the demodulation performance drops significantly.
  • the embodiment of the present application performs window filtering in the frequency domain on the downlink signal to be transmitted, so that the unilateral signal of the downlink signal to be transmitted is closer to the time domain waveform of the OOK/ASK modulated signal, and the OOK/ASK modulated signal is maintained.
  • Single sideband frequency domain characteristics of ASK modulated signal While ensuring the transmission spectrum efficiency of downlink signals, it also improves the transmission performance of downlink signals.
  • the amplitude shift keying modulation may include OOK modulation or ASK modulation.
  • OOK modulation or ASK modulation.
  • ASK modulation the present application will be described below by taking OOK/ASK modulation as an example.
  • the first, second and various numerical numbers are only for convenience of description and are not used to limit the scope of the embodiments of the present application. For example, distinguish between different signals, modulation symbols, etc.
  • predefinition can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in the device (for example, including the first device and the second device).
  • This application is for its specific implementation. The method is not limited.
  • Preconfiguration can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in the device (for example, including the first device and the second device), or it can also be pre-configured through signaling, such as network
  • the device is implemented through signaling pre-configuration, etc. This application does not limit its specific implementation.
  • the “protocol” involved in the embodiments of this application may refer to standard protocols in the communication field, which may include, for example, the 3rd generation partnership project (3GPP) LTE protocol, NR protocol, and future protocols. This application does not limit the relevant protocols in the communication system.
  • 3GPP 3rd generation partnership project
  • “at least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the first device may be, for example, the above-mentioned reflector (such as reflector 220), or a terminal device equipped with a reflector;
  • the second device may be the above-mentioned exciter (such as exciter 210), or a terminal device equipped with an exciter. , or deploy network equipment with exciters.
  • the first device When the first device is a terminal device deployed with an exciter and the second device is a terminal device deployed with a reflector, the first device may be the terminal device 124 in Figure 1 and the second device may be the terminal in Figure 1 Device 125 or 126; when the first device is a network device with a reader deployed, and the second device is a terminal device with a tag deployed, the first device can be the network device 111 in Figure 1, and the second device can be the network device 111 in Figure 1. Any one of the terminal devices 121 to 123 in FIG. 1 , or the first device may be the network device 112 in FIG. 1 , and the second device may be the terminal device 127 or 128 in FIG. 1 .
  • the first device shown in the following embodiments can also be replaced with components in the first device, such as a chip, a chip system, or other functional modules capable of calling and executing a program.
  • the second device can also be replaced with components in the second device, such as a chip, a chip system, or other functional modules capable of calling and executing a program.
  • Figure 4 is a schematic interaction flow diagram of a communication method 300 provided by an embodiment of the present application. As shown in FIG. 4 , the method 300 may include part or all of S310 to S330. Each step in method 300 is described in detail below.
  • the first device performs window processing on the frequency domain signal of the first signal through the window signal to obtain the first frequency domain signal.
  • the first signal is an OFDM signal carrying M amplitude shift keying modulation symbols, where M is a positive Integer;
  • the second frequency domain signal is the frequency domain signal mapped by the first frequency domain signal in the first frequency domain resource, and the first frequency domain resource is the upper half or the lower half of the frequency domain resource occupied by the first frequency domain signal.
  • the second signal is the time domain signal of the second frequency domain signal, and the second signal is the OFDM signal carrying the M amplitude shift keying modulation symbols;
  • S320 The first device sends a second signal to the second device, and accordingly, the second device receives the second signal sent by the first device;
  • the second device determines the M amplitude shift keying modulation symbols carried in the second signal.
  • the first signal carries M amplitude shift keying modulation symbols (such as OOK/ASK modulation symbols).
  • the OOK/ASK modulation symbols carried in the first signal are ⁇ 111010111010 ⁇ , and the time domain of the first signal
  • the signal is an ideal OOK/ASK signal, where the ideal OOK/ASK signal means that when the modulation symbol is ⁇ 1 ⁇ , the signal value is always A, optionally, A is equal to 1; when the modulation symbol is ⁇ 0 ⁇ , the signal The value is always B, optionally, B equals 0. See Figure 5.
  • the frequency domain signal of the first signal may be obtained by performing time-frequency conversion on the time domain signal of the first signal, where the time-frequency conversion refers to performing M-point discrete Fourier transform (DFT) or fast Fourier transform (fast fourier transform, FFT) transform.
  • DFT discrete Fourier transform
  • FFT fast fourier transform
  • the signal on N RBs (12*N subcarriers) centered on the first subcarrier will be used as the frequency domain signal of the first signal, that is, the first signal
  • the frequency domain resources of a signal occupy N RBs, where N is a positive integer, optionally, N is equal to 1 or 2.
  • the frequency domain signal of the first signal is conjugate symmetrical or modulus symmetrical with respect to the first subcarrier, that is, the frequency domain signal of the first signal exhibits the characteristics of double sidebands (or is said to have symmetrical upper and lower sidebands), so for N is equal to 2.
  • the frequency domain signal of the first signal occupies 24 subcarriers.
  • the frequency domain signal of the first signal is defined as Among them, NULL means that the value of the first subcarrier signal is 0 or it is left blank and does not map the signal, and * means the conjugate transpose of the original signal.
  • the first subcarrier may be the subcarrier where the center frequency point of the first signal is located, that is, the subcarrier mapping the ⁇ s 12 ⁇ signal.
  • the frequency domain subcarriers corresponding to the OOK/ASK modulated signal and the subcarriers of other signals in the NR system are guaranteed to be orthogonal, ensuring that the generated double-sideband OOK/ASK modulated frequency domain signals are orthogonal to other frequency domains in the NR system.
  • M is an integer multiple of 6 or an integer multiple of 12, or it can be understood that M is an integer multiple of the number of subcarriers corresponding to 1/2 RB or an integer multiple of the number of subcarriers corresponding to 1 RB.
  • the first device performs windowing processing on the frequency domain signal of the first signal through the window signal, which can also be called the first device performing windowing filtering on the frequency domain signal of the first signal through the window signal (or it can be called (Frequency domain windowing and frequency domain filtering), so that the single sideband signal of the first frequency domain signal obtained by the windowing process can effectively obtain a time domain waveform that is closer to the first signal.
  • the second frequency domain signal is a single sideband signal of the first frequency domain signal, which may be a signal in the upper half sideband of the first frequency domain signal or a signal in the lower half sideband of the first frequency domain signal.
  • the second frequency domain signal is a frequency domain signal in which the first frequency domain signal is mapped in the first frequency domain resource.
  • the time domain waveform of the second frequency domain signal is close to the time domain waveform of the first signal, where the time domain waveform of the second frequency domain signal is close to the time domain waveform of the first signal can be understood as the second
  • the difference between the peak-to-average power ratio of the high level or low level in the time domain waveform of the signal and the time domain waveform of the first signal is less than a preset value.
  • the preset value is 0.5dB or 1dB, or can be understood as the second signal
  • the difference between the average level value of modulation symbol ⁇ 1 ⁇ or modulation symbol ⁇ 0 ⁇ in the time domain waveform and the average level value of modulation symbol ⁇ 1 ⁇ or modulation symbol ⁇ 0 ⁇ in the time domain waveform of the first signal is less than a preset value , the default value is 0.1 or 0.2. That is, the OOK/ASK modulation symbol carried by the second signal is the same as the amplitude shift keying modulation symbol carried by the first signal, and the amplitude shift keying modulation symbol carried by the second signal and the amplitude shift keying modulation symbol carried by the first signal continue. The time is the same, and the symbol rate of the amplitude shift keying modulation signal is maintained unchanged.
  • the frequency domain resources occupied by the frequency domain signal of the window signal may be greater than or equal to the frequency domain resources occupied by the frequency domain signal of the first signal, or the bandwidth of the frequency domain signal of the window signal may be greater than or equal to the first signal.
  • the bandwidth of the frequency domain signal that is, the frequency domain resource occupied by the frequency domain signal of the window signal is greater than or equal to N RBs
  • the center frequency point of the frequency domain signal of the window signal is the same as the center frequency point of the frequency domain signal of the first signal.
  • the frequency domain resources occupied by the window signal are the same as the frequency domain resources occupied by the first signal, or the frequency domain resources occupied by the first signal are within the frequency domain resources occupied by the window signal.
  • the frequency domain signal used for windowing processing and the frequency domain signal of the first signal should occupy the same frequency domain resources, and the frequency domain resources occupied by the frequency domain signal of the first signal include multiple sub-registers.
  • the carrier is multiplied by the frequency domain signal of the first signal and the frequency domain signal of the window signal mapped on the same subcarrier to obtain the first frequency domain signal.
  • the first device can map the frequency domain signal of the window signal (ie, the third frequency domain signal) and the frequency domain signal of the first signal on the same subcarrier. Multiply to obtain the first frequency domain signal; if the frequency domain resources occupied by the window signal and the first signal are different, for example, the frequency domain resources occupied by the first signal are within the frequency domain resources occupied by the window signal, in order to enable the first device to use
  • the window signal performs windowing processing on the frequency domain signal of the first signal, and a third frequency domain signal can be obtained based on the frequency domain signal of the window signal, for example, a frequency domain signal in which the frequency domain signal of the window signal is mapped in the second frequency domain resource.
  • the second frequency domain resource is the frequency domain resource occupied by the first signal, so that the frequency domain resource occupied by the third frequency domain signal is the same as the frequency domain resource occupied by the first signal, and then the third frequency domain signal is used.
  • the three-frequency domain signal is multiplied by a signal mapped on the same subcarrier as the frequency domain signal of the first signal to obtain the first frequency domain signal.
  • the third frequency domain signal occupies frequency domain resources of 24 subcarriers
  • the third frequency domain signal occupies frequency domain resources of 24 subcarriers
  • the third frequency domain signal is defined as Among them, NULL means that the value of the first subcarrier signal is 0 or it is left blank and does not map the signal, and * means the conjugate transpose of the original signal.
  • the third frequency domain signal may be a frequency domain signal centered on the central subcarrier of the frequency domain signal of the window signal and occupying the same frequency domain resources as the frequency domain signal of the first signal.
  • the first frequency domain resource is the upper half or the lower half of the frequency domain resource occupied by the first frequency domain signal. It means that the first frequency domain signal takes the first subcarrier as the central subcarrier, and the central subcarrier to the frequency domain resource The frequency domain resources included in the starting subcarrier or the frequency domain resources included in the terminating subcarrier from the center subcarrier to the frequency domain resource. Therefore, for N equals 2, the effective subcarriers of the frequency domain resources occupied by the first frequency domain signal are the 1st to 23rd subcarriers, the center subcarrier is the 12th subcarrier, and the first frequency domain resource can be the 1st to 12th subcarriers.
  • the second frequency domain signal is the first frequency domain signal mapped on the first frequency domain resource, that is, the upper sideband or lower sideband frequency domain signal corresponding to the first frequency domain signal.
  • the second frequency domain signal is defined as or
  • the main lobe bandwidth of the frequency domain signal of the window signal is greater than or equal to the bandwidth of the frequency domain signal of the first signal.
  • the above window signal may be a raised cosine roll-off window signal.
  • the raised cosine roll-off window signal is:
  • is the roll-off factor of the raised cosine roll-off window signal, and the value of the roll-off factor is any value greater than 0 and less than 1.
  • the raised cosine roll-off function is a window signal with a higher probability of use in waveform shaping.
  • the raised cosine roll-off window signal is a window signal that is easier to reach a consensus on.
  • the window signal can be a cosine signal cos (2 ⁇ f x t), a sine signal sin (2 ⁇ f x t), a power of the cosine signal cos ⁇ (2 ⁇ f x t), a sine signal A signal composed of at least one of the powers of sin ⁇ (2 ⁇ f x t), or it can be other window signals with arbitrary waveforms.
  • f x is the frequency
  • t is the duration
  • is the power (the power of the sinusoidal signal or the power of the pre-signal) coefficient.
  • the coefficient of the power of the cosine signal may be less than or equal to 1; similarly, when the window signal includes the power of the sine signal, the coefficient of the sine signal
  • the coefficients of powers can be less than or equal to 1.
  • the power coefficient of the sine signal or cosine signal is less than 1, the waveform of the power of the sine signal or cosine signal exhibits flatter characteristics and is closer to the waveform of the ideal OOK/ASK signal.
  • the window signal in order for the window signal to make the time domain waveform of the second signal closer to the time domain waveform of the first signal, the window signal may include at least one first sub-signal associated with the first modulation symbol and At least one second sub-signal associated with the second modulation symbol.
  • the above-mentioned M amplitude shift keying modulation symbols include first modulation symbols and/or second modulation symbols.
  • the first modulation symbol is the high-level symbol of the OOK/ASK modulation symbol or the modulation symbol ⁇ 1 ⁇
  • the second modulation symbol is the low-level symbol of the OOK/ASK modulation symbol or the modulation symbol ⁇ 0 ⁇ .
  • the time domain length of a first sub-signal may correspond to the time domain length of a continuous first modulation symbol among the M amplitude shift keying modulation symbols; the time domain length of a second sub-signal may correspond to The time domain length of a continuous second modulation symbol among M amplitude shift keying modulation symbols.
  • the OOK modulation symbol carried by the first signal is ⁇ 111010111010 ⁇ .
  • the window signal includes the first sub-signal A 1 , A 2 , A 3 , A 4 and the second sub-signals B 1 , B 2 , B 3 , B 4 .
  • the time domain length of the first sub-signal may be the same as the duration length of a continuous first modulation symbol carried in the first signal.
  • the time domain length of the first sub-signal A 1 is the same as the duration of a period of three consecutive first modulation symbols ⁇ 111 ⁇ carried in the first signal
  • the time domain length of the first sub-signal A 2 is the same as
  • the duration length of the next consecutive first modulation symbol ⁇ 1 ⁇ carried in the first signal is the same, and the corresponding relationship between the time domain length of the remaining first sub-signals and the duration length of the first modulation symbol is similar to this.
  • the time domain length of the second sub-signal may be the same as the duration length of a continuous second modulation symbol carried in the first signal.
  • the time domain length of the second sub-signal B 1 is the same as the duration length of a continuous second modulation symbol ⁇ 0 ⁇ carried in the first signal
  • the time domain length of the second sub-signal B 2 is the same as the duration of the first sub-signal B 2 .
  • One end of the signal carried is continuous
  • the duration length of the second modulation symbol ⁇ 0 ⁇ is the same, and the corresponding relationship between the time domain length of the remaining second sub-signals and the duration length of the second modulation symbol is similar to this and will not be described again.
  • the second sub-signal in the window signal and the second modulation symbol also have the above-mentioned time domain correlation relationship; or the window
  • the first sub-signal in the signal has the above-mentioned time domain correlation relationship with the first modulation symbol
  • the time domain length of the second sub-signal may be independent of the second modulation symbol.
  • the time domain length of the second sub-signal may be a preset value; or
  • the second sub-signal in the window signal has the above-mentioned time domain correlation with the second modulation symbol.
  • the time domain length of the first sub-signal may be independent of the first modulation symbol.
  • the time domain length of the first sub-signal may be a preset value.
  • the frequency of the first sub-signal may be associated with the number of a continuous first modulation symbol carried in the first signal.
  • the greater the number of a continuous first modulation symbol carried in the first signal the smaller the frequency component contained in the first sub-signal corresponding to the continuous first modulation symbol.
  • the smaller the number of consecutive first modulation symbols the greater the frequency component contained in the first sub-signal corresponding to the segment of consecutive first modulation symbols.
  • the frequency component contained in the first sub-signal is the same as that carried in the first signal. is inversely proportional to the number of consecutive first modulation symbols or the duration of a continuous first modulation symbol.
  • the first sub-signal is composed of the cosine signal cos(2 ⁇ f x t), the sine signal sin(2 ⁇ f x t), the power of the cosine signal cos ⁇ (2 ⁇ f x t), and the power of the sine signal sin ⁇ (2 ⁇ f x t), wherein f x is inversely proportional to the duration of the consecutive first modulation symbol.
  • the frequency of the first sub-signal may be equal to the reciprocal of the duration of a continuous first modulation symbol carried in the first signal.
  • the frequency of the second sub-signal may be associated with the number of a continuous second modulation symbol carried in the first signal, for example, a continuous second modulation symbol carried in the first signal.
  • the frequency component contained in the second sub-signal corresponding to a continuous second modulation symbol is larger.
  • the frequency component contained in the second sub-signal is inversely proportional to the number of a continuous second modulation symbol carried in the first signal.
  • the second sub-signal is composed of the cosine signal cos(2 ⁇ f x t), the sine signal sin(2 ⁇ f x t), the power of the cosine signal cos ⁇ (2 ⁇ f x t), and the power of the sine signal sin ⁇ (2 ⁇ f x t), wherein f x is inversely proportional to the duration of the consecutive first modulation symbol.
  • the frequency of the second sub-signal may be equal to the reciprocal of the duration of a continuous second modulation symbol carried in the first signal.
  • the frequency of the first sub-signal in the window signal and the consecutive number of first modulation symbols have the above-mentioned correlation
  • the frequency of the second sub-signal in the window signal and the consecutive number of second modulation symbols also have The above-mentioned correlation relationship; or the frequency of the first sub-signal in the window signal has the above-mentioned correlation relationship with the consecutive number of first modulation symbols, and the frequency of the second sub-signal in the window signal has nothing to do with the consecutive number of second modulation symbols
  • the frequency of the second sub-signal can be a preset value; or the frequency of the second sub-signal in the window signal has the above-mentioned correlation with the consecutive number of second modulation symbols, and the frequency of the first sub-signal in the window signal has the same relationship as the first The consecutive number of modulation symbols is irrelevant.
  • the frequency of the first sub-signal may be a preset value.
  • the OOK modulation symbol carried by the first signal is ⁇ 111010111010 ⁇
  • the OOK modulation symbol duration is 66.7 ⁇ s/12
  • the window signal includes the first sub-signal A 1 , the second sub-signal B 1 , and the first sub-signal in sequence.
  • the duration of the first sub-signal A 1 is the same as the duration of three consecutive first modulation symbols ⁇ 111 ⁇ , which is 3*66.7/12 ⁇ 16.7 ⁇ s.
  • the frequency component contained in the first sub-signal A 1 is 2/16.7us ⁇ 120kHz, where the first sub-signal is a double-sideband signal.
  • the frequency component contained in the first sub-signal is located at Subcarrier No. 8 and subcarrier No. -8, where the center subcarrier is defined as subcarrier No. 0.
  • the frequencies of the remaining sub-signals in the window signal are similar to this and will not be described again.
  • the first sub-signal and the second sub-signal when the first sub-signal and the second sub-signal have the same time domain length, the first sub-signal and the second sub-signal are also different, and the difference between the first sub-signal and the second sub-signal can be Reflected in the difference in signal function.
  • the first sub-signal can be expressed as
  • the second sub-signal can be expressed as Among them, ⁇ is the coefficient of the power of the sine function, f x is the frequency of the sub-signal (such as any first sub-signal or any second sub-signal), t is the sub-signal (such as any first sub-signal or any second sub-signal) The time domain length of any second sub-signal)
  • the first first sub-signal is expressed as in T OOK is the duration of the OOK modulation symbol; the first second sub-signal is expressed as in The second first sub-signal is expressed as in And so on.
  • the time window signal can be as shown in Figure 7b.
  • the frequency domain signal of the window signal can be seen in Figure 7c.
  • the duration of 12 OOK modulation symbols is equal to the duration of 1 OFDM symbol.
  • the window signal may be a signal composed of at least one of a cosine signal, a sine signal, a power of a cosine signal, and a power of a sine signal
  • the window signal may include at least one first sub-signal and /or at least a second sub-signal.
  • any of the above sub-signals, such as the first sub-signal or the second sub-signal may include at least one of a cosine signal, a sine signal, a power of a cosine signal, and a power of a sine signal.
  • the second frequency domain signal is a single sideband signal of the first frequency domain signal.
  • the frequency domain resources occupied by the first frequency domain signal are N RBs (that is, 12N subcarriers).
  • N the bandwidth occupied by the first frequency domain signal is 24 subcarriers.
  • the frequency domain signal value mapped on the first subcarrier of the first frequency domain signal is 0, where the first subcarrier is defined as subcarrier #0.
  • the value of subcarrier #0 of the first frequency domain signal is always 0, that is, the actual effective subcarriers occupied by the first frequency domain signal are subcarriers #1 to #12N-1, a total of 12N-1 subcarriers.
  • the second frequency domain signal is the frequency domain signal mapped on the 2nd to 13th subcarriers in the first frequency domain signal, that is, on subcarriers #1 ⁇ #12N/2 (low side-band (LSB))
  • the mapped frequency domain signal; or the second frequency domain signal is the frequency domain signal mapped on the 13th subcarrier to the 24th subcarrier in the first frequency domain signal, that is, the mapped frequency domain signal on subcarriers #12N/2 ⁇ #12N-1 Frequency domain signal.
  • the first device may perform frequency-to-time (or frequency-to-time) transformation on the second frequency domain signal, that is, inverse discrete Fourier transform (IDFT) or fast Perform inverse fast fourier transform (IFFT) to obtain the second signal in the corresponding time domain, and send the second signal to the second device.
  • IDFT inverse discrete Fourier transform
  • IFFT fast Perform inverse fast fourier transform
  • the amplitude shift keying modulation symbol carried by the second signal is the same as the amplitude shift keying modulation symbol carried by the first signal
  • the duration of the amplitude shift keying modulation symbol carried by the second signal is the same as that of the first signal.
  • the amplitude shift keying modulation symbols carried have the same duration.
  • the OOK modulation symbol carried by the first signal is ⁇ 111010111010 ⁇
  • the OOK modulation symbol carried by the second signal is also ⁇ 111010111010 ⁇
  • the time domain waveform of the second signal is as shown in Figure 9.
  • the amplitude shift keying modulation symbols carried by the second signal and the first signal are the same.
  • the duration of the OOK modulation symbols carried by the two signals is the same.
  • the duration of the OOK modulation symbol carried by the first signal shown in Figure 5 and the second signal shown in Figure 9 is both 1/12 of the duration of the 1OFDM signal.
  • the OFDM subcarrier spacing is 15kHz
  • the OOK modulation Symbol duration is 66.7us/12.
  • the second device receives the second signal, and the second signal is the single sideband signal of the first signal. Therefore, the second When the device receives the second signal without adding additional processing, the M amplitude shift keying modulation symbols carried in the first signal are determined to avoid increasing the implementation complexity of the receiving end of the second device, thereby avoiding increasing the number of the second device receiving the second signal. Power consumption for two signals.
  • the embodiment of the present application performs windowing processing on the frequency domain signal of the first signal through the window signal, so that the time domain waveform of the single sideband signal (that is, the second signal) of the windowed first frequency domain signal is closer to
  • the time domain waveform of the first signal maintains the characteristic that the transmission spectrum efficiency of the single-sideband amplitude shift modulation signal is increased to 100%. Furthermore, while improving the transmission spectrum efficiency of downlink signals, it also ensures the transmission performance of downlink signals and avoids additional implementation complexity and power consumption of the receiving end.
  • Figure 10 is a schematic block diagram of a device provided by an embodiment of the present application.
  • the device 500 may include: a transceiver unit 510 and a processing unit 520.
  • the communication device 500 may correspond to the first device in the above method embodiment, for example, it may be the first device, or may be configured with a component in the first device (eg, a chip or a chip system, etc.).
  • each unit in the communication device 500 is respectively intended to implement the corresponding processes of each method in the foregoing embodiments.
  • the processing unit 520 is used to perform windowing processing on the frequency domain signal of the first signal through the window signal to obtain the first frequency domain signal.
  • the first signal is an orthogonal frequency division signal carrying M amplitude shift keying modulation symbols. Multiplexing OFDM signals, where M is a positive integer; the second frequency domain signal is the frequency domain signal mapped by the first frequency domain signal in the first frequency domain resource, and the first frequency domain resource is occupied by the first frequency domain signal The upper half or the lower half of the frequency domain resource, the second signal is the time domain signal of the second frequency domain signal, and the second signal is the OFDM signal carrying the M amplitude shift keying modulation symbols; the transceiver unit 510 , used to send the second signal.
  • the communication device 500 may correspond to the second device in the above method embodiment, for example, it may be the second device, or may be configured with a component in the second device (eg, a chip or a chip system, etc.).
  • each module in the communication device 500 is respectively intended to implement the corresponding processes of each method in the foregoing embodiments.
  • the transceiver unit 510 is used to receive a second signal.
  • the second signal is an OFDM signal carrying M amplitude shift keying modulation symbols.
  • the second signal is a time domain signal of the second frequency domain signal.
  • the second frequency domain signal is an OFDM signal.
  • the first frequency domain signal is a frequency domain signal mapped in a first frequency domain resource, and the first frequency domain resource is the upper half or the lower half of the frequency domain resource occupied by the first frequency domain signal.
  • a frequency domain signal is a frequency domain signal obtained by windowing the first signal through a window signal, and the first signal is an OFDM signal carrying M amplitude shift keying modulation symbols; the processing unit 520 is used to determine the second signal. Carrying M amplitude shift keying modulation symbols.
  • the transceiver unit 510 in the device 500 can be implemented by a transceiver, for example, it can correspond to the transceiver 610 in the device 600 shown in Figure 11.
  • the processing unit 520 may be implemented by at least one processor, for example, may correspond to the processor 620 in the device 600 shown in FIG. 11 .
  • the transceiver unit 510 in the device 500 can be implemented through an input/output interface, a circuit, etc., in the device 500
  • the processing unit 520 can be implemented by a processor, microprocessor or integrated circuit integrated on the chip or chip system.
  • Figure 11 is another schematic block diagram of a device provided by an embodiment of the present application.
  • the device 600 may include: a transceiver 610, a processor 620 and a memory 630.
  • the transceiver 610, the processor 620 and the memory 630 communicate with each other through internal connection paths.
  • the memory 630 is used to store instructions
  • the processor 620 is used to execute the instructions stored in the memory 630 to control the transceiver 610 to send signals and /or receive a signal.
  • the device 600 may correspond to the first device or the second device in the above method embodiment, and may be used to perform various steps and/or processes performed by the first device or the second device in the above method embodiment.
  • the memory 630 may include read-only memory and random access memory and provide instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory 630 can be a separate device or integrated into the processor 620 .
  • the processor 620 may be configured to execute instructions stored in the memory 630, and when the processor 620 executes the instructions stored in the memory, the processor 620 is configured to execute the above method embodiment corresponding to the first device or the second device. various steps and/or processes.
  • the device 600 is the first device in the previous embodiment.
  • the device 600 is the second device in the previous embodiment.
  • the transceiver 610 may include a transmitter and a receiver.
  • the transceiver 610 may further include an antenna, the number of antennas being The quantity can be one or more.
  • the processor 620, the memory 630 and the transceiver 610 may be devices integrated on different chips.
  • the processor 620 and the memory 630 can be integrated in a baseband chip, and the transceiver 610 can be integrated in a radio frequency chip.
  • the processor 620, the memory 630 and the transceiver 610 may also be devices integrated on the same chip. This application does not limit this.
  • the device 600 is a component configured in the first device, such as a chip, a chip system, etc.
  • the device 600 is a component configured in the second device, such as a chip, a chip system, etc.
  • the transceiver 620 may also be a communication interface, such as an input/output interface, a circuit, etc.
  • the transceiver 620, the processor 610 and the memory 630 can be integrated in the same chip, such as a baseband chip.
  • This application also provides a processing device, including at least one processor, the at least one processor being used to execute a computer program stored in the memory, so that the processing device executes the first device or the second device in the above method embodiment. method of execution.
  • An embodiment of the present application also provides a processing device, including a processor and an input and output interface.
  • the input and output interface is coupled to the processor.
  • the input and output interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the processor is used to execute a computer program, so that the processing device executes the method executed by the first device or the second device in the above method embodiment.
  • An embodiment of the present application also provides a processing device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the processing device executes the method executed by the first device or the second device in the above method embodiment.
  • the processing device may be one or more chips.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC), or It can be a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller unit , MCU), it can also be a programmable logic device (PLD) or other integrated chip.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processing circuit
  • MCU microcontroller unit
  • PLD programmable logic device
  • each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • the non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM Enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product.
  • the computer program product includes: computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute the first step in the above method embodiment. A method performed by one device or a second device.
  • the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores program code.
  • the program code When the program code is run on a computer, it causes the computer to execute the above method embodiment.
  • the present application also provides a communication system, which may include the aforementioned first device and second device.
  • a component may be, but is not limited to, a process, a processor, an object, an executable file, a thread of execution, a program and/or a computer running on a processor.
  • applications running on the computing device and the computing device may be components.
  • One or more components can reside in a process and/or thread of execution and a component can be localized on one computer and/or distributed between 2 or more computers. Additionally, these components can execute from various computer-readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component, a local system, a distributed system, and/or a network, such as the Internet, which interacts with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component, a local system, a distributed system, and/or a network, such as the Internet, which interacts with other systems via signals
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, indirect coupling or communication connection of devices or modules, and may be in electrical, mechanical or other forms.
  • modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical modules, that is, they may be located in one place, or they may be distributed to multiple network modules. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application can be integrated into a processing unit, or each module can exist physically alone, or two or more modules can be integrated into one module.
  • the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium and includes a number of instructions to enable a A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请提供一种通信方法、装置、设备以及存储介质。该方法包括:通过窗信号对第一信号的频域信号进行加窗处理,得到第一频域信号,该第一信号为承载M个幅移键控调制符号的OFDM信号,其中M为正整数,第二频域信号为该第一频域信号在第一频域资源中映射的频域信号,该第一频域资源为该第一频域信号占用的频域资源的上半部分或者下半部分,第二信号为该第二频域信号的时域信号,该第二信号为承载该M个幅移键控调制符号的OFDM信号,并发送该第二信号。以期提高反向散射通信中幅移键控调制信号的有效的频谱效率。

Description

通信方法、装置、设备以及存储介质
本申请要求于2022年08月12日提交中国专利局、申请号为202210970268.2、申请名称为“通信方法、装置、设备以及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、装置、设备以及存储介质。
背景技术
随着机器型通信(machine-type communication,MTC)和物联(internet of things,IoT)通信的广泛应用,越来越多的IoT设备已经部署在人们的生活中。通过在有些通信系统中,如第五代移动通信系统(5th generation wireless system,5G)或者5.5G通信系统中,为了降低IoT设备的功耗,使其更便于被携带,将IoT设备实现为基于反向散射通信的终端。
反向散射通信的终端常使能于幅移键控调制信号(例如OOK或ASK调制),而幅移键控调制信号为一种双边带调制信号,其有效的频谱效率较低。然而,对于如何提高反向散射通信中的幅移键控调制信号的有效的频谱效率是当前亟待解决的问题。
发明内容
本申请实施例提供的一种通信方法、装置、设备以及存储介质,以期提高反向散射通信中幅移键控调制信号的有效的频谱效率。
第一方面,本申请实施例提供一种通信方法,该方法包括:通过窗信号对第一信号的频域信号进行加窗处理,得到第一频域信号,该第一信号为承载M个幅移键控调制符号的正交频分复用OFDM信号,其中M为正整数;第二频域信号为该第一频域信号在第一频域资源中映射的频域信号,该第一频域资源为该第一频域信号占用的频域资源的上半部分或者下半部分,第二信号为该第二频域信号的时域信号,该第二信号为承载该M个幅移键控调制符号的OFDM信号;发送该第二信号。
通过第一方面提供的通信方法,通过窗信号对第一信号的频域信号进行加窗处理,使加窗得到的第一信号的频域单边带信号,也即第二信号的时域波形更接近双边带的第一信号的时域波形,且维持了单边带幅移调制信号的传输频谱效率提升至100%的特性。进而,在保证和OFDM系统子载波正交的准则下,既提升下行信号的传输频谱效率,也保证了下行信号的传输性能,另外避免额外增加接收端的实现复杂度和功耗。
在一种可能的实施方式中,该通过窗信号对第一信号的频域信号进行加窗处理,得到第一频域信号,包括:第三频域信号为该窗信号的频域信号在第二频域资源中映射的频域信号,该第二频域资源与该第一信号的频域信号占用的频域资源相同,该窗信号的频域信号占用的频域资源大于或等于该第一信号的频域信号占用的频域资源;该第一信号的频域信号与该第三频域信号在同一子载波上映射的信号相乘,得到该第一频域信号。
通过该实施方式提供的通信方法,第三频域信号占用的频域资源和第一信号的频域信号占用的频域资源相同,此种情况下,无论窗信号的频域信号占用的频域资源大于还是等于第一信号的频域信号占的频域资源,实现基于窗信号对第一信号的加窗处理,提高了加窗处理的有效性。对第一信号的加窗处理可以有效的对第一信号的时域波形进行波形成型,使得后续单边带信号第二信号的时域波形和第一信号的时域波形接近,提升下行信号的传输性能。
在一种可能的实施方式中,该窗信号包括至少一个第一子信号和/或至少一个第二子信号;该第一子信号的时域长度与该第一信号中承载的一段连续的第一调制符号的持续时间长度相同;和/或,该第二子信号的时域长度与该第一信号中承载的一段连续的第二调制符号的持续时间长度相同;其中,该M个幅移键控调制符号包括该第一调制符号和/或该第二调制符号。
通过该实施方式提供的通信方法,基于连续的调制符号长度分段加不同的窗信号,使得后续基于窗信号进行加窗处理得到的第二信号的时域波形更加接近第一信号的时域波形,进一步提升下行信号的传输性能。
在一种可能的实施方式中,该窗信号包括至少一个第一子信号和/或至少一个第二子信号;该第一子信号的频率与该第一信号中承载的一段连续的第一调制符号的个数关联;和/或,该第二子信号的频率与该第一信号中承载的一段连续的第二调制符号的个数关联。
通过该实施方式提供的通信方法,确定窗信号包括的频率分量的关联范围,初步有效的定义具体的窗信号,使得基于窗信号进行加窗处理后得到的第二信号的时域波形更接近第一信号的时域波形。
在一种可能的实施方式中,该第一子信号的频率与该第一信号中承载的一段连续的第一调制符号的个数成反比例;和/或,该第二子信号的频率与该第一信号中承载的一段连续的第二调制符号的个数成反比例。
通过该实施方式提供的通信方法,确定窗信号对应频率的具体的关联关系,使得基于窗信号进行加窗处理得到的第二信号的时域波形更接近第一信号的时域波形。
在一种可能的实施方式中,该第一子信号的频率等于该第一信号中承载的一段连续的第一调制符号的持续时间的倒数;和/或,该第二子信号的频率等于该第一信号中承载的一段连续的第二调制符号的持续时间的倒数。
通过该实施方式提供的通信方法,进一步确定窗信号包括的频率分量,有效的定义和获取窗信号的特征,使得基于窗信号进行加窗处理得到的第二信号的时域波形更接近第一信号的时域波形。
可选的,该窗信号的任一子信号包括以下至少之一:余弦信号;正弦信号;余弦信号的幂次方;正弦信号的幂次方。
在一种可能的实施方式中,窗信号的任一子信号包括一下至少之一:余弦信号的幂次方;正弦信号的幂次方;该余弦信号的幂次方的系数和该正弦信号的幂次方的系数中的至少一个小于或等于1。
通过该实施方式提供的通信方法,在正弦信号或者余弦信号的幂次方系数小于或等于1时,正弦信号或者余弦信号幂次方的波形具有平坦的特性,并且,幂次方系数越小,正弦信号或者余弦信号幂次方的波形呈现更加平坦的特性,有效的定义和获取有效的窗信号,更接近于理想的OOK/ASK信号的波形。
在一种可能的实施方式中,该窗信号为升余弦滚降窗信号。
通过该实施方式提供的通信方法,升余弦滚降函数是波形成型的使用概率较高的窗信号,也即一种较容易达成共识的窗信号。使用升余弦滚降窗信号对第一信号进行加窗处理以得到第二信号,也可以得到更接近于第一信号的时域波形的第一信号的时域波形。
第二方面,本申请实施例提供一种通信方法,该方法包括:接收第二信号,该第二信号为承载M个幅移键控调制符号的OFDM信号,第二信号为该第二频域信号的时域信号,该第二频域信号为第一频域信号在第一频域资源中映射的频域信号,该第一频域资源为该第一频域信号占用的频域资源的上半部分或者下半部分,该第一频域信号为通过窗信号对第一信号进行加窗处理后的频域信号,第一信号为承载M个幅移键控调制符号的OFDM信号;确定第二信号中承载的M个幅移键控调制符号。
在一种可能的实施方式中,第三频域信号为该窗信号的频域信号在第二频域资源中映射的频域信号,该第二频域资源与该第一信号的频域信号占用的频域资源相同,该窗信号的频域信号占用的频域资源大于或等于该第一信号的频域信号占用的频域资源,该第一信号的频域信号与该第三频域信号在同一子载波上映射的信号相乘得到的信号等于该第一频域信号在该同一子载波上的信号。
在一种可能的实施方式中,该窗信号包括至少一个第一子信号和/或至少一个第二子信号;该第一子信号的时域长度与该第一信号中承载的一段连续的第一调制符号的持续时间长度相同;和/或,该第二子信号的时域长度与该第一信号中承载的一段连续的第二调制符号的持续时间长度相 同;其中,该M个幅移键控调制符号包括该第一调制符号和/或该第二调制符号。
在一种可能的实施方式中,该窗信号包括至少一个第一子信号和/或至少一个第二子信号;该第一子信号的频率与该第一信号中承载的一段连续的第一调制符号的个数关联;和/或,该第二子信号的频率与该第一信号中承载的一段连续的第二调制符号的个数关联。
在一种可能的实施方式中,该第一子信号的频率与该第一信号中承载的一段连续的第一调制符号的个数成反比例;和/或,该第二子信号的频率与该第一信号中承载的一段连续的第二调制符号的个数成反比例。
在一种可能的实施方式中,该第一子信号的频率等于该第一信号中承载的一段连续的第一调制符号的持续时间的倒数;和/或,该第二子信号的频率等于该第一信号中承载的一段连续的第二调制符号的持续时间的倒数。
在一种可能的实施方式中,该窗信号的任一子信号包括以下至少之一:余弦信号;正弦信号;余弦信号的幂次方;正弦信号的幂次方。
在一种可能的实施方式中,窗信号的任一子信号包括一下至少之一:余弦信号的幂次方;正弦信号的幂次方;该余弦信号的幂次方的系数和该正弦信号的幂次方的系数中的至少一个小于或等于1。
在一种可能的实施方式中,该窗信号为升余弦滚降窗信号。
上述第二方面以及上述第二方面的各可能的实施方式所提供的通信方法,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第三方面,本申请实施例提供一种通信方法,该方法包括:第一设备通过窗信号对第一信号的频域信号进行加窗处理,得到第一频域信号,该第一信号为承载M个幅移键控调制符号的OFDM信号,其中M为正整数;第二频域信号为该第一频域信号在第一频域资源中映射的频域信号,该第一频域资源为该第一频域信号占用的频域资源的上半部分或者下半部分,第二信号为该第二频域信号的时域信号,该第二信号为承载该M个幅移键控调制符号的OFDM信号;该第一设备向第二设备发送该第二信号;该第二设备确定第二信号中承载的M个幅移键控调制符号。
在一种可能的实施方式中,该第一设备通过窗信号对第一信号的频域信号进行加窗处理,得到第一频域信号,包括:第三频域信号为该窗信号的频域信号在第二频域资源中映射的频域信号,该第二频域资源与该第一信号的频域信号占用的频域资源相同,该窗信号的频域信号占用的频域资源大于或等于该第一信号的频域信号占用的频域资源;该第一信号的频域信号与该第三频域信号在同一子载波上映射的信号相乘,得到该第一频域信号。
在一种可能的实施方式中,该窗信号包括至少一个第一子信号和/或至少一个第二子信号;该第一子信号的时域长度与该第一信号中承载的一段连续的第一调制符号的持续时间长度相同;和/或,该第二子信号的时域长度与该第一信号中承载的一段连续的第二调制符号的持续时间长度相同;其中,该M个幅移键控调制符号包括该第一调制符号和/或该第二调制符号。
在一种可能的实施方式中,该窗信号包括至少一个第一子信号和/或至少一个第二子信号;该第一子信号的频率与该第一信号中承载的一段连续的第一调制符号的个数关联;和/或,该第二子信号的频率与该第一信号中承载的一段连续的第二调制符号的个数关联。
在一种可能的实施方式中,该第一子信号的频率与该第一信号中承载的一段连续的第一调制符号的个数成反比例;和/或,该第二子信号的频率与该第一信号中承载的一段连续的第二调制符号的个数成反比例。
在一种可能的实施方式中,该窗信号的任一子信号包括以下至少之一:余弦信号;正弦信号;余弦信号的幂次方;正弦信号的幂次方。
在一种可能的实施方式中,窗信号的任一子信号包括一下至少之一:余弦信号的幂次方;正弦信号的幂次方;该余弦信号的幂次方的系数和该正弦信号的幂次方的系数中的至少一个小于或等于1。
上述第三方面以及上述第三方面的各可能的实施方式所提供的通信方法,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第四方面,本申请实施例提供一种通信装置,包括:处理单元,用于通过窗信号对第一信号 的频域信号进行加窗处理,得到第一频域信号,该第一信号为承载M个幅移键控调制符号的正交频分复用OFDM信号,其中M为正整数;第二频域信号为该第一频域信号在第一频域资源中映射的频域信号,该第一频域资源为该第一频域信号占用的频域资源的上半部分或者下半部分,第二信号为该第二频域信号的时域信号,该第二信号为承载该M个幅移键控调制符号的OFDM信号;收发单元,用于发送该第二信号。
在一种可能的实施方式中,该处理单元具体用于:第三频域信号为该窗信号的频域信号在第二频域资源中映射的频域信号,该第二频域资源与该第一信号的频域信号占用的频域资源相同,该窗信号的频域信号占用的频域资源大于或等于该第一信号的频域信号占用的频域资源;该第一信号的频域信号与该第三频域信号在同一子载波上映射的信号相乘,得到该第一频域信号。
在一种可能的实施方式中,该窗信号包括至少一个第一子信号和/或至少一个第二子信号;该第一子信号的时域长度与该第一信号中承载的一段连续的第一调制符号的持续时间长度相同;和/或,该第二子信号的时域长度与该第一信号中承载的一段连续的第二调制符号的持续时间长度相同;其中,该M个幅移键控调制符号包括该第一调制符号和/或该第二调制符号。
在一种可能的实施方式中,该窗信号包括至少一个第一子信号和/或至少一个第二子信号;该第一子信号的频率与该第一信号中承载的一段连续的第一调制符号的个数关联;和/或,该第二子信号的频率与该第一信号中承载的一段连续的第二调制符号的个数关联。
在一种可能的实施方式中,该第一子信号的频率与该第一信号中承载的一段连续的第一调制符号的个数成反比例;和/或,该第二子信号的频率与该第一信号中承载的一段连续的第二调制符号的个数成反比例。
在一种可能的实施方式中,该第一子信号的频率等于该第一信号中承载的一段连续的第一调制符号的持续时间的倒数;和/或,该第二子信号的频率等于该第一信号中承载的一段连续的第二调制符号的持续时间的倒数。
在一种可能的实施方式中,该第一子信号和该第二子信号时域长度相同的情况下,该第一子信号和该第二子信号不同。
在一种可能的实施方式中,该窗信号的任一子信号包括以下至少之一:
余弦信号;
正弦信号;
余弦信号的幂次方;
正弦信号的幂次方。
在一种可能的实施方式中,窗信号的任一子信号包括一下至少之一:
余弦信号的幂次方;
正弦信号的幂次方;
该余弦信号的幂次方的系数和该正弦信号的幂次方的系数中的至少一个小于或等于1。
在一种可能的实施方式中,该窗信号为升余弦滚降窗信号。
上述第四方面以及上述第四方面的各可能的实施方式所提供的通信装置,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第五方面,本申请实施例提供一种通信装置,包括:收发单元,用于接收第二信号,该第二信号为承载M个幅移键控调制符号的OFDM信号,第二信号为该第二频域信号的时域信号,该第二频域信号为第一频域信号在第一频域资源中映射的频域信号,该第一频域资源为该第一频域信号占用的频域资源的上半部分或者下半部分,该第一频域信号为通过窗信号对第一信号进行加窗处理后的频域信号,第一信号为承载M个幅移键控调制符号的OFDM信号;处理单元,用于确定第二信号中承载的M个幅移键控调制符号。
在一种可能的实施方式中,第三频域信号为该窗信号的频域信号在第二频域资源中映射的频域信号,该第二频域资源与该第一信号的频域信号占用的频域资源相同,该窗信号的频域信号占用的频域资源大于或等于该第一信号的频域信号占用的频域资源,该第一信号的频域信号与该第三频域信号在同一子载波上映射的信号相乘得到的信号等于该第一频域信号在该同一子载波上的信号。
在一种可能的实施方式中,该窗信号包括至少一个第一子信号和/或至少一个第二子信号;该第一子信号的时域长度与该第一信号中承载的一段连续的第一调制符号的持续时间长度相同;和/或,该第二子信号的时域长度与该第一信号中承载的一段连续的第二调制符号的持续时间长度相同;其中,该M个幅移键控调制符号包括该第一调制符号和/或该第二调制符号。
在一种可能的实施方式中,该窗信号包括至少一个第一子信号和/或至少一个第二子信号;该第一子信号的频率与该第一信号中承载的一段连续的第一调制符号的个数关联;和/或,该第二子信号的频率与该第一信号中承载的一段连续的第二调制符号的个数关联。
在一种可能的实施方式中,该第一子信号的频率与该第一信号中承载的一段连续的第一调制符号的个数成反比例;和/或,该第二子信号的频率与该第一信号中承载的一段连续的第二调制符号的个数成反比例。
在一种可能的实施方式中,该第一子信号的频率等于该第一信号中承载的一段连续的第一调制符号的持续时间的倒数;和/或,该第二子信号的频率等于该第一信号中承载的一段连续的第二调制符号的持续时间的倒数。
在一种可能的实施方式中,该窗信号的任一子信号包括以下至少之一:
余弦信号;
正弦信号;
余弦信号的幂次方;
正弦信号的幂次方。
在一种可能的实施方式中,窗信号的任一子信号包括一下至少之一:
余弦信号的幂次方;
正弦信号的幂次方;
该余弦信号的幂次方的系数和该正弦信号的幂次方的系数中的至少一个小于或等于1。
在一种可能的实施方式中,该窗信号为升余弦滚降窗信号。
上述第五方面以及上述第五方面的各可能的实施方式所提供的通信装置,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第六方面,本申请实施例提供一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行如第一方面、第二方面或各可能的实现方式中的方法。
第七方面,本申请实施例提供一种通信系统,包括:第一设备和第二设备;该第一设备用于实现第一方面或各可能的实现方式中的方法,该第二设备用于实现第二方面或各可能的实现方式中的方法。
第八方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机指令,使得安装有该芯片的设备执行如第一方面、第二方面或各可能的实现方式中的方法。
第九方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序指令,该计算机程序使得计算机执行如第一方面、第二方面或各可能的实现方式中的方法。
第十方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如第一方面、第二方面或各可能的实现方式中的方法。
附图说明
图1示出了适用于本申请实施例的通信方法的通信系统的示意图;
图2为本申请实施例提供的一种无源物联系统的结构示意图;
图3为本申请实施例提供的一种幅移键控调制的带宽示意图;
图4为本申请实施例提供的一种通信方法的示意性交互流程示意图;
图5为本申请实施例提供的一种幅移键控信号的时域波形示意图;
图6为本申请实施例提供的另一种幅移键控信号的时域波形示意图;
图7a为本申请实施例提供的一种窗信号的时域波形示意图;
图7b为本申请实施例提供的另一种窗信号的时域波形示意图;
图7c为本申请实施例提供的一种窗信号的频域信号的示意图;
图8为本申请实施例提供的一种双边带频域信号的示意图;
图9为本申请实施例提供的一种单边带信号的时域波形示意图;
图10是本申请实施例提供的装置的示意性框图;
图11是本申请实施例提供的装置的另一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请提供的通信方法可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新空口(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
在一些实施例中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(selfdriving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也 可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。在一些实施例中,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。在一些实施例中,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
应理解,本申请对于网络设备和终端设备的具体形式均不做限定。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例的通信方法的通信系统的示意图。如图1所示,通信系统100可以包括网络设备和终端设备,网络设备和终端设备的数量均可以是一个或者多个,例如图1中所示的网络设备111和112、终端设备121至128,在该通信系统100中,网络设备111可以与终端设备121至126中的一个或多个终端设备通过无线空口通信,网络设备111可以通过网络设备112与终端设备127和128中的一个或多个终端设备进行通信。此外,终端设备124至126可以组成通信系统101,在该通信系统101中,终端设备124可以与终端设备125和126中的一个或多个终端设备通过无线空口通信、网络设备112与终端设备127和128可以组成通信系统102,在该通信系统102中,网络设备112可以与终端设备127和128中的一个或多个终端设备通过无线空口通信。
应理解,通信系统101可以是通信系统100的子系统,或者独立于通信系统100的通信系统;通信系统102可以是通信系统100的子系统,或者独立于通信系统100的通信系统。
还应理解,图1仅为示例,示出了通信系统100中两个网络设备和八个终端设备,通信系统101中的三个终端设备,通信系统102中的一个网络设备和两个终端设备。但这不应对本申请构成任何限定。上述任一通信系统可以包括更多或更少的网络设备,或者包括更多或更少的终端设备。本申请实施例对此不做限定。
随着5G NR系统机器型通信(machine-type communication,MTC)和物联(internet of things,IoT)通信的广泛应用,越来越多的IoT设备已经部署在人们的生活中。例如:智能水表、共享单车,以及智慧城市、环境监测、智能家居、森林防火等以传感和数据采集为目标的设备等等。而未来,IoT设备将是无处不在的,可能会嵌入每一件衣服、每一个包裹、每一把钥匙,几乎所有的离线物品都将在物联网技术的赋能下实现在线。但与此同时,由于IoT设备分布范围广泛、数量众多。因此,业界对IoT设备的成本和功耗降低的诉求越来越强烈。
因此,为了能进一步普及IoT,需要使用更小的电池甚至彻底摆脱电池的限制,或者是设计一种降低无线电收发器功耗的方法,进而来克服IoT设备的成本、尺寸、功耗等的限制问题。因此,业界期望在5G/5.5G物联领域中引入无源物联(Passive IoT)或者说反向散射通信(BackScatter),以降低终端功耗。
结合图2所示,在无源物联系统200中,激励器210可以通过下行链路向反射器220发送激励信号(下文中也称作下行信号,包括下行信令和/或下行数据)。反射器220基于激励信号获取能量,以实现在上行链路中发送反射信号(下文中也称作上行信号)。
其中,激励器210可以是任意一种用于激励无源/半无源终端设备的器件,例如读写器(Reader),协助器(Helper)等。可选的,激励器210可以实现为网络设备,或者激励器210可以部署于网络设备,该网络设备可以是前述示例的网络设备中的任意一种,例如基站设备(包括宏站/小站/ 微站/杆站等一系列基站设备);当然,本申请并不排除激励器210实现为终端设备或者部署于终端设备的情况,该终端设备可以是前述示例的终端设备中的任意一种。
反射器220可以用于进行反向散射通信,参考射频识别(radio frequency identification,RFID)技术,反射器220可以是RFID技术中的标签,进一步地可以包括无源标签和半无源标签。或者反射器220可以实现为终端设备,或者反射器220可以部署于终端设备,该终端设备在无源物理系统中可以称作反向散射通信的终端,且该终端设备可以是前述示例的终端设备中的任意一种。其中,无源标签或者说无源反向散射通信的终端无供能设备/电路,而仅依靠接收的激励信号获取能量,例如通过滤波电路等得到激励信号的直流电压获得能量供应,使能后续下行信号的解调和/或在上行链路中发送上行信号。
由于反向散射通信的终端的功耗和复杂度的限制,该类终端的功耗可能限制在百微瓦(μW)或者小于100μW的目标功耗。在此目标功耗的限制下,该类终端很可能不具有产生本地高频本振的能力,即终端没有产生与发射射频对应的本地载波能力,此时该类终端对信号的解调只能依靠非相干解调的方式进行信号的解调。通信原理中最常用的非相干解调的方法就是包络检波(Envelope Detection)的方式,即对接收到的高频射频信号通过整流二极管实现自混频(也可以称之为自相乘),再将信号通过基带低通RC滤波器过滤掉高频分量,得到有效的基带调制信号包络,进一步的得到的基带调制信号之后可以进行数字采样及后续的信号能量(幅度)比较器进行信息的判决。
幅移键控(amplitude shift keying,ASK)调制又称为振幅键控调制,其中,2ASK又称为通断键控或开关键控(on-off keying,OOK)。OOK/ASK调制是使能此类无需本地高频本振的包络检波解调的有效的调制方式,不同于NR使用频繁的PSK/QAM等需要同向正交(in-phase/quadrature,I/Q)路正交调制方式,OOK/ASK只有一路调制,以OOK/ASK调制为例,发射机将0/1信息比特调制成两种信号幅度,如信息比特0和1分别调制成幅度0和幅度1的矩形方波信号,或者接近于矩形或者方波的信号波形。但是OOK/ASK调制存在普遍的问题,因为只有一路实信号的原因,OOK/ASK调制信号的频谱函数是关于中心0频共轭对称的,功率谱函数是关于中心0频轴对称的,以OOK/ASK信号符号速率为R为例,信号频域主瓣带宽为2R。所以传统的OOK/ASK调制可称为双边带调制信号,即关于中心轴对称,且有效的频谱效率仅为50%(有效信号带宽/信号实际带宽=R/2R=50%),如下图3所示,传输OOK/ASK带宽为180kHz,实际有效的信号带宽仅为90kHz,符号速率峰值仅为1/90kHz≈11.1μs。此时在1个NR正交频分复用(orthogonal frequency division multiplexing,OFDM)符号持续时间下(子载波间隔15kHz,没加CP前符号持续时间66.7μs)最多只能承载6个OOK/ASK符号。因此OOK/ASK这种天然的双边带信号频域特性导致其传输效率大大受限。对无源物联或者反向散射通信场景来说下行信息整体传输效率也会受到限制。
为了提高反向散射通信系统中下行信号的频谱效率,可以考虑消除双边带轴对称的上半边带或者下半边带频域信号。假设OOK/ASK基带信号为s(t),对应频域信号为S(f),基带信号的希尔伯特(Hilbert)变换为希尔伯特变换具体是指信号频域响应模值不变,相位移动90°,即对应的频域信号为-jsgn(f)S(f),所以如果产生基带信号变换为则该变换的基带信号频域变换为S(f)±sgn(f)S(f),则可以只保留基带信号的上半边带或者下半边带,这种变换的I/Q变换信号称为单边带信号。在信息速率为R为例,单边带信号只保留信号双边带的上半边或者下半边,信号实际带宽也为R。则频谱效率提升为100%。那么理论上讲,此时在1个NR OFDM符号持续时间下(子载波间隔15kHz,没加CP前符号持续时间66.7μs)最多能承载12个OOK/ASK符号,符号速率相比于双边带信号提升一倍。
对于单边带信号和双边带信号,如果接收机有高频本振,可以进行相干解调的时候,都可以正确的恢复出有效的原始基带信号s(t)。但上述无源物联或者反向散射通信中的终端设备只能进行非相干的包络检波,所以这里的单边带信号包络和原始信号包络之间存在畸变,因此在非相干解调包络检波的方式下,单边带信号因为引入的谐波项可能使得原始 基带信号s(t)的解调受到较大影响,解调性能大幅下降。
针对上述问题,本申请实施例通过对待传输的下行信号进行频域上的加窗滤波,使得待传输的下行信号的单边信号更接近OOK/ASK调制信号的时域波形,且维持了OOK/ASK调制信号的单边带频域特性。在保证下行信号的传输频谱效率的同时,提高了传输下行信号的传输性能。
本申请实施例中,幅移键控调制可以包括OOK调制或者ASK调制,为便于理解,下文以OOK/ASK调制为例,对本申请进行说明。
为便于理解本申请实施例,做出如下几点说明:
第一,在下文示出的实施例中,第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的信号、调制符号等。
第二,“预定义”可以通过在设备(例如,包括第一设备和第二设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
“预配置”可以通过在设备(例如,包括第一设备和第二设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,也可以通过信令预配置,比如网络设备通过信令预配置等方式来实现,本申请对于其具体的实现方式不做限定。
第三,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括第三代合作伙伴计划(the 3rd generation partnership project,3GPP)LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第四,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。
第五,在本申请实施例中,“当……时”、“在……的情况下”、“若”以及“如果”等描述均指在某种客观情况下设备(如,第一设备或者第二设备)会做出相应的处理,并非是限定时间,且也不要求设备(如,第一设备或者第二设备)在实现时一定要有判断的动作,也不意味着存在其它限定。
下面将结合附图对本申请实施例提供的侧行传输方法做详细说明。
应理解,下文仅为便于理解和说明,以第一设备与第二设备之间的交互为例详细说明本申请实施例所提供的方法。
其中,第一设备例如可以是上述反射器(如反射器220),或者部署有反射器的终端设备;第二设备可以是上述激励器(如激励器210),或者部署有激励器的终端设备,或者部署有激励器的网络设备。当第一设备是部署有激励器的终端设备,第二设备是部署有反射器的终端设备时,该第一设备可以是图1中的终端设备124,第二设备可以是图1中的终端设备125或126;当第一设备是部署有阅读器的网络设备,第二设备是部署有标签的终端设备时,该第一设备可以是图1中的网络设备111,第二设备可以是图1中的终端设备121至123中的任意一个,或者第一设备可以是图1中的网络设备112,第二设备可以是图1中的终端设备127或128。
但应理解,这不应对本申请提供的方法的执行主体构成任何限定。只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法,便可以作为本申请实施例提供的方法的执行主体。例如,下文实施例所示的第一设备也可以替换为该第一设备中的部件,比如芯片、芯片系统或其他能够调用程序并执行程序的功能模块。第二设备也可以替换为该第二设备中的部件,比如芯片、芯片系统或其他能够调用程序并执行程序的功能模块等。
图4为本申请实施例提供的一种通信方法300的示意性交互流程示意图。如图4所示,该方法300可以包括S310至S330中的部分或者全部。下面对方法300中的各个步骤做详细说明。
S310,第一设备通过窗信号对第一信号的频域信号进行加窗处理,得到第一频域信号,该第一信号为承载M个幅移键控调制符号的OFDM信号,其中M为正整数;第二频域信号为第一频域信号在第一频域资源中映射的频域信号,第一频域资源为第一频域信号占用的频域资源的上半部分或者下半部分,第二信号为第二频域信号的时域信号,第二信号为承载该M个幅移键控调制符号的OFDM信号;
S320,第一设备向第二设备发送第二信号,相应的,第二设备接收第一设备发送的第二信号;
S330,第二设备确定第二信号中承载的M个幅移键控调制符号。
需要说明的是,第一信号承载了M个幅移键控调制符号(如OOK/ASK调制符号),例如第一信号中承载的OOK/ASK调制符号为{111010111010},第一信号的时域信号为理想OOK/ASK信号,其中理想的OOK/ASK信号指当调制符号为{1}时,信号取值恒为A,可选地,A等于1;当调制符号为{0}时,信号取值恒为B,可选地,B等于0。参见图5所示。
第一信号的频域信号可以是第一信号的时域信号进行时频转换后得到的,其中时频转换指对时域信号进行M点离散傅里叶变换(discrete fourier transform,DFT)或者快速傅里叶变换(fast fourier transform,FFT)变换。例如,前述理想OOK/ASK信号进行L点DFT或者FFT变换后,将以第一子载波为中心的N个RB(12*N个子载波)上的信号作为第一信号的频域信号,即第一信号的频域信号的频域资源占用N个RB,其中N为正整数,可选地,N等于1或者2。应理解,第一信号的频域信号关于第一子载波共轭对称或模值对称,即第一信号的频域信号呈现双边带(或者称为具有对称的上下边带)的特性,因此对于N等于2,第一信号的频域信号占用频域资源为24个子载波,将第一信号的频域信号定义为其中NULL表示第一个子载波信号取值为0或者置空不映射信号,*表示原信号的共轭转置。其中,第一子载波可以是第一信号的中心频点所在的子载波,即映射{s12}信号的子载波。在NR OFDM系统中,OOK/ASK调制信号对应的频域子载波和NR系统中其他信号的子载波保证正交化,保证生成的双边带OOK/ASK调制频域信号对NR系统中其他频域信号无干扰问题,有效的在保证和NR OFDM系统共存前提下生成OOK/ASK调制信号。
可选地,M为6的整数倍或者12的整数倍,或者可理解为M为1/2个RB对应子载波数目的整数倍或者1个RB对应子载波数目的整数倍。
在上述S310中,第一设备通过窗信号对第一信号的频域信号进行加窗处理,也可以称作第一设备通过窗信号对第一信号的频域信号进行加窗滤波(或者可称为频域加窗、频域滤波),使加窗处理得到的第一频域信号的单边带信号能够有效的获得更接近与第一信号的时域波形。
其中,第二频域信号为第一频域信号的单边带信号,可以是第一频域信号的上半边带的信号或者第一频域信号的下半边带的信号。换言之,第二频域信号为第一频域信号在第一频域资源中映射的频域信号。基于上述S310中的加窗处理,第二频域信号的时域波形接近第一信号的时域波形,其中第二频域信号的时域波形接近第一信号的时域波形可理解为第二信号的时域波形和第一信号的时域波形中高电平或者低电平的峰均功率比相差小于预设值,预设值取值为0.5dB或者1dB,或者可以理解为第二信号的时域波形中调制符号{1}或者调制符号{0}的平均电平值和第一信号的时域波形中调制符号{1}或者调制符号{0}的平均电平值相差小于预设值,预设值取值为0.1或者0.2。也即第二信号承载的OOK/ASK调制符号与第一信号承载的幅移键控调制符号相同,第二信号承载的幅移键控调制符号和第一信号承载的幅移键控调制符号持续时间相同,维持了幅移键控调制信号的符号速率不变。
需要说明的是,窗信号的频域信号占用的频域资源可以大于或等于第一信号的频域信号占用的频域资源,或者说窗信号的频域信号的带宽可以大于或等于第一信号的频域信号的带宽,即窗信号的频域信号占用的频域资源大于或者等于N个RB,且窗信号的频域信号的中心频点与第一信号的频域信号的中心频点相同,也即窗信号占用的频域资源与第一信号占用的频域资源相同,或者第一信号占用的频域资源处于窗信号占用的频域资源内。
一般来说,加窗处理时,用于加窗处理的频域信号和第一信号的频域信号应占用相同的频域资源,且第一信号的频域信号占用的频域资源包括多个子载波,以使第一信号的频域信号与窗信号的频域信号在同一子载波上映射的信号相乘,得到第一频域信号。
若窗信号和第一信号占用相同的频域资源,则第一设备可以将窗信号的频域信号(即第三频域信号)与第一信号的频域信号在同一子载波上映射的信号相乘,得到第一频域信号;若窗信号和第一信号占用的频域资源不同,例如第一信号占用的频域资源处于窗信号占用的频域资源内,为了使第一设备可以基于窗信号对第一信号的频域信号进行加窗处理,可以基于窗信号的频域信号得到第三频域信号,例如将窗信号的频域信号在第二频域资源中映射的频域信号作为第三频域信号,其中,第二频域资源为第一信号占用的频域资源,使第三频域信号占用的频域资源与第一信号的占用的频域资源相同,再通过第三频域信号与第一信号的频域信号在同一子载波上映射的信号相乘,得到第一频域信号。因此对于N等于2,第三频域信号占用频域资源为24个子载波, 第三频域信号占用频域资源为24个子载波,其中可选地,将第三频域信号定义为其中NULL表示第一个子载波信号取值为0或者置空不映射信号,*表示原信号的共轭转置。将第一信号的频域信号和第三频域信号在对应相同子载波上相乘得到第一频域信号可选的,第三频域信号可以是以窗信号的频域信号的中心子载波为中心,且与第一信号的频域信号占用的频域资源相同的频域信号。
其中,第一频域资源为第一频域信号占用的频域资源的上半部分或者下半部分是指第一频域信号以第一子载波为中心子载波,中心子载波到频域资源的起始子载波包括的频域资源或者中心子载波到频域资源的终止子载波包括的频域资源。因此对于N等于2,第一频域信号占用的频域资源有效子载波为第1到第23个子载波,中心子载波是第12个子载波,第一频域资源可以为第1到第12个子载波包括的全部子载波或者第12到第23个子载波包括的全部子载波。第二频域信号为第一频域资源上映射的第一频域信号,即第一频域信号对应的上边带或者下边带的频域信号。此时第二频域信号定义为或者
可选的,窗信号的频域信号的主瓣带宽大于或等于第一信号的频域信号的带宽。
可选的,上述窗信号可以是升余弦滚降窗信号。其中升余弦滚降窗信号为:
其中,β为升余弦滚降窗信号的滚降因子,滚降因子的取值为大于0小于1的任意值。升余弦滚降函数是波形成型的使用概率较高的窗信号,使用升余弦滚降窗信号是一种较容易达成共识的窗信号。
当然,本申请并不对此进行限定,例如窗信号可以是由余弦信号cos(2πfxt)、正弦信号sin(2πfxt)、余弦信号的幂次方cosα(2πfxt)、正弦信号的幂次方sinα(2πfxt)中的至少之一组成的信号,或者可以是其他具有任意波形的窗信号。其中,fx为频率,t为持续时间,α为幂次方(正弦信号的幂次方或预先信号的幂次方)系数。
可选的,当窗信号包括余弦信号的幂次方时,余弦信号的幂次方的系数可以小于或等于1;与之类似的,当窗信号包括正弦信号的幂次方时,正弦信号的幂次方的系数可以小于或等于1。当正弦信号或者余弦信号的幂次方系数小于1时,正弦信号或者余弦信号幂次方的波形呈现更平坦的特性,更接近于理想的OOK/ASK信号的波形。
在上述S310的一些实施例中,为了使窗信号能够使第二信号的时域波形更接近第一信号的时域波形,窗信号可以包括与第一调制符号关联的至少一个第一子信号和与第二调制符号关联的至少一个第二子信号。需要说明的是,上述M个幅移键控调制符号包括第一调制符号和/或第二调制符号。其中,第一调制符号为OOK/ASK调制符号的高电平符号或者调制符号{1},第二调制符号为OOK/ASK调制符号的低电平符号或者调制符号{0}。
接续上述实施例,一个第一子信号的时域长度可以对应于M个幅移键控调制符号中的一段连续的第一调制符号的时域长度;一个第二子信号的时域长度可以对应于M个幅移键控调制符号中的一段连续的第二调制符号的时域长度。例如,结合图6所示,第一信号承载的OOK调制符号为{111010111010},假设第一调制符号为{1},第二调制符号为{0},则窗信号包括第一子信号A1、A2、A3、A4与第二子信号B1、B2、B3、B4
示例性的,第一子信号的时域长度可以与第一信号中承载的一段连续的第一调制符号的持续时间长度相同。参见图6,第一子信号A1的时域长度与第一信号中承载的一段连续的3个第一调制符号{111}的持续时间长度相同,第一子信号A2的时域长度与第一信号中承载的下一段连续的第一调制符号{1}的持续时间长度相同,其余第一子信号的时域长度与第一调制符号的持续时间长度之间的对应关系与此类似不再赘述。
与上述示例类似的,第二子信号的时域长度可以与第一信号中承载的一段连续的第二调制符号的持续时间长度相同。参见图6,第二子信号B1的时域长度与第一信号中承载的一段连续的第二调制符号{0}的持续时间长度相同,第二子信号B2的时域长度与第一信号中承载的一端连续的 第二调制符号{0}的持续时间长度相同,其余第二子信号的时域长度与第二调制符号的持续时间长度之间的对应关系与此类似不再赘述。
需要说明的是,窗信号中的第一子信号与第一调制符号具有上述时域关联关系的同时,窗信号中的第二子信号与第二调制符号也具有上述时域关联关系;或者窗信号中第一子信号与第一调制符号具有上述时域关联关系,第二子信号的时域长度可以与第二调制符号无关,例如第二子信号的时域长度可以为预设值;或者窗信号中的第二子信号与第二调制符号具有上述时域关联关系,第一子信号的时域长度可以与第一调制符号无关,例如第一子信号的时域长度可以为预设值。
示例性的,第一子信号的频率可以与第一信号中承载的一段连续的第一调制符号的个数关联。例如,第一信号中承载的一段连续的第一调制符号的个数越大,与该段连续的第一调制符号对应的第一子信号包含的频率分量越小,第一信号中承载的一段连续的第一调制符号的个数越小,与该段连续的第一调制符号对应的第一子信号包含的频率分量越大,换言之,第一子信号包含的频率分量与第一信号中承载的一段连续的第一调制符号的个数或者连续的第一调制符号的持续时间成反比。比如第一子信号是由余弦信号cos(2πfxt)、正弦信号sin(2πfxt)、余弦信号的幂次方cosα(2πfxt)、正弦信号的幂次方sinα(2πfxt)中的至少之一组成,其中fx和连续的第一调制符号的持续时间成反比。
可选的,第一子信号的频率可以等于第一信号中承载的一段连续的第一调制符号的持续时间的倒数。
与第一子信号的频率类似的,第二子信号的频率可以与第一信号中承载的一段连续的第二调制符号的个数关联,例如,第一信号中承载的一段连续的第二调制符号的个数越大,与该段连续的第二调制符号对应的第二子信号包含的频率分量越小,第一信号中承载的一段连续的第二调制符号的个数越小,与该段连续的第二调制符号对应的第二子信号包含的频率分量越大,换言之,第二子信号包含的频率分量与第一信号中承载的一段连续的第二调制符号的个数成反比。比如第二子信号是由余弦信号cos(2πfxt)、正弦信号sin(2πfxt)、余弦信号的幂次方cosα(2πfxt)、正弦信号的幂次方sinα(2πfxt)中的至少之一组成,其中fx和连续的第一调制符号的持续时间成反比。
可选的,第二子信号的频率可以等于第一信号中承载的一段连续的第二调制符号的持续时间的倒数。
应理解,窗信号中的第一子信号的频率与第一调制符号的连续个数具有上述关联关系的同时,窗信号中的第二子信号的频率与第二调制符号的连续个数也具有上述关联关系;或者窗信号中的第一子信号的频率与第一调制符号的连续个数具有上述关联关系,窗信号中的第二子信号的频率与第二调制符号的连续个数无关,例如第二子信号的频率可以为预设值;或者窗信号中的第二子信号的频率与第二调制符号的连续个数具有上述关联,窗信号中的第一子信号的频率与第一调制符号的连续个数无关,例如第一子信号的频率可以为预设值。
举例而言,第一信号承载的OOK调制符号为{111010111010},OOK调制符号持续时间为66.7μs/12,窗信号中依次包括第一子信号A1、第二子信号B1、第一子信号A2、第二子信号B2、第一子信号A3、第二子信号B3、第一子信号A4。第一子信号A1持续时间和连续3个第一调制符号{111}持续时间相同,为3*66.7/12≈16.7μs。则第一子信号A1包含的频率分量为2/16.7us≈120kHz,其中第一子信号为双边带信号,对于子载波间隔为15kHz的OFDM系统,则第一子信号包含的频率分量位于第8号子载波和第-8号子载波,其中,中心子载波定义为第0号子载波。窗信号中的其余子信号的频率与此类似不再赘述。
在一些实施例中,在第一子信号和第二子信号时域长度相同的情况下,第一子信号与第二子信号也不同,第一子信号与第二子信号之间的区别可以体现为信号函数上的差异。例如,第一子信号可以表示为第二子信号可以表示为其中,α为正弦函数的幂次方的系数,fx为子信号(如任一第一子信号或任一第二子信号)的频率,t为子信号(如任一第一子信号或任一第二子信号)的时域长度
仍以,第一信号承载的OOK调制符号为{111010111010}为例,若第一个第一子信号表示为 其中TOOK为OOK调制符号的持续时间;第一个第二子信号表示为其中第二个第一子信号表示为其中以此类推。
当正弦信号的幂次方的系数α=1时,窗信号可以如图7a所示;当正弦信号的幂次方的系数α<1时,例如,α=0.1或α=0.2,α=0.2时窗信号可以如图7b所示。此种情况下,窗信号的频域信号可以参见图7c。
则上述窗信号a(t)可以表示为:
其中12个OOK调制符号持续时间等于1个OFDM符号的持续时间。
前已述及,窗信号可以是由余弦信号、正弦信号、余弦信号的幂次方、正弦信号的幂次方中的至少之一组成的信号,且窗信号可以包括至少一个第一子信号和/或至少一个第二子信号。在一些实施例中,上述任一子信号,例如第一子信号或第二子信号,均可以包括余弦信号、正弦信号、余弦信号的幂次方、正弦信号的幂次方中的至少之一。
前已述及,第二频域信号是第一频域信号的单边带信号。举例而言,结合图8所示,第一频域信号占用的频域资源为N个RB(即12N个子载波),比如,N=2,则第一频域信号占用带宽为24个子载波。可选地,第一频域信号的第1个子载波上映射的频域信号值为0,其中第1个子载波定义为子载波#0。第一频域信号的子载波#0取值恒为0,即实际第一频域信号占用的有效子载波为子载波#1~#12N-1,共12N-1个子载波。第二频域信号为第一频域信号中第2个到第13个子载波上映射的频域信号,即子载波#1~#12N/2(下边带(low side-band,LSB))上映射的频域信号;或者第二频域信号为第一频域信号中第13个子载波到第24个子载波上映射的频域信号,即子载波#12N/2~#12N-1上映射的频域信号。
在上述S320的一种示例中,第一设备可以对第二频域信号进行频时(或称作频到时)的变换,即离散傅里叶逆变换(inverse discrete fourier transform,IDFT)或者快速傅里叶逆变换(inverse fast fourier transform,IFFT),得到对应时域上的第二信号,并向第二设备发送第二信号。基于上述加窗处理,第二信号承载的幅移键控调制符号与第一信号中的幅移键控调制符号相同,且第二信号承载的幅移键控调制符号的持续时间和第一信号承载的幅移键控调制符号的持续时间相同。举例而言,第一信号承载的OOK调制符号为{111010111010},第二信号承载的OOK调制符号也为{111010111010},且第二信号的时域波形如图9所示。换言之,第二信号和第一信号承载的幅移键控调制符号相同,除了指承载的OOK调制符号0和符号1相同之外,还指两者承载的OOK调制符号的持续时间是相同的,如图5所示的第一信号和图9所示的第二信号承载的OOK调制符号持续时间均为1OFDM信号的持续时间的1/12,在OFDM子载波间隔为15kHz的情况下,OOK调制符号持续时间为66.7us/12。
在上述S330中,第二设备接收到第二信号,第二信号为第一信号的单边带信号,因此,第二 设备接收第二信号是不需要增加额外处理的情况下,确定第一信号中承载的M个幅移键控调制符号,避免增加第二设备接收端的实现复杂度,进而避免增加第二设备接收第二信号时的功耗。
因此,本申请实施例通过窗信号对第一信号的频域信号进行加窗处理,使加窗得到的第一频域信号的单边带信号(也即第二信号)的时域波形更接近第一信号的时域波形,且维持了单边带幅移调制信号的传输频谱效率提升至100%的特性。进而,在提升下行信号的传输频谱效率的同时,也保证了下行信号的传输性能,另外避免额外增加接收端的实现复杂度和功耗。
图10是本申请实施例提供的装置的示意性框图。如图10所示,该装置500可以包括:收发单元510和处理单元520。
可选的,通信装置500可对应于上文方法实施例中的第一设备,例如,可以为第一设备,或者配置与第一设备中的部件(如,芯片或芯片系统等)。
应理解,该通信装置500中的各单元分别为了实现前述实施例中各方法的相应流程。
其中,处理单元520,用于通过窗信号对第一信号的频域信号进行加窗处理,得到第一频域信号,该第一信号为承载M个幅移键控调制符号的正交频分复用OFDM信号,其中M为正整数;第二频域信号为该第一频域信号在第一频域资源中映射的频域信号,该第一频域资源为该第一频域信号占用的频域资源的上半部分或者下半部分,第二信号为该第二频域信号的时域信号,该第二信号为承载该M个幅移键控调制符号的OFDM信号;收发单元510,用于发送该第二信号。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
可选的,通信装置500可对应于上文方法实施例中的第二设备,例如,可以为第二设备,或者配置与第二设备中的部件(如,芯片或芯片系统等)。
应理解,该通信装置500中的各模块分别为了实现前述实施例中各方法的相应流程。
其中,收发单元510,用于接收第二信号,该第二信号为承载M个幅移键控调制符号的OFDM信号,第二信号为该第二频域信号的时域信号,该第二频域信号为第一频域信号在第一频域资源中映射的频域信号,该第一频域资源为该第一频域信号占用的频域资源的上半部分或者下半部分,该第一频域信号为通过窗信号对第一信号进行加窗处理后的频域信号,第一信号为承载M个幅移键控调制符号的OFDM信号;处理单元520,用于确定第二信号中承载的M个幅移键控调制符号。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该装置500为第一设备或第二设备时,该装置500中的收发单元510可以通过收发器实现,例如可对应于图11中所示的装置600中的收发器610,该装置500中的处理单元520可通过至少一个处理器实现,例如可对应于图11中示出的装置600中的处理器620。
当该装置500为配置于通信设备(如第一设备或第二设备)中的芯片或芯片系统时,该装置500中的收发单元510可以通过输入/输出接口、电路等实现,该装置500中的处理单元520可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
图11是本申请实施例提供的装置的另一示意性框图。如图11所示,该装置600可以包括:收发器610、处理器620和存储器630。其中,收发器610、处理器620和存储器630通过内部连接通路互相通信,该存储器630用于存储指令,该处理器620用于执行该存储器630存储的指令,以控制该收发器610发送信号和/或接收信号。
应理解,该装置600可以对应于上述方法实施例中的第一设备或第二设备,并且可以用于执行上述方法实施例中第一设备或第二设备执行的各个步骤和/或流程。可选地,该存储器630可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。存储器630可以是一个单独的器件,也可以集成在处理器620中。该处理器620可以用于执行存储器630中存储的指令,并且当该处理器620执行存储器中存储的指令时,该处理器620用于执行上述与第一设备或第二设备对应的方法实施例的各个步骤和/或流程。
可选地,该装置600是前文实施例中的第一设备。
可选地,该装置600是前文实施例中的第二设备。
其中,收发器610可以包括发射机和接收机。收发器610还可以进一步包括天线,天线的数 量可以为一个或多个。该处理器620和存储器630与收发器610可以是集成在不同芯片上的器件。如,处理器620和存储器630可以集成在基带芯片中,收发器610可以集成在射频芯片中。该处理器620和存储器630与收发器610也可以是集成在同一个芯片上的器件。本申请对此不作限定。
可选地,该装置600是配置在第一设备中的部件,如芯片、芯片系统等。
可选地,该装置600是配置在第二设备中的部件,如芯片、芯片系统等。
其中,收发器620也可以是通信接口,如输入/输出接口、电路等。该收发器620与处理器610和存储器630都可以集成在同一个芯片中,如集成在基带芯片中。
本申请还提供了一种处理装置,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述处理装置执行上述方法实施例中第一设备或第二设备执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和输入输出接口。所述输入输出接口与所述处理器耦合。所述输入输出接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。所述处理器用于执行计算机程序,以使得所述处理装置执行上述方法实施例中第一设备或第二设备执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于从所述存储器调用并运行所述计算机程序,以使得所述处理装置执行上述方法实施例中第一设备或第二设备执行的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、 增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行上述方法实施例中第一设备或第二设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行上述方法实施例中第一设备或第二设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种通信系统,该通信系统可以包括前述的第一设备和第二设备。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理单元中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种通信方法,其特征在于,所述方法包括:
    通过窗信号对第一信号的频域信号进行加窗处理,得到第一频域信号,所述第一信号为承载M个幅移键控调制符号的正交频分复用OFDM信号,其中M为正整数;
    第二频域信号为所述第一频域信号在第一频域资源中映射的频域信号,所述第一频域资源为所述第一频域信号占用的频域资源的上半部分或者下半部分,第二信号为所述第二频域信号的时域信号,所述第二信号为承载所述M个幅移键控调制符号的OFDM信号;
    发送所述第二信号。
  2. 根据权利要求1所述的方法,其特征在于,所述通过窗信号对第一信号的频域信号进行加窗处理,得到第一频域信号,包括:
    第三频域信号为所述窗信号的频域信号在第二频域资源中映射的频域信号,所述第二频域资源与所述第一信号的频域信号占用的频域资源相同,所述窗信号的频域信号占用的频域资源大于或等于所述第一信号的频域信号占用的频域资源;
    所述第一信号的频域信号与所述第三频域信号在同一子载波上映射的信号相乘,得到所述第一频域信号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述窗信号包括至少一个第一子信号和/或至少一个第二子信号;
    所述第一子信号的时域长度与所述第一信号中承载的一段连续的第一调制符号的持续时间长度相同;和/或,
    所述第二子信号的时域长度与所述第一信号中承载的一段连续的第二调制符号的持续时间长度相同;
    其中,所述M个幅移键控调制符号包括所述第一调制符号和/或所述第二调制符号。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述窗信号包括至少一个第一子信号和/或至少一个第二子信号;
    所述第一子信号的频率与所述第一信号中承载的一段连续的第一调制符号的个数关联;和/或,
    所述第二子信号的频率与所述第一信号中承载的一段连续的第二调制符号的个数关联。
  5. 根据权利要求4所述的方法,其特征在于,
    所述第一子信号的频率与所述第一信号中承载的一段连续的第一调制符号的个数成反比例;和/或,
    所述第二子信号的频率与所述第一信号中承载的一段连续的第二调制符号的个数成反比例。
  6. 根据权利要求5所述的方法,其特征在于,
    所述第一子信号的频率等于所述第一信号中承载的一段连续的第一调制符号的持续时间的倒数;和/或,
    所述第二子信号的频率等于所述第一信号中承载的一段连续的第二调制符号的持续时间的倒数。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述窗信号的任一子信号包括以下至少之一:
    余弦信号;
    正弦信号;
    余弦信号的幂次方;
    正弦信号的幂次方。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,窗信号的任一子信号包括一下至少之一:
    余弦信号的幂次方;
    正弦信号的幂次方;
    所述余弦信号的幂次方的系数和所述正弦信号的幂次方的系数中的至少一个小于或等于1。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述窗信号为升余弦滚降窗信号。
  10. 一种通信方法,其特征在于,所述方法包括:
    接收第二信号,所述第二信号为承载M个幅移键控调制符号的OFDM信号,第二信号为第二频域信号的时域信号,所述第二频域信号为第一频域信号在第一频域资源中映射的频域信号,所述第一频域资源为所述第一频域信号占用的频域资源的上半部分或者下半部分,所述第一频域信号为通过窗信号对第一信号进行加窗处理后的频域信号,第一信号为承载M个幅移键控调制符号的OFDM信号;
    确定第二信号中承载的M个幅移键控调制符号。
  11. 根据权利要求10所述的方法,其特征在于,第三频域信号为所述窗信号的频域信号在第二频域资源中映射的频域信号,所述第二频域资源与所述第一信号的频域信号占用的频域资源相同,所述窗信号的频域信号占用的频域资源大于或等于所述第一信号的频域信号占用的频域资源,所述第一信号的频域信号与所述第三频域信号在同一子载波上映射的信号相乘得到的信号等于所述第一频域信号在所述同一子载波上的信号。
  12. 根据权利要求10或11所述的方法,其特征在于,所述窗信号包括至少一个第一子信号和/或至少一个第二子信号;
    所述第一子信号的时域长度与所述第一信号中承载的一段连续的第一调制符号的持续时间长度相同;和/或,
    所述第二子信号的时域长度与所述第一信号中承载的一段连续的第二调制符号的持续时间长度相同;
    其中,所述M个幅移键控调制符号包括所述第一调制符号和/或所述第二调制符号。
  13. 根据权利要求10至12任一项所述的方法,其特征在于,所述窗信号包括至少一个第一子信号和/或至少一个第二子信号;
    所述第一子信号的频率与所述第一信号中承载的一段连续的第一调制符号的个数关联;和/或,
    所述第二子信号的频率与所述第一信号中承载的一段连续的第二调制符号的个数关联。
  14. 根据权利要求13所述的方法,其特征在于,
    所述第一子信号的频率与所述第一信号中承载的一段连续的第一调制符号的个数成反比例;和/或,
    所述第二子信号的频率与所述第一信号中承载的一段连续的第二调制符号的个数成反比例。
  15. 根据权利要求14所述的方法,其特征在于,
    所述第一子信号的频率等于所述第一信号中承载的一段连续的第一调制符号的持续时间的倒数;和/或,
    所述第二子信号的频率等于所述第一信号中承载的一段连续的第二调制符号的持续时间的倒数。
  16. 根据权利要求10至15任一项所述的方法,其特征在于,所述窗信号的任一子信号包括以下至少之一:
    余弦信号;
    正弦信号;
    余弦信号的幂次方;
    正弦信号的幂次方。
  17. 根据权利要求10至16任一项所述的方法,其特征在于,窗信号的任一子信号包括一下至少之一:
    余弦信号的幂次方;
    正弦信号的幂次方;
    所述余弦信号的幂次方的系数和所述正弦信号的幂次方的系数中的至少一个小于或等于1。
  18. 根据权利要求10至17任一项所述的方法,其特征在于,所述窗信号为升余弦滚降窗信号。
  19. 一种通信方法,其特征在于,所述方法包括:
    第一设备通过窗信号对第一信号的频域信号进行加窗处理,得到第一频域信号,所述第一信 号为承载M个幅移键控调制符号的OFDM信号,其中M为正整数;
    第二频域信号为所述第一频域信号在第一频域资源中映射的频域信号,所述第一频域资源为所述第一频域信号占用的频域资源的上半部分或者下半部分,第二信号为所述第二频域信号的时域信号,所述第二信号为承载所述M个幅移键控调制符号的OFDM信号;
    所述第一设备向第二设备发送所述第二信号;
    所述第二设备确定第二信号中承载的M个幅移键控调制符号。
  20. 根据权利要求19所述的方法,其特征在于,所述第一设备通过窗信号对第一信号的频域信号进行加窗处理,得到第一频域信号,包括:
    第三频域信号为所述窗信号的频域信号在第二频域资源中映射的频域信号,所述第二频域资源与所述第一信号的频域信号占用的频域资源相同,所述窗信号的频域信号占用的频域资源大于或等于所述第一信号的频域信号占用的频域资源;
    所述第一信号的频域信号与所述第三频域信号在同一子载波上映射的信号相乘,得到所述第一频域信号。
  21. 根据权利要求19或20所述的方法,其特征在于,所述窗信号包括至少一个第一子信号和/或至少一个第二子信号;
    所述第一子信号的时域长度与所述第一信号中承载的一段连续的第一调制符号的持续时间长度相同;和/或,
    所述第二子信号的时域长度与所述第一信号中承载的一段连续的第二调制符号的持续时间长度相同;
    其中,所述M个幅移键控调制符号包括所述第一调制符号和/或所述第二调制符号。
  22. 根据权利要求19至21任一项所述的方法,其特征在于,所述窗信号包括至少一个第一子信号和/或至少一个第二子信号;
    所述第一子信号的频率与所述第一信号中承载的一段连续的第一调制符号的个数关联;和/或,
    所述第二子信号的频率与所述第一信号中承载的一段连续的第二调制符号的个数关联。
  23. 根据权利要求22所述的方法,其特征在于,
    所述第一子信号的频率与所述第一信号中承载的一段连续的第一调制符号的个数成反比例;和/或,
    所述第二子信号的频率与所述第一信号中承载的一段连续的第二调制符号的个数成反比例。
  24. 根据权利要求19至23任一项所述的方法,其特征在于,所述窗信号的任一子信号包括以下至少之一:
    余弦信号;
    正弦信号;
    余弦信号的幂次方;
    正弦信号的幂次方。
  25. 根据权利要求19至24任一项所述的方法,其特征在于,所述窗信号的任一子信号包括一下至少之一:
    余弦信号的幂次方;
    正弦信号的幂次方;
    所述余弦信号的幂次方的系数和所述正弦信号的幂次方的系数中的至少一个小于或等于1。
  26. 一种通信装置,其特征在于,包括:
    处理单元,用于通过窗信号对第一信号的频域信号进行加窗处理,得到第一频域信号,所述第一信号为承载M个幅移键控调制符号的OFDM信号,其中M为正整数;
    第二频域信号为所述第一频域信号在第一频域资源中映射的频域信号,所述第一频域资源为所述第一频域信号占用的频域资源的上半部分或者下半部分,第二信号为所述第二频域信号的时域信号,所述第二信号为承载所述M个幅移键控调制符号的OFDM信号;
    收发单元,用于发送所述第二信号。
  27. 一种通信装置,其特征在于,包括:
    收发单元,用于接收第二信号,所述第二信号为承载M个幅移键控调制符号的OFDM信号,第二信号为第二频域信号的时域信号,所述第二频域信号为第一频域信号在第一频域资源中映射的频域信号,所述第一频域资源为所述第一频域信号占用的频域资源的上半部分或者下半部分,所述第一频域信号为通过窗信号对第一信号进行加窗处理后的频域信号,第一信号为承载M个幅移键控调制符号的OFDM信号;
    处理单元,用于确定第二信号中承载的M个幅移键控调制符号。
  28. 一种通信系统,其特征在于,包括:第一设备和第二设备;
    所述第一设备用于实现权利要求1至9任一项所述的方法,所述第二设备用于实现权利要求10至18任一项所述的方法。
  29. 一种通信装置,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至18中任一项所述的方法。
  30. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机指令,使得安装有所述芯片的设备执行如权利要求1至18中任一项所述的方法。
  31. 一种计算机可读存储介质,其特征在于,用于存储计算机程序指令,所述计算机程序使得计算机执行如权利要求1至18中任一项所述的方法。
  32. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至18中任一项所述的方法。
PCT/CN2023/104287 2022-08-12 2023-06-29 通信方法、装置、设备以及存储介质 WO2024032229A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210970268.2A CN117640324A (zh) 2022-08-12 2022-08-12 通信方法、装置、设备以及存储介质
CN202210970268.2 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024032229A1 true WO2024032229A1 (zh) 2024-02-15

Family

ID=89850695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104287 WO2024032229A1 (zh) 2022-08-12 2023-06-29 通信方法、装置、设备以及存储介质

Country Status (2)

Country Link
CN (1) CN117640324A (zh)
WO (1) WO2024032229A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070092018A1 (en) * 2005-10-20 2007-04-26 Trellis Phase Communications, Lp Single sideband and quadrature multiplexed continuous phase modulation
CN102024160A (zh) * 2009-09-14 2011-04-20 西门子公司 一种在射频识别系统中满足频谱模板的方法及其装置
CN102664860A (zh) * 2012-05-22 2012-09-12 哈尔滨工业大学 单边带多载波传输信号的调制和解调方法及装置
CN102694761A (zh) * 2011-03-24 2012-09-26 中兴通讯股份有限公司 接收信号的方法及系统、收发信号的方法及系统
CN106936754A (zh) * 2015-12-31 2017-07-07 华为技术有限公司 一种通信处理方法、处理器和通信设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070092018A1 (en) * 2005-10-20 2007-04-26 Trellis Phase Communications, Lp Single sideband and quadrature multiplexed continuous phase modulation
CN102024160A (zh) * 2009-09-14 2011-04-20 西门子公司 一种在射频识别系统中满足频谱模板的方法及其装置
CN102694761A (zh) * 2011-03-24 2012-09-26 中兴通讯股份有限公司 接收信号的方法及系统、收发信号的方法及系统
CN102664860A (zh) * 2012-05-22 2012-09-12 哈尔滨工业大学 单边带多载波传输信号的调制和解调方法及装置
CN106936754A (zh) * 2015-12-31 2017-07-07 华为技术有限公司 一种通信处理方法、处理器和通信设备

Also Published As

Publication number Publication date
CN117640324A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
TWI782013B (zh) 單使用者及多使用者傳輸之具調變波形編碼
WO2021097597A1 (zh) 信号传输的方法和装置、反射器以及接收器
WO2023078358A1 (zh) 通信的方法和装置
WO2023109920A1 (zh) 一种通信方法及装置
WO2024032229A1 (zh) 通信方法、装置、设备以及存储介质
WO2022037462A1 (zh) 信号传输方法、通信装置及存储介质
WO2022037451A1 (zh) 一种通信方法及装置
WO2023142831A1 (zh) 通信方法、装置、设备以及存储介质
WO2024098403A1 (zh) 无线通信的方法及设备
WO2023241319A1 (zh) 一种通信方法及通信装置
WO2023125338A1 (zh) 一种信息传输方法及通信装置
WO2024046219A1 (zh) 信息处理方法、装置、通信设备及可读存储介质
WO2024067191A1 (zh) 一种通信方法及装置
WO2024041522A1 (zh) 信号处理的方法和装置
WO2024007937A1 (zh) 调制编码的方法和装置
WO2024046224A1 (zh) 信息处理方法、装置、通信设备及可读存储介质
WO2024082926A1 (zh) 信号传输方法、通信系统及通信装置
WO2023083037A1 (zh) 信号传输的方法和装置
WO2024093634A1 (zh) 信息传输的方法与装置
US20220329379A1 (en) Signal sending method, signal receiving method, and apparatus
WO2022262532A1 (zh) 符号传输的方法和通信装置
US20240106616A1 (en) Multi-user communication method and related communication apparatus
WO2024040589A1 (zh) 无线通信的方法及设备
WO2024055953A1 (zh) 调制方法、装置及通信设备
US20230308334A1 (en) Signal transmission method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851456

Country of ref document: EP

Kind code of ref document: A1