WO2023083037A1 - 信号传输的方法和装置 - Google Patents

信号传输的方法和装置 Download PDF

Info

Publication number
WO2023083037A1
WO2023083037A1 PCT/CN2022/128596 CN2022128596W WO2023083037A1 WO 2023083037 A1 WO2023083037 A1 WO 2023083037A1 CN 2022128596 W CN2022128596 W CN 2022128596W WO 2023083037 A1 WO2023083037 A1 WO 2023083037A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
link
target
information
Prior art date
Application number
PCT/CN2022/128596
Other languages
English (en)
French (fr)
Inventor
李强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023083037A1 publication Critical patent/WO2023083037A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, to a method and device for signal transmission.
  • the terminal device can receive a wake-up signal through a separate small low-power circuit, such as a wake up receiver (WUR), and the main receiver can be in a deep sleep state.
  • a wake up receiver WUR
  • the terminal device detects the wake-up signal through the WUR
  • the terminal device triggers the wake-up of the main receiver.
  • the terminal device can perform data transmission through the main receiver.
  • the present application provides a signal transmission method and device, and designs a modulation mode of a wake-up signal, which can meet the low power consumption requirement of the WUR and can also improve spectrum efficiency.
  • a signal transmission method is provided, and the method can be executed by a sending device (such as a terminal device, or a network device), or can also be executed by a component of the sending device (such as a chip or a circuit) , which is not limited.
  • a sending device such as a terminal device, or a network device
  • a component of the sending device such as a chip or a circuit
  • the method may include: modulating the information to be transmitted by using at least a first frequency and a second frequency to generate a radio frequency signal, wherein the information to be transmitted is mapped on a target frequency, and the target frequency has an association relationship with at least the first frequency and the second frequency; Send radio frequency signals.
  • the sending end device can map the information to be transmitted to the target frequency, and use at least two frequencies, such as the first frequency and the second frequency, to modulate the information to be transmitted to generate a radio frequency signal, and then send the radio frequency signal.
  • at least two frequencies such as the first frequency and the second frequency
  • the information to be transmitted is mapped on the target frequency associated with the at least two frequencies, an appropriate target frequency can be selected according to actual needs, which is applicable to more transmission scenarios, Achieve flexibility in transmitting signals.
  • a smaller target frequency which not only meets the needs of transmitting signals on the radio frequency frequency, but also demodulates the signal on the target frequency with a smaller frequency , can also meet the requirement of reducing the power consumption of the receiving end.
  • ⁇ F represents a target frequency
  • F 1 represents a first frequency
  • F 2 represents a second frequency
  • x and y are positive integers.
  • the target frequency is the frequency difference between the first frequency and the second frequency.
  • the first frequency satisfies any of the following: the first frequency is a default value; or, the frequency domain resource and/or time between the first frequency and the first link Related to domain resources, the first link is a link used to transmit radio frequency signals; or, the first frequency is configured by a network device.
  • the first frequency can be used as a reference frequency, and then the second frequency can be determined according to the first frequency, the target frequency, and the relationship between the three.
  • the second frequency is determined according to the target frequency and the first frequency.
  • the information to be transmitted is mapped to a target frequency according to a mapping relationship, where the mapping relationship is used to represent a relationship between the target frequency and bits of the information to be transmitted.
  • At least the first frequency and the second frequency are used to modulate the information to be transmitted, including: using multi-frequency frequency shift keying modulation or orthogonal frequency division multiplexing Modulation mode, using at least the first frequency and the second frequency to modulate the information to be transmitted.
  • the method before sending the radio frequency signal, further includes: sending one or more of the following information: frequency domain resources of the first link, time domain resources of the first link resources, the frequency domain position of the target frequency, the resolution of the target frequency, the modulation order, the frequency domain position of the first frequency, and the candidate frequency domain position of the second frequency; wherein, the first link is the link used for transmitting radio frequency signals road.
  • the first frequency and the second frequency are located at positions other than the following frequency domain positions: the lowest numbered N1 subcarriers in the bandwidth used by the first link and/or Or the highest numbered N2 subcarriers, the first link is the link used to transmit radio frequency signals, and N1 and N2 are integers greater than 1 or equal to 1.
  • the edge subcarriers that is, the lowest numbered N1 subcarriers and/or the highest numbered N2 subcarriers in the bandwidth used by the first link
  • a subcarrier transmits a wake-up signal.
  • the edge subcarriers can be used as a guard interval between the wake-up signal and the data signal to reduce subcarrier interference between the wake-up signal and the data signal.
  • a signal transmission method is provided, and the method may be executed by a receiving end device (such as a terminal device, or a network device), or may also be executed by a component of the receiving end device (such as a chip or a circuit) , which is not limited.
  • a receiving end device such as a terminal device, or a network device
  • a component of the receiving end device such as a chip or a circuit
  • the method may include: receiving a radio frequency signal, the radio frequency signal is generated by modulating information with at least a first frequency and a second frequency, the information is mapped on a target frequency, and the target frequency is associated with at least the first frequency and the second frequency ; Process the radio frequency signal to determine the target frequency; demodulate the signal on the target frequency to obtain information.
  • the receiving device after receiving the radio frequency signal, the receiving device can determine the target frequency because the information is mapped to the target frequency, and then demodulate the signal on the target frequency to obtain the information mapped on the target frequency.
  • an appropriate target frequency can be selected according to actual needs, which is applicable to more transmission scenarios and realizes transmission Signal flexibility. For example, if you want to reduce the power consumption of the receiving device, you can choose a smaller target frequency, which not only meets the needs of transmitting signals on the radio frequency, but also demodulates the signal on the target frequency with a smaller frequency. The signal can also meet the requirements of reducing the power consumption of the receiving end.
  • ⁇ F represents the target frequency
  • F 1 represents the first frequency
  • F 2 represents the second frequency
  • x and y are positive integers.
  • the target frequency is a frequency difference between the first frequency and the second frequency.
  • the first frequency satisfies any of the following: the first frequency is a default value; or, the frequency domain resource and/or time between the first frequency and the first link Related to domain resources, the first link is a link used to transmit radio frequency signals; or, the first frequency is configured by a network device.
  • demodulating the signal on the target frequency to obtain information includes: demodulating the signal on the target frequency, and obtaining information according to a mapping relationship, where the mapping relationship is used to represent the target frequency Relationship to bits of information.
  • the modulation manner of the radio frequency signal is a modulation manner of multi-frequency frequency shift keying or a modulation manner of orthogonal frequency division multiplexing.
  • the method before receiving the radio frequency signal, the method further includes: receiving one or more of the following information: frequency domain resources of the first link, time domain resources of the first link resources, the frequency domain position of the target frequency, the resolution of the target frequency, the modulation order, the frequency domain position of the first frequency, and the candidate frequency domain position of the second frequency; wherein, the first link is the link used for transmitting radio frequency signals road.
  • the first frequency and the second frequency are located at positions other than the following frequency domain positions: the lowest numbered N1 subcarriers in the bandwidth used by the first link and/or Or the highest numbered N2 subcarriers, the first link is the link used to transmit radio frequency signals, and N1 and N2 are integers greater than 1 or equal to 1.
  • a signal transmission method is provided, and the method may be executed by a sending end device (such as a terminal device, or a network device), or may also be executed by a component (such as a chip or a circuit) of the sending end device , which is not limited.
  • a sending end device such as a terminal device, or a network device
  • a component such as a chip or a circuit
  • the method may include: determining the number of one or two subcarriers according to the information to be transmitted; mapping the information to be transmitted on one or two subcarriers to obtain a frequency domain signal.
  • the method further includes: sending one or more of the following information: frequency domain resources of the first link, positions of multiple subcarriers, frequency resolution, modulation order; wherein, the first link is a link used to transmit the transmit signal.
  • the frequency domain resources of the first link include one or more of the following: bandwidth used for transmitting signals on the first link, The frequency position used for transmitting signals on the upper link, and the subcarrier spacing used for transmitting signals on the first link.
  • a communication device configured to execute the method in any possible implementation manner of the foregoing first aspect to the third aspect.
  • the apparatus may include a unit and/or module for executing the method in any possible implementation manner of the first aspect to the third aspect, such as a processing unit and/or a communication unit.
  • the apparatus is a communication device (such as a sending-end device, and another example is a receiving-end device).
  • the communication unit may be a transceiver, or an input/output interface; the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the apparatus is a chip, a chip system, or a circuit used in a communication device (such as a sending device, or a receiving device).
  • a communication device such as a sending device, or a receiving device.
  • the communication unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit, etc.
  • the processing unit may be at least one processor, processing circuit or logic circuit, etc.
  • the above-mentioned sending end device is a network device or a terminal device.
  • the above receiving end device is a terminal device or a network device.
  • a communication device which includes: at least one processor, configured to execute a computer program or instruction stored in a memory, so as to execute the method in any possible implementation manner of the first aspect to the third aspect above .
  • the apparatus further includes a memory for storing computer programs or instructions.
  • the device further includes a communication interface, through which the processor reads the computer program or instructions stored in the memory.
  • the apparatus is a communication device (such as a sending-end device, and another example is a receiving-end device).
  • the apparatus is a chip, a chip system, or a circuit used in a communication device (such as a sending-end device, or a receiving-end device).
  • the above-mentioned sending end device is a network device or a terminal device.
  • the above receiving end device is a terminal device or a network device.
  • the present application provides a processor configured to execute the method provided in the foregoing aspects.
  • the processor's output and reception, input and other operations can also be understood as the sending and receiving operations performed by the radio frequency circuit and the antenna, which is not limited in this application.
  • a computer-readable storage medium where the computer-readable medium stores program code for execution by a device, and the program code includes a method for executing any one of the possible implementation manners of the first aspect to the third aspect above. method.
  • a computer program product including instructions is provided, and when the computer program product is run on a computer, the computer is made to execute the method in any possible implementation manner of the above first aspect to the third aspect.
  • a communication system including the aforementioned sending end device and receiving end device.
  • FIG. 1 is a schematic diagram of a wireless communication system 100 applicable to an embodiment of the present application.
  • Fig. 2 is a schematic diagram of the main circuit and the wake-up circuit.
  • FIG. 3 is a schematic diagram of a waveform when a signal is modulated by OOK.
  • Fig. 4 is a schematic diagram when the wake-up signal is modulated by FSK.
  • Fig. 5 is a schematic diagram of a signal transmission method provided according to an embodiment of the present application.
  • Fig. 6 is a schematic diagram of DT-FSK modulation provided according to an embodiment of the present application.
  • Fig. 7 is a schematic flowchart of a method for signal transmission provided according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a fourth-order DT-FSK modulated signal provided according to an embodiment of the present application.
  • Fig. 9 is a schematic flowchart of a method for signal transmission according to another embodiment of the present application.
  • FIG. 10 is a schematic diagram of signal processing at a receiving end according to an embodiment of the present application.
  • Fig. 11 is a schematic diagram of the time domain waveform and frequency domain components of the signal after square rate detection.
  • Fig. 12 is a schematic diagram of obtaining a difference frequency signal by using a low-pass filter applicable to the embodiment of the present application.
  • Fig. 13 is a schematic diagram of another signal transmission method provided according to an embodiment of the present application.
  • Fig. 14 is a schematic diagram of generating an FSK signal based on an OFDM transmitter according to an embodiment of the present application.
  • Fig. 15 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Fig. 16 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • the technical solution provided by this application can be applied to various communication systems, such as: the fifth generation (5th generation, 5G) or new radio (new radio, NR) system, long term evolution (long term evolution, LTE) system, LTE frequency division Duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, etc.
  • 5G fifth generation
  • NR new radio
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division Duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • 6G sixth generation
  • the technical solution provided by this application can also be applied to device to device (device to device, D2D) communication, vehicle to everything (vehicle-to-everything, V2X) communication, machine to machine (machine to machine, M2M) communication, machine type Communication (machine type communication, MTC), and Internet of things (internet of things, IoT) communication system or other communication systems.
  • D2D device to device
  • V2X vehicle-to-everything
  • M2M machine to machine
  • M2M machine type Communication
  • MTC machine type communication
  • IoT Internet of things
  • the terminal equipment in the embodiment of the present application may also be referred to as user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal , wireless communication device, user agent, or user device.
  • user equipment user equipment
  • UE user equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal , wireless communication device, user agent, or user device.
  • a terminal device may be a device that provides voice/data to a user, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some terminals are: mobile phone (mobile phone), tablet computer, notebook computer, palmtop computer, mobile internet device (mobile internet device, MID), wearable device, virtual reality (virtual reality, VR) device, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, smart grid Wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, cellular phones, cordless phones, session initiation protocol , SIP) phones, wireless local loop (wireless local loop, WLL) stations, personal digital assistants (personal digital assistant, PDA), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, Wearable devices, terminal devices in a 5G network, or terminal devices in a future evolving public land mobile network (PLMN), etc., are not limited in this
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the device for realizing the function of the terminal device may be the terminal device, or may be a device capable of supporting the terminal device to realize the function, such as a chip system or a chip, and the device may be installed in the terminal device.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the network device in this embodiment of the present application may be a device for communicating with a terminal device, and the network device may also be called an access network device or a wireless access network device, for example, the network device may be a base station.
  • the network device in this embodiment of the present application may refer to a radio access network (radio access network, RAN) node (or device) that connects a terminal device to a wireless network.
  • radio access network radio access network, RAN node (or device) that connects a terminal device to a wireless network.
  • the base station can broadly cover various names in the following, or replace with the following names, such as: Node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB, gNB), relay station, Access point, transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), primary station, secondary station, multi-standard wireless (motor slide retainer, MSR) node, home base station, network controller, access point Ingress node, wireless node, access point (access point, AP), transmission node, transceiver node, baseband unit (baseband unit, BBU), remote radio unit (remote radio unit, RRU), active antenna unit (active antenna) unit, AAU), radio head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning nodes, etc.
  • NodeB Node B
  • evolved base station evolved NodeB, eNB
  • a base station may be a macro base station, a micro base station, a relay node, a donor node, or the like, or a combination thereof.
  • a base station may also refer to a communication module, modem or chip used to be set in the aforementioned equipment or device.
  • the base station can also be a mobile switching center, a device that assumes the function of a base station in D2D, V2X, and M2M communications, a network-side device in a 6G network, and a device that assumes the function of a base station in a future communication system.
  • Base stations can support networks of the same or different access technologies. The embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • Base stations can be fixed or mobile.
  • a helicopter or drone can be configured to act as a mobile base station, and one or more cells can move according to the location of the mobile base station.
  • a helicopter or drone may be configured to serve as a device in communication with another base station.
  • the network device mentioned in the embodiment of the present application may be a device including CU, or DU, or a device including CU and DU, or a control plane CU node (central unit-control plane, CU -CP)) and the user plane CU node (central unit-user plane (CU-UP) of the user plane) and the equipment of the DU node.
  • CU central unit-control plane
  • CU-UP central unit-user plane
  • Network equipment and terminal equipment can be deployed on land, including indoors or outdoors, hand-held or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the air.
  • the scenarios where the network device and the terminal device are located are not limited.
  • FIG. 1 Firstly, a brief introduction of the network architecture applicable to this application is made in conjunction with FIG. 1 , as follows.
  • Fig. 1 shows a schematic diagram of a wireless communication system 100 applicable to the embodiment of the present application.
  • the wireless communication system 100 may include at least one network device, such as the network device 110 shown in Figure 1, and the wireless communication system 100 may also include at least one terminal device, such as the terminal device 120 shown in Figure 1 . Both the network device and the terminal device can be configured with multiple antennas, and the network device and the terminal device can communicate using the multi-antenna technology.
  • the wireless communication system 100 may also support a sidelink (sidelink) communication technology, and sidelink communication may be performed between multiple terminal devices (not shown in FIG. 1 ).
  • sidelink sidelink
  • the network device when the network device communicates with the terminal device, the network device may manage one or more cells, and there may be an integer number of terminal devices in one cell.
  • the network device 110 and the terminal device 120 form a single-cell communication system, and the cell is denoted as cell #1 without loss of generality.
  • the network device 110 may be a network device in cell #1, or, the network device 110 may serve a terminal device (such as the terminal device 120) in cell #1.
  • a cell may be understood as an area within the wireless signal coverage of the network device.
  • FIG. 1 is only a simplified schematic diagram for easy understanding, and the wireless communication system 100 may also include other network devices or other terminal devices, which are not shown in FIG. 1 . It should also be understood that the embodiments of the present application may be applicable to any communication scenario where the sending end device communicates with the receiving end device.
  • power saving of terminal equipment is one of the important goals pursued.
  • the battery life of some forms of terminal equipment affects the user experience; some forms of terminal equipment (such as wireless industrial sensors) are designed to be difficult due to the difficulty of battery replacement.
  • Such terminal equipment can work for a long time without changing the battery. Therefore, power saving of terminal equipment is an aspect that needs to be considered in wireless communication technology.
  • the terminal equipment In order to realize the power saving of the terminal equipment, in the wireless communication system, the terminal equipment is usually allowed to work in different modes when different service requirements are required. For example, when the terminal device needs to transmit data, it works in a connected state (or called a connection mode), and at this time, the terminal device and the network device transmit data. When the terminal device works in the connected state, the power consumption is relatively high. For another example, when the terminal device does not need to transmit data, it works in an idle (idle) state, and at this time the terminal device will allow the circuit to enter a sleep state. For example, the terminal device can periodically check whether there is data sent to itself, and if there is data, it will enter the connection state, otherwise it will remain in the idle state and continue to sleep. When the terminal device works in an idle state, the power consumption is low.
  • the terminal equipment may include a main circuit and a wake-up circuit. The following briefly introduces the main circuit and the wake-up circuit.
  • Wake-up circuit or called wake up receiver (wake up receiver, WUR) or wake-up module, which can be understood as a circuit used by terminal equipment in an idle state, or as a separate low-power small circuit.
  • the small circuit with low power consumption can be implemented with a single small circuit or chip with a simple structure, and its power consumption is low.
  • the signal received by the terminal device using the wake-up circuit may be called a wake up signal/radio (WUS/WUR), for example.
  • WUS/WUR wake up signal/radio
  • the wake-up circuit is only named for distinction, and its specific name does not limit the protection scope of the present application.
  • the wake-up circuit can also be described as the first circuit (or first module).
  • the signal received by the terminal device using the wake-up circuit can be referred to as being transmitted on the wake-up link, where the wake-up link represents a connection relationship between the terminal device and the network device, and is a logical concept rather than a physical entity.
  • the wake-up link is only named for distinction, and its specific name does not limit the protection scope of the present application. Without loss of generality, the wake-up link is described as the first link in the embodiment of the present application. It should also be understood that the naming of the wake-up signal is only an example, and the present application does not limit the naming thereof.
  • Main circuit also known as the main receiver or main module, which can be understood as the circuit used by the terminal device to transmit data normally, or the circuit used by the terminal device to transmit data in the connected state. When terminal equipment uses the main circuit to transmit data, it consumes a lot of power. It can be understood that the main circuit is only named for distinction, and its specific name does not limit the protection scope of the present application. For example, without loss of generality, the main circuit can also be described as a second circuit (or a second module). The main circuit is described uniformly below.
  • the signal received by the terminal device using the main circuit can be said to be transmitted on the main link, where the main link represents a connection relationship between the terminal device and the network device, and is a logical concept rather than a physical entity. It can be understood that the main link is only named for distinction, and its specific name does not limit the protection scope of the present application. Without loss of generality, the main link is described as the second link in the embodiment of the present application.
  • the signal transmitted by the terminal device using the wake-up circuit is recorded as a wake-up signal
  • the signal transmitted by the terminal device using the main circuit is recorded as a data signal
  • FIG. 2 shows a schematic diagram of the main circuit and the wake-up circuit.
  • the terminal device can receive (or detect) a wake-up signal through the wake-up circuit, and the terminal device can receive the data signal through the main circuit. It is assumed that the terminal device receives a wake-up signal through a wake-up circuit. If the terminal device does not detect the wake-up signal, it will continue to use the wake-up circuit to receive the wake-up signal, and the main circuit can be in the off state (or sleep state); if the terminal device detects the wake-up signal, it will trigger the wake-up of the main circuit, that is, the main circuit is in / Switch to an open state (or called a working state, or called an active state). After the main circuit is turned on, the terminal equipment can transmit data signals through the main circuit.
  • the wake-up signal can be modulated by on off key (OOK) or frequency shift keyed (FSK).
  • OSK on off key
  • FSK frequency shift keyed
  • OOK The information is modulated by whether the signal is sent or not, and the corresponding wake-up circuit can receive the signal by means of envelope detection.
  • the OOK modulation technology can realize demodulation with a receiver with very low complexity, so it can realize the low power consumption goal of the wake-up circuit.
  • each bit may correspond to a symbol (symbol).
  • a symbol may also be called a chip (chip), or may be called other names, and there is no limitation here.
  • bit (bit) when the bit (bit) is 1, there is a signal sent within the symbol length (that is, the signal transmission power within the symbol length is not 0); when the bit is 0, no signal is sent within the symbol length (that is, the symbol length The transmit power of the internal signal is 0). Or it can also be understood that in OOK modulation, if energy is sent, it represents "1", and if energy is not sent, it represents "0".
  • FIG. 3 shows a schematic diagram of a waveform when a signal is modulated by OOK.
  • the waveform shown in FIG. 3 can represent four bits of "0100".
  • the communication system generally uses a certain frequency (frequency) for transmission, and the transmission signal needs to be modulated on a carrier (the sinusoidal signal in FIG. 3 represents the carrier).
  • the receiving end detects the envelope (or energy) of the received signal, and judges whether the transmitted symbol is "0" or "1", thereby completing demodulation.
  • the receiver When the wake-up signal adopts OOK modulation, the receiver has a simple structure and low power consumption, which can achieve the goal of saving power for the wake-up circuit. But the transfer rate is lower. Specifically, on the one hand, when the signal is modulated by OOK, each symbol can only transmit 1 bit. On the other hand, considering the multipath delay problem of the wireless communication system, the time length of each symbol needs to be long enough to reduce the intersymbol interference caused by the multipath delay. Therefore, if the signal adopts OOK modulation, each symbol carries 1 bit of information, and the time length of each symbol is long, the transmission rate will be very low.
  • FSK It is a modulation technique that modulates information on a carrier frequency.
  • FIG. 4 shows a schematic diagram when the wake-up signal is modulated by FSK.
  • a frequency discrimination circuit can be used to detect the frequency of the received signal. If the detected signal frequency is f 1 , it is judged that the received bit is 0; if the detected signal frequency is f 2 , it is judged that the received bit is 1.
  • the example shown in FIG. 4 can be called 2-FSK, that is, there are two modulation frequencies (ie, f 1 and f 2 ), and at this time, one symbol carries one bit.
  • FSK can be extended to carry more bits, for example, 4 different frequencies can be used for FSK modulation (4-FSK), then one symbol can carry 2 bits of information, for example, use f 1 to represent the bit "00", f 2 represents bit “01”, f 3 represents bit "10", and f 4 represents bit "11".
  • FSK modulation can achieve a higher transmission rate, that is, when the wake-up signal adopts FSK modulation, the transmission rate can be increased, but it is difficult to achieve the goal of saving power for the wake-up circuit.
  • the receiving end needs to demodulate the frequency.
  • the radio frequency may be on the order of tens of megahertz (MHz) to several gigahertz (GHz).
  • MHz megahertz
  • GHz gigahertz
  • f 1 in the above example is 2GHz
  • a frequency discrimination circuit operating at 2GHz is required.
  • the frequency discrimination circuit working at radio frequency will have higher power consumption, and its accuracy is worse than that of the frequency discrimination circuit working at low frequency, so it is difficult to achieve the goal of saving power for the wake-up circuit.
  • the present application proposes a modulation signal scheme, by transmitting signals of two or more different radio frequency frequencies within one symbol, and mapping the information to be transmitted to the target frequency associated with the different radio frequency frequencies (such as the frequency difference between different radio frequencies), so that it is not only applicable to communication systems, that is, using radio frequencies to transmit signals, but also can select a target frequency for mapping information according to actual needs. For example, if you want to reduce the power consumption of the receiving end, you can make the target frequency lower, so that through a certain receiver structure design, the frequency discrimination circuit can work at a lower target frequency, and then you can take into account low power consumption and Transmission rate.
  • FIG. 5 is a schematic diagram of a signal transmission method 500 provided by an embodiment of the present application.
  • Method 500 may include the following steps.
  • the sending end device modulates the information to be transmitted by using at least a first frequency and a second frequency to generate a radio frequency signal, where the information to be transmitted is mapped on a target frequency, and the target frequency has a frequency equal to at least the first frequency and the second frequency connection relation.
  • the first frequency and the second frequency may represent modulation frequencies, or represent frequencies of two signals transmitted within one symbol.
  • signals of two different frequencies may be transmitted within one symbol, or signals of more than two different frequencies may also be transmitted.
  • the target frequency indicates the frequency of mapping information or data.
  • the target frequency is different from the modulation frequency (ie at least two frequencies mentioned above).
  • the target frequency is less than the modulation frequency.
  • the sending end device may be a network device, or may also be a terminal device.
  • the sending end device sends a radio frequency signal.
  • the receiver device receives the radio frequency signal.
  • the receiving end device may be a network device, or may also be a terminal device.
  • the radio frequency signal may be, for example, a wake-up signal.
  • the sending end device is a network device and the receiving end device is a terminal device.
  • the network device sends a wake-up signal to the terminal device.
  • the terminal device receives the wake-up signal.
  • a wake-up signal is received on a link.
  • the transmitting device can map the information to be transmitted to the target frequency, and use at least two frequencies, such as the first frequency and the second frequency, to modulate the information to be transmitted to generate a radio frequency signal, and then send the radio frequency Signal.
  • at least two frequencies such as the first frequency and the second frequency
  • the transmitting device can map the information to be transmitted to the target frequency, and use at least two frequencies, such as the first frequency and the second frequency, to modulate the information to be transmitted to generate a radio frequency signal, and then send the radio frequency Signal.
  • a smaller target frequency which not only meets the needs of transmitting signals on the radio frequency frequency, but also demodulates the signal on the target frequency with a smaller frequency , can also meet the requirement of reducing the power consumption of the receiving end.
  • the target frequency is associated with at least a first frequency and a second frequency.
  • the target frequency has an association relationship with at least the first frequency and the second frequency, which may indicate that the target frequency is related to the modulation frequency, so that the target frequency can be determined through the association relationship between the target frequency and the modulation frequency, and then mediate information on the target frequency; or
  • the remaining part of the modulation frequency can be determined according to the target frequency and part of the modulation frequency, and then the radio frequency signal can be generated using the modulation frequency.
  • the target frequency, the first frequency, and the second frequency satisfy Formula 1.
  • f represents a function
  • ⁇ F represents a target frequency
  • F 1 represents a first frequency
  • F 2 represents a second frequency.
  • the above formula 1 may be predefined by a standard, and may also be configured by the network side. If it is configured by the network side, the network side may send Formula 1 to the terminal device.
  • x and y are positive integers.
  • the target frequency is the frequency difference between the first frequency and the second frequency.
  • the target frequency is the absolute value of the frequency difference between the first frequency and the second frequency.
  • the modulation frequency includes: a first frequency F 1 , a second frequency F 2 , and a third frequency F 3
  • z is a positive integer.
  • the first frequency satisfies any of the following: the first frequency is a default value; or, the first frequency is related to frequency domain resources and/or time domain resources of the first link, and the first link is for transmitting radio frequency signals The link used; or, the first frequency is configured for the network device.
  • the first frequency is a default value; or, the first frequency is related to frequency domain resources and/or time domain resources of the first link, and the first link is for transmitting radio frequency signals The link used; or, the first frequency is configured for the network device.
  • the first frequency may be a fixed value F (or called a default value F).
  • F may be predefined by a standard, and may also be configured by the network side.
  • the network side may send the configured F to the terminal device.
  • the first frequency is related to frequency domain resources of the first link.
  • the frequency domain resource of the first frequency and the first link satisfies Formula 2.
  • f represents a function
  • F 1 represents a first frequency
  • F c represents a frequency domain resource of the first link, such as a carrier frequency.
  • the above formula 2 may be predefined by a standard, and may also be configured by the network side. Wherein, if configured by the network side, the network side may send Formula 2 to the terminal device.
  • f is used to represent the function, which does not limit the function f to be the same in formula 1 and formula 2, which will not be described in detail below.
  • ⁇ 1 may be predefined by a standard, and may also be configured by the network side. Wherein, if configured by the network side, the network side may send the configured ⁇ 1 to the terminal device.
  • the subcarrier used by the first frequency is the subcarrier with the lowest number of the first link.
  • the subcarrier used by the first frequency is the subcarrier with the highest number of the first link.
  • the subcarrier used by the first frequency is the central subcarrier of the first link.
  • the subcarrier used by the first frequency is the subcarrier numbered N of the first link, and the N may be predefined by a standard, or configured by the network side and sent to the terminal device.
  • the first frequency is related to time domain resources of the first link.
  • the time domain resource of the first frequency and the first link satisfies Formula 3.
  • f represents a function
  • F 1 represents a first frequency
  • t represents a time domain resource of the first link, such as a symbol (symbol).
  • the above formula 3 may be predefined by a standard, and may also be configured by the network side. Wherein, if configured by the network side, the network side may send Formula 3 to the terminal device.
  • the first frequency may vary with time, for example determined according to a time-hopping sequence.
  • ⁇ 2 may be predefined by a standard, and may also be configured by the network side. Wherein, if configured by the network side, the network side may send the configured ⁇ 2 to the terminal device.
  • the first frequency is related to the time domain resource of the first link and the frequency domain resource of the first link.
  • the first frequency, the time domain resources of the first link, and the frequency domain resources of the first link satisfy Formula 4.
  • the above formula 4 may be predefined by a standard, and may also be configured by the network side. Wherein, if configured by the network side, the network side may send Formula 4 to the terminal device.
  • the first frequency may vary with time and is related to the frequency domain resource of the first link.
  • the first frequency is mainly introduced above in combination with several possible situations, and it can be understood that the second frequency may also be applicable to the above-mentioned several situations, which is not limited thereto.
  • the method 500 further includes: the sending end device determines two frequencies that need to be modulated.
  • the second frequency is determined according to the target frequency and the first frequency.
  • the sending end device may determine the first frequency; and determine the second frequency according to the target frequency and the first frequency, and the association relationship between the target frequency and the first frequency and the second frequency.
  • the size of the target frequency for example, may be predefined by the protocol, or may also be configured by the network side, and is not limited.
  • the magnitude of the first frequency for example, can be determined according to the above-mentioned several situations.
  • the transmitting end device uses at least the first frequency and the second frequency to modulate the information to be transmitted, including: the transmitting end device adopts a modulation method of multi-frequency frequency shift keying or a modulation method of orthogonal frequency division multiplexing , using at least the first frequency and the second frequency to modulate the information to be transmitted.
  • modulating the information to be transmitted by using at least the first frequency and the second frequency includes: modulating the information to be transmitted by using at least the first frequency and the second frequency in a modulation manner of multi-frequency frequency shift keying.
  • the multi-frequency frequency shift keying may be dual tone-frequency shift keying (dual tone-frequency shift keying, DT-FSK), which can be understood as an improved FSK.
  • the modulation method of FSK is: a signal of one frequency is transmitted in one symbol, and the information to be transmitted is modulated by this frequency;
  • the modulation method of multi-frequency frequency shift keying is: two signals are transmitted in one symbol. Signals of one or more different frequencies, and the information to be transmitted is modulated by the target frequency associated with the two or more different frequencies.
  • multi-frequency frequency shift keying (such as DT-FSK) is only a naming for distinction, and the naming does not limit the scope of protection of the embodiments of the present application.
  • modulating the information to be transmitted by using at least the first frequency and the second frequency includes: modulating the information to be transmitted by using at least the first frequency and the second frequency in an orthogonal frequency division multiplexing modulation manner.
  • the wake-up signal is modulated by using at least the first frequency and the second frequency through the modulation method of orthogonal frequency division multiplexing.
  • at least two subcarriers selected An example of the frequency and the second frequency) to send radio frequency signals other sub-carriers can send "0", that is, no energy is sent.
  • the OFDM modulation mode defines the modulation mode of the sending end device, but does not limit the demodulation mode of the receiving end device.
  • the sending end device when it sends a radio frequency signal, it sends the radio frequency signal on the two selected subcarriers, and the information is mapped on the target subcarrier (ie, an example of the target frequency) associated with the two subcarriers, and the other subcarriers "0" can be sent on the carrier, that is, no energy is sent; after receiving the signal, the receiving end determines the target subcarrier and demodulates the target subcarrier to obtain information on the target subcarrier.
  • the target subcarrier ie, an example of the target frequency
  • the information to be transmitted is mapped to the target frequency according to the mapping relationship.
  • mapping relationship is used to represent the relationship between the target frequency and the bits of the information to be transmitted.
  • the mapping relationship can be predefined by the standard, or can be configured by the network side. Wherein, if configured by the network side, the network side may send the configured mapping relationship to the terminal device.
  • mapping relationship may exist in the form of Table 1.
  • Target frequency ⁇ F (unit: MHz) 00 1 01 2 10 3 11 4
  • Table 1 assuming that the bit string to be transmitted is 10101101, every two consecutive bits are mapped to a target frequency.
  • mapping relationship may exist in the form of Table 2.
  • the target frequency in Table 1 is in MHz
  • the target frequency in Table 2 is in subcarriers.
  • Target frequency ⁇ F in subcarriers 000 1x4 001 2x4 010 3x4 011 4x4 100 5x4 101 6x4 110 7x4 111 8x4
  • Table 1 or Table 2 is only illustrative and not limiting, and any modification belonging to Table 1 or Table 2 is applicable to this application.
  • the target frequency ⁇ F in Table 1 or Table 2 above may also be replaced by the first frequency and the second frequency.
  • the number of values of the target frequency may be more, so the amount of bits to be transmitted may also be more.
  • the method 500 further includes: the receiving end device receives parameter information of the first link.
  • the sending end device sends the parameter information of the first link to the receiving end device.
  • the parameter information of the first link may also be predefined by a standard.
  • the parameter information of the first link may represent parameter information related to the first link, or may represent parameter information related to the transmission of the wake-up signal on the first link.
  • the parameter information of the first link may include one or more of the following information: frequency domain resources of the first link, time domain resources of the first link, frequency domain position of the target frequency, resolution of the target frequency , the modulation order, the frequency domain position of the first frequency, and the candidate frequency domain position of the second frequency.
  • Frequency domain resource of the first link refers to the frequency domain resource allocated to the first link, or the frequency domain resource that can be used by the wake-up signal.
  • the frequency domain resources of the first link may include but not limited to one or more of the following: the bandwidth used for transmitting signals on the first link, the frequency used for transmitting signals on the first link Field position, the subcarrier spacing used to transmit the signal on the first link.
  • the frequency domain position used for signal transmission on the first link may include one or more of the following: a start frequency position, a center frequency position, and an end frequency position.
  • the frequency domain position used for signal transmission on the first link may include the position of a resource block (resource block, RB), such as the starting position of the RB and the number of RBs.
  • resource block resource block
  • FIG. 6 is a schematic diagram of DT-FSK modulation provided according to an embodiment of the present application.
  • the bandwidth used for signal transmission on the first link is the width of 3 physical resource blocks (physical resource blocks, PRBs).
  • PRBs physical resource blocks
  • One PRB may consist of 12 subcarriers, that is, the frequency domain resources used for transmitting signals on the first link are 36 subcarriers.
  • the frequency domain position used for signal transmission on the first link may include, for example, the distance between the frequency spectrum used by the first link and the starting frequency of the system bandwidth, for example, 100 PRB.
  • Time-domain resource of the first link indicates the time-domain resource allocated to the first link, or indicates the time at which a wake-up signal can be detected.
  • frequency domain resources allocated to the first link can be used on the time domain resources.
  • the above-mentioned 3 PRBs are used to receive the wake-up signal, and in other time, the 3 PRBs can be used for other services.
  • the frequency domain position of the first frequency may include the position of the RB where the first frequency is located and the subcarrier number of the first frequency in the RB. Taking FIG. 6 as an example, the frequency domain position of the first frequency may be subcarrier 1, for example.
  • Candidate frequency domain position of the second frequency indicates a possible frequency domain position of the second frequency. For example, when transmitting a signal, some frequencies in the candidate frequency domain positions may be used as modulation frequencies.
  • the black filled subcarriers i.e. subcarriers 5, 9, 13, 17, 21, 25, 29, 33
  • the frequency domain position of the target frequency it means the frequency difference between two adjacent target frequencies.
  • the first frequency and the second frequency are located outside the following frequency domain positions: the lowest-numbered N1 subcarriers and/or the highest-numbered N2 subcarriers in the bandwidth used by the first link, where N1 and N2 are An integer greater than or equal to 1.
  • the N1 subcarriers with the lowest number and/or the N2 subcarriers with the highest number in the bandwidth used by the first link may be called edge frequency domain positions, or edge subcarriers, or guard subcarriers .
  • edge subcarriers are taken as an example for description below.
  • the first frequency and the second frequency are located outside the edge subcarriers (such as N1 subcarriers and N2 subcarriers) in the bandwidth used by the first link. Instead, the first frequency and the second frequency are located in the first link.
  • the position of the middle subcarrier in the bandwidth used by the link for example, the first frequency and the second frequency are located at the positions of the middle N3 subcarriers in the bandwidth used by the first link, N3 is an integer greater than 1 or equal to 1, And N3 is smaller than the total number of subcarriers in the bandwidth used by the first link.
  • N1 may be 1 or 2, for example.
  • N2 may be 1 or 2, for example.
  • the wake-up signal when the wake-up signal is transmitted on the first link, the wake-up signal is transmitted using subcarriers other than edge subcarriers. In this way, no wake-up signal is transmitted on the edge subcarriers in the bandwidth of the first link, and the edge subcarriers can be used as a guard interval between the wake-up signal and the data signal to reduce subcarrier interference between the wake-up signal and the data signal.
  • guard subcarriers are set on both sides of the bandwidth allocated to the first link, that is, when the wakeup signal is transmitted on the first link, subcarriers other than N1 subcarriers and N2 subcarriers are used to transmit the wakeup signal.
  • the bandwidth used to transmit signals on the first link is 3 PRBs, corresponding to 36 subcarriers, where subcarrier 0, subcarrier 34, and subcarrier 35 at the edge can be used as guard subcarriers , that is, the first frequency and the second frequency may be located in subcarriers 0-35, except subcarrier 0, subcarrier 34, and subcarrier 35.
  • the target frequency is the frequency difference between the first frequency and the second frequency
  • the modulation mode is DT-FSK as an example.
  • Fig. 7 is a schematic flowchart of a method for signal transmission provided according to an embodiment of the present application. As shown in FIG. 7 , the method 700 includes the following steps.
  • the sending end device maps the information to be transmitted to a target frequency.
  • the target frequency may be, for example, a frequency difference between the first frequency and the second frequency.
  • the fourth-order DT-FSK can have 4 optional target frequencies.
  • the information to be transmitted is mapped to the target frequency according to the mapping relationship.
  • the mapping relationship may exist in the form of Table 1. Regarding the mapping relationship, reference may be made to the above description, and details will not be repeated here.
  • the sending end device determines two frequencies that need to be modulated according to the target frequency.
  • the two frequencies that need to be modulated represent the first frequency F 1 and the second frequency F 2 .
  • F 1 f(t)
  • F 1 f(t, F c )
  • the sending end device generates transmission signals according to the two frequencies that need to be modulated.
  • the transmit signal may consist of the two modulated frequencies determined in step 720 .
  • the transmit signal satisfies Equation 5.
  • x(t) represents a transmitted symbol
  • F 1 represents a first frequency
  • t represents time
  • F 2 represents a second frequency
  • each symbol of the DT-FSK modulation technology can carry 2 bits or more of information.
  • the amount of bits carried by each symbol can be based on The number of values of the target frequency is determined. For example, assuming that there are 4 values of the target frequency, each symbol can carry 2 bits of information, and the 4 target frequencies respectively carry: bit “00", bit "01”, bit “10", bit “11” ;For another example, assuming that there are 8 values of the target frequency, each symbol can carry 3 bits of information, and the 8 target frequencies respectively carry: bit “000”, bit “001”, bit “010”, bit “ 011”, bit “100”, bit "101", bit "110”, bit “111".
  • the DT-FSK modulation technology provided in the embodiment of the present application can increase the transmission rate.
  • the DT-FSK modulation technology can be received by a low-power receiver. The specific analysis will be described in detail in conjunction with Figure 10 later.
  • Fig. 9 is a schematic flowchart of a method for signal transmission according to another embodiment of the present application.
  • the DT-FSK modulation technology can be implemented by combining with an orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) technology.
  • OFDM orthogonal frequency division multiplexing
  • the sending end device determines parameter information of the first link.
  • the parameter information of the first link may be predefined by a standard, and may also be configured by the network side. Wherein, if configured by the network side, the network side may send the parameter information of the first link to the terminal device.
  • the sending end device maps the information to be transmitted to a target frequency.
  • the target frequency may be, for example, a frequency difference between the first frequency and the second frequency.
  • N log 2 M .
  • the information to be transmitted is mapped to the target frequency according to the mapping relationship.
  • the target frequency may be in units of subcarriers, so the mapping relationship may exist in the form of Table 2.
  • the mapping relationship reference may be made to the above description, and details will not be repeated here.
  • the sending end device determines two subcarriers that need to be modulated according to the target frequency.
  • the two frequencies that need to be modulated represent the first frequency F 1 and the second frequency F 2 .
  • the first frequency is related to the frequency domain resource of the first link, for example, the subcarrier used by the first frequency is subcarrier 1.
  • the bit string to be transmitted is 000111101
  • the target frequency first frequency ⁇ second frequency.
  • the sending end device generates a transmission signal according to the two subcarriers that need to be modulated.
  • two frequency modulation signals may be generated according to the two frequencies determined in step 930 to be modulated, and superimposed to generate a DT-FSK signal.
  • the DT-FSK signal can be generated based on the OFDM transmitter.
  • the OFDM transmitter is used to modulate the signal, the signal is sent on the selected two subcarriers, and "0" is sent on the other subcarriers, and then the fast Fourier transform (FFT) is used to realize modulation of the signal.
  • the transmitted signal is a DT-FSK signal, or it can also be understood as an OFDM signal modulated with two subcarriers.
  • the transmit power of a subcarrier is P 1
  • the transmit power P wur,sc of each subcarrier used to transmit the wake-up signal can be calculated by Equation 6.
  • N sc represents the number of subcarriers included in each PRB, for example, 12.
  • N wur,RB indicates the number of RBs allocated to the first link
  • N wur,sc is the number of subcarriers actually modulated by the wake-up signal.
  • the transmit power P wur,sc of each subcarrier used to transmit the wake-up signal may satisfy Equation 7.
  • each symbol of the DT-FSK modulation technology can carry 2 bits or more of information.
  • the amount of bits carried by each symbol can be based on The number of values of the target frequency is determined, for details, please refer to the relevant description above. Therefore, the DT-FSK modulation technology provided in the embodiment of the present application can increase the transmission rate.
  • the DT-FSK modulation technology can be received by a low-power receiver. The specific analysis will be described in detail in conjunction with Figure 10 later.
  • the DT-FSK signal can be generated based on the OFDM transmitter, so that the transmitter can multiplex the OFDM transmitter of the main link to realize DT-FSK modulation of the wake-up signal on the wake-up link.
  • the modulation and transmission of the wake-up signal are introduced above with reference to FIGS. 7 and 9 .
  • the following takes the target frequency as the frequency difference between the first frequency and the second frequency as an example, and uses 10 to introduce the demodulation at the receiving end.
  • FIG. 10 is a schematic diagram of signal processing at a receiving end according to an embodiment of the present application.
  • the processing procedure at the receiving end may include steps.
  • LNA low noise amplifier
  • the square rate detection mainly utilizes the nonlinear characteristics of the device, so that the output signal of the circuit contains the high power component of the input signal.
  • Equation 8 the relationship between the input signal and the output signal processed by square rate detection may satisfy Equation 8.
  • Equation 8 the output signal contains the second power component of the input signal, namely bx 2 (t).
  • FIG. 11 is a schematic diagram of the time-domain waveform and frequency-domain components of the signal after square-rate detection. After the signal is band-pass filtered and amplified at the receiving end, the time-domain waveform of the signal is shown in (a) in Figure 11; after square rate detection, many components will appear in the frequency domain, as shown in (d) in Figure 11 shown.
  • bcos[2 ⁇ (F 1 -F 2 )t] represents the difference between two frequency components, that is, represents the modulated information.
  • a frequency discriminator or called a frequency discrimination circuit
  • FIG. 12 is a schematic diagram of obtaining a difference frequency signal by using a low-pass filter applicable to the embodiment of the present application.
  • a low-pass filter applicable to the embodiment of the present application.
  • ⁇ F
  • of two frequencies is obtained, and the frequency difference is a low-frequency signal.
  • F 1 is 2000MHz and F 2 is 2001MHz
  • ⁇ F
  • the foregoing embodiment is mainly illustrated by taking the target frequency being the frequency difference between the first frequency and the second frequency as an example, which is not limited thereto. If the target frequency, the first frequency, and the second frequency satisfy other association relationships, then for the receiving end, the first frequency and the second frequency can be obtained first, and then according to the target frequency, the first frequency, and the second frequency Correlation relationship, the target frequency can be obtained, and then demodulated on the target frequency.
  • the process shown in FIG. 10 above is an example, and is not limited thereto.
  • more processing steps may be included.
  • the above-mentioned square rate detection can be replaced by other processing, as long as the target frequency ⁇ F can be obtained, and then the frequency discriminator can be made to work on the target frequency ⁇ F, all can be used in the embodiment of the present application.
  • the above-mentioned frequency discriminator may also be replaced with other devices, circuits or modules capable of realizing its functions, such as a phase locked loop (phase locked loop, PLL), which is not limited.
  • PLL phase locked loop
  • the embodiment of the present application also provides a solution, which can generate an FSK signal based on an OFDM transmitter.
  • the following description will be made in conjunction with FIG. 13 .
  • Fig. 13 is a schematic diagram of another signal transmission method provided according to an embodiment of the present application. As shown in FIG. 13 , the method 1300 includes the following steps.
  • the sending end device determines parameter information of the first link.
  • the parameter information of the first link may be predefined by a standard, and may also be configured by the network side. Wherein, if configured by the network side, the network side may send the parameter information of the first link to the terminal device.
  • the parameter information of the first link may represent parameter information related to the first link, or may represent parameter information related to the transmission of the wake-up signal on the first link.
  • the parameter information of the first link may include one or more of the following information: frequency domain resources of the first link, time domain resources of the first link, frequency resolution, FSK The modulation order and the candidate frequency domain position of the frequency.
  • the candidate frequency domain position of the frequency indicates a possible frequency domain position of the transmission information.
  • the sending end device maps the information to be transmitted to a frequency.
  • every N bits in the bit string of the information to be transmitted are mapped to 1 frequency.
  • FIG. 14 is a schematic diagram of generating an FSK signal based on an OFDM transmitter according to an embodiment of the present application.
  • the bit string to be transmitted is 000111101, according to the mapping relationship shown in Table 3, the 1st-3rd bit "000” can be mapped to subcarrier 4, and the 4th-6th bit "111” can be mapped to subcarrier 32 , the 7th-9th bits "101" are mapped to subcarrier 24.
  • the mapping relationship shown in the above Table 3 can be predefined by the standard, and can also be configured by the network side. Wherein, if configured by the network side, the network side may send the configured mapping relationship to the terminal device.
  • Table 3 is only an illustration and not limiting, and any modification belonging to Table 3 is applicable to this application.
  • the sending end device generates an FSK signal according to the frequency that needs to be sent.
  • the FSK signal may be generated based on an OFDM transmitter.
  • an OFDM transmitter is used for signal modulation, a signal is sent on a selected subcarrier, and “0” is sent on other subcarriers, and then FFT is used to realize signal modulation.
  • the transmitted signal is an FSK signal, or it can also be understood as an OFDM signal modulated with one subcarrier.
  • receiving may also be replaced with “detecting” or “reading”.
  • receiving a wakeup signal may also be replaced with “detect a wakeup signal” or “read a wakeup signal”.
  • transmission includes receiving and/or sending.
  • transmitting a signal may include receiving a signal and/or sending a signal.
  • two modulation frequencies are mainly used as examples for illustration, and it can be understood that the present application does not limit the number of modulation frequencies.
  • the number of modulation frequencies may be two or more.
  • the main circuit and the wake-up circuit, and the main link and the wake-up link are used as examples for illustration, and the present application is not limited thereto.
  • “wake-up link/wake-up circuit” may also be replaced with “the first module”, or may also be replaced with “in the first state”, or may also be replaced with “in the first mode”.
  • “transmit a signal on the wake-up link” may also be replaced with “transmit a signal through the first module (or first circuit)”.
  • "Main link/main circuit” may also be replaced with "second module”, or may also be replaced with "in the second state", or may also be replaced with "in the second mode”.
  • "transmit signals on the main link” may also be replaced with "transmit signals through the second module (or second circuit)”.
  • the sending end device may be a network device or a terminal device
  • the receiving end device may be a network device or a terminal device.
  • the sending end device is a network device, and the receiving end device is a terminal device; for another example, the sending end device is a first terminal device, and the receiving end device is a second terminal device; for another example, the sending end device is a first network device, and the receiving end device is a The end device is a second network device; for another example, the sending end device is a terminal device, and the receiving end device is a network device.
  • the methods and operations implemented by the terminal device can also be implemented by components (such as chips or circuits) that can be implemented by the terminal device; in addition, the methods and operations implemented by the network device can also be implemented by It may be implemented by components (such as chips or circuits) that may be used in network equipment, and is not limited.
  • the embodiments of the present application further provide corresponding devices, and the device includes corresponding modules for executing the foregoing method embodiments.
  • the module can be software, or hardware, or a combination of software and hardware. It can be understood that the technical features described in the above method embodiments are also applicable to the following device embodiments.
  • Fig. 15 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the apparatus 1500 includes a transceiver unit 1510 and a processing unit 1520 .
  • the transceiver unit 1510 may be used to implement corresponding communication functions.
  • the transceiver unit 1510 may also be called a communication interface or a communication unit.
  • the processing unit 1520 may be used for data or signal processing.
  • the device 1500 further includes a storage unit, which can be used to store instructions and/or data, and the processing unit 1520 can read the instructions and/or data in the storage unit, so that the device implements the foregoing method embodiments actions of the terminal device.
  • a storage unit which can be used to store instructions and/or data
  • the processing unit 1520 can read the instructions and/or data in the storage unit, so that the device implements the foregoing method embodiments actions of the terminal device.
  • the apparatus 1500 can be used to execute the actions performed by the communication device (such as the sending end device, and the receiving end device) in the above method embodiments.
  • the apparatus 1500 can be a communication device or a component of the communication device
  • the transceiving unit 1510 is used to execute the operations related to the sending and receiving of the communication device (such as the sending end device, and the receiving end device) side in the above method embodiment
  • the processing unit 1520 is used to execute the communication device (such as the sending end device) in the above method embodiment.
  • End device such as receiving end device) side processing-related operations.
  • the processing unit 1520 is used to modulate the information to be transmitted by using at least a first frequency and a second frequency to generate a radio frequency signal , wherein the information to be transmitted is mapped on a target frequency, the target frequency has an association relationship with at least a first frequency and a second frequency, and the transceiver unit 1510 is configured to send a radio frequency signal.
  • the apparatus 1500 can implement the steps or processes corresponding to the execution of the sending end device (such as a network device) in the method embodiment according to the embodiment of the present application, and the apparatus 1500 can include a method for executing the Elements of the method executed by the sending end device (such as a network device) in the embodiment shown in 13.
  • the transceiver unit 1510 is used to receive the radio frequency signal, and the radio frequency signal is obtained by using at least a first frequency and a second frequency pair
  • the information is generated by modulation, the information is mapped on the target frequency, and the target frequency has an association relationship with at least the first frequency and the second frequency
  • the processing unit 1520 is used to process the radio frequency signal and determine the target frequency; demodulate the target frequency on the target frequency Signal, get information.
  • the apparatus 1500 can implement the steps or processes corresponding to the execution of the receiver device (such as the terminal device) in the method embodiment according to the embodiment of the present application, and the apparatus 1500 can include a method for executing the 10. Elements of the method executed by the receiving end device (such as the terminal device) in the embodiment shown in FIG. 13 .
  • the apparatus 1500 here is embodied in the form of functional units.
  • the term "unit” here may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor for executing one or more software or firmware programs (such as a shared processor, a dedicated processor, or a group processor, etc.) and memory, incorporated logic, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • processor for executing one or more software or firmware programs (such as a shared processor, a dedicated processor, or a group processor, etc.) and memory, incorporated logic, and/or other suitable components to support the described functionality.
  • the apparatus 1500 may specifically be the sender device in the above-mentioned embodiments, and may be used to execute various processes and/or steps corresponding to the sender device in the above-mentioned method embodiments ;
  • the apparatus 1500 can be specifically the receiving end device in the above-mentioned embodiments, and can be used to execute each process corresponding to the receiving end device in the above-mentioned method embodiments and/or or steps. To avoid repetition, details are not repeated here.
  • the apparatus 1500 in each of the above solutions has the function of implementing the corresponding steps performed by the device (such as the sending end device or the receiving end device) in the above method.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiver computer), and other units, such as a processing unit, may be replaced by a processor to respectively perform the sending and receiving operations and related processing operations in each method embodiment.
  • transceiver unit 1510 may also be a transceiver circuit (for example, may include a receiving circuit and a sending circuit), and the processing unit may be a processing circuit.
  • the apparatus in FIG. 15 may be the device in the foregoing embodiments, or may be a chip or a chip system, such as a system on chip (system on chip, SoC).
  • the transceiver unit may be an input-output circuit or a communication interface;
  • the processing unit is a processor or a microprocessor or an integrated circuit integrated on the chip. It is not limited here.
  • Fig. 16 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • the device 1600 includes a processor 1610, the processor 1610 is coupled with a memory 1620, the memory 1620 is used for storing computer programs or instructions and/or data, and the processor 1610 is used for executing the computer programs or instructions stored in the memory 1620, or reading the memory 1620
  • the stored data is used to execute the methods in the above method embodiments.
  • processors 1610 there are one or more processors 1610 .
  • the memory 1620 is integrated with the processor 1610, or is set separately.
  • the device 1600 further includes a transceiver 1630 for receiving and/or sending signals.
  • the processor 1610 is configured to control the transceiver 1630 to receive and/or send signals.
  • the apparatus 1600 is used to implement the operations performed by the devices (such as the sending end device and the receiving end device) in the above method embodiments.
  • the processor 1610 is configured to execute the computer programs or instructions stored in the memory 1620, so as to implement related operations of the sending end device (such as a network device) in each method embodiment above.
  • the sending end device such as a network device
  • the processor 1610 is configured to execute the computer programs or instructions stored in the memory 1620, so as to implement related operations of the receiving end device (such as a terminal device) in each method embodiment above.
  • processors mentioned in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and may also be other general purpose processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits ( application specific integrated circuit (ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory and/or a nonvolatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • RAM random access memory
  • RAM can be used as an external cache.
  • RAM includes the following multiple forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), Double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (synchlink DRAM, SLDRAM) and direct Memory bus random access memory (direct rambus RAM, DR RAM).
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module may be integrated in the processor.
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the embodiment of the present application also provides a computer-readable storage medium, on which computer instructions for implementing the methods performed by the device (such as the sending end device, and the receiving end device) in the above method embodiments are stored.
  • the computer program when executed by a computer, the computer can implement the methods performed by the sending end device (such as a network device) in the above method embodiments.
  • the sending end device such as a network device
  • the computer when the computer program is executed by a computer, the computer can implement the methods performed by the receiving end device (such as a terminal device) in each embodiment of the above method.
  • the receiving end device such as a terminal device
  • the embodiment of the present application also provides a computer program product, including instructions, and when the instructions are executed by a computer, the methods performed by the devices (such as the sending end device and the receiving end device) in the above method embodiments are implemented.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer may be a personal computer, a server, or a network device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (SSD), etc.
  • a magnetic medium such as a floppy disk, a hard disk, a magnetic tape
  • an optical medium such as a DVD
  • a semiconductor medium such as a solid state disk (SSD), etc.
  • the above-mentioned available medium includes but Not limited to: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种信号传输的方法和装置。该方法可以包括:发送端设备采用至少第一频率和第二频率对待传输信息进行调制,生成射频信号,其中,待传输信息映射在目标频率上,目标频率与至少第一频率和第二频率具有关联关系;发送射频信号。通过本申请,可以根据实际需求选择合适的目标频率,适用于更多的传输场景,实现传输信号的灵活性。举例来说,若要降低接收端设备的功耗,那么可以选择较小的目标频率,这样不仅可以满足在射频频率上传输信号的需要,而且通过解调频率较小的目标频率上的信号,还可以满足降低接收端功耗的要求。本实施例提供的方法可以应用于通信系统,如5G或NR、LTE、V2X、D2D、M2M、MTC、物联网等。

Description

信号传输的方法和装置
本申请要求于2021年11月09日提交中国专利局、申请号为202111318765.6、申请名称为“一种唤醒信号的调制方法”的中国专利申请的优先权,以及2021年12月22日提交中国专利局、申请号为202111584569.3、申请名称为“信号传输的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种信号传输的方法和装置。
背景技术
终端设备可以通过一个单独的低功耗小电路,如唤醒接收机(wake up receiver,WUR),接收唤醒信号,且主接收机可以处于深度睡眠状态。当终端设备通过WUR检测到唤醒信号后,终端设备触发主接收机的唤醒。主接收机唤醒后,终端设备可以通过主接收机执行数据传输。目前,尚未有方案揭示唤醒信号的调制方式。
发明内容
本申请提供一种信号传输的方法和装置,设计一种唤醒信号的调制方式,可以满足WUR的低功耗要求,还可以提高频谱效率。
第一方面,提供了一种信号传输的方法,该方法可以由发送端设备(如终端设备,又如网络设备)执行,或者,也可以由发送端设备的组成部件(例如芯片或者电路)执行,对此不作限定。
该方法可以包括:采用至少第一频率和第二频率对待传输信息进行调制,生成射频信号,其中,待传输信息映射在目标频率上,目标频率与至少第一频率和第二频率具有关联关系;发送射频信号。
基于上述技术方案,发送端设备可以将待传输信息映射在目标频率,并采用至少两个频率,如第一频率和第二频率,对待传输信息进行调制,生成射频信号,进而发送该射频信号。通过在一个符号内传输上述至少两个频率的信号,且待传输信息映射在与该至少两个频率关联的目标频率上,可以根据实际需求选择合适的目标频率,适用于更多的传输场景,实现传输信号的灵活性。举例来说,若想要降低接收端设备的功耗,那么可以选择较小的目标频率,这样不仅可以满足在射频频率上传输信号的需要,而且通过解调频率较小的目标频率上的信号,还可以满足降低接收端功耗的要求。
结合第一方面,在第一方面的某些实现方式中,目标频率、第一频率、以及第二频率,满足下式:ΔF=xF 1+yF 2,或者,ΔF=xF 1-yF 2;其中,ΔF表示目标频率,F 1表示第一频率,F 2表示第二频率,x和y为正整数。
结合第一方面,在第一方面的某些实现方式中,目标频率为第一频率和第二频率之间 的频率差。
结合第一方面,在第一方面的某些实现方式中,第一频率满足以下任一项:第一频率为默认值;或,第一频率与第一链路的频域资源和/或时域资源有关,第一链路为传输射频信号所使用的链路;或,第一频率为网络设备配置的。
基于上述技术方案,第一频率可以作为参考频率,进而可以根据第一频率以及目标频率,以及三者之间的关联关系,确定出第二频率。
结合第一方面,在第一方面的某些实现方式中,第二频率根据目标频率和第一频率确定。
结合第一方面,在第一方面的某些实现方式中,待传输信息是根据映射关系映射至目标频率上的,映射关系用于表示目标频率与待传输信息的比特之间的关系。
结合第一方面,在第一方面的某些实现方式中,采用至少第一频率和第二频率对待传输信息进行调制,包括:通过多频频移键控的调制方式或正交频分复用的调制方式,采用至少第一频率和第二频率对待传输信息进行调制。
结合第一方面,在第一方面的某些实现方式中,发送射频信号之前,方法还包括:发送以下一项或多项信息:第一链路的频域资源、第一链路的时域资源、目标频率的频域位置、目标频率的分辨率、调制阶数、第一频率的频域位置、第二频率的候选频域位置;其中,第一链路为传输射频信号所使用的链路。
结合第一方面,在第一方面的某些实现方式中,第一频率和第二频率位于以下频域位置之外的位置:第一链路所使用的带宽中编号最低的N1个子载波和/或编号最高的N2个子载波,第一链路为传输射频信号所使用的链路,N1和N2为大于1或等于1的整数。
基于上述技术方案,在第一链路上传输唤醒信号时,使用除边缘子载波(即第一链路所使用的带宽中编号最低的N1个子载波和/或编号最高的N2个子载波)以外的子载波传输唤醒信号。这样,第一链路的带宽中的边缘子载波上不传输唤醒信号,该边缘子载波可作为唤醒信号和数据信号之间的保护间隔,降低唤醒信号和数据信号之间的子载波干扰。
第二方面,提供了一种信号传输的方法,该方法可以由接收端设备(如终端设备,又如网络设备)执行,或者,也可以由接收端设备的组成部件(例如芯片或者电路)执行,对此不作限定。
该方法可以包括:接收射频信号,射频信号是通过采用至少第一频率和第二频率对信息进行调制生成的,信息映射在目标频率上,目标频率与至少第一频率和第二频率具有关联关系;对射频信号进行处理,确定目标频率;解调目标频率上的信号,获得信息。
基于上述技术方案,接收端设备接收到射频信号后,由于信息映射在目标频率,因此可以确定目标频率,进而解调该目标频率上的信号,获得映射在该目标频率上的信息。通过在一个符号内传输上述至少两个频率的信号,且信息映射在与该至少两个频率关联的目标频率上,可以根据实际需求选择合适的目标频率,适用于更多的传输场景,实现传输信号的灵活性。举例来说,若想要降低接收端设备的功耗,那么可以选择较小的目标频率,这样不仅可以满足在射频频率上传输信号的需要,而且接收端设备解调频率较小的目标频率上的信号,还可以满足降低接收端功耗的要求。
结合第二方面,在第二方面的某些实现方式中,目标频率、第一频率、以及第二频率,满足下式:ΔF=xF 1+yF 2,或者,ΔF=xF 1-yF 2;其中,ΔF表示目标频率,F 1表示第一频率, F 2表示第二频率,x和y为正整数。
结合第二方面,在第二方面的某些实现方式中,目标频率为第一频率和第二频率之间的频率差。
结合第二方面,在第二方面的某些实现方式中,第一频率满足以下任一项:第一频率为默认值;或,第一频率与第一链路的频域资源和/或时域资源有关,第一链路为传输射频信号所使用的链路;或,第一频率为网络设备配置的。
结合第二方面,在第二方面的某些实现方式中,解调目标频率上的信号,获得信息,包括:解调目标频率上的信号,根据映射关系获得信息,映射关系用于表示目标频率与信息的比特之间的关系。
结合第二方面,在第二方面的某些实现方式中,射频信号的调制方式为多频频移键控的调制方式或正交频分复用的调制方式。
结合第二方面,在第二方面的某些实现方式中,接收射频信号之前,方法还包括:接收以下一项或多项信息:第一链路的频域资源、第一链路的时域资源、目标频率的频域位置、目标频率的分辨率、调制阶数、第一频率的频域位置、第二频率的候选频域位置;其中,第一链路为传输射频信号所使用的链路。
结合第二方面,在第二方面的某些实现方式中,第一频率和第二频率位于以下频域位置之外的位置:第一链路所使用的带宽中编号最低的N1个子载波和/或编号最高的N2个子载波,第一链路为传输射频信号所使用的链路,N1和N2为大于1或等于1的整数。
第二方面及各个可能的设计的有益效果可以参考第一方面相关的描述,在此不予赘述。
第三方面,提供了一种信号传输的方法,该方法可以由发送端设备(如终端设备,又如网络设备)执行,或者,也可以由发送端设备的组成部件(例如芯片或者电路)执行,对此不作限定。
该方法可以包括:根据待传输信息,确定一个或两个子载波的编号;将待传输信息映射在一个或两个子载波上,得到频域信号。
结合第三方面,在第三方面的某些实现方式中,方法还包括:发送以下一项或多项信息:第一链路的频域资源、多个子载波的位置、频率的分辨率、调制阶数;其中,第一链路为传输发射信号所使用的链路。
结合第三方面,在第三方面的某些实现方式中,第一链路的频域资源包括以下一项或多项:在第一链路上传输信号所使用的带宽、在第一链路上传输信号所使用的频率位置、在第一链路上传输信号所使用的子载波间隔。
第四方面,提供一种通信的装置,该装置用于执行上述第一方面至第三方面任一种可能实现方式中的方法。具体地,该装置可以包括用于执行第一方面至第三方面任一种可能实现方式中的方法的单元和/或模块,如处理单元和/或通信单元。
在一种实现方式中,该装置为通信设备(如发送端设备,又如接收端设备)。当该装置为通信设备时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为用于通信设备(如发送端设备,又如接收端设备)的 芯片、芯片系统或电路。当该装置为用于通信设备的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
可选地,上述发送端设备为网络设备或终端设备。
可选地,上述接收端设备为终端设备或网络设备。
第五方面,提供一种通信的装置,该装置包括:至少一个处理器,用于执行存储器存储的计算机程序或指令,以执行上述第一方面至第三方面任一种可能实现方式中的方法。可选地,该装置还包括存储器,用于存储的计算机程序或指令。可选地,该装置还包括通信接口,处理器通过通信接口读取存储器存储的计算机程序或指令。
在一种实现方式中,该装置为通信设备(如发送端设备,又如接收端设备)。
在另一种实现方式中,该装置为用于通信设备(如发送端设备,又如接收端设备)的芯片、芯片系统或电路。
可选地,上述发送端设备为网络设备或终端设备。
可选地,上述接收端设备为终端设备或网络设备。
第六方面,本申请提供一种处理器,用于执行上述各方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第七方面,提供一种计算机可读存储介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面至第三方面任一种可能实现方式中的方法。
第八方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面至第三方面任一种可能实现方式中的方法。
第九方面,提供一种通信系统,包括前述的发送端设备和接收端设备。
附图说明
图1是适用于本申请实施例的无线通信系统100的一示意图。
图2是主电路和唤醒电路的示意图。
图3是信号采用OOK调制时的波形示意图。
图4是唤醒信号采用FSK调制时的示意图。
图5是根据本申请实施例提供的一种信号传输的方法的示意图。
图6是根据本申请实施例提供的DT-FSK调制的示意图。
图7是根据本申请一实施例提供的信号传输的方法的示意性流程图。
图8是根据本申请实施例提供的采用四阶DT-FSK调制信号的示意图。
图9是根据本申请另一实施例提供的信号传输的方法的示意性流程图。
图10是根据本申请实施例提供的接收端处理信号的示意图。
图11是信号经过平方率检波之后的时域波形和频域分量的示意图。
图12是适用于本申请实施例的使用低通滤波器获取差频信号的示意图。
图13是根据本申请实施例提供的另一种信号传输的方法的示意图。
图14是根据本申请实施例提供的基于OFDM发射机来生成FSK信号的示意图。
图15是本申请实施例提供的一种通信装置的示意性框图。
图16是本申请实施例提供的又一种通信装置的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请提供的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)或新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代(6th generation,6G)移动通信系统。本申请提供的技术方案还可以应用于设备到设备(device to device,D2D)通信,车到万物(vehicle-to-everything,V2X)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及物联网(internet of things,IoT)通信系统或者其他通信系统。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统或芯片,该装置可以被安装在终端设备中。 本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站、辅站、多制式无线(motor slide retainer,MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access point,AP)、传输节点、收发节点、基带单元(baseband unit,BBU)、射频拉远单元(remote radio unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及D2D、V2X、M2M通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例所提及的网络设备可以为包括CU、或DU、或包括CU和DU的设备、或者控制面CU节点(控制面的中央单元(central unit-control plane,CU-CP))和用户面CU节点(用户面的中央单元(central unit-user plane,CU-UP))以及DU节点的设备。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
首先结合图1简单介绍适用于本申请的网络架构,如下。
图1示出了适用于本申请实施例的无线通信系统100的一示意图。如图1所示,该无线通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110,该无线通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。网络设备和终端设备均可配置多个天线,网络设备与终端设备可使用多天线技术通信。无线通信系统100还可以支持侧行链路(sidelink)通信技术,多个终端设备之间可以进行侧行通信(图1中未示出)。
其中,网络设备和终端设备通信时,网络设备可以管理一个或多个小区,一个小区中可以有整数个终端设备。可选地,网络设备110和终端设备120组成一个单小区通信系统,不失一般性,将小区记为小区#1。网络设备110可以是小区#1中的网络设备,或者,网络设备110可以为小区#1中的终端设备(例如终端设备120)服务。
需要说明的是,小区可以理解为网络设备的无线信号覆盖范围内的区域。
应理解,图1仅为便于理解而示例的简化示意图,该无线通信系统100中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。还应理解,本申请实施例可以适用于发送端设备和接收端设备通信的任何通信场景。
在无线通信系统中,终端设备的节电是追求的重要目标之一。举例来说,某些形态的终端设备(如手机、可穿戴设备)的续航时间影响用户的体验;某些形态的终端设备(如无线工业传感器),因为更换电池存在难度,设计时会希望这类终端设备能够在不换电池的条件下工作较长的时间。因此,终端设备的节电是无线通信技术需要重点考虑的一个方面。
为实现终端设备的节电,在无线通信系统中,通常会让终端设备在不同的业务需求时,工作不同的模式下。例如,当终端设备需要传输数据的时候,工作在连接(connected)态(或者称连接模式),此时终端设备与网络设备之间传输数据。当终端设备工作在连接态时,功耗较高。再例如,当终端设备没有传输数据的需要时,工作在空闲(idle)态,此时终端设备会让电路进入睡眠状态。如终端设备可以周期性检测是否有发送给自己的数据,如果有数据,则进入连接态,否则保持在空闲态,继续睡眠。当终端设备工作在空闲态时,功耗较低。
为了让终端设备在空闲态下能够尽量降低功耗,终端设备可包括主电路和唤醒电路。下面简单介绍一下主电路和唤醒电路。
1、唤醒电路:或者称为唤醒接收机(wake up receiver,WUR)或唤醒模块,可以理解为是终端设备在空闲态所使用的电路,或者可以理解为是一个单独的低功耗小电路。该低功耗小电路可以使用一个结构简单的单独的小电路或芯片实现,其功耗较低。终端设备使用唤醒电路接收的信号如可以称为唤醒信号(wake up signal/radio,WUS/WUR)。可以理解,唤醒电路仅是为区分做的命名,其具体命名不对本申请的保护范围造成限定,例如不失一般性,唤醒电路也可以描述为第一电路(或第一模块)。
终端设备使用唤醒电路接收的信号可以被称为在唤醒链路上传输,其中,唤醒链路表征了终端设备和网络设备间的一种连接关系,是一个逻辑概念,而非一个物理实体。可以理解,唤醒链路仅是为区分做的命名,其具体命名不对本申请的保护范围造成限定,为不失一般性,本申请实施例中将唤醒链路描述为第一链路。还应理解,唤醒信号仅是一种示例的命名,关于其命名,本申请不予限制。
2、主电路:或者称为主接收机或主模块,可以理解为是终端设备正常传输数据时所使用的电路,或终端设备在连接态传输数据时所使用的电路。终端设备使用主电路传输数据时,耗电量较大。可以理解,主电路仅是为区分做的命名,其具体命名不对本申请的保护范围造成限定,例如不失一般性,主电路也可以描述为第二电路(或第二模块)。下文统一描述为主电路。
终端设备使用主电路接收的信号可以被称为在主链路上传输,其中,主链路表征了终端设备和网络设备间的一种连接关系,是一个逻辑概念,而非一个物理实体。可以理解,主链路仅是为区分做的命名,其具体命名不对本申请的保护范围造成限定,为不失一般性,本申请实施例中将主链路描述为第二链路。
下文,为便于描述,将终端设备使用唤醒电路传输的信号记为唤醒信号,将终端设备使用主电路传输的信号记为数据信号。
作为示例,图2示出了主电路和唤醒电路的示意图。
如图2所示,终端设备可通过唤醒电路接收(或者称检测)唤醒信号,终端设备可通过主电路接收数据信号。假设终端设备通过唤醒电路接收唤醒信号。若终端设备未检测到唤醒信号,则继续使用唤醒电路接收唤醒信号,主电路可处于关闭状态(或者睡眠状态);若终端设备检测到唤醒信号,则触发主电路的唤醒,即令主电路处于/切换为开启状态(或者称为工作状态,或者称为活跃状态)。主电路开启后,终端设备可以通过主电路传输数据信号。
为了保证功耗收益,唤醒信号可采用开关键控(on off key,OOK)调制,或者也可采用移频键控(frequency shift keying,FSK)调制。下面简单介绍一下这两种调制方式。
1、OOK:利用信号的发送与否来调制信息,对应的唤醒电路可采用包络检测的方法接收信号。OOK调制技术可以用复杂度很低的接收机就可以实现解调,故而能实现唤醒电路的低功耗目标。
当信号采用OOK调制时,每个比特(即编码后的比特)可对应一个符号(symbol)。等价的,一个符号也可以被称为一个码片(chip),也可以被称为其他名称,这里不做限制。
例如,当比特(bit)为1时,该符号长度内有信号发出(即该符号长度内信号发射功率不为0);当比特为0时,该符号长度内无信号发出(即该符号长度内信号发射功率为0)。或者也可以理解为,OOK调制中,如果发送能量,则代表“1”,不发送能量,则代表“0”。
作为示例,图3示出了信号采用OOK调制时的波形示意图。如图3所示,图3所示的波形可代表“0100”四个比特。如图3所示,通信系统一般都是使用一定的频率(frequency)发送,发送信号需要调制在载波上(图3中的正弦信号代表了载波)。在接收端,接收端检测接收信号的包络(或者是能量),判断发送的符号是“0”还是“1”,从而完成解调。
唤醒信号采用OOK调制时,接收机的结构简单,功耗较低,能够达成唤醒电路节电的目标。但是传输速率较低。具体来说,一方面,信号采用OOK调制时,每个符号仅可以传输1bit。另一方面,考虑到无线通信系统的多径时延问题,每个符号的时间长度需要足够长,才可以降低多径时延带来的符号间干扰。因此,若信号采用OOK调制,每个符号携带1bit信息,且每个符号的时间长度较长,传输速率会很低。
2、FSK:是一种将信息调制在载波频率上的调制技术。
作为示例,图4示出了唤醒信号采用FSK调制时的示意图。
如图4所示,假设需要传输的信息比特为0,1组成的序列,那么一种可能的方式,发送频率为f 1的信号代表传输的是比特“0”,发送频率为f 2的信号代表传输的是比特“1”。在接收端,可以使用鉴频电路,检测接收到的信号频率。若检测到信号频率为f 1,则判断接收到的比特为0;若检测到信号频率为f 2,则判断接收到的比特为1。
图4所示的例子可称为2-FSK,也就是有2种调制频率(即f 1和f 2),此时一个符号携带一个比特。但是FSK可以进行扩展以便携带更多的比特,例如可以用4种不同的频率进行FSK调制(4-FSK),则一个符号可以携带2比特的信息,例如用f 1代表比特“00”,f 2代表比特“01”,f 3代表比特“10”,f 4代表比特“11”。
FSK调制相比OOK可以做到更高的传输速率,即唤醒信号采用FSK调制时,可以提高传输速率,但是难以达成唤醒电路节电的目标。具体来说,唤醒信号采用FSK调制时,接收端需要解调出频率。一般移动通信都是在一定的射频频率上工作的,射频频率可能是几十兆赫(MHz)到几吉赫(GHz)量级。例如上文例子中的f 1是2GHz,就需要工作在2GHz的鉴频电路。工作在射频频率的鉴频电路会有较高的功耗,且精度比工作在低频的鉴频电路差,这样难以达成唤醒电路节电的目标。
有鉴于此,本申请提出一种调制信号的方案,通过在一个符号内,传输两个或两个以上不同射频频率的信号,并且将待传输信息映射在与该不同射频频率关联的目标频率(如该不同射频频率之间的频率差)上,从而不仅可以适用于通信系统,即使用射频频率传输信号,还可以根据实际需要选择映射信息的目标频率。举例来说,若想要降低接收端的功耗,可以使得目标频率较低,这样通过一定的接收机结构设计,使得鉴频电路可以工作在较低的目标频率上,进而可以兼顾低功耗和传输速率。
可以理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还可以理解,本文中的“多个”,可以包括2个,也可以包括2个以上。
下文将结合附图详细说明本申请实施例提供的信号传输的方法。本申请提供的实施例可以应用于上述图1所示的网络架构中,不作限定。
图5是本申请实施例提供的一种信号传输的方法500的示意图。方法500可以包括如下步骤。
510,发送端设备采用至少第一频率和第二频率对待传输信息进行调制,生成射频信号,其中,该待传输信息映射在目标频率上,该目标频率与至少该第一频率和第二频率具有关联关系。
其中,第一频率和第二频率,可以表示调制频率,或者表示一个符号内传输的两个信号的频率。下文主要以第一频率和第二频率为例进行示例性说明,本申请实施例不限于此。在本申请实施例中,一个符号内可以传输两个不同频率的信号,或者也可以传输两个以上不同频率的信号。
其中,目标频率,表示映射信息或数据的频率。目标频率不同于调制频率(即上述至少两个频率)。作为示例,目标频率小于调制频率。
作为示例,发送端设备可以为网络设备,或者也可以为终端设备。
520,发送端设备发送射频信号。
相应地,接收端设备接收该射频信号。作为示例,接收端设备可以为网络设备,或者也可以为终端设备。
其中,射频信号例如可以为唤醒信号。假设发送端设备为网络设备,接收端设备为终端设备,在步骤520中,网络设备向终端设备发送唤醒信号,相应地,终端设备接收唤醒信号,如终端设备通过第一模块或终端设备在第一链路上接收唤醒信号。
在本申请实施例中,发送端设备可以将待传输信息映射在目标频率,并采用至少两个频率,如第一频率和第二频率,对待传输信息进行调制,生成射频信号,进而发送该射频信号。通过在一个符号内传输上述至少两个频率的信号,且待传输信息映射在与该至少两 个频率关联的目标频率上,可以根据实际需求选择合适的目标频率,适用于更多的传输场景,实现传输信号的灵活性。举例来说,若想要降低接收端设备的功耗,那么可以选择较小的目标频率,这样不仅可以满足在射频频率上传输信号的需要,而且通过解调频率较小的目标频率上的信号,还可以满足降低接收端功耗的要求。
如步骤510所述,目标频率与至少第一频率和第二频率具有关联关系。目标频率与至少第一频率和第二频率具有关联关系,可以表示目标频率与调制频率相关,这样可以通过目标频率和调制频率的关联关系,确定目标频率,进而调解该目标频率上的信息;或者可以根据目标频率和部分调制频率,确定其余部分调制频率,进而可以使用调制频率生成射频信号。以第一频率和第二频率为例,可选地,目标频率、第一频率、以及第二频率,满足式1。
ΔF=f(F 1,F 2)
式1
其中,f表示函数,ΔF表示目标频率,F 1表示第一频率,F 2表示第二频率。关于函数f不予限制。上述式1可以通过标准预定义,也可以由网络侧配置。若由网络侧配置,则网络侧可以将式1发送给终端设备。
一种可能的设计,上述式1可以表示为:ΔF=f(F 1,F 2)=xF 1+yF 2,或者,ΔF=f(F 1,F 2)=xF 1-yF 2。其中,x和y为正整数。
另一种可能的设计,目标频率为第一频率和第二频率之间的频率差。以上述式1为例,式1可以表示为:ΔF=f(F 1,F 2)=F 1-F 2,或者,ΔF=f(F 1,F 2)=F 2-F 1
另一种可能的设计,目标频率为第一频率和第二频率之间频率差的绝对值。以上述式1为例,式1可以表示为:ΔF=f(F 1,F 2)=|F 1-F 2|。
应理解,上述主要以第一频率和第二频率为例进行了示例性说明,本申请实施例不限于此。作为示例,假设调制频率包括:第一频率F 1、第二频率F 2、第三频率F 3,那么目标频率和调制频率之间的关联关系可以表示为:ΔF=f(F 1,F 2,F 3)。例如,ΔF=f(F 1,F 2,F 3)=xF 1+yF 2+zF 3;再例如,ΔF=f(F 1,F 2,F 3)=xF 1-yF 2-zF 3。其中,z为正整数。
可选地,第一频率满足以下任一项:第一频率为默认值;或,第一频率与第一链路的频域资源和/或时域资源有关,第一链路为传输射频信号所使用的链路;或,第一频率为网络设备配置的。下面介绍几种可能的情形。
作为第一种可能的情形,第一频率为默认值,即F 1=F。
在该情形下,第一频率可以是固定值F(或者称默认值F)。其中,F可以通过标准预定义,也可以由网络侧配置。其中,若由网络侧配置,则网络侧可以将配置的F发送给终端设备。
作为第二种可能的情形,第一频率与第一链路的频域资源相关。
例如,第一频率与第一链路的频域资源满足式2。
F 1=f(F c)
式2
其中,f表示函数,F 1表示第一频率,F c表示第一链路的频域资源,如载波频率。上述式2可以通过标准预定义,也可以由网络侧配置。其中,若由网络侧配置,则网络侧可以将式2发送给终端设备。
需要说明的是,本申请实施例中,为便于描述,函数均用f表示,但并不限定用f表示的函数相同。举例来说,上述式1与式2中,均用f表示函数,其并不限定函数f在式1与式2中相同,对此下文不再赘述。
作为示例,式2可以为:F 1=f(F c)=F c+α1,α1为常数,如α1为1MHz。其中,α1可以通过标准预定义,也可以由网络侧配置。其中,若由网络侧配置,则网络侧可以将配置的α1发送给终端设备。
可以理解,上述为示例性说明,本申请不限于此。例如,第一频率使用的子载波为第一链路的编号最低的子载波。再例如,第一频率使用的子载波为第一链路的编号最高的子载波。再例如,第一频率使用的子载波为第一链路的中心子载波。再例如,第一频率使用的子载波为第一链路的编号为N的子载波,该N可以通过标准预定义,也可以由网络侧配置并发送给终端设备。
作为第三种可能的情形,第一频率与第一链路的时域资源相关。
例如,第一频率与第一链路的时域资源满足式3。
F 1=f(t)
式3
其中,f表示函数,F 1表示第一频率,t表示第一链路的时域资源,如符号(symbol)。上述式3可以通过标准预定义,也可以由网络侧配置。其中,若由网络侧配置,则网络侧可以将式3发送给终端设备。
在该情形下,第一频率可以随时间变化,例如根据一个随时间跳变的序列确定。作为示例,式3可以为:F 1=f(t)=t+α2,其中,α2为常数,t为变量。举例来说,在symbol 1,F 1=α2+1MHz;在symbol 2,F 1=α2+2MHz等等。其中,α2可以通过标准预定义,也可以由网络侧配置。其中,若由网络侧配置,则网络侧可以将配置的α2发送给终端设备。
作为第四种可能的情形,第一频率与第一链路的时域资源以及第一链路的频域资源相关。
例如,第一频率、第一链路的时域资源、第一链路的频域资源满足式4。
F 1=f(t,F c)
式4
关于各参数的含义,参考前面的描述。上述式4可以通过标准预定义,也可以由网络侧配置。其中,若由网络侧配置,则网络侧可以将式4发送给终端设备。
在该情形下,第一频率可以随时间变化,且与第一链路的频域资源相关。
为示例,式4可以为:F 1=f(t,F c)=F c+f(t),其中,f(t)表示与时间相关的函数。举例来说,在symbol 1,F 1=F c+1MHz;在symbol 2,F 1=F c+2MHz等等。
上面主要结合几种可能的情形介绍了第一频率,可以理解,第二频率也可以适用于上述几种情形,对此不予限制。
可选地,方法500还包括:发送端设备确定两个需要调制的频率。
一种可能的设计,第二频率根据目标频率和第一频率确定。举例来说,发送端设备可以确定第一频率;并根据目标频率和第一频率,以及目标频率与第一频率和第二频率之间的关联关系,确定第二频率。其中,目标频率的大小,如可以是协议预定义的,或者也可以由网络侧配置,不予限制。第一频率的大小,如可以根据上述几种情形确定。
举例来说,目标频率为第一频率和第二频率之间的频率差,那么:第二频率=目标频率+第一频率,或,第二频率=第一频率-目标频率。
可选地,步骤510中,发送端设备采用至少第一频率和第二频率对待传输信息进行调制,包括:发送端设备通过多频频移键控的调制方式或正交频分复用的调制方式,采用至少第一频率和第二频率对待传输信息进行调制。
例如,采用至少第一频率和第二频率对待传输信息进行调制,包括:通过多频频移键控的调制方式,采用至少第一频率和第二频率对待传输信息进行调制。
其中,多频频移键控,例如可以为双频频移键控(dual tone-frequency shift keying,DT-FSK),其可以理解为是一种改进的FSK。举例来说,FSK的调制方式为:一个符号内传输一个频率的信号,通过该频率来调制待传输的信息;多频频移键控(如DT-FSK)的调制方式为:一个符号内传输两个或两个以上不同频率的信号,通过与两个或两个以上不同频率关联的目标频率来调制待传输的信息。可以理解,多频频移键控(如DT-FSK),仅是一种为区分做的命名,其命名不对本申请实施例的保护范围造成限定。
再例如,采用至少第一频率和第二频率对待传输信息进行调制,包括:通过正交频分复用的调制方式,采用至少第一频率和第二频率对待传输信息进行调制。通过正交频分复用的调制方式,采用至少第一频率和第二频率对唤醒信号进行调制,可以理解为,对于发送端设备来说,在选择出来的至少两个子载波(即至少第一频率和第二频率的一例)上发送射频信号,其他的子载波上可以发送“0”,即不发送能量。可以理解,通过正交频分复用的调制方式,其限定的是发送端设备的调制方式,并不限定接收端设备的解调方式。举例来说,发送端设备发送射频信号时,在选择出来的两个子载波上发送射频信号,且信息映射在与该两个子载波关联的目标子载波(即目标频率的一例)上,其他的子载波上可以发送“0”,即不发送能量;接收端收到该信号后,确定目标子载波,并解调该目标子载波,以获得该目标子载波上的信息。上述为示例性说明,后面结合图9进行详细说明。
可选地,待传输信息是根据映射关系映射至目标频率上的。
其中,映射关系用于表示目标频率与待传输信息的比特之间的关系。映射关系可以通过标准预定义,也可以由网络侧配置。其中,若由网络侧配置,则网络侧可以将配置的映射关系发送给终端设备。
作为第一种可能的形式,映射关系可以以表1的形式存在。
表1
待传输bit 目标频率ΔF(单位:MHz)
00 1
01 2
10 3
11 4
以表1为例,假设需要传输的比特串为10101101,每两个连续的比特映射至一个目标频率上。按照表1,第1-2个比特“10”映射至目标频率ΔF=3MHz,第3-4个比特“10”映射至目标频率ΔF=3MHz,第5-6个比特“11”映射至目标频率ΔF=4MHz,第7-8个比特“01”映射至目标频率ΔF=2MHz。
作为第二种可能的形式,映射关系可以以表2的形式存在。
表2与表1的区别在于,表1中目标频率以MHz为单位,表2中目标频率以子载波为单位,如表2中的目标频率ΔF=2x4=8,表示目标频率的频域位置为子载波8,该“8”表示子载波的编号(或者索引,或者序号)。
表2
待传输bit 目标频率ΔF(以子载波为单位)
000 1x4
001 2x4
010 3x4
011 4x4
100 5x4
101 6x4
110 7x4
111 8x4
以表2为例,假设需要传输的比特串为000111101,则第1-3个比特“000”映射至目标频率ΔF=1x4=4(即目标频率的频域位置为子载波4),第4-6个比特“111”映射至目标频率ΔF=8x4=32(即目标频率的频域位置为子载波32),第7-9个比特“101”映射至目标频率ΔF=6x4=24(即目标频率的频域位置为子载波24)。
应理解,上述表1或表2仅是示例性说明,对此不予限制,任何属于表1或表2的变形,都适用于本申请。例如,上述表1或表2中的目标频率ΔF也可以替换为第一频率和第二频率。再例如,目标频率的取值个数可以更多,这样待传输比特量也可以更多。
可选地,方法500还包括:接收端设备接收第一链路的参数信息。相应地,发送端设备向接收端设备发送第一链路的参数信息。可以理解,第一链路的参数信息也可以通过标准预定义。
其中,第一链路的参数信息,可以表示与第一链路相关的参数信息,或者可以表示与在第一链路上传输唤醒信号相关的参数信息。
作为示例,第一链路的参数信息可以包括以下一项或多项信息:第一链路的频域资源、第一链路的时域资源、目标频率的频域位置、目标频率的分辨率、调制阶数、第一频率的频域位置、第二频率的候选频域位置。下面简单介绍一下各个信息。
1)第一链路的频域资源:即表示分配给第一链路的频域资源,或者唤醒信号可以使用的频域资源。
作为示例,第一链路的频域资源,例如可以包括但不限于以下一项或多项:在第一链路上传输信号所使用的带宽,在第一链路上传输信号所使用的频域位置,在第一链路上传输信号所使用的子载波间隔。例如,在第一链路上传输信号所使用的频域位置,可以包括以下一项或多项:起始频率位置、中心频率位置、结束频率位置。再例如,在第一链路上传输信号所使用的频域位置可以包括资源块(resource block,RB)的位置,如RB的起始位置和RB的数量。
作为示例,图6是根据本申请实施例提供的DT-FSK调制的示意图。如图6所示,在第一链路上传输信号所使用的带宽是3个物理资源块(physical resource block,PRB)的宽度。一个PRB可由12个子载波组成,即第一链路上传输信号所使用的频域资源为36个子载波。在第一链路上传输信号所使用的频域位置,例如可以包括第一链路使用的频谱距离系统带宽起始频率的距离,例如100PRB。
2)第一链路的时域资源:表示分配给第一链路的时域资源,或者表示能够检测唤醒信号的时间。举例来说,分配给第一链路的频域资源可以在该时域资源上使用。例如,每10ms中,在前2ms内,采用上述3个PRB接收唤醒信号,其他时间内,该3个PRB可以用于其他业务。
3)调制阶数:即表示调制的阶数。举例来说,调制的阶数为M,那么可以将待传输信息的比特串,按照每N个比特映射至1个目标频率,其中,N=log 2M。
4)第一频率的频域位置:例如可以包括第一频率所在的RB的位置和第一频率在RB内的子载波编号。以图6为例,第一频率的频域位置例如可以为子载波1。
5)第二频率的候选频域位置:表示第二频率可能的频域位置。举例来说,在传输信号时,可以使用该候选频域位置中的部分频率作为调制频率。以图6为例,如图6中的(b)所示,黑色填充的子载波(即子载波5,9,13,17,21,25,29,33)表示第二频率的候选频域位置。
6)目标频率的频域位置:即表示相邻的两个目标频率之间的频率差。以图6为例,作为示例,目标频率的分辨率,例如可以为黑色填充的子载波之间的间隔,即目标频率的分辨率为4个子载波。如果子载波带宽是30kHz,则目标频率的分辨率就是4×30=120kHz。
可选地,第一频率和第二频率位于以下频域位置之外的位置:第一链路所使用的带宽中编号最低的N1个子载波和/或编号最高的N2个子载波,N1和N2为大于1或等于1的整数。
其中,第一链路所使用的带宽中编号最低的N1个子载波和/或编号最高的N2个子载波,可以称为边缘频域位置,或者称为边缘子载波,或者也可以称为保护子载波。下文为便于描述,以边缘子载波为例进行说明。
第一频率和第二频率位于第一链路所使用的带宽中边缘子载波(如N1个子载波和N2个子载波)之外的位置,可以替换为,第一频率和第二频率位于第一链路所使用的带宽中的中间子载波的位置,例如,第一频率和第二频率位于第一链路所使用的带宽中的中间N3个子载波的位置,N3为大于1或等于1的整数,且N3小于第一链路所使用的带宽中的子载波总数。作为示例,N1例如可以为1或2。作为示例,N2例如可以为1或2。
基于上述方式,在第一链路上传输唤醒信号时,使用除边缘子载波以外的子载波传输唤醒信号。这样,第一链路的带宽中的边缘子载波上不传输唤醒信号,该边缘子载波可作为唤醒信号和数据信号之间的保护间隔,降低唤醒信号和数据信号之间的子载波干扰。
示例地,在分配给第一链路的带宽的两侧设置保护子载波,即在第一链路上传输唤醒信号时,采用除N1个子载波和N2个子载波以外的子载波传输唤醒信号。以图6为例,在第一链路上传输信号所使用的带宽是3个PRB,对应36个子载波,其中,位于边缘的子载波0、子载波34、以及子载波35可作为保护子载波,即第一频率和第二频率可位于子载波0-35中,除子载波0、子载波34、以及子载波35以外的位置。
为便于理解,下面以目标频率为第一频率和第二频率之间的频率差,调制方式为 DT-FSK为例,结合图7和图9,介绍适用于本申请实施例的可能的流程。其中涉及到的步骤或术语具体可以可参考上文描述。
图7是根据本申请一实施例提供的信号传输的方法的示意性流程图。如图7所示,方法700包括如下步骤。
710,发送端设备将待传输信息映射至目标频率。
其中,目标频率例如可以为第一频率和第二频率之间的频率差。
根据DT-FSK调制的阶数M,将待传输信息的比特串中每N个比特映射至1个目标频率,其中,N=log 2M。例如,假设本申请实施例采用四阶的DT-FSK进行调制,那么可以将2个比特(N=log 24=2)映射至一个目标频率。四阶的DT-FSK可以有4种可选的目标频率。
可选地,根据映射关系,将待传输信息映射至目标频率。作为示例,映射关系可以以表1的形式存在。关于映射关系,可以参考上文的描述,此处不再赘述。
720,发送端设备根据目标频率确定两个需要调制的频率。
其中,两个需要调制的频率,即表示第一频率F 1和第二频率F 2
可选地,第一频率满足以下任一项公式:F 1=F,F 1=f(F c),F 1=f(t),F 1=f(t,F c)。关于各个公式,参考上文的描述。
步骤720中,发送端设备根据目标频率确定两个需要调制的频率,可以包括:发送端设备根据上述任一项确定第一频率,并根据目标频率和第一频率确定第二频率。例如,第二频率=目标频率+第一频率,或,第二频率=第一频率-目标频率。
作为示例,图8是根据本申请实施例提供的采用四阶DT-FSK调制信号的示意图。假设需要传输的比特串为10111101,每两个连续的比特可按照表1的映射关系映射至一个目标频率,目标频率=第一频率-第二频率,第一链路的载波频率为F c,第一频率可以为:F c+1MHz。
如图8所示,举例来说,在符号0,第1-2个比特“10”按照表1可映射至目标频率ΔF=3MHz,第二频率=第一频率+3MHz。在符号1,第3-4个比特“11”按照表1可映射至目标频率ΔF=4MHz,第二频率=第一频率+4MHz。在符号2,第5-6个比特“11”按照表1可映射至目标频率ΔF=4MHz,第二频率=第一频率+4MHz。在符号3,第7-8个比特“01”按照表1可映射至目标频率ΔF=2MHz,第二频率=第一频率+2MHz。
730,发送端设备按照两个需要调制的频率生成发射信号。
其中,发射信号可以由步骤720中确定的两个调制的频率组成。作为示例,发射信号满足式5。
x(t)=sin(2πF 1t)+sin(2πF 2t)
式5
其中,x(t)表示发射符号,F 1表示第一频率,t表示时间,F 2表示第二频率。
基于上述方案,相比于OOK调制技术中每个符号携带1比特信息,DT-FSK调制技术每个符号可以携带2比特或2比特以上的信息,作为示例,每个符号携带的比特量可以基于目标频率的取值个数确定。例如,假设目标频率的取值有4个,那么每个符号可以携带2比特的信息,该4个目标频率分别携带:比特“00”、比特“01”、比特“10”、比 特“11”;再例如,假设目标频率的取值有8个,那么每个符号可以携带3比特的信息,该8个目标频率分别携带:比特“000”、比特“001”、比特“010”、比特“011”、比特“100”、比特“101”、比特“110”、比特“111”。因此,本申请实施例提供的DT-FSK调制技术可以提升传输速率。此外,相比于传统FSK,DT-FSK调制技术可以使用低功耗接收机进行接收,具体的分析后面结合图10详细说明。
图9是根据本申请另一实施例提供的信号传输的方法的示意性流程图。在图9所示的实施例中,DT-FSK调制技术,可以通过与正交频分复用(orthogonal frequency division multiplexing,OFDM)技术的结合来实现。如图9所示,方法900包括如下步骤。
910,发送端设备确定第一链路的参数信息。
第一链路的参数信息可以通过标准预定义,也可以由网络侧配置。其中,若由网络侧配置,则网络侧可以将第一链路的参数信息发送给终端设备。
关于第一链路的参数信息,可以参考前面的描述,此处不再赘述。
920,发送端设备将待传输信息映射至目标频率。
其中,目标频率例如可以为第一频率和第二频率之间的频率差。
根据DT-FSK调制的阶数M,将待传输信息的比特串,每N个比特映射至1个目标频率,其中,N=log 2M。以图6为例,第二频率的候选频域位置有8个(即子载波5,9,13,17,21,25,29,33),因此调制阶数为8,那么可以将每N=log 28=3个比特映射至1个目标频率。
可选地,根据映射关系,将待传输信息映射至目标频率。在该实施例中,目标频率可以以子载波为单位,因此映射关系可以以表2的形式存在。关于映射关系,可以参考上文的描述,此处不再赘述。
930,发送端设备根据目标频率确定两个需要调制的子载波。
其中,两个需要调制的频率,即表示第一频率F 1和第二频率F 2
可选地,第一频率满足以下任一项公式:F 1=F,F 1=f(F c),F 1=f(t),F 1=f(t,F c)。以图6为例,第一频率与第一链路的频域资源相关,如第一频率使用的子载波为子载波1。
以图6为例,假设需要传输的比特串为000111101,目标频率=第一频率-第二频率。举例来说,如图6中的(a)所示,在符号0,第1-3个比特“000”按照表2可映射至目标频率ΔF=1x4=4,第二频率=第一频率+4=5,即第二频率的频域位置为子载波5。在符号1,第4-6个比特“111”按照表2可映射至目标频率ΔF=8x4=32,第二频率=第一频率+32=33,即第二频率的频域位置为子载波33。在符号2,第7-9个比特“101”按照表2可映射至目标频率ΔF=6x4=24,第二频率=第一频率+24,即第二频率的频域位置为子载波25。
940,发送端设备按照两个需要调制的子载波生成发射信号。
在步骤940中,可以根据步骤930确定的两个需要调制的频率,生成两个频率调制信号,并叠加起来生成DT-FSK信号。
在本申请实施例中,可以基于OFDM发射机来生成DT-FSK信号。具体来说,采用OFDM发射机来进行信号的调制,在选择出的两个子载波上发送信号,其他子载波上发送“0”,然后采用快速傅里叶变换(fast fourier transform,FFT)来实现信号的调制。发射信号是DT-FSK信号,或者也可以理解为,调制了两个子载波的OFDM信号。
假设OFDM系统中,一般情况下,一个子载波的发射功率是P 1,那么用于传输唤醒 信号的每个子载波的发射功率P wur,sc可以通过式6进行计算。
Figure PCTCN2022128596-appb-000001
其中,N sc表示每个PRB包含的子载波数,例如为12。N wur,RB表示分配给第一链路的RB数量,N wur,sc是唤醒信号实际调制的子载波数。以图6为例,分配给第一链路的PRB数量为3,那么N scN wur,RB=36个子载波。在实际传输时,每个符号内在N wur,RB=2个子载波上传输唤醒信号,所以在发射总功率不变的条件下,该两个子载波,每一个子载波的发射功率可以是一般情况下一个子载波发射功率的18倍。在本申请实施例中,用于传输唤醒信号的每个子载波的发射功率P wur,sc可满足式7。
Figure PCTCN2022128596-appb-000002
基于上述方案,相比于OOK调制技术中每个符号携带1比特信息,DT-FSK调制技术每个符号可以携带2比特或2比特以上的信息,作为示例,每个符号携带的比特量可以基于目标频率的取值个数确定,具体可以参考前面的相关描述。因此,本申请实施例提供的DT-FSK调制技术可以提升传输速率。此外,相比于传统FSK,DT-FSK调制技术可以使用低功耗接收机进行接收,具体的分析后面结合图10详细说明。此外,在本申请实施例中,可以基于OFDM发射机来生成DT-FSK信号,这样发射机可以复用主链路的OFDM发射机来实现对唤醒链路上的唤醒信号的DT-FSK调制。
上面结合图7和9介绍了唤醒信号的调制和传输,下面以目标频率为第一频率和第二频率之间的频率差为例,结合10介绍接收端的解调。
图10是根据本申请实施例提供的接收端处理信号的示意图。
如图10所示,接收端的处理过程可以包括步骤。
1)对于天线接收到的信号进行带通滤波(band filter),将传输唤醒信号的信道上的信号滤出。
2)利用低噪声放大器(low noise amplifier,LNA)对滤波器的输出信号的功率进行放大。
3)对放大后的信号进行平方率检波(square law detector)。其中,平方率检波主要是利用器件的非线性特性,使得电路的输出信号中包含输入信号的高次幂成分。
例如,通过平方率检波处理后的输入信号和输出信号的关系可以满足式8。
y(t)=ax(t)+bx 2(t)
式8
其中,x(t)表示输入信号,a和b表示正实数,y(t)表示输出信号。由式8可以看出输出信号中包含输入信号的二次幂成分,即bx 2(t)。
在本申请实施例中,DT-FSK信号中包含两个频率成分,如上述式5,即x(t)=sin(2πF 1t)+sin(2πF 2t)。因此,上述式8可以变形为式9。
y(t)=ax(t)+bx 2(t)=a[sin(2πF 1t)+sin(2πF 2t)]+b[sin(2πF 1t)+sin(2πF 2t)] 2
式9
对式9进行简化处理得到式10。
Figure PCTCN2022128596-appb-000003
作为示例,图11是信号经过平方率检波之后的时域波形和频域分量的示意图。信号在接收端进行带通滤波和放大之后,信号的时域波形如图11中的(a)所示;在经过平方率检波之后,频域会出现很多分量,如图11中的(d)所示。
4)通过低通滤波器将高频分量滤除。从式10可知,式10中包含了不同频率分量,通过低通滤波器将高频分量滤除之后,得到信号
Figure PCTCN2022128596-appb-000004
满足式11。
Figure PCTCN2022128596-appb-000005
其中,bcos[2π(F 1-F 2)t]代表了两个频率成分的差,也就是代表了调制的信息。
5)使用鉴频器(frequency discriminator)检测。使用鉴频器(或者称鉴频电路)检测步骤4)中得到的信号
Figure PCTCN2022128596-appb-000006
可以得到
Figure PCTCN2022128596-appb-000007
中的频率分量ΔF=F 1-F 2,数据调制在ΔF中,所以可以根据解调得到的ΔF重新还原出发送的比特。
作为示例,图12是适用于本申请实施例的使用低通滤波器获取差频信号的示意图。如图12所示,经过低通滤波器将高频分量滤除后,可以获得单频信号
Figure PCTCN2022128596-appb-000008
Figure PCTCN2022128596-appb-000009
接收机可以从鉴频器中读出ΔF=F 1-F 2,然后结合映射关系,将检测到的频率映射为发射的信号。例如,以表1所示的映射关系为例,第一个符号上检测到ΔF=3MHz,则解调第1-2个比特为“10”,第二个符号上检测到ΔF=4MHz,则解调第3-4个比特为“11”,第三个符号上检测到ΔF=4MHz,则解调第5-6个比特为“11”,第四个符号上检测到ΔF=2MHz,则解调第7-8个比特为“01”。因此,接收端解调出传输的信息比特串为10111101。
通过上述方案,DT-FSK信号经过平方率检波之后,得到了两个频率的频率差ΔF=|F 1-F 2|,该频率差为一个低频信号。例如假设F 1为2000MHz,F 2为2001MHz,那么ΔF=|F 1-F 2|为1MHz,所以此时鉴频器工作在很低的频率上,这会大大降低器件的功耗。
上述实施例主要以目标频率为第一频率和第二频率之间的频率差为例进行了示例性说明,对此不予限制。若目标频率、第一频率、以及第二频率满足其他的关联关系,则对于接收端,可以先得到第一频率和第二频率,进而根据目标频率、第一频率、以及第二频率之间的关联关系,可以得到目标频率,进而在该目标频率上进行解调。
应理解,上述图10所示的流程是一种示例,对此不作限定。例如,在实际通信中,还可能包括更多的处理步骤。再例如,上述的平方率检波可以替换为其他处理,只要可以得到目标频率ΔF,进而可以使得鉴频器工作在目标频率ΔF上都可以用于本申请实施例。 再例如,上述的鉴频器也可以替换为能够实现其功能的其他器件或电路或模块,如可以替换为锁相环(phase locked loop,PLL),对此不予限制。
本申请实施例还提供一种方案,可以基于OFDM发射机来生成FSK信号。下面结合图13进行说明。
图13是根据本申请实施例提供的另一种信号传输的方法的示意图。如图13所示,方法1300包括如下步骤。
1310,发送端设备确定第一链路的参数信息。
第一链路的参数信息可以通过标准预定义,也可以由网络侧配置。其中,若由网络侧配置,则网络侧可以将第一链路的参数信息发送给终端设备。
其中,第一链路的参数信息,可以表示与第一链路相关的参数信息,或者可以表示与在第一链路上传输唤醒信号相关的参数信息。
作为示例,在本申请实施例中,第一链路的参数信息可以包括以下一项或多项信息:第一链路的频域资源、第一链路的时域资源、频率分辨率、FSK的调制阶数、频率的候选频域位置。其中,频率的候选频域位置,表示传输信息可能的频域位置。关于各参数的含义,可以参考前面的解释,此处不再赘述。
1320,发送端设备将待传输信息映射至频率。
例如,根据FSK的调制阶数,将待传输信息的比特串中每N个比特映射至1个频率。
作为示例,图14是根据本申请实施例提供的基于OFDM发射机来生成FSK信号的示意图。如图14所示,频率的候选频域位置有8个(即子载波4,8,12,16,20,24,28,32),因此调制阶数为8,那么可以将每N=log 28=3个比特映射至1个频率。假设需要传输的比特串为000111101,按照如表3所示的映射关系,可以将第1-3个比特“000”映射至子载波4,第4-6个比特“111”映射至子载波32,第7-9个比特“101”映射至子载波24。
表3
待传输bit 调制子载波编号
000 1x4
001 2x4
010 3x4
011 4x4
100 5x4
101 6x4
110 7x4
111 8x4
上述表3所示的映射关系可以通过标准预定义,也可以由网络侧配置。其中,若由网络侧配置,则网络侧可以将配置的映射关系发送给终端设备。
应理解,表3仅是示例性说明,对此不予限制,任何属于表3的变形,都适用于本申请。
1330,发送端设备根据需要发送的频率生成FSK信号。
在本申请实施例中,可以基于OFDM发射机来生成FSK信号。具体来说,采用OFDM 发射机来进行信号的调制,在选择出的子载波上发送信号,其他子载波上发送“0”,然后采用FFT来实现信号的调制。发送的信号是FSK信号,或者也可以理解为,调制了一个子载波的OFDM信号。
可以理解,在本申请的各实施例中,“接收”也可替换为“检测”或者“读取”。例如,“接收唤醒信号”也可以替换为“检测唤醒信号”或“读取唤醒信号”。
还可以理解,在上述一些实施例中,提到了“传输”,在未作出特别说明的情况下,传输,包括接收和/或发送。例如,传输信号,可以包括接收信号和/或发送信号。
还可以理解,在上述一些实施例中,主要以2个调制频率(即第一频率和第二频率)为例进行了示例性说明,可以理解,本申请对调制频率的数量不予限制。例如,调制频率的数量也可以是2个以上。
还可以理解,在上述一些实施例中,主要以主电路和唤醒电路,以及主链路和唤醒链路为例进行了示例性说明,本申请不限于此。例如,“唤醒链路/唤醒电路”也可以替换为“第一模块”,或者也可以替换为“处于第一状态”,或者也可以替换为“处于第一模式”。举例来说,“在唤醒链路上传输信号”,也可以替换为“通过第一模块(或第一电路)传输信号”。“主链路/主电路”也可以替换为“第二模块”,或者也可以替换为“处于第二状态”,或者也可以替换为“处于第二模式”。举例来说,“在主链路上传输信号”,也可以替换为“通过第二模块(或第二电路)传输信号”。
还可以理解,在本申请各个实施例中涉及到的公式是示例性说明,其不对本申请实施例的保护范围造成限定。在计算上述各个涉及的参数的过程中,也可以根据上述公式进行计算,或者基于上述公式的变形进行计算,或者,按照本申请实施例提供的方法确定的公式进行计算,或者也可以根据其它方式进行计算以满足公式计算的结果。
还可以理解,在本申请的各实施例中,发送端设备可以为网络设备或终端设备,接收端设备可以网络设备或终端设备。例如,发送端设备为网络设备,接收端设备为终端设备;再例如,发送端设备为第一终端设备,接收端设备为第二终端设备;再例如,发送端设备为第一网络设备,接收端设备为第二网络设备;再例如,发送端设备为终端设备,接收端设备为网络设备。
还可以理解,本申请实施例中的图5至图14中的例子仅仅是为了便于本领域技术人员理解本申请实施例,并非要将本申请实施例限于例示的具体场景。本领域技术人员根据图5至图14的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
还可以理解,本申请的各实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,也可以在某些场景下,与其他特征进行结合,不作限定。
还可以理解,本申请的各实施例中的方案可以进行合理的组合使用,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
还可以理解,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可由终端设备的组成部件(例如芯片或者电路)来实现;此外,由网络设备实现的方法和操作,也可以由可由网络设备的组成部件(例如芯片或者电路)来实现,不作限定。
相应于上述各方法实施例给出的方法,本申请实施例还提供了相应的装置,所述装置包括用于执行上述各个方法实施例相应的模块。该模块可以是软件,也可以是硬件,或者 是软件和硬件结合。可以理解的是,上述各方法实施例所描述的技术特征同样适用于以下装置实施例。
图15是本申请实施例提供的一种通信装置的示意性框图。该装置1500包括收发单元1510和处理单元1520。收发单元1510可以用于实现相应的通信功能。收发单元1510还可以称为通信接口或通信单元。处理单元1520可以用于进行数据或信号处理。
可选地,该装置1500还包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元1520可以读取存储单元中的指令和/或数据,以使得装置实现前述各个方法实施例中终端设备的动作。
该装置1500可以用于执行上文各个方法实施例中通信设备(如发送端设备,又如接收端设备)所执行的动作,这时,该装置1500可以为通信设备或者通信设备的组成部件,收发单元1510用于执行上文方法实施例中通信设备(如发送端设备,又如接收端设备)侧的收发相关的操作,处理单元1520用于执行上文方法实施例中通信设备(如发送端设备,又如接收端设备)侧的处理相关的操作。
当该装置1500用于实现上文各个方法实施例中发送端设备(如网络设备)的功能时:处理单元1520,用于采用至少第一频率和第二频率对待传输信息进行调制,生成射频信号,其中,待传输信息映射在目标频率上,目标频率与至少第一频率和第二频率具有关联关系,收发单元1510,用于发送射频信号。
该装置1500可实现对应于根据本申请实施例的方法实施例中的发送端设备(如网络设备)执行的步骤或者流程,该装置1500可以包括用于执行图5、图7、图9、图13所示实施例中的发送端设备(如网络设备)执行的方法的单元。
当该装置1500用于实现上文各个方法实施例中接收端设备(如终端设备)的功能时:收发单元1510,用于接收射频信号,射频信号是通过采用至少第一频率和第二频率对信息进行调制生成的,信息映射在目标频率上,目标频率与至少第一频率和第二频率具有关联关系;处理单元1520,用于对射频信号进行处理,确定目标频率;解调目标频率上的信号,获得信息。
该装置1500可实现对应于根据本申请实施例的方法实施例中的接收端设备(如终端设备)执行的步骤或者流程,该装置1500可以包括用于执行图5、图7、图9、图10、图13所示实施例中的接收端设备(如终端设备)执行的方法的单元。
有关该装置1500更详细的描述可以参考上文方法实施例中相关描述直接得到,在此不再赘述。
还应理解,这里的装置1500以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置1500可以具体为上述实施例中的发送端设备,可以用于执行上述各方法实施例中与发送端设备对应的各个流程和/或步骤;在另一个可选例子中,本领域技术人员可以理解,装置1500可以具体为上述实施例中的接收端设备,可以用于执行上述各方法实施例中与接收端设备对应的各个流程和/或步骤。为避免重复,在此不再赘述。
上述各个方案的装置1500具有实现上述方法中设备(如发送端设备或接收端设备) 所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发单元1510还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。
需要指出的是,图15中的装置可以是前述实施例中的设备,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
图16是本申请实施例提供的又一种通信装置的示意性框图。该装置1600包括处理器1610,处理器1610与存储器1620耦合,存储器1620用于存储计算机程序或指令和/或数据,处理器1610用于执行存储器1620存储的计算机程序或指令,或读取存储器1620存储的数据,以执行上文各方法实施例中的方法。
在一些实施例中,处理器1610为一个或多个。
在一些实施例中,存储器1620为一个或多个。
在一些实施例中,该存储器1620与该处理器1610集成在一起,或者分离设置。
在一些实施例中,如图16所示,该装置1600还包括收发器1630,收发器1630用于信号的接收和/或发送。例如,处理器1610用于控制收发器1630进行信号的接收和/或发送。
作为一种方案,该装置1600用于实现上文各个方法实施例中由设备(如发送端设备,又如接收端设备)执行的操作。
例如,处理器1610用于执行存储器1620存储的计算机程序或指令,以实现上文各个方法实施例中发送端设备(如网络设备)的相关操作。
再例如,处理器1610用于执行存储器1620存储的计算机程序或指令,以实现上文各个方法实施例中接收端设备(如终端设备)的相关操作。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器 (synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述各方法实施例中由设备(如发送端设备,又如接收端设备)执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由发送端设备(如网络设备)执行的方法。
再例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由接收端设备(如终端设备)执行的方法。
本申请实施例还提供一种计算机程序产品,包含指令,该指令被计算机执行时以实现上述各方法实施例中由设备(如发送端设备,又如接收端设备)执行的方法。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,所述计算机可以是个人计算机,服务器,或者网络设备等。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等。例如,前述的可用介质包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁 碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种信号传输的方法,其特征在于,包括:
    采用至少第一频率和第二频率对待传输信息进行调制,生成射频信号,其中,所述待传输信息映射在目标频率上,所述目标频率与至少所述第一频率和所述第二频率具有关联关系;
    发送所述射频信号。
  2. 根据权利要求1所述的方法,其特征在于,所述目标频率、所述第一频率、以及所述第二频率,满足下式:
    ΔF=xF 1+yF 2,或者,ΔF=xF 1-yF 2
    其中,ΔF表示所述目标频率,F 1表示所述第一频率,F 2表示所述第二频率,x和y为正整数。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述目标频率为所述第一频率和所述第二频率之间的频率差。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一频率满足以下任一项:
    所述第一频率为默认值;或,
    所述第一频率与第一链路的频域资源和/或时域资源有关,所述第一链路为传输所述射频信号所使用的链路;或,
    所述第一频率为网络设备配置的。
  5. 根据权利要求4所述的方法,其特征在于,
    所述第二频率根据所述目标频率和所述第一频率确定。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,
    所述待传输信息是根据映射关系映射至所述目标频率上的,所述映射关系用于表示所述目标频率与所述待传输信息的比特之间的关系。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述采用至少第一频率和第二频率对待传输信息进行调制,包括:
    通过多频频移键控的调制方式或正交频分复用的调制方式,采用至少所述第一频率和所述第二频率对所述待传输信息进行调制。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述发送所述射频信号之前,所述方法还包括:
    发送以下一项或多项信息:第一链路的频域资源、所述第一链路的时域资源、所述目标频率的频域位置、所述目标频率的分辨率、调制阶数、所述第一频率的频域位置、所述第二频率的候选频域位置;
    其中,所述第一链路为传输所述射频信号所使用的链路。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,
    所述第一频率和所述第二频率位于以下频域位置之外的位置:所述第一链路所使用的带宽中编号最低的N1个子载波和/或编号最高的N2个子载波,所述第一链路为传输所述 射频信号所使用的链路,N1和N2为大于1或等于1的整数。
  10. 一种信号传输的方法,其特征在于,包括:
    接收射频信号,所述射频信号是通过采用至少第一频率和第二频率对信息进行调制生成的,所述信息映射在目标频率上,所述目标频率与至少所述第一频率和所述第二频率具有关联关系;
    对所述射频信号进行处理,确定所述目标频率;
    解调所述目标频率上的信号,获得所述信息。
  11. 根据权利要求10所述的方法,其特征在于,所述目标频率、所述第一频率、以及所述第二频率,满足下式:
    ΔF=xF 1+yF 2,或者,ΔF=xF 1-yF 2
    其中,ΔF表示所述目标频率,F 1表示所述第一频率,F 2表示所述第二频率,x和y为正整数。
  12. 根据权利要求10或11所述的方法,其特征在于,
    所述目标频率为所述第一频率和所述第二频率之间的频率差。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述第一频率满足以下任一项:
    所述第一频率为默认值;或,
    所述第一频率与第一链路的频域资源和/或时域资源有关,所述第一链路为传输所述射频信号所使用的链路;或,
    所述第一频率为网络设备配置的。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述解调所述目标频率上的信号,获得所述信息,包括:
    解调所述目标频率上的信号,根据映射关系获得所述信息,所述映射关系用于表示所述目标频率与所述信息的比特之间的关系。
  15. 根据权利要求10至14中任一项所述的方法,其特征在于,所述射频信号的调制方式为多频频移键控的调制方式或正交频分复用的调制方式。
  16. 根据权利要求10至15中任一项所述的方法,其特征在于,所述接收所述射频信号之前,所述方法还包括:
    接收以下一项或多项信息:第一链路的频域资源、所述第一链路的时域资源、所述目标频率的频域位置、所述目标频率的分辨率、调制阶数、所述第一频率的频域位置、所述第二频率的候选频域位置;
    其中,所述第一链路为传输所述射频信号所使用的链路。
  17. 根据权利要求10至16中任一项所述的方法,其特征在于,
    所述第一频率和所述第二频率位于以下频域位置之外的位置:所述第一链路所使用的带宽中编号最低的N1个子载波和/或编号最高的N2个子载波,所述第一链路为传输所述射频信号所使用的链路,N1和N2为大于1或等于1的整数。
  18. 一种信号传输的装置,其特征在于,包括用于执行权利要求1至17中任一项所述的方法的模块或单元。
  19. 一种信号传输的装置,其特征在于,包括处理器,所述处理器,用于执行存储器 中存储的计算机程序或指令,以使得所述装置执行权利要求1至17中任一项所述的方法。
  20. 根据权利要求19所述的装置,其特征在于,所述装置还包括所述存储器。
  21. 根据权利要求19或20所述的装置,其特征在于,所述装置还包括通信接口,所述通信接口与所述处理器耦合,
    所述通信接口,用于输入和/或输出信息。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1至17中任一项所述的方法。
  23. 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行如权利要求1至17中任一项所述的方法的计算机程序或指令。
  24. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1至17中任一项所述的方法。
PCT/CN2022/128596 2021-11-09 2022-10-31 信号传输的方法和装置 WO2023083037A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111318765.6 2021-11-09
CN202111318765 2021-11-09
CN202111584569.3 2021-12-22
CN202111584569.3A CN116112025A (zh) 2021-11-09 2021-12-22 信号传输的方法和装置

Publications (1)

Publication Number Publication Date
WO2023083037A1 true WO2023083037A1 (zh) 2023-05-19

Family

ID=86266134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128596 WO2023083037A1 (zh) 2021-11-09 2022-10-31 信号传输的方法和装置

Country Status (2)

Country Link
CN (1) CN116112025A (zh)
WO (1) WO2023083037A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150139055A1 (en) * 2013-03-11 2015-05-21 Panasonic Corporation Transmission apparatus, reception apparatus, communication system, transmission method, and reception method
CN108566351A (zh) * 2018-04-10 2018-09-21 西安交通大学 一种二次相位耦合的多用户频差unb通信传输方法
CN108737305A (zh) * 2018-05-29 2018-11-02 西安交通大学 一种重叠二次相位耦合的频差unb通信传输方法
CN108989254A (zh) * 2017-05-31 2018-12-11 联发科技股份有限公司 无线通信方法和无线通信设备
CN110611630A (zh) * 2019-08-09 2019-12-24 西安电子科技大学 一种调谐射频架构的2-fsk唤醒接收器及其解调方法
CN112003812A (zh) * 2019-05-27 2020-11-27 华为技术有限公司 一种信号调制方法、装置和系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112020145A (zh) * 2019-05-31 2020-12-01 华为技术有限公司 一种通信方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150139055A1 (en) * 2013-03-11 2015-05-21 Panasonic Corporation Transmission apparatus, reception apparatus, communication system, transmission method, and reception method
CN108989254A (zh) * 2017-05-31 2018-12-11 联发科技股份有限公司 无线通信方法和无线通信设备
CN108566351A (zh) * 2018-04-10 2018-09-21 西安交通大学 一种二次相位耦合的多用户频差unb通信传输方法
CN108737305A (zh) * 2018-05-29 2018-11-02 西安交通大学 一种重叠二次相位耦合的频差unb通信传输方法
CN112003812A (zh) * 2019-05-27 2020-11-27 华为技术有限公司 一种信号调制方法、装置和系统
CN110611630A (zh) * 2019-08-09 2019-12-24 西安电子科技大学 一种调谐射频架构的2-fsk唤醒接收器及其解调方法

Also Published As

Publication number Publication date
CN116112025A (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
US11626947B2 (en) Communication method and communications device
CN109802792B (zh) 接收参考信号的方法和发送参考信号的方法
CN113261320B (zh) 通信方法、装置及系统
US10892795B2 (en) Transmission method, network device, and terminal device
CN110381588B (zh) 通信的方法和通信装置
WO2020001607A1 (zh) 数据加扰方法及相关设备
US20220053468A1 (en) Wireless communication method, terminal device and network device
WO2018171666A1 (zh) 信息收发方法和设备
WO2023078358A1 (zh) 通信的方法和装置
CN113993142A (zh) 通信方法及装置
WO2021031018A1 (zh) 一种通信方法及装置
WO2023083037A1 (zh) 信号传输的方法和装置
US20210212079A1 (en) Signal transmission method, terminal device, and network device
WO2024041504A1 (zh) 一种通信方法及装置
WO2024041522A1 (zh) 信号处理的方法和装置
WO2024093634A1 (zh) 信息传输的方法与装置
US20230129834A1 (en) Method for determining antenna panel for transmission, and terminal device
WO2024114353A1 (zh) 频偏纠正方法及通信装置
WO2023083036A1 (zh) 信号传输的方法和装置
WO2024145727A1 (zh) 无线通信的方法及设备
WO2023143548A1 (zh) 通信方法、装置、设备以及存储介质
WO2023284620A1 (zh) 通信的方法和装置
WO2022213653A1 (zh) 频域资源位置确定方法与装置、终端和网络设备
WO2022100362A1 (zh) 信号传输的方法和通信装置
WO2024093323A1 (en) Determination of rach occasion groups

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891833

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022891833

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022891833

Country of ref document: EP

Effective date: 20240510