WO2023083036A1 - 信号传输的方法和装置 - Google Patents

信号传输的方法和装置 Download PDF

Info

Publication number
WO2023083036A1
WO2023083036A1 PCT/CN2022/128592 CN2022128592W WO2023083036A1 WO 2023083036 A1 WO2023083036 A1 WO 2023083036A1 CN 2022128592 W CN2022128592 W CN 2022128592W WO 2023083036 A1 WO2023083036 A1 WO 2023083036A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency resource
terminal device
network device
frequency
Prior art date
Application number
PCT/CN2022/128592
Other languages
English (en)
French (fr)
Inventor
李强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023083036A1 publication Critical patent/WO2023083036A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, to a method and device for signal transmission.
  • the terminal device can receive a wake-up signal through a separate small low-power circuit, such as a wake up receiver (WUR), and the main receiver can be in a deep sleep state.
  • a wake up receiver WUR
  • the terminal device detects the wake-up signal through the WUR
  • the terminal device triggers the wake-up of the main receiver.
  • the terminal device can perform data transmission through the main receiver.
  • the present application provides a method and device for signal transmission, which can improve the utilization rate of spectrum resources by making the frequency resources of the terminal equipment using WUR to transmit signals different from those of the main receiver to transmit signals.
  • a signal transmission method is provided, and the method may be executed by a terminal device, or may also be executed by a component (such as a chip or a circuit) of the terminal device, which is not limited thereto.
  • a component such as a chip or a circuit
  • the following uses execution by a terminal device as an example for description.
  • the method may include: the terminal device uses a first frequency resource to receive a first signal from a network device; based on the first signal, the terminal device uses a second frequency resource to transmit a second signal with the network device; wherein, the first frequency resource and the first frequency resource
  • the two frequency resources are different frequency domain resources in the system bandwidth, and the subcarrier spacing of the first frequency resource is different from the subcarrier spacing of the second frequency resource.
  • the subcarrier spacing of the first frequency resource is greater than the subcarrier spacing of the second frequency resource.
  • the terminal device uses the first frequency resource to receive the first signal from the network device, in response to the first signal, uses the second frequency resource to transmit the second signal with the network device, wherein the first frequency resource
  • the second frequency resource is a different frequency domain resource in the system bandwidth.
  • the terminal device transmits the first signal and the second signal, it can use different frequency domain resources in the system bandwidth, so that the waste of spectrum resources caused by allocating the system bandwidth to the first signal or the second signal can be avoided, and the frequency spectrum can be improved. resource utilization.
  • the subcarrier spacing of the first frequency resource is different from that of the second frequency resource, so that an appropriate subcarrier spacing can be selected according to the characteristics of the first signal and the second signal.
  • the terminal device when the terminal device uses the first frequency resource to receive the wake-up signal (that is, an example of the first signal), it can use a larger subcarrier spacing, so that the larger the subcarrier spacing, the shorter the time length of the symbol, and thus the transmission rate higher.
  • the first frequency resource that is, an example of the first signal
  • the time when the terminal device uses the first frequency resource to demodulate the first signal is related to a preset duration, and the preset duration corresponds to the subcarrier spacing of the first frequency resource Cyclic prefixes vary in length.
  • the subcarrier spacing can correspond to a cyclic prefix of a certain length. If the subcarrier spacing of the first frequency resource is larger, the length of the cyclic prefix corresponding to the larger subcarrier spacing is smaller, and the cyclic prefix of a smaller length It may not be able to resist the inter-symbol interference caused by the multipath delay of the channel. Therefore, the preset duration proposed in the embodiment of this application can solve the impact of multipath delay that may be faced if the subcarrier spacing of the first frequency resource is large. .
  • the terminal device uses the first frequency resource to receive the first signal from the network device, including: starting from the starting moment of each received symbol, after a preset duration , the terminal device uses the first frequency resource to demodulate the first signal from the network device.
  • the preset duration is associated with any of the following information: the frequency domain position of the first frequency resource, the subcarrier spacing of the first frequency resource, or the terminal device's The length of the cyclic prefix used by the bandwidth part BWP; or, the method further includes: the terminal device receives a preset duration from the network device.
  • the preset duration can be associated with the frequency domain position of the first frequency resource, so that the preset duration can be known through the frequency domain position of the first frequency resource; or, the preset duration can be associated with the frequency domain position of the first frequency resource
  • the carrier interval is associated, so that the preset duration can be obtained through the subcarrier interval of the first frequency resource; or, the preset duration can be associated with the length of the cyclic prefix used by the bandwidth part BWP of the terminal device, so that the BWP of the terminal device adopts
  • the length of the cyclic prefix can obtain the preset duration; or the terminal device can also receive the preset duration from the network side.
  • the terminal device using the first frequency resource to receive the first signal from the network device includes: the terminal device using subcarriers other than the N1 subcarriers in the first frequency resource , to receive a first signal from a network device, N1 subcarriers represent one or more subcarriers adjacent to the second frequency resource in the first frequency resource, and N1 is an integer greater than 1 or equal to 1.
  • the N1 subcarriers may include: one or more subcarriers with the highest number (or index, or sequence number) in the bandwidth of the first frequency resource, and/or, one or more subcarriers with the lowest number.
  • guard subcarriers that is, N1 subcarriers
  • the first signal is not transmitted on the guard subcarriers, so that even if the first frequency resource
  • the subcarrier spacing is different from the subcarrier spacing of the second frequency resource, because there are guard subcarriers, the subcarrier interference between the first signal transmitted using the first frequency resource and the second signal transmitted using the second frequency resource will still be greatly decline.
  • the terminal device uses the second frequency resource to transmit the second signal with the network device, including: the terminal device uses subcarriers other than the N2 subcarriers in the second frequency resource , to transmit the second signal with the network device, the N2 subcarriers represent one or more subcarriers adjacent to the first frequency resource in the second frequency resource, and N2 is an integer greater than 1 or equal to 1.
  • guard subcarriers that is, N2 subcarriers
  • the second signal is not transmitted on the guard subcarriers, so that even if the bandwidth of the first frequency resource
  • the subcarrier spacing is different from the subcarrier spacing of the second frequency resource, because there are guard subcarriers, the subcarrier interference between the first signal transmitted using the first frequency resource and the second signal transmitted using the second frequency resource will still be greatly decline.
  • the frequency domain positions of the first frequency resources are discontinuous.
  • the frequency domain positions of the first frequency resource are discontinuous, so that frequency hopping can be used to obtain frequency diversity gain and better transmission effect.
  • the frequency domain position of the first frequency resource includes a first frequency domain position and a second frequency domain position
  • the terminal device uses the first frequency resource to receive the second frequency domain position from the network device.
  • a signal including: the terminal device receives part of the first signal from the network device at the first frequency domain position, and the terminal device receives the remaining part of the first signal from the network device at the second frequency domain position; or, at the At one time, the terminal device receives a first signal from the network device at a first frequency domain location, and at a second time, the terminal device receives the first signal from the network device at a second frequency domain location.
  • the method further includes: the terminal device uses the second frequency resource to receive configuration information of the first frequency resource.
  • the configuration information of the first frequency resource includes one or more of the following information: the bandwidth of the first frequency resource, the frequency domain position of the first frequency resource, the first The subcarrier spacing of the frequency resource.
  • the first signal is a signal obtained by multiplying a time domain signal by a window function.
  • the window function refers to: a function with smaller values at both ends and a larger value in the middle.
  • the first signal is a multiplied signal of a time-domain signal and a window function.
  • the sub-carrier interference between the first signal and the second signal can be reduced by means of time-domain windowing.
  • a signal transmission method is provided, and the method may be executed by a terminal device, or may also be executed by a component (such as a chip or a circuit) of the terminal device, which is not limited thereto.
  • a component such as a chip or a circuit
  • the following uses execution by a terminal device as an example for description.
  • the terminal device includes a first module and a second module, and the method may include: the terminal device uses the first frequency resource, and receives a first signal from the network device through the first module; based on the first signal, the terminal device uses the second frequency resource, The second signal is transmitted through the second module and the network device; wherein, the first frequency resource and the second frequency resource are different frequency domain resources in the system bandwidth, and the subcarrier spacing of the first frequency resource and the subcarrier spacing of the second frequency resource different.
  • the terminal device after the terminal device receives the first signal from the network device through the first module, in response to the first signal, the terminal device transmits the second signal with the network device through the second module, wherein the first module receives the first signal
  • the first frequency resource used for transmitting a signal and the second frequency resource used for transmitting a second signal through the second module are different frequency domain resources in the system bandwidth.
  • the terminal device transmits signals through different modules, it can use different frequency domain resources in the system bandwidth, thereby avoiding the waste of spectrum resources caused by allocating the system bandwidth to the first module or the second module, and improving the utilization of spectrum resources Rate.
  • the subcarrier spacing of the first frequency resource is different from that of the second frequency resource, so that an appropriate subcarrier spacing can be selected according to the characteristics of the first signal and the second signal.
  • the terminal device receives the wake-up signal (i.e., an example of the first signal) through the first module, it can use a larger subcarrier spacing, so that the larger the subcarrier spacing, the shorter the time length of the symbol, and the faster the transmission rate. high.
  • the terminal device uses the first frequency resource, and the time for demodulating the first signal through the first module is related to a preset duration, and the preset duration is related to the frequency of the first frequency resource.
  • the lengths of the cyclic prefixes corresponding to the subcarrier spacing are different.
  • the terminal device uses the first frequency resource to receive the first signal from the network device through the first module, including: starting from the starting moment of each received symbol, After a preset duration, the terminal device uses the first frequency resource to demodulate the first signal from the network device through the first module.
  • the preset duration is associated with any of the following information: the frequency domain position of the first frequency resource, the subcarrier spacing of the first frequency resource, or the terminal device's The length of the cyclic prefix used by the bandwidth part BWP; or, the method further includes: the terminal device receives a preset duration from the network device.
  • the terminal device uses the first frequency resource, and receives the first signal from the network device through the first module, including: the terminal device uses the first frequency resource divided by N1
  • the subcarriers other than the carrier receive the first signal from the network device through the first module
  • N1 subcarriers represent one or more subcarriers adjacent to the second frequency resource in the first frequency resource
  • N1 is greater than 1 or equal to 1 integer.
  • the terminal device uses the second frequency resource to transmit the second signal with the network device through the second module, including: the terminal device uses the second frequency resource except for N2 subcarriers
  • the other subcarriers transmit the second signal with the network device through the second module.
  • the N2 subcarriers represent one or more subcarriers adjacent to the first frequency resource in the second frequency resource, and N2 is an integer greater than 1 or equal to 1.
  • the frequency domain positions of the first frequency resources are discontinuous.
  • the frequency domain position of the first frequency resource includes the first frequency domain position and the second frequency domain position
  • the terminal device uses the first frequency resource to receive
  • the first signal from the network device includes: the terminal device receives a part of the first signal from the network device through the first module at the first frequency domain position, and the terminal device receives part of the first signal from the network device at the second frequency domain position through the first module or, at the first time, the terminal device receives the first signal from the network device through the first module at the first frequency domain position, and at the second time, the terminal device receives the first signal from the network device at the second frequency domain
  • the location receives a first signal from a network device through a first module.
  • the method further includes: the terminal device uses the second frequency resource, and receives configuration information of the first frequency resource through the second module.
  • the configuration information of the first frequency resource includes one or more of the following information: the bandwidth of the first frequency resource, the frequency domain position of the first frequency resource, the first The subcarrier spacing of the frequency resource.
  • the first signal is a signal obtained by multiplying a time domain signal by a window function.
  • a signal transmission method is provided, and the method may be executed by a network device, or may also be executed by a component (such as a chip or a circuit) of the network device, which is not limited thereto.
  • a component such as a chip or a circuit
  • the implementation by a network device is taken as an example below for description.
  • the method may include: the network device sends a first signal to the first terminal device using a first frequency resource; based on the first signal, the network device uses a second frequency resource to transmit a second signal with the first terminal device; wherein, the first The frequency resource and the second frequency resource are different frequency domain resources in the system bandwidth, and the subcarrier spacing of the first frequency resource is different from that of the second frequency resource.
  • the network device uses the second frequency resource to transmit the second signal with the terminal device, wherein the first frequency
  • the resource and the second frequency resource are different frequency domain resources in the system bandwidth.
  • different frequency domain resources in the system bandwidth can be used, so that the waste of spectrum resources caused by allocating the system bandwidth to the first signal or the second signal can be avoided, and the frequency spectrum can be improved. resource utilization.
  • the subcarrier spacing of the first frequency resource is different from that of the second frequency resource, so that an appropriate subcarrier spacing can be selected according to the characteristics of the first signal and the second signal.
  • the network device when the network device uses the first frequency resource to receive the wake-up signal (that is, an example of the first signal), it can use a larger subcarrier spacing, so that the larger the subcarrier spacing, the shorter the time length of the symbol, and thus the transmission rate higher.
  • the wake-up signal that is, an example of the first signal
  • the method further includes: when the network device uses the first frequency resource to send the first signal to the first terminal device, the network device uses the second frequency resource to communicate with the second terminal device The device transmits the signal.
  • the method further includes: the network device sends a preset duration to the first terminal device; or, the preset duration is associated with any of the following information: the first frequency resource The frequency domain position of the first frequency resource, the subcarrier spacing of the first frequency resource, or the length of the cyclic prefix adopted by the bandwidth part BWP of the terminal device; wherein, the preset duration is used for the first terminal device to determine the time to demodulate the first signal, and the preset The duration is different from the length of the cyclic prefix corresponding to the subcarrier spacing of the first frequency resource.
  • the network device uses the first frequency resource to send the first signal to the first terminal device, including: the network device uses subcarriers other than the N1 subcarriers in the first frequency resource The subcarriers are used to send the first signal to the first terminal device.
  • the N1 subcarriers represent one or more subcarriers adjacent to the second frequency resource in the first frequency resource, and N1 is an integer greater than 1 or equal to 1.
  • the network device uses the second frequency resource to transmit the second signal with the first terminal device, including: the network device uses subcarriers other than the N2 subcarriers in the second frequency resource The subcarriers transmit the second signal with the first terminal device, and the N2 subcarriers represent one or more subcarriers adjacent to the first frequency resource in the second frequency resource, and N2 is an integer greater than 1 or equal to 1.
  • the first signal is a signal obtained by multiplying a time domain signal by a window function.
  • the frequency domain positions of the first frequency resources are discontinuous.
  • the frequency domain position of the first frequency resource includes the first frequency domain position and the second frequency domain position
  • Sending the first signal includes: the network device sends part of the first signal to the first terminal device at the first frequency domain position, and the network device sends the rest of the first signal to the first terminal device at the second frequency domain position; Or, at the first time, the network device sends the first signal to the first terminal device at the first frequency domain position, and at the second time, the network device sends the first signal to the first terminal device at the second frequency domain position.
  • the method further includes: the network device sends configuration information of the first frequency resource to the first terminal device by using the second frequency resource.
  • the configuration information of the first frequency resource includes one or more of the following information: the bandwidth of the first frequency resource, the frequency domain position of the first frequency resource, the first The subcarrier spacing of the frequency resource.
  • a signal transmission method is provided, and the method may be executed by a network device, or may also be executed by a component (such as a chip or a circuit) of the network device, which is not limited thereto.
  • a component such as a chip or a circuit
  • the network device includes a first module and a second module, and the method may include: the network device uses the first frequency resource, and sends a first signal to the first terminal device through the first module; based on the first signal, the network device uses the second frequency resource , transmit the second signal through the second module and the first terminal device; wherein, the first frequency resource and the second frequency resource are different frequency domain resources in the system bandwidth, and the subcarrier spacing of the first frequency resource is different from that of the second frequency resource The subcarrier spacing is different.
  • the network device after the network device sends the first signal to the first terminal device through the first module, in response to the first signal, the network device transmits the second signal to the terminal device through the second module, wherein the first module sends
  • the first frequency resource used for the first signal and the second frequency resource used for transmitting the second signal through the second module are different frequency domain resources in the system bandwidth.
  • the subcarrier spacing of the first frequency resource is different from that of the second frequency resource, so that an appropriate subcarrier spacing can be selected according to the characteristics of the first signal and the second signal. For example, when the network device sends a wake-up signal (that is, an example of the first signal) through the first module, a larger subcarrier spacing can be used, so that the larger the subcarrier spacing, the shorter the time length of the symbol, and the faster the transmission rate. high.
  • a wake-up signal that is, an example of the first signal
  • the method further includes: when the network device uses the first frequency resource to send the first signal to the first terminal device through the first module, the network device uses the second frequency The resource transmits signals with the second terminal device through the second module.
  • the method further includes: the network device sends a preset duration to the first terminal device; or, the preset duration is associated with any of the following information: the first frequency resource The frequency domain position of the first frequency resource, the subcarrier spacing of the first frequency resource, or the length of the cyclic prefix adopted by the bandwidth part BWP of the terminal device; wherein, the preset duration is used for the first terminal device to determine the time to demodulate the first signal, and the preset The duration is different from the length of the cyclic prefix corresponding to the subcarrier spacing of the first frequency resource.
  • the network device uses the first frequency resource, and sends the first signal to the first terminal device through the first module, including: the network device uses the first frequency resource except N1 Subcarriers other than subcarriers are used to send the first signal to the first terminal device through the first module.
  • N1 subcarriers represent one or more subcarriers adjacent to the second frequency resource in the first frequency resource, and N1 is greater than 1 or equal to Integer of 1.
  • the network device uses the second frequency resource to transmit the second signal with the first terminal device through the second module, including: the network device uses the second frequency resource except N2
  • the subcarriers other than subcarriers transmit the second signal with the first terminal device through the second module
  • N2 subcarriers represent one or more subcarriers adjacent to the first frequency resource in the second frequency resource
  • N2 is greater than 1 or equal to Integer of 1.
  • the first signal is a signal obtained by multiplying a time domain signal by a window function.
  • the frequency domain positions of the first frequency resources are discontinuous.
  • the frequency domain position of the first frequency resource includes a first frequency domain position and a second frequency domain position
  • the network device uses the first frequency resource to send The first terminal device sends the first signal, including: the network device sends a part of the first signal to the first terminal device through the first module at the first frequency domain position, and the network device sends a part of the first signal to the first terminal device at the second frequency domain position through the first module.
  • a terminal device sends the remaining part of the first signal; or, at the first time, the network device sends the first signal to the first terminal device through the first module at the first frequency domain position, and at the second time, the network device transmits the first signal at the first frequency domain position The second frequency domain position sends the first signal to the first terminal device through the first module.
  • the method further includes: the network device sends configuration information of the first frequency resource to the first terminal device through the second module by using the second frequency resource.
  • the configuration information of the first frequency resource includes one or more of the following information: the bandwidth of the first frequency resource, the frequency domain position of the first frequency resource, the first The subcarrier spacing of the frequency resource.
  • a communication device configured to execute the method in any possible implementation manner of the foregoing first aspect to the fourth aspect.
  • the apparatus may include a unit and/or module for executing the method in any possible implementation manner of the first aspect to the fourth aspect, such as a processing unit and/or a communication unit.
  • the apparatus is a communication device (such as a terminal device, and also a network device).
  • the communication unit may be a transceiver, or an input/output interface; the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the apparatus is a chip, a chip system, or a circuit used in a communication device (such as a terminal device, or a network device).
  • a communication device such as a terminal device, or a network device.
  • the communication unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit, etc.
  • the processing unit may be at least one processor, processing circuit or logic circuit, etc.
  • a communication device which includes: at least one processor, configured to execute a computer program or instruction stored in a memory, so as to execute the method in any possible implementation manner of the first aspect to the fourth aspect above .
  • the apparatus further includes a memory for storing computer programs or instructions.
  • the device further includes a communication interface, through which the processor reads the computer program or instructions stored in the memory.
  • the apparatus is a communication device (such as a terminal device, and also a network device).
  • the apparatus is a chip, a chip system, or a circuit used in a communication device (such as a terminal device, or a network device).
  • the present application provides a processor configured to execute the methods provided in the first aspect to the fourth aspect above.
  • the processor's output and reception, input and other operations can also be understood as the sending and receiving operations performed by the radio frequency circuit and the antenna, which is not limited in this application.
  • a computer-readable storage medium where the computer-readable medium stores program code for execution by a device, and the program code includes any one of the possible implementation manners for performing the above-mentioned first aspect to the fourth aspect. method.
  • a computer program product including instructions is provided, and when the computer program product is run on a computer, the computer is made to execute the method in any possible implementation manner of the above first aspect to the fourth aspect.
  • a communication system including the aforementioned terminal device and network device.
  • FIG. 1 is a schematic diagram of a wireless communication system 100 applicable to an embodiment of the present application.
  • Fig. 2 is a schematic diagram of the main circuit and the wake-up circuit.
  • FIG. 3 is a schematic diagram of a waveform when a signal is modulated by OOK.
  • FIG. 4 is a schematic diagram of sending and receiving signals using OFDM modulation technology.
  • FIG. 5 is a schematic diagram of spectrum resource segmentation for OFDM modulation.
  • Fig. 6 is a schematic diagram of OFDM time domain and frequency domain resources corresponding to different subcarrier spacings.
  • Fig. 7 is a schematic diagram of generating an OOK signal based on an OFDM transmitter.
  • Fig. 8 is a schematic diagram of sending a first signal and a second signal in a time-division manner.
  • FIG. 9 is a schematic diagram of a signal processing method 900 provided by an embodiment of the present application.
  • Fig. 10 is a schematic diagram of transmitting signals on a first link and a second link according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a first link and a second link using different subcarrier spacings according to an embodiment of the present application.
  • Fig. 12 is a schematic diagram of multipath delay and ISI duration.
  • Fig. 13 is a schematic diagram of no interference and presence of interference between subcarriers.
  • FIG. 14 is a schematic diagram of reducing inter-subcarrier interference by using guard subcarriers according to an embodiment of the present application.
  • FIG. 15 is another schematic diagram of reducing inter-subcarrier interference by using guard subcarriers according to an embodiment of the present application.
  • Fig. 16 is a schematic diagram of a raised cosine window function provided according to an embodiment of the present application.
  • Fig. 17 is a schematic diagram of channel frequency domain response.
  • Fig. 18 is a schematic diagram of frequency domain positions of a first frequency resource provided according to an embodiment of the present application.
  • Fig. 19 is a schematic flowchart of sending a first signal at multiple discontinuous frequency domain positions according to an embodiment of the present application.
  • Fig. 20 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Fig. 21 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • Fig. 22 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • the technical solution provided by this application can be applied to various communication systems, such as: the fifth generation (5th generation, 5G) or new radio (new radio, NR) system, long term evolution (long term evolution, LTE) system, LTE frequency division Duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, etc.
  • 5G fifth generation
  • NR new radio
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division Duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • 6G sixth generation
  • the technical solution provided by this application can also be applied to device to device (device to device, D2D) communication, vehicle to everything (vehicle-to-everything, V2X) communication, machine to machine (machine to machine, M2M) communication, machine type Communication (machine type communication, MTC), and Internet of things (internet of things, IoT) communication system or other communication systems.
  • D2D device to device
  • V2X vehicle-to-everything
  • M2M machine to machine
  • M2M machine type Communication
  • MTC machine type communication
  • IoT Internet of things
  • the terminal equipment in the embodiment of the present application may also be referred to as user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal , wireless communication device, user agent, or user device.
  • user equipment user equipment
  • UE user equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal , wireless communication device, user agent, or user device.
  • a terminal device may be a device that provides voice/data to a user, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some terminals are: mobile phone (mobile phone), tablet computer, notebook computer, palmtop computer, mobile internet device (mobile internet device, MID), wearable device, virtual reality (virtual reality, VR) device, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, smart grid Wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, cellular phones, cordless phones, session initiation protocol , SIP) phones, wireless local loop (wireless local loop, WLL) stations, personal digital assistants (personal digital assistant, PDA), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, Wearable devices, terminal devices in a 5G network, or terminal devices in a future evolving public land mobile network (PLMN), etc., are not limited in this
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the device for realizing the function of the terminal device may be the terminal device, or may be a device capable of supporting the terminal device to realize the function, such as a chip system or a chip, and the device may be installed in the terminal device.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the network device in this embodiment of the present application may be a device for communicating with a terminal device, and the network device may also be called an access network device or a wireless access network device, for example, the network device may be a base station.
  • the network device in this embodiment of the present application may refer to a radio access network (radio access network, RAN) node (or device) that connects a terminal device to a wireless network.
  • radio access network radio access network, RAN node (or device) that connects a terminal device to a wireless network.
  • the base station can broadly cover various names in the following, or replace with the following names, such as: Node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB, gNB), relay station, Access point, transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), primary station, secondary station, multi-standard wireless (motor slide retainer, MSR) node, home base station, network controller, access point Ingress node, wireless node, access point (access point, AP), transmission node, transceiver node, baseband unit (baseband unit, BBU), remote radio unit (remote radio unit, RRU), active antenna unit (active antenna) unit, AAU), radio head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning nodes, etc.
  • NodeB Node B
  • evolved base station evolved NodeB, eNB
  • a base station may be a macro base station, a micro base station, a relay node, a donor node, or the like, or a combination thereof.
  • a base station may also refer to a communication module, modem or chip used to be set in the aforementioned equipment or device.
  • the base station can also be a mobile switching center, a device that assumes the function of a base station in D2D, V2X, and M2M communications, a network-side device in a 6G network, and a device that assumes the function of a base station in a future communication system.
  • Base stations can support networks of the same or different access technologies. The embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • Base stations can be fixed or mobile.
  • a helicopter or drone can be configured to act as a mobile base station, and one or more cells can move according to the location of the mobile base station.
  • a helicopter or drone may be configured to serve as a device in communication with another base station.
  • the network device mentioned in the embodiment of the present application may be a device including CU, or DU, or a device including CU and DU, or a control plane CU node (central unit-control plane, CU -CP)) and the user plane CU node (central unit-user plane (CU-UP) of the user plane) and the equipment of the DU node.
  • CU central unit-control plane
  • CU-UP central unit-user plane
  • Network equipment and terminal equipment can be deployed on land, including indoors or outdoors, hand-held or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the air.
  • the scenarios where the network device and the terminal device are located are not limited.
  • FIG. 1 Firstly, a brief introduction of the network architecture applicable to this application is made in conjunction with FIG. 1 , as follows.
  • FIG. 1 is a schematic diagram of a wireless communication system 100 applicable to an embodiment of the present application.
  • the wireless communication system 100 may include at least one network device, such as the network device 110 shown in Figure 1, and the wireless communication system 100 may also include at least one terminal device, such as the terminal device 120 shown in Figure 1 .
  • Both the network device and the terminal device can be configured with multiple antennas, and the network device and the terminal device can communicate using the multi-antenna technology.
  • the network device when the network device communicates with the terminal device, the network device may manage one or more cells, and there may be an integer number of terminal devices in one cell.
  • the network device 110 and the terminal device 120 form a single-cell communication system, and the cell is denoted as cell #1 without loss of generality.
  • the network device 110 may be a network device in cell #1, or, the network device 110 may serve a terminal device (such as the terminal device 120) in cell #1.
  • a cell may be understood as an area within the wireless signal coverage of the network device.
  • FIG. 1 is only a simplified schematic diagram for easy understanding, and the wireless communication system 100 may also include other network devices or other terminal devices, which are not shown in FIG. 1 .
  • the embodiments of the present application may be applicable to any communication scenario in which a sending-end device communicates with a receiving-end device.
  • power saving of terminal equipment is one of the important goals pursued.
  • the battery life of some forms of terminal equipment affects the user experience; some forms of terminal equipment (such as wireless industrial sensors) are designed to be difficult due to the difficulty of battery replacement.
  • Such terminal equipment can work for a long time without changing the battery. Therefore, power saving of terminal equipment is an aspect that needs to be considered in wireless communication technology.
  • the terminal equipment In order to realize the power saving of the terminal equipment, in the wireless communication system, the terminal equipment is usually allowed to work in different modes when different service requirements are required. For example, when the terminal device needs to transmit data, it works in a connected state (or called a connection mode), and at this time, the terminal device and the network device transmit data. When the terminal device works in the connected state, the power consumption is relatively high. For another example, when the terminal device does not need to transmit data, it works in an idle (idle) state, and at this time the terminal device will allow the circuit to enter a sleep state. For example, the terminal device can periodically check whether there is data sent to itself, and if there is data, it will enter the connection state, otherwise it will remain in the idle state and continue to sleep. When the terminal device works in an idle state, the power consumption is low.
  • the terminal equipment may include a main circuit and a wake-up circuit.
  • Wake-up circuit or wake-up receiver (wake up receiver, WUR) or wake-up module, which can be understood as a circuit used by terminal equipment in an idle state, or as a separate low-power small circuit.
  • the small circuit with low power consumption can be implemented with a single small circuit or chip with a simple structure, and its power consumption is low.
  • the signal received by the terminal device using the wake-up circuit may be called a wake up signal/radio (WUS/WUR), for example.
  • WUS/WUR wake up signal/radio
  • the wake-up circuit is only named for distinction, and its specific name does not limit the protection scope of the present application.
  • the wake-up circuit can also be described as the first circuit (or first module). The following are collectively described as wake-up circuits.
  • the signal received by the terminal device using the wake-up circuit can be referred to as being transmitted on the wake-up link, where the wake-up link represents a connection relationship between the terminal device and the network device, and is a logical concept rather than a physical entity.
  • the wake-up link is only named for distinction, and its specific name does not limit the protection scope of the present application.
  • the wake-up link can also be described as the first link.
  • the naming of the wake-up signal is only an example, and the present application does not limit the naming thereof.
  • Main circuit also known as the main receiver or main module, which can be understood as the circuit used by the terminal device to transmit data normally, or the circuit used by the terminal device to transmit data in the connected state.
  • main circuit is only named for distinction, and its specific name does not limit the protection scope of the present application.
  • the main circuit can also be described as a second circuit (or a second module). The main circuit is described uniformly below.
  • the signal received by the terminal device using the main circuit can be said to be transmitted on the main link, where the main link represents a connection relationship between the terminal device and the network device, and is a logical concept rather than a physical entity.
  • the main link is only named for distinction, and its specific name does not limit the protection scope of the present application.
  • the main link can also be described as the second link.
  • the signal transmitted by the terminal device using the wake-up circuit is recorded as the first signal
  • the signal transmitted by the terminal device using the main circuit is recorded as the second signal
  • FIG. 2 is a schematic diagram of the main circuit and the wake-up circuit.
  • the terminal device may receive (or detect) the first signal through the wake-up circuit, and the terminal device may receive the second signal through the main circuit. Assume that the terminal device receives the first signal through the wake-up circuit. If the terminal device does not detect the first signal, it will continue to use the wake-up circuit to receive the first signal, and the main circuit can be in an off state (or sleep state); if the terminal device detects the first signal, it will trigger the wake-up of the main circuit, that is, the main circuit The circuit is in/switched to an on state (or called a working state, or called an active state). After the main circuit is turned on, the terminal device can transmit the second signal through the main circuit.
  • the first frequency resource and the second frequency resource are identical.
  • the following uses a terminal device as an example to introduce the first frequency resource and the second frequency resource in combination with several situations.
  • the terminal device includes a first module and a second module.
  • the power consumption of the first module may be smaller than the power consumption of the second module.
  • the first module for example, may be the wake-up circuit in FIG. 2 , or may also be the receiving module of the wake-up circuit; the second module, for example, may be the main circuit in FIG. 2 , or may also be the receiving module of the main circuit.
  • the first module can be replaced by a wake-up circuit (or the first circuit), and the second module can be replaced by the main circuit (or the second circuit). The following are unified, and are described by the first module and the second module.
  • the first frequency resource may represent the frequency resource used by the terminal device to transmit signals through the first module
  • the second frequency resource may represent the frequency resource used by the terminal device to transmit signals through the second module
  • the terminal device can work on the first link (or the terminal device can transmit signals on the first link), and can also work on the second link (or the terminal device can transmit signals on the second link). signal over the link). That is to say, the terminal device and the network device can communicate through the first link or through the second link.
  • the first link may indicate the link used by the terminal device to transmit signals through the wake-up circuit as shown in Figure 2
  • the second link may indicate that the terminal device transmits signals through the main circuit as shown in Figure 2 Link to use when signaling.
  • the first frequency resource may represent a frequency resource used by the terminal device to transmit a signal on the first link
  • the second frequency resource may represent a frequency resource used by the terminal device to transmit a signal on the second link
  • the terminal device may be in a first state (state) (eg, in a WUR state) and a second state.
  • the first state and the second state are used to describe different states of the terminal device (such as different radio resource control (radio resource control, RRC) states).
  • RRC radio resource control
  • the power consumption of the terminal device in the first state may be smaller than the power consumption of the terminal device in the second state.
  • the first state may be, for example, an idle state or an inactive state, or may be a WUR state; the second state may be, for example, a connected (connected) state, or may be an idle state or an inactive state.
  • the first state (such as the WUR state) may correspond to the terminal device working on the first link or corresponding to the terminal device using the first module to transmit signals.
  • the first frequency resource may represent the frequency resource used by the terminal device to transmit signals when it is in the first state
  • the second frequency resource may represent the frequency resource used by the terminal device to transmit signals when it is in the second state
  • the terminal device may be in a first mode (for example, using WUR mode) and a second mode.
  • the first mode and the second mode are used to describe that the terminal device transmits signals in different modes.
  • the power consumption when the terminal device transmits signals in the first mode may be smaller than the power consumption when the terminal device transmits signals in the second mode.
  • the first mode (such as the WUR mode) may correspond to the terminal device working on the first link or corresponding to the terminal device using the first module to transmit signals.
  • the first frequency resource may represent the frequency resource used by the terminal device to transmit signals when it is in the first mode
  • the second frequency resource may represent the frequency resource used by the terminal device to transmit signals when it is in the second mode
  • using the first frequency resources to transmit signals can be replaced by any of the following: using the first module to transmit signals, transmitting signals on the first link, transmitting signals in the first state, and transmitting in the first mode Signal; use the second frequency resource to transmit the signal, which can be replaced by any of the following: use the second module to transmit the signal, transmit the signal on the second link, transmit the signal in the second state, and transmit the signal in the second mode.
  • the following mainly uses the first frequency resource and the second frequency resource as examples for illustration.
  • the first frequency resource and the second frequency resource are introduced mainly by taking the terminal device as an example. It can be understood that the above description is also applicable to other communication devices (such as network devices). For brevity, details are not repeated here.
  • the signal transmitted by using the wake-up circuit is recorded as the first signal
  • the signal transmitted by the main circuit is recorded as the second signal
  • the first signal can also represent the signal transmitted by using the first frequency resource
  • the second signal can also represent A signal transmitted using the second frequency resource
  • the modulation method of the first signal is on-off keying (on off key, OOK)
  • the modulation method of the second signal is orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) modulation or discrete Fourier transform extension Discrete fourier transformation-spread-orthogonal frequency division multiplexing (DFT-s-OFDM) modulation.
  • the waveform of the first signal is OOK
  • the waveform of the second signal is OFDM waveform or DFT-s-OFDM waveform.
  • the first signal includes paging information.
  • the paging information includes information of one or more terminal devices that need to receive paging.
  • the information contained in the first signal may be predefined by a standard, or may be configured by the network side, without limitation.
  • configuration at the network side refers to configuration at the network side through the second link. For example, after the terminal device acquires the configuration information of the first link on the second link, it turns to work on the first link.
  • the second signal may be a signal different from the first signal.
  • the second signal may represent various downlink signals or channels in the NR signal (that is, the existing NR signal).
  • the second signal includes any one or more of the following: synchronization signal block (synchronization signal block, SSB), PDCCH, PDSCH, channel state information reference signal (channel state information reference signal, CSI-RS), phase tracking reference Signal (phase tracking reference signal, PTRS), positioning reference signal (positioning reference signal, PRS), demodulation reference signal (DoModulation reference signal, DMRS).
  • the second signal may also represent various uplink signals or channels in the NR signal.
  • the second signal includes any one or more of the following: DMRS, physical uplink control channel (physical uplink control channel, PUCCH), physical uplink shared channel (physical uplink shared channel, PUSCH), sounding reference signal (sounding reference signal , SRS).
  • DMRS physical uplink control channel
  • PUCCH physical uplink control channel
  • PUCCH physical uplink shared channel
  • PUSCH physical uplink shared channel
  • SRS sounding reference signal
  • the second signal may carry one or more of the following information: paging early indication (PEI), paging DCI (paging DCI), paging message (such as paging PDCCH and paging PDSCH).
  • PEI paging early indication
  • paging DCI paging DCI
  • paging message such as paging PDCCH and paging PDSCH.
  • a PEI can be used to indicate whether a page is sent in its associated PO.
  • the second signal may represent a signal during a random access process of the terminal device.
  • the second signal includes a random access preamble (preamble).
  • the signal can be modulated by OOK, that is, whether the signal is sent or not is used to modulate information, and the corresponding wake-up circuit can receive the signal by envelope detection.
  • OOK modulation technology can realize demodulation with a receiver with very low complexity, so it can realize the low power consumption goal of the wake-up circuit.
  • each bit may correspond to a symbol (symbol).
  • a symbol may also be called a chip (chip), or may be called other names, and there is no limitation here.
  • bit (bit) when the bit (bit) is 1, there is a signal sent within the symbol length (that is, the signal transmission power within the symbol length is not 0); when the bit is 0, no signal is sent within the symbol length (that is, the symbol length The transmit power of the internal signal is 0). Or it can also be understood that in OOK modulation, if energy is sent, it represents "1", and if energy is not sent, it represents "0".
  • FIG. 3 is a schematic diagram of a waveform when a signal is modulated by OOK.
  • the waveform shown in FIG. 3 can represent four bits of "0100".
  • the communication system generally uses a certain frequency (frequency) for transmission, and the transmission signal needs to be modulated on a carrier (the sinusoidal signal in FIG. 3 represents the carrier).
  • the receiving end detects the envelope (or energy) of the received signal, and judges whether the transmitted symbol is "0" or "1", thereby completing demodulation.
  • the receiver When the signal adopts OOK modulation, the receiver has a simple structure and low power consumption, which can achieve the goal of saving power for the wake-up circuit. But the transfer rate is lower. Specifically, on the one hand, when the signal is modulated by OOK, each symbol can only transmit 1 bit. On the other hand, considering the multipath delay problem of the wireless communication system, the time length of each symbol needs to be long enough to reduce the intersymbol interference caused by the multipath delay. Therefore, if the signal is modulated by OOK, each symbol carries 1 bit of information, and the time length of each symbol is relatively long, so the transmission rate will be very low.
  • OFDM is a widely used modulation technology. OFDM mainly divides the system bandwidth into multiple parallel sub-carriers, and modulates data on each sub-carrier for transmission.
  • FIG. 4 is a schematic diagram of sending and receiving signals using OFDM modulation technology.
  • the process of sending a signal by the sending end may include the following steps.
  • Modulation is performed on the coded bit stream to obtain a plurality of symbols, wherein, for example, the modulation manner for modulating the coded bit stream may be quadrature amplitude modulation (quadrature amplitude modulation, QAM), and the obtained symbols are, for example, QAM symbols.
  • Serial-to-parallel conversion (serial/parallel, S/P) is performed on the modulated symbols, and the symbols processed by the S/P are respectively mapped to different subcarriers. Symbols on different subcarriers are subjected to inverse fast Fourier transform (IFFT) operations.
  • IFFT inverse fast Fourier transform
  • a cyclic prefix (CP) is added to the IFFT symbol, and after parallel/serial conversion (P/S) and digital-to-analog conversion (D/A), it is transmitted to the channel.
  • the process of receiving signals at the receiving end may include the following steps. After analog-to-digital conversion (A/D) is performed on the received signal, the carrier frequency offset (CFO) (correct CFO) is corrected, and then S/P is performed to remove CP. Perform fast Fourier transform (FFT) operation on the signal after CP removal, then perform phase track (phase track), P/S, and finally demodulate.
  • A/D analog-to-digital conversion
  • CFO carrier frequency offset
  • S/P is performed to remove CP.
  • FFT fast Fourier transform
  • FIG. 5 is a schematic diagram of spectrum resource segmentation for OFDM modulation. As shown in Figure 5, in the time domain dimension, segmentation is performed at the granularity of OFDM symbols (OFDM symbol); in the frequency dimension, segmentation is performed at the granularity of subcarriers. Within each OFDM symbol, one QAM signal can be transmitted on each subcarrier.
  • a physical resource block can include multiple subcarriers, such as a PRB includes 12 subcarriers, such as PRB 0 in Figure 5 includes subcarriers 0-11 , PRB 1 includes subcarriers 12-23, and PRB 2 includes subcarriers 24-35.
  • OFDM modulation can use different sub-carrier space (sub-carrier space, SCS).
  • SCS sub-carrier space
  • the working frequency band is high, the multipath delay of wireless transmission is small, and the phase noise of the device is relatively large. At this time, it is more appropriate to use a high subcarrier spacing; when the working frequency band is low, the multipath delay is abundant, and the device The phase noise is smaller, and it is more appropriate to use low subcarrier spacing at this time.
  • subcarrier spacings are defined in some communication systems for selection during actual deployment.
  • multiple subcarrier spacings are defined, including: 15kHz, 30kHz, 60kHz, 120kHz and 240kHz.
  • the operating frequency of the system is divided into two frequency ranges (frequency range, FR), namely FR1 (410MHz ⁇ 7.125GHz) and FR2 (24.25GHz ⁇ 52.6GHz).
  • FR1 frequency range 1
  • FR2 frequency band 2
  • FR1 410MHz ⁇ 7.125GHz
  • FR2 24.25GHz ⁇ 52.6GHz
  • the frequency band of FR1 is lower than that of FR2, and FR2 works in a higher frequency band, which is generally called the millimeter wave frequency band.
  • the frequency band used in traditional cellular wireless communication is generally FR1.
  • the frequency band used in some small coverage scenarios may include FR2.
  • the subcarrier intervals that can be used by FR1 include: 15kHz, 30kHz and 60kHz; the subcarrier intervals that can be used by FR2 include: 60kHz, 120kHz and 240kHz.
  • FIG. 6 is a schematic diagram of OFDM time domain and frequency domain resources corresponding to different subcarrier spacings. As shown in Figure 6, when the subcarrier spacing is widened from 15kHz to 30kHz, the time length of the OFDM symbol will become half of the original one.
  • the OFDM technology requires high complexity for the receiver. From the perspective of power saving, the OFDM technology is not the best choice for the wake-up circuit.
  • the OOK modulation technology based on the OFDM transmitter means that the OOK signal is generated based on the OFDM transmitter.
  • an OFDM transmitter is used to modulate the signal, and some OFDM symbols are modulated and sent on subcarriers.
  • Such OFDM symbols represent "ON” (that is, represent “1” in the OOK signal, or the symbol length
  • the transmission power of the internal signal is not 0, or there is a signal within the symbol length); some OFDM symbols do not transmit signals on subcarriers, such OFDM symbols represent "OFF” (that is, represent "0" in the OOK signal, or
  • the transmission power of the signal within the symbol length is 0, or no signal is sent within the symbol length).
  • the OOK signal can be generated based on the OFDM transmitter, thereby not only reducing the power consumption of the wake-up circuit, but also reducing the complexity of the transmitter.
  • FIG. 7 is a schematic diagram of generating an OOK signal based on an OFDM transmitter.
  • some OFDM symbols modulate signals on subcarriers and transmit them, such OFDM symbols represent “ON”, and some OFDM symbols do not transmit signals, such OFDM symbols represent “OFF”.
  • the OFDM symbol in the shaded part of (a) in Figure 7 there are 12 subcarriers that modulate the signal, and the OFDM signal is obtained after inverse fast Fourier transform (IFFT) and sent normally.
  • IFFT inverse fast Fourier transform
  • the OFDM symbols in the white part in (a) in FIG. 7 do not send signals.
  • the time-domain waveform obtained by the receiving end is shown in (b) in FIG. 7 .
  • the signal is generated by the OFDM transmitter, the receiver can perform demodulation according to the OOK signal.
  • FIG. 8 is a schematic diagram of sending a first signal and a second signal in a time-division manner.
  • the sending end may send a first signal, and then send a second signal after waking up the main circuit.
  • the amount of information that needs to be transmitted on the wake-up circuit is small, and in order to achieve the effect of energy saving, a narrower bandwidth (such as 4MHz bandwidth) can be used.
  • the main circuit may be a large amount of data communication, so it may occupy a wider bandwidth ( Such as 20MHz bandwidth).
  • the WUR bandwidth in FIG. 8 is a bandwidth of 4 MHz.
  • the system bandwidth is 20MHz, so when the first signal is sent, most of the system bandwidth is not used, resulting in a great waste of spectrum resources.
  • the present application proposes a solution that can solve the problem of waste of spectrum resources caused by sending the first signal and the second signal in a time-division manner.
  • the length mentioned herein for example, the length of the CP and the length of the symbol, all refer to the length of time.
  • the time length may also be represented by the number of sampling points in the time domain, which is not limited.
  • FIG. 9 is a schematic diagram of a signal transmission method 900 provided by an embodiment of the present application. Taking the interaction between a terminal device and a network device as an example, the method 900 may include the following steps.
  • the terminal device receives a first signal from a network device by using a first frequency resource.
  • the terminal device uses the first frequency resource to receive the first signal from the network device, which can be replaced by any of the following: the terminal device receives the first signal from the network device through the first module, and the terminal device receives the first signal from the network device through the first link The terminal device receives the first signal from the network device, receives the first signal from the network device when the terminal device is in the first state, and receives the first signal from the network device when the terminal device is in the first mode.
  • the terminal device Based on the first signal, uses the second frequency resource to transmit a second signal with the network device.
  • the terminal device Based on the first signal, for example, may alternatively be in response to the first signal.
  • the terminal device transmits the second signal with the network device using the second frequency resource. It can be understood that, in response to the first signal, the terminal device transmits the second signal with the network device using the second frequency resource. Taking FIG. 2 as an example, for example, after the terminal device receives (or detects) the first signal by using the first frequency resource, the terminal device transmits the second signal with the network device by using the second frequency resource.
  • the terminal device uses the second frequency resource to transmit the second signal with the network device, which may be replaced by any of the following: the terminal device transmits the second signal with the network device through the second module, and the terminal device communicates with the network device on the second link
  • the network device transmits the second signal
  • the terminal device transmits the second signal with the network device when it is in the second state
  • the terminal device transmits the second signal with the network device when it is in the second mode.
  • the first signal represents a signal transmitted using a first frequency resource (or a signal transmitted using a wake-up circuit)
  • the second signal represents a signal transmitted using a second frequency resource (or a signal transmitted using a main circuit).
  • the terminal device uses the second frequency resource to transmit the second signal to the network device, including: in response to the first signal, the terminal device uses the second frequency resource to initiate
  • the second signal may refer to a signal in a random access process of the terminal device, for example, the second signal includes a random access preamble.
  • the terminal device uses the second frequency resource to transmit the second signal to the network device, which may be alternatively described as: the terminal device uses the second frequency resource to send the second signal to the network device.
  • the terminal device uses the second frequency resource to transmit the second signal with the network device, including: in response to the first signal, the terminal device uses the second frequency resource to receive the second signal from the network device.
  • the second signal may carry, for example, one or more of the following information: PEI, paging DCI, and paging message (such as paging PDCCH and paging PDSCH).
  • the terminal device uses the second frequency resource to transmit the second signal with the network device, which may be alternatively described as: the terminal device uses the second frequency resource to receive the second signal sent by the network device.
  • the first frequency resource and the second frequency resource are different frequency domain resources in the system bandwidth.
  • the first link and the second link as an example, for example, assuming that the system bandwidth is F, part of the frequency band (for example, denoted as F1) can be allocated to the first link, and the rest of the frequency band (ie, F-F1 ) is assigned to the second link for use.
  • the difference between the first frequency resource and the second frequency resource means that the second link does not use the F1 frequency domain resource.
  • Fig. 10 is a schematic diagram of transmitting signals on a first link and a second link according to an embodiment of the present application.
  • a part of subcarriers in the system bandwidth (WUR bandwidth in FIG. 10 ) is allocated to the first link, and the rest of the subcarriers are allocated to the second link to transmit the second signal.
  • some OFDM symbols modulate signals on the subcarriers and send them. Such OFDM symbols represent "ON", and some OFDM symbols do not transmit signals. Such OFDM symbols represent "OFF".
  • the network device uses the subcarriers of the WUR bandwidth to send the first signal to the first terminal device on the first link, and the network device uses the rest of the subcarriers to communicate with other terminal devices (such as the second terminal equipment) to transmit a signal (such as transmitting a second signal).
  • method 900 further includes step 901.
  • a terminal device receives configuration information of a first frequency resource by using a second frequency resource.
  • the terminal device uses the second frequency resource to receive the configuration information of the first frequency resource, which can be replaced by any of the following: the terminal device receives the configuration information of the first frequency resource through the second module, and the terminal device receives the configuration information of the first frequency resource through the second module.
  • the terminal device receives configuration information of the first frequency resource, receives the configuration information of the first frequency resource when the terminal device is in the second state, and receives the configuration information of the first frequency resource when the terminal device is in the second mode.
  • the network device and the terminal device can determine configuration information of the first frequency resource. For example, it can be determined through a protocol; or it can also be sent to the terminal device after being configured by the network device.
  • the configuration information of the first frequency resource includes one or more of the following information: bandwidth of the first frequency resource, frequency domain position of the first frequency resource, and subcarrier spacing of the first frequency resource.
  • the bandwidth of the first frequency resource indicates the bandwidth used by the first link, or the bandwidth occupied by the first link.
  • the bandwidth of the first frequency resource is the width of N wur,rb PRBs, and N wur,rb is an integer greater than 1 or equal to 1.
  • the frequency domain position of the first frequency resource indicates the frequency domain position used by the first link, for example, the frequency domain position of the first frequency resource includes a resource block (resource block, RB) position.
  • resource block resource block
  • the frequency domain position of the first frequency resource may include the starting position of the RB and the quantity of the RB. Through the starting position of the RB and the number of RBs, the terminal device can determine the position of the RB, that is, can know the frequency domain position of the first frequency resource.
  • the frequency domain position of the first frequency resource includes the starting position of the RB.
  • the number of RBs may be pre-agreed, or pre-configured by the network side, and is not limited.
  • the terminal device can determine the position of the RB, that is, can obtain the frequency domain position of the first frequency resource.
  • the subcarrier spacing of the first frequency resource indicates the subcarrier spacing used by the first link, or the length of the first signal symbol.
  • the subcarrier spacing of the first frequency resource is different from the subcarrier spacing of the second frequency resource.
  • the subcarrier spacing of the first frequency resource is greater than the subcarrier spacing of the second frequency resource.
  • the subcarrier intervals that can be used by FR1 include: 15kHz, 30kHz and 60kHz; the subcarrier intervals that can be used by FR2 include: 60kHz, 120kHz and 240kHz.
  • the first link can use the subcarrier spacing of FR2, that is, the subcarrier spacing of the first frequency resource can include: 60kHz, 120kHz and 240kHz, so The transmission rate of the first link is increased.
  • the transfer rate means the data transfer rate (data transfer rate).
  • the transmission rate is affected by the time length of the OFDM symbol.
  • the time length of the OFDM symbol is related to the subcarrier spacing. The smaller the subcarrier spacing is, the longer the time length of the OFDM symbol is. In this way, the transmission rate of the OOK signal generated by the OFDM transmitter is lower.
  • a smaller subcarrier spacing is generally used, so that the transmission rate will also be lower. For example, if a cell deployed on FR1 adopts a subcarrier spacing of 30kHz, the time length of an OFDM symbol is about 33.33us.
  • the transmission that can be achieved by using OOK modulation Rates up to 28 kilobits per second (kbps) are possible.
  • the transmission rate is insufficient to support the traffic of the first signal in the cell. Therefore, the first link can use the subcarrier spacing originally used for FR2, that is, the subcarrier spacing of the first link can be increased, thereby increasing the transmission rate of the first link.
  • FIG. 11 is a schematic diagram of a first link and a second link using different subcarrier spacings according to an embodiment of the present application.
  • the subcarrier interval for transmitting the first signal is 240 kHz
  • the subcarrier interval for transmitting the second signal is 30 kHz.
  • the subcarrier spacing is expanded by 8 times, the corresponding OFDM symbol length is also shortened by 8 times, and the transmission rate of the first link can also be increased by 8 times.
  • the transmission rate of a link can be increased from 28kbps to 224kbps. It can also be seen from FIG. 11 that within the time range of one OFDM symbol of the second signal, the first signal can transmit 8 symbols, so the transmission rate is greatly improved.
  • the time when the terminal device uses the first frequency resource to demodulate the first signal is related to a preset duration, and the preset duration is different from the length of the cyclic prefix corresponding to the subcarrier spacing of the first frequency resource.
  • the terminal device uses the first frequency resource to demodulate the first signal from the network device after a preset period of time starting from the starting moment of each received symbol.
  • the subcarrier spacing may correspond to a cyclic prefix of a certain length, in other words, there is a corresponding relationship between each subcarrier spacing and the length of the cyclic prefix. If a larger subcarrier spacing is used, the length of the cyclic prefix corresponding to the larger subcarrier spacing is smaller. In some communication systems, such as OFDM communication systems, a cyclic prefix is used to resist inter-symbol interference caused by multipath delay. If a large subcarrier spacing is used in the first frequency resource, its corresponding cyclic prefix may not be able to resist inter-symbol interference caused by channel multipath delay.
  • the embodiment of the present application proposes a preset duration, and the preset duration is used to solve the impact of multipath delay that may be faced by the first link adopting a relatively large subcarrier spacing.
  • the preset duration for example, can also be called a guard duration, such as being recorded as an inter symbol interference guard interval (ISI-GI), and its naming does not limit the scope of protection of this application, and the preset duration is used for description below .
  • ISI-GI inter symbol interference guard interval
  • ISI inter-symbol interference
  • CP guard interval
  • FIG. 12 is a schematic diagram of multipath delay and ISI duration.
  • the transmit symbol includes a CP and a data part.
  • the CP After passing through the multipath channel, because of the CP, within the receiving window of the receiving end, it will not be interfered by the previous symbol.
  • the receiver processes the data within the receive window, avoiding the influence of ISI.
  • a larger subcarrier spacing can be used, thereby increasing the transmission rate.
  • larger subcarrier spacing may face the impact of multipath delay.
  • the first transmitted symbol represents "ON", that is, the signal is sent on the first transmitted symbol
  • the second transmitted symbol represents "OFF”. ”, that is, no signal is sent on the second transmit symbol.
  • the subcarrier spacing of the first link is set to 120kHz, then compared with 30kHz, the subcarrier spacing is expanded by 4 times, and the time length of transmitting symbols is shortened to 1/4 of the original,
  • the length of the corresponding CP is also shortened to 1/4 of the original one, so that in the face of the same multipath time delay, the length of the CP may be shorter than the length of the multipath time delay.
  • the duration of (t1-t0) is the CP length corresponding to the 120kHz subcarrier spacing, where the delay ⁇ 2 of the second path in the multipath exceeds the CP length, so if the previous time after removing the CP is used As the receiving time window (that is, the time from t1 to t3), it will be subjected to the inter-symbol interference (ISI) brought by the previous symbol. Therefore, the embodiment of the present application proposes to solve the impact of multipath delay that may be faced by the first link adopting a large subcarrier spacing by presetting the duration.
  • ISI inter-symbol interference
  • the preset duration refers to a certain length of time, and the length should exceed the duration affected by inter-symbol interference caused by multipath delay.
  • the length of the preset duration is different from the length of the CP corresponding to the subcarrier interval of the first frequency resource.
  • the length of the preset duration may be equal to the length of the corresponding CP when the second signal is transmitted. It is assumed that the length of the duration may be selected as the corresponding CP length when the subcarrier interval is 30 kHz, which is different from the CP length corresponding to the subcarrier width (120 kHz) of the second signal.
  • the time window at the receiving end can exclude the preset duration.
  • the received symbol is at time t2, and the preset duration refers to the time from t0 to t2, that is, the duration of the CP corresponding to the 30kHz subcarrier interval.
  • the receiving end can The time from t2 to t3 is used as the receiving time window, that is, the first signal is demodulated from time t2.
  • the preset duration can be predefined by a standard, or can be configured by the network side. Wherein, if configured by the network side, the network side may send the configured preset duration to the terminal device.
  • the network side configures a preset duration and sends the preset duration to the terminal device.
  • the preset duration may be carried in other information and sent to the terminal device, such as carried in configuration information of the first frequency resource; or the preset duration may also be sent to the terminal device separately.
  • the network side configures or standardly predefines the association relationship between the preset duration and other information, and the preset duration can be determined according to the other information and the association relationship.
  • the preset duration is associated with the frequency band where the first signal is located.
  • this association relationship can be recorded as association relationship #1.
  • the association relationship #1 may be predefined, or may be predefined by a standard, or may be configured by the network side. Wherein, if configured by the network side, the network side may send the association relationship #1 to the terminal device.
  • the network device can indicate to the terminal device the frequency band where the first signal is located, and then the terminal device can determine the length of the preset duration corresponding to the first signal based on the frequency band where the first signal is located and the association relationship #1.
  • association relationship #1 may exist in the form of table 1.
  • the length of the preset duration corresponding to the first signal is n1 ⁇ s; if the frequency band where the first signal is located is band 2, the second The length of the preset duration corresponding to a signal is n2 ⁇ s; if the frequency band where the first signal is located is band 3, the length of the preset duration corresponding to the first signal is n3 ⁇ s.
  • the frequency band may also include a greater number of frequency bands, and correspondingly, the length of the preset duration may include a greater number of lengths.
  • the frequency band can be a specific value or a certain range, for example, band 1 can be a certain value, or band 1 can also be a certain range.
  • the preset duration is associated with the CP length of a bandwidth part (BWP), where the BWP may be, for example, a specific BWP, such as an initial BWP (initial BWP).
  • BWP bandwidth part
  • this association relationship can be recorded as association relationship #2.
  • the association relationship #2 may be predefined, or may be predefined by a standard, or may be configured by the network side. Wherein, if configured by the network side, the network side may send the association relationship #2 to the terminal device.
  • the terminal device when the terminal device reads the system information, it can obtain the subcarrier spacing used by the initial BWP from the system information, and then the terminal device can calculate the CP length used by the initial BWP, and then the terminal The device may determine the length of the preset duration corresponding to the first signal based on the CP length adopted by the initial BWP and the association relationship #2.
  • the relationship #2 may exist in the form of Table 2.
  • CP length used by the initial BWP The length of the preset duration (unit: ⁇ s) CP 1 n1' CP 2 n2' CP 3 n3'
  • the length of the preset duration corresponding to the first signal is n1' ⁇ s
  • the CP length used by the initial BWP is CP 2
  • the length of the preset duration corresponding to the first signal is n2' ⁇ s
  • the CP length adopted by the initial BWP is CP3, the length of the preset duration corresponding to the first signal is n3' ⁇ s.
  • the CP length adopted by the initial BWP may also include a larger number of CP lengths, and correspondingly, the length of the preset duration may include a larger number of lengths.
  • the initial BWP may also be replaced by other BWPs.
  • the preset duration is associated with the subcarrier spacing of the first frequency resource.
  • this association relationship can be recorded as association relationship #3.
  • the association relationship #3 may be predefined, or may be predefined by a standard, or may be configured by the network side. Wherein, if configured by the network side, the network side may send the association relationship #3 to the terminal device.
  • the network device can indicate the subcarrier spacing of the first signal to the terminal device, and then the terminal device can determine the length of the guard duration corresponding to the first signal based on the subcarrier spacing of the first signal and the association relationship #3.
  • association relationship #3 may exist in the form of table 3.
  • Subcarrier spacing (unit: kHz)
  • the length of the protection time (unit: ⁇ s) 60 n1" 120 n2" 240 n3"
  • the length of the guard period corresponding to the first signal is n1” ⁇ s; if the subcarrier spacing of the first signal is 120kHz, then the The length of the guard duration corresponding to the first signal is n2" ⁇ s; if the subcarrier interval of the first signal is 240kHz, the length of the guard duration corresponding to the first signal is n3" ⁇ s.
  • the subcarrier interval may also include a greater number of values, and correspondingly, the length of the guard period may include a greater number of lengths.
  • the inter-subcarrier interference between the first signal and the second signal may be reduced by using guard subcarriers or time-domain windowing.
  • the orthogonality between the first signal and the second signal may be destroyed, so that the first signal and the second signal may be There is inter-subcarrier interference.
  • the orthogonality may refer to that under ideal time-frequency synchronization conditions, there is no mutual interference between subcarriers.
  • FIG. 13 is a schematic diagram of no interference and presence of interference between subcarriers.
  • the first signal is modulated using 4 subcarriers, and the subcarrier spacing used by the first signal is the same as that of the second signal of the adjacent band (for example, both are 30kHz), then, when performing FFT After the operation, the energy of the first signal will be concentrated on the modulated sub-carrier and will not leak to adjacent sub-carriers.
  • the subcarrier spacing adopted by the first signal is different from that of the second signal in the adjacent band (for example, the subcarrier spacing adopted by the first signal is 30kHz, and the second signal adopts The adopted subcarrier spacing is 60kHz), after performing the FFT operation, the energy of the first signal will leak to adjacent subcarriers, destroying the orthogonality between subcarriers.
  • the embodiment of the present application proposes that the inter-subcarrier interference between the first signal and the second signal may be reduced by using guard subcarriers or time-domain windowing.
  • guard subcarriers or time-domain windowing.
  • Example 1 the terminal device uses subcarriers other than N1 subcarriers in the first frequency resource to receive the first signal from the network device, where N1 is an integer greater than 1 or equal to 1.
  • N1 is smaller than the total number of subcarriers of the first frequency resource, or N1 is smaller than the total number of subcarriers of the bandwidth used by the first link.
  • N1 may be 1 or 2, for example.
  • the N1 subcarriers may be understood as guard subcarriers or edge subcarriers.
  • the N1 subcarriers represent one or more subcarriers adjacent to the second frequency resource in the first frequency resource.
  • the N1 subcarriers may include: one or more subcarriers with the highest number (or index, or sequence number) in the bandwidth of the first link (that is, the bandwidth of the first frequency resource), and/or one or more subcarriers with the lowest number subcarriers.
  • the first signal is not transmitted on the guard subcarriers, so that even if the subcarrier interval of the first frequency resource is different from that of the second frequency resource
  • the intervals are different, because there are guard subcarriers, the subcarrier interference between the first signal transmitted using the first frequency resource and the second signal transmitted using the second frequency resource will still be greatly reduced.
  • the first frequency resource includes the bandwidth used by the first link, and the bandwidth used by the first link includes N subcarriers, where N is an integer greater than N1.
  • the terminal device uses subcarriers other than the N1 subcarriers in the first frequency resource to receive the first signal from the network device.
  • the terminal device uses one or more intermediate subcarriers of the N subcarriers to receive the first signal from the network device.
  • the first signal, or the frequency resource that the terminal device can use to receive the first signal is located in one or more intermediate subcarriers of the N subcarriers.
  • the terminal device uses middle N3 subcarriers of the N subcarriers to receive the first signal from the network device, where N3 is an integer greater than 1 or equal to 1, and N3 is smaller than N.
  • the N1 subcarriers include: one or more subcarriers with the highest number among the N subcarriers, and one or more subcarriers with the lowest number among the N subcarriers.
  • guard subcarriers are set on both sides of the bandwidth allocated to the first link, the first signal is not transmitted on the guard subcarriers, and the guard subcarriers can be used as a guard interval between the first signal and the second signal, reducing Subcarrier interference between the first signal and the second signal.
  • FIG. 14 is a schematic diagram of reducing inter-subcarrier interference by using guard subcarriers according to an embodiment of the present application.
  • the bandwidth of the first link (that is, the WUR bandwidth in FIG. 14 ) is N wur,rb PRBs, corresponding to N wur,rb ⁇ 12 subcarriers.
  • Guard subcarriers are set on both sides of the bandwidth of the first link, and no signal is transmitted on the guard subcarriers, which serve as a guard interval between the first signal and the second signal.
  • the first signal is modulated on the middle N3 subcarriers, where N3 may be 1, or may also be greater than 1.
  • Example 2 the terminal device uses subcarriers other than N2 subcarriers in the second frequency resource to transmit the second signal with the network device, where N2 is an integer greater than 1 or equal to 1.
  • N2 is smaller than the total number of subcarriers of the second frequency resource, or N2 is smaller than the total number of subcarriers of the bandwidth used by the second link.
  • N2 may be 1 or 2, for example.
  • the N2 subcarriers may be understood as guard subcarriers or edge subcarriers.
  • the N2 subcarriers represent one or more subcarriers adjacent to the first frequency resource in the second frequency resource.
  • guard subcarriers By setting guard subcarriers on one side or both sides of the bandwidth allocated to the second link, no second signal is transmitted on the guard subcarriers, so that even if the subcarrier interval of the first frequency resource is different from that of the subcarriers of the second frequency resource The intervals are different, because there are guard subcarriers, the subcarrier interference between the first signal transmitted using the first frequency resource and the second signal transmitted using the second frequency resource will still be greatly reduced.
  • FIG. 15 is another schematic diagram of reducing inter-subcarrier interference by using guard subcarriers according to an embodiment of the present application.
  • a guard subcarrier is set at a bandwidth adjacent to the second link and the first link, and no signal is transmitted on the guard subcarrier as a guard interval between the first signal and the second signal.
  • the subcarrier spacing of the first frequency resource is different from that of the second frequency resource, because there are guard subcarriers, the distance between the first signal transmitted using the first frequency resource and the second signal transmitted using the second frequency resource The subcarrier interference will still be greatly reduced.
  • the first signal is a signal obtained by multiplying a time domain signal by a window function.
  • Time-domain windowing means multiplying OFDM symbols by a window function to obtain a windowed signal.
  • the first signal is converted into a time-domain signal through FFT modulation, it is multiplied by a time-domain window function before being sent.
  • the subcarrier interference between the first signal and the second signal can be reduced by means of windowing in the time domain.
  • the window function may refer to, for example: a function with smaller values at both ends and a larger value in the middle.
  • the window function is, for example, a raised cosine window, a Hamming window, a Hanning window, a Gaussian window, and the like. Taking the raised cosine window as an example, an implementation method is given below.
  • the raised cosine window can be constructed as follows: the value of the first N pf elements satisfies formula 1, the value of the last N pf elements is the reverse sequence of the first N pf sampling points, and the middle (N ofdm -2N pf ) element has a value of 1.
  • FIG. 16 is a schematic diagram of a raised cosine window function provided according to an embodiment of the present application.
  • Time-domain windowing is to multiply the OFDM symbol by the window function to obtain the windowed signal
  • the windowed signal satisfies Equation 2.
  • the frequency domain positions of the first frequency resources are discontinuous.
  • a narrow bandwidth may be allocated to the first link, that is, the bandwidth of the first frequency resource is relatively narrow.
  • narrow bandwidth communication systems may face the problem of lack of frequency diversity gain.
  • Fig. 17 is a schematic diagram of channel frequency domain response. As shown in Figure 17, due to the influence of multipath signals, the frequency domain response of the channel is also uneven, and there will be deep fading in some frequency bands. If the frequency domain position of the first frequency resource is exactly on a deep-fading frequency, such as 20 MHz to 30 MHz, then the signal quality of the first signal transmitted using the first frequency resource is poor.
  • the frequency domain positions of the first frequency resource are discontinuous, so that frequency hopping can be used to obtain frequency diversity gain and better transmission effect.
  • the frequency domain positions of the first frequency resource include two parts, and the frequency domain positions of the two parts are discontinuous.
  • FIG. 18 is a schematic diagram of a frequency domain position of a first frequency resource provided according to an embodiment of the present application.
  • the frequency domain position of the first frequency resource can be located on both sides of the system bandwidth, so the frequency used to transmit the first signal is discontinuous in the middle, so that frequency hopping can be used to obtain frequency diversity gain and obtain better transmission effect.
  • the frequency domain position of the first frequency resource may be at any position in the system bandwidth, as long as it is not continuous.
  • the first frequency resources may include resources in the middle of the system bandwidth and are discontinuous.
  • the frequency domain positions of the first frequency resource are discontinuous, which means that the frequency domain positions of the first frequency resource include discontinuous multiple frequency domain positions.
  • multiple discontinuous frequency domain positions may be predefined by a standard, or may be configured and indicated by the network side. Taking FIG. 17 or FIG. 18 as an example, the frequency domain positions of the first frequency resource include two discontinuous frequency domain positions, which are respectively recorded as the first frequency domain position and the second frequency domain position for distinction.
  • the network device may indicate to the terminal device: the starting position of the first frequency domain position is N start,rb1 , the bandwidth of the first frequency domain position is N wur,rb1 , and the starting position of the second frequency domain position is N start ,rb2 , the bandwidth of the second frequency domain position is N wur,rb2 .
  • the network device may indicate to the terminal device that the starting position of the first frequency domain position is N start,rb1 , and the starting position of the second frequency domain position is N start,rb2 .
  • the bandwidth of the frequency domain position can be predefined by a standard, and can also be configured by the network side. If the bandwidth of the frequency domain location is configured by the network side, the network side may send the bandwidth of the frequency domain location to the terminal device.
  • association relationship #4 there is an association relationship between the start position of the first frequency domain position and the start position of the second frequency domain position, such as denoted as association relationship #4.
  • the network device may indicate to the terminal device that the starting position of the first frequency domain position is N start,rb1 , and the terminal device may know the starting position of the second frequency domain position according to the starting position of the first frequency domain position and the association relationship #4. start position.
  • association relationship #4 may be predefined by a standard, and may also be configured by the network side. If the association relationship #4 is configured by the network side, the network side may send the association relationship #4 to the terminal device.
  • the network device may repeatedly send the first signal at the multiple frequency domain positions, Alternatively, different parts of the first signal may be sent at the multiple frequency domain positions respectively.
  • the following two possible situations are introduced by taking the first frequency domain position and the second frequency domain position as examples.
  • the network device transmits part of the first signal at the first frequency domain position, and transmits the rest of the first signal at the second frequency domain position.
  • the terminal device receives part of the first signal from the network device at the first frequency domain position, and the terminal device receives the rest of the first signal from the network device at the second frequency domain position.
  • FIG. 19 is a schematic flowchart of sending a first signal at multiple discontinuous frequency domain positions according to an embodiment of the present application.
  • the bits to be encoded are encoded to obtain an encoded bit stream (such as "11000011”).
  • Perform interleaving processing on the coded bit stream such as writing by row and reading by column.
  • the frequency domain position mapping operation is performed on the interleaved signal.
  • the frequency domain position may be a plurality of discontinuous frequency domain positions, such as a first frequency domain position and a second frequency domain position.
  • the bit mapped to the first frequency domain position is "1001”
  • the bit mapped to the second frequency domain position is "1001”.
  • OOK modulation, digital-to-analog conversion, and up conversion (up conversion) processing It can be understood that the foregoing process is an exemplary description, and this embodiment of the present application is not limited thereto.
  • the network device sends the first signal at the first frequency domain position
  • the network device sends the first signal at the second frequency domain position
  • the terminal device receives the first signal at the first frequency domain position and the second frequency domain position respectively. That is, at the first time, the terminal device receives the first signal at the first frequency domain position, and at the second time, the terminal device receives the first signal at the second frequency domain position.
  • the sender can send the coded bit stream twice, using different frequency domain positions each time.
  • the bits to be coded such as "1001”
  • the encoded bitstream is mapped to a first frequency domain location
  • the encoded bitstream is mapped to a second frequency domain location.
  • OOK modulation, digital-to-analog conversion, and up-conversion processing are performed at the sending end.
  • receiving may also be replaced with “detecting” or “reading”.
  • receiving the first signal may also be replaced with “detecting the first signal” or “reading the first signal”.
  • transmission includes receiving and/or sending.
  • transmitting a signal may include receiving a signal and/or sending a signal.
  • the main circuit and the wake-up circuit, and the main link and the wake-up link are used as examples for illustration, and the present application is not limited thereto.
  • “wake-up link/wake-up circuit” may also be replaced with “the first module”, or may also be replaced with “in the first state”, or may also be replaced with “in the first mode”.
  • “transmitting a signal on the wake-up link” may also be replaced with “transmitting a signal through the first module (or first circuit)”.
  • "Main link/main circuit” may also be replaced with "second module”, or may also be replaced with "in the second state", or may also be replaced with "in the second mode”.
  • "transmit signals on the main link” may also be replaced with "transmit signals through the second module (or second circuit)”.
  • the interaction between the terminal device and the network device is mainly used as an example for illustration, and the present application is not limited thereto.
  • the sending device may be a terminal device or a network device, and the sending end device may also be a terminal device or a network device.
  • terminal device may be replaced with “first terminal device”
  • network device may be replaced with “second terminal device”.
  • the methods and operations implemented by the terminal device can also be implemented by components (such as chips or circuits) that can be implemented by the terminal device; in addition, the methods and operations implemented by the network device can also be implemented by It may be implemented by components (such as chips or circuits) that may be used in network equipment, and is not limited.
  • the embodiments of the present application further provide corresponding devices, and the device includes corresponding modules for executing the foregoing method embodiments.
  • the module can be software, or hardware, or a combination of software and hardware. It can be understood that the technical features described in the above method embodiments are also applicable to the following device embodiments.
  • Fig. 20 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the apparatus 2000 includes a transceiver unit 2010 and a processing unit 2020 .
  • the transceiver unit 2010 may be used to implement corresponding communication functions.
  • the transceiver unit 2010 may also be called a communication interface or a communication unit.
  • the processing unit 2020 may be used for data or signal processing.
  • the device 2000 further includes a storage unit, which can be used to store instructions and/or data, and the processing unit 2020 can read the instructions and/or data in the storage unit, so that the device implements the foregoing method embodiments actions of the terminal device.
  • a storage unit which can be used to store instructions and/or data
  • the processing unit 2020 can read the instructions and/or data in the storage unit, so that the device implements the foregoing method embodiments actions of the terminal device.
  • the apparatus 2000 can be used to execute the actions performed by the communication equipment (such as terminal equipment, and network equipment) in the above method embodiments.
  • the apparatus 2000 can be a communication equipment or a component of a communication equipment
  • a transceiver unit 2010 is used to perform operations related to sending and receiving on the side of the communication device (such as a terminal device, such as a network device) in the method embodiment above
  • the processing unit 2020 is used to perform operations related to the communication device (such as a terminal device, such as a network device) in the method embodiment above. Processing-related operations on the network device) side.
  • the transceiver unit 2010 is used to receive the first signal from the network device by using the first frequency resource; the transceiver unit 2010 is also used to receive the first signal based on the first The signal uses the second frequency resource to transmit the second signal with the network device; wherein, the first frequency resource and the second frequency resource are different frequency domain resources in the system bandwidth, and the subcarrier spacing of the first frequency resource is different from that of the second frequency resource The subcarrier spacing is different.
  • the apparatus 2000 can implement the steps or processes corresponding to the execution of the terminal device in the method embodiment according to the embodiment of the present application, and the apparatus 2000 can include a method for executing the terminal device in the embodiments shown in FIG. 9 to FIG. 19 unit.
  • the transceiver unit 2010 is used to use the first frequency resource to send the first signal to the first terminal device; the transceiver unit 2010 is also used to transmit the first signal based on The first signal uses the second frequency resource to transmit the second signal with the first terminal device; wherein, the first frequency resource and the second frequency resource are different frequency domain resources in the system bandwidth, and the subcarrier spacing of the first frequency resource is the same as Subcarrier intervals of the second frequency resources are different.
  • the apparatus 2000 can implement the steps or processes corresponding to the execution of the network equipment in the method embodiment according to the embodiment of the present application, and the apparatus 2000 can include a method for executing the implementation of the network equipment in the embodiments shown in FIG. 9 to FIG. 19 unit.
  • the apparatus 2000 here is embodied in the form of functional units.
  • the term "unit” here may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor for executing one or more software or firmware programs (such as a shared processor, a dedicated processor, or a group processor, etc.) and memory, incorporated logic, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • the apparatus 2000 may specifically be the terminal device in the above-mentioned embodiments, and may be used to execute various processes and/or steps corresponding to the terminal device in the above-mentioned method embodiments, for To avoid repetition, I won't repeat them here.
  • the apparatus 2000 in each of the above solutions has the function of implementing the corresponding steps performed by the device (such as a terminal device or a network device) in the above method.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiver computer), and other units, such as a processing unit, may be replaced by a processor to respectively perform the sending and receiving operations and related processing operations in each method embodiment.
  • transceiver unit 2010 may also be a transceiver circuit (for example, may include a receiving circuit and a sending circuit), and the processing unit may be a processing circuit.
  • the apparatus in FIG. 20 may be the network element or device in the foregoing embodiments, or may be a chip or a chip system, for example, a system on chip (system on chip, SoC).
  • the transceiver unit may be an input-output circuit or a communication interface;
  • the processing unit is a processor or a microprocessor or an integrated circuit integrated on the chip. It is not limited here.
  • Fig. 21 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • the device 2100 includes a first module 2110 and a second module 2120 .
  • the first module 2110 may be a wake-up circuit, or may also be a module of the wake-up circuit (such as a receiving module).
  • the first module 2110 can be used to execute the operations performed by the wake-up circuit on the side of the communication device (such as a terminal device, such as a network device) in the above method embodiments, or can be used to execute the operations performed by the communication device (such as a terminal device) in the above method embodiments , such as the operation performed by the first link on the side of the network device), or it can be used to perform the operation performed when the communication device (such as a terminal device, such as a network device) is in the first state in the method embodiment above, or it can be used
  • the operations performed when the communication device (such as a terminal device, or network device) is in the first mode in the above method embodiments are executed.
  • the following uses a terminal device as an example for description.
  • the second module 2120 may, for example, be a main circuit, or may also be a module of the main circuit (such as a receiving module).
  • the first module 2110 and the second module 2120 can be integrated together, or can also be set separately.
  • the second module 2120 can be used to execute the operations performed by the main circuit on the side of the communication device (such as a terminal device, such as a network device) in the method embodiments above, or can be used to execute the operations performed by the communication device (such as a terminal device) in the method embodiments above.
  • the operation performed by the second link on the side of the network device can be used to perform the operation performed when the communication device (such as a terminal device, such as a network device) is in the second state in the method embodiment above, or it can be used
  • the operations performed when the communication device (such as a terminal device, or network device) is in the second mode in the above method embodiments are executed.
  • the terminal device uses the first frequency resource to receive a first signal from the network device through the first module 2110; based on the first signal, the terminal device uses the second frequency resource to transmit the second signal with the network device through the second module 2110. Signal.
  • the apparatus 2100 can be directly obtained by referring to the relevant description in the method embodiment above, and details are not repeated here.
  • Fig. 22 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • the device 2200 includes a processor 2210, the processor 2210 is coupled with a memory 2220, the memory 2220 is used for storing computer programs or instructions and/or data, and the processor 2210 is used for executing the computer programs or instructions stored in the memory 2220, or reading the memory 2220
  • the stored data is used to execute the methods in the above method embodiments.
  • processors 2210 there are one or more processors 2210 .
  • the memory 2220 is integrated with the processor 2210, or is set separately.
  • the device 2200 further includes a transceiver 2230 for receiving and/or sending signals.
  • the processor 2210 is configured to control the transceiver 2230 to receive and/or send signals.
  • the apparatus 2200 is used to implement operations performed by devices (such as terminal devices, and network devices) in the above method embodiments.
  • the processor 2210 is configured to execute computer programs or instructions stored in the memory 2220, so as to implement related operations of the network device in the foregoing method embodiments.
  • the processor 2210 is configured to execute computer programs or instructions stored in the memory 2220, so as to implement related operations of the terminal device in the above method embodiments.
  • processors mentioned in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and may also be other general purpose processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits ( application specific integrated circuit (ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory and/or a nonvolatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • RAM random access memory
  • RAM can be used as an external cache.
  • RAM includes the following multiple forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), Double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (synchlink DRAM, SLDRAM) and direct Memory bus random access memory (direct rambus RAM, DR RAM).
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module may be integrated in the processor.
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the embodiment of the present application also provides a computer-readable storage medium, on which computer instructions for implementing the methods performed by the device (such as a terminal device, or a network device) in the above method embodiments are stored.
  • the computer when the computer program is executed by a computer, the computer can implement the methods performed by the network device in the above method embodiments.
  • the computer when the computer program is executed by a computer, the computer can implement the methods executed by the terminal device in the above method embodiments.
  • An embodiment of the present application further provides a computer program product, including instructions, which, when executed by a computer, implement the methods performed by devices (such as terminal devices, and network devices) in the foregoing method embodiments.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer may be a personal computer, a server, or a network device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, DVD), or a semiconductor medium (for example, a solid state disk (SSD), etc.
  • the aforementioned available medium includes but Not limited to: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种信号传输的方法和装置。该方法可以包括:终端设备使用第一频率资源接收来自网络设备的第一信号;响应于第一信号,终端设备使用第二频率资源与网络设备传输第二信号;第一频率资源与第二频率资源为系统带宽中的不同频域资源,第一频率资源与第二频率资源的子载波间隔不同。通过本申请,终端设备传输第一信号和第二信号时,可使用系统带宽中的不同频域资源,从而可提高频谱资源的利用率。此外,第一频率资源与第二频率资源的子载波间隔不同,这样可以根据第一信号和第二信号的特性选择合适的子载波间隔。本实施例提供的方法可以应用于通信系统,如5G或NR、LTE、V2X、D2D、M2M、MTC、物联网等。

Description

信号传输的方法和装置
本申请要求于2021年11月09日提交中国专利局、申请号为202111318168.3、申请名称为“一种唤醒信号的传输方法”的中国专利申请的优先权,以及2021年12月23日提交中国专利局、申请号为202111589267.5、申请名称为“信号传输的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种信号传输的方法和装置。
背景技术
终端设备可以通过一个单独的低功耗小电路,如唤醒接收机(wake up receiver,WUR),接收唤醒信号,且主接收机可以处于深度睡眠状态。当终端设备通过WUR检测到唤醒信号后,终端设备触发主接收机的唤醒。主接收机唤醒后,终端设备可以通过主接收机执行数据传输。目前,尚未有方案揭示唤醒信号的传输方式。
发明内容
本申请提供一种信号传输的方法和装置,通过使得终端设备使用WUR传输信号与使用主接收机传输信号的频率资源不同,可以提高频谱资源的利用率。
第一方面,提供了一种信号传输的方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由终端设备执行为例进行说明。
该方法可以包括:终端设备使用第一频率资源接收来自网络设备的第一信号;基于第一信号,终端设备使用第二频率资源,与网络设备传输第二信号;其中,第一频率资源与第二频率资源为系统带宽中的不同频域资源,第一频率资源的子载波间隔与第二频率资源的子载波间隔不同。
示例地,第一频率资源的子载波间隔大于第二频率资源的子载波间隔。
基于上述技术方案,终端设备使用第一频率资源接收来自网络设备的第一信号后,响应于该第一信号,终端设备使用第二频率资源与网络设备传输第二信号,其中,第一频率资源与第二频率资源为系统带宽中的不同频域资源。终端设备传输第一信号和第二信号时,可以使用系统带宽中的不同频域资源,从而可以避免将系统带宽都分配给第一信号或第二信号带来的频谱资源的浪费,可以提高频谱资源的利用率。此外,第一频率资源的子载波间隔与第二频率资源的子载波间隔不同,这样可以根据第一信号和第二信号的特性选择合适的子载波间隔。举例来说,终端设备使用第一频率资源接收唤醒信号(即第一信号的一例)时,可以使用较大的子载波间隔,这样子载波间隔越大,符号的时间长度越短,从而传输速率越高。
结合第一方面,在第一方面的某些实现方式中,终端设备使用第一频率资源解调第一信号的时间与预设时长相关,预设时长与第一频率资源的子载波间隔对应的循环前缀的长度不同。
基于上述技术方案,子载波间隔可对应一定长度的循环前缀,若第一频率资源的子载波间隔较大,该较大的子载波间隔对应的循环前缀的长度较小,较小长度的循环前缀可能无法抵抗信道的多径时延带来的符号间干扰,因此通过本申请实施例提出的预设时长,可以解决若第一频率资源的子载波间隔较大可能面临的多径时延的影响。
结合第一方面,在第一方面的某些实现方式中,终端设备使用第一频率资源接收来自网络设备的第一信号,包括:从每个接收符号的起始时刻开始,在预设时长后,终端设备使用第一频率资源解调来自网络设备的第一信号。
结合第一方面,在第一方面的某些实现方式中,预设时长与以下任一项信息相关联:第一频率资源的频域位置,第一频率资源的子载波间隔,或者终端设备的带宽部分BWP采用的循环前缀的长度;或者,方法还包括:终端设备从网络设备接收预设时长。
基于上述技术方案,预设时长可以与第一频率资源的频域位置相关联,这样通过第一频率资源的频域位置可获知预设时长;或者,预设时长可以与第一频率资源的子载波间隔相关联,这样通过第一频率资源的子载波间隔可获知预设时长;或者,预设时长可以与终端设备的带宽部分BWP采用的循环前缀的长度相关联,这样通过终端设备的BWP采用的循环前缀的长度可获知预设时长;或者终端设备也可以从网络侧接收该预设时长。
结合第一方面,在第一方面的某些实现方式中,终端设备使用第一频率资源接收来自网络设备的第一信号,包括:终端设备使用第一频率资源中除N1个子载波以外的子载波,接收来自网络设备的第一信号,N1个子载波表示第一频率资源中与第二频率资源相邻的一个或多个子载波,N1为大于1或等于1的整数。
作为示例,N1个子载波可以包括:第一频率资源的带宽中编号(或者称索引,或者称序号)最高的一个或多个子载波,和/或,编号最低的一个或多个子载波。
基于上述技术方案,通过在分配给第一频率资源的带宽的一侧或两侧设置保护子载波(即N1个子载波),该保护子载波上不传输第一信号,这样即使第一频率资源的子载波间隔与第二频率资源的子载波间隔不同,因为存在保护子载波,采用第一频率资源传输的第一信号和采用第二频率资源传输的第二信号之间的子载波干扰仍会大幅下降。
结合第一方面,在第一方面的某些实现方式中,终端设备使用第二频率资源,与网络设备传输第二信号,包括:终端设备使用第二频率资源中除N2个子载波以外的子载波,与网络设备传输第二信号,N2个子载波表示第二频率资源中与第一频率资源相邻的一个或多个子载波,N2为大于1或等于1的整数。
基于上述技术方案,通过在分配给第二频率资源的带宽的一侧或两侧设置保护子载波(即N2个子载波),该保护子载波上不传输第二信号,这样即使第一频率资源的子载波间隔与第二频率资源的子载波间隔不同,因为存在保护子载波,采用第一频率资源传输的第一信号和采用第二频率资源传输的第二信号之间的子载波干扰仍会大幅下降。
结合第一方面,在第一方面的某些实现方式中,第一频率资源的频域位置不连续。
基于上述技术方案,第一频率资源的频域位置不连续,这样可以通过跳频,得到频率分集增益,获取更好的传输效果。
结合第一方面,在第一方面的某些实现方式中,第一频率资源的频域位置包括第一频域位置和第二频域位置,终端设备使用第一频率资源接收来自网络设备的第一信号,包括:终端设备在第一频域位置接收来自网络设备的第一信号的部分信号,终端设备在第二频域位置接收来自网络设备的第一信号的其余部分信号;或者,在第一时间,终端设备在第一频域位置接收来自网络设备的第一信号,以及在第二时间,终端设备在第二频域位置接收来自网络设备的第一信号。
结合第一方面,在第一方面的某些实现方式中,方法还包括:终端设备使用第二频率资源,接收第一频率资源的配置信息。
结合第一方面,在第一方面的某些实现方式中,第一频率资源的配置信息包括以下一项或多项信息:第一频率资源的带宽、第一频率资源的频域位置、第一频率资源的子载波间隔。
结合第一方面,在第一方面的某些实现方式中,第一信号为时域信号与窗函数相乘后的信号。
示例地,窗函数指:两端数值较小,中间数值较大的函数。
基于上述技术方案,第一信号为时域信号与窗函数相乘后的信号,这样,可以通过时域加窗的方式,降低第一信号和第二信号之间的子载波干扰。
第二方面,提供了一种信号传输的方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由终端设备执行为例进行说明。
终端设备包括第一模块和第二模块,该方法可以包括:终端设备使用第一频率资源,通过第一模块接收来自网络设备的第一信号;基于第一信号,终端设备使用第二频率资源,通过第二模块与网络设备传输第二信号;其中,第一频率资源与第二频率资源为系统带宽中的不同频域资源,第一频率资源的子载波间隔与第二频率资源的子载波间隔不同。
基于上述技术方案,终端设备通过第一模块接收来自网络设备的第一信号后,响应于该第一信号,终端设备通过第二模块与网络设备传输第二信号,其中,通过第一模块接收第一信号时所使用的第一频率资源与通过第二模块传输第二信号时所使用的第二频率资源为系统带宽中的不同频域资源。终端设备通过不同模块传输信号时,可以使用系统带宽中的不同频域资源,从而可以避免将系统带宽都分配给第一模块或第二模块带来的频谱资源的浪费,可以提高频谱资源的利用率。此外,第一频率资源的子载波间隔与第二频率资源的子载波间隔不同,这样可以根据第一信号和第二信号的特性选择合适的子载波间隔。举例来说,终端设备通过第一模块接收唤醒信号(即第一信号的一例)时,可以使用较大的子载波间隔,这样子载波间隔越大,符号的时间长度越短,从而传输速率越高。
结合第二方面,在第二方面的某些实现方式中,终端设备使用第一频率资源,通过第一模块解调第一信号的时间与预设时长相关,预设时长与第一频率资源的子载波间隔对应的循环前缀的长度不同。
结合第二方面,在第二方面的某些实现方式中,终端设备使用第一频率资源,通过第一模块接收来自网络设备的第一信号,包括:从每个接收符号的起始时刻开始,在预设时长后,终端设备使用第一频率资源,通过第一模块解调来自网络设备的第一信号。
结合第二方面,在第二方面的某些实现方式中,预设时长与以下任一项信息相关联: 第一频率资源的频域位置,第一频率资源的子载波间隔,或者终端设备的带宽部分BWP采用的循环前缀的长度;或者,方法还包括:终端设备从网络设备接收预设时长。
结合第二方面,在第二方面的某些实现方式中,终端设备使用第一频率资源,通过第一模块接收来自网络设备的第一信号,包括:终端设备使用第一频率资源中除N1个子载波以外的子载波,通过第一模块接收来自网络设备的第一信号,N1个子载波表示第一频率资源中与第二频率资源相邻的一个或多个子载波,N1为大于1或等于1的整数。
结合第二方面,在第二方面的某些实现方式中,终端设备使用第二频率资源,通过第二模块与网络设备传输第二信号,包括:终端设备使用第二频率资源中除N2个子载波以外的子载波,通过第二模块与网络设备传输第二信号,N2个子载波表示第二频率资源中与第一频率资源相邻的一个或多个子载波,N2为大于1或等于1的整数。
结合第二方面,在第二方面的某些实现方式中,第一频率资源的频域位置不连续。
结合第二方面,在第二方面的某些实现方式中,第一频率资源的频域位置包括第一频域位置和第二频域位置,终端设备使用第一频率资源,通过第一模块接收来自网络设备的第一信号,包括:终端设备在第一频域位置通过第一模块接收来自网络设备的第一信号的部分信号,终端设备在第二频域位置通过第一模块接收来自网络设备的第一信号的其余部分信号;或者,在第一时间,终端设备在第一频域位置通过第一模块接收来自网络设备的第一信号,以及在第二时间,终端设备在第二频域位置通过第一模块接收来自网络设备的第一信号。
结合第二方面,在第二方面的某些实现方式中,方法还包括:终端设备使用第二频率资源,通过第二模块接收第一频率资源的配置信息。
结合第二方面,在第二方面的某些实现方式中,第一频率资源的配置信息包括以下一项或多项信息:第一频率资源的带宽、第一频率资源的频域位置、第一频率资源的子载波间隔。
结合第二方面,在第二方面的某些实现方式中,第一信号为时域信号与窗函数相乘后的信号。
第二方面及各个可能的设计的有益效果可以参考第一方面相关的描述,在此不予赘述。
第三方面,提供了一种信号传输的方法,该方法可以由网络设备执行,或者,也可以由网络设备的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由网络设备执行为例进行说明。
该方法可以包括:网络设备使用第一频率资源,向第一终端设备发送第一信号;基于第一信号,网络设备使用第二频率资源,与第一终端设备传输第二信号;其中,第一频率资源与第二频率资源为系统带宽中的不同频域资源,第一频率资源的子载波间隔与第二频率资源的子载波间隔不同。
基于上述技术方案,网络设备使用第一频率资源向第一终端设备发送第一信号后,响应于该第一信号,网络设备使用第二频率资源与终端设备传输第二信号,其中,第一频率资源与第二频率资源为系统带宽中的不同频域资源。网络设备传输第一信号和第二信号时,可以使用系统带宽中的不同频域资源,从而可以避免将系统带宽都分配给第一信号或第二信号带来的频谱资源的浪费,可以提高频谱资源的利用率。此外,第一频率资源的子 载波间隔与第二频率资源的子载波间隔不同,这样可以根据第一信号和第二信号的特性选择合适的子载波间隔。举例来说,网络设备使用第一频率资源接收唤醒信号(即第一信号的一例)时,可以使用较大的子载波间隔,这样子载波间隔越大,符号的时间长度越短,从而传输速率越高。
结合第三方面,在第三方面的某些实现方式中,方法还包括:在网络设备使用第一频率资源向第一终端设备发送第一信号时,网络设备使用第二频率资源与第二终端设备传输信号。
结合第三方面,在第三方面的某些实现方式中,方法还包括:网络设备向第一终端设备发送预设时长;或者,预设时长与以下任一项信息相关联:第一频率资源的频域位置,第一频率资源的子载波间隔,或者终端设备的带宽部分BWP采用的循环前缀的长度;其中,预设时长用于第一终端设备确定解调第一信号的时间,预设时长与第一频率资源的子载波间隔对应的循环前缀的长度不同。
结合第三方面,在第三方面的某些实现方式中,网络设备使用第一频率资源,向第一终端设备发送第一信号,包括:网络设备使用第一频率资源中除N1个子载波以外的子载波,向第一终端设备发送第一信号,N1个子载波表示第一频率资源中与第二频率资源相邻的一个或多个子载波,N1为大于1或等于1的整数。
结合第三方面,在第三方面的某些实现方式中,网络设备使用第二频率资源,与第一终端设备传输第二信号,包括:网络设备使用第二频率资源中除N2个子载波以外的子载波,与第一终端设备传输第二信号,N2个子载波表示第二频率资源中与第一频率资源相邻的一个或多个子载波,N2为大于1或等于1的整数。
结合第三方面,在第三方面的某些实现方式中,第一信号为时域信号与窗函数相乘后的信号。
结合第三方面,在第三方面的某些实现方式中,第一频率资源的频域位置不连续。
结合第三方面,在第三方面的某些实现方式中,第一频率资源的频域位置包括第一频域位置和第二频域位置,网络设备使用第一频率资源,向第一终端设备发送第一信号,包括:网络设备在第一频域位置向第一终端设备发送第一信号的部分信号,网络设备在第二频域位置向第一终端设备发送第一信号的其余部分信号;或者,在第一时间,网络设备在第一频域位置向第一终端设备发送第一信号,以及在第二时间,网络设备在第二频域位置向第一终端设备发送第一信号。
结合第三方面,在第三方面的某些实现方式中,方法还包括:网络设备使用第二频率资源向第一终端设备发送第一频率资源的配置信息。
结合第三方面,在第三方面的某些实现方式中,第一频率资源的配置信息包括以下一项或多项信息:第一频率资源的带宽、第一频率资源的频域位置、第一频率资源的子载波间隔。
第三方面及各个可能的设计的有益效果可以参考第一方面相关的描述,在此不予赘述。
第四方面,提供了一种信号传输的方法,该方法可以由网络设备执行,或者,也可以由网络设备的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由网络设备执行为例进行说明。
网络设备包括第一模块和第二模块,该方法可以包括:网络设备使用第一频率资源,通过第一模块向第一终端设备发送第一信号;基于第一信号,网络设备使用第二频率资源,通过第二模块与第一终端设备传输第二信号;其中,第一频率资源与第二频率资源为系统带宽中的不同频域资源,第一频率资源的子载波间隔与第二频率资源的子载波间隔不同。
基于上述技术方案,网络设备通过第一模块向第一终端设备发送第一信号后,响应于该第一信号,网络设备通过第二模块与终端设备传输第二信号,其中,通过第一模块发送第一信号时所使用的第一频率资源与通过第二模块传输第二信号时所使用的第二频率资源为系统带宽中的不同频域资源。网络设备通过不同模块传输信号时,可以使用系统带宽中的不同频域资源,从而可以避免将系统带宽都分配给第一模块或第二模块带来的频谱资源的浪费,可以提高频谱资源的利用率。此外,第一频率资源的子载波间隔与第二频率资源的子载波间隔不同,这样可以根据第一信号和第二信号的特性选择合适的子载波间隔。举例来说,网络设备通过第一模块发送唤醒信号(即第一信号的一例)时,可以使用较大的子载波间隔,这样子载波间隔越大,符号的时间长度越短,从而传输速率越高。
结合第四方面,在第四方面的某些实现方式中,方法还包括:在网络设备使用第一频率资源,通过第一模块向第一终端设备发送第一信号时,网络设备使用第二频率资源,通过第二模块与第二终端设备传输信号。
结合第四方面,在第四方面的某些实现方式中,方法还包括:网络设备向第一终端设备发送预设时长;或者,预设时长与以下任一项信息相关联:第一频率资源的频域位置,第一频率资源的子载波间隔,或者终端设备的带宽部分BWP采用的循环前缀的长度;其中,预设时长用于第一终端设备确定解调第一信号的时间,预设时长与第一频率资源的子载波间隔对应的循环前缀的长度不同。
结合第四方面,在第四方面的某些实现方式中,网络设备使用第一频率资源,通过第一模块向第一终端设备发送第一信号,包括:网络设备使用第一频率资源中除N1个子载波以外的子载波,通过第一模块向第一终端设备发送第一信号,N1个子载波表示第一频率资源中与第二频率资源相邻的一个或多个子载波,N1为大于1或等于1的整数。
结合第四方面,在第四方面的某些实现方式中,网络设备使用第二频率资源,通过第二模块与第一终端设备传输第二信号,包括:网络设备使用第二频率资源中除N2个子载波以外的子载波,通过第二模块与第一终端设备传输第二信号,N2个子载波表示第二频率资源中与第一频率资源相邻的一个或多个子载波,N2为大于1或等于1的整数。
结合第四方面,在第四方面的某些实现方式中,第一信号为时域信号与窗函数相乘后的信号。
结合第四方面,在第四方面的某些实现方式中,第一频率资源的频域位置不连续。
结合第四方面,在第四方面的某些实现方式中,第一频率资源的频域位置包括第一频域位置和第二频域位置,网络设备使用第一频率资源,通过第一模块向第一终端设备发送第一信号,包括:网络设备在第一频域位置通过第一模块向第一终端设备发送第一信号的部分信号,网络设备在第二频域位置通过第一模块向第一终端设备发送第一信号的其余部分信号;或者,在第一时间,网络设备在第一频域位置通过第一模块向第一终端设备发送第一信号,以及在第二时间,网络设备在第二频域位置通过第一模块向第一终端设备发送第一信号。
结合第四方面,在第四方面的某些实现方式中,方法还包括:网络设备使用第二频率资源通过第二模块向第一终端设备发送第一频率资源的配置信息。
结合第四方面,在第四方面的某些实现方式中,第一频率资源的配置信息包括以下一项或多项信息:第一频率资源的带宽、第一频率资源的频域位置、第一频率资源的子载波间隔。
第四方面及各个可能的设计的有益效果可以参考第一方面相关的描述,在此不予赘述。
第五方面,提供一种通信的装置,该装置用于执行上述第一方面至第四方面任一种可能实现方式中的方法。具体地,该装置可以包括用于执行第一方面至第四方面任一种可能实现方式中的方法的单元和/或模块,如处理单元和/或通信单元。
在一种实现方式中,该装置为通信设备(如终端设备,又如网络设备)。当该装置为通信设备时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为用于通信设备(如终端设备,又如网络设备)的芯片、芯片系统或电路。当该装置为用于通信设备的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第六方面,提供一种通信的装置,该装置包括:至少一个处理器,用于执行存储器存储的计算机程序或指令,以执行上述第一方面至第四方面任一种可能实现方式中的方法。可选地,该装置还包括存储器,用于存储的计算机程序或指令。可选地,该装置还包括通信接口,处理器通过通信接口读取存储器存储的计算机程序或指令。
在一种实现方式中,该装置为通信设备(如终端设备,又如网络设备)。
在另一种实现方式中,该装置为用于通信设备(如终端设备,又如网络设备)的芯片、芯片系统或电路。
第七方面,本申请提供一种处理器,用于执行上述第一方面至第四方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第八方面,提供一种计算机可读存储介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面至第四方面任一种可能实现方式中的方法。
第九方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面至第四方面任一种可能实现方式中的方法。
第十方面,提供一种通信系统,包括前述的终端设备和网络设备。
附图说明
图1是适用于本申请实施例的无线通信系统100的一示意图。
图2是主电路和唤醒电路的示意图。
图3是信号采用OOK调制时的波形示意图。
图4是采用OFDM调制技术发送信号和接收信号的示意图。
图5是了OFDM调制的频谱资源切分的示意图。
图6是不同子载波间隔对应的OFDM的时域和频域资源的示意图。
图7是了基于OFDM发射机生成OOK信号的示意图。
图8是通过时分的方式发送第一信号和第二信号的示意图。
图9是本申请实施例提供的一种信号处理的方法900的示意图。
图10是根据本申请实施例提供的在第一链路和第二链路上传输信号的示意图。
图11是根据本申请实施例提供的第一链路与第二链路采用不同子载波间隔的示意图。
图12是多径时延和ISI时长的示意图。
图13是子载波间不存在干扰和存在干扰的示意图。
图14是根据本申请实施例提供的使用保护子载波来降低子载波间干扰的一示意图。
图15是根据本申请实施例提供的使用保护子载波来降低子载波间干扰的另一示意图。
图16是根据本申请实施例提供的升余弦窗函数的示意图。
图17是信道频域响应的示意图。
图18是根据本申请实施例提供的第一频率资源的频域位置的示意图。
图19是根据本申请实施例提供的在不连续的多个频域位置发送第一信号的示意性流程图。
图20是本申请实施例提供的一种通信装置的示意性框图。
图21是本申请实施例提供的另一种通信装置的示意性框图。
图22是本申请实施例提供的又一种通信装置的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请提供的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)或新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代(6th generation,6G)移动通信系统。本申请提供的技术方案还可以应用于设备到设备(device to device,D2D)通信,车到万物(vehicle-to-everything,V2X)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及物联网(internet of things,IoT)通信系统或者其他通信系统。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚 拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统或芯片,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站、辅站、多制式无线(motor slide retainer,MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access point,AP)、传输节点、收发节点、基带单元(baseband unit,BBU)、射频拉远单元(remote radio unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及D2D、V2X、M2M通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例所提及的网络设备可以为包括CU、或DU、或包括CU和DU的设备、或者控制面CU节点(控制面的中央单元(central unit-control plane,CU-CP))和用户面CU节点(用户面的中央单元(central unit-user plane,CU-UP))以及DU节点的设备。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
首先结合图1简单介绍适用于本申请的网络架构,如下。
图1是适用于本申请实施例的无线通信系统100的一示意图。如图1所示,该无线通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110,该无线通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。网络设备和终端设备均可配置多个天线,网络设备与终端设备可使用多天线技术通信。
其中,网络设备和终端设备通信时,网络设备可以管理一个或多个小区,一个小区中可以有整数个终端设备。可选地,网络设备110和终端设备120组成一个单小区通信系统,不失一般性,将小区记为小区#1。网络设备110可以是小区#1中的网络设备,或者,网络设备110可以为小区#1中的终端设备(例如终端设备120)服务。
需要说明的是,小区可以理解为网络设备的无线信号覆盖范围内的区域。
应理解,图1仅为便于理解而示例的简化示意图,该无线通信系统100中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。本申请实施例可以适用于发送端设备和接收端设备通信的任何通信场景。
为便于理解本申请实施例,对本申请中涉及到的术语做简单说明。
1、主电路和唤醒电路
在无线通信系统中,终端设备的节电是追求的重要目标之一。举例来说,某些形态的终端设备(如手机、可穿戴设备)的续航时间影响用户的体验;某些形态的终端设备(如无线工业传感器),因为更换电池存在难度,设计时会希望这类终端设备能够在不换电池的条件下工作较长的时间。因此,终端设备的节电是无线通信技术需要重点考虑的一个方面。
为实现终端设备的节电,在无线通信系统中,通常会让终端设备在不同的业务需求时,工作不同的模式下。例如,当终端设备需要传输数据的时候,工作在连接(connected)态(或者称连接模式),此时终端设备与网络设备之间传输数据。当终端设备工作在连接态时,功耗较高。再例如,当终端设备没有传输数据的需要时,工作在空闲(idle)态,此时终端设备会让电路进入睡眠状态。如终端设备可以周期性检测是否有发送给自己的数据,如果有数据,则进入连接态,否则保持在空闲态,继续睡眠。当终端设备工作在空闲态时,功耗较低。
为了让终端设备在空闲态下能够尽量降低功耗,终端设备可包括主电路和唤醒电路。
1)唤醒电路:或者称为唤醒接收机(wake up receiver,WUR)或唤醒模块,可以理解为是终端设备在空闲态所使用的电路,或者可以理解为是一个单独的低功耗小电路。该低功耗小电路可以使用一个结构简单的单独的小电路或芯片实现,其功耗较低。终端设备使用唤醒电路接收的信号如可以称为唤醒信号(wake up signal/radio,WUS/WUR)。可以 理解,唤醒电路仅是为区分做的命名,其具体命名不对本申请的保护范围造成限定,例如不失一般性,唤醒电路也可以描述为第一电路(或第一模块)。下文统一描述为唤醒电路。
终端设备使用唤醒电路接收的信号可以被称为在唤醒链路上传输,其中,唤醒链路表征了终端设备和网络设备间的一种连接关系,是一个逻辑概念,而非一个物理实体。可以理解,唤醒链路仅是为区分做的命名,其具体命名不对本申请的保护范围造成限定,例如不失一般性,唤醒链路也可以描述为第一链路。还应理解,唤醒信号仅是一种示例的命名,关于其命名,本申请不予限制。
2)主电路:或者称为主接收机或主模块,可以理解为是终端设备正常传输数据时所使用的电路,或终端设备在连接态传输数据时所使用的电路。终端设备使用主电路传输数据时,耗电量较大。可以理解,主电路仅是为区分做的命名,其具体命名不对本申请的保护范围造成限定,例如不失一般性,主电路也可以描述为第二电路(或第二模块)。下文统一描述为主电路。
终端设备使用主电路接收的信号可以被称为在主链路上传输,其中,主链路表征了终端设备和网络设备间的一种连接关系,是一个逻辑概念,而非一个物理实体。可以理解,主链路仅是为区分做的命名,其具体命名不对本申请的保护范围造成限定,例如不失一般性,主链路也可以描述为第二链路。
下文,为区分且不失一般性,将终端设备使用唤醒电路传输的信号记为第一信号,将终端设备使用主电路传输的信号记为第二信号。
作为示例,图2是主电路和唤醒电路的示意图。
如图2所示,终端设备可通过唤醒电路接收(或者称检测)第一信号,终端设备可通过主电路接收第二信号。假设终端设备通过唤醒电路接收第一信号。若终端设备未检测到第一信号,则继续使用唤醒电路接收第一信号,主电路可处于关闭状态(或者睡眠状态);若终端设备检测到第一信号,则触发主电路的唤醒,即令主电路处于/切换为开启状态(或者称为工作状态,或者称为活跃状态)。主电路开启后,终端设备可以通过主电路传输第二信号。
2、第一频率资源和第二频率资源
下面以终端设备为例,结合几种情形介绍第一频率资源和第二频率资源。
作为第一种可能的情形,终端设备包括第一模块和第二模块。示例地,第一模块的功耗可以小于第二模块的功耗。第一模块,例如可以为图2中的唤醒电路,或者也可以为该唤醒电路的接收模块;第二模块,例如可以为图2中的主电路,或者也可以为该主电路的接收模块。在本申请中,第一模块可以替换为唤醒电路(或者第一电路),第二模块可以替换为主电路(或者第二电路)。下文为统一,均用第一模块和第二模块描述。
在该情形下,第一频率资源可以表示终端设备通过第一模块传输信号所使用的频率资源,第二频率资源可以表示终端设备通过第二模块传输信号所使用的频率资源。
作为第二种可能的情形,终端设备可工作在第一链路上(或者终端设备可在第一链路上传输信号),也可工作上第二链路上(或者终端设备可在第二链路上传输信号)。也就是说,终端设备和网络设备可通过第一链路通信,也可通过第二链路通信。示例地,如前所述,第一链路可以表示终端设备通过如图2中的唤醒电路传输信号时所使用的链路,第二链路可以表示终端设备通过如图2中的主电路传输信号时所使用的链路。
在该情形下,第一频率资源可以表示终端设备在第一链路上传输信号所使用的频率资源,第二频率资源可以表示终端设备通过在第二链路上传输信号所使用的频率资源。
作为第三种可能的情形,终端设备可以处于第一状态(state)(如处于WUR state)和第二状态。第一状态和第二状态,是用于描述终端设备的不同状态(如不同无线资源控制(radio resource control,RRC)态)。示例地,终端设备处于第一状态时的功耗可以小于终端设备处于第二状态时的功耗。第一状态,例如可以为idle态或inactive态,或者可以为WUR态;第二状态,例如可以为连接(connected)态,或者可以为idle态或inactive态。第一状态(如WUR态)可对应终端设备工作在第一链路上或对应终端设备使用第一模块传输信号。
在该情形下,第一频率资源可以表示终端设备处于第一状态时传输信号所使用的频率资源,第二频率资源可以表示终端设备通过处于第二状态时传输信号所使用的频率资源。
作为第四种可能的情形,终端设备可以处于第一模式(mode)(如采用WUR mode)和第二模式。第一模式和第二模式,是用于描述终端设备采用不同模式传输信号。示例地,终端设备处于第一模式传输信号时的功耗,可以小于终端设备处于第二模式传输信号时的功耗。第一模式(如WUR模式)可对应终端设备工作在第一链路上或对应终端设备使用第一模块传输信号。
在该情形下,第一频率资源可以表示终端设备处于第一模式时传输信号所使用的频率资源,第二频率资源可以表示终端设备通过处于第二模式时传输信号所使用的频率资源。
基于上述描述可知,使用第一频率资源传输信号,可替换为以下任一项:使用第一模块传输信号,在第一链路上传输信号,处于第一状态时传输信号,处于第一模式传输信号;使用第二频率资源传输信号,可替换为以下任一项:使用第二模块传输信号,在第二链路上传输信号,处于第二状态时传输信号,处于第二模式传输信号。下文为统一,主要以第一频率资源和第二频率资源为例进行示例性说明。
可以理解,上述主要以终端设备为例介绍了第一频率资源和第二频率资源,可以理解,对于其他通信设备(如网络设备)也适用于上述的描述,为简洁,此处不再赘述。
3、第一信号和第二信号
如上所述,使用唤醒电路传输的信号记为第一信号,使用主电路传输的信号记为第二信号,那么第一信号也可以表示使用第一频率资源传输的信号,第二信号也可以表示使用第二频率资源传输的信号。
1)第一信号和第二信号的调制方式不同。
例如,第一信号的调制方式为开关键控(on off key,OOK),第二信号的调制方式为正交频分复用(orthogonal frequency division multiplexing,OFDM)调制或离散傅里叶变换扩展正交频分复用(discrete fourier transformation-spread-orthogonal frequency division multiplexing,DFT-s-OFDM)调制。
2)第一信号和第二信号的调制方式不同。
例如,第一信号的波形为OOK,第二信号的波形为OFDM波形或DFT-s-OFDM波形。
3)第一信号和第二信号不同。
例如,第一信号包括寻呼信息。其中,寻呼信息包括需要接收寻呼的一个或多个终端设备的信息。关于第一信号中包含哪些信息,可以通过标准预定义,也可以由网络侧配置, 不予限制。其中,“网络侧配置”,指的是网络侧通过第二链路进行配置。例如,终端设备在第二链路上获取第一链路的配置信息后,再转到第一链路上工作。
再例如,第二信号可以是区别于第一信号的信号。第二信号如可以表示NR信号(即已有NR信号)中的各种下行信号或信道。作为示例,第二信号包括以下任一项或多项:同步信号块(synchronization signal block,SSB)、PDCCH、PDSCH、信道状态信息参考信号(channel state information reference signal,CSI-RS)、相位跟踪参考信号(phase tracking reference signal,PTRS)、定位参考信号(positioning reference signal,PRS)、解调参考信号(DoModulation reference signal,DMRS)。第二信号还可以表示NR信号中的各种上行信号或信道。作为示例,第二信号包括以下任一项或多项:DMRS、物理上行控制信道(physical uplink control channel,PUCCH)、物理上行共享信道(physical uplink shared channel,PUSCH)、探测参考信号(sounding reference signal,SRS)。
再例如,第二信号中可以携带以下一项或多项信息:寻呼提前指示(paging early indication,PEI),寻呼DCI(paging DCI),寻呼消息(如paging PDCCH和paging PDSCH)。PEI可用于指示其关联的PO中是否有寻呼发送。
再例如,第二信号可以表示终端设备随机接入过程中的信号。如,第二信号包括随机接入前导序列(preamble)。
4、OOK
为了保证功耗收益,信号可采用OOK调制,即利用信号的发送与否来调制信息,对应的唤醒电路可采用包络检测的方法接收信号。OOK调制技术可以用复杂度很低的接收机就可以实现解调,故而能实现唤醒电路的低功耗目标。
当信号采用OOK调制时,每个比特(即编码后的比特)可对应一个符号(symbol)。等价的,一个符号也可以被称为一个码片(chip),也可以被称为其他名称,这里不做限制。
例如,当比特(bit)为1时,该符号长度内有信号发出(即该符号长度内信号发射功率不为0);当比特为0时,该符号长度内无信号发出(即该符号长度内信号发射功率为0)。或者也可以理解为,OOK调制中,如果发送能量,则代表“1”,不发送能量,则代表“0”。
作为示例,图3是信号采用OOK调制时的波形示意图。如图3所示,图3所示的波形可代表“0100”四个比特。如图3所示,通信系统一般都是使用一定的频率(frequency)发送,发送信号需要调制在载波上(图3中的正弦信号代表了载波)。在接收端,接收端检测接收信号的包络(或者是能量),判断发送的符号是“0”还是“1”,从而完成解调。
信号采用OOK调制时,接收机的结构简单,功耗较低,能够达成唤醒电路节电的目标。但是传输速率较低。具体来说,一方面,信号采用OOK调制时,每个符号仅可以传输1bit。另一方面,考虑到无线通信系统的多径时延问题,每个符号的时间长度需要足够长,才可以降低多径时延带来的符号间干扰。因此,若信号采用OOK调制,每个符号携带1bit信息,且每个符号的时间长度较长,因此传输速率会很低。
5、OFDM
OFDM是使用广泛的调制技术,OFDM主要是将系统带宽分为多个并行的子载波,并且在每个子载波上分别调制数据进行发送。
作为示例,图4是采用OFDM调制技术发送信号和接收信号的示意图。
如图4所示,发送端发送信号的流程可以包括如下步骤。对编码比特流进行调制(modulation),获得多个符号,其中,对编码比特流进行调制的调制方式例如可以为正交振幅调制(quadrature amplitude modulation,QAM),得到的符号例如为QAM符号。对调制得到的符号进行串并转换(serial/parallel,S/P),并将S/P处理后的符号分别映射到不同的子载波上。不同子载波上的符号进行快速傅里叶逆变换(inverse fast fourier transform,IFFT)运算。对经过IFFT的符号添加循环前缀(cyclic prefix,CP),经过并串转换(parallel/serial,P/S),数模转换(D/A)之后,发射至信道(channel)。
如图4所示,接收端接收信号的流程可以包括如下步骤。对收到的信号进行模数转换(A/D)后,进行校正载波频率频移(carrier frequency offset,CFO)(correct CFO),然后进行S/P,去CP。对去CP后的信号进行快速傅里叶变换(fast fourier transform,FFT)运算,然后进行相位跟踪(phase track),P/S,最后进行解调。
可以理解,上述发送信号和接收信号的具体流程为示例性说明,对此不予限制。
OFDM调制,实际是将系统的频谱资源切分成了时频二维的网格。作为示例,图5是OFDM调制的频谱资源切分的示意图。如图5所示,在时域维度上,以OFDM符号(OFDM symbol)为粒度进行切分;在频率维度上,以子载波为粒度进行切分。每个OFDM符号之内,每个子载波上可以传输一个QAM信号。某些系统中,例如LTE和NR系统中,一个物理资源块(physical resource block,PRB)可以包括多个子载波,如一个PRB包括12个子载波,如图5中的PRB 0包括子载波0-11,PRB 1包括子载波12-23,PRB 2包括子载波24-35。
OFDM调制可以采用不同的子载波间隔(sub-carrier space,SCS)。一般而言,工作频段较高时,无线传输的多径时延较小,器件的相位噪声较大,此时采用高子载波间隔更加合适;工作频段较低时,多径时延丰富,器件的相位噪声较小,此时采用低子载波间隔更加合适。
为了适应不同的部署条件,一些通信系统中定义了多种可选的子载波间隔,供实际部署时选用。例如5G NR系统中,定义了多种子载波间隔,包括:15kHz,30kHz,60kHz,120kHz和240kHz。
在一些通信系统中,如5G NR系统中,将系统的工作频率分成两个频率区间(frequency range,FR),即FR1(410MHz~7.125GHz)和FR2(24.25GHz~52.6GHz)。FR1的频段比FR2低,FR2工作在较高的频段,一般称为毫米波频段。传统的蜂窝无线通信使用的频段一般为FR1,5G系统中,一些小覆盖场景中使用的频段可以包括FR2。
如上所述,高子载波间隔适用于高频部署,低子载波间隔适用于低频部署。因此,一般地,FR1可以使用的子载波间隔包括:15kHz,30kHz和60kHz;FR2可以使用的子载波间隔包括:60kHz,120kHz和240kHz。
可以理解,当子载波间隔变宽,则OFDM符号的时间长度会变短。作为示例,图6是不同子载波间隔对应的OFDM的时域和频域资源的示意图。如图6所示,当子载波间隔从15kHz加宽为30kHz时,OFDM符号的时间长度会变成原先的一半。
OFDM技术对于接收机而言,需要较高的复杂度,从省电的角度而言,OFDM技术对于唤醒电路来说,不是最佳的选择。
6、基于OFDM发射机的OOK调制技术
基于OFDM发射机的OOK调制技术,即基于OFDM发射机来生成OOK信号。具体来说,采用OFDM发射机来进行信号的调制,某些OFDM符号在子载波上调制信号并且发送,这样的OFDM符号代表“ON”(即代表OOK信号中的“1”,或者该符号长度内信号发射功率不为0,或者该符号长度内有信号发出);某些OFDM符号在子载波上不发送信号,这样的OFDM符号代表“OFF”(即代表OOK信号中的“0”,或者该符号长度内信号发射功率为0,或者该符号长度内没有信号发出)。
在本申请实施例中,可以基于OFDM发射机来生成OOK信号,进而不仅可以降低唤醒电路的功耗,还可以降低发射机的复杂度。
作为示例,图7是基于OFDM发射机生成OOK信号的示意图。如图7所示,某些OFDM符号在子载波上调制信号并且发送,这样的OFDM符号代表“ON”,某些OFDM符号不发送信号,这样的OFDM符号代表“OFF”。例如,图7中的(a)中阴影部分的OFDM符号,有12个子载波调制了信号,经过快速傅里叶逆变换(inverse fast fourier transform,IFFT)之后得到了OFDM信号并且正常发送。再例如,图7中的(a)中白色部分的OFDM符号不发送信号。这样,接收端得到的时域波形如图7中的(b)中所示。这样,虽然是由OFDM发射机来生成的信号,但是接收机可以按照OOK信号来进行解调。
上述为示例性说明,本申请不限于此。
若将第一信号和第二信号通过时分的方式发送,则频谱资源可能会被浪费。图8是通过时分的方式发送第一信号和第二信号的示意图。如图8所示,发送端可以发送第一信号,在唤醒了主电路之后,再发送第二信号。唤醒电路上需要传输的信息量较少,并且为了达到节能的效果,可以用较窄的带宽(比如4MHz带宽),主电路上可能是大数据量的通信,因此可能会占用较宽的带宽(比如20MHz带宽)。
如图8所示,在发送第一信号的时间,仅使用了较窄带宽,如图8中的WUR带宽为4MHz的带宽。系统带宽是20MHz,所以在发送第一信号的时间,大部分的系统带宽没有得到使用,造成了频谱资源的很大浪费。
有鉴于此,本申请提出一种方案,可以解决通过时分的方式发送第一信号和第二信号时带来的频谱资源浪费的问题。
可以理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还可以理解,本文提及的长度,例如,CP的长度,符号的长度,均指的是时间长度。例如,本文中提及的长度(即时间长度)的单位可以为T c=1/(4096·480·10 3)秒。再例如,时间长度还可以用时域采样点的数目表示,对此不予限制。
上面对本申请中涉及到的术语做了简单说明,下文实施例中不再赘述。
下文将结合附图详细说明本申请实施例提供的信号传输的方法。本申请提供的实施例可以应用于上述图1所示的网络架构中,不作限定。
图9是本申请实施例提供的一种信号传输的方法900的示意图。以终端设备和网络设备之间的交互为例,方法900可以包括如下步骤。
910,终端设备使用第一频率资源接收来自网络设备的第一信号。
步骤910中,终端设备使用第一频率资源接收来自网络设备的第一信号,可替换为以下任一项:终端设备通过第一模块接收来自网络设备的第一信号,终端设备在第一链路上接收来自网络设备的第一信号,终端设备处于第一状态时接收来自网络设备的第一信号,终端设备处于第一模式时接收来自网络设备的第一信号。
920,基于第一信号,终端设备使用第二频率资源与网络设备传输第二信号。
基于第一信号,例如也可以替换为响应于第一信号。步骤920中,基于第一信号,终端设备使用第二频率资源与网络设备传输第二信号,可以理解为,响应于第一信号,终端设备使用第二频率资源与网络设备传输第二信号。以图2为例,举例来说,终端设备使用第一频率资源接收(或者称检测)到第一信号后,终端设备使用第二频率资源与网络设备传输第二信号。
步骤920中,终端设备使用第二频率资源与网络设备传输第二信号,可替换为以下任一项:终端设备通过第二模块与网络设备传输第二信号,终端设备在第二链路上与网络设备传输第二信号,终端设备处于第二状态时与网络设备传输第二信号,终端设备处于第二模式时与网络设备传输第二信号。
其中,第一信号表示使用第一频率资源传输的信号(或者使用唤醒电路传输的信号),第二信号表示使用第二频率资源传输的信号(或者使用主电路传输的信号)。
作为一种可能的情形,步骤920中,基于第一信号,终端设备使用第二频率资源与网络设备传输第二信号,包括:响应于第一信号,终端设备使用第二频率资源向网络设备发起随机接入,第二信号可以表示终端设备随机接入过程中的信号,例如,第二信号包括随机接入前导序列。此时,终端设备使用第二频率资源与网络设备传输第二信号,可以替换描述为:终端设备使用第二频率资源向网络设备发送第二信号。
作为另一种可能的情形,步骤920中,基于第一信号,终端设备使用第二频率资源与网络设备传输第二信号,包括:响应于第一信号,终端设备使用第二频率资源接收来自网络设备的寻呼,第二信号例如可以携带以下一项或多项信息:PEI,寻呼DCI,寻呼消息(如paging PDCCH和paging PDSCH)。此时,终端设备使用第二频率资源与网络设备传输第二信号,可以替换描述为:终端设备使用第二频率资源接收网络设备发送的第二信号。
关于第一信号和第二信号,可以参考前面的描述,此处不再赘述。
其中,第一频率资源与第二频率资源为系统带宽中的不同频域资源。
以第一链路和第二链路为例,例如,假设系统带宽为F,那么可以将其中的部分频带(如记为F1)分配给第一链路使用,其余的频带(即F-F1)分配给第二链路使用。第一频率资源与第二频率资源不同,即表示第二链路不使用该F1的频域资源。
图10是根据本申请实施例提供的在第一链路和第二链路上传输信号的示意图。
如图10所示,系统带宽中的一部分子载波(如图10中的WUR带宽)分配给第一链路使用,其余部分的子载波分配给第二链路使用,即可传输第二信号。WUR带宽中的部分子载波上,某些OFDM符号在子载波上调制信号并且发送,这样的OFDM符号代表“ON”,某些OFDM符号不发送信号,这样的OFDM符号代表“OFF”。举例来说,网络设备使用WUR带宽的子载波在第一链路上向第一终端设备发送第一信号,网络设备使用其余部分的子载波在第二链路上与其他终端设备(如第二终端设备)传输信号(如传输 第二信号)。
可选地,在步骤910之前,方法900还包括步骤901。
901,终端设备使用第二频率资源接收第一频率资源的配置信息。
步骤901中,终端设备使用第二频率资源接收第一频率资源的配置信息,可替换为以下任一项:终端设备通过第二模块接收第一频率资源的配置信息,终端设备在第二链路上接收第一频率资源的配置信息,终端设备处于第二状态时接收第一频率资源的配置信息,终端设备处于第二模式时接收第一频率资源的配置信息。
在使用第一链路之前,网络设备和终端设备可以确定好第一频率资源的配置信息。例如可以通过协议定好;或者也可以是由网络设备配置之后,发送给终端设备。
示例地,第一频率资源的配置信息,包括以下一项或多项信息:第一频率资源的带宽、第一频率资源的频域位置、第一频率资源的子载波间隔。
其中,第一频率资源的带宽,表示第一链路所使用的带宽,或者第一链路占据的带宽宽度。例如,第一频率资源的带宽为N wur,rb个PRB的宽度,N wur,rb为大于1或等于1的整数。如N wur,rb=2;又如,N wur,rb=3。
其中,第一频率资源的频域位置,表示第一链路所使用的频域位置,如第一频率资源的频域位置包括资源块(resource block,RB)的位置。
例如,第一频率资源的频域位置可以包括RB的起始位置和RB的数量。通过RB的起始位置和RB的数量,终端设备可以确定RB的位置,即可以获知第一频率资源的频域位置。
再例如,第一频率资源的频域位置包括RB的起始位置。RB的数量可以是预先约定的,或者也可以网络侧预先配置的,不予限制。通过RB的起始位置,终端设备可以确定RB的位置,即可以获知第一频率资源的频域位置。
其中,第一频率资源的子载波间隔,表示第一链路所使用的子载波间隔,或者第一信号符号的长度。
可选地,第一频率资源的子载波间隔与第二频率资源的子载波间隔不同。
例如,第一频率资源的子载波间隔大于第二频率资源的子载波间隔。
如前面所述,FR1可以使用的子载波间隔包括:15kHz,30kHz和60kHz;FR2可以使用的子载波间隔包括:60kHz,120kHz和240kHz。在本申请实施例中,若第一链路部署在FR1,作为示例,第一链路可以使用FR2的子载波间隔,即第一频率资源的子载波间隔可以包括:60kHz,120kHz和240kHz,从而达到提升第一链路的传输速率。其中,传输速率,即表示数据传输速率(data transfer rate)。
具体来说,传输速率受到OFDM符号的时间长度的影响。OFDM符号的时间长度与子载波间隔有关,子载波间隔越小,OFDM符号的时间长度越长,这样,使用OFDM发射机生成的OOK信号的传输速率越低。在较低的频段上(例如FR1)一般采用较小的子载波间隔,这样传输速率也会变低。举例来说,若在一个FR1上部署的小区采用30kHz的子载波间隔,则一个OFDM符号的时间长度约为33.33us,考虑到循环前缀带来的开销(overhead),使用OOK调制可以达到的传输速率最大可能为28千比特每秒(kbps)。在很多情况下,该传输速率不足以支持小区内第一信号的业务量。因此,第一链路可以使用原本用于FR2的子载波间隔,即提高第一链路的子载波间隔,进而可以提升第一链路的 传输速率。
作为示例,图11是根据本申请实施例提供的第一链路与第二链路采用不同的子载波间隔的示意图。
如图11所示,传输第一信号的子载波间隔为240kHz,传输第二信号的子载波间隔为30kHz。相比于30kHz子载波间隔,240kHz子载波间隔的OFDM符号,子载波间隔扩大了8倍,相应的OFDM符号长度也缩短了8倍,第一链路的传输速率也可以提升8倍,如第一链路的传输速率可从28kbps提升到224kbps。从图11中也可以看出,在第二信号的1个OFDM符号的时间范围内,第一信号可传输8个符号,所以传输速率大大提升。
可选地,终端设备使用第一频率资源解调第一信号的时间与预设时长相关,预设时长与第一频率资源的子载波间隔对应的循环前缀的长度不同。
一种可能的实现方式,从每个接收符号的起始时刻开始,在预设时长后,终端设备使用第一频率资源解调来自网络设备的第一信号。
子载波间隔可对应一定长度的循环前缀,换句话说,每种子载波间隔与循环前缀的长度存在对应关系。若采用较大的子载波间隔,该较大的子载波间隔对应的循环前缀的长度较小。在某些通信系统中,如OFDM通信系统中,使用循环前缀来抵抗多径时延带来的符号间干扰。在第一频率资源采用较大的子载波间隔,则其对应的循环前缀可能无法抵抗信道的多径时延带来的符号间干扰。因此本申请实施例提出一种预设时长,通过该预设时长以解决第一链路采用较大的子载波间隔可能面临的多径时延的影响。该预设时长,例如也可以称为保护时长,如记为符号间干扰保护时长(inter symbol interference guard interval,ISI-GI),其命名不对本申请保护范围造成限定,下文统一用预设时长描述。下面详细描述上述方案。
一般地,可以通过子载波间隔的设置和在符号间添加保护间隔(如CP),来抵抗信道的多径时延带来的符号间干扰(inter symbol interference,ISI)。例如,如果信道的多径时延较大,则可以采用较小的子载波间隔,这样符号本身的长度相比信道的多径时延要大,然后再在OFDM符号的前面加上CP,CP的长度超过多径时延的长度。这样在接收端,去除CP之后,可以避免多径时延带来的符号间干扰影响。
作为示例,图12是多径时延和ISI时长的示意图。
如图12所示,对于子载波间隔为30kHz对应的发射符号(即OFDM符号)的时域图,发射符号中包含CP和数据部分。经过多径信道之后,因为CP的缘故,在接收端的接收窗内,不会受到前一个符号的干扰。接收机处理接收窗内的数据,避免了ISI的影响。
对于第一链路,可以采用较大的子载波间隔,从而提高传输速率。然而,较大的子载波间隔可能面临多径时延的影响。如图12所示,对于子载波间隔为120kHz对应的发射符号的时域图,第一个发射符号代表“ON”,即该第一个发射符号上发送信号,第二个发射符号代表“OFF”,即该第二个发射符号上不发送信号。在同样的多径时延条件下,若将第一链路的子载波间隔设置为120kHz,那么相比30kHz,子载波间隔扩大了4倍,发射符号的时间长度缩短为原先的1/4,相应的CP的长度也缩短为原先的1/4,这样面对同样的多径时延,CP的长度可能会短于多径时延的长度。如图12中(t1-t0)的时长即120kHz子载波间隔对应的CP长度,其中多径中的第二条径的时延τ2超过了CP长度,如此如果还用此前的去CP之后的时间作为接收时间窗(也就是从t1到t3的时间),则会受到前 一个符号带来的符号间干扰ISI。因此,本申请实施例提出,通过预设时长以解决第一链路采用较大的子载波间隔可能面临的多径时延的影响。
其中,预设时长,是指一定的时间长度,其长度应超过由于多径时延带来的符号间干扰的影响时长。该预设时长的长度与第一频率资源的子载波间隔对应的CP的长度不同,例如该预设时长的长度可以等于传输第二信号时对应的CP长度,如以图12为例,该预设时长的长度可以选择为子载波间隔为30kHz时对应的CP长度,而与第二信号子载波宽度(120kHz)对应的CP长度不同。接收端的时间窗可以将预设时长排除在外,以图12为例,接收符号为t2时刻,预设时长指的是t0到t2的时间,即30kHz子载波间隔对应的CP的时长,接收端可以以t2到t3的时间作为接收时间窗,即从t2时刻开始解调第一信号。
其中,预设时长可以通过标准预定义,也可以由网络侧配置。其中,若由网络侧配置,则网络侧可以将配置的预设时长发送给终端设备。
一种可能的设计,网络侧配置预设时长,并向终端设备发送该预设时长。例如,该预设时长可以携带于其他信息中发送给终端设备,如携带于第一频率资源的配置信息中;或者该预设时长也可以单独发送给终端设备。
另一种可能的设计,网络侧配置或标准预定义预设时长与其他信息的关联关系,根据该其他信息与关联关系,可确定预设时长。下面给出几种可能的方案。
方案1,预设时长与第一信号所在的频段相关联。为区分,可将该关联关系记为关联关系#1。其中,该关联关系#1可以是预定义的,也可以通过标准预定义,也可以由网络侧配置。其中,若由网络侧配置,则网络侧可以将该关联关系#1发送给终端设备。
基于该方案1,网络设备可以向终端设备指示第一信号所在的频段,进而终端设备可以基于第一信号所在的频段以及关联关系#1,确定该第一信号对应的预设时长的长度。
作为示例,关联关系#1可以以表1的形式存在。
表1
频段(band) 预设时长的长度(单位:μs)
band 1 n1
band 2 n2
band 3 n3
以表1为例,举例来说,若第一信号所在的频段为band 1,则该第一信号对应的预设时长的长度为n1μs;若第一信号所在的频段为band 2,则该第一信号对应的预设时长的长度为n2μs;若第一信号所在的频段为band 3,则该第一信号对应的预设时长的长度为n3μs。
应理解,表1仅是示例性说明,对此不予限制,任何属于表1的变形,都适用于本申请。例如,频段还可以包括更多数量的频段,相应地,预设时长的长度可以包括更多数量的长度。又如,频段可以为具体值,也可以为某一范围,如band 1可以为某一值,或者band 1也可以为某一范围。
方案2,预设时长与带宽部分(bandwidth part,BWP)的CP长度关联,其中,该BWP 例如可以是某个特定BWP,如初始BWP(initial BWP)。为区分,可将该关联关系记为关联关系#2。其中,该关联关系#2可以是预定义的,也可以通过标准预定义,也可以由网络侧配置。其中,若由网络侧配置,则网络侧可以将该关联关系#2发送给终端设备。
基于该方案2,以初始BWP为例,终端设备在读取系统信息的时候,可以从系统信息中获取初始BWP采用的子载波间隔,进而终端设备可以计算出初始BWP采用的CP长度,进而终端设备可以基于初始BWP采用的CP长度以及关联关系#2,确定该第一信号对应的预设时长的长度。
作为示例,以初始BWP为例,关联关系#2可以以表2的形式存在。
表2
初始BWP采用的CP长度 预设时长的长度(单位:μs)
CP 1 n1’
CP 2 n2’
CP 3 n3’
以表2为例,举例来说,若初始BWP采用的CP长度为CP 1,则该第一信号对应的预设时长的长度为n1’μs;若初始BWP采用的CP长度为CP 2,则该第一信号对应的预设时长的长度为n2’μs;若初始BWP采用的CP长度为CP 3,则该第一信号对应的预设时长的长度为n3’μs。
应理解,表2仅是示例性说明,对此不予限制,任何属于表2的变形,都适用于本申请。例如,初始BWP采用的CP长度还可以包括更多数量的CP长度,相应地,预设时长的长度可以包括更多数量的长度。又如,初始BWP还可以替换为其他BWP。
方案3,预设时长与第一频率资源的子载波间隔相关联。为区分,可将该关联关系记为关联关系#3。其中,该关联关系#3可以是预定义的,也可以通过标准预定义,也可以由网络侧配置。其中,若由网络侧配置,则网络侧可以将该关联关系#3发送给终端设备。
基于该方案3,网络设备可以向终端设备指示第一信号的子载波间隔,进而终端设备可以基于第一信号的子载波间隔以及关联关系#3,确定该第一信号对应的保护时长的长度。
作为示例,关联关系#3可以以表3的形式存在。
表3
子载波间隔(单位:kHz) 保护时长的长度(单位:μs)
60 n1”
120 n2”
240 n3”
以表3为例,举例来说,若第一信号的子载波间隔为60kHz,则该第一信号对应的保护时长的长度为n1”μs;若第一信号的子载波间隔为120kHz,则该第一信号对应的保护时长的长度为n2”μs;若第一信号的子载波间隔为240kHz,则该第一信号对应的保护时长的长度为n3”μs。
应理解,表3仅是示例性说明,对此不予限制,任何属于表3的变形,都适用于本申请。例如,子载波间隔还可以包括更多数量的取值,相应地,保护时长的长度可以包括更多数量的长度。
在本申请实施例中,可以使用保护子载波或时域加窗的方式,降低第一信号第二信号之间的子载波间干扰。
第一频率资源的子载波间隔与第二频率资源的子载波间隔不同的情况下,第一信号和第二信号之间的正交性可能会被破坏,这样第一信号第二信号之间可能存在子载波间干扰。其中,正交性,可以指的是在理想的时频同步条件下,子载波之间不存在相互干扰。
作为示例,图13是子载波间不存在干扰和存在干扰的示意图。
如图13中的(a)所示,假设第一信号使用4个子载波进行调制,第一信号采用的子载波间隔与邻带的第二信号相同(例如都是30kHz),那么,在进行FFT运算之后,第一信号的能量会集中在调制的子载波上,不会泄漏到相邻的子载波上。如图13中的(b)中的线(1)所示,假设第一信号采用的子载波间隔与邻带的第二信号不同(如第一信号采用的子载波间隔为30kHz,第二信号采用的子载波间隔为60kHz),在进行FFT运算之后,第一信号的能量会泄漏到相邻的子载波上,破坏子载波间的正交性。
对此,本申请实施例提出,可以使用保护子载波或时域加窗的方式,降低第一信号第二信号之间的子载波间干扰。下面分别介绍这两种方式。
方式1,使用保护子载波,来降低子载波间的干扰。
示例1,终端设备使用第一频率资源中除N1个子载波以外的子载波,接收来自网络设备的第一信号,N1为大于1或等于1的整数。
基于示例1,在第一链路上传输第一信号时,使用第一频率资源中除N1个子载波以外的子载波传输第一信号。可以理解,N1小于第一频率资源的子载波的总数,或者称N1小于第一链路所使用带宽的子载波总数。作为示例,N1例如可以为1或2。
其中,N1个子载波,可以理解为保护子载波,或者边缘子载波。N1个子载波,表示第一频率资源中与第二频率资源相邻的一个或多个子载波。N1个子载波可以包括:第一链路的带宽(即第一频率资源的带宽)中编号(或者称索引,或者称序号)最高的一个或多个子载波,和/或,编号最低的一个或多个子载波。通过在分配给第一链路的带宽的一侧或两侧设置保护子载波,该保护子载波上不传输第一信号,这样即使第一频率资源的子载波间隔与第二频率资源的子载波间隔不同,因为存在保护子载波,采用第一频率资源传输的第一信号和采用第二频率资源传输的第二信号之间的子载波干扰仍会大幅下降。
假设第一频率资源包括第一链路所使用带宽,第一链路所使用的带宽中包括N个子载波,N为大于N1的整数。终端设备使用第一频率资源中除N1个子载波以外的子载波,接收来自网络设备的第一信号,也可以替换为,终端设备使用N个子载波的一个或多个中间子载波接收来自网络设备的第一信号,或者终端设备接收第一信号能够使用的频率资源位于N个子载波的一个或多个中间子载波。作为示例,终端设备使用N个子载波的中间的N3个子载波接收来自网络设备的第一信号,N3为大于1或等于1的整数,且N3小于N。
例如,N1个子载波包括:N个子载波中编号最高的一个或多个子载波,以及N个子载波中编号最低的一个或多个子载波。这样,在分配给第一链路的带宽的两侧设置保护子 载波,该保护子载波上不传输第一信号,该保护子载波可作为第一信号和第二信号之间的保护间隔,降低第一信号和第二信号之间的子载波干扰。图14是根据本申请实施例提供的使用保护子载波来降低子载波间干扰的一示意图。
如图14所示,第一链路的带宽(即图14中的WUR带宽)是N wur,rb个PRB,对应N wur,rb×12个子载波。在第一链路的带宽的两侧设置保护子载波,保护子载波上不传输信号,作为第一信号和第二信号之间的保护间隔。在中间的N3个子载波上调制第一信号,N3可以为1,或者也可以大于1。这样即使第一频率资源的子载波间隔与第二频率资源的子载波间隔不同,因为存在保护子载波,采用第一频率资源传输的第一信号和采用第二频率资源传输的第二信号之间的子载波干扰仍会大幅下降。
示例2,终端设备使用第二频率资源中除N2个子载波以外的子载波,与网络设备传输第二信号,N2为大于1或等于1的整数。
基于示例2,在第二链路上传输第二信号时,使用第二频率资源中除N2个子载波以外的子载波传输第二信号。可以理解,N2小于第二频率资源的子载波的总数,或者称N2小于第二链路所使用带宽的子载波总数。作为示例,N2例如可以为1或2。
其中,N2个子载波,可以理解为保护子载波,或者边缘子载波。N2个子载波,表示第二频率资源中与第一频率资源相邻的一个或多个子载波。通过在分配给第二链路的带宽的一侧或两侧设置保护子载波,该保护子载波上不传输第二信号,这样即使第一频率资源的子载波间隔与第二频率资源的子载波间隔不同,因为存在保护子载波,采用第一频率资源传输的第一信号和采用第二频率资源传输的第二信号之间的子载波干扰仍会大幅下降。
图15是根据本申请实施例提供的使用保护子载波来降低子载波间干扰的另一示意图。
如图15所示,在第二链路与第一链路相邻的带宽处设置保护子载波,保护子载波上不传输信号,作为第一信号和第二信号之间的保护间隔。这样即使第一频率资源的子载波间隔与第二频率资源的子载波间隔不同,因为存在保护子载波,采用第一频率资源传输的第一信号和采用第二频率资源传输的第二信号之间的子载波干扰仍会大幅下降。
上面主要介绍了方式1,下面介绍方式2。
方式2,时域加窗。
可选地,第一信号为时域信号与窗函数相乘后的信号。时域加窗,表示对于OFDM符号乘以窗函数,得到加窗后的信号。
在本申请实施例中,第一信号在经过FFT调制,转换为时域信号之后,乘以一个时域的窗函数再进行发送。这样,可以通过时域加窗的方式,降低第一信号和第二信号之间的子载波干扰。
其中,窗函数例如可以指:两端数值较小,中间数值较大的函数。作为示例,窗函数例如为:升余弦窗,汉明(Hamming)窗,汉宁(Hanning)窗,高斯窗等。下面以升余弦窗为例,给出一种实现方式。
假设经过FFT并加入CP的OFDM时域信号记为s ofdm(n),OFDM符号的采样点数记为N ofdm,0≤n<N ofdm,窗函数记为w(n)。作为示例,升余弦窗的构造方法可以如下:前N pf个元素的数值满足式1,最后N pf个元素的数值为前N pf个采样点的倒序序列,中间的(N ofdm-2N pf)个元素的数值为1。
Figure PCTCN2022128592-appb-000001
需要说明的是,上述关于升余弦窗的构造方法仅是示例性说明,本申请实施例不限于此。
作为示例,图16是根据本申请实施例提供的升余弦窗函数的示意图。图16所示的是,N ofdm=1024,N pf=200的升余弦窗函数。
时域加窗,就是对于OFDM符号乘以窗函数,得到加窗后的信号
Figure PCTCN2022128592-appb-000002
作为示例,加窗处理后的信号满足式2。
Figure PCTCN2022128592-appb-000003
经过时域加窗后的OFDM符号的带外泄露会有明显的降低。如图13中的(b)中的曲线(2)所示,时域加窗之后,第一信号的带外泄露有很大的降低。
可选地,第一频率资源的频域位置不连续。
为实现唤醒电路的低功耗目标,可以为第一链路分配较窄的带宽,即第一频率资源的带宽较窄。然而窄带宽通信系统可能会面临缺乏频率分集增益的问题。图17是信道频域响应的示意图。如图17所示,由于多径信号的影响,信道的频域响应也是不平坦的,某些频段上会存在深衰落。如果第一频率资源的频域位置恰好位于深衰的频率上,如20MHz~30MHz,那么使用第一频率资源传输的第一信号的信号质量较差。
因此,在本申请实施例中,第一频率资源的频域位置不连续,这样可以通过跳频,得到频率分集增益,获取更好的传输效果。如图17所示,第一频率资源的频域位置包括两部分,且该两部分的频域位置不连续。
作为示例,图18是根据本申请实施例提供的第一频率资源的频域位置的示意图。如图18所示,第一频率资源的频域位置可以位于系统带宽的两侧,那么用于传输第一信号的频率中间不连续,这样可以通过跳频,得到频率分集增益,获取更好的传输效果。
应理解,上述为示例性说明,第一频率资源的频域位置可以在系统带宽的任意位置,只要不连续即可。例如,第一频率资源可以包括系统带宽中间的资源,且不连续。
第一频率资源的频域位置不连续,即表示第一频率资源的频域位置包括不连续的多个频域位置。可选地,针对不连续的多个频域位置,可以通过标准预定义,也可以由网络侧配置并指示。以图17或图18为例,第一频率资源的频域位置包括不连续的2个频域位置,为区分,分别记为第一频域位置和第二频域位置。
例如,网络设备可以向终端设备指示:第一频域位置的起始位置是N start,rb1,第一频域位置的带宽是N wur,rb1,第二频域位置的起始位置是N start,rb2,第二频域位置的带宽是N wur,rb2
再例如,假设各个频域位置的带宽相同,网络设备可以向终端设备指示:第一频域位置的起始位置是N start,rb1,第二频域位置的起始位置是N start,rb2。其中,频域位置的带宽可以通过标准预定义,也可以由网络侧配置。若由网络侧配置频域位置的带宽,则网络侧可以将频域位置的带宽发送给终端设备。
再例如,假设各个频域位置的带宽相同,第一频域位置的起始位置和第二频域位置的 起始位置之间具有关联关系,如记为关联关系#4。网络设备可以向终端设备指示:第一频域位置的起始位置是N start,rb1,终端设备根据第一频域位置的起始位置以及关联关系#4,可以获知第二频域位置的起始位置。其中,关联关系#4可以通过标准预定义,也可以由网络侧配置。若由网络侧配置关联关系#4,则网络侧可以将关联关系#4发送给终端设备。作为一个可能的情形,关联关系#4可以为:N start,rb2=f(N start,rb1),f表示函数。
可以理解,上述仅是示例性说明,只要可以使得终端设备获知第一频率资源的频域位置的方案,都适用于本申请实施例。
可选地,若第一频率资源的频域位置包括多个频域位置,如第一频域位置和第二频域位置,那么网络设备可以在该多个频域位置重复发送第一信号,或者也可以在该多个频域位置分别发送第一信号的不同部分。下面以第一频域位置和第二频域位置为例,介绍这两种可能的情形。
作为第一种可能的情形,网络设备在第一频域位置发送第一信号的部分信号,在第二频域位置发送第一信号的其余部分信号。相应地,终端设备在第一频域位置接收来自网络设备的第一信号的部分信号,终端设备在第二频域位置接收来自网络设备的第一信号的其余部分信号。
作为示例,图19是根据本申请实施例提供的在不连续的多个频域位置发送第一信号的示意性流程图。
如图19所示,在发送端,对待编码比特(如“1001”)进行编码,得到编码后的比特流(如“11000011”)。对编码后的比特流进行交织处理,如按行写入,按列读出。将交织处理后的信号进行频域位置映射操作。在本申请实施例中,频域位置可以是不连续的多个频域位置,如第一频域位置和第二频域位置。如图19,映射至第一频域位置的比特为“1001”,映射至第二频域位置的比特为“1001”。然后再进行OOK调制,数模转换,上变频(up conversion)处理。可以理解,上述流程为示例性说明,本申请实施例不限于此。
作为第二种可能的情形,在第一时间,网络设备在第一频域位置发送第一信号,在第二时间,网络设备在第二频域位置发送第一信号。相应地,终端设备在第一频域位置和第二频域位置分别接收第一信号。也就是说,在第一时间,终端设备在第一频域位置接收第一信号,在第二时间,终端设备在第二频域位置接收第一信号。
在第二种可能的情形下,发送端,可以将编码后的bit流发送两次,每次使用不同的频域位置。例如,在发送端,对待编码比特(如“1001”)进行编码,得到编码后的比特流(如“11000011”)。在一次发送中,将编码后的比特流映射到第一频域位置,在另一次发送中,将编码后的比特流映射到第二频域位置。然后再进行OOK调制,数模转换,上变频处理。可以理解,上述流程为示例性说明,本申请实施例不限于此。
可以理解,在本申请的各实施例中,“接收”也可替换为“检测”或者“读取”。例如,“接收第一信号”也可以替换为“检测第一信号”或“读取第一信号”。
还可以理解,在上述一些实施例中,提到了“传输”,在未作出特别说明的情况下,传输,包括接收和/或发送。例如,传输信号,可以包括接收信号和/或发送信号。
还可以理解,在上述一些实施例中,主要以主电路和唤醒电路,以及主链路和唤醒链路为例进行了示例性说明,本申请不限于此。例如,“唤醒链路/唤醒电路”也可以替换为“第一模块”,或者也可以替换为“处于第一状态”,或者也可以替换为“处于第一模式”。举例 来说,“在唤醒链路上传输信号”,也可以替换为“通过第一模块(或第一电路)传输信号”。“主链路/主电路”也可以替换为“第二模块”,或者也可以替换为“处于第二状态”,或者也可以替换为“处于第二模式”。举例来说,“在主链路上传输信号”,也可以替换为“通过第二模块(或第二电路)传输信号”。
还可以理解,在本申请各个实施例中涉及到的公式是示例性说明,其不对本申请实施例的保护范围造成限定。在计算上述各个涉及的参数的过程中,也可以根据上述公式进行计算,或者基于上述公式的变形进行计算,或者,按照本申请实施例提供的方法确定的公式进行计算,或者也可以根据其它方式进行计算以满足公式计算的结果。
还可以理解,在本申请的各实施例中,主要以终端设备和网络设备之间的交互为例进行示例性说明,本申请不限于此,终端设备可以替换为接收端设备,网络设备可以替换为发送端设备。接收端设备可以为终端设备或网络设备,发送端设备也可以为终端设备或网络设备。示例地,“终端设备”可以替换为“第一终端设备”,“网络设备”可以替换为“第二终端设备”。
还可以理解,本申请实施例中的图9至图19中的例子仅仅是为了便于本领域技术人员理解本申请实施例,并非要将本申请实施例限于例示的具体场景。本领域技术人员根据图9至图19的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
还可以理解,本申请的各实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,也可以在某些场景下,与其他特征进行结合,不作限定。
还可以理解,本申请的各实施例中的方案可以进行合理的组合使用,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
还可以理解,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可由终端设备的组成部件(例如芯片或者电路)来实现;此外,由网络设备实现的方法和操作,也可以由可由网络设备的组成部件(例如芯片或者电路)来实现,不作限定。
相应于上述各方法实施例给出的方法,本申请实施例还提供了相应的装置,所述装置包括用于执行上述各个方法实施例相应的模块。该模块可以是软件,也可以是硬件,或者是软件和硬件结合。可以理解的是,上述各方法实施例所描述的技术特征同样适用于以下装置实施例。
图20是本申请实施例提供的一种通信装置的示意性框图。该装置2000包括收发单元2010和处理单元2020。收发单元2010可以用于实现相应的通信功能。收发单元2010还可以称为通信接口或通信单元。处理单元2020可以用于进行数据或信号处理。
可选地,该装置2000还包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元2020可以读取存储单元中的指令和/或数据,以使得装置实现前述各个方法实施例中终端设备的动作。
该装置2000可以用于执行上文各个方法实施例中通信设备(如终端设备,又如网络设备)所执行的动作,这时,该装置2000可以为通信设备或者通信设备的组成部件,收发单元2010用于执行上文方法实施例中通信设备(如终端设备,又如网络设备)侧的收发相关的操作,处理单元2020用于执行上文方法实施例中通信设备(如终端设备,又如网络设备)侧的处理相关的操作。
当该装置2000用于实现上文各个方法实施例中终端设备的功能时:收发单元2010,用于使用第一频率资源接收来自网络设备的第一信号;收发单元2010,还用于基于第一信号,使用第二频率资源,与网络设备传输第二信号;其中,第一频率资源与第二频率资源为系统带宽中的不同频域资源,第一频率资源的子载波间隔与第二频率资源的子载波间隔不同。
该装置2000可实现对应于根据本申请实施例的方法实施例中的终端设备执行的步骤或者流程,该装置2000可以包括用于执行图9至图19所示实施例中的终端设备执行的方法的单元。
当该装置2000用于实现上文各个方法实施例中网络设备的功能时:收发单元2010,用于使用第一频率资源,向第一终端设备发送第一信号;收发单元2010,还用于基于第一信号,使用第二频率资源,与第一终端设备传输第二信号;其中,第一频率资源与第二频率资源为系统带宽中的不同频域资源,第一频率资源的子载波间隔与第二频率资源的子载波间隔不同。
该装置2000可实现对应于根据本申请实施例的方法实施例中的网络设备执行的步骤或者流程,该装置2000可以包括用于执行图9至图19所示实施例中的网络设备执行的方法的单元。
有关该装置2000更详细的描述可以参考上文方法实施例中相关描述直接得到,在此不再赘述。
还应理解,这里的装置2000以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置2000可以具体为上述实施例中的终端设备,可以用于执行上述各方法实施例中与终端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置2000具有实现上述方法中设备(如终端设备或网络设备)所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发单元2010还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。
需要指出的是,图20中的装置可以是前述实施例中的网元或设备,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
图21是本申请实施例提供的另一种通信装置的示意性框图。该装置2100包括第一模块2110和第二模块2120。
其中,第一模块2110,例如可以为唤醒电路,或者也可以为唤醒电路的模块(如接 收模块)。第一模块2110,可用于执行上文方法实施例中通信设备(如终端设备,又如网络设备)侧的唤醒电路执行的操作,或者可用于执行上文方法实施例中通信设备(如终端设备,又如网络设备)侧的通过第一链路执行的操作,或者可用于执行上文方法实施例中通信设备(如终端设备,又如网络设备)处于第一状态时执行的操作,或者可用于执行上文方法实施例中通信设备(如终端设备,又如网络设备)处于第一模式时执行的操作。下面以终端设备为例进行说明。
其中,第二模块2120,例如可以为主电路,或者也可以为主电路的模块(如接收模块)。第一模块2110和第二模块2120可以集成在一起,或者也可以分离设置。第二模块2120,可用于执行上文方法实施例中通信设备(如终端设备,又如网络设备)侧的主电路执行的操作,或者可用于执行上文方法实施例中通信设备(如终端设备,又如网络设备)侧的通过第二链路执行的操作,或者可用于执行上文方法实施例中通信设备(如终端设备,又如网络设备)处于第二状态时执行的操作,或者可用于执行上文方法实施例中通信设备(如终端设备,又如网络设备)处于第二模式时执行的操作。
一种可能的方式,终端设备使用第一频率资源通过第一模块2110接收来自网络设备的第一信号;基于第一信号,终端设备使用第二频率资源通过第二模块2110与网络设备传输第二信号。有关该装置2100更详细的描述可以参考上文方法实施例中相关描述直接得到,在此不再赘述。
图22是本申请实施例提供的又一种通信装置的示意性框图。该装置2200包括处理器2210,处理器2210与存储器2220耦合,存储器2220用于存储计算机程序或指令和/或数据,处理器2210用于执行存储器2220存储的计算机程序或指令,或读取存储器2220存储的数据,以执行上文各方法实施例中的方法。
在一些实施例中,处理器2210为一个或多个。
在一些实施例中,存储器2220为一个或多个。
在一些实施例中,该存储器2220与该处理器2210集成在一起,或者分离设置。
在一些实施例中,如图22所示,该装置2200还包括收发器2230,收发器2230用于信号的接收和/或发送。例如,处理器2210用于控制收发器2230进行信号的接收和/或发送。
作为一种方案,该装置2200用于实现上文各个方法实施例中由设备(如终端设备,又如网络设备)执行的操作。
例如,处理器2210用于执行存储器2220存储的计算机程序或指令,以实现上文各个方法实施例中网络设备的相关操作。
再例如,处理器2210用于执行存储器2220存储的计算机程序或指令,以实现上文各个方法实施例中终端设备的相关操作。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述各方法实施例中由设备(如终端设备,又如网络设备)执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由网络设备执行的方法。
再例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由终端设备执行的方法。
本申请实施例还提供一种计算机程序产品,包含指令,该指令被计算机执行时以实现上述各方法实施例中由设备(如终端设备,又如网络设备)执行的方法。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,所述计算机可以是个人计算机,服务器,或者网络设备等。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站 站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等。例如,前述的可用介质包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (37)

  1. 一种信号传输的方法,其特征在于,包括:
    终端设备使用第一频率资源接收来自网络设备的第一信号;
    基于所述第一信号,所述终端设备使用第二频率资源,与所述网络设备传输第二信号;
    其中,所述第一频率资源与所述第二频率资源为系统带宽中的不同频域资源,所述第一频率资源的子载波间隔与所述第二频率资源的子载波间隔不同。
  2. 根据权利要求1所述的方法,其特征在于,
    所述终端设备使用所述第一频率资源解调所述第一信号的时间与预设时长相关,所述预设时长与所述第一频率资源的子载波间隔对应的循环前缀的长度不同。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备使用第一频率资源接收来自网络设备的第一信号,包括:
    从每个接收符号的起始时刻开始,在所述预设时长后,所述终端设备使用所述第一频率资源解调来自所述网络设备的所述第一信号。
  4. 根据权利要求2或3所述的方法,其特征在于,
    所述预设时长与以下任一项信息相关联:所述第一频率资源的频域位置,所述第一频率资源的子载波间隔,或者所述终端设备的带宽部分BWP采用的循环前缀的长度;
    或者,
    所述方法还包括:所述终端设备从所述网络设备接收所述预设时长。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述终端设备使用第一频率资源接收来自网络设备的第一信号,包括:
    所述终端设备使用所述第一频率资源中除N1个子载波以外的子载波,接收来自所述网络设备的所述第一信号,所述N1个子载波表示所述第一频率资源中与所述第二频率资源相邻的一个或多个子载波,N1为大于1或等于1的整数。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述终端设备使用第二频率资源,与所述网络设备传输第二信号,包括:
    所述终端设备使用所述第二频率资源中除N2个子载波以外的子载波,与所述网络设备传输所述第二信号,所述N2个子载波表示所述第二频率资源中与所述第一频率资源相邻的一个或多个子载波,N2为大于1或等于1的整数。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一频率资源的频域位置不连续。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一频率资源的频域位置包括第一频域位置和第二频域位置,
    所述终端设备使用第一频率资源接收来自网络设备的第一信号,包括:
    所述终端设备在所述第一频域位置接收来自所述网络设备的所述第一信号的部分信号,所述终端设备在所述第二频域位置接收来自所述网络设备的所述第一信号的其余部分信号;或者,
    在第一时间,所述终端设备在所述第一频域位置接收来自所述网络设备的所述第一信 号,以及在第二时间,所述终端设备在所述第二频域位置接收来自所述网络设备的所述第一信号。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备使用所述第二频率资源,接收所述第一频率资源的配置信息。
  10. 一种信号传输的方法,其特征在于,所述方法应用于终端设备,所述终端设备包括第一模块和第二模块,所述方法包括:
    所述终端设备使用第一频率资源,通过所述第一模块接收来自网络设备的第一信号;
    基于所述第一信号,所述终端设备使用第二频率资源,通过所述第二模块与所述网络设备传输第二信号;
    其中,所述第一频率资源与所述第二频率资源为系统带宽中的不同频域资源,所述第一频率资源的子载波间隔与所述第二频率资源的子载波间隔不同。
  11. 根据权利要求10所述的方法,其特征在于,
    所述终端设备使用所述第一频率资源,通过所述第一模块解调所述第一信号的时间与预设时长相关,所述预设时长与所述第一频率资源的子载波间隔对应的循环前缀的长度不同。
  12. 根据权利要求11所述的方法,其特征在于,所述终端设备使用第一频率资源,通过所述第一模块接收来自网络设备的第一信号,包括:
    从每个接收符号的起始时刻开始,在所述预设时长后,所述终端设备使用所述第一频率资源,通过所述第一模块解调来自所述网络设备的所述第一信号。
  13. 根据权利要求11或12所述的方法,其特征在于,
    所述预设时长与以下任一项信息相关联:所述第一频率资源的频域位置,所述第一频率资源的子载波间隔,或者所述终端设备的带宽部分BWP采用的循环前缀的长度;
    或者,
    所述方法还包括:所述终端设备从所述网络设备接收所述预设时长。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述终端设备使用第一频率资源,通过所述第一模块接收来自网络设备的第一信号,包括:
    所述终端设备使用所述第一频率资源中除N1个子载波以外的子载波,通过所述第一模块接收来自网络设备的第一信号,所述N1个子载波表示所述第一频率资源中与所述第二频率资源相邻的一个或多个子载波,N1为大于1或等于1的整数。
  15. 根据权利要求10至14中任一项所述的方法,其特征在于,所述终端设备使用第二频率资源,通过所述第二模块与所述网络设备传输第二信号,包括:
    所述终端设备使用所述第二频率资源中除N2个子载波以外的子载波,通过所述第二模块与所述网络设备传输第二信号,所述N2个子载波表示所述第二频率资源中与所述第一频率资源相邻的一个或多个子载波,N2为大于1或等于1的整数。
  16. 根据权利要求10至15中任一项所述的方法,其特征在于,所述第一频率资源的频域位置不连续。
  17. 根据权利要求10至16中任一项所述的方法,其特征在于,所述第一频率资源的频域位置包括第一频域位置和第二频域位置,
    所述终端设备使用第一频率资源,通过所述第一模块接收来自网络设备的第一信号, 包括:
    所述终端设备在所述第一频域位置通过所述第一模块接收来自所述网络设备的所述第一信号的部分信号,所述终端设备在所述第二频域位置通过所述第一模块接收来自所述网络设备的所述第一信号的其余部分信号;或者,
    在第一时间,所述终端设备在所述第一频域位置通过所述第一模块接收来自所述网络设备的所述第一信号,以及在第二时间,所述终端设备在所述第二频域位置通过所述第一模块接收来自所述网络设备的所述第一信号。
  18. 根据权利要求10至17中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备使用所述第二频率资源,通过所述第二模块接收所述第一频率资源的配置信息。
  19. 根据权利要求9或18所述的方法,其特征在于,所述第一频率资源的配置信息包括以下一项或多项信息:
    所述第一频率资源的带宽、所述第一频率资源的频域位置、所述第一频率资源的子载波间隔。
  20. 根据权利要求1至19中任一项所述的方法,其特征在于,所述第一信号为时域信号与窗函数相乘后的信号。
  21. 一种信号传输的方法,其特征在于,所述方法包括:
    网络设备使用第一频率资源,向第一终端设备发送第一信号;
    基于所述第一信号,所述网络设备使用第二频率资源,与所述第一终端设备传输第二信号;
    其中,所述第一频率资源与所述第二频率资源为系统带宽中的不同频域资源,所述第一频率资源的子载波间隔与所述第二频率资源的子载波间隔不同。
  22. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    在所述网络设备使用所述第一频率资源向所述第一终端设备发送所述第一信号时,所述网络设备使用所述第二频率资源与第二终端设备传输信号。
  23. 根据权利要求21或22所述的方法,其特征在于,
    所述方法还包括:所述网络设备向所述第一终端设备发送预设时长;或者,
    所述预设时长与以下任一项信息相关联:所述第一频率资源的频域位置,所述第一频率资源的子载波间隔,或者所述终端设备的带宽部分BWP采用的循环前缀的长度;
    其中,所述预设时长用于所述第一终端设备确定解调所述第一信号的时间,所述预设时长与所述第一频率资源的子载波间隔对应的循环前缀的长度不同。
  24. 根据权利要求21至23中任一项所述的方法,其特征在于,所述网络设备使用第一频率资源,向第一终端设备发送第一信号,包括:
    所述网络设备使用所述第一频率资源中除N1个子载波以外的子载波,向第一终端设备发送第一信号,所述N1个子载波表示所述第一频率资源中与所述第二频率资源相邻的一个或多个子载波,N1为大于1或等于1的整数。
  25. 根据权利要求21至24中任一项所述的方法,其特征在于,所述网络设备使用第二频率资源,与所述第一终端设备传输第二信号,包括:
    所述网络设备使用所述第二频率资源中除N2个子载波以外的子载波,与所述第一终 端设备传输第二信号,所述N2个子载波表示所述第二频率资源中与所述第一频率资源相邻的一个或多个子载波,N2为大于1或等于1的整数。
  26. 根据权利要求21至25中任一项所述的方法,其特征在于,所述第一信号为时域信号与窗函数相乘后的信号。
  27. 根据权利要求21至26中任一项所述的方法,其特征在于,所述第一频率资源的频域位置不连续。
  28. 根据权利要求21至27中任一项所述的方法,其特征在于,所述第一频率资源的频域位置包括第一频域位置和第二频域位置,
    所述网络设备使用第一频率资源,向第一终端设备发送第一信号,包括:
    所述网络设备在所述第一频域位置向所述第一终端设备发送所述第一信号的部分信号,所述网络设备在所述第二频域位置向所述第一终端设备发送所述第一信号的其余部分信号;或者,
    在第一时间,所述网络设备在所述第一频域位置向所述第一终端设备发送所述第一信号,以及在第二时间,所述网络设备在所述第二频域位置向所述第一终端设备发送所述第一信号。
  29. 根据权利要求21至28中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备使用所述第二频率资源向所述第一终端设备发送所述第一频率资源的配置信息。
  30. 根据权利要求29所述的方法,其特征在于,所述第一频率资源的配置信息包括以下一项或多项信息:
    所述第一频率资源的带宽、所述第一频率资源的频域位置、所述第一频率资源的子载波间隔。
  31. 一种信号传输的装置,其特征在于,包括用于执行权利要求1至30中任一项所述的方法的模块或单元。
  32. 一种信号传输的装置,其特征在于,包括处理器,所述处理器,用于执行存储器中存储的计算机程序或指令,以使得所述装置执行权利要求1至30中任一项所述的方法。
  33. 根据权利要求32所述的装置,其特征在于,所述装置还包括所述存储器。
  34. 根据权利要求32或33所述的装置,其特征在于,所述装置还包括通信接口,所述通信接口与所述处理器耦合,
    所述通信接口,用于输入和/或输出信息。
  35. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1至30中任一项所述的方法。
  36. 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行如权利要求1至30中任一项所述的方法的计算机程序或指令。
  37. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1至30中任一项所述的方法。
PCT/CN2022/128592 2021-11-09 2022-10-31 信号传输的方法和装置 WO2023083036A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111318168 2021-11-09
CN202111318168.3 2021-11-09
CN202111589267.5 2021-12-23
CN202111589267.5A CN116113046A (zh) 2021-11-09 2021-12-23 信号传输的方法和装置

Publications (1)

Publication Number Publication Date
WO2023083036A1 true WO2023083036A1 (zh) 2023-05-19

Family

ID=86262570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128592 WO2023083036A1 (zh) 2021-11-09 2022-10-31 信号传输的方法和装置

Country Status (2)

Country Link
CN (1) CN116113046A (zh)
WO (1) WO2023083036A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106538019A (zh) * 2016-11-04 2017-03-22 北京小米移动软件有限公司 信号接收方法及装置
CN108282847A (zh) * 2017-01-05 2018-07-13 中兴通讯股份有限公司 一种唤醒方法、装置和系统
CN108737306A (zh) * 2017-04-14 2018-11-02 上海诺基亚贝尔股份有限公司 基于频分复用的通信
WO2020048613A1 (en) * 2018-09-07 2020-03-12 Telefonaktiebolaget Lm Ericsson (Publ) Transmitting signals
WO2020069641A1 (en) * 2018-10-02 2020-04-09 Huawei Technologies Co., Ltd. System and method for reducing power consumption using power saving reference signals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106538019A (zh) * 2016-11-04 2017-03-22 北京小米移动软件有限公司 信号接收方法及装置
CN108282847A (zh) * 2017-01-05 2018-07-13 中兴通讯股份有限公司 一种唤醒方法、装置和系统
CN108737306A (zh) * 2017-04-14 2018-11-02 上海诺基亚贝尔股份有限公司 基于频分复用的通信
WO2020048613A1 (en) * 2018-09-07 2020-03-12 Telefonaktiebolaget Lm Ericsson (Publ) Transmitting signals
WO2020069641A1 (en) * 2018-10-02 2020-04-09 Huawei Technologies Co., Ltd. System and method for reducing power consumption using power saving reference signals

Also Published As

Publication number Publication date
CN116113046A (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
US11552761B2 (en) Method and apparatus for SS/PBCH block frequency location indication
CN111919411A (zh) 支持ss/pbch块的大子载波间隔的方法和装置
CN110972265B (zh) 一种资源确定方法及装置
WO2018127157A1 (zh) 一种上行信号发送方法、接收方法、终端及基站
US20200022122A1 (en) Resource indication method, network device, and terminal device
US10587389B2 (en) Apparatus and method for single-tone device discovery in wireless communication networks
US10873488B2 (en) Intra-packet rate adaptation for high capacity
US11678379B2 (en) Physical random access channel (PRACH) transmission in new radio (NR)
WO2021012255A1 (zh) 同步广播块的发送方法、接收方法、装置、设备及介质
US11064448B2 (en) Power and energy efficient waveform for frequency range FR2 and FR3
US10652062B2 (en) Configurable waveform for beyond 52.6GHz
CN109644403A (zh) 无线通信的方法和设备
WO2023078358A1 (zh) 通信的方法和装置
WO2023083036A1 (zh) 信号传输的方法和装置
WO2019237347A1 (zh) 资源分配和接收方法、装置及通信系统
CN111865517A (zh) 发送参考信号的方法和装置
WO2023051321A1 (zh) 信号传输的方法和装置
US20230345444A1 (en) Method and apparatus for transceiving beam control information of repeater in mobile communication system
WO2023240502A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023284620A1 (zh) 通信的方法和装置
WO2022077512A1 (zh) 一种通信方法及装置
WO2023083037A1 (zh) 信号传输的方法和装置
WO2023159468A1 (zh) 信息传输方法、终端设备和网络设备
WO2022262532A1 (zh) 符号传输的方法和通信装置
RU2776872C2 (ru) Способ и устройство для указания частотного местоположения блока ss/pbch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891832

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022891832

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022891832

Country of ref document: EP

Effective date: 20240510