WO2023051321A1 - 信号传输的方法和装置 - Google Patents

信号传输的方法和装置 Download PDF

Info

Publication number
WO2023051321A1
WO2023051321A1 PCT/CN2022/119930 CN2022119930W WO2023051321A1 WO 2023051321 A1 WO2023051321 A1 WO 2023051321A1 CN 2022119930 W CN2022119930 W CN 2022119930W WO 2023051321 A1 WO2023051321 A1 WO 2023051321A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
synchronization signal
terminal device
wake
period
Prior art date
Application number
PCT/CN2022/119930
Other languages
English (en)
French (fr)
Inventor
薛祎凡
薛丽霞
李强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22874708.5A priority Critical patent/EP4395422A1/en
Publication of WO2023051321A1 publication Critical patent/WO2023051321A1/zh
Priority to US18/616,907 priority patent/US20240244551A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • H04W68/025Indirect paging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the communication field, and more specifically, to a signal transmission method and device.
  • the terminal device can receive a wake-up signal through a separate small low-power circuit, such as a wake up receiver (WUR), and the main receiver can be in a deep sleep state.
  • a wake up receiver WUR
  • the terminal device detects the wake-up signal through the WUR
  • the terminal device triggers the wake-up of the main receiver.
  • the terminal device can perform a paging receiving process through the main receiver, such as receiving a paging message. Therefore, how to correctly receive the wake-up signal is particularly important.
  • the present application provides a signal transmission method and device, so that the terminal equipment can perform time synchronization through the received synchronization signal, and then can correctly receive the wake-up signal, and avoid the terminal equipment from being unable to correctly receive the wake-up signal due to time asynchrony.
  • a signal transmission method is provided, and the method may be executed by a terminal device, or may also be executed by a component (such as a chip or a circuit) of the terminal device, which is not limited thereto.
  • a component such as a chip or a circuit
  • the following uses execution by a terminal device as an example for description.
  • the method may include: the terminal device determines the period of the synchronization signal; the terminal device periodically receives the synchronization signal according to the period of the synchronization signal, using a first frequency resource, wherein the first frequency resource is also used to transmit a wake-up signal, and the wake-up signal is used to Information indicating one or more end devices that need to receive paging.
  • the terminal device periodically receives the synchronization signal, and the terminal device can perform time synchronization through the received synchronization signal, and then can correctly receive the wake-up signal.
  • the terminal device periodically receives the synchronization signal, which can reduce the resource overhead of the synchronization signal.
  • a network device as a central control node, so each terminal device can perform time synchronization with the same network device.
  • each terminal device in the network can share the same synchronization signal, reducing the resource overhead of synchronization signals.
  • the network device periodically sends the synchronization signal on the wake-up link, that is, the synchronization signal does not need to be sent channel, but periodically sent separately.
  • data information does not necessarily follow the synchronization signal. Therefore, the network device does not need to send a synchronization signal when sending data information, but can send a synchronization signal according to the cycle of the synchronization signal, thereby enabling the terminal device to complete time synchronization before receiving the wake-up signal.
  • the terminal device can receive the synchronization signal depends on whether the current network device has sent data, and the time delay for the terminal device to obtain synchronization after switching from the main link to the wake-up link cannot be guaranteed.
  • the terminal device switches from the main link to the wake-up link, it can quickly acquire time synchronization by using the synchronization signal sent periodically.
  • a period of the synchronization signal is associated with a transmission parameter of the wake-up signal.
  • the transmission parameters of the wake-up signal include time domain resource length or subcarrier spacing.
  • the transmission parameter of the wake-up signal is received by the terminal device through the second module.
  • the terminal device receives system information from the network device, where the system information includes transmission parameters of the wake-up signal.
  • the period of the synchronization signal is associated with the transmission parameter of the wake-up signal, so that the corresponding period can be determined based on the transmission parameter of the wake-up signal.
  • the transmission parameter of the wake-up signal includes a time-domain resource length
  • the time-domain resource length includes a first time-domain resource length and a second time-domain resource length
  • the first time-domain resource length of the synchronization signal One cycle is associated with the first time domain resource length
  • the second cycle of the synchronization signal is associated with the second time domain resource length
  • the first time domain resource length is smaller than the second time domain resource length
  • the first cycle is smaller than the second cycle.
  • a terminal device completes synchronization with a synchronization signal, it does not perform synchronization again before receiving the next synchronization signal. Due to the limited precision of the local clock of the receiver of the terminal equipment, the time offset between the terminal equipment and the network side will become larger and larger between two synchronization signals.
  • the wake-up signal is modulated by a certain modulation method (such as OOK), the demodulation performance of the wake-up signal is affected by the length of the time-domain resource (such as the length of the symbol). The longer the length of the time-domain resource, the greater the tolerance to residual time skew.
  • the transmission parameter of the wake-up signal includes a subcarrier interval
  • the subcarrier interval includes a first subcarrier interval and a second subcarrier interval
  • the first cycle of the synchronization signal and the second A subcarrier interval is associated
  • the second period of the synchronization signal is associated with the second subcarrier interval
  • the first subcarrier interval is greater than the second subcarrier interval
  • the first period is smaller than the second period.
  • the period of the synchronization signal is configured by the network device, or the period of the synchronization signal is predefined by a standard.
  • the network device can flexibly select an appropriate period T, so as to control the resource overhead of the synchronization signal. If the period of the synchronization signal is predefined (such as predefined by the standard), the network device or terminal device can determine the period of the synchronization signal based on the predefined (such as predefined by the standard), which reduces the inconvenience caused by the period of the network device notifying the synchronization signal. Signaling overhead.
  • the method further includes: the terminal device receives first configuration information, and the first configuration information is used to configure the period of the synchronization signal .
  • the period of the synchronization signal is configured by the network device, and the network device can send the period of the synchronization signal to the terminal device, and then the terminal device can know the period of the synchronization signal, and periodically receive the synchronization signal according to the period of the synchronization signal.
  • the method further includes: the terminal device receives second configuration information, and the second configuration information is used to configure the pattern pattern of the synchronization signal; the terminal device uses the period of the synchronization signal to use Periodically receiving the synchronization signal by the first frequency resource includes: the terminal device receives the synchronization signal by using the first frequency resource according to the period of the synchronization signal and the pattern of the synchronization signal.
  • the flexibility of the period of the synchronization signal can be improved. For example, if the period of the synchronization signal is predefined by the standard, once the transmission parameters are determined, the period of the synchronization signal will be determined accordingly, which may limit the deployment of the first link in the network. By configuring the pattern of the synchronization signal, the network device can flexibly configure the actual sending period of the synchronization signal, which improves flexibility.
  • the method further includes: the terminal device uses the first frequency resource to receive the first signal and/or send the second signal at the first time domain position, and the pattern representation of the synchronization signal The time domain positions for sending the synchronization signal do not include the first time domain position.
  • the first signal includes one or more of the following: synchronization signal block SSB, physical downlink control channel PDCCH, physical downlink shared channel PDSCH, channel state information reference signal CSI-RS, phase tracking reference signal PT-RS, positioning reference signal PRS, demodulation reference signal DMRS.
  • the second signal includes one or more of the following: a demodulation reference signal DMRS, a physical uplink shared channel PUSCH, a physical uplink control channel PUCCH, and a sounding reference signal SRS.
  • DMRS demodulation reference signal
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • SRS sounding reference signal
  • the modulation manner of the first signal is OFDM modulation or DFT-s-OFDM modulation.
  • the modulation manner of the second signal is OFDM modulation or DFT-s-OFDM modulation.
  • the terminal device receives the wake-up signal and synchronization signal on the first link (the frequency corresponding to the first link includes the first frequency resource), the resource ratio of the first link can be reduced, and the first link can be made
  • Link signals (such as wake-up signals and synchronization signals) are time-division multiplexed (time-division multiplexing, TDM) with other signals (such as the first signal and/or the second signal), that is, at the same frequency position, the first signal is received for a period of time.
  • TDM time-division multiplexing
  • the terminal device includes a first module and a second module, the terminal device receives the synchronization signal and the wake-up signal through the first module, and the terminal device receives the first signal through the second module and/or send a second signal.
  • the terminal device can receive the synchronization signal and the wake-up signal through the first module, and receive and/or send other signals through the second module, so that the synchronization signal and the wake-up signal can be compared with existing signals (such as the first signal or the second Two signals) symbol boundary alignment can reduce the level of interference.
  • the terminal device uses the first frequency resource to periodically receive the synchronization signal according to the period of the synchronization signal, including: the terminal device uses the first frequency resource according to the period of the synchronization signal The resource receives a synchronization signal at a first moment, the synchronization signal is used to indicate the data rate of the wake-up signal in a first period, and the first period is located after the first moment.
  • the data rate of the wake-up signal is obtained through the synchronization signal.
  • the length of the synchronization signal is used to indicate the data rate of the wake-up signal within the first period.
  • the length of the synchronization signal can be associated with the data rate of the wake-up signal, and the terminal device can learn the data rate of the wake-up signal in the first period through the length of the synchronization signal. Therefore, the terminal device can blindly detect the length of the synchronization signal, thereby judging the data rate of the subsequent wake-up signal, reducing the signaling overhead caused by the network device notifying the data rate of the wake-up signal.
  • the synchronization signal includes first indication information, and the first indication information is used to indicate the data rate of the wake-up signal within the first period.
  • the synchronization signal may also include first indication information, which is used to indicate the data rate of the wake-up signal within a later period of time (such as within the first period of time) .
  • first indication information which is used to indicate the data rate of the wake-up signal within a later period of time (such as within the first period of time) .
  • the length of the synchronization signal includes the length of the first synchronization signal and the length of the second synchronization signal, and the length of the first synchronization signal is used to indicate the wake-up signal within the first period
  • the data rate is the first data rate
  • the length of the second synchronization signal is used to indicate the data rate of the wake-up signal in the first period is the second data rate
  • the length of the first synchronization signal is less than the length of the second synchronization signal
  • the first data rate is higher than the second data rate.
  • synchronization signals of different lengths may correspond to different data rates. For example, the longer the length of the synchronization signal, the higher the data rate of the wake-up signal indicated by it.
  • the first time period is located after the first moment and before the second moment, and the second moment is the i-th synchronization signal received by the terminal device after the first moment , i is an integer greater than or equal to 1.
  • i 1.
  • the method further includes: the terminal device uses the first frequency resource to receive a wake-up signal, and the wake-up signal includes second indication information, where the second indication information is used to indicate that the wake-up signal data rate.
  • the data rate of the wake-up signal is obtained through the wake-up signal.
  • the second indication information is specifically used to indicate the data rate of other information in the wake-up signal except the second indication information, and the data rate of the second indication information is the network device configured or predefined.
  • the second indication information is located at the beginning of a wake-up signal (such as the starting position, and such as the position before the paging information).
  • the length of the synchronization signal includes a length of the first synchronization signal and a length of the second synchronization signal, and the length of the first synchronization signal is smaller than the length of the second synchronization signal.
  • a period of a synchronization signal is smaller than a period of a second synchronization signal.
  • the synchronization signal can include multiple signals of different lengths, such as the first synchronization signal and the second synchronization signal, so that not only can the synchronization signal of an appropriate length be selected for transmission according to the actual situation, but also can be used for different channel states , serving terminal devices in different channel states.
  • the period of the second synchronization signal is an integer multiple of the period of the first synchronization signal
  • the interval between the terminal device receiving the second synchronization signal and the terminal device receiving the first synchronization signal is The time interval is the same as the period of the first synchronization signal.
  • a waveform of the synchronization signal is the same as that of the wake-up signal, and/or a modulation manner of the synchronization signal is the same as a modulation manner of the wake-up signal.
  • the modulation mode of the synchronization signal and the modulation mode of the wake-up signal are on-off keying OOK, and/or, the waveform of the synchronization signal and/or the waveform of the wake-up signal is OOK .
  • the method further includes: the terminal device uses the first frequency resource to receive a wake-up signal from the network device, and the wake-up signal is used to indicate one or more
  • the information of the terminal device includes the terminal device; the terminal device receives the first information from the network device and/or initiates random access, wherein the first information includes one or more of the following information: paging downlink control information DCI, paging message paging message, paging advance indication PEI.
  • the terminal device initiates random access, including: the terminal device sends a random access preamble to the network device.
  • the terminal device receiving the first information from the network device and/or initiating random access includes: the terminal device uses the second frequency resource to receive the first information from the network device information and/or initiate random access.
  • the terminal device includes a first module and a second module, the terminal device receives the synchronization signal and the wake-up signal through the first module, and the terminal device receives the first information through the second module and/or initiate random access.
  • the terminal device receives the synchronization signal and the wake-up signal through the first link, and the frequency resource corresponding to the first link includes the first frequency resource.
  • the terminal device receives the first information from the network device and/or initiates random access through the second link, and the frequency resources corresponding to the second link include the first Two frequency resources.
  • the terminal device is in a first state (or adopts a first mode), and receives a synchronization signal and a wake-up signal.
  • the terminal device is in the second state (or adopts the second mode), receives the first information and/or initiates random access.
  • a signal transmission method is provided, and the method may be executed by a terminal device, or may also be executed by a component (such as a chip or a circuit) of the terminal device, which is not limited thereto.
  • a component such as a chip or a circuit
  • the following uses execution by a terminal device as an example for description.
  • the method may include: the network device determines the period of the synchronization signal; the network device periodically sends the synchronization signal using a first frequency resource according to the period of the synchronization signal, wherein the first frequency resource is also used to transmit a wake-up signal, and the wake-up signal is used for Information indicating one or more end devices that need to receive paging.
  • the network device periodically sends a synchronization signal, and the terminal devices in the network can perform time synchronization through the received synchronization signal, and then can correctly receive the wake-up signal.
  • the terminal device periodically receives the synchronization signal, which can reduce the resource overhead of the synchronization signal.
  • a period of the synchronization signal is associated with a transmission parameter of the wake-up signal.
  • the transmission parameters of the wake-up signal include time domain resource length or subcarrier spacing.
  • the transmission parameter of the wake-up signal is received by the terminal device through the second module.
  • the method further includes: the network device broadcasts system information, where the system information includes transmission parameters of the wake-up signal.
  • the network device can broadcast the transmission parameter of the wake-up signal, so that each terminal device in the network can receive the transmission parameter of the wake-up signal.
  • the transmission parameter of the wake-up signal includes a time-domain resource length
  • the time-domain resource length includes a first time-domain resource length and a second time-domain resource length
  • the first time-domain resource length of the synchronization signal One cycle is associated with the first time domain resource length
  • the second cycle of the synchronization signal is associated with the second time domain resource length
  • the first time domain resource length is smaller than the second time domain resource length
  • the first cycle is smaller than the second cycle.
  • the transmission parameter of the wake-up signal includes a subcarrier interval
  • the subcarrier interval includes a first subcarrier interval and a second subcarrier interval
  • the first cycle of the synchronization signal and the second A subcarrier interval is associated
  • the second period of the synchronization signal is associated with the second subcarrier interval
  • the first subcarrier interval is greater than the second subcarrier interval
  • the first period is smaller than the second period.
  • the period of the synchronization signal is configured by the network device, or the period of the synchronization signal is predefined by a standard.
  • the method further includes: the network device sends first configuration information, and the first configuration information is used to configure the period of the synchronization signal .
  • the method further includes: the network device sends second configuration information, and the second configuration information is used to configure the pattern pattern of the synchronization signal; the network device uses Sending the synchronization signal periodically by the first frequency resource includes: the network device sends the synchronization signal by using the first frequency resource according to the period of the synchronization signal and the pattern of the synchronization signal.
  • the method further includes: the network device uses the first frequency resource to send the first signal and/or receive the second signal at the first time domain position, and the pattern representation of the synchronization signal The time domain positions for sending the synchronization signal do not include the first time domain position.
  • the first signal includes one or more of the following: synchronization signal block SSB, physical downlink control channel PDCCH, physical downlink shared channel PDSCH, channel state information reference signal CSI-RS, phase tracking reference signal PT-RS, positioning reference signal PRS, demodulation reference signal DMRS.
  • the second signal includes one or more of the following: a demodulation reference signal DMRS, a physical uplink shared channel PUSCH, a physical uplink control channel PUCCH, and a sounding reference signal SRS.
  • DMRS demodulation reference signal
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • SRS sounding reference signal
  • the modulation manner of the first signal is OFDM modulation or DFT-s-OFDM modulation.
  • the modulation manner of the second signal is OFDM modulation or DFT-s-OFDM modulation.
  • the network device sends a wake-up signal and a synchronization signal on the first link (the frequency corresponding to the first link includes the first frequency resource), the resource ratio of the first link can be reduced, and the first link can be made
  • the signal of the link (such as wake-up signal and synchronization signal) is time-division multiplexed with other signals (such as the first signal and/or the second signal), that is, at the same frequency position, the signal of the first link is sent for a period of time, and the other Time to send other signals (such as the first signal).
  • the network device includes a first module and a second module, the network device sends a synchronization signal and a wake-up signal through the first module, and the network device sends the first signal through the second module and/or receive a second signal.
  • the network device can send the synchronization signal and the wake-up signal through the first module, and receive and/or send other signals through the second module, so that the synchronization signal and the wake-up signal can be compared with existing signals (such as the first signal or the second Two signals) symbol boundary alignment can reduce the level of interference.
  • the network device uses the first frequency resource to periodically send the synchronization signal according to the period of the synchronization signal, including: the network device uses the first frequency resource according to the period of the synchronization signal The resource is to send a synchronization signal at a first moment, the synchronization signal is used to indicate the data rate of the wake-up signal in a first period, and the first period is located after the first moment.
  • the network device indicates to the terminal device the data rate of the wake-up signal within a certain period of time (for example, within the first period of time) through the synchronization signal.
  • the length of the synchronization signal is used to indicate the data rate of the wake-up signal within the first period.
  • the length of the synchronization signal can be associated with the data rate of the wake-up signal, and the network device can indicate the data rate of the wake-up signal in a later period of time (such as within the first period of time) through the length of the synchronization signal, so that the terminal device can pass the synchronization
  • the length of the signal can determine the data rate of the wake-up signal in the first time period. Therefore, the terminal device can blindly detect the length of the synchronization signal, thereby judging the data rate of the subsequent wake-up signal, reducing the signaling overhead caused by the network device notifying the data rate of the wake-up signal.
  • the synchronization signal includes first indication information, and the first indication information is used to indicate a data rate of the wake-up signal within the first time period.
  • the length of the synchronization signal includes the length of the first synchronization signal and the length of the second synchronization signal, and the length of the first synchronization signal is used to indicate the wake-up signal within the first period
  • the data rate is the first data rate
  • the length of the second synchronization signal is used to indicate the data rate of the wake-up signal in the first period is the second data rate
  • the length of the first synchronization signal is less than the length of the second synchronization signal
  • the first data rate is higher than the second data rate.
  • the first time period is located after the first moment and before the second moment, and the second moment is the i-th synchronization signal sent by the network device after the first moment , i is an integer greater than or equal to 1.
  • i 1.
  • the method further includes: the network device sends a wake-up signal using the first frequency resource, and the wake-up signal includes second indication information, where the second indication information is used to indicate the wake-up signal data rate.
  • the second indication information is specifically used to indicate the data rate of other information in the wake-up signal except the second indication information, and the data rate of the second indication information is the network device configured or predefined.
  • the second indication information is located at the beginning of a wake-up signal (such as the starting position, and such as the position before the paging information).
  • the length of the synchronization signal includes the length of the first synchronization signal and the length of the second synchronization signal, the length of the first synchronization signal is smaller than the length of the second synchronization signal, and the length of the second synchronization signal is A period of a synchronization signal is smaller than a period of a second synchronization signal.
  • the period of the second synchronization signal is an integer multiple of the period of the first synchronization signal
  • the period between the network device sending the second synchronization signal and the network device sending the first synchronization signal is The time interval is the same as the period of the first synchronization signal.
  • the waveform of the synchronization signal is the same as that of the wake-up signal, and/or the modulation manner of the synchronization signal is the same as that of the wake-up signal.
  • the modulation mode of the synchronization signal and the modulation mode of the wake-up signal are on-off keying OOK, and/or, the waveform of the synchronization signal and/or the waveform of the wake-up signal is OOK .
  • the method further includes: the network device sends a wake-up signal using the first frequency resource, and the wake-up signal is used to indicate information of one or more terminal devices that need to receive paging , one or more terminal devices include a first terminal device; the network device sends first information to the first terminal device and/or receives a random access preamble from the first terminal device, wherein the first information includes one of the following or Multiple pieces of information: paging downlink control information DCI, paging message, paging advance indication PEI.
  • the network device sends a wake-up signal using the first frequency resource, and the wake-up signal is used to indicate information of one or more terminal devices that need to receive paging , one or more terminal devices include a first terminal device; the network device sends first information to the first terminal device and/or receives a random access preamble from the first terminal device, wherein the first information includes one of the following or Multiple pieces of information: paging downlink control information DCI, paging message, paging advance indication PEI
  • the network device sending the first information to the first terminal device and/or receiving the random access preamble from the first terminal device includes: the network device uses the second The frequency resource is used to send the first information to the first terminal device and/or receive a random access preamble from the first terminal device.
  • the network device includes a first module and a second module, the network device sends a synchronization signal and a wake-up signal through the first module, and the network device sends a synchronization signal and a wake-up signal to the first terminal through the second module
  • the device sends first information and/or receives a random access preamble from the first terminal device.
  • a communication device configured to execute the method in any possible implementation manner of the first aspect or the second aspect above.
  • the apparatus may include a unit and/or module for executing the method in any possible implementation manner of the first aspect or the second aspect, such as a processing unit and/or a communication unit.
  • the apparatus is a communication device (such as a terminal device, and also a network device).
  • the communication unit may be a transceiver, or an input/output interface; the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the apparatus is a chip, a chip system, or a circuit used in a communication device (such as a terminal device, or a network device).
  • a communication device such as a terminal device, or a network device.
  • the communication unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit, etc.
  • the processing unit may be at least one processor, processing circuit or logic circuit, etc.
  • a communication device which includes: at least one processor, configured to execute a computer program or instruction stored in a memory, so as to execute the method in any possible implementation manner of the first aspect or the second aspect above .
  • the apparatus further includes a memory for storing computer programs or instructions.
  • the device further includes a communication interface, through which the processor reads the computer program or instructions stored in the memory.
  • the apparatus is a communication device (such as a terminal device, and also a network device).
  • the apparatus is a chip, a chip system, or a circuit used in a communication device (such as a terminal device, or a network device).
  • the present application provides a processor configured to execute the method provided in the foregoing aspects.
  • the processor's output and reception, input and other operations can also be understood as the sending and receiving operations performed by the radio frequency circuit and the antenna, which is not limited in this application.
  • a computer-readable storage medium where the computer-readable medium stores program code for execution by a device, and the program code includes a method for executing any possible implementation manner of the above-mentioned first aspect or second aspect. method.
  • a computer program product including instructions is provided, and when the computer program product is run on a computer, the computer is made to execute the method in any possible implementation manner of the first aspect or the second aspect above.
  • a communication system including the aforementioned terminal device and network device.
  • Fig. 1 shows a schematic diagram of a wireless communication system 100 applicable to the embodiment of the present application.
  • Fig. 2 shows a schematic diagram of a terminal device receiving a wake-up signal by using a wake-up circuit.
  • Fig. 3 shows a schematic diagram of a waveform when the wake-up signal is modulated by OOK.
  • FIG. 4 shows a schematic diagram of a waveform of a signal after passing through a channel.
  • Fig. 5 shows a schematic diagram of sending a synchronization signal.
  • FIG. 6 shows a schematic diagram of a signal transmission method 600 provided by an embodiment of the present application.
  • Fig. 7 shows a schematic diagram of synchronization signal transmission applicable to the embodiment of the present application.
  • Fig. 8 shows a schematic diagram of synchronization signal and NR signal transmission applicable to the embodiment of the present application.
  • FIG. 9 shows a schematic diagram applicable to Example 1 in Mode 1.
  • FIG. 10 shows a schematic diagram applicable to Example 2 in Mode 1.
  • FIG. 11 shows a schematic diagram applicable to mode 2.
  • Fig. 12 shows a schematic diagram of periodic sending of the first synchronization signal and the second synchronization signal.
  • Fig. 13 shows another schematic diagram of periodic sending of the first synchronization signal and the second synchronization signal.
  • FIG. 14 shows a schematic diagram of a signal transmission method 1400 provided by an embodiment of the present application.
  • Fig. 15 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Fig. 16 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • Fig. 17 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • the technical solution provided by this application can be applied to various communication systems, such as: the fifth generation (5th generation, 5G) or new radio (new radio, NR) system, long term evolution (long term evolution, LTE) system, LTE frequency division Duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, etc.
  • 5G fifth generation
  • NR new radio
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division Duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • the technical solution provided by this application can also be applied to device to device (device to device, D2D) communication, vehicle to everything (vehicle-to-everything, V2X) communication, machine to machine (machine to machine, M2M) communication, machine type Communication (machine type communication, MTC), and Internet of things (internet of things, IoT) communication system or other communication systems.
  • D2D device to device
  • V2X vehicle-to-everything
  • M2M machine to machine
  • M2M machine type Communication
  • MTC machine type communication
  • IoT Internet of things
  • the terminal equipment in the embodiment of the present application may also be referred to as user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal , wireless communication device, user agent, or user device.
  • user equipment user equipment
  • UE user equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal , wireless communication device, user agent, or user device.
  • a terminal device may be a device that provides voice/data to a user, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some terminals are: mobile phone (mobile phone), tablet computer, notebook computer, palmtop computer, mobile internet device (mobile internet device, MID), wearable device, virtual reality (virtual reality, VR) device, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, smart grid Wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, cellular phones, cordless phones, session initiation protocol , SIP) phones, wireless local loop (wireless local loop, WLL) stations, personal digital assistants (personal digital assistant, PDA), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, Wearable devices, terminal devices in a 5G network, or terminal devices in a future evolving public land mobile network (PLMN), etc., are not limited in this
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the device for realizing the function of the terminal device may be the terminal device, or may be a device capable of supporting the terminal device to realize the function, such as a chip system or a chip, and the device may be installed in the terminal device.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the network device in this embodiment of the present application may be a device for communicating with a terminal device, and the network device may also be called an access network device or a wireless access network device, for example, the network device may be a base station.
  • the network device in this embodiment of the present application may refer to a radio access network (radio access network, RAN) node (or device) that connects a terminal device to a wireless network.
  • radio access network radio access network, RAN node (or device) that connects a terminal device to a wireless network.
  • the base station can broadly cover various names in the following, or replace with the following names, such as: Node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB, gNB), relay station, Access point, transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), primary station, secondary station, multi-standard wireless (motor slide retainer, MSR) node, home base station, network controller, access point Ingress node, wireless node, access point (AP), transmission node, transceiver node, baseband unit (BBU), remote radio unit (RRU), active antenna unit (AAU), radio frequency Head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning node, etc.
  • NodeB Node B
  • eNB evolved base station
  • next generation NodeB next generation NodeB, gNB
  • relay station Access point
  • transmission point transmission
  • a base station may be a macro base station, a micro base station, a relay node, a donor node, or the like, or a combination thereof.
  • a base station may also refer to a communication module, a modem or a chip configured in the aforementioned equipment or device.
  • the base station can also be a mobile switching center, a device that assumes the function of a base station in D2D, V2X, and M2M communications, a network-side device in a 6G network, and a device that assumes the function of a base station in a future communication system.
  • Base stations can support networks of the same or different access technologies. The embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • Base stations can be fixed or mobile.
  • a helicopter or drone can be configured to act as a mobile base station, and one or more cells can move according to the location of the mobile base station.
  • a helicopter or drone may be configured to serve as a device in communication with another base station.
  • the network device mentioned in the embodiment of the present application may be a device including CU, or DU, or a device including CU and DU, or a control plane CU node (central unit-control plane, CU -CP)) and the user plane CU node (central unit-user plane (CU-UP) of the user plane) and the equipment of the DU node.
  • CU central unit-control plane
  • CU-UP central unit-user plane
  • Network equipment and terminal equipment can be deployed on land, including indoors or outdoors, hand-held or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the air.
  • the scenarios where the network device and the terminal device are located are not limited.
  • FIG. 1 Firstly, a brief introduction of the network architecture applicable to this application is made in conjunction with FIG. 1 , as follows.
  • the wireless communication system 100 may include at least one network device, such as the network device 110 shown in Figure 1, and the wireless communication system 100 may also include at least one terminal device, such as the terminal device 120 shown in Figure 1 . Both the network device and the terminal device can be configured with multiple antennas, and the network device and the terminal device can communicate using the multi-antenna technology.
  • the network device when the network device communicates with the terminal device, the network device may manage one or more cells, and there may be an integer number of terminal devices in one cell.
  • the network device 110 and the terminal device 120 form a single-cell communication system, and the cell is denoted as cell #1 without loss of generality.
  • the network device 110 may be a network device in cell #1, or, the network device 110 may serve a terminal device (such as the terminal device 120) in cell #1.
  • a cell may be understood as an area within the wireless signal coverage of the network device.
  • FIG. 1 is only a simplified schematic diagram for easy understanding, and the wireless communication system 100 may also include other network devices or other terminal devices, which are not shown in FIG. 1 .
  • the process of receiving paging by the terminal device includes: when the terminal device is in the idle state or inactive state, calculate and obtain a paging frame (paging frame, PF) according to its own identifier (identifier, ID) (UE ID) ) and the location of a paging occasion (PO) in a PF, where paging is received in the PO.
  • a paging frame paging frame, PF
  • identifier, ID identifier
  • PO paging occasion
  • the same receiving module (or receiver, or receiving circuit) is used regardless of whether the terminal device performs the process of receiving paging in the idle state or inactive state, or when the terminal device receives data in the connected state.
  • the module that completes these functions (or performs related steps) is called a main circuit. It can be understood that the main circuit is only named for distinction, and its specific name does not limit the protection scope of the present application. For example, without loss of generality, the main circuit can also be described as a second circuit. The main circuit is described uniformly below.
  • the signal received by the terminal device using the main circuit can be said to be transmitted on the link (referred to as the second link for distinction), where the second link represents a connection relationship between the terminal device and the network device, which is A logical concept, not a physical entity.
  • the second link may also be referred to as the main link, which is collectively described as the second link below for the convenience of description.
  • the power consumption is relatively high.
  • a terminal device When the terminal equipment uses the main circuit to receive paging, the power consumption is relatively high.
  • a terminal device when a terminal device receives paging, it first needs to use the receiving module of the main circuit to receive downlink signals, and then the terminal device also needs to perform blind detection on the physical downlink control channel (PDCCH) to check the received physical downlink control channel (PDCCH).
  • shared channel physical downlink shared channel, PDSCH
  • the reference power consumption or static power consumption during its operation is relatively high.
  • the terminal device can use a separate low-power small circuit to receive the wake up signal/radio (WUS/WUR).
  • the wake-up signal is used to indicate information related to paging, and the information related to paging may include, for example: whether a terminal device or a group of terminal devices is paged.
  • the small circuit with low power consumption can be implemented with a single small circuit or chip with a simple structure, and its power consumption is low.
  • the small low-power circuit may be called a wake up receiver (wake up receiver, WUR), or may also be called a wake-up circuit, or may also be called a low-power circuit, and so on.
  • WUR wake up receiver
  • the small circuit with low power consumption is called a wake-up circuit.
  • the wake-up circuit is only named for distinction, and its specific name does not limit the protection scope of the present application.
  • the wake-up circuit can also be described as the first circuit. In the following, for the convenience of explanation, they are collectively described as a wake-up circuit.
  • the signal received by the terminal device using the wake-up circuit can be said to be transmitted on a link (referred to as the first link for distinction), where the first link represents a connection relationship between the terminal device and the network device , is a logical concept, not a physical entity. It should also be understood that the naming of the wake-up signal is only an example, and the present application does not limit the naming thereof.
  • a wake-up signal is mainly used to represent a signal related to paging, and it is not limited that all signals transmitted on the first link are wake-up signals.
  • the synchronization signal can also be transmitted through the first link, that is, the signal transmitted on the first link can include a synchronization signal and a wake-up signal, wherein the synchronization signal can be used by the terminal device to perform time synchronization based on the synchronization signal, wake up
  • the signal may be used to indicate paging related information.
  • FIG. 2 shows a schematic diagram of a terminal device receiving a wake-up signal through a wake-up circuit.
  • the wake-up signal is detected by the wake-up circuit, and the wake-up signal may carry paging-related indication information.
  • the terminal device uses the wake-up circuit to receive signals, if the terminal device does not detect the wake-up signal associated with itself, it will continue to use the wake-up circuit to receive signals, and the main circuit can be in the off state (or sleep state); if the terminal device detects a signal related to itself
  • the associated wake-up signal triggers the wake-up of the main circuit, that is, the main circuit is in/switched to an on state (or called a working state, or called an active state).
  • the terminal device can perform the process of receiving paging, for example, the terminal device receives the paging PDCCH, and receives the paging PDSCH after its corresponding PO detects the paging PDCCH.
  • FIG. 2 is mainly an exemplary illustration of an example in which the wake-up signal carries part of the paging-related information (for example, part of the UE ID of the paged terminal device, or the device group ID of the paged terminal device, etc.). , which is not restricted.
  • the wake-up signal can also carry all information related to paging (such as the complete UE ID of the paged terminal device). In this case, after the main circuit is turned on, random access can be initiated. It is understood that no limitation is imposed hereon. If the wake-up signal carries all information related to paging, the information related to paging can also be received after the main circuit is turned on.
  • the wake-up signal can be modulated by on off key (OOK), and the corresponding wake-up circuit can receive the wake-up signal by using an envelope detection method.
  • OOK on off key
  • FIG. 3 shows a schematic diagram of a waveform when the wake-up signal is modulated by OOK.
  • each bit may correspond to a symbol (symbol). Equivalently, a symbol can also be called a chip (chip), and can also be called other names, and there is no limitation here.
  • a symbol can also be called a chip (chip), and can also be called other names, and there is no limitation here.
  • the bit is 1, a signal is sent within the symbol length (that is, the signal transmission power within the symbol length is not 0).
  • the bit is 0, no signal is sent within the symbol length (that is, the signal transmission power within the symbol length is 0).
  • the waveform shown in FIG. 3 can represent 1010 four bits.
  • FIG. 4 shows a schematic diagram of a waveform of a signal after passing through a channel.
  • the terminal device may compare the received signal level value with a threshold (the threshold is shown by the dotted line in FIG. 4 ). For example, if the signal level value received by the terminal device is greater than the threshold, it means that the signal corresponds to 1; if the signal level value received by the terminal device is smaller than the threshold, it means that the signal corresponds to 0.
  • the terminal device uses the wake-up circuit to receive the wake-up signal, in order to correctly receive the wake-up signal, it needs to acquire the time synchronization of the first link. That is, the terminal device can obtain the boundary position of a symbol, and select the time position for judging whether the signal corresponds to 0 or to 1 according to the boundary position. For example, the terminal device can use the level value at the middle position of the symbol to determine whether the signal corresponds to 0 or 1.
  • time drift may occur due to the limited accuracy of the local clock of the end device. If the first link does not provide the synchronization function, after the terminal device works on the first link for a period of time, it is likely that the time of the terminal device and the network device will not be synchronized (that is, the symbol boundary position considered by the terminal device and the network device Inconsistent), thus affecting signal reception.
  • FIG. 5 shows a schematic diagram of sending a synchronization signal.
  • the synchronization signal that is, WUR-Sync in Figure 5
  • the data part that is, WUR-Data in Figure 5
  • FIG. 5 is only an exemplary illustration, and the present application does not limit the specific frame structure of the wake-up signal.
  • each data transmission can have a synchronous signal that can be referred to, which is beneficial to data reception.
  • synchronous signal can be referred to, which is beneficial to data reception. But for cellular networks, it includes the following features:
  • the cellular network has a central control node. All terminals in the cell need to be synchronized with the network equipment in order to correctly receive the signal sent by the network equipment. Therefore, compared with sending a synchronization signal every time a data signal is sent, the cellular network is more suitable.
  • the network device broadcasts a separate synchronization signal, so that multiple terminal devices in the cell can also obtain time synchronization when there is no data transmission;
  • network equipment (such as a base station) can control and schedule the air interface resources in the cell, so it can better control the location where the synchronization signal is sent, and avoid the conflict between the synchronization signal and other signals;
  • the method of sending synchronization signals along the road is not suitable for cellular networks.
  • the present application provides a solution.
  • By periodically sending a synchronization signal through a network device not only the time synchronization of the first link can be obtained, but also the same synchronization signal can be shared by each terminal device, thereby reducing the resource overhead of the synchronization signal.
  • network devices periodically send synchronization signals. In other words, synchronization signals do not need to be sent along the road. In this way, after the terminal device switches from the second link to the first link, it can use the periodically sent synchronization signals to quickly obtain time synchronization. .
  • the terminal device initiates random access may include: “the terminal device sends a random access preamble", that is, “the terminal device initiates a random access” in the following may be replaced with “the terminal device sends a random access sequence leading sequence”. It can be understood that any manner in which the terminal device can initiate random access is applicable to this application.
  • FIG. 6 is a schematic diagram of a signal transmission method 600 provided by an embodiment of the present application.
  • Method 600 may include the following steps.
  • the terminal device uses the first frequency resource to periodically receive the synchronization signal according to the period of the synchronization signal, where the first frequency resource is also used to transmit a wake-up signal, and the wake-up signal is used to indicate one or more terminals that need to receive paging Device information.
  • network devices periodically send synchronization signals.
  • the network device determines the period of the synchronization signal, and periodically sends the synchronization signal according to the period of the synchronization signal.
  • the synchronization signal may be transmitted periodically, that is, the synchronization signal does not need to be sent along the channel, that is, the synchronization signal does not need to be followed by a wake-up signal.
  • FIG. 7 shows a schematic diagram of synchronization signal transmission applicable to this embodiment of the present application.
  • the network device periodically sends a synchronization signal, and the synchronization signal and the wake-up signal can be sent separately, that is, the synchronization signal does not need to be sent along the road.
  • method 600 further includes step 601.
  • the terminal device determines a period of a synchronization signal.
  • the period of the synchronization signal indicates the period of transmitting the synchronization signal.
  • the network device sends a synchronization signal to the terminal device, and the terminal device can perform time synchronization through the received synchronization signal, and then can correctly receive the wake-up signal.
  • the network device periodically sends the synchronization signal, and the terminal device periodically receives the synchronization signal, which can reduce the resource overhead of the synchronization signal.
  • a network device as a central control node, so each terminal device can perform time synchronization with the same network device.
  • the network device periodically sends the synchronization signal on the wake-up link, that is, the synchronization signal does not need to be sent channel, but periodically sent separately.
  • data information does not necessarily follow the synchronization signal. Therefore, the network device does not need to send a synchronization signal when sending data information, but can send a synchronization signal according to the cycle of the synchronization signal, thereby enabling the terminal device to complete time synchronization before receiving the wake-up signal.
  • the terminal device can receive the synchronization signal depends on whether the current network device has sent data, and the time delay for the terminal device to obtain synchronization after switching from the main link to the wake-up link cannot be guaranteed.
  • the terminal device switches from the main link to the wake-up link, it can quickly acquire time synchronization by using the synchronization signal sent periodically.
  • the synchronization signal refers to a signal that can be used for terminal equipment to perform synchronization. That is to say, the terminal device can perform time synchronization based on the synchronization signal.
  • the synchronization signal can be generated based on a sequence with autocorrelation properties (eg, a sequence with good autocorrelation properties), so that the accuracy of synchronization can be improved.
  • the synchronization signal may be generated based on any of the following sequences: M sequence (ie, Maximum length sequence), pseudo-random (Pseudo-Noise, PN) sequence, GOLD sequence, and the like.
  • the modulation mode of the synchronization signal is amplitude shift keying (amplitude shift key, ASK), for example, it may be on off keying (on off key, OOK).
  • ASK amplitude shift key
  • OOK on off key
  • the waveform of the synchronization signal is OOK.
  • the wake-up signal may be used to indicate information related to paging.
  • the information related to paging for example, can be used by the terminal device to determine whether to perform a process of receiving paging, and for example, can be used by the terminal device to determine whether to initiate random access.
  • the "information related to paging" is referred to as paging information for short.
  • the paging information includes: information (such as UE ID) of one or more terminal devices that need to receive paging, that is, the wake-up signal can be used to indicate information about one or more terminal devices that need to receive paging ( Such as UE ID).
  • the one or more terminal devices may also be in the form of a terminal device group (UE group).
  • UE group terminal device group
  • terminal equipment groups can be divided according to regions, and terminal equipment groups can be divided according to whether to share wake-up signals, or terminal equipment groups can be divided according to characteristics of terminal equipment information (such as UE ID characteristics). End device group.
  • the paging information includes information about a terminal device (or information about a group of terminal devices) that needs to receive paging
  • the paging information can also be called the paging information of the terminal device (or the information about the terminal device group).
  • the paging information of the group or called the paging information of the paging group).
  • the modulation mode of the wake-up signal is ASK, for example, it may be OOK.
  • the power consumption gain can be guaranteed as much as possible.
  • the waveform of the wake-up signal is OOK
  • the first frequency resource may indicate a frequency resource used for the terminal device to receive the wake-up signal and a synchronization signal, that is, a frequency resource used for the network device to send the wake-up signal and the synchronization signal.
  • the frequency resources used for the wake-up signal and the synchronization signal transmission may be the same, for example, both are the first frequency resource.
  • the waveform of the synchronous signal is the same as that of the wake-up signal, for example, both are OOK.
  • the modulation mode of the synchronization signal is the same as that of the wake-up signal, for example, both are OOK.
  • the terminal device includes a first module and a second module.
  • the power consumption of the first module may be smaller than the power consumption of the second module.
  • the first module for example, may be the wake-up circuit in FIG. 2 , or may also be the receiving module of the wake-up circuit; the second module, for example, may be the main circuit in FIG. 2 , or may also be the receiving module of the main circuit.
  • the first module can be replaced by a wake-up circuit (or the first circuit), and the second module can be replaced by the main circuit (or the second circuit). The following are unified, and are described by the first module and the second module.
  • the terminal device may receive synchronization signals and wake-up signals through (or use) the first module, receive and/or send other signals through (or use) the second module, or initiate random access through the second module, etc. .
  • the terminal device may receive the first signal through the second module, and the first signal is a signal different from the wake-up signal and the synchronization signal.
  • the first signal may represent various downlink signals or channels in the Legacy NR signal.
  • the first signal includes any one or more of the following: synchronization signal block (synchronization signal block, SSB), PDCCH, PDSCH, channel state information reference signal (channel state information reference signal, CSI-RS), phase tracking reference Signal (phase tracking reference signal, PTRS), positioning reference signal (positioning reference signal, PRS), demodulation reference signal (DoModulation reference signal, DMRS).
  • the terminal device may send a second signal through the second module, and the second signal may represent various uplink signals or channels in the Legacy NR signal.
  • the second signal includes any one or more of the following: DMRS, physical uplink control channel (physical uplink control channel, PUCCH), physical uplink shared channel (physical uplink shared channel, PUSCH), sounding reference signal (sounding reference signal , SRS).
  • the terminal device may receive the first information through the second module. For example, if the terminal device receives a wake-up signal through the first module, and the wake-up signal includes paging information related to the terminal device, the terminal device receives the first information through the second module.
  • the first information may include one or more of the following: paging early indication (PEI), paging DCI (paging DCI), and paging message (paging message).
  • PEI can be used to indicate whether a page is sent in its associated PO.
  • the terminal device initiates random access through the second module, such as sending a random access preamble (preamble).
  • preamble a random access preamble
  • the terminal device uses the first frequency resource to periodically receive the synchronization signal
  • the terminal device uses the first module to periodically receive the synchronization signal
  • the terminal device can work on the first link (or the terminal device can send and receive signals on the first link), and can also work on the second link (or the terminal device can send and receive signals on the link). That is to say, the terminal device and the network device can communicate through the first link or through the second link.
  • the first link may represent the link used by the terminal device to send and receive signals through the wake-up circuit as shown in Figure 2
  • the second link may represent the link used by the terminal device to send and receive signals through the main circuit as shown in Figure 2 Link to use when signaling.
  • the terminal device receives the synchronization signal and the wake-up signal on the first link, receives and/or sends other signals on the second link, or initiates random access on the second link, and so on.
  • the terminal device uses the first module to send and receive signals (such as receiving synchronization signals and wake-up signals); if the terminal device and the network device communicate through the second link, the terminal device Use the second module to send and receive signals (such as receiving the first signal and/or sending the second signal).
  • the terminal device if the terminal device communicates with the network device through the first link, the terminal device receives the synchronization signal and the wake-up signal; if the terminal device communicates with the network device through the second link, the terminal device receives the first signal and/or sends second signal.
  • the first signal and the second signal reference may be made to the foregoing description, and details are not repeated here.
  • the terminal device if the terminal device communicates with the network device through the second link, the terminal device receives the first information.
  • the terminal device communicates with the network device through the second link, the terminal device receives the first information.
  • the first information reference may be made to the foregoing description, and details are not repeated here.
  • the terminal device if the terminal device communicates with the network device through the second link, the terminal device initiates random access, for example, the terminal device sends a random access preamble and so on.
  • the terminal device uses the first frequency resource to periodically receive the synchronization signal may also be replaced with “the terminal device periodically receives the synchronization signal on the first link”, or may also be replaced with “the terminal device Use a wake-up circuit to periodically receive a synchronization signal”.
  • the terminal device may be in the first state (such as in the WUR state) and the second state.
  • the first state and the second state are used to describe different states of the terminal device (such as different radio resource control (radio resource control, RRC) states).
  • RRC radio resource control
  • the power consumption of the terminal device in the first state may be smaller than the power consumption of the terminal device in the second state.
  • the first state may be, for example, an idle state or an inactive state, or may be a WUR state; the second state may be, for example, a connected state.
  • the first state (such as the WUR state) may correspond to the terminal device working on the first link or corresponding to the terminal device using the first module to send and receive signals (such as receiving a synchronization signal and a wake-up signal).
  • the terminal device receives synchronization signals and wake-up signals when it is in the first state, receives and/or sends other signals when it is in the second state, or initiates random access when it is in the second state, and so on.
  • the terminal device uses the first module to send and receive signals (such as receiving synchronization signals and wake-up signals) or work on the first link; if the terminal device is in the second state, the terminal device uses the first module
  • the two modules send and receive signals (such as receiving the first signal and/or sending the second signal) or work on the second link.
  • the terminal device receives the synchronization signal and the wake-up signal; if the terminal device is in the second state, the terminal device receives the first signal and/or sends the second signal.
  • the first signal and the second signal reference may be made to the foregoing description, and details are not repeated here.
  • the terminal device receives the first information.
  • the first information reference may be made to the foregoing description, and details are not repeated here.
  • the terminal device initiates random access, for example, the terminal device sends a random access preamble and so on.
  • the terminal device uses the first frequency resource to periodically receive the synchronization signal
  • the terminal device may also be replaced with “the terminal device periodically receives the synchronization signal when it is in the first state (such as in the WUR state)".
  • the terminal device may adopt the first mode (such as adopting WUR mode) and the second mode.
  • the first mode and the second mode are used to describe that the terminal device transmits signals in different modes.
  • the power consumption of the terminal device when transmitting signals in the first mode may be smaller than the power consumption of the terminal device in transmitting signals in the second mode.
  • the first mode (such as the WUR mode) may correspond to the terminal device working on the first link or corresponding to the terminal device using the first module to send and receive signals (such as receiving a synchronization signal and a wake-up signal).
  • the terminal device uses the first mode to receive synchronization signals and wake-up signals, uses the second mode to receive and/or send other signals, or uses the second mode to initiate random access, and so on.
  • the terminal device uses the first module to send and receive signals (such as receiving synchronization signals and wake-up signals) or work on the first link; if the terminal device adopts the second mode, the terminal device uses the first module
  • the two modules send and receive signals (such as receiving the first signal and/or sending the second signal) or work on the second link.
  • the terminal device receives the synchronization signal and the wake-up signal; if the terminal device adopts the second mode, the terminal device receives the first signal and/or sends the second signal.
  • the first signal and the second signal reference may be made to the foregoing description, and details are not repeated here.
  • the terminal device receives the first information.
  • the first information reference may be made to the foregoing description, and details are not repeated here.
  • the terminal device initiates random access, for example, the terminal device sends a random access preamble and so on.
  • the terminal device uses the first frequency resource to periodically receive the synchronization signal
  • the terminal device uses the first mode to periodically receive the synchronization signal
  • any modification belonging to the above-mentioned situations is applicable to the embodiments of the present application.
  • it can also be distinguished by modulation method or waveform.
  • the modulation mode of the synchronization signal and the wake-up signal is OOK
  • the modulation mode of the first signal is orthogonal frequency division multiplexing (OFDM) modulation or discrete Fourier transform extended orthogonal frequency division Multiplexing (discrete fourier transformation-spread-orthogonal frequency division multiplexing, DFT-s-OFDM) modulation.
  • OFDM orthogonal frequency division multiplexing
  • DFT-s-OFDM discrete Fourier transform extended orthogonal frequency division Multiplexing
  • the modulation mode of the synchronization signal and the wake-up signal is OOK
  • the modulation mode of the second signal is OFDM modulation or DFT-s-OFDM modulation.
  • the waveforms of the synchronization signal and the wake-up signal are OOK
  • the waveform of the first signal is an OFDM waveform or a DFT-s-OFDM waveform.
  • the waveforms of the synchronization signal and the wake-up signal are OOK
  • the waveform of the second signal is an OFDM waveform or a DFT-s-OFDM waveform.
  • Aspect 1 the cycle of the synchronization signal.
  • the cycle T is used to represent the cycle of the synchronization signal.
  • the unit of period T can be any of the following: symbol (symbol), time slot (slot), mini-slot (mini-slot), subframe (subframe), frame (frame), second (s), Milliseconds (ms), etc.
  • the value size of the period T can be any of the following: one or more symbols, one or more time slots, one or more mini-slots, one or more subframes, one or more frames, m1 seconds, m2 milliseconds, etc. Wherein, m1 and m2 are numbers greater than 0.
  • the period T is associated (or referred to as correlation, or referred to as correspondence) with the transmission parameter of the wake-up signal.
  • the transmission parameter of the wake-up signal indicates a parameter of the wake-up signal through transmission.
  • the transmission parameter of the wake-up signal includes: a time-domain resource length, or a sub-carrier space (sub-carrier space, SCS).
  • the length of the time-domain resource indicates the length of the time-domain resource used by transmitting the wake-up signal.
  • a symbol (symbol) or a chip (chip) is the minimum granularity of the signal structure
  • the corresponding time-domain resource used for each (coded) bit transmission can be a symbol (symbol) or a chip (chip).
  • the "time-domain resource length of the wake-up signal" may also be replaced by "symbol length", or may also be replaced by "chip length”, which is not limited.
  • the time-domain resource length of the wake-up signal may include, for example, one or more time-domain symbols, or may include one or more mini-slots, or may include one or more time slots, or may include one or more sub-slots. frame. It can be understood that the time domain resources listed above are only for the convenience of understanding the solution of the present application, and should not be construed as limiting the present application.
  • the period T is associated with the time-domain resource length (such as the symbol length) of the wake-up signal.
  • the period T is associated with the length of the time-domain resource, which means that the length of the period T is associated with the length of the time-domain resource, or that the size of the period T is associated with the length of the time-domain resource.
  • the period T is associated with the length of the time-domain resource.
  • the time-domain resource length includes a first time-domain resource length and a second time-domain resource length
  • the first period of the synchronization signal is associated with the first time-domain resource length
  • the second period of the synchronization signal is associated with the second time-domain resource length.
  • the length of the first time-domain resource is smaller than the length of the second time-domain resource
  • the first period is shorter than the second period. That is to say, the longer the time-domain resource length of the wake-up signal is, the larger the period T may be.
  • the time offset between the terminal device and the network side will become larger and larger between two synchronization signals.
  • the wake-up signal is modulated by OOK modulation
  • the demodulation performance of the OOK signal is affected by the length of the time-domain resource (such as the length of the symbol).
  • the longer the length of the time-domain resource the greater the tolerance to residual time skew. Therefore, when the time offset change rate is constant, the longer the time domain resource length is, the longer the "reception performance can be guaranteed without re-time synchronization", and the corresponding synchronization signal cycle can be set larger.
  • the period T is associated with the SCS of the wake-up signal.
  • the subcarrier spacing includes a first subcarrier spacing and a second subcarrier spacing
  • the first period of the synchronization signal is associated with the first subcarrier spacing
  • the second period of the synchronization signal is associated with the second subcarrier spacing
  • the carrier spacing is greater than the second subcarrier spacing
  • the first period is smaller than the second period. That is to say, the smaller the SCS of the wake-up signal, the larger the period T can be.
  • the SCS the greater the tolerance to residual time offset is, and the corresponding period of the synchronization signal can be set to be larger.
  • the period T may also be associated with other transmission parameters of the wake-up signal, and for example, the period T may be associated with the transmission parameters of the first link. If the period T is associated with the transmission parameters of the first link, then the transmission parameters of the wake-up signal and the synchronization signal may be the same, that is, both are transmission parameters of the first link.
  • the period T is configured by the network device, or is predefined (such as predefined by a standard), which will be described separately below.
  • the period T may be configured by the network device.
  • the network device can flexibly select an appropriate period T, thereby controlling the resource overhead of the synchronization signal.
  • the method 600 may further include: the network device sends first configuration information, where the first configuration information is used to configure the period of the synchronization signal.
  • the terminal device receives the first configuration information, and then, in step S601, the terminal device can learn the period T based on the first configuration information.
  • the network device sends configuration information of the first link (that is, an example of the first configuration information), and the configuration information may include a period T.
  • the network device may use radio resource control RRC signaling (such as dedicated RRC (dedicated RRC) signaling) on the second link (such as NR system) or send the first Link configuration information, where the configuration information may include a period T.
  • RRC signaling such as dedicated RRC (dedicated RRC) signaling
  • the period T may be predefined (such as predefined by a standard).
  • the network device or the terminal device can determine the period T based on the predefined (such as standard predefined), which reduces the signaling overhead caused by the network device notifying the period T.
  • the predefined such as standard predefined
  • the period T may be related to the transmission parameter of the wake-up signal, and if the transmission parameter of the wake-up signal is determined, the corresponding period T is also determined accordingly.
  • the terminal device acquires the transmission parameters of the wake-up signal.
  • the terminal device receives system information from the network device, where the system information includes the transmission parameter of the wake-up signal; the terminal device can learn the corresponding period T based on the transmission parameter of the wake-up signal. It can be understood that, taking the foregoing first possible situation as an example, the transmission parameter of the wake-up signal may be received by the terminal device using the second module.
  • the transmission parameter of the wake-up signal may be received by the terminal device on the second link.
  • the transmission parameter of the wake-up signal may be received by the terminal device in the second state.
  • the transmission parameter of the wake-up signal may be received by the terminal device in the second mode.
  • the period T is associated with the time-domain resource length (eg, symbol length) of the wake-up signal.
  • the period T and the time-domain resource length may exist in the form of Table 1.
  • the time-domain resource length of the wake-up signal is length #1
  • the period T of the synchronization signal used for the first link is T#1
  • the resource length is length #2
  • the period T of the synchronization signal used for the first link is T#2
  • the time domain resource length of the wake-up signal is length #3
  • the period T of the synchronization signal of the channel is T#3.
  • the time-domain resource length may also include a greater number of lengths.
  • the length of the time-domain resource can be a specific value, or a certain value range (for example, greater than a certain value, or less than a certain value, or between a certain value and another value, etc.),
  • the length #1 can be a certain value, or the length #1 can also be a certain value range.
  • Period T is associated with the SCS of the wake-up signal.
  • Period T and SCS can exist in the form of Table 2.
  • the SCS of the wake-up signal is SCS#1
  • the SCS of the wake-up signal is SCS#2
  • it can be known that the period T of the synchronization signal used for the first link is T#2
  • the SCS of the wake-up signal is SCS#3
  • the period T of the synchronization signal used for the first link is T #3.
  • Table 2 is only an illustration and is not limited thereto, and any modification belonging to Table 2 is applicable to this application.
  • an SCS may also include a greater number of SCSs.
  • the pattern (pattern) (or pattern, or pattern) of the synchronization signal.
  • the network device uses the first frequency resource to send the synchronization signal according to the period T and the pattern of the synchronization signal.
  • the terminal device may use the first frequency resource to receive the synchronization signal according to the period T and the pattern of the synchronization signal.
  • the network device sends second configuration information, where the second configuration information is used to configure a pattern of the synchronization signal.
  • the terminal device receives the second configuration information.
  • the terminal device can determine the pattern of the synchronization signal according to the second configuration information, and then can receive the synchronization signal according to the period T and the pattern of the synchronization signal.
  • the flexibility of the period T can be improved.
  • the period T is predefined by the standard, once the transmission parameters (such as symbol length or subcarrier spacing) are determined, the period T will be determined accordingly, which may limit the deployment of the first link in the network.
  • the network device can flexibly configure the actual sending period of the synchronization signal, which improves flexibility.
  • the pattern of the synchronization signal can indicate (or be called a representation, or be called a representation): the time domain position of the synchronization signal that can be sent (or can be received), and/or, it cannot be sent (or cannot be sent) received) the time domain position of the sync signal.
  • the network device can send the synchronization signal according to the time domain position indicated by the period T and the pattern of the synchronization signal that can send the synchronization signal; the terminal device can receive the synchronization signal according to the period T and the time domain position indicated by the pattern of the synchronization signal that can receive the synchronization signal. Signal. It can be understood that in this case, since the transmission of the synchronization signal also needs to consider the pattern of the synchronization signal, the synchronization signal may not be transmitted periodically.
  • a synchronization signal is sent or received at a certain time domain position
  • the pattern of the synchronization signal indicates that the time domain position cannot send or receive the synchronization signal
  • the synchronization signal is not sent or received at the time domain position
  • the pattern of the synchronization signal indicates that the time domain position can send or receive the synchronization signal
  • the synchronization signal is sent or received at the time domain position.
  • the pattern of the synchronization signal can indicate (or be called a representation, or be called a representation): the time domain position that can be used for the first link transmission signal, and/or, can not be used for the first link The time domain position of the transmitted signal.
  • the terminal device can determine the time domain position in the time domain according to the period T of the synchronization signal Receive a wake-up signal, or a synchronization signal.
  • the terminal device determines to receive the synchronization signal at the time domain position according to the period T, the terminal The device receives the synchronization signal at this time domain location.
  • the terminal device determines not to receive the synchronization signal at the time domain position according to the period T, then The terminal device can receive the wake-up signal at the position in the time domain.
  • the time domain position is not used for the first link transmission signal, and the terminal device
  • the first signal may be received and/or the second signal may be transmitted at the time domain location.
  • the first signal and the second signal reference may be made to the above description, and details are not repeated here.
  • the terminal device can determine whether to receive the synchronization signal according to the pattern of the synchronization signal, or can also determine whether to send and receive signals on the first link (such as receiving the synchronization signal and the wake-up signal) according to the pattern of the synchronization signal, or can also determine according to the pattern of the synchronization signal
  • the pattern determines whether to receive a sync signal or a wake-up signal.
  • the network device uses the first frequency resource to send the first signal and/or receive the second signal at the first time domain position, and the time domain position for sending the synchronization signal represented by the pattern of the synchronization signal does not include the first time domain position , or, the time domain position where the synchronization signal cannot be sent indicated by the pattern of the synchronization signal includes the first time domain position.
  • the terminal device may use the first frequency resource to receive the first signal and/or send the second signal at the first time domain position.
  • the resource ratio of the first link can be reduced, and the signals of the first link (such as wake-up signals and synchronization signals) can be time-division multiplexed with other signals (such as the first signal and/or the second signal) ( Time-division multiplexing, TDM), that is, at the same frequency position, the signal of the first link is sent for a period of time, and other signals (such as the first signal) are sent for another period of time. Therefore, the present application also facilitates the alignment of the symbol boundary between the signal of the first link and the existing signal (such as the first signal or the second signal), which can reduce the interference level.
  • TDM Time-division multiplexing
  • the first signal is a signal different from the wake-up signal and the synchronization signal, that is to say, the network device may send downlink signals other than the wake-up signal and the synchronization signal at the first time domain position.
  • the first signal may represent various downlink signals or channels in the Legacy NR signal.
  • the first signal includes one or more of the following: SSB, PDCCH, PDSCH, CSI-RS, PTRS, PRS, DMRS.
  • the second signal is a signal different from the wake-up signal and the synchronization signal, that is, the network device can receive the uplink signal at the first time domain position.
  • the second signal may represent various uplink signals or channels in the Legacy NR signal.
  • the second signal includes one or more of the following: DMRS, PUCCH, PUSCH, and SRS.
  • FIG. 8 shows a schematic diagram of synchronization signal and NR signal transmission applicable to the embodiment of the present application.
  • the network device sends synchronization signals at T1, T2, T3, T4, and T5.
  • the period of the synchronization signal is amplified by 2 times. Specifically, taking the T1-T4 cycle as an example, the network device allocates resources corresponding to T2 and T4 to the NR signal, that is, the network device sends synchronization signals at T1 and T3, and sends the first signal at T2 and T4; or, the network device Synchronization signals are sent at T1 and T3 and second signals are received at T2 and T4.
  • the first link may support multiple data rates.
  • Data rate indicating the data rate (data rate).
  • the system capacity can be increased.
  • the data rate of the wake-up signal can be reduced, and the wake-up signal can be reduced.
  • the data rate can be equivalent to increasing the length of the wake-up signal, which can obtain more time-domain diversity and improve the robustness of the first link signal.
  • the arrival time of the paging information of each terminal device is random, within a period of time, the number of paging information that needs to be sent by the first link is uncertain.
  • the wake-up signal may use a lower data rate.
  • the number of paging messages to be sent is large, considering that low data rate wake-up signals occupy more air interface resources (time-frequency resources), using a low data rate may lead to insufficient system capacity, so you can consider using a high data rate method to send Wake up signal to increase system capacity in a short time.
  • the terminal device may learn the data rate of the wake-up signal through the synchronization signal, or learn the data rate of the wake-up signal through the wake-up signal. Furthermore, the terminal device may receive and demodulate the wake-up signal based on the data rate of the wake-up signal. These two methods are described in detail below.
  • the data rate of the wake-up signal is obtained through the synchronization signal.
  • the network device uses the first frequency resource to send the synchronization signal at the first moment according to the period of the synchronization signal, and the synchronization signal is used to indicate the data rate of the wake-up signal within a first period, and the first period is located after the first moment .
  • the first moment represents the time of sending the synchronization signal, which can be a certain moment (such as the start moment of sending the synchronization signal, and the end moment of sending the synchronization signal), or a certain period of time (such as the time of sending the synchronization signal). period between the start time and the end time), there is no limit.
  • the first period may be a period after the first moment, that is, a period of time after the network device sends the synchronization signal, or a period of time after the terminal device receives the synchronization signal.
  • the first period is located after the first moment and before the second moment.
  • the second moment is the moment when the i-th synchronization signal is sent by the network device after the first moment, and i is an integer greater than 1 or equal to 1. That is to say, assuming that the network device sends the first synchronization signal at the first moment, and sends the (i+1)th synchronization signal at the second moment, the first period is the period between the first moment and the second moment.
  • the first period may represent the period between the network device currently sending the synchronization signal and the next time it sends the synchronization signal, or it can be understood that the start time of the first period is the first moment , with a duration of period T.
  • the duration of the first period may also be a preset duration, such as a duration preconfigured by the network device, or a standard predefined duration.
  • Example 1 the length of the synchronization signal is used to indicate the data rate of the wake-up signal in the first period.
  • the length of the synchronization signal can be associated with the data rate of the wake-up signal.
  • the network device can indicate the data rate of the wake-up signal in a later period of time (such as within the first period) through the length of the synchronization signal.
  • the terminal device can use the synchronization signal to The length of can obtain the data rate of the wake-up signal in the first time period. Therefore, the terminal device can blindly detect the length of the synchronization signal, thereby judging the data rate of the subsequent wake-up signal, reducing the signaling overhead caused by the network device notifying the data rate of the wake-up signal.
  • the length of the synchronization signal includes the length of the first synchronization signal and the length of the second synchronization signal
  • the length of the first synchronization signal is used to indicate the data rate of the wake-up signal in the first period of time is the first data rate
  • the second The lengths of the two synchronization signals are used to indicate the data rate of the wake-up signal in the first period is the second data rate
  • the length of the first synchronization signal is smaller than the length of the second synchronization signal
  • the first data rate is higher than the second data rate.
  • the data rate of the wake-up signal can be reduced, and the network device can send a longer synchronization signal (for example, the resistance to residual time offset can be improved Tolerance), it can be seen that the longer the length of the synchronization signal received by the terminal device, the lower the data rate of the wake-up signal may be in the following period of time.
  • the data rate of the wake-up signal can be increased, and the network device can send a synchronization signal with a shorter length (for example, the resource overhead caused by sending the synchronization signal can be reduced).
  • the length of the synchronization signal can be designed to be inversely proportional to the data rate. In this way, not only can the length of the synchronization signal received at a certain moment match the data rate of the wake-up signal in a later period of time, but also the synchronization signal can be detected by blind detection. length, the data rate of the subsequent wake-up signal can be judged.
  • Figure 9 shows a schematic suitable for this design.
  • the wake-up signal following the short synchronization signal ie, the first synchronization signal
  • the wake-up signal following the long synchronization signal ie, the second synchronization signal
  • the wake-up signal following the long synchronization signal is a low data rate signal.
  • the synchronization signal may be set to correspond to the data rate of the subsequent wake-up signal.
  • the network device periodically sends a synchronization signal. If the data rate of the wake-up signal to be sent by the network device is the first data rate, the network device sends the first synchronization signal; if the data rate of the wake-up signal to be sent by the network device is second data rate, the network device sends a second synchronization signal.
  • the data rate of the wake-up signal sent by the network device within the first time period is the first data rate
  • the network device sends the second synchronization signal at the first moment then The data rate of the wake-up signal sent by the network device within the first time period is the second data rate.
  • each terminal equipment in the network receives the first synchronization signal
  • each terminal equipment can learn that the data rate of the wake-up signal within the first period is the first data rate
  • each terminal equipment in the network receives the second synchronization signal each terminal device can learn that the data rate of the wake-up signal within the first period is the second data rate.
  • the terminal device can determine the data of the wake-up signal sent by the network device within the first time period The rate is the first data rate; no matter which or which terminal device receives the second synchronization signal of the network device (that is, the second synchronization signal sent by the network device at the first moment), the terminal device can determine that the network device is within the first time period
  • the data rate of the sent wake-up signal is the second data rate.
  • the synchronization signal includes indication information (referred to as first indication information for distinction), and the first indication information is used to indicate the data rate of the wake-up signal within the first period.
  • the synchronization signal may also include first indication information, and the first indication information is used to indicate the data rate of the wake-up signal within a later period of time (such as within the first period of time).
  • first indication information is used to indicate the data rate of the wake-up signal within a later period of time (such as within the first period of time).
  • a synchronization signal of one length can be designed.
  • the first indication information may be located after the sequence used for the synchronization function.
  • FIG. 10 shows a schematic diagram applicable to Example 2 in Mode 1.
  • the first indication information may be located after the sequence for the synchronization function, and the data rate of the wake-up signal following the synchronization signal may be indicated through the first indication information carried by the synchronization signal.
  • the method of obtaining the data rate of the wake-up signal through the synchronization signal is introduced above in conjunction with Example 1 and Example 2, and the method of obtaining the data rate of the wake-up signal through the wake-up signal is introduced below.
  • the data rate of the wake-up signal is obtained through the wake-up signal.
  • the network device uses the first frequency resource to send a wake-up signal, where the wake-up signal includes second indication information, where the second indication information is used to indicate a data rate of the wake-up signal.
  • the second indication information may also be called data rate indication information, for example, and its naming is not limited.
  • the wake-up signal includes second indication information
  • the second indication information is specifically used to indicate a data rate of other information in the wake-up signal except the second indication information.
  • the data rate of the second indication information may be configured by the network device, or may also be predefined, and is not limited.
  • the data rate of the second indication information is fixed, that is, no matter whether the paging information is a high data rate or a low data rate, the data rate of the second indication information itself is the same.
  • the data rate of the second indication information may be equal to the lowest data rate, so as to ensure the robustness of the second indication information.
  • FIG. 11 shows a schematic diagram applicable to Mode 2.
  • a wake-up signal includes second indication information
  • the second indication information is used to indicate the data rate of other information (such as paging information) in the wake-up signal except the second indication information.
  • the second indication information may be set in front of the paging information.
  • the second indication information may be located at the beginning of a wake-up signal (such as the starting position, and such as the position before the paging information).
  • the synchronization signal includes a first synchronization signal and a second synchronization signal, and the length of the first synchronization signal is shorter than the length of the second synchronization signal.
  • the synchronization signal may include multiple signals of different lengths, such as the first synchronization signal and the second synchronization signal mentioned above, so that not only can a synchronization signal of an appropriate length be selected for transmission according to the actual situation, but also can be used Based on different channel states, serve terminal devices in different channel states.
  • the following description mainly takes the synchronous signal including the first synchronous signal and the second synchronous signal as an example. It can be understood that the synchronous signal may include more signals of different lengths.
  • the network device may determine whether to send the first synchronization signal or the second synchronization signal according to the channel state.
  • the first synchronization signal and the second synchronization signal correspond to the same period T. That is to say, when the network device sends a synchronization signal based on the period T, it can determine whether to send a synchronization signal with a shorter length (that is, the first synchronization signal) or to send a synchronization signal with a longer length (that is, the second synchronization signal) according to the channel state. . For example, if the network device judges that the channel state is poor, the network device can send a longer synchronization signal (that is, the second synchronization signal); if the network device judges that the channel state is better, the network device can send a shorter length synchronization signal. Synchronization signal (that is, the first synchronization signal).
  • the signal quality threshold can be a predefined threshold, which can be configured by the network side without limitation. If the quality of the signal transmitted by the network device through the channel is greater than the signal quality threshold, the network device can know that the channel state is better, and the network device can send a synchronization signal with a shorter length (that is, the first synchronization signal); if the network device transmits the signal through the channel If the quality of is less than the signal quality threshold, the network device can learn that the channel state is poor, and the network device can send a longer synchronization signal (ie, the second synchronization signal).
  • the network device periodically sends the second synchronization signal, and the network device periodically sends the first synchronization signal.
  • the network device may not be able to know the current channel state of the terminal device, and thus cannot adaptively change the length of the synchronization signal, that is, it cannot determine whether to send the second synchronization signal or the first synchronization signal. Therefore, both the second synchronization signal and the first synchronization signal can be sent periodically.
  • the network device determines a period of the first synchronization signal and a period of the second synchronization signal, and the period of the first synchronization signal is shorter than the period of the second synchronization signal.
  • the network device configures the period of the first synchronization signal and the period of the second synchronization signal respectively, or the period of the first synchronization signal and the period of the second synchronization signal are predefined by the standard. I won't repeat them here.
  • FIG. 12 shows a schematic diagram of periodic sending of the first synchronization signal and the second synchronization signal.
  • the network device periodically sends the first synchronization signal according to the cycle of the first synchronization signal, and periodically sends the second synchronization signal according to the cycle of the second synchronization signal.
  • the length of the first synchronization signal is short and the cycle is short, and the length of the second synchronization signal is long and the cycle is also long.
  • a shorter period means that the time interval for network devices to send synchronization signals is shorter, that is, the time interval for terminal devices to perform time synchronization based on synchronization signals is shorter, so the length of synchronization signals does not need to be designed too long to reduce the resource overhead of synchronization signals.
  • a longer cycle means that the time interval for network devices to send synchronization signals is longer, that is, the time interval for terminal devices to perform time synchronization based on synchronization signals is longer, so the length of synchronization signals can be designed relatively longer, so as to improve the protection against residual time offset. tolerance.
  • the period of the first synchronization signal and the period of the second synchronization signal may be related or irrelevant, and are not limited.
  • the period of the second synchronization signal is an integer multiple of the period of the first synchronization signal.
  • the period of the first synchronization signal is T1
  • the period of the second synchronization signal is T2
  • T2 is an integer multiple of T1.
  • the time interval between the terminal device receiving the second synchronization signal and the terminal device receiving the first synchronization signal is the same as the period of the first synchronization signal. Based on this manner, the first synchronization signal and the second synchronization signal may be nested and sent.
  • the nested sending of the first synchronization signal and the second synchronization signal can be understood as that, among every N first synchronization signals, one of the first synchronization signals is replaced by the second synchronization signal.
  • the period of the second synchronization signal is an integer multiple of the period of the first synchronization signal.
  • FIG. 13 shows another schematic diagram of periodic sending of the first synchronization signal and the second synchronization signal. As shown in FIG. 13 , the period of the second synchronization signal is four times that of the first synchronization signal, and one of the first synchronization signals is replaced by the second synchronization signal in every four first synchronization signals.
  • the foregoing mainly uses the first synchronization signal and the second synchronization signal as an example for illustration, and it can be understood that the present application does not limit the length of the synchronization signal.
  • synchronization signals of greater length may also be included.
  • FIG. 14 is a schematic diagram of a signal transmission method 1400 provided by an embodiment of the present application.
  • Method 1400 may include the following steps.
  • the terminal device receives system information from the network device through the second link.
  • the terminal device receives the system information from the network device through the second link, or it may be replaced by the terminal device receiving the system information from the network device on the second link.
  • the terminal device receives the system information from the network device through the second link, or alternatively, the terminal device receives the system information from the network device through the second module, or alternatively, the terminal device receives the system information from the network device when it is in the second state.
  • the system information of the device or alternatively, the terminal device receives the system information from the network device in the second mode.
  • the system information may include configuration information of the first link.
  • the terminal device can learn the configuration information of the first link according to the system information.
  • the configuration information of the first link includes, for example, one or more of the following: a transmission parameter of the wake-up signal, a transmission parameter of the synchronization signal, a period T of the synchronization signal, and a transmission parameter of the first link.
  • the configuration information of the first link includes transmission parameters of the wake-up signal.
  • the transmission parameter of the wake-up signal may include at least one of the time-domain resource (such as symbol) length of the wake-up signal, the SCS of the wake-up signal, and the like, for example.
  • the terminal device may receive the wake-up signal on the first link according to the transmission parameter of the wake-up signal. If the cycle T is related to the transmission parameter of the wake-up signal, the terminal device can also determine the corresponding cycle T according to the transmission parameter of the wake-up signal, and then the terminal device can periodically receive the synchronization signal on the first link based on the cycle T . For details, reference may be made to the description in aspect 1 above, which will not be repeated here.
  • the configuration information of the first link includes a period T.
  • the terminal device may periodically receive the synchronization signal on the first link based on the period T.
  • the configuration information of the first link includes transmission parameters of the synchronization signal.
  • the terminal device may receive the synchronization signal on the first link according to the transmission parameter of the synchronization signal.
  • the transmission parameter of the synchronization signal may include at least one of a period T, a length of a time domain resource (such as a symbol) of the synchronization signal, and an SCS of the synchronization signal, for example.
  • the configuration information of the first link includes transmission parameters of the first link.
  • the transmission parameters of the first link may include, for example, at least one of the time domain resource (eg, symbol) length of the first link, the SCS of the first link, and the like.
  • the terminal device may receive the wake-up signal on the first link according to the transmission parameter of the first link. If the period T is related to the transmission parameters of the first link, the terminal device can also determine the corresponding period T according to the transmission parameters of the first link, and then the terminal device can periodically to receive the synchronization signal. For details, reference may be made to the description in aspect 1 above, which will not be repeated here.
  • the terminal device turns on the wake-up circuit, and works on the first link.
  • the terminal device works on the first link, or alternatively, the terminal device receives signals through the first module (such as receiving a wake-up signal and a synchronization signal), or alternatively, the terminal device is in the first state (or the terminal device's The state is adjusted to the first state), or alternatively, the terminal device receives signals in the first mode (for example, receiving a wake-up signal and a synchronization signal).
  • the terminal device receives signals through the first module (such as receiving a wake-up signal and a synchronization signal), or alternatively, the terminal device is in the first state (or the terminal device's The state is adjusted to the first state), or alternatively, the terminal device receives signals in the first mode (for example, receiving a wake-up signal and a synchronization signal).
  • the first module such as receiving a wake-up signal and a synchronization signal
  • the terminal device is in the first state (or the terminal device's The state is adjusted to the first state), or alternatively, the terminal device receives signals in the first mode
  • the terminal device can activate the wake-up circuit and work on the first link. At this point, the main circuit can be turned off.
  • the terminal device may activate the wake-up circuit and work on the first link.
  • the preset condition may include, for example: the distance between the terminal device and the network device is relatively short, and/or the moving speed of the terminal device is relatively slow.
  • the short distance between the terminal device and the network device indicates that the terminal device is located at a position where the network device network is relatively strong.
  • the terminal device can enable a wake-up circuit.
  • the terminal device may judge the distance between the terminal device and the network device by measuring the signal quality (or channel quality) of the serving cell.
  • the terminal device may determine the moving speed of the terminal device by measuring the variation of the signal quality of the serving cell.
  • the terminal device receives a synchronization signal from the network device through the first link.
  • the terminal device receives the synchronization signal from the network device through the first link, or it may be replaced by the terminal device receiving the synchronization signal from the network device on the first link.
  • the terminal device may periodically receive the synchronization signal through the first link according to the period T obtained in step S1410. Furthermore, the terminal device can perform time synchronization according to the received synchronization signal, so as to correctly receive the wake-up signal.
  • the terminal device receives a wake-up signal from the network device through the first link.
  • the terminal device receives the wake-up signal from the network device through the first link, or it may be replaced by the terminal device receiving the wake-up signal from the network device on the first link.
  • step S1430 the terminal device can perform synchronization based on the received synchronization signal, so the terminal device can correctly receive the wake-up signal from the network device.
  • the terminal device may perform a paging reception process and/or initiate random access.
  • the terminal device receives the first information or initiates random access through the second link.
  • the terminal device receives the first information or initiates random access through the second link, or may be replaced by the terminal device receiving the first information or initiating random access on the second link.
  • the terminal device may receive the first information through the second link (or perform paging through the second link). received process).
  • the wake-up signal carries complete paging information
  • the terminal device after the terminal device receives the wake-up signal through the first link, it can determine whether it is paged based on the wake-up signal. If the terminal device determines through the wake-up signal When being paged, as an example, the terminal device may initiate random access through the second link. Initiating random access by the terminal device may include, for example, that the terminal device sends a random access preamble to the network device.
  • receiving may also be replaced with “detecting”.
  • receiving a wake-up signal may also be replaced with “detect a wake-up signal”.
  • first link and second link are mainly used as examples for description.
  • the first link may also be replaced with “the first module (or first circuit)", or may also be replaced with “in the first state”, or may also be replaced with “in the first mode”.
  • the terminal device receives the synchronization signal on the first link may also be replaced with "the terminal device receives the synchronization signal through the first module (or first circuit)”.
  • “Second link” may also be replaced by "second module (or second circuit)", or may also be replaced by "in the second state", or may also be replaced by "in the second mode”.
  • the terminal device receives the first signal on the second link may also be replaced with "the terminal device receives the first signal through the second module (or second circuit)”.
  • transmission includes receiving and/or sending.
  • transmitting a signal may include receiving a signal and/or sending a signal.
  • signal may also be replaced with “sequence” or “sequence of signals”.
  • wake-up signal could be replaced with “sequence” or “sequence of wake-up signals”.
  • the network device can map the sequence of the wake-up signal of a certain length to a transmission resource (such as a time-frequency resource), Generate a wake-up signal and send it to the terminal device.
  • the interaction between the terminal device and the network device is mainly used as an example for illustration, and the present application is not limited thereto.
  • It is a terminal device or a network device; the network device can be replaced by a sender device, and the sender device can be a terminal device or a network device.
  • terminal device may be replaced with “first terminal device”
  • network device may be replaced with “second terminal device”.
  • the methods and operations implemented by the terminal device can also be implemented by components (such as chips or circuits) that can be implemented by the terminal device; in addition, the methods and operations implemented by the network device can also be implemented by It may be implemented by components (such as chips or circuits) that may be used in network equipment, and is not limited.
  • the embodiments of the present application further provide corresponding devices, and the device includes corresponding modules for executing the foregoing method embodiments.
  • the module can be software, or hardware, or a combination of software and hardware. It can be understood that the technical features described in the above method embodiments are also applicable to the following device embodiments.
  • Fig. 15 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the apparatus 1500 includes a transceiver unit 1510 and a processing unit 1520 .
  • the transceiver unit 1510 may be used to implement corresponding communication functions.
  • the transceiver unit 1510 may also be called a communication interface or a communication unit.
  • the processing unit 1520 may be used for data or signal processing.
  • the device 1500 further includes a storage unit, which can be used to store instructions and/or data, and the processing unit 1520 can read the instructions and/or data in the storage unit, so that the device implements the foregoing method embodiments actions of the terminal device.
  • a storage unit which can be used to store instructions and/or data
  • the processing unit 1520 can read the instructions and/or data in the storage unit, so that the device implements the foregoing method embodiments actions of the terminal device.
  • the device 1500 can be used to execute the actions performed by the terminal device in the above method embodiments.
  • the device 1500 can be a terminal device or a component of the terminal device, and the transceiver unit 1510 is used to perform the actions in the above method embodiments.
  • the processing unit 1520 is configured to perform processing-related operations on the terminal device side in the above method embodiments.
  • the processing unit 1520 is used to determine the period of the synchronization signal; the transceiver unit 1510 is used to use the first frequency resource period according to the period of the synchronization signal
  • the synchronization signal is selectively received, wherein the first frequency resource is also used to transmit a wake-up signal, and the wake-up signal is used to indicate information of one or more terminal devices that need to receive paging.
  • the apparatus 1500 may implement steps or procedures corresponding to the execution of the terminal device in the method embodiment according to the embodiment of the present application, and the apparatus 1500 may include a unit for executing the method executed by the terminal device in the embodiment shown in FIG. 6 .
  • the processing unit 1520 is used to determine the period of the synchronization signal; the transceiver unit 1510 is used to use the first frequency resource period according to the period of the synchronization signal
  • the synchronization signal is sent selectively, wherein the first frequency resource is also used to transmit a wake-up signal, and the wake-up signal is used to indicate information of one or more terminal devices that need to receive paging.
  • the apparatus 1500 may implement steps or processes corresponding to the execution of the network device in the method embodiment according to the embodiment of the present application, and the apparatus 1500 may include a unit for executing the method executed by the network device in the embodiment shown in FIG. 6 .
  • the apparatus 1500 here is embodied in the form of functional units.
  • the term "unit” here may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor for executing one or more software or firmware programs (such as a shared processor, a dedicated processor, or a group processor, etc.) and memory, incorporated logic, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • the apparatus 1500 can be specifically the terminal device in the above-mentioned embodiments, and can be used to execute various processes and/or steps corresponding to the terminal device in the above-mentioned method embodiments, for To avoid repetition, I won't repeat them here.
  • the apparatus 1500 in each of the above solutions has the function of implementing the corresponding steps performed by the device (such as a terminal device or a network device) in the above method.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiver computer), and other units, such as a processing unit, may be replaced by a processor to respectively perform the sending and receiving operations and related processing operations in each method embodiment.
  • transceiver unit 1510 may also be a transceiver circuit (for example, may include a receiving circuit and a sending circuit), and the processing unit may be a processing circuit.
  • the apparatus in FIG. 15 may be the network element or device in the foregoing embodiments, or may be a chip or a chip system, such as a system on chip (system on chip, SoC).
  • the transceiver unit may be an input-output circuit or a communication interface;
  • the processing unit is a processor or a microprocessor or an integrated circuit integrated on the chip. It is not limited here.
  • Fig. 16 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • the apparatus 1600 includes a first module 1610 .
  • the first module 1610 may be a wake-up circuit, or may also be a module of the wake-up circuit (such as a receiving module).
  • the first module 1610 can be used to perform the operation performed by the wake-up circuit on the terminal device side in the method embodiment above, or can be used to perform the operation performed by the terminal device side through the first link in the method embodiment above, or can be used to Perform the operations performed when the terminal device is in the first state in the above method embodiments, or may be used to perform the operations performed when the terminal device adopts the first mode in the above method embodiments.
  • the terminal device receives a wake-up signal through the first module 1610; as another example, the terminal device receives a synchronization signal through the first module 1610.
  • the apparatus 1600 includes a second module 1620 .
  • the second module 1620 may be a main circuit, or may also be a module of the main circuit (such as a receiving module).
  • the first module 1610 and the second module 1620 can be integrated together, or can also be set separately.
  • the second module 1620 can be used to perform the operations performed by the main circuit on the terminal device side in the above method embodiments, or can be used to perform the operations performed by the terminal device side through the second link in the above method embodiments, or can be used to The operations performed when the terminal device is in the second state in the method embodiments above are performed, or may be used to perform the operations performed when the terminal device adopts the second mode in the method embodiments above.
  • the terminal device receives the first signal through the second module 1610; as another example, the terminal device sends the second signal through the second module 1610; as another example, the terminal device initiates random access through the second module 1610, such as sending a random access preamble sequence.
  • Fig. 17 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • the device 1700 includes a processor 1710, the processor 1710 is coupled with a memory 1720, the memory 1720 is used for storing computer programs or instructions and/or data, and the processor 1710 is used for executing the computer programs or instructions stored in the memory 1720, or reading the memory 1720
  • the stored data is used to execute the methods in the above method embodiments.
  • processors 1710 there are one or more processors 1710 .
  • the memory 1720 is integrated with the processor 1710, or is set separately.
  • the device 1700 further includes a transceiver 1730 for receiving and/or sending signals.
  • the processor 1710 is configured to control the transceiver 1730 to receive and/or send signals.
  • the apparatus 1700 is used to implement operations performed by devices (such as terminal devices, and network devices) in the above method embodiments.
  • the processor 1710 is configured to execute the computer programs or instructions stored in the memory 1720, so as to implement related operations of the network device in each method embodiment above.
  • the processor 1710 is configured to execute the computer programs or instructions stored in the memory 1720, so as to implement related operations of the terminal device in the foregoing method embodiments.
  • processors mentioned in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and may also be other general processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits ( application specific integrated circuit (ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory and/or a nonvolatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • RAM random access memory
  • RAM can be used as an external cache.
  • RAM includes the following multiple forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), Double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (synchlink DRAM, SLDRAM) and direct Memory bus random access memory (direct rambus RAM, DR RAM).
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module may be integrated in the processor.
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the embodiment of the present application also provides a computer-readable storage medium, on which computer instructions for implementing the methods performed by the device (such as a terminal device, or a network device) in the above method embodiments are stored.
  • the computer when the computer program is executed by a computer, the computer can implement the methods performed by the network device in the above method embodiments.
  • the computer when the computer program is executed by a computer, the computer can implement the methods executed by the terminal device in the above method embodiments.
  • An embodiment of the present application further provides a computer program product, including instructions, which, when executed by a computer, implement the methods performed by devices (such as terminal devices, and network devices) in the foregoing method embodiments.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer may be a personal computer, a server, or a network device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, DVD), or a semiconductor medium (for example, a solid state disk (SSD), etc.
  • the aforementioned available medium includes but Not limited to: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes.
  • Embodiment 1 A method for signal transmission, characterized in that it comprises:
  • the terminal device determines the period of the synchronization signal
  • the terminal device periodically receives the synchronization signal by using the first frequency resource according to the cycle of the synchronization signal, wherein the first frequency resource is also used to transmit a wake-up signal, and the wake-up signal is used to indicate the need to receive Information about one or more end devices paged.
  • Embodiment 2 according to the method described in embodiment 1, it is characterized in that,
  • the period of the synchronization signal is associated with the transmission parameter of the wake-up signal.
  • Embodiment 3 The method according to Embodiment 1 or 2, wherein the transmission parameter of the wake-up signal includes a time-domain resource length,
  • the time-domain resource length includes a first time-domain resource length and a second time-domain resource length, the first cycle of the synchronization signal is associated with the first time-domain resource length, and the second cycle of the synchronization signal is associated with the The second time-domain resource length is associated, the first time-domain resource length is less than the second time-domain resource length, and the first period is less than the second period.
  • Embodiment 4. according to the method described in embodiment 1 or 2, is characterized in that,
  • the transmission parameters of the wake-up signal include subcarrier spacing,
  • the subcarrier spacing includes a first subcarrier spacing and a second subcarrier spacing, the first period of the synchronization signal is associated with the first subcarrier spacing, and the second period of the synchronization signal is associated with the second subcarrier spacing.
  • Carrier spacing is correlated, the first subcarrier spacing is greater than the second subcarrier spacing, and the first period is smaller than the second period.
  • Embodiment 5 The method according to any one of embodiments 1 to 4, characterized in that,
  • the period of the synchronization signal is configured by the network device, or,
  • the period of the synchronization signal is predefined by the standard.
  • Embodiment 6 The method according to Embodiment 5, wherein if the cycle of the synchronization signal is configured by the network device, the method further includes:
  • the terminal device receives first configuration information, where the first configuration information is used to configure a period of the synchronization signal.
  • Embodiment 7 according to the method described in any one in embodiment 1 to 6, it is characterized in that, described method also comprises:
  • the terminal device receives second configuration information, where the second configuration information is used to configure a pattern pattern of the synchronization signal;
  • the terminal device uses the first frequency resource to periodically receive the synchronization signal according to the period of the synchronization signal, including:
  • the terminal device receives the synchronization signal by using the first frequency resource according to the period of the synchronization signal and the pattern of the synchronization signal.
  • Embodiment 8 the method according to embodiment 7, is characterized in that, described method also comprises:
  • the terminal device uses the first frequency resource to receive the first signal and/or send the second signal at the first time domain position, and the time domain position for sending the synchronization signal represented by the pattern of the synchronization signal does not include first time domain position;
  • the first signal includes one or more of the following: synchronization signal block SSB, physical downlink control channel PDCCH, physical downlink shared channel PDSCH, channel state information reference signal CSI-RS, phase tracking reference signal PT-RS, positioning Reference signal PRS, demodulation reference signal DMRS;
  • synchronization signal block SSB physical downlink control channel PDCCH, physical downlink shared channel PDSCH, channel state information reference signal CSI-RS, phase tracking reference signal PT-RS, positioning Reference signal PRS, demodulation reference signal DMRS;
  • the second signal includes one or more of the following: a demodulation reference signal DMRS, a physical uplink shared channel PUSCH, a physical uplink control channel PUCCH, and a sounding reference signal SRS.
  • DMRS demodulation reference signal
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • SRS sounding reference signal
  • Embodiment 9 The method according to Embodiment 8, wherein the terminal device includes a first module and a second module,
  • the terminal device receives the synchronization signal and the wake-up signal through the first module, and the terminal device receives the first signal and/or sends the second signal through the second module.
  • Embodiment 10 The method according to any one of embodiments 1 to 9, wherein the terminal device uses the first frequency resource to periodically receive the synchronization signal according to the period of the synchronization signal, including :
  • the terminal device receives the synchronization signal at a first moment using a first frequency resource according to a period of the synchronization signal, the synchronization signal is used to indicate the data rate of the wake-up signal in a first period, and the second A period of time is after the first moment.
  • Embodiment 11 The method according to embodiment 10, characterized in that,
  • the length of the synchronization signal is used to indicate the data rate of the wake-up signal during the first period
  • the synchronization signal includes first indication information, and the first indication information is used to indicate the data rate of the wake-up signal within the first period.
  • Embodiment 12 The method according to Embodiment 11, wherein the length of the synchronization signal includes the length of the first synchronization signal and the length of the second synchronization signal, and the length of the first synchronization signal is used to indicate the length of the synchronization signal
  • the data rate of the wake-up signal in the first period is a first data rate
  • the length of the second synchronization signal is used to indicate the data rate of the wake-up signal in the first period is a second data rate
  • the The length of the first synchronization signal is smaller than the length of the second synchronization signal
  • the first data rate is higher than the second data rate.
  • Embodiment 13 The method according to any one of embodiments 10 to 12, wherein the first time period is located after the first moment and before the second moment, and the second moment is the moment of the i-th synchronization signal received by the terminal device after the first moment, where i is an integer greater than 1 or equal to 1.
  • Embodiment 14 according to the method described in any one in embodiment 1 to 9, it is characterized in that, described method also comprises:
  • the terminal device receives a wake-up signal by using the first frequency resource, and the wake-up signal includes second indication information, where the second indication information is used to indicate a data rate of the wake-up signal.
  • Embodiment 15 The method according to Embodiment 14, wherein the second indication information is specifically used to indicate the data rate of other information in the wake-up signal except the second indication information, and the second indication information
  • the data rate of the second indication information is configured or predefined by the network device.
  • Embodiment 16 The method according to any one of embodiments 1 to 15, wherein the length of the synchronization signal includes the length of the first synchronization signal and the length of the second synchronization signal, and the length of the first synchronization signal The length of is less than the length of the second synchronization signal, and the period of the first synchronization signal is less than the period of the second synchronization signal.
  • Embodiment 17 The method according to embodiment 16, characterized in that,
  • the period of the second synchronization signal is an integer multiple of the period of the first synchronization signal, and the time interval between the terminal device receiving the second synchronization signal and the terminal device receiving the first synchronization signal, It is the same as the period of the first synchronization signal.
  • Embodiment 18 The method according to any one of embodiments 1 to 17, wherein,
  • the waveform of the synchronization signal is the same as that of the wake-up signal, and/or, the modulation mode of the synchronization signal is the same as the modulation mode of the wake-up signal.
  • Embodiment 19 The method according to any one of embodiments 1 to 18, characterized in that,
  • the modulation mode of the synchronization signal and the modulation mode of the wake-up signal are on-off keying OOK, and/or,
  • the waveform of the synchronization signal and/or the waveform of the wake-up signal is OOK.
  • Embodiment 20 The method according to any one of embodiments 1 to 19, further comprising:
  • the terminal device uses the first frequency resource to receive the wake-up signal from the network device, where the wake-up signal is used to indicate that the information of one or more terminal devices that need to receive paging includes the terminal device;
  • the terminal device receives first information from the network device and/or initiates random access,
  • the first information includes one or more of the following information: paging downlink control information DCI, paging message, and paging advance indication PEI.
  • Embodiment 21 The method according to Embodiment 20, wherein the terminal device receives the first information from the network device and/or initiates random access, including:
  • the terminal device receives the first information from the network device and/or initiates random access by using the second frequency resource.
  • Embodiment 22 The method according to Embodiment 20 or 21, wherein the terminal device includes a first module and a second module,
  • the terminal device receives the synchronization signal and the wake-up signal through the first module, and the terminal device receives the first information and/or initiates random access through the second module.
  • Embodiment 23 A method for signal transmission, comprising:
  • the network device determines the period of the synchronization signal
  • the network device uses the first frequency resource to periodically send the synchronization signal according to the period of the synchronization signal, wherein the first frequency resource is also used to transmit a wake-up signal, and the wake-up signal is used to indicate the need to receive Information about one or more end devices paged.
  • Embodiment 24 The method according to embodiment 23, wherein,
  • the period of the synchronization signal is associated with the transmission parameter of the wake-up signal.
  • Embodiment 25 The method according to embodiment 24, further comprising:
  • the network device broadcasts system information, where the system information includes transmission parameters of the wake-up signal.
  • Embodiment 26 The method according to any one of embodiments 23 to 25, wherein the transmission parameter of the wake-up signal includes a time-domain resource length,
  • the time-domain resource length includes a first time-domain resource length and a second time-domain resource length, the first cycle of the synchronization signal is associated with the first time-domain resource length, and the second cycle of the synchronization signal is associated with the The second time-domain resource length is associated, the first time-domain resource length is less than the second time-domain resource length, and the first period is less than the second period.
  • Embodiment 27 The method according to any one of embodiments 23 to 25, wherein,
  • the transmission parameters of the wake-up signal include subcarrier spacing,
  • the subcarrier spacing includes a first subcarrier spacing and a second subcarrier spacing, the first period of the synchronization signal is associated with the first subcarrier spacing, and the second period of the synchronization signal is associated with the second subcarrier spacing.
  • Carrier spacing is correlated, the first subcarrier spacing is greater than the second subcarrier spacing, and the first period is smaller than the second period.
  • Embodiment 28 The method of any one of embodiments 23 to 27, wherein,
  • the period of the synchronization signal is configured by the network device, or,
  • the period of the synchronization signal is predefined by the standard.
  • Embodiment 29 The method according to Embodiment 28, wherein if the cycle of the synchronization signal is configured by the network device, the method further includes:
  • the network device sends first configuration information, where the first configuration information is used to configure a period of the synchronization signal.
  • Embodiment 30 The method according to any one of embodiments 23 to 29, further comprising:
  • the network device sends second configuration information, where the second configuration information is used to configure a pattern of the synchronization signal;
  • the network device periodically sends the synchronization signal using the first frequency resource according to the period of the synchronization signal, including:
  • the network device uses the first frequency resource to send the synchronization signal according to the period of the synchronization signal and the pattern of the synchronization signal.
  • Embodiment 31 The method according to embodiment 30, further comprising:
  • the network device uses the first frequency resource to send the first signal and/or receive the second signal at the first time domain position, and the time domain position for sending the synchronization signal represented by the pattern of the synchronization signal does not include first time domain position;
  • the first signal includes one or more of the following: synchronization signal block SSB, physical downlink control channel PDCCH, physical downlink shared channel PDSCH, channel state information reference signal CSI-RS, phase tracking reference signal PT-RS, positioning Reference signal PRS, demodulation reference signal DMRS;
  • synchronization signal block SSB physical downlink control channel PDCCH, physical downlink shared channel PDSCH, channel state information reference signal CSI-RS, phase tracking reference signal PT-RS, positioning Reference signal PRS, demodulation reference signal DMRS;
  • the second signal includes one or more of the following: a demodulation reference signal DMRS, a physical uplink shared channel PUSCH, a physical uplink control channel PUCCH, and a sounding reference signal SRS.
  • DMRS demodulation reference signal
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • SRS sounding reference signal
  • Embodiment 32 The method according to Embodiment 31, wherein the network device includes a first module and a second module,
  • the network device sends the synchronization signal and the wake-up signal through the first module, and the network device sends the first signal and/or receives the second signal through the second module.
  • Embodiment 33 The method according to any one of Embodiments 23 to 32, wherein the terminal device uses the first frequency resource to periodically receive the synchronization signal according to the period of the synchronization signal, including :
  • the network device uses a first frequency resource to send the synchronization signal at a first moment according to the period of the synchronization signal, the synchronization signal is used to indicate the data rate of the wake-up signal in a first period, and the second A period of time is after the first moment.
  • Embodiment 34 The method of embodiment 33, wherein,
  • the length of the synchronization signal is used to indicate the data rate of the wake-up signal during the first period
  • the synchronization signal includes first indication information, and the first indication information is used to indicate the data rate of the wake-up signal within the first period.
  • Embodiment 35 The method according to Embodiment 34, wherein the length of the synchronization signal includes the length of the first synchronization signal and the length of the second synchronization signal, and the length of the first synchronization signal is used to indicate the length of the synchronization signal
  • the data rate of the wake-up signal in the first period is a first data rate
  • the length of the second synchronization signal is used to indicate the data rate of the wake-up signal in the first period is a second data rate
  • the The length of the first synchronization signal is smaller than the length of the second synchronization signal
  • the first data rate is higher than the second data rate.
  • Embodiment 36 The method according to any one of embodiments 33 to 35, wherein the first time period is located after the first moment and before the second moment, the second moment is the time of the i-th synchronization signal sent by the network device after the first time, where i is an integer greater than 1 or equal to 1.
  • Embodiment 37 The method according to any one of embodiments 23 to 32, further comprising:
  • the network device uses the first frequency resource to send a wake-up signal, where the wake-up signal includes second indication information, where the second indication information is used to indicate a data rate of the wake-up signal.
  • Embodiment 38 The method according to Embodiment 37, wherein the second indication information is specifically used to indicate the data rate of other information in the wake-up signal except the second indication information, and the second indication information
  • the data rate of the second indication information is configured or predefined by the network device.
  • Embodiment 39 The method according to any one of embodiments 23 to 38, wherein the length of the synchronization signal includes the length of the first synchronization signal and the length of the second synchronization signal, and the length of the first synchronization signal The length of is less than the length of the second synchronization signal, and the period of the first synchronization signal is less than the period of the second synchronization signal.
  • Embodiment 40 The method of embodiment 39, wherein,
  • the period of the second synchronization signal is an integer multiple of the period of the first synchronization signal, the time interval between the network device sending the second synchronization signal and the network device sending the first synchronization signal, It is the same as the period of the first synchronization signal.
  • Embodiment 41 The method of any one of embodiments 23 to 40, wherein,
  • the waveform of the synchronization signal is the same as that of the wake-up signal, and/or, the modulation mode of the synchronization signal is the same as the modulation mode of the wake-up signal.
  • Embodiment 42 The method of any one of embodiments 23 to 41 wherein,
  • the modulation mode of the synchronization signal and the modulation mode of the wake-up signal are on-off keying OOK, and/or,
  • the waveform of the synchronization signal and/or the waveform of the wake-up signal is OOK.
  • Embodiment 43 The method according to any one of embodiments 23 to 42, further comprising:
  • the network device uses the first frequency resource to send the wake-up signal, where the wake-up signal is used to indicate information of one or more terminal devices that need to receive paging, and the one or more terminal devices include the first Terminal Equipment;
  • the network device sends first information to the first terminal device and/or receives a random access preamble from the first terminal device,
  • the first information includes one or more of the following information: paging downlink control information DCI, paging message, and paging advance indication PEI.
  • Embodiment 44 The method according to Embodiment 43, wherein the network device sends the first information to the first terminal device and/or receives a random access preamble from the first terminal device, include:
  • the network device uses the second frequency resource to send the first information to the first terminal device and/or receive a random access preamble from the first terminal device.
  • Embodiment 45 The method according to Embodiment 43 or 44, wherein the network device includes a first module and a second module,
  • the network device sends the synchronization signal and the wake-up signal through the first module, and the network device sends first information to the first terminal device and/or receives information from the first terminal device through the second module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种信号传输的方法和装置。该方法可以包括:终端设备确定同步信号的周期;终端设备根据同步信号的周期,使用第一频率资源周期性地接收同步信号,其中,第一频率资源还用于传输唤醒信号,唤醒信号用于指示需要接收寻呼的一个或多个终端设备的信息。通过本申请,终端设备通过接收到的同步信号进行时间同步,进而可以正确接收唤醒信号,避免由于时间不同步,导致终端设备无法正确接收唤醒信号的发生。本实施例提供的方法可以应用于通信系统,例如5G或NR、LTE、V2X、D2D、M2M、MTC、物联网等。

Description

信号传输的方法和装置
本申请要求于2021年11月05日提交中国专利局、申请号为202111305478.1、申请名称为“信号传输的方法和装置”的中国专利申请的优先权,以及2021年09月28日提交中国专利局、申请号为202111146393.3、申请名称为“一种WUR的同步方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种信号传输的方法和装置。
背景技术
终端设备可以通过一个单独的低功耗小电路,如唤醒接收机(wake up receiver,WUR),接收唤醒信号,且主接收机可以处于深度睡眠状态。当终端设备通过WUR检测到唤醒信号后,终端设备触发主接收机的唤醒。主接收机唤醒后,终端设备可以通过主接收机执行寻呼(paging)接收过程,如接收寻呼消息。因此,如何可以正确接收唤醒信号尤为重要。
发明内容
本申请提供一种信号传输的方法和装置,以期终端设备通过接收到的同步信号进行时间同步,进而可以正确接收唤醒信号,避免由于时间不同步,导致终端设备无法正确接收唤醒信号的发生。
第一方面,提供了一种信号传输的方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由终端设备执行为例进行说明。
该方法可以包括:终端设备确定同步信号的周期;终端设备根据同步信号的周期,使用第一频率资源周期性地接收同步信号,其中,第一频率资源还用于传输唤醒信号,唤醒信号用于指示需要接收寻呼的一个或多个终端设备的信息。
基于上述方案,终端设备周期性地接收同步信号,终端设备可以通过接收到的同步信号进行时间同步,进而可以正确接收唤醒信号。此外,在本申请中,终端设备周期性接收同步信号,可以降低同步信号的资源开销。具体来说,在蜂窝网中,有网络设备作为中央控制节点,因此各个终端设备可以与同一个网络设备进行时间同步。通过网络设备周期性发送同步信号,网络中的各个终端设备可以共享相同的同步信号,降低同步信号的资源开销。此外,相比于同步信号随路发送的方式,即同步信号后必定传输数据信息的方式,在本申请中,网络设备周期性在唤醒链路上发送同步信号,也就是说,同步信号不用随路发送,而是单独周期性发送。换句话说,在本申请中,同步信号信号后面不一定有数据信息。因此,网络设备不需要在发送数据信息时发送同步信号,可以根据同步信号的周期发送同步信号,进而可以使得终端设备在接收唤醒信号之前完成时间同步。此外,若同步信号随 路发送,则终端设备能否收到同步信号取决于当前网络设备是否发送了数据,终端设备从主链路切换到唤醒链路后获取同步的时延无法保障。通过本申请,终端设备从主链路切换到唤醒链路后,可以利用周期性发送的同步信号快速获取时间同步。
结合第一方面,在第一方面的某些实现方式中,同步信号的周期与唤醒信号的传输参数关联。
示例地,唤醒信号的传输参数包括时域资源长度或子载波间隔。
示例地,唤醒信号的传输参数是终端设备通过第二模块接收的。
示例地,终端设备接收来自网络设备的系统信息,系统信息包括唤醒信号的传输参数。
基于上述方案,同步信号的周期与唤醒信号的传输参数关联,从而可以基于唤醒信号的传输参数确定相应的周期。
结合第一方面,在第一方面的某些实现方式中,唤醒信号的传输参数包括时域资源长度,时域资源长度包括第一时域资源长度和第二时域资源长度,同步信号的第一周期与第一时域资源长度关联,同步信号的第二周期与第二时域资源长度关联,第一时域资源长度小于第二时域资源长度,第一周期小于第二周期。
基于上述方案,唤醒信号的时域资源长度越长,周期T可以越大。终端设备在使用一个同步信号完成同步后,在接收下一个同步信号之前,不再进行同步。由于终端设备接收机的本地时钟精度有限,在两个同步信号之间,终端设备与网络侧之间的时间偏移会越来越大。若唤醒信号采用某种调制方式(如OOK)调制,唤醒信号的解调性能受到时域资源长度(如符号长度)的影响,时域资源长度越长,对残余时偏容忍度越大。因此在时间偏移变化速率一定的情况下,时域资源长度越长,“不重新进行时间也能保证接收性能”的时间就越长,相应的同步信号的周期就可以设置越大。
结合第一方面,在第一方面的某些实现方式中,唤醒信号的传输参数包括子载波间隔,子载波间隔包括第一子载波间隔和第二子载波间隔,同步信号的第一周期与第一子载波间隔关联,同步信号的第二周期与第二子载波间隔关联,第一子载波间隔大于第二子载波间隔,第一周期小于第二周期。
基于上述方案,唤醒信号的子载波间隔越小,周期T可以越大。
结合第一方面,在第一方面的某些实现方式中,同步信号的周期是网络设备配置的,或者,同步信号的周期是标准预定义的。
基于上述方案,若同步信号的周期由网络设备配置,则网络设备可以灵活选择合适的周期T,从而控制同步信号的资源开销。若同步信号的周期是预定义(如标准预定义)的,则网络设备或终端设备可以基于预定义(如标准预定义)确定同步信号的周期,减少了网络设备通知同步信号的周期带来的信令开销。
结合第一方面,在第一方面的某些实现方式中,若同步信号的周期是网络设备配置,则方法还包括:终端设备接收第一配置信息,第一配置信息用于配置同步信号的周期。
基于上述方案,同步信号的周期由网络设备配置,则网络设备可以向终端设备发送该同步信号的周期,进而终端设备可以获知同步信号的周期,根据同步信号的周期周期性接收同步信号。
结合第一方面,在第一方面的某些实现方式中,方法还包括:终端设备接收第二配置信息,第二配置信息用于配置同步信号的图样pattern;终端设备根据同步信号的周期,使 用第一频率资源周期性地接收同步信号,包括:终端设备根据同步信号的周期和同步信号的pattern,使用第一频率资源接收同步信号。
基于上述方案,可以提高同步信号的周期的灵活度。举例来说,若同步信号的周期为标准预定义的,一旦传输参数确定,同步信号的周期就随之确定,这可能会给网络部署第一链路造成限制。通过配置同步信号的pattern,网络设备可以灵活配置同步信号的实际发送周期,提高了灵活度。
结合第一方面,在第一方面的某些实现方式中,方法还包括:终端设备使用第一频率资源在第一时域位置接收第一信号和/或发送第二信号,同步信号的pattern表征的发送同步信号的时域位置不包括第一时域位置。
示例地,第一信号包括以下一项或多项:同步信号块SSB、物理下行控制信道PDCCH、物理下行共享信道PDSCH、信道状态信息参考信号CSI-RS、相位跟踪参考信号PT-RS、定位参考信号PRS、解调参考信号DMRS。
示例地,第二信号包括以下一项或多项:解调参考信号DMRS、物理上行共享信道PUSCH、物理上行控制信道PUCCH、探测参考信号SRS。
示例地,第一信号的调制方式为OFDM调制或DFT-s-OFDM调制。
示例地,第二信号的调制方式为OFDM调制或DFT-s-OFDM调制。
基于上述方案,若终端设备在第一链路(第一链路对应的频率包括第一频率资源)上接收唤醒信号和同步信号,则可以降低第一链路的资源占比,可以令第一链路的信号(如唤醒信号和同步信号)与其他信号(如第一信号和/或第二信号)时分复用(time-division multiplexing,TDM),即相同的频率位置上,一段时间接收第一链路的信号,另一段时间发送接收信号(如第一信号)。
结合第一方面,在第一方面的某些实现方式中,终端设备包括第一模块和第二模块,终端设备通过第一模块接收同步信号和唤醒信号,终端设备通过第二模块接收第一信号和/或发送第二信号。
基于上述方案,终端设备可通过第一模块接收同步信号和唤醒信号,通过第二模块接收和/或发送其他信号,从而有利于同步信号和唤醒信号,与现有信号(如第一信号或第二信号)的符号边界对齐,可以降低干扰水平。
结合第一方面,在第一方面的某些实现方式中,终端设备根据同步信号的周期,使用第一频率资源周期性地接收同步信号,包括:终端设备根据同步信号的周期,使用第一频率资源,在第一时刻接收同步信号,同步信号用于指示第一时段内唤醒信号的数据率,第一时段位于第一时刻之后。
基于上述方案,通过同步信号获知唤醒信号的数据率。
结合第一方面,在第一方面的某些实现方式中,同步信号的长度,用于指示第一时段内唤醒信号的数据率。
基于上述方案,同步信号的长度可与唤醒信号的数据率关联,终端设备通过同步信号的长度可获知第一时段内唤醒信号的数据率。因此,终端设备可以盲检同步信号的长度,从而判断后续唤醒信号的数据率,减少了网络设备通知唤醒信号的数据率带来的信令开销。
结合第一方面,在第一方面的某些实现方式中,同步信号包括第一指示信息,第一指 示信息用于指示第一时段内唤醒信号的数据率。
基于上述方案,同步信号中,除了用于同步功能的序列外,还可以包括第一指示信息,该第一指示信息用于指示后面一段时间内(如第一时段内)的唤醒信号的数据率。在该方案下,可以设计一种长度的同步信号。
结合第一方面,在第一方面的某些实现方式中,同步信号的长度包括第一同步信号的长度和第二同步信号的长度,第一同步信号的长度用于指示第一时段内唤醒信号的数据率为第一数据率,第二同步信号的长度用于指示第一时段内唤醒信号的数据率为第二数据率,第一同步信号的长度小于第二同步信号的长度,第一数据率高于第二数据率。
基于上述方案,不同长度的同步信号可对应不同的数据率。例如,同步信号的长度越长,其指示的唤醒信号的数据率越高。
结合第一方面,在第一方面的某些实现方式中,第一时段位于第一时刻之后,且位于第二时刻之前,第二时刻为终端设备在第一时刻之后接收的第i个同步信号的时刻,i为大于1或等于1的整数。
示例地,i为1。
结合第一方面,在第一方面的某些实现方式中,方法还包括:终端设备使用第一频率资源接收唤醒信号,唤醒信号包括第二指示信息,其中,第二指示信息用于指示唤醒信号的数据率。
基于上述方案,通过唤醒信号获知唤醒信号的数据率。
结合第一方面,在第一方面的某些实现方式中,第二指示信息具体用于指示唤醒信号中除第二指示信息外的其他信息的数据率,第二指示信息的数据率为网络设备配置的或者预定义的。
示例地,第二指示信息位于一个唤醒信号的开头(如起始位置,又如寻呼信息前面的位置)。
结合第一方面,在第一方面的某些实现方式中,同步信号的长度包括第一同步信号的长度和第二同步信号的长度,第一同步信号的长度小于第二同步信号的长度,第一同步信号的周期小于第二同步信号的周期。
基于上述方案,同步信号可以包括多个不同长度的信号,如第一同步信号和第二同步信号,从而不仅可以根据实际情况,选择合适长度的同步信号进行发送,还可以用于不同的信道状态,服务处于不同信道状态下的终端设备。
结合第一方面,在第一方面的某些实现方式中,第二同步信号的周期为第一同步信号的周期的整数倍,终端设备接收第二同步信号和终端设备接收第一同步信号之间的时间间隔,与第一同步信号的周期相同。
结合第一方面,在第一方面的某些实现方式中,同步信号的波形与唤醒信号的波形相同,和/或,同步信号的调制方式与唤醒信号的调制方式相同。
结合第一方面,在第一方面的某些实现方式中,同步信号的调制方式与唤醒信号的调制方式为开关键控OOK,和/或,同步信号的波形和/或唤醒信号的波形为OOK。
结合第一方面,在第一方面的某些实现方式中,方法还包括:终端设备使用第一频率资源接收来自网络设备的唤醒信号,唤醒信号用于指示的需要接收寻呼的一个或多个终端设备的信息包括终端设备;终端设备接收来自网络设备的第一信息和/或发起随机接入, 其中,第一信息包括以下一项或多项信息:寻呼下行控制信息DCI,寻呼消息paging message,寻呼提前指示PEI。
示例地,终端设备发起随机接入,包括:终端设备向网络设备发送随机接入前导序列。
结合第一方面,在第一方面的某些实现方式中,终端设备接收来自网络设备的第一信息和/或发起随机接入,包括:终端设备使用第二频率资源,接收来自网络设备的第一信息和/或发起随机接入。
结合第一方面,在第一方面的某些实现方式中,终端设备包括第一模块和第二模块,终端设备通过第一模块接收同步信号和唤醒信号,终端设备通过第二模块接收第一信息和/或发起随机接入。
结合第一方面,在第一方面的某些实现方式中,终端设备通过第一链路,接收同步信号和唤醒信号,第一链路对应的频率资源包括第一频率资源。
结合第一方面,在第一方面的某些实现方式中,终端设备通过第二链路,接收来自网络设备的第一信息和/或发起随机接入,第二链路对应的频率资源包括第二频率资源。
结合第一方面,在第一方面的某些实现方式中,终端设备处于第一状态(或采用第一模式),接收同步信号和唤醒信号。
结合第一方面,在第一方面的某些实现方式中,终端设备处于第二状态(或采用第二模式),接收第一信息和/或发起随机接入。
第二方面,提供了一种信号传输的方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由终端设备执行为例进行说明。
该方法可以包括:网络设备确定同步信号的周期;网络设备根据同步信号的周期,使用第一频率资源周期性地发送同步信号,其中,第一频率资源还用于传输唤醒信号,唤醒信号用于指示需要接收寻呼的一个或多个终端设备的信息。
基于上述方案,网络设备周期性地发送同步信号,网络内的终端设备可以通过接收到的同步信号进行时间同步,进而可以正确接收唤醒信号。此外,在本申请中,终端设备周期性接收同步信号,可以降低同步信号的资源开销。
结合第二方面,在第二方面的某些实现方式中,同步信号的周期与唤醒信号的传输参数关联。
示例地,唤醒信号的传输参数包括时域资源长度或子载波间隔。
示例地,唤醒信号的传输参数是终端设备通过第二模块接收的。
结合第二方面,在第二方面的某些实现方式中,方法还包括:网络设备广播系统信息,系统信息包括唤醒信号的传输参数。
基于上述方案,网络设备可以广播唤醒信号的传输参数,从而网络内的各终端设备可以接收到该唤醒信号的传输参数。
结合第二方面,在第二方面的某些实现方式中,唤醒信号的传输参数包括时域资源长度,时域资源长度包括第一时域资源长度和第二时域资源长度,同步信号的第一周期与第一时域资源长度关联,同步信号的第二周期与第二时域资源长度关联,第一时域资源长度小于第二时域资源长度,第一周期小于第二周期。
结合第二方面,在第二方面的某些实现方式中,唤醒信号的传输参数包括子载波间隔, 子载波间隔包括第一子载波间隔和第二子载波间隔,同步信号的第一周期与第一子载波间隔关联,同步信号的第二周期与第二子载波间隔关联,第一子载波间隔大于第二子载波间隔,第一周期小于第二周期。
结合第二方面,在第二方面的某些实现方式中,同步信号的周期是网络设备配置的,或者,同步信号的周期是标准预定义的。
结合第二方面,在第二方面的某些实现方式中,若同步信号的周期是网络设备配置,则方法还包括:网络设备发送第一配置信息,第一配置信息用于配置同步信号的周期。
结合第二方面,在第二方面的某些实现方式中,方法还包括:网络设备发送第二配置信息,第二配置信息用于配置同步信号的图样pattern;网络设备根据同步信号的周期,使用第一频率资源周期性地发送同步信号,包括:网络设备根据同步信号的周期和同步信号的pattern,使用第一频率资源发送同步信号。
结合第二方面,在第二方面的某些实现方式中,方法还包括:网络设备使用第一频率资源在第一时域位置发送第一信号和/或接收第二信号,同步信号的pattern表征的发送同步信号的时域位置不包括第一时域位置。
示例地,第一信号包括以下一项或多项:同步信号块SSB、物理下行控制信道PDCCH、物理下行共享信道PDSCH、信道状态信息参考信号CSI-RS、相位跟踪参考信号PT-RS、定位参考信号PRS、解调参考信号DMRS。
示例地,第二信号包括以下一项或多项:解调参考信号DMRS、物理上行共享信道PUSCH、物理上行控制信道PUCCH、探测参考信号SRS。
示例地,第一信号的调制方式为OFDM调制或DFT-s-OFDM调制。
示例地,第二信号的调制方式为OFDM调制或DFT-s-OFDM调制。
基于上述方案,若网络设备在第一链路(第一链路对应的频率包括第一频率资源)上发送唤醒信号和同步信号,则可以降低第一链路的资源占比,可以令第一链路的信号(如唤醒信号和同步信号)与其他信号(如第一信号和/或第二信号)时分复用,即相同的频率位置上,一段时间发送第一链路的信号,另一段时间发送其他信号(如第一信号)。
结合第二方面,在第二方面的某些实现方式中,网络设备包括第一模块和第二模块,网络设备通过第一模块发送同步信号和唤醒信号,网络设备通过第二模块发送第一信号和/或接收第二信号。
基于上述方案,网络设备可通过第一模块发送同步信号和唤醒信号,通过第二模块接收和/或发送其他信号,从而有利于同步信号和唤醒信号,与现有信号(如第一信号或第二信号)的符号边界对齐,可以降低干扰水平。
结合第二方面,在第二方面的某些实现方式中,网络设备根据同步信号的周期,使用第一频率资源周期性地发送同步信号,包括:网络设备根据同步信号的周期,使用第一频率资源,在第一时刻发送同步信号,同步信号用于指示第一时段内唤醒信号的数据率,第一时段位于第一时刻之后。
基于上述方案,网络设备通过同步信号向终端设备指示某一时段内(如第一时段内)唤醒信号的数据率。
结合第二方面,在第二方面的某些实现方式中,同步信号的长度,用于指示第一时段内唤醒信号的数据率。
基于上述方案,同步信号的长度可与唤醒信号的数据率关联,网络设备通过同步信号的长度可指示后面一段时间内(如记为第一时段内)唤醒信号的数据率,从而终端设备通过同步信号的长度可获知第一时段内唤醒信号的数据率。因此,终端设备可以盲检同步信号的长度,从而判断后续唤醒信号的数据率,减少了网络设备通知唤醒信号的数据率带来的信令开销。
结合第二方面,在第二方面的某些实现方式中,同步信号包括第一指示信息,第一指示信息用于指示第一时段内唤醒信号的数据率。
结合第二方面,在第二方面的某些实现方式中,同步信号的长度包括第一同步信号的长度和第二同步信号的长度,第一同步信号的长度用于指示第一时段内唤醒信号的数据率为第一数据率,第二同步信号的长度用于指示第一时段内唤醒信号的数据率为第二数据率,第一同步信号的长度小于第二同步信号的长度,第一数据率高于第二数据率。
结合第二方面,在第二方面的某些实现方式中,第一时段位于第一时刻之后,且位于第二时刻之前,第二时刻为网络设备在第一时刻之后发送的第i个同步信号的时刻,i为大于1或等于1的整数。
示例地,i为1。
结合第二方面,在第二方面的某些实现方式中,方法还包括:网络设备使用第一频率资源发送唤醒信号,唤醒信号包括第二指示信息,其中,第二指示信息用于指示唤醒信号的数据率。
结合第二方面,在第二方面的某些实现方式中,第二指示信息具体用于指示唤醒信号中除第二指示信息外的其他信息的数据率,第二指示信息的数据率为网络设备配置的或者预定义的。
示例地,第二指示信息位于一个唤醒信号的开头(如起始位置,又如寻呼信息前面的位置)。
结合第二方面,在第二方面的某些实现方式中,同步信号的长度包括第一同步信号的长度和第二同步信号的长度,第一同步信号的长度小于第二同步信号的长度,第一同步信号的周期小于第二同步信号的周期。
结合第二方面,在第二方面的某些实现方式中,第二同步信号的周期为第一同步信号的周期的整数倍,网络设备发送第二同步信号和网络设备发送第一同步信号之间的时间间隔,与第一同步信号的周期相同。
结合第二方面,在第二方面的某些实现方式中,同步信号的波形与唤醒信号的波形相同,和/或,同步信号的调制方式与唤醒信号的调制方式相同。
结合第二方面,在第二方面的某些实现方式中,同步信号的调制方式与唤醒信号的调制方式为开关键控OOK,和/或,同步信号的波形和/或唤醒信号的波形为OOK。
结合第二方面,在第二方面的某些实现方式中,方法还包括:网络设备使用第一频率资源发送唤醒信号,唤醒信号用于指示的需要接收寻呼的一个或多个终端设备的信息,一个或多个终端设备包括第一终端设备;网络设备向第一终端设备发送第一信息和/或接收来自第一终端设备的随机接入前导序列,其中,第一信息包括以下一项或多项信息:寻呼下行控制信息DCI,寻呼消息paging message,寻呼提前指示PEI。
结合第二方面,在第二方面的某些实现方式中,网络设备向第一终端设备发送第一信 息和/或接收来自第一终端设备的随机接入前导序列,包括:网络设备使用第二频率资源,向第一终端设备发送第一信息和/或接收来自第一终端设备的随机接入前导序列。
结合第二方面,在第二方面的某些实现方式中,网络设备包括第一模块和第二模块,网络设备通过第一模块发送同步信号和唤醒信号,网络设备通过第二模块向第一终端设备发送第一信息和/或接收来自第一终端设备的随机接入前导序列。
第二方面及各个可能的设计的有益效果可以参考第一方面相关的描述,在此不予赘述。
第三方面,提供一种通信的装置,该装置用于执行上述第一方面或第二方面任一种可能实现方式中的方法。具体地,该装置可以包括用于执行第一方面或第二方面任一种可能实现方式中的方法的单元和/或模块,如处理单元和/或通信单元。
在一种实现方式中,该装置为通信设备(如终端设备,又如网络设备)。当该装置为通信设备时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为用于通信设备(如终端设备,又如网络设备)的芯片、芯片系统或电路。当该装置为用于通信设备的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第四方面,提供一种通信的装置,该装置包括:至少一个处理器,用于执行存储器存储的计算机程序或指令,以执行上述第一方面或第二方面任一种可能实现方式中的方法。可选地,该装置还包括存储器,用于存储的计算机程序或指令。可选地,该装置还包括通信接口,处理器通过通信接口读取存储器存储的计算机程序或指令。
在一种实现方式中,该装置为通信设备(如终端设备,又如网络设备)。
在另一种实现方式中,该装置为用于通信设备(如终端设备,又如网络设备)的芯片、芯片系统或电路。
第五方面,本申请提供一种处理器,用于执行上述各方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第六方面,提供一种计算机可读存储介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面或第二方面任一种可能实现方式中的方法。
第七方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面或第二方面任一种可能实现方式中的方法。
第八方面,提供一种通信系统,包括前述的终端设备和网络设备。
附图说明
图1示出了适用于本申请实施例的无线通信系统100的示意图。
图2示出了终端设备采用唤醒电路接收唤醒信号的示意图。
图3示出了唤醒信号采用OOK调制时的波形示意图。
图4示出了信号经过信道后的波形示意图。
图5示出了发送同步信号的示意图。
图6示出了本申请实施例提供的信号传输的方法600的示意图。
图7示出了适用于本申请实施例的同步信号传输的示意图。
图8示出了适用于本申请实施例的同步信号和NR信号传输的示意图。
图9示出了适用于方式1中示例1的示意图。
图10示出了适用于方式1中示例2的示意图。
图11示出了适用于方式2的示意图。
图12示出了第一同步信号和第二同步信号周期性发送的一示意图。
图13示出了第一同步信号和第二同步信号周期性发送的另一示意图。
图14示出了本申请实施例提供的信号传输的方法1400的示意图。
图15是本申请实施例提供的一种通信装置的示意性框图。
图16是本申请实施例提供的另一种通信装置的示意性框图。
图17是本申请实施例提供的又一种通信装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请提供的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)或新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。本申请提供的技术方案还可以应用于设备到设备(device to device,D2D)通信,车到万物(vehicle-to-everything,V2X)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及物联网(internet of things,IoT)通信系统或者其他通信系统。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网 络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统或芯片,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站、辅站、多制式无线(motor slide retainer,MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(AP)、传输节点、收发节点、基带单元(BBU)、射频拉远单元(remote radio unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及D2D、V2X、M2M通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例所提及的网络设备可以为包括CU、或DU、或包括CU和DU的设备、或者控制面CU节点(控制面的中央单元(central unit-control plane,CU-CP))和用户面CU节点(用户面的中央单元(central unit-user plane,CU-UP))以及DU节点的设备。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
首先结合图1简单介绍适用于本申请的网络架构,如下。
作为示例性说明,参见图1,图1示出了适用于本申请实施例的无线通信系统100的 一示意图。如图1所示,该无线通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110,该无线通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。网络设备和终端设备均可配置多个天线,网络设备与终端设备可使用多天线技术通信。
其中,网络设备和终端设备通信时,网络设备可以管理一个或多个小区,一个小区中可以有整数个终端设备。可选地,网络设备110和终端设备120组成一个单小区通信系统,不失一般性,将小区记为小区#1。网络设备110可以是小区#1中的网络设备,或者,网络设备110可以为小区#1中的终端设备(例如终端设备120)服务。
需要说明的是,小区可以理解为网络设备的无线信号覆盖范围内的区域。
应理解,图1仅为便于理解而示例的简化示意图,该无线通信系统100中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
终端设备在空闲(idle)态或者非活动(inactive)态下的时候,可以周期性地接收寻呼(paging)。作为示例,终端设备执行接收寻呼的流程包括:终端设备在idle态或者inactive态下的时候,根据自己的标识(identifier,ID)(UE ID),计算得到一个寻呼帧(paging frame,PF)以及一个PF中的寻呼时机(paging occasion,PO)的位置,在PO内接收寻呼(paging)。应理解,关于执行接收寻呼的流程仅是示例性说明,例如可以参考相关标准,本申请不予限制。
一般情况下,无论终端设备在idle态或者inactive态执行接收寻呼的流程时,还是终端设备在连接态进行数据接收时,都是用相同的接收模块(或者接收机,或者接收电路)。在本申请中,为便于描述,将完成这些功能(或执行相关步骤)的模块称为主电路。可以理解,主电路仅是为区分做的命名,其具体命名不对本申请的保护范围造成限定,例如不失一般性,主电路也可以描述为第二电路。下文统一描述为主电路。
终端设备使用主电路接收的信号可以被称为在链路(为区分,记为第二链路)上传输,其中,第二链路表征了终端设备和网络设备间的一种连接关系,是一个逻辑概念,而非一个物理实体。第二链路也可以称为主链路,下文为便于说明,统一描述为第二链路。
当终端设备采用主电路接收寻呼时,功耗较高。例如,终端设备在接收寻呼时,首先要使用主电路的接收模块接收下行信号,然后终端设备还要对物理下行控制信道(physical downlink control channel,PDCCH)进行盲检,对接收到的物理下行共享信道(physical downlink shared channel,PDSCH)进行解码等,这些都会带来较大的功耗。此外,由于主电路较为复杂,其运行时的基准功耗(或静态功耗)比较高。
为了降低终端设备接收寻呼带来的功耗,一种可能的方法是,终端设备可以使用一个单独的低功耗小电路接收唤醒信号(wake up signal/radio,WUS/WUR)。其中,唤醒信号用于指示寻呼相关的信息,该寻呼相关的信息例如可以包括:一个终端设备或者一组终端设备是否被寻呼。该低功耗小电路可以使用一个结构简单的单独的小电路或芯片实现,其功耗较低。
应理解,该低功耗小电路例如可以称为唤醒接收机(wake up receiver,WUR),或者也可以称为唤醒电路,或者也可以称为低功耗电路,等等,关于其命名,本申请不予限制。在本申请中,为便于描述,将该低功耗小电路称为唤醒电路。可以理解,唤醒电路仅是为区分做的命名,其具体命名不对本申请的保护范围造成限定,例如不失一般性,唤醒电路 也可以描述为第一电路。下文为便于说明,统一描述为唤醒电路。
同样,终端设备使用唤醒电路接收的信号可以被称为在链路(为区分,记为第一链路)上传输,其中,第一链路表征了终端设备和网络设备间的一种连接关系,是一个逻辑概念,而非一个物理实体。还应理解,唤醒信号仅是一种示例的命名,关于其命名,本申请不予限制。
还应理解,在本申请中,主要用唤醒信号表示与寻呼相关的信号,并不限定第一链路上传输的信号均为唤醒信号。如本申请提出的,同步信号也可以通过第一链路传输,即第一链路上传输的信号可以包括同步信号和唤醒信号,其中,同步信号可用于终端设备基于同步信号进行时间同步,唤醒信号可用于指示与寻呼相关的信息。
作为示例,图2示出了终端设备通过唤醒电路接收唤醒信号的示意图。
如图2所示,通过唤醒电路检测唤醒信号,唤醒信号可携带寻呼相关的指示信息。
当终端设备使用唤醒电路接收信号时,若终端设备未检测到与自己关联的唤醒信号,则继续使用唤醒电路接收信号,主电路可处于关闭状态(或者睡眠状态);若终端设备检测到与自己关联的唤醒信号,则触发主电路的唤醒,即令主电路处于/切换为开启状态(或者称为工作状态,或者称为活跃状态)。主电路开启后,终端设备可以执行接收寻呼过程,例如,终端设备接收寻呼PDCCH,在自己对应的PO检测到寻呼PDCCH后,接收寻呼PDSCH。
应理解,图2主要是以唤醒信号携带寻呼相关的部分信息(例如为被寻呼终端设备的部分UE ID,或者为被寻呼终端设备的设备组ID等)为例进行的示例性说明,对此不予限制。例如,唤醒信号也可携带寻呼相关的全部信息(例如为被寻呼终端设备的完整UE ID),在该情况下,主电路开启后,可以发起随机接入等。可以理解,对此不予限制。若唤醒信号携带寻呼相关的全部信息,主电路开启后,也可接收与寻呼相关的信息。
作为示例,为了保证功耗收益,唤醒信号可采用开关键控(on off key,OOK)调制,对应的唤醒电路可采用包络检测的方法接收唤醒信号。作为示例,图3示出了唤醒信号采用OOK调制时的波形示意图。
当唤醒信号采用OOK调制时,每个比特(即编码后的比特)可对应一个符号(symbol)。等价的,一个符号也可以被称为一个码片(chip),也可以被称为其他名称,这里不做限制。当比特为1时,该符号长度内有信号发出(即该符号长度内信号发射功率不为0)。当比特为0时,该符号长度内无信号发出(即该符号长度内信号发射功率为0)。如图3所示,图3所示的波形可代表1010四个比特。
信号经过信道后,由于信道状态的影响等,可能会发生畸变,如图3所示的波形在接收端可能变成如图4所示的波形。作为示例,图4示出了信号经过信道后的波形示意图。为了判断信号对应0还是对应1,终端设备可以将接收到的信号电平值与一个门限进行比较(门限如图4中的虚线所示)。举例来说,若终端设备接收到的信号电平值大于该门限,则表示该信号对应1;若终端设备接收到的信号电平值小于该门限,则表示该信号对应0。如图4所示,若终端设备对接收到的信号电平值与门限进行比较的时间位置位于t2范围内,则判断是准确的;若终端设备对接收到的信号电平值与门限进行比较的时间位置位于t1或t3范围内,则判断是不准确的,即会把1误判断成0。
因此,当终端设备使用唤醒电路接收唤醒信号时,为了正确接收唤醒信号,需要获取 第一链路的时间同步。即终端设备可以获取一个符号的边界位置,并根据边界位置选择判断信号对应0还是对应1的时间位置。例如,终端设备可以使用符号中间位置的电平值判断信号对应0还是对应1。
此外,由于终端设备的本地时钟精度有限,因此可能会出现时间漂移。若第一链路不提供同步功能,终端设备在第一链路上工作一段时间后,很可能会出现终端设备与网络设备的时间不同步的问题(即终端设备和网络设备认为的符号边界位置不一致),从而影响信号接收。
一种可能的方式,可以通过同步信号进行时间同步。作为示例,图5示出了发送同步信号的示意图。如图5所示,同步信号(即图5中的WUR-Sync)与数据部分(即图5中的WUR-Data)(如与寻呼相关的信息)可以随路发送,也就是说同步信号后紧接着就是数据部分。可以理解,图5仅是示例性说明,关于唤醒信号具体的帧结构,本申请不予限制。
发送端发送一个唤醒信号,就会发送一个随路的同步信号。采用随路发送同步信号的方式,可以让每次数据发送都有可以参考的同步信号,有利于数据的接收。但是对于蜂窝网络来说,其包括如下特点:
1)蜂窝网络具有中央控制节点,小区中的所有终端为了正确接收网络设备发出的信号,都需要与网络设备同步,因此相比每次发送数据信号时随路发送同步信号,蜂窝网络中更适合网络设备广播单独的同步信号,以便小区中的多个终端设备在无数据传输时也可以获取时间同步;
2)蜂窝网络中,网络设备(例如基站)可以控制和调度小区中的空口资源,因此可以更好的控制同步信号发送的位置,避免同步信号与其他信号的冲突;
3)蜂窝网络中,为了提升频谱效率,需要尽可能降低同步信号的资源开销,随路发送的同步信号具有不确定性,即有数据传输的时候才会发送,否则不会发送,这样为了保证时间同步的精度,随路发送的同步信号在设计上往往存在冗余,导致随路发送的同步信号长度较长,从而增大同步信号的资源开销。
由于上述原因,随路发送同步信号的方式不适用于蜂窝网络。
本申请提供一种方案,通过网络设备周期性地发送同步信号,不仅可以获取第一链路的时间同步,还可以令各个终端设备共享相同的同步信号,降低同步信号的资源开销。此外,网络设备周期性地发送同步信号,换句话说,同步信号不用随路发送,这样终端设备从第二链路切换到第一链路后,可以利用周期性发送的同步信号快速获取时间同步。
可以理解,本文中,“使用第一链路/电路接收信号”与“在第一链路上工作”、“处于第一状态(state),或处于唤醒状态,或处于WUR state”、“采用第一模式(mode),或采用唤醒模式,或采用WUR mode”,可以交替使用,在不强调其区别时,其所要表达的含义是一致的。“使用第二链路/电路接收信号”与“在第二链路上工作”、“处于第二状态”、“采用第二模式”,也可以交替使用,在不强调其区别时,其所要表达的含义是一致的。
还可以理解,本文中,“终端设备发起随机接入”可以包括:“终端设备发送随机接入前导序列”,即下文中“终端设备发起随机接入”可替换为“终端设备发送随机接入前导序列”。可以理解的是,任何可以实现终端设备发起随机接入的方式,都适用于本申请。
还可以理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
下面将结合附图详细说明本申请提供的各个实施例。本申请提供的实施例可以应用于上述图1所示的无线通信系统中,不予限制。
图6是本申请实施例提供的一种信号传输的方法600的示意图。方法600可以包括如下步骤。
S610,终端设备根据同步信号的周期,使用第一频率资源周期性地接收同步信号,其中,第一频率资源还用于传输唤醒信号,唤醒信号用于指示需要接收寻呼的一个或多个终端设备的信息。
相应地,网络设备周期性地发送同步信号。例如,网络设备确定同步信号的周期,并根据同步信号的周期,周期性地发送同步信号。
在本申请中,同步信号可以周期性地传输,即同步信号可以不需要随路发送,也就是说,同步信号后面不需要紧跟着唤醒信号。作为示例,图7示出了适用于本申请实施例的同步信号传输的示意图。如图7所示,网络设备周期性地发送同步信号,同步信号和唤醒信号可以分别单独发送,即同步信号不用随路发送。
可选地,在步骤S610之前,方法600还包括步骤601。
S601,终端设备确定同步信号的周期。
同步信号的周期,或者称为同步信号的发送周期,表示发送同步信号的周期。
通过本申请,网络设备向终端设备发送同步信号,终端设备可以通过接收到的同步信号进行时间同步,进而可以正确接收唤醒信号。此外,在本申请中,网络设备周期性发送同步信号,终端设备周期性接收同步信号,可以降低同步信号的资源开销。具体来说,在蜂窝网中,有网络设备作为中央控制节点,因此各个终端设备可以与同一个网络设备进行时间同步。通过网络设备周期性发送同步信号,网络中的各个终端设备可以共享相同的同步信号,降低同步信号的资源开销。此外,相比于同步信号随路发送的方式,即同步信号后必定传输数据信息的方式,在本申请中,网络设备周期性在唤醒链路上发送同步信号,也就是说,同步信号不用随路发送,而是单独周期性发送。换句话说,在本申请中,同步信号信号后面不一定有数据信息。因此,网络设备不需要在发送数据信息时发送同步信号,可以根据同步信号的周期发送同步信号,进而可以使得终端设备在接收唤醒信号之前完成时间同步。此外,若同步信号随路发送,则终端设备能否收到同步信号取决于当前网络设备是否发送了数据,终端设备从主链路切换到唤醒链路后获取同步的时延无法保障。通过本申请,终端设备从主链路切换到唤醒链路后,可以利用周期性发送的同步信号快速获取时间同步。
其中,同步信号,表示能够用于终端设备进行同步的信号。也就是说,终端设备基于该同步信号可进行时间同步。
一种可能的方式,同步信号可基于有自相关特性的序列(如有良好自相关特性的序列)生成,从而可以提高同步的准确性。作为示例,同步信号可以基于以下任一种序列生成:M序列(即最大长度序列(Maximum length sequence))、伪随机(Pseudo-Noise,PN)序列、GOLD序列等。
应理解,上文列举的同步信号仅为示例,不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他信号以实现相同或相似功能的可能。
可选地,同步信号的调制方式为幅移键控(amplitude shift key,ASK),示例性的,可以为开关键控(on off key,OOK)。通过OOK的调制方式,可以尽可能地保证功耗收益。
可选地,同步信号的波形为OOK。
其中,唤醒信号,可用于指示与寻呼相关的信息。与寻呼相关的信息,例如可以用于终端设备确定是否要执行寻呼接收的流程,又如可以用于终端设备确定是否要发起随机接入。下文为简洁,将“与寻呼相关的信息”简称为寻呼信息。
作为示例,寻呼信息包括:需要接收寻呼的一个或多个终端设备的信息(如UE ID),也就是说,唤醒信号可用于指示需要接收寻呼的一个或多个终端设备的信息(如UE ID)。其中,该一个或多个终端设备,也可以为终端设备组(UE group)的形式。关于划分终端设备组的方式不予限制,如可以按区域划分终端设备组,又如可以按是否共享唤醒信号划分终端设备组,又如可以按终端设备信息的特征(如UE ID的特征)划分终端设备组。此外,若寻呼信息包括需要接收寻呼的某个终端设备的信息(或者某个终端设备组的信息),则该寻呼信息也可以称为该终端设备的寻呼信息(或者该终端设备组的寻呼信息,或者称为该寻呼组的寻呼信息)。
可以理解,上述关于寻呼信息包括的内容为示例性说明,本申请不限于此。
可选地,唤醒信号的调制方式为ASK,示例性的,可以为OOK。通过OOK的调制方式,可以尽可能地保证功耗收益。
可选地,唤醒信号的波形为OOK
其中,第一频率资源,可以表示用于终端设备接收唤醒信号和同步信号的频率资源,即用于网络设备发送唤醒信号和同步信号的频率资源。
唤醒信号和同步信号传输所使用的频率资源可以相同,如均为第一频率资源。可选地,同步信号的波形与唤醒信号的波形相同,如均为OOK。可选地,同步信号的调制方式与唤醒信号的调制方式相同,如均为OOK。
作为第一种可能的情形,终端设备包括第一模块和第二模块。示例地,第一模块的功耗可以小于第二模块的功耗。第一模块,例如可以为图2中的唤醒电路,或者也可以为该唤醒电路的接收模块;第二模块,例如可以为图2中的主电路,或者也可以为该主电路的接收模块。在本申请中,第一模块可以替换为唤醒电路(或者第一电路),第二模块可以替换为主电路(或者第二电路)。下文为统一,均用第一模块和第二模块描述。
在该情形下,终端设备可通过(或者使用)第一模块接收同步信号和唤醒信号,通过(或者使用)第二模块接收和/或发送其他信号,或者通过第二模块发起随机接入等等。
例如,终端设备可通过第二模块接收第一信号,第一信号是区别于唤醒信号和同步信号的信号。第一信号如可以表示Legacy NR信号中的各种下行信号或信道。作为示例,第一信号包括以下任一项或多项:同步信号块(synchronization signal block,SSB)、PDCCH、PDSCH、信道状态信息参考信号(channel state information reference signal,CSI-RS)、相位跟踪参考信号(phase tracking reference signal,PTRS)、定位参考信号(positioning reference signal,PRS)、解调参考信号(DoModulation reference signal,DMRS)。
再例如,终端设备可通过第二模块发送第二信号,第二信号如可以表示Legacy NR信号中的各种上行信号或信道。作为示例,第二信号包括以下任一项或多项:DMRS、物理上行控制信道(physical uplink control channel,PUCCH)、物理上行共享信道(physical uplink shared channel,PUSCH)、探测参考信号(sounding reference signal,SRS)。
再例如,终端设备可通过第二模块接收第一信息。举例来说,若终端设备通过第一模块接收到唤醒信号,并且该唤醒信号中包括与该终端设备相关的寻呼信息,则终端设备通过第二模块接收第一信息。第一信息可以包括以下一项或多项:寻呼提前指示(paging early indication,PEI),寻呼DCI(paging DCI),寻呼消息(paging message)。PEI可用于指示其关联的PO中是否有寻呼发送。
再例如,终端设备通过第二模块发起随机接入,如发送随机接入前导序列(preamble)。
可以理解,“终端设备使用第一频率资源周期性地接收同步信号”,也可以替换为,“终端设备使用第一模块周期性地接收同步信号”。
作为第二种可能的情形,终端设备可工作在第一链路上(或者终端设备可在第一链路上收发信号),也可工作上第二链路上(或者终端设备可在第二链路上收发信号)。也就是说,终端设备和网络设备可通过第一链路通信,也可通过第二链路通信。示例地,如前所述,第一链路可以表示终端设备通过如图2中的唤醒电路收发信号时所使用的链路,第二链路可以表示终端设备通过如图2中的主电路收发信号时所使用的链路。
在该情形下,终端设备在第一链路接收上同步信号和唤醒信号,在第二链路上接收和/或发送其他信号,或者在第二链路上发起随机接入等等。
例如,若终端设备和网络设备通过第一链路通信,则终端设备使用第一模块收发信号(如接收同步信号和唤醒信号);若终端设备和网络设备通过第二链路通信,则终端设备使用第二模块收发信号(如接收第一信号和/或发送第二信号)。
再例如,若终端设备和网络设备通过第一链路通信,则终端设备接收同步信号和唤醒信号;若终端设备和网络设备通过第二链路通信,则终端设备接收第一信号和/或发送第二信号。关于第一信号和第二信号可以参考前面描述,不再赘述。
再例如,若终端设备和网络设备通过第二链路通信,则终端设备接收第一信息。关于第一信息可以参考前面描述,不再赘述。
再例如,若终端设备和网络设备通过第二链路通信,则终端设备发起随机接入,如终端设备发送随机接入前导序列等等。
可以理解,“终端设备使用第一频率资源周期性地接收同步信号”,也可以替换为,“终端设备在第一链路上周期性地接收同步信号”,或者也可替换为,“终端设备使用唤醒电路周期性地接收同步信号”。
作为第三种可能的情形,终端设备可以处于第一状态(如处于WUR state)和第二状态。第一状态和第二状态,是用于描述终端设备的不同状态(如不同无线资源控制(radio resource control,RRC)态)。示例地,终端设备处于第一状态时的功耗可以小于终端设备处于第二状态时的功耗。第一状态,例如可以为idle态或inactive态,或者可以为WUR态;第二状态,例如可以为连接(connected)态。第一态(如WUR态)可对应终端设备工作在第一链路上或对应终端设备使用第一模块收发信号(如接收同步信号和唤醒信号)。
在该情形下,终端设备处于第一状态时接收同步信号和唤醒信号,处于第二状态时接 收和/或发送其他信号,或者处于第二状态时发起随机接入等等。
例如,若终端设备处于第一状态,则终端设备使用第一模块收发信号(如接收同步信号和唤醒信号)或工作在第一链路上;若终端设备处于第二状态,则终端设备使用第二模块收发信号(如接收第一信号和/或发送第二信号)或工作在第二链路上。
再例如,若终端设备处于第一状态,则终端设备接收同步信号和唤醒信号;若终端设备处于第二状态,则终端设备接收第一信号和/或发送第二信号。关于第一信号和第二信号可以参考前面描述,不再赘述。
再例如,若终端设备处于第二状态,则终端设备接收第一信息。关于第一信息可以参考前面描述,不再赘述。
再例如,若终端设备处于第二状态,则终端设备发起随机接入,如终端设备发送随机接入前导序列等等。
可以理解,“终端设备使用第一频率资源周期性地接收同步信号”,也可以替换为,“终端设备处于第一状态(如处于WUR state)时周期性地接收同步信号”。
作为第四种可能的情形,终端设备可以采用第一模式(如采用WUR mode)和第二模式。第一模式和第二模式,是用于描述终端设备采用不同模式传输信号。示例地,终端设备采用第一模式传输信号时的功耗,可以小于终端设备采用第二模式传输信号时的功耗。第一模式(如WUR模式)可对应终端设备工作在第一链路上或对应终端设备使用第一模块收发信号(如接收同步信号和唤醒信号)。
在该情形下,终端设备采用第一模式接收同步信号和唤醒信号,采用第二模式接收和/或发送其他信号,或者采用第二模式发起随机接入等等。
例如,若终端设备采用第一模式,则终端设备使用第一模块收发信号(如接收同步信号和唤醒信号)或工作在第一链路上;若终端设备采用第二模式,则终端设备使用第二模块收发信号(如接收第一信号和/或发送第二信号)或工作在第二链路上。
再例如,若终端设备采用第一模式,则终端设备接收同步信号和唤醒信号;若终端设备采用第二模式,则终端设备接收第一信号和/或发送第二信号。关于第一信号和第二信号可以参考前面描述,不再赘述。
再例如,若终端设备采用第二模式,则终端设备接收第一信息。关于第一信息可以参考前面描述,不再赘述。
再例如,若终端设备采用第二模式,则终端设备发起随机接入,如终端设备发送随机接入前导序列等等。
可以理解,“终端设备使用第一频率资源周期性地接收同步信号”,也可以替换为,“终端设备采用第一模式周期性地接收同步信号”。
可以理解,上述几种情形仅是从不同角度进行的描述,不对本申请实施例的保护范围造成限定。此外,任何属于上述几种情形的变形,都适用于本申请实施例。例如,还可以通过调制方式或波形方面区别。
一种可能的设计,同步信号和唤醒信号的调制方式为OOK,第一信号的调制方式为正交频分复用(orthogonal frequency division multiplexing,OFDM)调制或离散傅里叶变换扩展正交频分复用(discrete fourier transformation-spread-orthogonal frequency division multiplexing,DFT-s-OFDM)调制。
又一种可能的设计,同步信号和唤醒信号的调制方式为OOK,第二信号的调制方式为OFDM调制或DFT-s-OFDM调制。
又一种可能的设计,同步信号和唤醒信号的波形为OOK,第一信号的波形为OFDM波形或DFT-s-OFDM波形。
又一种可能的设计,同步信号和唤醒信号的波形为OOK,第二信号的波形为OFDM波形或DFT-s-OFDM波形。
上面主要介绍了同步信号和唤醒信号,下面从几个方面描述本申请,下面各方面的内容可以单独使用,也可以结合使用。
方面1,同步信号的周期。
下文,为便于描述,用周期T表示同步信号的周期。
作为示例,周期T的单位可以为以下任一种:符号(symbol)、时隙(slot)、迷你时隙(mini-slot)、子帧(subframe)、帧(frame)、秒(s)、毫秒(ms)等。
作为示例,周期T的取值大小可以为以下任一种:一个或多个符号、一个或多个时隙、一个或多个迷你时隙、一个或多个子帧、一个或多个帧、m1秒、m2毫秒等。其中,m1和m2为大于0的数。
可以理解,上文仅是示例说明,本申请对周期T的单位和取值大小不予限制。
可选地,周期T与唤醒信号的传输参数关联(或者称为相关,或者称为对应)。
其中,唤醒信号的传输参数,表示通过传输唤醒信号的参数。
作为示例,唤醒信号的传输参数,包括:时域资源长度,或者,子载波间隔(sub-carrier space,SCS)。
其中,时域资源长度,表示通过传输唤醒信号所使用的时域资源的长度。假设符号(symbol)或码片(chip)为信号结构的最小粒度,每个(编码后)比特传输时对应使用的时域资源可以为一个符号(symbol)或码片(chip)。“唤醒信号的时域资源长度”,也可以替换为“符号长度”,或者也可以替换为“码片长度”,不予限制。
作为示例,唤醒信号的时域资源长度,例如可以包括一个或多个时域符号,或者可以包括一个或多个迷你时隙,或者可以包括一个或多个时隙,或者可以包括一个或多个子帧。可以理解,列举的上述时域资源仅仅是为了方便理解本申请的方案,不应理解为对本申请的限定。
一种可能的方式,周期T与唤醒信号的时域资源长度(如符号长度)关联。
周期T与时域资源长度关联,表示周期T的长度与时域资源长度关联,或者周期T的大小与时域资源长度关联。为便于描述,下文统一描述为:周期T与时域资源长度关联。
示例地,时域资源长度包括第一时域资源长度和第二时域资源长度,同步信号的第一周期与第一时域资源长度关联,同步信号的第二周期与第二时域资源长度关联,第一时域资源长度小于第二时域资源长度,第一周期小于第二周期。也就是说,唤醒信号的时域资源长度越长,周期T可以越大。终端设备在使用一个同步信号完成同步后,在接收下一个同步信号之前,不再进行同步。由于终端设备的第一链路接收机的本地时钟精度有限,在两个同步信号之间,终端设备与网络侧之间的时间偏移会越来越大。若唤醒信号采用OOK调制方式调制,OOK信号的解调性能受到时域资源长度(如符号长度)的影响,时域资源长度越长,对残余时偏容忍度越大。因此在时间偏移变化速率一定的情况下,时域资源 长度越长,“不重新进行时间同步也能保证接收性能”的时间就越长,相应的同步信号的周期就可以设置越大。
另一种可能的方式,周期T与唤醒信号的SCS关联。
示例地,子载波间隔包括第一子载波间隔和第二子载波间隔,同步信号的第一周期与第一子载波间隔关联,同步信号的第二周期与第二子载波间隔关联,第一子载波间隔大于第二子载波间隔,第一周期小于第二周期。也就是说,唤醒信号的SCS越小,周期T可以越大。类似地,由于SCS越小,对残余时偏容忍度越大,相应的同步信号的周期就可以设置越大。
上述主要以时域资源长度和SCS为例进行示例性说明,本申请不限于此。例如周期T还可以与唤醒信号的其他传输参数关联,又如周期T可以与第一链路的传输参数关联。若周期T与第一链路的传输参数关联,那么唤醒信号和同步信号的传输参数可以相同,即都为该第一链路的传输参数。
可选地,周期T由网络设备配置,或者预定义(如标准预定义),下面分别描述。
一种可能的方式,周期T可以是网络设备配置的。
通过该方式,网络设备可以灵活选择合适的周期T,从而控制同步信号的资源开销。
若周期T由网络设备配置,则步骤S601之前,方法600还可以包括:网络设备发送第一配置信息,该第一配置信息用于配置同步信号的周期。相应地,终端设备接收该第一配置信息,进而,步骤S601中,终端设备基于该第一配置信息可获知周期T。
举例来说,网络设备发送第一链路的配置信息(即第一配置信息的一例),该配置信息中可以包含周期T。例如,网络设备可以在第二链路(如NR系统)上通过无线资源控制RRC信令(如专用RRC(dedicated RRC)信令),或者通过系统信息块(system information block,SIB)发送第一链路的配置信息,该配置信息中可以包含周期T。
另一种可能的方式,周期T可以是预定义(如标准预定义)的。
通过该方式,网络设备或终端设备可以基于预定义(如标准预定义)确定周期T,减少了网络设备通知周期T带来的信令开销。
作为示例,周期T可以与唤醒信号的传输参数相关,若唤醒信号的传输参数确定,则相应的周期T也随之确定。关于终端设备获知唤醒信号的传输参数的方式不予限制。举例来说,终端设备接收来自网络设备的系统信息,该系统信息包括唤醒信号的传输参数;终端设备基于该唤醒信号的传输参数,可以获知相应的周期T。可以理解,以上述第一种可能的情形为例,唤醒信号的传输参数可以是终端设备使用第二模块接收的。以上述第二种可能的情形为例,唤醒信号的传输参数可以是终端设备在第二链路上接收的。以上述第三种可能的情形为例,唤醒信号的传输参数可以是终端设备处于第二状态接收的。以上述第四种可能的情形为例,唤醒信号的传输参数可以是终端设备采用第二模式接收的。
例如,周期T与唤醒信号的时域资源长度(如符号长度)关联。周期T与时域资源长度(如符号长度)可以以表1的形式存在。
表1
时域资源长度 周期T
长度#1 T#1
长度#2 T#2
长度#3 T#3
以表1为例,举例来说,若唤醒信号的时域资源长度为长度#1,则可以获知用于该第一链路的同步信号的周期T为T#1;若唤醒信号的时域资源长度为长度#2,则可以获知用于该第一链路的同步信号的周期T为T#2;若唤醒信号的时域资源长度为长度#3,则可以获知用于该第一链路的同步信号的周期T为T#3。
应理解,表1仅是示例性说明,对此不予限制,任何属于表1的变形,都适用于本申请。例如,时域资源长度还可以包括更多数量的长度。又如,时域资源长度可以为具体数值,也可以为某一数值范围(如大于某一数值,又如小于某一数值,又如在某一数值与另一数值之间,等等),如长度#1可以为某一数值,或者长度#1也可以为某一数值范围。
再例如,周期T与唤醒信号的SCS关联。周期T与SCS可以以表2的形式存在。
表2
SCS 周期T
SCS#1 T#1
SCS#2 T#2
SCS#3 T#3
以表2为例,举例来说,若唤醒信号的SCS为SCS#1,则可以获知用于该第一链路的同步信号的周期T为T#1;若唤醒信号的SCS为SCS#2,则可以获知用于该第一链路的同步信号的周期T为T#2;若唤醒信号的SCS为SCS#3,则可以获知用于该第一链路的同步信号的周期T为T#3。
应理解,表2仅是示例性说明,对此不予限制,任何属于表2的变形,都适用于本申请。例如,SCS还可以包括更多数量的SCS。
方面2,同步信号的模式(pattern)(或者称为图案,或者称为图样)。
可选地,网络设备根据周期T和同步信号的pattern,使用第一频率资源发送同步信号。相应地,终端设备可以根据周期T和同步信号的pattern,使用第一频率资源接收同步信号。
进一步,可选地,网络设备发送第二配置信息,第二配置信息用于配置同步信号的pattern。相应地,终端设备接收该第二配置信息。终端设备根据该第二配置信息,可确定同步信号的pattern,进而可以根据周期T和同步信号的pattern,接收同步信号。
通过该方式,可以提高周期T的灵活度。举例来说,若周期T为标准预定义的,一旦传输参数(例如symbol长度,或者子载波间隔)确定,周期T就随之确定,这可能会给网络部署第一链路造成限制。通过配置同步信号的pattern,网络设备可以灵活配置同步信号的实际发送周期,提高了灵活度。
下面介绍两种可能的情况。
第一种可能的情况,同步信号的pattern可指示(或者称为表征,或者称为表示):可以发送(或者可以接收)同步信号的时域位置,和/或,不可以发送(或者不可以接收)同步信号的时域位置。网络设备可以根据周期T以及同步信号的pattern指示的可以发送同步信号的时域位置,发送同步信号;终端设备可以根据周期T以及同步信号的pattern指示的可以接收同步信号的时域位置,接收同步信号。可以理解,在该情况下,由于同步信号的传输还要考虑同步信号的pattern,故同步信号可能不是周期性传输的。
例如,假设根据周期T,在某个时域位置发送或接收同步信号,若同步信号的pattern指示该时域位置不可以发送或接收该同步信号,则不在该时域位置发送或接收同步信号;若同步信号的pattern指示该时域位置可以发送或接收该同步信号,则在该时域位置发送或接收同步信号。
第二种可能的情况,同步信号的pattern可指示(或者称为表征,或者称为表示):可以用于第一链路传输信号的时域位置,和/或,不可以用于第一链路传输信号的时域位置。作为示例,同步信号的pattern指示某时域位置可以用于第一链路传输信号(包括接收信号和/或发送信号)的情况下,终端设备可通过同步信号的周期T确定在该时域位置接收唤醒信号,还是同步信号。
例如,假设同步信号的pattern指示某时域位置可以用于第一链路传输信号(包括接收信号和/或发送信号),若终端设备根据周期T确定在该时域位置接收同步信号,则终端设备在该时域位置接收同步信号。
再例如,假设同步信号的pattern指示某时域位置可以用于第一链路传输信号(包括接收信号和/或发送信号),若终端设备根据周期T确定不在该时域位置接收同步信号,则终端设备在该时域位置可以接收唤醒信号。
再例如,假设同步信号的pattern指示某时域位置不可以用于第一链路传输信号(包括接收信号和/或发送信号),则该时域位置不用于第一链路传输信号,终端设备可在该时域位置接收第一信号和/或发送第二信号。关于第一信号和第二信号,可以参考上文的描述,此处不再赘述。
可以理解,关于同步信号的pattern指示的具体内容,本申请不予限制。例如,终端设备可以根据同步信号的pattern确定是否接收同步信号,或者也可以根据同步信号的pattern确定是否在第一链路上收发信号(如接收同步信号和唤醒信号),或者也可以根据同步信号的pattern确定接收同步信号,还是唤醒信号。下面主要以第一种可能的情况为例进行示例性说明。
可选地,网络设备使用第一频率资源在第一时域位置发送第一信号和/或接收第二信号,同步信号的pattern表征的发送同步信号的时域位置不包括该第一时域位置,或者,同步信号的pattern指示的不可以发送同步信号的时域位置包括该第一时域位置。相应地,终端设备可以使用第一频率资源在第一时域位置接收第一信号和/或发送第二信号。
通过该方式,可以降低第一链路的资源占比,可以令第一链路的信号(如唤醒信号和同步信号)与其他信号(如第一信号和/或第二信号)时分复用(time-division multiplexing,TDM),即相同的频率位置上,一段时间发送第一链路的信号,另一段时间发送其他信号(如第一信号)。因此,本申请也有利于第一链路的信号与现有信号(如第一信号或第二信号)的符号边界对齐,可以降低干扰水平。
其中,第一信号是区别于唤醒信号和同步信号的信号,也就是说,网络设备可以在第一时域位置发送除唤醒信号和同步信号以外的下行信号。第一信号如可以表示Legacy NR信号中的各种下行信号或信道。作为示例,第一信号包括以下一项或多项:SSB、PDCCH、PDSCH、CSI-RS、PTRS、PRS、DMRS。
其中,第二信号是区别于唤醒信号和同步信号的信号,也就是说,网络设备可以在第一时域位置接收上行信号。第二信号如可以表示Legacy NR信号中的各种上行信号或信 道。作为示例,第二信号包括以下一项或多项:DMRS、PUCCH、PUSCH、SRS。
关于第一信号和第二信号,可以参考上文的描述,此处不再赘述。
以NR信号(NR信号可以为第一信号,也可以为第二信号)为例,图8示出了适用于本申请实施例的同步信号和NR信号传输的示意图。
如图8所示,若按照预定义的周期T,则网络设备在T1、T2、T3、T4、T5发送同步信号。在实际通信中,同步信号的周期放大为2倍。具体地,以T1-T4周期为例,网络设备将T2和T4对应的资源分配给NR信号使用,即网络设备在T1和T3发送同步信号,在T2和T4发送第一信号;或者,网络设备在T1和T3发送同步信号,在T2和T4接收第二信号。
方面3,数据率。
在本申请中,第一链路可以支持多种数据率。数据率,表示数据速率(data rate)。
这样,不仅可以提高系统鲁棒性,还可以提高系统容量。举例来说,一方面,当终端设备和网络设备之间的信道状态较差时(如信噪比(signal-noise ratio,SNR)较低),可降低唤醒信号的数据率,降低唤醒信号的数据率可等效为增加唤醒信号的长度,可获得更多时域分集,提升第一链路信号的鲁棒性。另一方面,考虑到每个终端设备的寻呼信息到达时间是随机的,在一段时间内,第一链路需要发送的寻呼信息的个数不确定。因此,为了尽可能地使得小区边缘的终端设备也能正确接收唤醒信号,可以使唤醒信号使用较低数据率。当需要发送的寻呼信息个数较多时,考虑到低数据率的唤醒信号占用空口资源(时频资源)较多,采用低数据率可能导致系统容量不足,因此可以考虑使用高数据率方式发送唤醒信号,提高短时间内的系统容量。
可选地,终端设备可以通过同步信号获知唤醒信号的数据率,或者通过唤醒信号获知唤醒信号的数据率。进而,终端设备可以基于唤醒信号的数据率,接收并解调唤醒信号。下面详细介绍这两种方式。
方式1,通过同步信号获知唤醒信号的数据率。
可选地,网络设备根据同步信号的周期,使用第一频率资源,在第一时刻发送同步信号,该同步信号用于指示第一时段内唤醒信号的数据率,第一时段位于第一时刻之后。
其中,第一时刻表示发送同步信号的时间,其可以是某一时刻(如发送同步信号的起始时刻,又如发送同步信号的结束时刻),也可以是某一时段(如发送同步信号的起始时刻与结束时刻之间的时段),不予限制。
其中,第一时段,可以是第一时刻之后的时段,即网络设备发送同步信号之后的一段时间,或者终端设备接收同步信号之后的一段时间。
作为示例,第一时段位于第一时刻之后,且位于第二时刻之前,第二时刻为网络设备在第一时刻之后发送的第i个同步信号的时刻,i为大于1或等于1的整数。也就是说,假设网络设备在第一时刻发送第一个同步信号,在第二时刻发送第(i+1)个同步信号,第一时段为第一时刻与第二时刻之间的时段。举例来说,i=1,那么第一时段可表示网络设备当前发送完同步信号后,直到下次发送同步信号之间的时段,或者可以理解为,第一时段的起始时间为第一时刻,时长为周期T。
应理解,上述为示例性说明,关于第一时段的时长不予限制。例如,第一时段的时长也可以为预设时长,如网络设备预先配置的时长,或者标准预定义的时长。
下面介绍通过同步信号获知唤醒信号的数据率的两种方式。
示例1,同步信号的长度,用于指示第一时段内唤醒信号的数据率。
基于该示例,同步信号的长度可与唤醒信号的数据率关联,网络设备通过同步信号的长度可指示后面一段时间内(如记为第一时段内)唤醒信号的数据率,终端设备通过同步信号的长度可获知第一时段内唤醒信号的数据率。因此,终端设备可以盲检同步信号的长度,从而判断后续唤醒信号的数据率,减少了网络设备通知唤醒信号的数据率带来的信令开销。
一种可能的设计,同步信号的长度包括第一同步信号的长度和第二同步信号的长度,第一同步信号的长度用于指示第一时段内唤醒信号的数据率为第一数据率,第二同步信号的长度用于指示第一时段内唤醒信号的数据率为第二数据率,第一同步信号的长度小于第二同步信号的长度,第一数据率高于第二数据率。举例来说,一方面,当终端设备和网络设备之间的信道状态较差时,可降低唤醒信号的数据率,且网络设备可以发送长度较长的同步信号(如可以提高对残余时偏的容忍度),由此可知,终端设备接收到的同步信号的长度越长,后面一段时间内唤醒信号的数据率可能越低。另一方面,当终端设备和网络设备之间的信道状态较好时,可提高唤醒信号的数据率,且网络设备可以发送长度较短的同步信号(如可以降低发送同步信号带来的资源开销),由此可知,终端设备接收到的同步信号的长度越短,后面一段时间内唤醒信号的数据率可能越高。因此,可以设计同步信号的长度和数据率成反比,这样,不仅可以使得某一时刻收到的同步信号的长度与后面一段时间内唤醒信号的数据率相匹配,还可以通过盲检同步信号的长度,就可判断后续唤醒信号的数据率。
作为示例,图9示出了适用于该设计的示意图。如图9所示,短同步信号(即第一同步信号)后面的唤醒信号为高数据率信号,长同步信号(即第二同步信号)后面的唤醒信号为低数据率信号。
在本申请中,可以设置同步信号与其后的唤醒信号的数据率是对应的。举例来说,网络设备周期性发送同步信号,若网络设备将要发送的唤醒信号的数据率为第一数据率,则网络设备发送第一同步信号;若网络设备将要发送的唤醒信号的数据率为第二数据率,则网络设备发送第二同步信号。或者,若网络设备在第一时刻发送第一同步信号,则网络设备在第一时段内发送的唤醒信号的数据率为第一数据率;若网络设备在第一时刻发送第二同步信号,则网络设备在第一时段内发送的唤醒信号的数据率为第二数据率。相应地,若网络内的各终端设备收到第一同步信号,则该各终端设备可获知在第一时段内的唤醒信号的数据率为第一数据率;若网络内的各终端设备收到第二同步信号,则该各终端设备可获知在第一时段内的唤醒信号的数据率为第二数据率。可以理解,无论哪个或哪些终端设备收到第一同步信号(即网络设备在第一时刻发送的第一同步信号),该终端设备均可以确定网络设备在第一时段内发送的唤醒信号的数据率为第一数据率;无论哪个或哪些终端设备收到网络设备第二同步信号(即网络设备在第一时刻发送的第二同步信号),该终端设备均可以确定网络设备在第一时段内发送的唤醒信号的数据率为第二数据率。
示例2,同步信号包括指示信息(为区分,记为第一指示信息),第一指示信息用于指示第一时段内唤醒信号的数据率。
基于该示例,同步信号中,除了用于同步功能的序列外,还可以包括第一指示信息, 该第一指示信息用于指示后面一段时间内(如第一时段内)的唤醒信号的数据率。在该示例下,可以设计一种长度的同步信号。
一种可能的方式,第一指示信息可以位于用于同步功能的序列之后。
作为示例,图10示出了适用于方式1中示例2的示意图。如图10所示,第一指示信息可以位于用于同步功能的序列之后,通过同步信号携带的第一指示信息,可以指示该同步信号后面的唤醒信号的数据率。
上文结合示例1和示例2介绍了通过同步信号获知唤醒信号的数据率的方式,下面介绍通过唤醒信号获知唤醒信号的数据率的方式。
方式2,通过唤醒信号获知唤醒信号的数据率。
可选地,网络设备使用第一频率资源发送唤醒信号,唤醒信号包括第二指示信息,其中,第二指示信息用于指示唤醒信号的数据率。第二指示信息例如也可以称为数据率指示信息,其命名不予限制。
示例地,唤醒信号包括第二指示信息,该第二指示信息具体用于指示唤醒信号中除第二指示信息外的其他信息的数据率。其中,第二指示信息的数据率,可以是网络设备配置的,或者也可以是预定义的,不予限制。举例来说,第二指示信息的数据率是固定的,即无论寻呼信息是高数据率还是低数据率,第二指示信息自身的数据率都是相同的。一种可能的设计,第二指示信息的数据率可以恒等于最低的数据率,以保证第二指示信息的鲁棒性。
作为示例,图11示出了适用于方式2的示意图。
如图11所示,在一个唤醒信号中,包含第二指示信息,该第二指示信息用于指示唤醒信号中除第二指示信息以外的其他信息(如寻呼信息)的数据率。为了保证寻呼信息正确接收,第二指示信息可以设置于寻呼信息的前面。作为示例,第二指示信息可以位于一个唤醒信号的开头(如起始位置,又如寻呼信息前面的位置)。
方面4,不同长度的同步信号。
如上文所述,可选地,同步信号包括第一同步信号和第二同步信号,第一同步信号的长度小于第二同步信号的长度。
在本申请中,同步信号可以包括多个不同长度的信号,如上文所述的第一同步信号和第二同步信号,从而不仅可以根据实际情况,选择合适长度的同步信号进行发送,还可以用于不同的信道状态,服务处于不同信道状态下的终端设备。下面主要以同步信号包括第一同步信号和第二同步信号为例进行说明,可以理解,同步信号可以包括更多不同长度的信号。
一种可能的情况,网络设备可以根据信道状态,确定发送第一同步信号还是第二同步信号。
在该情况下,第一同步信号和第二同步信号对应同一个周期T。也就是说,网络设备基于周期T发送同步信号时,可以根据信道状态,确定发送长度较短的同步信号(即第一同步信号),还是发送长度较长的同步信号(即第二同步信号)。举例来说,若网络设备判断信道状态较差,则网络设备可以发送长度较长的同步信号(即第二同步信号);若网络设备判断信道状态较好,则网络设备可以发送长度较短的同步信号(即第一同步信号)。
关于如何判断信道质量,不予限制。举例来说,可以判断传输信号的质量是否满足质 量阈值,该信号质量阈值,可以是预先定义的阈值,可以由网络侧配置,不予限制。若网络设备通过信道传输信号的质量大于该信号质量阈值,则网络设备可获知信道状态较好,网络设备可以发送长度较短的同步信号(即第一同步信号);若网络设备通过信道传输信号的质量小于该信号质量阈值,则网络设备可获知信道状态较差,网络设备可以发送长度较长的同步信号(即第二同步信号)。
另一种可能的情况,网络设备周期性地发送第二同步信号,网络设备周期性地发送第一同步信号。
终端设备处于idle态或者inactive态时,网络设备可能无法获知终端设备当前的信道状态,也就无法适应性改变同步信号的长度,即无法判断发送第二同步信号还是第一同步信号。因此,第二同步信号和第一同步信号均可以周期性地发送。
可选地,网络设备确定第一同步信号的周期和第二同步信号的周期,第一同步信号的周期小于第二同步信号的周期。
例如,网络设备分别配置第一同步信号的周期和第二同步信号的周期,或者标准预定义第一同步信号的周期和第二同步信号的周期,具体地可以参考前面关于周期T的描述,此处不再赘述。
作为示例,图12示出了第一同步信号和第二同步信号周期性发送的一示意图。
如图12所示,网络设备按照第一同步信号的周期周期性地发送第一同步信号,按照第二同步信号的周期周期性地发送第二同步信号。可以看出,第一同步信号的长度较短,周期也较短,第二同步信号的长度较长,周期也较长。周期较短,表示网络设备发送同步信号的时间间隔较短,即终端设备基于同步信号进行时间同步的间隔较短,那么同步信号的长度不需要设计太长,以降低同步信号的资源开销。周期较长,表示网络设备发送同步信号的时间间隔较长,即终端设备基于同步信号进行时间同步的间隔较长,那么同步信号的长度可以设计的相对较长,以便可以提高对残余时偏的容忍度。
其中,第一同步信号的周期和第二同步信号的周期可以相关,也可以无关,不予限制。
可选地,第二同步信号的周期为第一同步信号的周期的整数倍。例如,第一同步信号的周期为T1,第二同步信号的周期为T2,T2为T1的整数倍。
可选地,终端设备接收第二同步信号和终端设备接收第一同步信号之间的时间间隔,与第一同步信号的周期相同。基于该方式,第一同步信号和第二同步信号可以嵌套发送。
第一同步信号和第二同步信号嵌套发送,可以理解为,每N个第一同步信号中,有一个第一同步信号被第二同步信号替代。此时,第二同步信号的周期为第一同步信号的周期的整数倍。作为示例,图13示出了第一同步信号和第二同步信号周期性发送的另一示意图。如图13所示,第二同步信号的周期为第一同步信号的周期的4倍,每4个第一同步信号中,有一个第一同步信号被第二同步信号替代。
上文主要以第一同步信号和第二同步信号为例进行了示例性说明,可以理解,本申请对于同步信号的长度不予限制。例如,还可以包括更多长度的同步信号。
上文分别从四个方面介绍了本申请。可以理解,上述各个方面的内容可以结合使用,也可以单独使用,不予限制。
为便于理解,下面以终端设备可工作在第一链路上和第二链路上为例,结合图14简单介绍一下适用于本申请实施例的流程。可以理解,关于下文涉及到的术语以及其他描述, 可以参考上文的描述,此处不再赘述。
图14是本申请实施例提供的一种信号传输的方法1400的示意图。方法1400可以包括如下步骤。
S1410,终端设备通过第二链路接收来自网络设备的系统信息。
可以理解,终端设备通过第二链路接收来自网络设备的系统信息,也可以替换为终端设备在第二链路上接收来自网络设备的系统信息。
终端设备通过第二链路接收来自网络设备的系统信息,也可替换为,终端设备通过第二模块接收来自网络设备的系统信息,或者也可替换为,终端设备处于第二状态时接收来自网络设备的系统信息,或者也可替换为,终端设备采用第二模式接收来自网络设备的系统信息。具体可以参考方法600中第一种可能的情形至第四种可能的情形,此处不再赘述。
其中,系统信息可包括第一链路的配置信息。终端设备根据该系统信息可获知第一链路的配置信息。
第一链路的配置信息,例如包括以下一项或多项:唤醒信号的传输参数、同步信号的传输参数、同步信号的周期T、第一链路的传输参数。
例如,第一链路的配置信息包括唤醒信号的传输参数。其中,唤醒信号的传输参数例如可以包括唤醒信号的时域资源(如符号)长度、唤醒信号的SCS等中的至少一种。终端设备可以根据唤醒信号的传输参数在第一链路上接收唤醒信号。若周期T与唤醒信号的传输参数相关,则终端设备还可以根据该唤醒信号的传输参数,确定相应的周期T,进而终端设备可以基于该周期T在第一链路上周期性地接收同步信号。具体的可以参考上文方面1中的描述,此处不再赘述。
再例如,第一链路的配置信息包括周期T。终端设备可以基于该周期T在第一链路上周期性地接收同步信号。
再例如,第一链路的配置信息包括同步信号的传输参数。终端设备可以根据同步信号的传输参数在第一链路上接收同步信号。其中,同步信号的传输参数例如可以包括周期T、同步信号的时域资源(如符号)长度、同步信号的SCS等中的至少一种。
再例如,第一链路的配置信息包括第一链路的传输参数。其中,第一链路的传输参数例如可以包括第一链路的时域资源(如符号)长度、第一链路的SCS等中的至少一种。终端设备可以根据第一链路的传输参数在第一链路上接收唤醒信号。若周期T与第一链路的传输参数相关,则终端设备还可以根据该第一链路的传输参数,确定相应的周期T,进而终端设备可以基于该周期T在第一链路上周期性地接收同步信号。具体的可以参考上文方面1中的描述,此处不再赘述。
S1420,终端设备打开唤醒电路,在第一链路上工作。
终端设备在第一链路上工作,也可替换为,终端设备通过第一模块接收信号(如接收唤醒信号和同步信号),或者也可替换为,终端设备处于第一状态(或者终端设备的状态调整为第一状态),或者也可替换为,终端设备采用第一模式接收信号(如接收唤醒信号和同步信号)。具体可以参考方法600中第一种可能的情形至第四种可能的情形,此处不再赘述。
一可能的情况,在满足某些条件的时候,终端设备可启用唤醒电路,在第一链路上工作。此时,可以关闭主电路。
示例地,若终端设备的服务小区满足预设条件,则终端设备可启用唤醒电路,在第一链路上工作。其中,预设条件,例如可以包括:终端设备与网络设备之间的距离较近,和/或,终端设备的移动速度较慢。
其中,终端设备与网络设备之间的距离较近,表示终端设备位于网络设备网络较强的位置。在终端设备与网络设备之间的距离较近的情况下,终端设备可以启用唤醒电路。可选地,终端设备可以通过测量服务小区的信号质量(或者信道质量),判断终端设备与网络设备之间的距离。可选地,终端设备可以通过测量服务小区的信号质量变化量,判断终端设备的移动速度。
S1430,终端设备通过第一链路接收来自网络设备的同步信号。
可以理解,终端设备通过第一链路接收来自网络设备的同步信号,也可以替换为终端设备在第一链路上接收来自网络设备的同步信号。
终端设备可以根据在步骤S1410中获得的周期T,通过第一链路周期性地接收同步信号。进而,终端设备可以根据接收到的同步信号可以进行时间同步,以便可以正确地接收唤醒信号。
S1440,终端设备通过第一链路接收来自网络设备的唤醒信号。
可以理解,终端设备通过第一链路接收来自网络设备的唤醒信号,也可以替换为终端设备在第一链路上接收来自网络设备的唤醒信号。
终端设备在步骤S1430中,可以基于接收到的同步信号进行同步,故终端设备可以正确地接收来自网络设备的唤醒信号。
若终端设备未检测到与自己关联的唤醒信号,则继续使用第一链路接收唤醒信号,第二链路处于关闭状态(或者睡眠状态);若终端设备检测到与自己关联的唤醒信号,则触发第二链路的唤醒,即第二链路处于开启状态(或者称为工作状态,或者称为活跃状态)。第二链路开启后,终端设备可以执行接收寻呼过程和/或发起随机接入。
S1450,终端设备通过第二链路接收第一信息或发起随机接入。
可以理解,终端设备通过第二链路接收第一信息或发起随机接入,也可以替换为终端设备在第二链路上接收第一信息或发起随机接入。
一种可能的情况,若唤醒信号携带部分寻呼信息,则终端设备通过第一链路接收到唤醒信号后,可以通过第二链路接收第一信息(或者以通过第二链路执行寻呼接收的流程)。
又一种可能的情况,若唤醒信号携带完整的寻呼信息,则终端设备通过第一链路接收到唤醒信号后,可以基于该唤醒信号确定自己是否被寻呼,若终端设备通过唤醒信号确定自己被寻呼,作为示例,终端设备可以通过第二链路发起随机接入。终端设备发起随机接入,例如可以包括:终端设备向网络设备发送随机接入前导序列。
可以理解,在本申请的各实施例中,“接收”也可替换为“检测”。例如,“接收唤醒信号”也可以替换为“检测唤醒信号”。
还可以理解,在上述一些实施例中,主要以“第一链路”和“第二链路”为例进行了说明。“第一链路”也可以替换为“第一模块(或第一电路)”,或者也可以替换为“处于第一状态”,或者也可以替换为“采用第一模式”。举例来说,“终端设备在第一链路上接收同步信号”,也可以替换为“终端设备通过第一模块(或第一电路)接收同步信号”。“第二链路”也可以替换为“第二模块(或第二电路)”,或者也可以替换为“处于第二状态”,或者也可以替 换为“采用第二模式”。举例来说,“终端设备在第二链路上接收第一信号”,也可以替换为“终端设备通过第二模块(或第二电路)接收第一信号”。
还可以理解,在上述一些实施例中,多次提及“通过第一链路”和“通过第二链路”,本领域技术人员可以理解其含义。举例来说,“通过第一链路接收信号”,可以替换为“在第一链路上接收信号”,或者也可以替换为“使用第一链路接收信号”。
还可以理解,在上述一些实施例中,提到了“传输”,在未作出特别说明的情况下,传输,包括接收和/或发送。例如,传输信号,可以包括接收信号和/或发送信号。
还可以理解,在本申请的各实施例中,“信号”也可替换为“序列”或者“信号的序列”。例如,“唤醒信号”可以替换为“序列”或者“唤醒信号的序列”。关于信号和序列的关系,本领域技术人员应理解其含义,举例来说,在获得唤醒信号的序列之后,网络设备可以将一定长度的唤醒信号的序列映射到传输资源(如时频资源),生成唤醒信号,并发送给终端设备。
还可以理解,在本申请的各实施例中,主要以终端设备和网络设备之间的交互为例进行示例性说明,本申请不限于此,终端设备可以替换为接收端设备,接收端设备可以为终端设备或网络设备;网络设备可以替换为发送端设备,发送端设备可以为终端设备或网络设备。示例地,“终端设备”可以替换为“第一终端设备”,“网络设备”可以替换为“第二终端设备”。
还可以理解,本申请实施例中的图7至图14中的例子仅仅是为了便于本领域技术人员理解本申请实施例,并非要将本申请实施例限于例示的具体场景。本领域技术人员根据图7至图14的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
还可以理解,本申请的各实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,也可以在某些场景下,与其他特征进行结合,不作限定。
还可以理解,本申请的各实施例中的方案可以进行合理的组合使用,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
还可以理解,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可由终端设备的组成部件(例如芯片或者电路)来实现;此外,由网络设备实现的方法和操作,也可以由可由网络设备的组成部件(例如芯片或者电路)来实现,不作限定。
相应于上述各方法实施例给出的方法,本申请实施例还提供了相应的装置,所述装置包括用于执行上述各个方法实施例相应的模块。该模块可以是软件,也可以是硬件,或者是软件和硬件结合。可以理解的是,上述各方法实施例所描述的技术特征同样适用于以下装置实施例。
图15是本申请实施例提供的一种通信装置的示意性框图。该装置1500包括收发单元1510和处理单元1520。收发单元1510可以用于实现相应的通信功能。收发单元1510还可以称为通信接口或通信单元。处理单元1520可以用于进行数据或信号处理。
可选地,该装置1500还包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元1520可以读取存储单元中的指令和/或数据,以使得装置实现前述各个方法实施例中终端设备的动作。
该装置1500可以用于执行上文各个方法实施例中终端设备所执行的动作,这时,该 装置1500可以为终端设备或者终端设备的组成部件,收发单元1510用于执行上文方法实施例中终端设备侧的收发相关的操作,处理单元1520用于执行上文方法实施例中终端设备侧的处理相关的操作。
当该装置1500用于实现上文各个方法实施例中终端设备的功能时:处理单元1520,用于确定同步信号的周期;收发单元1510,用于根据同步信号的周期,使用第一频率资源周期性地接收同步信号,其中,第一频率资源还用于传输唤醒信号,唤醒信号用于指示需要接收寻呼的一个或多个终端设备的信息。
该装置1500可实现对应于根据本申请实施例的方法实施例中的终端设备执行的步骤或者流程,该装置1500可以包括用于执行图6所示实施例中的终端设备执行的方法的单元。
当该装置1500用于实现上文各个方法实施例中网络设备的功能时:处理单元1520,用于确定同步信号的周期;收发单元1510,用于根据同步信号的周期,使用第一频率资源周期性地发送同步信号,其中,第一频率资源还用于传输唤醒信号,唤醒信号用于指示需要接收寻呼的一个或多个终端设备的信息。
该装置1500可实现对应于根据本申请实施例的方法实施例中的网络设备执行的步骤或者流程,该装置1500可以包括用于执行图6所示实施例中的网络设备执行的方法的单元。
有关该装置1500更详细的描述可以参考上文方法实施例中相关描述直接得到,在此不再赘述。
还应理解,这里的装置1500以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置1500可以具体为上述实施例中的终端设备,可以用于执行上述各方法实施例中与终端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置1500具有实现上述方法中设备(如终端设备或网络设备)所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发单元1510还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。
需要指出的是,图15中的装置可以是前述实施例中的网元或设备,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
图16是本申请实施例提供的另一种通信装置的示意性框图。该装置1600包括第一模块1610。第一模块1610,例如可以为唤醒电路,或者也可以为唤醒电路的模块(如接收 模块)。第一模块1610,可用于执行上文方法实施例中终端设备侧的唤醒电路执行的操作,或者可用于执行上文方法实施例中终端设备侧的通过第一链路执行的操作,或者可用于执行上文方法实施例中终端设备处于第一状态时执行的操作,或者可用于执行上文方法实施例中终端设备采用第一模式时执行的操作。
例如,终端设备通过第一模块1610接收唤醒信号;又如,终端设备通过第一模块1610接收同步信号。
可选地,该装置1600包括第二模块1620。第二模块1620,例如可以为主电路,或者也可以为主电路的模块(如接收模块)。第一模块1610和第二模块1620可以集成在一起,或者也可以分离设置。第二模块1620,可用于执行上文方法实施例中终端设备侧的主电路执行的操作,或者可用于执行上文方法实施例中终端设备侧的通过第二链路执行的操作,或者可用于执行上文方法实施例中终端设备处于第二状态时执行的操作,或者可用于执行上文方法实施例中终端设备采用第二模式时执行的操作。
例如,终端设备通过第二模块1610接收第一信号;又如,终端设备通过第二模块1610发送第二信号;又如,终端设备通过第二模块1610发起随机接入,如发送随机接入前导序列。
图17是本申请实施例提供的又一种通信装置的示意性框图。该装置1700包括处理器1710,处理器1710与存储器1720耦合,存储器1720用于存储计算机程序或指令和/或数据,处理器1710用于执行存储器1720存储的计算机程序或指令,或读取存储器1720存储的数据,以执行上文各方法实施例中的方法。
在一些实施例中,处理器1710为一个或多个。
在一些实施例中,存储器1720为一个或多个。
在一些实施例中,该存储器1720与该处理器1710集成在一起,或者分离设置。
在一些实施例中,如图17所示,该装置1700还包括收发器1730,收发器1730用于信号的接收和/或发送。例如,处理器1710用于控制收发器1730进行信号的接收和/或发送。
作为一种方案,该装置1700用于实现上文各个方法实施例中由设备(如终端设备,又如网络设备)执行的操作。
例如,处理器1710用于执行存储器1720存储的计算机程序或指令,以实现上文各个方法实施例中网络设备的相关操作。
再例如,处理器1710用于执行存储器1720存储的计算机程序或指令,以实现上文各个方法实施例中终端设备的相关操作。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储 器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述各方法实施例中由设备(如终端设备,又如网络设备)执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由网络设备执行的方法。
再例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由终端设备执行的方法。
本申请实施例还提供一种计算机程序产品,包含指令,该指令被计算机执行时以实现上述各方法实施例中由设备(如终端设备,又如网络设备)执行的方法。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,所述计算机可以是个人计算机,服务器,或者网络设备等。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心 进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等。例如,前述的可用介质包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上描述,本申请还提供如下实施例:
实施例1.一种信号传输的方法,其特征在于,包括:
终端设备确定同步信号的周期;
所述终端设备根据所述同步信号的周期,使用第一频率资源周期性地接收所述同步信号,其中,所述第一频率资源还用于传输唤醒信号,所述唤醒信号用于指示需要接收寻呼的一个或多个终端设备的信息。
实施例2.根据实施例1所述的方法,其特征在于,
所述同步信号的周期与所述唤醒信号的传输参数关联。
实施例3.根据实施例1或2所述的方法,其特征在于,所述唤醒信号的传输参数包括时域资源长度,
所述时域资源长度包括第一时域资源长度和第二时域资源长度,所述同步信号的第一周期与所述第一时域资源长度关联,所述同步信号的第二周期与所述第二时域资源长度关联,所述第一时域资源长度小于所述第二时域资源长度,所述第一周期小于所述第二周期。
实施例4.根据实施例1或2所述的方法,其特征在于,
所述唤醒信号的传输参数包括子载波间隔,
所述子载波间隔包括第一子载波间隔和第二子载波间隔,所述同步信号的第一周期与所述第一子载波间隔关联,所述同步信号的第二周期与所述第二子载波间隔关联,所述第一子载波间隔大于所述第二子载波间隔,所述第一周期小于所述第二周期。
实施例5.根据实施例1至4中任一项所述的方法,其特征在于,
所述同步信号的周期是所述网络设备配置的,或者,
所述同步信号的周期是标准预定义的。
实施例6.根据实施例5所述的方法,其特征在于,若所述同步信号的周期是所述网络设备配置,则所述方法还包括:
所述终端设备接收第一配置信息,所述第一配置信息用于配置所述同步信号的周期。
实施例7.根据实施例1至6中任一项所述的方法,其特征在于,所述方法还包括:
所述终端设备接收第二配置信息,所述第二配置信息用于配置所述同步信号的图样pattern;
所述终端设备根据所述同步信号的周期,使用第一频率资源周期性地接收所述同步信号,包括:
所述终端设备根据所述同步信号的周期和所述同步信号的pattern,使用所述第一频率资源接收所述同步信号。
实施例8.根据实施例7所述的方法,其特征在于,所述方法还包括:
所述终端设备使用所述第一频率资源在所述第一时域位置接收第一信号和/或发送第 二信号,所述同步信号的pattern表征的发送所述同步信号的时域位置不包括第一时域位置;
其中,所述第一信号包括以下一项或多项:同步信号块SSB、物理下行控制信道PDCCH、物理下行共享信道PDSCH、信道状态信息参考信号CSI-RS、相位跟踪参考信号PT-RS、定位参考信号PRS、解调参考信号DMRS;
其中,所述第二信号包括以下一项或多项:解调参考信号DMRS、物理上行共享信道PUSCH、物理上行控制信道PUCCH、探测参考信号SRS。
实施例9.根据实施例8所述的方法,其特征在于,所述终端设备包括第一模块和第二模块,
所述终端设备通过所述第一模块接收所述同步信号和所述唤醒信号,所述终端设备通过所述第二模块接收所述第一信号和/或发送所述第二信号。
实施例10.根据实施例1至9中任一项所述的方法,其特征在于,所述终端设备根据所述同步信号的周期,使用第一频率资源周期性地接收所述同步信号,包括:
所述终端设备根据所述同步信号的周期,使用第一频率资源,在第一时刻接收所述同步信号,所述同步信号用于指示第一时段内所述唤醒信号的数据率,所述第一时段位于所述第一时刻之后。
实施例11.根据实施例10所述的方法,其特征在于,
所述同步信号的长度,用于指示所述第一时段内所述唤醒信号的数据率;或者
所述同步信号包括第一指示信息,所述第一指示信息用于指示所述第一时段内所述唤醒信号的数据率。
实施例12.根据实施例11所述的方法,其特征在于,所述同步信号的长度包括第一同步信号的长度和第二同步信号的长度,所述第一同步信号的长度用于指示所述第一时段内所述唤醒信号的数据率为第一数据率,所述第二同步信号的长度用于指示所述第一时段内所述唤醒信号的数据率为第二数据率,所述第一同步信号的长度小于所述第二同步信号的长度,所述第一数据率高于所述第二数据率。
实施例13.根据实施例10至12中任一项所述的方法,其特征在于,所述第一时段位于所述第一时刻之后,且位于所述第二时刻之前,所述第二时刻为所述终端设备在所述第一时刻之后接收的第i个所述同步信号的时刻,i为大于1或等于1的整数。
实施例14.根据实施例1至9中任一项所述的方法,其特征在于,所述方法还包括:
所述终端设备使用所述第一频率资源接收唤醒信号,所述唤醒信号包括第二指示信息,其中,所述第二指示信息用于指示所述唤醒信号的数据率。
实施例15.根据实施例14所述的方法,其特征在于,所述第二指示信息具体用于指示所述唤醒信号中除所述第二指示信息外的其他信息的数据率,所述第二指示信息的数据率为所述网络设备配置的或者预定义的。
实施例16.根据实施例1至15中任一项所述的方法,其特征在于,所述同步信号的长度包括第一同步信号的长度和第二同步信号的长度,所述第一同步信号的长度小于所述第二同步信号的长度,所述第一同步信号的周期小于所述第二同步信号的周期。
实施例17.根据实施例16所述的方法,其特征在于,
所述第二同步信号的周期为所述第一同步信号的周期的整数倍,所述终端设备接收所 述第二同步信号和所述终端设备接收所述第一同步信号之间的时间间隔,与所述第一同步信号的周期相同。
实施例18.根据实施例1至17中任一项所述的方法,其特征在于,
所述同步信号的波形与所述唤醒信号的波形相同,和/或,所述同步信号的调制方式与所述唤醒信号的调制方式相同。
实施例19.根据实施例1至18中任一项所述的方法,其特征在于,
所述同步信号的调制方式与所述唤醒信号的调制方式为开关键控OOK,和/或,
所述同步信号的波形和/或所述唤醒信号的波形为OOK。
实施例20.根据实施例1至19中任一项所述的方法,其特征在于,所述方法还包括:
所述终端设备使用所述第一频率资源接收来自网络设备的所述唤醒信号,所述唤醒信号用于指示的需要接收寻呼的一个或多个终端设备的信息包括所述终端设备;
所述终端设备接收来自所述网络设备的第一信息和/或发起随机接入,
其中,所述第一信息包括以下一项或多项信息:寻呼下行控制信息DCI,寻呼消息paging message,寻呼提前指示PEI。
实施例21.根据实施例20所述的方法,其特征在于,所述终端设备接收来自所述网络设备的第一信息和/或发起随机接入,包括:
所述终端设备使用第二频率资源,接收来自所述网络设备的第一信息和/或发起随机接入。
实施例22.根据实施例20或21所述的方法,其特征在于,所述终端设备包括第一模块和第二模块,
所述终端设备通过所述第一模块接收所述同步信号和所述唤醒信号,所述终端设备通过所述第二模块接收所述第一信息和/或发起随机接入。
实施例23.一种信号传输的方法,其特征在于,包括:
网络设备确定同步信号的周期;
所述网络设备根据所述同步信号的周期,使用第一频率资源周期性地发送所述同步信号,其中,所述第一频率资源还用于传输唤醒信号,所述唤醒信号用于指示需要接收寻呼的一个或多个终端设备的信息。
实施例24.根据实施例23所述的方法,其特征在于,
所述同步信号的周期与所述唤醒信号的传输参数关联。
实施例25.根据实施例24所述的方法,其特征在于,所述方法还包括:
所述网络设备广播系统信息,所述系统信息包括所述唤醒信号的传输参数。
实施例26.根据实施例23至25中任一项所述的方法,其特征在于,所述唤醒信号的传输参数包括时域资源长度,
所述时域资源长度包括第一时域资源长度和第二时域资源长度,所述同步信号的第一周期与所述第一时域资源长度关联,所述同步信号的第二周期与所述第二时域资源长度关联,所述第一时域资源长度小于所述第二时域资源长度,所述第一周期小于所述第二周期。
实施例27.根据实施例23至25中任一项所述的方法,其特征在于,
所述唤醒信号的传输参数包括子载波间隔,
所述子载波间隔包括第一子载波间隔和第二子载波间隔,所述同步信号的第一周期与 所述第一子载波间隔关联,所述同步信号的第二周期与所述第二子载波间隔关联,所述第一子载波间隔大于所述第二子载波间隔,所述第一周期小于所述第二周期。
实施例28.根据实施例23至27中任一项所述的方法,其特征在于,
所述同步信号的周期是所述网络设备配置的,或者,
所述同步信号的周期是标准预定义的。
实施例29.根据实施例28所述的方法,其特征在于,若所述同步信号的周期是所述网络设备配置,则所述方法还包括:
所述网络设备发送第一配置信息,所述第一配置信息用于配置所述同步信号的周期。
实施例30.根据实施例23至29中任一项所述的方法,其特征在于,所述方法还包括:
所述网络设备发送第二配置信息,所述第二配置信息用于配置所述同步信号的图样pattern;
所述网络设备根据所述同步信号的周期,使用第一频率资源周期性地发送所述同步信号,包括:
所述网络设备根据所述同步信号的周期和所述同步信号的pattern,使用所述第一频率资源发送所述同步信号。
实施例31.根据实施例30所述的方法,其特征在于,所述方法还包括:
所述网络设备使用所述第一频率资源在所述第一时域位置发送第一信号和/或接收第二信号,所述同步信号的pattern表征的发送所述同步信号的时域位置不包括第一时域位置;
其中,所述第一信号包括以下一项或多项:同步信号块SSB、物理下行控制信道PDCCH、物理下行共享信道PDSCH、信道状态信息参考信号CSI-RS、相位跟踪参考信号PT-RS、定位参考信号PRS、解调参考信号DMRS;
其中,所述第二信号包括以下一项或多项:解调参考信号DMRS、物理上行共享信道PUSCH、物理上行控制信道PUCCH、探测参考信号SRS。
实施例32.根据实施例31所述的方法,其特征在于,所述网络设备包括第一模块和第二模块,
所述网络设备通过所述第一模块发送所述同步信号和所述唤醒信号,所述网络设备通过所述第二模块发送所述第一信号和/或接收所述第二信号。
实施例33.根据实施例23至32中任一项所述的方法,其特征在于,所述终端设备根据所述同步信号的周期,使用第一频率资源周期性地接收所述同步信号,包括:
所述网络设备根据所述同步信号的周期,使用第一频率资源,在第一时刻发送所述同步信号,所述同步信号用于指示第一时段内所述唤醒信号的数据率,所述第一时段位于所述第一时刻之后。
实施例34.根据实施例33所述的方法,其特征在于,
所述同步信号的长度,用于指示所述第一时段内所述唤醒信号的数据率;或者
所述同步信号包括第一指示信息,所述第一指示信息用于指示所述第一时段内所述唤醒信号的数据率。
实施例35.根据实施例34所述的方法,其特征在于,所述同步信号的长度包括第一同步信号的长度和第二同步信号的长度,所述第一同步信号的长度用于指示所述第一时段 内所述唤醒信号的数据率为第一数据率,所述第二同步信号的长度用于指示所述第一时段内所述唤醒信号的数据率为第二数据率,所述第一同步信号的长度小于所述第二同步信号的长度,所述第一数据率高于所述第二数据率。
实施例36.根据实施例33至35中任一项所述的方法,其特征在于,所述第一时段位于所述第一时刻之后,且位于所述第二时刻之前,所述第二时刻为所述网络设备在所述第一时刻之后发送的第i个所述同步信号的时刻,i为大于1或等于1的整数。
实施例37.根据实施例23至32中任一项所述的方法,其特征在于,所述方法还包括:
所述网络设备使用所述第一频率资源发送唤醒信号,所述唤醒信号包括第二指示信息,其中,所述第二指示信息用于指示所述唤醒信号的数据率。
实施例38.根据实施例37所述的方法,其特征在于,所述第二指示信息具体用于指示所述唤醒信号中除所述第二指示信息外的其他信息的数据率,所述第二指示信息的数据率为所述网络设备配置的或者预定义的。
实施例39.根据实施例23至38中任一项所述的方法,其特征在于,所述同步信号的长度包括第一同步信号的长度和第二同步信号的长度,所述第一同步信号的长度小于所述第二同步信号的长度,所述第一同步信号的周期小于所述第二同步信号的周期。
实施例40.根据实施例39所述的方法,其特征在于,
所述第二同步信号的周期为所述第一同步信号的周期的整数倍,所述网络设备发送所述第二同步信号和所述网络设备发送所述第一同步信号之间的时间间隔,与所述第一同步信号的周期相同。
实施例41.根据实施例23至40中任一项所述的方法,其特征在于,
所述同步信号的波形与所述唤醒信号的波形相同,和/或,所述同步信号的调制方式与所述唤醒信号的调制方式相同。
实施例42.根据实施例23至41中任一项所述的方法,其特征在于,
所述同步信号的调制方式与所述唤醒信号的调制方式为开关键控OOK,和/或,
所述同步信号的波形和/或所述唤醒信号的波形为OOK。
实施例43.根据实施例23至42中任一项所述的方法,其特征在于,所述方法还包括:
所述网络设备使用所述第一频率资源发送所述唤醒信号,所述唤醒信号用于指示的需要接收寻呼的一个或多个终端设备的信息,所述一个或多个终端设备包括第一终端设备;
所述网络设备向所述第一终端设备发送第一信息和/或接收来自所述第一终端设备的随机接入前导序列,
其中,所述第一信息包括以下一项或多项信息:寻呼下行控制信息DCI,寻呼消息paging message,寻呼提前指示PEI。
实施例44.根据实施例43所述的方法,其特征在于,所述网络设备向所述第一终端设备发送第一信息和/或接收来自所述第一终端设备的随机接入前导序列,包括:
所述网络设备使用第二频率资源,向所述第一终端设备发送第一信息和/或接收来自所述第一终端设备的随机接入前导序列。
实施例45.根据实施例43或44所述的方法,其特征在于,所述网络设备包括第一模块和第二模块,
所述网络设备通过所述第一模块发送所述同步信号和所述唤醒信号,所述网络设备通 过所述第二模块向所述第一终端设备发送第一信息和/或接收来自所述第一终端设备的随机接入前导序列。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种信号传输的方法,其特征在于,包括:
    终端设备确定同步信号的周期;
    所述终端设备根据所述同步信号的周期,使用第一频率资源周期性地接收所述同步信号,其中,所述第一频率资源还用于传输唤醒信号,所述唤醒信号用于指示需要接收寻呼的一个或多个终端设备的信息。
  2. 根据权利要求1所述的方法,其特征在于,
    所述同步信号的周期与所述唤醒信号的传输参数关联。
  3. 根据权利要求1或2所述的方法,其特征在于,所述唤醒信号的传输参数包括时域资源长度,
    所述时域资源长度包括第一时域资源度和第二时域资源长度,所述同步信号的第一周期与所述第一时域资源长度关联,所述同步信号的第二周期与所述第二时域资源长度关联,所述第一时域资源长度小于所述第二时域资源长度,所述第一周期小于所述第二周期。
  4. 根据权利要求1或2所述的方法,其特征在于,
    所述唤醒信号的传输参数包括子载波间隔,
    所述子载波间隔包括第一子载波间隔和第二子载波间隔,所述同步信号的第一周期与所述第一子载波间隔关联,所述同步信号的第二周期与所述第二子载波间隔关联,所述第一子载波间隔大于所述第二子载波间隔,所述第一周期小于所述第二周期。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,
    所述同步信号的周期是所述网络设备配置的,或者,
    所述同步信号的周期是标准预定义的。
  6. 根据权利要求5所述的方法,其特征在于,若所述同步信号的周期是所述网络设备配置,则所述方法还包括:
    所述终端设备接收第一配置信息,所述第一配置信息用于配置所述同步信号的周期。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第二配置信息,所述第二配置信息用于配置所述同步信号的图样pattern;
    所述终端设备根据所述同步信号的周期,使用第一频率资源周期性地接收所述同步信号,包括:
    所述终端设备根据所述同步信号的周期和所述同步信号的pattern,使用所述第一频率资源接收所述同步信号。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述终端设备使用所述第一频率资源在所述第一时域位置接收第一信号和/或发送第二信号,所述同步信号的pattern表征的发送所述同步信号的时域位置不包括第一时域位置;
    其中,所述第一信号包括以下任一项:同步信号块SSB、物理下行控制信道PDCCH、物理下行共享信道PDSCH、信道状态信息参考信号CSI-RS、相位跟踪参考信号PT-RS、 定位参考信号PRS、解调参考信号DMRS;
    其中,所述第二信号包括以下任一项:解调参考信号DMRS、物理上行共享信道PUSCH、物理上行控制信道PUCCH、探测参考信号SRS。
  9. 根据权利要求8所述的方法,其特征在于,所述终端设备包括第一模块和第二模块,
    所述终端设备通过所述第一模块接收所述同步信号和所述唤醒信号,所述终端设备通过所述第二模块接收所述第一信号和/或发送所述第二信号。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述终端设备根据所述同步信号的周期,使用第一频率资源周期性地接收所述同步信号,包括:
    所述终端设备根据所述同步信号的周期,使用第一频率资源,在第一时刻接收所述同步信号,所述同步信号用于指示第一时段内所述唤醒信号的数据率,所述第一时段位于所述第一时刻之后。
  11. 根据权利要求10所述的方法,其特征在于,
    所述同步信号的长度,用于指示所述第一时段内所述唤醒信号的数据率;或者
    所述同步信号包括第一指示信息,所述第一指示信息用于指示所述第一时段内所述唤醒信号的数据率。
  12. 根据权利要求11所述的方法,其特征在于,所述同步信号的长度包括第一同步信号的长度和第二同步信号的长度,所述第一同步信号的长度用于指示所述第一时段内所述唤醒信号的数据率为第一数据率,所述第二同步信号的长度用于指示所述第一时段内所述唤醒信号的数据率为第二数据率,所述第一同步信号的长度小于所述第二同步信号的长度,所述第一数据率高于所述第二数据率。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述第一时段位于所述第一时刻之后,且位于所述第二时刻之前,所述第二时刻为所述终端设备在所述第一时刻之后接收的第i个所述同步信号的时刻,i为大于1或等于1的整数。
  14. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备使用所述第一频率资源接收唤醒信号,所述唤醒信号包括第二指示信息,其中,所述第二指示信息用于指示所述唤醒信号的数据率。
  15. 根据权利要求14所述的方法,其特征在于,所述第二指示信息具体用于指示所述唤醒信号中除所述第二指示信息外的其他信息的数据率,所述第二指示信息的数据率为所述网络设备配置的或者预定义的。
  16. 根据权利要求1至15中任一项所述的方法,其特征在于,所述同步信号的长度包括第一同步信号的长度和第二同步信号的长度,所述第一同步信号的长度小于所述第二同步信号的长度,所述第一同步信号的周期小于所述第二同步信号的周期。
  17. 根据权利要求16所述的方法,其特征在于,
    所述第二同步信号的周期为所述第一同步信号的周期的整数倍,所述终端设备接收所述第二同步信号和所述终端设备接收所述第一同步信号之间的时间间隔,与所述第一同步信号的周期相同。
  18. 根据权利要求1至17中任一项所述的方法,其特征在于,
    所述同步信号的波形与所述唤醒信号的波形相同,和/或,所述同步信号的调制方式 与所述唤醒信号的调制方式相同。
  19. 根据权利要求1至18中任一项所述的方法,其特征在于,
    所述同步信号的调制方式与所述唤醒信号的调制方式为开关键控OOK,和/或,
    所述同步信号的波形和/或所述唤醒信号的波形为OOK。
  20. 根据权利要求1至19中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备使用所述第一频率资源接收来自网络设备的所述唤醒信号,所述唤醒信号用于指示的需要接收寻呼的一个或多个终端设备的信息包括所述终端设备;
    所述终端设备接收来自所述网络设备的第一信息和/或发起随机接入,
    其中,所述第一信息包括以下一项或多项信息:寻呼下行控制信息DCI,寻呼消息paging message,寻呼提前指示PEI。
  21. 根据权利要求20所述的方法,其特征在于,所述终端设备接收来自所述网络设备的第一信息和/或发起随机接入,包括:
    所述终端设备使用第二频率资源,接收来自所述网络设备的第一信息和/或发起随机接入。
  22. 根据权利要求20或21所述的方法,其特征在于,所述终端设备包括第一模块和第二模块,
    所述终端设备通过所述第一模块接收所述同步信号和所述唤醒信号,所述终端设备通过所述第二模块接收所述第一信息和/或发起随机接入。
  23. 一种信号传输的方法,其特征在于,包括:
    网络设备确定同步信号的周期;
    所述网络设备根据所述同步信号的周期,使用第一频率资源周期性地发送所述同步信号,其中,所述第一频率资源还用于传输唤醒信号,所述唤醒信号用于指示需要接收寻呼的一个或多个终端设备的信息。
  24. 根据权利要求23所述的方法,其特征在于,
    所述同步信号的周期与所述唤醒信号的传输参数关联。
  25. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    所述网络设备广播系统信息,所述系统信息包括所述唤醒信号的传输参数。
  26. 根据权利要求23至25中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备使用所述第一频率资源发送所述唤醒信号,所述唤醒信号用于指示的需要接收寻呼的一个或多个终端设备的信息,所述一个或多个终端设备包括第一终端设备;
    所述网络设备向所述第一终端设备发送第一信息和/或接收来自所述第一终端设备的随机接入前导序列,
    其中,所述第一信息包括以下一项或多项信息:寻呼下行控制信息DCI,寻呼消息paging message,寻呼提前指示PEI。
  27. 根据权利要求26所述的方法,其特征在于,所述网络设备向所述第一终端设备发送第一信息和/或接收来自所述第一终端设备的随机接入前导序列,包括:
    所述网络设备使用第二频率资源,向所述第一终端设备发送第一信息和/或接收来自所述第一终端设备的随机接入前导序列。
  28. 根据权利要求26或27所述的方法,其特征在于,所述网络设备包括第一模块和 第二模块,
    所述网络设备通过所述第一模块发送所述同步信号和所述唤醒信号,所述网络设备通过所述第二模块向所述第一终端设备发送第一信息和/或接收来自所述第一终端设备的随机接入前导序列。
  29. 一种通信的装置,其特征在于,包括用于执行权利要求1至22中任一项所述的方法的模块或单元,或者,包括用于执行权利要求23至28中任一项所述的方法的模块或单元。
  30. 一种通信的装置,其特征在于,包括处理器,所述处理器,用于执行存储器中存储的计算机程序或指令,以使得所述装置执行权利要求1至22中任一项所述的方法,或者,以使得所述装置执行权利要求23至28中任一项所述的方法。
  31. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1至22中任一项所述的方法,或者,使得所述计算机执行如权利要求23至28中任一项所述的方法。
  32. 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行如权利要求1至22中任一项所述的方法的计算机程序或指令,或者,所述计算机程序产品包括用于执行如权利要求23至28中任一项所述的方法的计算机程序或指令。
PCT/CN2022/119930 2021-09-28 2022-09-20 信号传输的方法和装置 WO2023051321A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22874708.5A EP4395422A1 (en) 2021-09-28 2022-09-20 Signal transmission method and apparatus
US18/616,907 US20240244551A1 (en) 2021-09-28 2024-03-26 Signal transmission method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111146393 2021-09-28
CN202111146393.3 2021-09-28
CN202111305478.1 2021-11-05
CN202111305478.1A CN115884330A (zh) 2021-09-28 2021-11-05 信号传输的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/616,907 Continuation US20240244551A1 (en) 2021-09-28 2024-03-26 Signal transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2023051321A1 true WO2023051321A1 (zh) 2023-04-06

Family

ID=85756820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119930 WO2023051321A1 (zh) 2021-09-28 2022-09-20 信号传输的方法和装置

Country Status (4)

Country Link
US (1) US20240244551A1 (zh)
EP (1) EP4395422A1 (zh)
CN (1) CN115884330A (zh)
WO (1) WO2023051321A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118785326A (zh) * 2023-04-04 2024-10-15 华为技术有限公司 信号传输方法、装置、系统及存储介质
CN118382140A (zh) * 2024-02-06 2024-07-23 荣耀终端有限公司 一种通信方法及相关设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160150474A1 (en) * 2014-11-21 2016-05-26 Qualcomm Incorporated Low power synchronization in a wireless communication network
CN110754120A (zh) * 2017-05-04 2020-02-04 索尼公司 传输包括同步信令的唤醒信号的电信装置和方法
CN110830206A (zh) * 2018-08-10 2020-02-21 展讯通信(上海)有限公司 Pdcch确定、同步信号检测与发送方法及装置、存储介质、终端、基站
CN110839214A (zh) * 2018-08-17 2020-02-25 北京展讯高科通信技术有限公司 唤醒信号的发送资源位置的配置方法、唤醒方法及其装置
US20200367166A1 (en) * 2017-11-14 2020-11-19 Sony Corporation The wake up signal in the selected format for use by the communications device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160150474A1 (en) * 2014-11-21 2016-05-26 Qualcomm Incorporated Low power synchronization in a wireless communication network
CN110754120A (zh) * 2017-05-04 2020-02-04 索尼公司 传输包括同步信令的唤醒信号的电信装置和方法
US20200367166A1 (en) * 2017-11-14 2020-11-19 Sony Corporation The wake up signal in the selected format for use by the communications device
CN110830206A (zh) * 2018-08-10 2020-02-21 展讯通信(上海)有限公司 Pdcch确定、同步信号检测与发送方法及装置、存储介质、终端、基站
CN110839214A (zh) * 2018-08-17 2020-02-25 北京展讯高科通信技术有限公司 唤醒信号的发送资源位置的配置方法、唤醒方法及其装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Wake Up Signal Functions for NB-IoT", 3GPP DRAFT; R1-1805995-MEDIATEK-WUS FUNCTIONS FOR NB-IOT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. BuSan, South Korea; 20180521 - 20180525, 20 May 2018 (2018-05-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051441213 *
ZTE, SANECHIPS: "Remaining issues on system acquisition time reduction for MTC", 3GPP DRAFT; R1-1804174 REMAING ISSUES ON REDUCED SYSTEM ACQUISITION TIME FOR MTC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Sanya, China;, 6 April 2018 (2018-04-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051413134 *

Also Published As

Publication number Publication date
EP4395422A1 (en) 2024-07-03
CN115884330A (zh) 2023-03-31
US20240244551A1 (en) 2024-07-18

Similar Documents

Publication Publication Date Title
WO2023051321A1 (zh) 信号传输的方法和装置
CN113261320B (zh) 通信方法、装置及系统
CN110099453B (zh) 用于提供设备至设备通信的方法和无线设备
WO2021138917A1 (zh) 一种寻呼方法及装置
US20220346014A1 (en) Random access method and apparatus
WO2020200134A1 (zh) 一种随机接入方法及通信装置
WO2023284620A1 (zh) 通信的方法和装置
JP2022550159A (ja) ウェイクアップ信号検出方法および装置
WO2018171666A1 (zh) 信息收发方法和设备
KR20210111775A (ko) 절전 관련 사용자 장비
WO2021056587A1 (zh) 一种通信方法及装置
WO2022094775A1 (zh) 寻呼方法、终端设备和网络设备
CN114828222A (zh) 一种寻呼方法、装置、网络侧设备及终端
CN115190567A (zh) 用于寻呼的方法和装置
WO2023066152A1 (zh) 信息传输的方法和装置
WO2019029467A1 (zh) 一种获取目标服务小区的跟踪区的标识信息的方法及设备
WO2020064129A1 (en) Reducing power consumption in a wireless communication network
WO2023083036A1 (zh) 信号传输的方法和装置
WO2024012350A1 (zh) 信号传输的方法和通信装置
WO2023240502A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022077140A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024055878A1 (zh) 通信方法和通信装置
WO2024032120A1 (zh) 一种通信方法和装置
CN117768980A (zh) 通信方法和通信装置
CN117460027A (zh) 一种通信的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874708

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022874708

Country of ref document: EP

Ref document number: 22874708

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022874708

Country of ref document: EP

Effective date: 20240325

NENP Non-entry into the national phase

Ref country code: DE