WO2023240502A1 - 无线通信的方法、终端设备和网络设备 - Google Patents
无线通信的方法、终端设备和网络设备 Download PDFInfo
- Publication number
- WO2023240502A1 WO2023240502A1 PCT/CN2022/099000 CN2022099000W WO2023240502A1 WO 2023240502 A1 WO2023240502 A1 WO 2023240502A1 CN 2022099000 W CN2022099000 W CN 2022099000W WO 2023240502 A1 WO2023240502 A1 WO 2023240502A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wake
- signal
- information
- frequency domain
- power
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 184
- 238000004891 communication Methods 0.000 title claims abstract description 95
- 230000005540 biological transmission Effects 0.000 claims abstract description 61
- 238000005259 measurement Methods 0.000 claims description 75
- 230000008054 signal transmission Effects 0.000 claims description 55
- 230000015654 memory Effects 0.000 claims description 51
- 238000004590 computer program Methods 0.000 claims description 45
- 235000019527 sweetened beverage Nutrition 0.000 claims description 35
- 230000001413 cellular effect Effects 0.000 claims description 32
- 238000001228 spectrum Methods 0.000 claims description 22
- 230000011664 signaling Effects 0.000 claims description 17
- 238000003860 storage Methods 0.000 claims description 11
- 239000000969 carrier Substances 0.000 claims description 5
- 238000013507 mapping Methods 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 25
- 230000008569 process Effects 0.000 description 18
- 238000012545 processing Methods 0.000 description 15
- 230000006870 function Effects 0.000 description 14
- 230000001360 synchronised effect Effects 0.000 description 10
- 230000004913 activation Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 230000002618 waking effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 101000824892 Homo sapiens SOSS complex subunit B1 Proteins 0.000 description 1
- 101000824890 Homo sapiens SOSS complex subunit B2 Proteins 0.000 description 1
- 101150071746 Pbsn gene Proteins 0.000 description 1
- 102100022320 SPRY domain-containing SOCS box protein 1 Human genes 0.000 description 1
- 102100022330 SPRY domain-containing SOCS box protein 2 Human genes 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- Embodiments of the present application relate to the field of communications, and more specifically, to a wireless communication method, terminal equipment, and network equipment.
- the wake up signal (WUS) based on the wake up receiver (WUR) is introduced.
- This method has extremely low cost, extremely low complexity and extremely low cost. Low power consumption characteristics.
- the relevant configuration of the wake-up signal needs to be obtained to determine the activation of the wake-up receiver and the reception of the wake-up signal.
- what parameters are specifically included in the relevant configuration of the wake-up signal is a problem that needs to be solved. question.
- the embodiments of the present application provide a wireless communication method, terminal device and network device, and clarify the specific parameters included in the relevant configuration of the wake-up signal. Therefore, the terminal device can use the wake-up receiver to receive the wake-up signal based on the relevant configuration of the wake-up signal. .
- a wireless communication method which method includes:
- the terminal device receives the first information
- the first information includes at least one of the following: power information of the wake-up signal, spatial information of the wake-up signal, transmission parameters of the wake-up signal, and time-frequency resource information of the wake-up signal;
- the first information is used for the terminal device to receive the wake-up signal using a wake-up receiver.
- a wireless communication method which method includes:
- the network device sends the first information
- the first information includes at least one of the following: power information of the wake-up signal, spatial information of the wake-up signal, transmission parameters of the wake-up signal, and time-frequency resource information of the wake-up signal;
- the first information is used by the terminal device to receive the wake-up signal using a wake-up receiver.
- a third aspect provides a terminal device for executing the method in the first aspect.
- the terminal device includes a functional module for executing the method in the first aspect.
- a fourth aspect provides a network device for performing the method in the above second aspect.
- the network device includes a functional module for executing the method in the above second aspect.
- a terminal device including a processor and a memory; the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, so that the terminal device executes the above-mentioned first aspect.
- a network device including a processor and a memory; the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, so that the network device performs the above-mentioned second aspect. Methods.
- a seventh aspect provides an apparatus for implementing the method in any one of the above first to second aspects.
- the device includes: a processor, configured to call and run a computer program from a memory, so that a device installed with the device executes the method in any one of the above-mentioned first to second aspects.
- An eighth aspect provides a computer-readable storage medium for storing a computer program that causes a computer to execute the method in any one of the above-mentioned first to second aspects.
- a computer program product including computer program instructions, which cause a computer to execute the method in any one of the above-mentioned first to second aspects.
- a tenth aspect provides a computer program that, when run on a computer, causes the computer to execute the method in any one of the above-mentioned first to second aspects.
- the relevant configuration of the wake-up signal may include at least one of the following: power information of the wake-up signal, spatial information of the wake-up signal, transmission parameters of the wake-up signal, and time-frequency resource information of the wake-up signal.
- the terminal device can receive the wake-up signal using the wake-up receiver based on the relevant configuration of the wake-up signal.
- Figure 1 is a schematic diagram of a communication system architecture applied in an embodiment of the present application.
- Figure 2 is a schematic diagram of a DRX cycle provided by this application.
- FIG. 3 is a schematic diagram of an energy-saving signal provided by this application.
- Figure 4 is a schematic diagram of a PF and PO provided by this application.
- Figure 5 is a schematic diagram of an energy-saving signal indicating monitoring of PDDCH provided by this application.
- Figure 6 is a schematic diagram of a wake-up receiver and a main receiver provided by this application.
- FIG. 7 is a schematic diagram of OOK modulation provided by this application.
- Figure 8 is a schematic flow chart of a wireless communication method provided according to an embodiment of the present application.
- Figure 9 is a schematic diagram of a base station transmitting wireless signals through beams according to an embodiment of the present application.
- Figure 10 is a schematic diagram of a QCL relationship between WUS and SSB provided according to an embodiment of the present application.
- Figure 11 is a schematic diagram of a frequency domain reference point and frequency domain offset provided according to an embodiment of the present application.
- Figure 12 is a schematic diagram of a frequency domain signal bandwidth provided according to an embodiment of the present application.
- Figure 13 is a schematic diagram of a WUS frequency domain provided according to an embodiment of the present application.
- Figure 14 is a schematic diagram of another WUS frequency domain provided according to an embodiment of the present application.
- Figure 15 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
- Figure 16 is a schematic block diagram of a network device provided according to an embodiment of the present application.
- Figure 17 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
- Figure 18 is a schematic block diagram of a device provided according to an embodiment of the present application.
- Figure 19 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
- GSM Global System of Mobile communication
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- GPRS General Packet Radio Service
- LTE Long Term Evolution
- LTE-A Advanced long term evolution
- NR New Radio
- NTN Non-Terrestrial Networks
- UMTS Universal Mobile Telecommunication System
- WLAN Wireless Local Area Networks
- IoT Internet of Things
- WiT wireless fidelity
- 5G fifth-generation communication
- the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) scenario. ) network deployment scenario, or applied to Non-Standalone (NSA) network deployment scenario.
- Carrier Aggregation, CA Carrier Aggregation
- DC Dual Connectivity
- SA standalone
- NSA Non-Standalone
- the communication system in the embodiments of the present application can be applied to unlicensed spectrum, where the unlicensed spectrum can also be considered as shared spectrum; or, the communication system in the embodiments of the present application can also be applied to licensed spectrum, Among them, licensed spectrum can also be considered as unshared spectrum.
- the communication system in the embodiment of the present application can be applied to the FR1 frequency band (corresponding to the frequency band range 410MHz to 7.125GHz), can also be applied to the FR2 frequency band (corresponding to the frequency band range 24.25GHz to 52.6GHz), and can also be applied to The new frequency band, for example, corresponds to the frequency band range of 52.6 GHz to 71 GHz or the high frequency band corresponding to the frequency band range of 71 GHz to 114.25 GHz.
- the embodiments of this application describe various embodiments in combination with network equipment and terminal equipment.
- the terminal equipment may also be called user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
- User Equipment User Equipment
- the terminal device can be a station (STATION, ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, or a personal digital assistant.
- PDA Personal Digital Assistant
- handheld devices with wireless communication capabilities computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or in the future Terminal equipment in the evolved Public Land Mobile Network (PLMN) network, etc.
- PLMN Public Land Mobile Network
- the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites). superior).
- the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, or an augmented reality (Augmented Reality, AR) terminal.
- Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city (smart city) or wireless terminal equipment in smart home (smart home), vehicle-mounted communication equipment, wireless communication chip/application specific integrated circuit (ASIC)/system on chip (System on Chip, SoC), etc.
- ASIC application specific integrated circuit
- the terminal device may also be a wearable device.
- Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
- a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
- wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones.
- the network device may be a device used to communicate with mobile devices.
- the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA.
- BTS Base Transceiver Station
- it can be a base station (NodeB, NB) in WCDMA, or an evolutionary base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network Network equipment or base station (gNB) or Transmission Reception Point (TRP), or network equipment in the future evolved PLMN network or network equipment in the NTN network, etc.
- gNB NR network Network equipment or base station
- TRP Transmission Reception Point
- the network device may have mobile characteristics, for example, the network device may be a mobile device.
- network devices may be satellites or balloon stations.
- the satellite can be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geosynchronous orbit (geostationary earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite ) satellite, etc.
- the network device may also be a base station installed on land, water, or other locations.
- network equipment can provide services for a cell, and terminal equipment communicates with the network equipment through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
- the cell can be a network equipment ( For example, the cell corresponding to the base station), the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
- the small cell here can include: urban cell (Metro cell), micro cell (Micro cell), pico cell ( Pico cell), femto cell (Femto cell), etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
- the communication system 100 may include a network device 110, which may be a device that communicates with a terminal device 120 (also referred to as a communication terminal or terminal).
- the network device 110 can provide communication coverage for a specific geographical area and can communicate with terminal devices located within the coverage area.
- Figure 1 exemplarily shows one network device and two terminal devices.
- the communication system 100 may include multiple network devices and other numbers of terminal devices may be included within the coverage of each network device. The embodiments of the present application do not limit this.
- the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiments of the present application.
- the communication device may include a network device 110 and a terminal device 120 with communication functions.
- the network device 110 and the terminal device 120 may be the specific devices described above, which will not be described again here.
- the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiments of this application.
- the first communication device may be a terminal device, such as a mobile phone, a machine facility, a Customer Premise Equipment (CPE), industrial equipment, a vehicle, etc.; the second communication device The device may be a peer communication device of the first communication device, such as a network device, a mobile phone, an industrial device, a vehicle, etc.
- the first communication device may be a terminal device, and the second communication device may be a network device (ie, uplink communication or downlink communication); or, the first communication device may be a first terminal, and the second communication device Can be used as a second terminal (i.e. sideline communication).
- the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
- a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
- correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
- predefinition or “preconfiguration” can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
- devices for example, including terminal devices and network devices.
- predefined can refer to what is defined in the protocol.
- the "protocol” may refer to a standard protocol in the communication field, for example, it may be an evolution of the existing LTE protocol, NR protocol, Wi-Fi protocol or protocols related to other communication systems.
- the application does not limit the type of agreement.
- the terminal energy saving based on the physical downlink control channel Physical Downlink Control Channel, PDCCH
- PDCCH Physical Downlink Control Channel
- the terminal equipment needs to continuously detect the PDCCH to determine whether the base station schedules data transmission to itself.
- the DRX mechanism includes configuring the DRX cycle (cycle) for the terminal device in the RRC connection (RRC_CONNECTED) state.
- a DRX cycle consists of "Activation Period (On Duration)” and "Sleep Period (Opportunity for DRX)".
- the terminal equipment monitors and receives downlink channels and signals including PDCCH; during the "Opportunity for DRX” time, the terminal equipment does not receive downlink channels and signals such as PDCCH to reduce power consumption.
- the basic mechanism of DRX is to configure a DRX cycle for the terminal device in the RRC connected state.
- the DRX cycle consists of "Activation Period (On Duration)” and "Sleep Period (Opportunity for DRX)": During the "On Duration” time, the terminal device monitors and receives PDCCH (Activation Period); during the "On Duration” time, During the "Opportunity for DRX” period, the terminal device does not receive PDCCH to reduce power consumption (sleep period).
- the transmission of paging messages is also a DRX mechanism in the RRC idle state.
- the DRX cycle is the cycle of the paging message.
- time is divided into consecutive DRX Cycles.
- an energy saving signal is introduced for energy saving of terminals in the RRC_CONNECTED state to achieve further energy saving.
- the energy-saving signal is used in conjunction with the DRX mechanism, and the terminal receives an indication of the energy-saving signal before the DRX ON duration.
- the energy-saving signal When the terminal has data transmission in a DRX cycle, the energy-saving signal "wakes up” the terminal to monitor the PDCCH during the DRX On duration; otherwise, when the terminal has no data transmission in a DRX cycle, the energy-saving signal does not "wake up” the terminal, and the terminal There is no need to monitor PDCCH during DRX On duration.
- the energy-saving signal is carried on the PDCCH channel and is carried through DCI format 2_6. The process of instructing the terminal whether to monitor PDCCH during DRX On Duration through the energy-saving signal is shown in Figure 3.
- the energy saving process of the terminal receiving paging messages in the RRC idle state/RRC deactivated state has been optimized, and a similar energy saving signal has been introduced.
- PO paging occasion
- the terminal When receiving paging messages through DRX, there is a paging occasion (PO) within a DRX cycle.
- the terminal only receives paging messages at PO, and does not accept paging messages at times other than PO.
- the paging radio frame (Paging Frame, PF) indicates the system frame number on which the paging message should appear, and PO indicates the time when the paging message may appear.
- a PF frame may include one or more POs.
- Each DRX cycle or paging cycle (Paging Cycle) the terminal only needs to monitor its own PO.
- the terminal calculates its corresponding PF and the position of the PO in the PF based on its own identification (ID). As shown in Figure 4, the position of the PF within a paging DRX cycle and the position of the PO within the
- the probability of the UE being paged may not be high.
- the UE periodically detects the PDCCH at the corresponding PO, but does not detect the paging indication information sent to itself, which will cause a waste of power.
- the energy-saving signal may also be called paging early indication (PEI), which is used to indicate whether the UE receives paging PDCCH at the target PO before the target PO arrives.
- PPI paging early indication
- the energy-saving signal is carried on the PDCCH channel and is carried through DCI format 2_7.
- an energy saving signal indicates whether UEs in one or more paging subgroups receive paging on the corresponding PF or PO.
- the energy saving of UEs in the RRC_CONNECTED state continues to be enhanced, and an enhanced scheme for search space set group switching is also introduced, which also includes skipping PDCCH detection to save power when needed, that is, the PDCCH skipping scheme.
- Control information related to search space set group switching and PDCCH skipping is also carried through the PDCCH.
- the terminal energy saving based on the wake-up receiver related to the present application will be described.
- a wake-up receiver is introduced to receive the wake-up signal.
- the wake-up receiver has the characteristics of extremely low cost, extremely low complexity and extremely low power consumption. It mainly receives wake-up signals based on envelope detection. Therefore, the wake-up signal (WUS) received by the wake-up receiver is different from the modulation method, waveform, etc. of the signal carried based on the PDCCH.
- the wake-up signal is mainly an envelope signal modulated by Amplitude Shift Keying (ASK) on the carrier signal.
- the demodulation of the envelope signal is also mainly completed based on the energy provided by the wireless radio frequency signal to drive a low-power circuit, so it can be passive.
- the wake-up receiver can also be powered by the terminal.
- the wake-up receiver greatly reduces power consumption compared with the traditional receiver of the terminal.
- the wake-up receiver can be combined with the terminal as an additional module of the terminal receiver, or can be used alone as a wake-up function module of the terminal.
- the system block diagram of the wake-up receiver in the embodiment of the present application can be shown in Figure 6.
- the wake-up receiver receives the wake-up signal. If the terminal is required to turn on the main receiver, the terminal can be instructed to turn on the main receiver, for example, through backscattering signal instructions. The terminal turns on the main receiver. Otherwise, the terminal's main receiver can be turned off. It should be noted that the main receiver in Figure 6 can also be called the main transceiver.
- the wake-up receiver may also receive narrow bandwidth cellular network signals (eg, NR signals).
- narrow bandwidth cellular network signals eg, NR signals.
- the wake-up receiver does not need to be turned on and off like a traditional receiver to save power, but can be activated by a wake-up signal (WUS) at any time and receive wake-up information.
- the wake-up signal mainly passes through the envelope signal of ASK modulation of the carrier signal.
- the wake-up signal (WUS) uses On-Off Keying (OOK) modulation.
- OOK On-Off Keying
- the modulation principle of OOK is used to modulate the amplitude of the carrier signal to non-zero values and zero values, corresponding to on (On) and off (Off) respectively, used to represent information bits.
- OOK is also known as binary amplitude keying (2ASK). As shown in Figure 7, bit 1 is modulated to On, and bit 0 is modulated to Off.
- the wake-up receiver of the UE By waking up the main receiver of the UE by waking up the receiver, further power saving of the UE can be achieved.
- the relevant configuration of the wake-up signal needs to be obtained to determine the activation of the wake-up receiver and the reception of the wake-up signal.
- what information is required for the configuration of the UE wake-up signal is a problem that needs to be solved.
- this application proposes a terminal energy-saving solution, which clarifies the specific parameters included in the relevant configuration of the wake-up signal. Therefore, the terminal device can use the wake-up receiver to receive the wake-up signal based on the relevant configuration of the wake-up signal.
- FIG 8 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application. As shown in Figure 8, the wireless communication method 200 may include at least part of the following content:
- the network device sends first information; wherein the first information includes at least one of the following: power information of the wake-up signal, spatial information of the wake-up signal, transmission parameters of the wake-up signal, and time-frequency resource information of the wake-up signal; Wherein, the first information is used by the terminal device to receive the wake-up signal using a wake-up receiver;
- S220 The terminal device receives the first information.
- the wake-up receiver may also be called a low-power receiver or a zero-power receiver, or similar names, which the present application is not limited to.
- the wake-up signal may also be an energy supply signal that wakes up the receiver.
- the terminal device may include a wake-up receiver and a main transceiver (which may be similar to the main receiver in Figure 6).
- the main transceiver may be a traditional transceiver (used to transmit and receive cellular network signals and channels). ).
- the wake-up receiver is a receiver with extremely low or even zero power consumption. It uses similar technologies such as Radio Frequency Identification (RFID), including passive, envelope detection, and energy harvesting. wait.
- RFID Radio Frequency Identification
- the wake-up receiver can be combined with the terminal device as an additional module of the main transceiver of the terminal device, or can be used alone as a functional module of the terminal device.
- the wake-up receiver has the characteristics of extremely low cost, extremely low complexity and extremely low power consumption. It mainly receives signals based on envelope detection. The demodulation of the envelope signal is also mainly completed based on the energy provided by the wireless radio frequency signal to drive a low-power circuit, so it can be passive. Regardless of the power supply method, the wake-up receiver greatly reduces power consumption compared to the main transceiver of the terminal device.
- the wake-up receiver may use the first transmission mode to perform channel sensing, and the master transceiver may use the second transmission mode to perform channel sensing. Specifically, under the same conditions, such as when both are used for channel sensing, the energy consumption of the first transmission method is less than the energy consumption of the second transmission method.
- the wake-up receiver can be activated and provided with energy by radio frequency signals to drive the wake-up receiver to perform channel listening, and further send indication information to the main transceiver when the result of the wake-up receiver listening is that the channel is idle. You can use To wake up or turn on the main transceiver for further channel occupation and data transmission and reception.
- the terminal device can also receive other signals through the wake-up receiver, such as receiving narrow-bandwidth cellular network signals (such as NR signals) through the wake-up receiver.
- narrow-bandwidth cellular network signals such as NR signals
- the first information may include related configurations of one or more wake-up signals, which is not limited by the embodiments of the present application.
- the first information may also be used by the terminal device to determine whether to use the wake-up receiver to receive the wake-up signal.
- the terminal device sends first indication information, and the first indication information is used to indicate whether the terminal device uses the wake-up receiver to receive the wake-up signal.
- the first information is carried through one of the following: system messages, public radio resource control (Radio Resource Control, RRC) signaling, dedicated RRC signaling, media access control layer control unit (Media Access Control Control unit) Element, MAC CE), physical layer signaling.
- RRC Radio Resource Control
- RRC dedicated RRC signaling
- media access control layer control unit Media Access Control Control unit Element
- MAC CE media access control control unit
- the allocation of power (Energy per resource element, EPRE) for each resource element is constant, but there may be a certain power bias between EPREs of different channels or signals. shift.
- the EPRE of different channels or signals is generally set based on the power of the secondary synchronization signal (Secondary Synchronization Signal, SSS) in the synchronization signal block (Synchronization Signal Block, SSB) as the reference power.
- SSS secondary Synchronization Signal
- SSB Synchronization Signal Block
- the power of the SSS is indicated by the parameter ss-PBCH-BlockPower configured in higher layer signaling.
- the transmission power of SSS is defined as the linear average power of the power of all resource elements (REs) carrying SSS within the operating bandwidth.
- the EPRE of the Channel State Information Reference Signal (CSI-RS) configured by the network can be passed through the EPRE of the SSS of the SSB with which it has a quasi-co-located (QCL) relationship, and the power configured by the upper layer
- the offset parameter powerControlOffsetSS is obtained, where powerControlOffsetSS indicates the power offset between the EPRE of the CSI-RS and the EPRE of the SSS.
- the power offset between the EPRE of the Physical Downlink Shared Channel (PDSCH) channel and the EPRE of the CSI-RS is indicated by the power offset parameter powerControlOffset configured by the higher layer.
- PDSCH Physical Downlink Shared Channel
- the EPRE information of the downlink channel or signal can be used by the UE to perform channel estimation, channel state information (Channel State Information, CSI) reporting, link recovery, power control and other processes based on the power information.
- CSI Channel State Information
- SSB can also be called synchronization signal/physical broadcast channel block (SS/PBCH block).
- SS/PBCH block synchronization signal/physical broadcast channel block
- the first reference power is the EPRE of the first cellular network signal, or the first reference power is the EPRE of the first cellular network channel.
- the first cellular network signal includes but is not limited to at least one of the following: SSB, CSI-RS, Physical Downlink Control Channel Demodulation Reference Signal (Physical Downlink Control Channel Demodulation Reference Signal, PDCCH DMRS), Physical Downlink Shared Channel Demodulation Reference Signal (Physical Downlink Shared Channel Demodulation Reference Signal, PDSCH DMRS).
- SSB Physical Downlink Control Channel Demodulation Reference Signal
- PDCCH DMRS Physical Downlink Shared Channel Demodulation Reference Signal
- PDSCH DMRS Physical Downlink Shared Channel Demodulation Reference Signal
- the first cellular network channel includes but is not limited to at least one of the following: PDCCH, PDSCH.
- the orthogonal frequency-division multiplexing (OFDM) modulation module For the wake-up signal transmitted in the NR system, a more convenient method is to use the orthogonal frequency-division multiplexing (OFDM) modulation module to realize the waveform of the wake-up signal.
- the downlink signal can be passed through the same fast Fourier transform ( Fast Fourier Transform (FFT)/Inverse Fast Fourier Transform (IFFT) operation generates NR signal and wake-up signal.
- FFT Fast Fourier Transform
- IFFT Inverse Fast Fourier Transform
- the amplitude of the subcarriers in the subcarrier set carrying the wake-up signal is set to generate the wake-up signal, including an On waveform and an Off waveform.
- an On waveform can be generated, and if all subcarriers in the sub-carrier set carrying the wake-up signal are set to zero values, an Off signal can be generated. .
- the power of the wake-up signal can be expressed as the power corresponding to the RE in the On waveform or the RE modulated by the high level in the amplitude modulation, or the average power of the RE carrying the wake-up signal.
- the power of the wake-up signal may have a certain power offset or ratio with the EPRE of the NR signal.
- the power of the wake-up signal has a certain power offset from the power of the SSS.
- the power offset can be -3dB, 0dB, 3dB, 6dB, etc.
- the power offset configuration signaling of the wake-up signal can be as shown in the following example.
- the absolute power of the wake-up signal such as the power of the SSB configured by ss-PBCH-BlockPower, ranges from (-60,...,50)dBm.
- the terminal device determines reception performance of the wake-up signal based on power information of the wake-up signal.
- the terminal device determines the reception performance of the wake-up signal based on the power information of the wake-up signal and the first measurement result.
- the terminal device determines the path loss of the wake-up signal based on the power information of the wake-up signal and the first measurement result.
- the first measurement result includes at least one of the following: Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio, SINR).
- RSRP Reference Signal Received Power
- RSRQ Reference Signal Received Quality
- SINR Signal to Interference plus Noise Ratio
- the first measurement result is a measurement result measured by the main transceiver, or the first measurement result is a measurement result measured by the wake-up receiver.
- the first measurement result is the measurement result of the cellular network signal, or the first measurement result is the measurement result obtained by the terminal device using the main transceiver to measure the wake-up signal, or the first measurement result is the terminal device using the main transceiver to measure the wake-up signal.
- the measurement result is obtained after the transceiver measures the cellular network signal transmitted with the same waveform as the wake-up signal, or the first measurement result is the measurement result obtained after the terminal device uses the wake-up receiver to measure the wake-up signal, or the first measurement result is The measurement results are obtained after the terminal device uses a wake-up receiver to measure the cellular network signal transmitted with the same waveform as the wake-up signal.
- the terminal device sends the first measurement result. For example, when the first measurement result is less than or equal to the first threshold, the terminal device sends the first measurement result.
- the first threshold is agreed upon by a protocol, or the first threshold is configured by a network device.
- the network device may indicate the power offset parameter of the wake-up signal to the terminal device.
- the power offset parameter can be used to determine the reception performance of the wake-up signal.
- the reception performance of the wake-up signal can be determined by combining the measurement result of the NR signal and the power offset parameter of the wake-up signal, and further determining whether to use the wake-up receiver to receive the wake-up signal.
- the main transceiver directly measures the wake-up signal or a signal transmitted using the same waveform as the wake-up signal to obtain measurement results, such as measuring RSRP, RSRQ, SINR, etc. of the signal.
- the terminal device can feed back the measurement results to the network, so that the network or the terminal determines not to receive the wake-up signal through the wake-up receiver, but to receive the relevant energy-saving signal through the PDCCH to achieve energy saving; otherwise, the wake-up signal is received through the wake-up receiver.
- the terminal device can perform measurements during the operation of the main transceiver and feed back relevant information to the network device.
- the terminal device can provide feedback based on a measurement threshold. When the measurement result is lower than a measurement threshold, feedback of the measurement result is triggered.
- the wake-up receiver can also directly measure the received power of the wake-up signal or the signal transmitted using the same waveform as the wake-up signal, thereby determining whether to use wake-up reception.
- the machine receives the wake-up signal.
- the network device can also estimate the reception performance of the wake-up signal based on the CSI report obtained from the terminal device's measurement results of the CSI-RS, thereby determining Whether the terminal device receives the wake-up signal through the wake-up receiver.
- the spatial information of the wake-up signal includes but is not limited to at least one of the following:
- TCI Transmission Configuration Indicator
- the first corresponding relationship includes a mapping relationship between multiple wake-up signals and indices of multiple SSBs, and the multiple wake-up signals at least include the wake-up signal.
- wake-up signals in different time domains, frequency domains or code domains correspond to different SSB indices.
- the path loss of wireless signal transmission becomes larger and the coverage of the wireless signal becomes smaller.
- Beams are directional, and a narrow beam can only cover part of the cell, but cannot cover all users in the cell.
- the base station can send signals through beams in four different directions. For beam B2, it can only cover UE1, but not UE2.
- Common channels and signals in the NR system need to cover the entire cell through multi-beam scanning to facilitate reception by UEs in the cell.
- the base station will use appropriate beams to send channels and signals to the UE through beam management.
- the QCL relationship with CSI-RS or SSB defines the spatial information of a channel or signal, such as the configuration information of PDCCH control resource set (Control Resource Set, CORESET), reference signal, etc., through the QCL Information defines the resource index (index) of the CSI-RS or the index (index) of the SSB with which it has a QCL relationship to indicate the spatial information of the channel or signal.
- the spatial information of the wake-up signal can be configured by defining a QCL relationship between the wake-up signal and the NR signal or channel, such as having a QCL relationship with CSI-RS or SSB.
- the spatial information of the wake-up signal can also be indicated by the TCI status.
- the base station does not maintain the beam used by the terminal equipment.
- the downlink public channel or signal is sent using beam scanning, such as PDCCH, through Define the corresponding relationship between the PDCCH monitoring timing and the SSB index to determine the beam direction used by the PDCCH sent at different monitoring timings, that is, its spatial information.
- beam scanning such as PDCCH
- the spatial information of the wake-up signal is not indicated through explicit configuration information, but according to predefined rules, wake-up signals in different time domains, frequency domains, or code domains correspond to different spatial information.
- WUS1 and WUS2 are wake-up signals configured by the network, where WUS1 and SSB1 have a QCL relationship, and WUS2 and SSB2 have a QCL relationship.
- the transmission parameters of the wake-up signal include but are not limited to at least one of the following:
- the modulation order of the wake-up signal, the coding method of the wake-up signal, the coding rate of the wake-up signal, the transmission rate of the wake-up signal, and the symbol length of the wake-up signal is the modulation order of the wake-up signal, the coding method of the wake-up signal, the coding rate of the wake-up signal, the transmission rate of the wake-up signal, and the symbol length of the wake-up signal.
- the wake-up signal sent by the network device can have different modulation orders, coding methods, coding rates, information rates, and symbol lengths, and can have different transmission performance, which also affects the reception performance of the wake-up signal.
- the network device indicates the modulation order, coding method, coding rate, information rate, and symbol length of the wake-up signal.
- these parameters can also be used to estimate the reception performance of the wake-up signal, thereby Determine whether to use a wake-up receiver to receive wake-up signals and feed them back to the network.
- the first information also includes multiple sets of wake-up signal transmission parameters, wherein each set of wake-up signal transmission parameters in the multiple sets of wake-up signal transmission parameters includes but is not limited to at least one of the following: modulation order, encoding method, encoding Rate, transmission rate, symbol length, resource size, power information.
- the network can select specific transmission parameter combinations based on multiple sets of transmission parameters for different coverage requirements.
- the terminal device uses the wake-up receiver to receive the wake-up signal according to the multiple sets of wake-up signal transmission parameters. For example, when receiving a wake-up signal, the terminal device may receive the wake-up signal based on multiple sets of wake-up signal transmission parameters. That is, each time a wake-up signal is received, the terminal device may receive the wake-up signal based on multiple sets of wake-up signal transmission parameters.
- the terminal device uses the wake-up receiver to receive the wake-up signal according to a set of wake-up signal transmission parameters associated with the wake-up signal among the multiple sets of wake-up signal transmission parameters.
- a set of wake-up signal transmission parameters associated with the wake-up signal is obtained by the terminal device through the main transceiver, or a set of wake-up signal transmission parameters associated with the wake-up signal is obtained by the terminal device through the wake-up signal. obtained by the receiver. That is, the network device may explicitly indicate a set of wake-up signal transmission parameters associated with the wake-up signal.
- a set of wake-up signal transmission parameters associated with the wake-up signal is determined based on the resource location of the wake-up signal, or a set of wake-up signal transmission parameters associated with the wake-up signal is determined based on a feature sequence in the wake-up signal. . That is, the network device may implicitly indicate a set of wake-up signal transmission parameters associated with the wake-up signal.
- the signature sequence is used by the wake-up receiver to synchronize or identify the wake-up signal. For example, identifying feature sequences by means of correlation reception.
- the time-frequency resource information of the wake-up signal includes but is not limited to at least one of the following:
- the frequency domain information of the wake-up signal and the time domain information of the wake-up signal.
- the frequency domain information of the wake-up signal includes at least one of the following: a frequency domain reference point associated with the wake-up signal, a frequency domain offset associated with the wake-up signal, a frequency domain bandwidth associated with the wake-up signal, The frequency domain range associated with the wake-up signal, the sub-carrier spacing associated with the wake-up signal, and the reference sub-carrier spacing associated with the wake-up signal.
- the frequency domain position of the carrier where the terminal equipment operates is configured through the network.
- the starting point of the frequency domain position of the carrier is based on a frequency domain reference point (point A) and the frequency domain offset.
- the terminal device can obtain the frequency domain position of the carrier.
- the network device further configures the frequency domain position of the bandwidth part (Band Width Part, BWP), as shown in Figure 11.
- the wake-up receiver is independent of the main transceiver, and its operating frequency domain position does not need to consider the frequency domain position of the terminal's main transceiver.
- the wake-up receiver can operate on a different frequency band than the main transceiver.
- the wake-up signal can be configured in a relatively low frequency band to improve coverage.
- the NR signals and wake-up signals sent by the network should be configured in similar frequency domains as much as possible, that is, within the scope of the licensed spectrum obtained by the operator. The same operator may not obtain the right to use different frequency bands at the same time.
- the configuration of the frequency domain position of the wake-up signal can be relatively flexible, but it is not necessarily related to the frequency domain position of the main transceiver. Therefore, the frequency domain position of the wake-up signal can have its own independent configuration, including but not limited to: frequency domain reference point, frequency domain offset, frequency domain bandwidth, reference subcarrier spacing, etc.
- the frequency domain location of the wake-up signal may be the frequency domain bandwidth where the wake-up signal is located, and the frequency domain bandwidth may also include frequency domain resources of multiple frequency division wake-up signals.
- the reference subcarrier spacing can be used to calculate the actual frequency domain size corresponding to the frequency domain offset or frequency domain bandwidth represented by the number of physical resource blocks (physical resource blocks, PRBs).
- the frequency domain bandwidth of the wake-up signal includes frequency domain resources of multiple wake-up signals frequency-divided with the wake-up signal.
- the frequency domain reference point of the wake-up signal is the starting point of the frequency domain position of the carrier associated with the wake-up signal, or the frequency domain reference point of the wake-up signal is the starting point of the frequency domain position of the BWP associated with the wake-up signal. starting point.
- the frequency domain reference point can reuse the reference point A (Point A) of the NR system, or it can be configured separately, such as the reference point B (Point B), as shown in Figure 12. Show.
- the frequency domain reference point can also be the starting point of the frequency domain position of the configured carrier.
- the frequency domain position where the wake-up signal is located can be within the frequency domain bandwidth of the carrier, or can be outside the frequency domain bandwidth of the carrier.
- the frequency domain reference point may also be the starting point of the frequency domain position of the configured BWP.
- the BWP can be BWP#0 or a BWP with a non-zero BWP identifier, as shown in Figure 13 and Figure 14.
- the frequency band it works in may be relatively inflexible, or even fixed at several frequency ranges and bandwidths, depending on the type and capabilities of the wake-up receiver.
- the network's configuration of the frequency domain location of the wake-up signal may only require indicating one or more of them within a limited number of frequency ranges and bandwidths.
- the terminal device can report the relevant type or capability of the wake-up receiver to the network to facilitate relevant configuration of the network.
- the frequency domain information of the wake-up signal includes the sub-carrier spacing associated with the wake-up signal. For example, if the frequency domain position of the wake-up signal is within the first BWP, the sub-carrier spacing used to send the wake-up signal is the same as the sub-carrier spacing configured in the first BWP.
- the frequency domain location occupied by the wake-up signal is located in a licensed spectrum, or the frequency domain location occupied by the wake-up signal is located in an unlicensed spectrum.
- the time domain information of the wake-up signal includes but is not limited to at least one of the following:
- the time domain length corresponding to the wake-up signal can be limited by an upper limit value and a lower limit value, and the upper limit value and lower limit value can be determined based on the capabilities of the terminal device.
- the wake-up receiver can work with extremely low power consumption and receive wake-up signals at any time, the network can still configure the time domain position of the wake-up signal, so that the wake-up receiver of the terminal device is at the corresponding time domain position. to receive.
- different wake-up signals can also be time-division multiplexed, and different time-domain positions can correspond to different spatial information.
- the time-domain position serves as an implicit way to indicate the spatial information of the wake-up signal.
- the time slot associated with the wake-up signal and the symbol associated with the wake-up signal may be based on a reference subcarrier interval.
- the subcarrier spacing used by the wake-up signal can also be the sub-carrier spacing configured in the BWP where the frequency domain position of the wake-up signal is located, that is, the wake-up signal and the NR signal use the same sub-carrier spacing within the BWP.
- the terminal device receives the first information
- the first information includes at least one of the following: power information of the wake-up signal, spatial information of the wake-up signal, transmission parameters of the wake-up signal, and time-frequency resource information of the wake-up signal;
- the first information is used for the terminal device to receive the wake-up signal using a wake-up receiver.
- the power information of the wake-up signal includes at least one of the following:
- the first reference power is the power EPRE of each resource element of the first cellular network signal having a quasi-co-located QCL relationship with the wake-up signal.
- the first cellular network channel includes at least one of the following: a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH).
- a physical downlink control channel (PDCCH)
- PDSCH physical downlink shared channel
- the power information of the wake-up signal is determined based on at least one of the following: cell size, coverage requirement of the wake-up signal.
- the terminal device 300 further includes: a processing unit 320;
- the processing unit 320 is configured to determine the reception performance of the wake-up signal according to the power information of the wake-up signal.
- the processing unit 320 is specifically used to:
- the reception performance of the wake-up signal is determined; wherein the first measurement result includes at least one of the following: reference signal reception power RSRP, reference signal reception quality RSRQ, signal-to-interference-noise ratio SINR.
- the terminal device 300 further includes: a processing unit 320;
- the processing unit 320 is configured to determine the path loss of the wake-up signal according to the power information of the wake-up signal and a first measurement result; wherein the first measurement result includes at least one of the following: RSRP, RSRQ, and SINR.
- the first measurement result is a measurement result measured by a master transceiver, or the first measurement result is a measurement result measured by the wake-up receiver.
- the communication unit 310 is also used to send the first measurement result.
- the communication unit 310 when the first measurement result is less than or equal to the first threshold, the communication unit 310 is further configured to send the first measurement result.
- the first threshold is agreed upon by a protocol, or the first threshold is configured by a network device.
- the spatial information of the wake-up signal includes at least one of the following:
- the transmission configuration associated with the wake-up signal indicates the TCI status, the resource index of the CSI-RS with the QCL relationship with the wake-up signal, the index of the SSB with the QCL relationship with the wake-up signal, the SSB index corresponding to the wake-up signal, and the first corresponding relationship ;
- the first corresponding relationship includes a mapping relationship between multiple wake-up signals and indices of multiple SSBs, and the multiple wake-up signals at least include the wake-up signal.
- wake-up signals in different time domains, frequency domains or code domains correspond to different SSB indices.
- the transmission parameters of the wake-up signal include at least one of the following:
- the modulation order of the wake-up signal, the coding method of the wake-up signal, the coding rate of the wake-up signal, the transmission rate of the wake-up signal, and the symbol length of the wake-up signal is the modulation order of the wake-up signal, the coding method of the wake-up signal, the coding rate of the wake-up signal, the transmission rate of the wake-up signal, and the symbol length of the wake-up signal.
- the first information also includes multiple sets of wake-up signal transmission parameters, wherein each set of wake-up signal transmission parameters in the multiple sets of wake-up signal transmission parameters includes at least one of the following: modulation order, encoding method, encoding Rate, transmission rate, symbol length, resource size, power information.
- the terminal device 300 further includes: a processing unit 320;
- the processing unit 320 is configured to use the wake-up receiver to receive the wake-up signal according to the multiple sets of wake-up signal transmission parameters.
- the terminal device 300 further includes: a processing unit 320;
- the processing unit 320 is further configured to use the wake-up receiver to receive the wake-up signal according to a set of wake-up signal transmission parameters associated with the wake-up signal among the multiple sets of wake-up signal transmission parameters.
- the set of wake-up signal transmission parameters associated with the wake-up signal is obtained by the terminal device through the main transceiver, or the set of wake-up signal transmission parameters associated with the wake-up signal is obtained by the terminal device through the wake-up receiver. Obtained.
- a set of wake-up signal transmission parameters associated with the wake-up signal is determined based on a resource location of the wake-up signal, or a set of wake-up signal transmission parameters associated with the wake-up signal is determined based on a feature sequence in the wake-up signal.
- the signature sequence is used by the wake-up receiver to synchronize or identify the wake-up signal.
- the time-frequency resource information of the wake-up signal includes at least one of the following:
- the frequency domain information of the wake-up signal and the time domain information of the wake-up signal.
- the frequency domain information of the wake-up signal includes at least one of the following: a frequency domain reference point associated with the wake-up signal, a frequency domain offset associated with the wake-up signal, a frequency domain bandwidth associated with the wake-up signal, the wake-up signal The frequency domain range associated with the signal, the subcarrier spacing associated with the wake-up signal, and the reference sub-carrier spacing associated with the wake-up signal.
- the frequency domain bandwidth of the wake-up signal includes frequency domain resources of multiple wake-up signals frequency-divided with the wake-up signal.
- the frequency domain reference point of the wake-up signal is the starting point of the frequency domain position of the carrier associated with the wake-up signal, or the frequency domain reference point of the wake-up signal is the frequency domain of the bandwidth part BWP associated with the wake-up signal. The starting point of the location.
- the frequency domain bandwidth associated with the wake-up signal belongs to multiple frequency domain bandwidths, wherein the multiple frequency domain bandwidths are determined based on the type of the wake-up receiver and/or the capability of the wake-up receiver; or,
- the frequency domain range associated with the wake-up signal belongs to multiple frequency domain ranges, wherein the multiple frequency domain ranges are determined based on the type of the wake-up receiver and/or the capability of the wake-up receiver.
- the frequency domain information of the wake-up signal includes the sub-carrier spacing associated with the wake-up signal.
- the sub-carrier spacing used to send the wake-up signal is the same as the sub-carrier spacing configured in the first BWP.
- the frequency domain location occupied by the wake-up signal is located in a licensed spectrum, or the frequency domain location occupied by the wake-up signal is located in an unlicensed spectrum.
- the time domain information of the wake-up signal includes at least one of the following:
- the communication unit 310 is also configured to send first indication information, where the first indication information is used to indicate whether the terminal device uses the wake-up receiver to receive the wake-up signal.
- the first information is carried by one of the following:
- the above-mentioned communication unit may be a communication interface or transceiver, or an input/output interface of a communication chip or a system on a chip.
- the above-mentioned processing unit may be one or more processors.
- terminal device 300 may correspond to the terminal device in the method embodiment of the present application, and the above and other operations and/or functions of each unit in the terminal device 300 are respectively to implement the method shown in Figure 8
- the corresponding process of the terminal equipment in 200 will not be repeated here for the sake of simplicity.
- FIG. 16 shows a schematic block diagram of a network device 400 according to an embodiment of the present application.
- network device 400 includes:
- Communication unit 410 used to send first information
- the first information includes at least one of the following: power information of the wake-up signal, spatial information of the wake-up signal, transmission parameters of the wake-up signal, and time-frequency resource information of the wake-up signal;
- the first information is used for the terminal device to receive the wake-up signal using a wake-up receiver.
- the power information of the wake-up signal includes at least one of the following:
- the first reference power is the power EPRE of each resource element of the first cellular network signal having a quasi-co-located QCL relationship with the wake-up signal.
- the first reference power is the EPRE of the first cellular network signal, or the first reference power is the EPRE of the first cellular network channel.
- the first cellular network signal includes at least one of the following: synchronization signal block SSB, channel state information reference signal CSI-RS, physical downlink control channel demodulation reference signal PDCCH DMRS, physical downlink shared channel demodulation reference Signal PDSCH DMRS.
- the first cellular network channel includes at least one of the following: a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH).
- a physical downlink control channel (PDCCH)
- PDSCH physical downlink shared channel
- the first reference power is agreed upon by a protocol, or the first reference power is configured by a network device.
- the power information of the wake-up signal is determined based on at least one of the following: cell size, coverage requirement of the wake-up signal.
- the power information of the wake-up signal is used by the terminal device to determine reception performance of the wake-up signal.
- the power information of the wake-up signal and the first measurement result are used by the terminal device to determine the reception performance of the wake-up signal; wherein the first measurement result includes at least one of the following: reference signal received power RSRP, reference Signal reception quality RSRQ, signal interference to noise ratio SINR.
- the power information of the wake-up signal and the first measurement result are used by the terminal device to determine the path loss of the wake-up signal; wherein the first measurement result includes at least one of the following: RSRP, RSRQ, and SINR.
- the first measurement result is a measurement result measured by a master transceiver, or the first measurement result is a measurement result measured by the wake-up receiver.
- the communication unit 410 is also used to receive the first measurement result.
- the communication unit 410 when the first measurement result is less than or equal to the first threshold, the communication unit 410 is further configured to receive the first measurement result.
- the first threshold is agreed upon by a protocol, or the first threshold is configured by a network device.
- the spatial information of the wake-up signal includes at least one of the following:
- the transmission configuration associated with the wake-up signal indicates the TCI status, the resource index of the CSI-RS with the QCL relationship with the wake-up signal, the index of the SSB with the QCL relationship with the wake-up signal, the SSB index corresponding to the wake-up signal, and the first corresponding relationship ;
- the first corresponding relationship includes a mapping relationship between multiple wake-up signals and indices of multiple SSBs, and the multiple wake-up signals at least include the wake-up signal.
- wake-up signals in different time domains, frequency domains or code domains correspond to different SSB indices.
- the transmission parameters of the wake-up signal include at least one of the following:
- the modulation order of the wake-up signal, the coding method of the wake-up signal, the coding rate of the wake-up signal, the transmission rate of the wake-up signal, and the symbol length of the wake-up signal is the modulation order of the wake-up signal, the coding method of the wake-up signal, the coding rate of the wake-up signal, the transmission rate of the wake-up signal, and the symbol length of the wake-up signal.
- the first information also includes multiple sets of wake-up signal transmission parameters, wherein each set of wake-up signal transmission parameters in the multiple sets of wake-up signal transmission parameters includes at least one of the following: modulation order, encoding method, encoding Rate, transmission rate, symbol length, resource size, power information.
- the multiple sets of wake-up signal transmission parameters are used for the terminal device to receive the wake-up signal using the wake-up receiver.
- a set of wake-up signal transmission parameters associated with the wake-up signal among the multiple sets of wake-up signal transmission parameters is used for the terminal device to receive the wake-up signal using the wake-up receiver.
- the set of wake-up signal transmission parameters associated with the wake-up signal is obtained by the terminal device through the main transceiver, or the set of wake-up signal transmission parameters associated with the wake-up signal is obtained by the terminal device through the wake-up receiver. Obtained.
- a set of wake-up signal transmission parameters associated with the wake-up signal is determined based on a resource location of the wake-up signal, or a set of wake-up signal transmission parameters associated with the wake-up signal is determined based on a feature sequence in the wake-up signal.
- the signature sequence is used by the wake-up receiver to synchronize or identify the wake-up signal.
- the time-frequency resource information of the wake-up signal includes at least one of the following:
- the frequency domain information of the wake-up signal and the time domain information of the wake-up signal.
- the frequency domain information of the wake-up signal includes at least one of the following: a frequency domain reference point associated with the wake-up signal, a frequency domain offset associated with the wake-up signal, a frequency domain bandwidth associated with the wake-up signal, the wake-up signal The frequency domain range associated with the signal, the subcarrier spacing associated with the wake-up signal, and the reference sub-carrier spacing associated with the wake-up signal.
- the frequency domain bandwidth of the wake-up signal includes frequency domain resources of multiple wake-up signals frequency-divided with the wake-up signal.
- the frequency domain reference point of the wake-up signal is the starting point of the frequency domain position of the carrier associated with the wake-up signal, or the frequency domain reference point of the wake-up signal is the frequency domain of the bandwidth part BWP associated with the wake-up signal. The starting point of the location.
- the frequency domain bandwidth associated with the wake-up signal belongs to multiple frequency domain bandwidths, wherein the multiple frequency domain bandwidths are determined based on the type of the wake-up receiver and/or the capability of the wake-up receiver; or,
- the frequency domain range associated with the wake-up signal belongs to multiple frequency domain ranges, wherein the multiple frequency domain ranges are determined based on the type of the wake-up receiver and/or the capability of the wake-up receiver.
- the frequency domain information of the wake-up signal includes the sub-carrier spacing associated with the wake-up signal.
- the sub-carrier spacing used to send the wake-up signal is the same as the sub-carrier spacing configured in the first BWP.
- the frequency domain location occupied by the wake-up signal is located in a licensed spectrum, or the frequency domain location occupied by the wake-up signal is located in an unlicensed spectrum.
- the time domain information of the wake-up signal includes at least one of the following:
- the communication unit 410 is also configured to send first indication information, where the first indication information is used to indicate whether the terminal device uses the wake-up receiver to receive the wake-up signal.
- the first information is carried by one of the following:
- the above-mentioned communication unit may be a communication interface or transceiver, or an input/output interface of a communication chip or a system on a chip.
- the above-mentioned processing unit may be one or more processors.
- network device 400 may correspond to the network device in the method embodiment of the present application, and the above and other operations and/or functions of each unit in the network device 400 are respectively to implement the method shown in Figure 8
- the corresponding process of the network equipment in 200 will not be repeated here for the sake of simplicity.
- Figure 17 is a schematic structural diagram of a communication device 500 provided by an embodiment of the present application.
- the communication device 500 shown in Figure 17 includes a processor 510.
- the processor 510 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
- communication device 500 may also include memory 520.
- the processor 510 can call and run the computer program from the memory 520 to implement the method in the embodiment of the present application.
- the memory 520 may be a separate device independent of the processor 510 , or may be integrated into the processor 510 .
- the communication device 500 may also include a transceiver 530, and the processor 510 may control the transceiver 530 to communicate with other devices, specifically, may send information or data to other devices, or Receive information or data from other devices.
- the transceiver 530 may include a transmitter and a receiver.
- the transceiver 530 may further include an antenna, and the number of antennas may be one or more.
- the communication device 500 can be specifically a network device according to the embodiment of the present application, and the communication device 500 can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, this is not mentioned here. Again.
- the communication device 500 can be a terminal device according to the embodiment of the present application, and the communication device 500 can implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, this is not mentioned here. Again.
- Figure 18 is a schematic structural diagram of the device according to the embodiment of the present application.
- the device 600 shown in Figure 18 includes a processor 610.
- the processor 610 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
- device 600 may also include memory 620.
- the processor 610 can call and run the computer program from the memory 620 to implement the method in the embodiment of the present application.
- the memory 620 may be a separate device independent of the processor 610 , or may be integrated into the processor 610 .
- the device 600 may also include an input interface 630.
- the processor 610 can control the input interface 630 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
- the device 600 may also include an output interface 640.
- the processor 610 can control the output interface 640 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
- the device can be applied to the network device in the embodiment of the present application, and the device can implement the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of brevity, the details are not repeated here.
- the device can be applied to the terminal device in the embodiments of the present application, and the device can implement the corresponding processes implemented by the terminal device in the various methods of the embodiments of the present application. For the sake of brevity, the details will not be described again.
- the devices mentioned in the embodiments of this application may also be chips.
- it can be a system-on-a-chip, a system-on-a-chip, a system-on-a-chip or a system-on-a-chip, etc.
- Figure 19 is a schematic block diagram of a communication system 700 provided by an embodiment of the present application. As shown in FIG. 19 , the communication system 700 includes a terminal device 710 and a network device 720 .
- the terminal device 710 can be used to implement the corresponding functions implemented by the terminal device in the above method
- the network device 720 can be used to implement the corresponding functions implemented by the network device in the above method.
- the terminal device 710 can be used to implement the corresponding functions implemented by the terminal device in the above method
- the network device 720 can be used to implement the corresponding functions implemented by the network device in the above method.
- the processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
- each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
- the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
- DSP Digital Signal Processor
- ASIC Application Specific Integrated Circuit
- FPGA Field Programmable Gate Array
- a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
- the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
- the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
- the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
- non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
- RAM Random Access Memory
- RAM static random access memory
- DRAM dynamic random access memory
- DRAM synchronous dynamic random access memory
- SDRAM double data rate synchronous dynamic random access memory
- Double Data Rate SDRAM DDR SDRAM
- enhanced SDRAM ESDRAM
- Synchlink DRAM SLDRAM
- Direct Rambus RAM Direct Rambus RAM
- the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
- Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
- the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of simplicity, I won’t go into details here.
- the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the terminal device in the various methods of the embodiment of the present application. For the sake of simplicity, I won’t go into details here.
- An embodiment of the present application also provides a computer program product, including computer program instructions.
- the computer program product can be applied to the network equipment in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application. For simplicity, in This will not be described again.
- the computer program product can be applied to the terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the various methods of the embodiment of the present application. For simplicity, in This will not be described again.
- An embodiment of the present application also provides a computer program.
- the computer program can be applied to the network equipment in the embodiments of the present application.
- the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
- the computer program For the sake of brevity, no further details will be given here.
- the computer program can be applied to the terminal device in the embodiments of the present application.
- the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the terminal device in the various methods of the embodiments of the present application.
- the computer program For the sake of brevity, no further details will be given here.
- the disclosed systems, devices and methods can be implemented in other ways.
- the device embodiments described above are only illustrative.
- the division of the units is only a logical function division. In actual implementation, there may be other division methods.
- multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
- the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
- each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
- the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
- the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
- the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请实施例提供了一种无线通信的方法、终端设备和网络设备,明确了唤醒信号的相关配置所包含的具体参数,从而,终端设备可以基于唤醒信号的相关配置使用唤醒接收机接收唤醒信号。该无线通信的方法,包括:终端设备接收第一信息;其中,该第一信息包括以下至少之一:唤醒信号的功率信息,该唤醒信号的空间信息,该唤醒信号的传输参数,该唤醒信号的时频资源信息;其中,该第一信息用于该终端设备使用唤醒接收机接收该唤醒信号。
Description
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信的方法、终端设备和网络设备。
在新无线(New Radio,NR)系统中,引入了基于唤醒接收机(wake up receiver,WUR)接收唤醒信号(wake up signal,WUS),这种方式具有极低成本、极低复杂度和极低功耗的特点。在终端设备的唤醒接收机接收唤醒信号之前,需要得到唤醒信号的相关配置,以决定唤醒接收机的启用和唤醒信号的接收,然而,唤醒信号的相关配置具体包括哪些参数,是一个需要解决的问题。
发明内容
本申请实施例提供了一种无线通信的方法、终端设备和网络设备,明确了唤醒信号的相关配置所包含的具体参数,从而,终端设备可以基于唤醒信号的相关配置使用唤醒接收机接收唤醒信号。
第一方面,提供了一种无线通信的方法,该方法包括:
终端设备接收第一信息;
其中,该第一信息包括以下至少之一:唤醒信号的功率信息,该唤醒信号的空间信息,该唤醒信号的传输参数,该唤醒信号的时频资源信息;
其中,该第一信息用于该终端设备使用唤醒接收机接收该唤醒信号。
第二方面,提供了一种无线通信的方法,该方法包括:
网络设备发送第一信息;
其中,该第一信息包括以下至少之一:唤醒信号的功率信息,该唤醒信号的空间信息,该唤醒信号的传输参数,该唤醒信号的时频资源信息;
其中,该第一信息用于终端设备使用唤醒接收机接收该唤醒信号。
第三方面,提供了一种终端设备,用于执行上述第一方面中的方法。
具体地,该终端设备包括用于执行上述第一方面中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面中的方法。
具体地,该网络设备包括用于执行上述第二方面中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器;该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,使得该终端设备执行上述第一方面中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器;该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,使得该网络设备执行上述第二方面中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
通过上述技术方案,明确了唤醒信号的相关配置可以包括以下至少之一:唤醒信号的功率信息,该唤醒信号的空间信息,该唤醒信号的传输参数,该唤醒信号的时频资源信息。从而,终端设备可以基于唤醒信号的相关配置使用唤醒接收机接收唤醒信号。
图1是本申请实施例应用的一种通信系统架构的示意性图。
图2是本申请提供的一种DRX周期的示意性图。
图3是本申请提供的一种节能信号的示意性图。
图4是本申请提供的一种PF和PO的示意性图。
图5是本申请提供的一种节能信号指示监听PDDCH的示意性图。
图6是本申请提供的一种唤醒接收机和主接收机的示意性图。
图7是本申请提供的一种OOK调制的示意性图。
图8是根据本申请实施例提供的一种无线通信的方法的示意性流程图。
图9是根据本申请实施例提供的一种基站通过波束发送无线信号的示意性图。
图10是根据本申请实施例提供的一种WUS与SSB具有QCL关系的示意性图。
图11是根据本申请实施例提供的一种频域参考点和频域偏移的示意性图。
图12是根据本申请实施例提供的一种频域信号带宽的示意性图。
图13是根据本申请实施例提供的一种WUS频域的示意性图。
图14是根据本申请实施例提供的另一种WUS频域的示意性图。
图15是根据本申请实施例提供的一种终端设备的示意性框图。
图16是根据本申请实施例提供的一种网络设备的示意性框图。
图17是根据本申请实施例提供的一种通信设备的示意性框图。
图18是根据本申请实施例提供的一种装置的示意性框图。
图19是根据本申请实施例提供的一种通信系统的示意性框图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、物联网(internet of things,IoT)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,侧行(sidelink,SL)通信,车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
在一些实施例中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景,或者应用于非独立(Non-Standalone,NSA)布网场景。
在一些实施例中,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
在一些实施例中,本申请实施例中的通信系统可以应用于FR1频段(对应频段范围410MHz到7.125GHz),也可以应用于FR2频段(对应频段范围24.25GHz到52.6GHz),还可以应用于新的频段例如对应52.6GHz到71GHz频段范围或对应71GHz到114.25GHz频段范围的高频频段。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、 工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备、车载通信设备、无线通信芯片/专用集成电路(application specific integrated circuit,ASIC)/系统级芯片(System on Chip,SoC)等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者发送接收点(Transmission Reception Point,TRP),或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。在一些实施例中,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。在一些实施例中,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,在一些实施例中,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
在一些实施例中,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,本文涉及第一通信设备和第二通信设备,第一通信设备可以是终端设备,例如手机,机器设施,用户前端设备(Customer Premise Equipment,CPE),工业设备,车辆等;第二通信设备可以是第一通信设备的对端通信设备,例如网络设备,手机,工业设备,车辆等。在本申请实施例中,第一通信设备可以是终端设备,且第二通信设备可以网络设备(即上行通信或下行通信);或者,第一通信设备可以是第一终端,且第二通信设备可以第二终端(即侧行通信)。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形, 意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以是对现有LTE协议、NR协议、Wi-Fi协议或者与之相关的其它通信系统相关的协议的演进,本申请不对协议类型进行限定。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
为便于更好的理解本申请实施例,对本申请相关的基于物理下行控制信道(Physical Downlink Control Channel,PDCCH)的终端节能进行说明。
在5G演进中,对终端节能提出了更高的要求。例如对于非连续接收(Discontinuous Reception,DRX)机制,在每个激活期(On Duration)期间,终端设备需要不断检测PDCCH来判断基站是否调度发给自己的数据传输。其中,DRX的机制包括为处于RRC连接(RRC_CONNECTED)状态的终端设备配置DRX周期(cycle),一个DRX cycle有“激活期(On Duration)”和“休眠期(Opportunity for DRX)”组成。在“On Duration”时间内,终端设备监听并接收包括PDCCH在内的下行信道和信号;在“Opportunity for DRX”时间内,终端设备不接收PDCCH等下行信道和信号以减少功耗。
在没有数据传输的时候,可以通过停止接收PDCCH(此时会停止PDCCH盲检)来降低功耗,从而提升电池使用时间。DRX的基本机制是为处于RRC连接态的终端设备配置一个DRX周期(cycle)。如图2所示,DRX cycle由“激活期(On Duration)”和“休眠期(Opportunity for DRX)”组成:在“On Duration”时间内,终端设备监听并接收PDCCH(激活期);在“Opportunity for DRX”时间内,终端设备不接收PDCCH以减少功耗(休眠期)。另外寻呼消息的传输也是一种RRC空闲态的DRX机制,此时DRX周期为寻呼消息的周期。从图2可以看出,在时域上,时间被划分成一个个连续的DRX Cycle。
但是对于大部分终端来说,可能在很长一段时间没有接收数据传输的需要,但是仍然需要保持定期的唤醒机制来监听可能的下行传输,对于这类终端,节电有进一步优化的空间。进一步地,针对RRC_CONNECTED态的终端的节能引入了节能信号,以实现进一步的节能。节能信号与DRX机制结合使用,终端在DRX ON duration之前接收节能信号的指示。当终端在一个DRX周期有数据传输时,节能信号“唤醒”终端,以在DRX On duration期间监听PDCCH;否则,当终端在一个DRX周期没有数据传输时,节能信号不“唤醒”终端,终端在DRX On duration期间不需要监听PDCCH。其中,节能信号承载于PDCCH信道的,通过DCI格式2_6承载。通过节能信号指示终端在DRX On Duration是否监听PDCCH的过程如图3所示。
对RRC空闲态/RRC去激活态下的终端接收寻呼消息过程的节能进行了优化,引入了类似的节能信号。在通过DRX的方式接收寻呼消息,在一个DRX周期内存在一个寻呼时机(paging occasion,PO),终端只在PO接收寻呼消息,而在PO之外的时间不接受寻呼消息,来达到省电的目的。寻呼无线帧(Paging Frame,PF)表示寻呼消息应该出现在哪个系统帧号上,PO则表示可能出现的时刻。一个PF帧可能包括1个或多个PO,每个DRX周期或者寻呼周期(Paging Cycle),终端只需要监听其中属于自己的PO。终端根据自己的标识(ID)计算自己对应的PF和PF中的PO的位置。如图4所示,在一个寻呼DRX周期内的PF的位置,和PF内PO的位置。
但是实际情况下,UE被寻呼到的概率可能并不高,UE周期性的在对应的PO检测PDCCH,但是没有检测到发给自己的寻呼指示信息,会造成功率的浪费。在一些实施例中,节能信号也可以称为寻呼提前指示(paging early indication,PEI),用于在目标PO到达之前指示UE是否在该PO接收寻呼PDCCH。其中,节能信号承载于PDCCH信道的,通过DCI格式2_7承载。如图5所示,一个节能信号指示一个或多个寻呼子组的UE在对应的PF或者PO上是否接收寻呼。
对于RRC_CONNECTED态的UE的节能继续进行增强,也引入了搜索空间集合组切换的增强方案,还包括在需要的时候跳过PDCCH的检测来节电,即PDCCH跳过(PDCCH skipping)方案。搜索空间集合组切换和PDCCH skipping相关的控制信息也是通过PDCCH承载的。
为便于理解本申请实施例的技术方案,对本申请相关的基于唤醒接收机的终端节能进行说明。
为了终端的进一步节电,引入了唤醒接收机接收唤醒信号。唤醒接收机具有极低成本、极低复杂度和极低功耗的特点,其主要通过基于包络检测的方式接收唤醒信号。因此,唤醒接收机接收的唤醒信号(WUS)与基于PDCCH承载的信号的调制方式、波形等不同。唤醒信号主要通过对载波信号进行幅移键控(Amplitude Shift Keying,ASK)调制的包络信号。包络信号的解调也主要基于无线射频信号提供的能量驱动低功耗电路来完成,因此它可以是无源的。唤醒接收机也可以通过终端进行供电,无论哪种供电方式,该唤醒接收机相比终端的传统接收机极大的降低了功耗。唤醒接收机可以和终端结合在一起,作为终端接收机的一个附加模块,也可以单独作为一个终端的唤醒功能模块。
本申请实施例中的唤醒接收机的系统框图可以如图6所示,唤醒接收机接收唤醒信号,如果需要终端打开主接收机,可以指示终端开启主接收机,例如,通过反向散射信号指示终端开启主接收机。否则,终端的主接收机可以处于关闭状态。需要说明的是,图6中的主接收机也可以称之为主收发机。
在一些实施例中,唤醒接收机也可以接收窄带宽蜂窝网络信号(如NR信号)。
唤醒接收机(WUR)并不需要按照传统的接收机一样进行开启和关闭来省电,而是随时可以被唤醒信号(WUS)激活并接收唤醒信息。唤醒信号主要通过对载波信号进行ASK调制的包络信号。例如,唤醒信号(WUS)采用了开关键控(On-Off Keying,OOK)调制。OOK的调制原理是用来将载波信号的幅度调制为非零值和零值,分别对应开(On)和关(Off),用来表示信息比特,OOK又名二进制振幅键控(2ASK),如图7所示,比特1调制为On,0调制为Off。
为便于理解本申请实施例的技术方案,以下对本申请所解决的问题进行说明。
通过唤醒接收机唤醒UE的主接收机可以实现UE的进一步省电。在UE的唤醒接收机接收唤醒信号之前,需要得到唤醒信号的相关配置,以决定唤醒接收机的启用和唤醒信号的接收。然而,在NR系统中,UE唤醒信号的配置需要哪些信息,是需要解决的问题。
基于上述问题,本申请提出了一种终端节能的方案,明确了唤醒信号的相关配置所包含的具体参数,从而,终端设备可以基于唤醒信号的相关配置使用唤醒接收机接收唤醒信号。
以下通过具体实施例详述本申请的技术方案。
图8是根据本申请实施例的无线通信的方法200的示意性流程图,如图8所示,该无线通信的方法200可以包括如下内容中的至少部分内容:
S210,网络设备发送第一信息;其中,该第一信息包括以下至少之一:唤醒信号的功率信息,该唤醒信号的空间信息,该唤醒信号的传输参数,该唤醒信号的时频资源信息;其中,该第一信息用于终端设备使用唤醒接收机接收该唤醒信号;
S220,该终端设备接收该第一信息。
在本申请实施例中,唤醒接收机的能耗较低,如小于一个预设值,唤醒接收机可以通过其所属的终端设备获取能量,也可以类似于零功耗设备,通过能量采集获得能量以用于通信、信息采集及处理。具体例如,唤醒接收机可以通过无线射频信号,太阳能,压力或温度等无线供能方式获得能量。
在本申请实施例中,唤醒接收机也可以称之为低功耗接收机或零功耗接收机,或类似的名称,本申请对此并不限定。
在一些实施例中,唤醒信号也可以是唤醒接收机的供能信号。
在一些实施例中,终端设备可以包括唤醒接收机和主收发机(具体可以与如图6中的主接收机类似),主收发机可以是传统的收发机(用于收发蜂窝网络信号和信道)。区别于主收发机,唤醒接收机是一个具有极低功耗甚至零功耗接收机,它采用了射频识别技术(Radio Frequency Identification,RFID)的类似技术,包括无源、包络检测、能量采集等。唤醒接收机可以和终端设备结合在一起,作为终端设备的主收发机的一个附加模块,也可以单独作为终端设备的一个功能模块。
需要说明的是,唤醒接收机具有极低成本、极低复杂度和极低功耗的特点,其主要通过基于包络检测的方式接收信号。包络信号的解调也主要基于无线射频信号提供的能量驱动低功耗电路来完成,因此它可以是无源的。无论哪种供能方式,唤醒接收机相比终端设备的主收发机极大的降低了功耗。
在一些实施例中,唤醒接收机可以接收唤醒信号,以及基于接收到的唤醒信号唤醒主收发机。例如,唤醒接收机可以向主收发机发送唤醒信号,以唤醒主收发机。
在一些实施例中,唤醒接收机可以采用第一传输方式进行信道侦听,主收发机可以采用第二传输方式进行信道侦听。具体地,在同等条件下,比如均用于信道侦听的情况下,第一传输方式的能耗小于第二传输方式的能耗。唤醒接收机可以被无线射频信号激活和提供能量,用于驱动唤醒接收机进行信道侦听,以及在唤醒接收机侦听的结果为信道空闲的情况下进一步发送指示信息给主收发机,可以用于唤醒或开启主收发机进一步进行信道占用和数据收发。
在一些实施例中,终端设备也可以通过唤醒接收机接收其他信号,如通过唤醒接收机接收窄带宽 蜂窝网络信号(如NR信号)。
在一些实施例中,该第一信息可以包括一个或多个唤醒信号的相关配置,本申请实施例对此并不限定。
在一些实施例中,该第一信息也可以用于终端设备确定是否使用唤醒接收机接收唤醒信号。
在一些实施例中,该终端设备发送第一指示信息,该第一指示信息用于指示该终端设备是否使用该唤醒接收机接收该唤醒信号。
在一些实施例中,该第一信息通过以下之一承载:系统消息,公共无线资源控制(Radio Resource Control,RRC)信令,专用RRC信令,媒体接入控制层控制单元(Media Access Control Control Element,MAC CE),物理层信令。
以下通过具体示例描述本申请技术方案。
示例1,在第一信息至少包括唤醒信号的功率信息的情况下,该唤醒信号的功率信息包括但不限于以下至少之一:
承载该唤醒信号的子载波集合中被幅度调制中的高电平调制的资源元素对应的功率,承载该唤醒信号的资源元素的平均功率,该唤醒信号的功率与第一参考功率之间的功率偏移值,该唤醒信号的功率与该第一参考功率的比值,该唤醒信号的绝对功率。
需要说明的是,在NR系统的下行功率分配中,对于每个资源元素的功率(Energy per resource element,EPRE)的分配是恒定的,但是不同信道或信号的EPRE之间可以具有一定的功率偏移。不同信道或信号的EPRE一般是以同步信号块(Synchronization Signal Block,SSB)中的辅同步信号(Secondary Synchronization Signal,SSS)的功率作为参考功率进行设置的。其中SSS的功率是通过高层信令配置的参数ss-PBCH-BlockPower指示的。SSS的传输功率定义为在工作带宽内承载SSS的所有资源元素(resource element,RE)的功率的线性平均功率。网络配置的信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)的EPRE可以通过与其有准共址(Quasi-co-located,QCL)关系的SSB的SSS的EPRE,以及高层配置的功率偏移参数powerControlOffsetSS得到,其中,powerControlOffsetSS指示CSI-RS的EPRE与SSS的EPRE的功率偏移。物理下行共享信道(Physical Downlink Shared Channel,PDSCH)信道的EPRE与CSI-RS的EPRE的功率偏移通过高层配置的功率偏移参数powerControlOffset指示。物理下行共享信道解调参考信号(Physical Downlink Shared Channel Demodulation Reference Signal,PDSCH DMRS)的EPRE与PDSCH的EPRE之间的比值,物理下行控制信道(Physical Downlink Control Channel,PDCCH)的EPRE和CSI-RS EPRE之间的比值也在标准中有所规定。下行信道或信号的EPRE信息,可以用于UE基于该功率信息进行信道估计、信道状态信息(Channel State Information,CSI)上报、链路恢复、功率控制等过程。
需要说明的是,SSB也可以称为同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH block)。
在示例1中,对于唤醒信号,网络设备可以根据小区大小和/或唤醒信号的覆盖需求对唤醒信号的功率进行设置,并通知给终端设备。唤醒信号的功率信息有助于唤醒接收机对唤醒信号的接收。终端设备还可以根据唤醒信号的功率信息,确定唤醒信号的覆盖性能,从而确定唤醒信号的接收性能(如唤醒信号的接收是否可靠),进一步决定是否使用唤醒接收机接收唤醒信号。
在示例1的一些实现方式,该第一参考功率为与该唤醒信号具有QCL关系的第一蜂窝网络信号的EPRE。
在示例1的一些实现方式,该第一参考功率为第一蜂窝网络信号的EPRE,或者,该第一参考功率为第一蜂窝网络信道的EPRE。
在示例1的一些实现方式,该第一蜂窝网络信号包括但不限于以下至少之一:SSB,CSI-RS,物理下行控制信道解调参考信号(Physical Downlink Control Channel Demodulation Reference Signal,PDCCH DMRS),物理下行共享信道解调参考信号(Physical Downlink Shared Channel Demodulation Reference Signal,PDSCH DMRS)。
在示例1的一些实现方式,该第一蜂窝网络信道包括但不限于以下至少之一:PDCCH,PDSCH。
在示例1的一些实现方式,该第一参考功率由协议约定,或者,该第一参考功率由网络设备配置。
在示例1的一些实现方式,该唤醒信号的功率信息基于以下至少之一确定:小区大小,该唤醒信号的覆盖需求。
对于NR系统中传输的唤醒信号,一种比较方便的方法是利用正交频分复用(Orthogonal frequency-division multiplexing,OFDM)调制模块实现唤醒信号的波形,下行信号可以通过相同的快速傅立叶变换(Fast Fourier Transform,FFT)/逆快速傅里叶变换(Inverse Fast Fourier Transform,IFFT) 运算产生NR信号和唤醒信号。其中,对承载唤醒信号的子载波集合中的子载波的幅度进行设置来产生唤醒信号,包括On波形和Off波形。具体的,对于承载唤醒信号的子载波集合中的部分子载波的幅度设置成非零值,可以产生On波形,承载唤醒信号的子载波集合中的全部子载波设置成零值,可以产生Off信号。
具体的,唤醒信号的功率可以表示为On波形中的RE或者被幅度调制中的高电平调制的RE对应的功率,或者承载唤醒信号的RE的平均功率。唤醒信号的功率可以与NR信号的EPRE具有一定的功率偏移或比值。具体例如,唤醒信号的功率与SSS的功率具有一定的功率偏移,例如,功率偏移可以为-3dB,0dB,3dB,6dB等。
具体的,唤醒信号的功率可以与其他信道或信号的EPRE具有一定的功率偏移或比值。例如CSI-RS EPRE,PDSCH EPRE,PDSCH DMRS EPRE,PDCCH EPRE,PDCCH DMRS EPRE。
具体例如,唤醒信号的功率偏置配置信令,可以如以下举例所示。
WUS Resource::={
powerControlOffsetSS ENUMERATED{db-3,db0,db3,db6}
…
}
在示例1的一些实现方式,唤醒信号的绝对功率,例如ss-PBCH-BlockPower所配置的SSB的功率,范围为(-60,...,50)dBm。
在示例1的一些实现方式,该终端设备根据该唤醒信号的功率信息确定该唤醒信号的接收性能。
在示例1的一些实现方式,该终端设备根据该唤醒信号的功率信息和第一测量结果,确定该唤醒信号的接收性能。
在示例1的一些实现方式,该终端设备根据该唤醒信号的功率信息和第一测量结果确定该唤醒信号的路径损耗。
可选地,该第一测量结果包括以下至少之一:参考信号接收功率(Reference Signal Received Power,RSRP),参考信号接收质量(Reference Signal Received Quality,RSRQ),信号干扰噪声比(Signal to Interference plus Noise Ratio,SINR)。
在示例1中,该第一测量结果为通过主收发机测量得到的测量结果,或者,该第一测量结果为通过该唤醒接收机测量得到的测量结果。
具体例如,第一测量结果为蜂窝网络信号的测量结果,或者,第一测量结果为终端设备使用主收发机对唤醒信号进行测量后得到的测量结果,或者,第一测量结果为终端设备使用主收发机对与唤醒信号采用相同波形传输的蜂窝网络信号进行测量后得到的测量结果,或者,第一测量结果为终端设备使用唤醒接收机对唤醒信号进行测量后得到的测量结果,或者,第一测量结果为终端设备使用唤醒接收机对与唤醒信号采用相同波形传输的蜂窝网络信号进行测量后得到的测量结果。
在示例1的一些实现方式,该终端设备发送该第一测量结果。具体例如,在该第一测量结果小于或等于第一阈值的情况下,该终端设备发送该第一测量结果。
可选地,该第一阈值由协议约定,或者,该第一阈值由网络设备配置。
在示例1中,网络设备可以将唤醒信号的功率偏置参数指示给终端设备。对终端设备来说,可以利用功率偏置参数,确定唤醒信号的接收性能。具体例如,可以结合NR信号的测量结果和唤醒信号的功率偏置参数确定唤醒信号的接收性能,进一步确定是否使用唤醒接收机接收唤醒信号。可选地,主收发机直接对唤醒信号或者与唤醒信号采用相同波形传输的信号进行测量得到测量结果,如测量信号的RSRP,RSRQ,SINR等。可选地,终端设备可以将测量结果反馈给网络,从而网络或者终端确定不通过唤醒接收机接收唤醒信号,而是通过PDCCH接收相关节能信号实现节能;反之,则通过唤醒接收机接收唤醒信号。具体的,终端设备可以在主收发机工作期间进行测量,并将反馈相关信息给网络设备。具体的,终端设备可以基于一个测量阈值进行反馈,当测量结果低于一个测量阈值,则触发反馈测量结果。进一步的,如果唤醒接收机的能力可以满足对信号的功率进行测量,也可以直接由唤醒接收机对唤醒信号或者与唤醒信号采用相同波形传输的信号的接收功率进行测量,从而确定是否使用唤醒接收机接收唤醒信号。进一步的,由于唤醒信号的功率与CSI-RS EPRE可以具有一定的功率偏置,网络设备也可以基于终端设备对CSI-RS的测量结果得到的CSI上报,来估算唤醒信号的接收性能,从而决定终端设备是否通过唤醒接收机接收唤醒信号。
示例2,在第一信息至少包括唤醒信号的空间信息的情况下,该唤醒信号的空间信息包括但不限于以下至少之一:
该唤醒信号关联的传输配置指示(Transmission Configuration Indicator,TCI)状态,与该唤醒信号具有QCL关系的CSI-RS的资源索引,与该唤醒信号具有QCL关系的SSB的索引,该唤醒信号对 应的SSB索引,第一对应关系;
其中,该第一对应关系包括多个唤醒信号与多个SSB的索引之间的映射关系,该多个唤醒信号至少包括该唤醒信号。
在示例2的一些实现方式,在该第一对应关系中,不同时域、频域或者码域的唤醒信号对应不同的SSB索引。
需要说明的是,在NR系统中,由于采用的频段相比LTE更高,无线信号传输的路径损耗变大,无线信号的覆盖变小。此时,通过基站的多天线系统,采用波束赋形(beamforming)技术形成波束来提高无线信号的增益来弥补路径损耗是一种可行的方法。波束具有方向性,一个窄波束只能覆盖小区的部分区域,无法覆盖小区中个的所有用户。如图9所示,基站可以通过4个不同方向的波束发送信号,对于波束B2,只能覆盖UE1,UE2无法覆盖。
NR系统中的公共信道和信号,如同步信号和广播信道,需要通过多波束扫描的方式覆盖整个小区,便于小区内的UE接收。对于UE特定的信道和信号,基站会通过波束管理,采用合适的波束向UE发送信道和信号。在NR系统中,与CSI-RS或SSB的QCL关系来定义一个信道或信号的空间信息,例如PDCCH的控制资源集(Control Resource Set,CORESET),参考信号等的配置信息中,通过其中的QCL信息,定义与其具有QCL关系的CSI-RS的资源索引(index)或SSB的索引(index),来指示该信道或信号的空间信息。
在示例2中,在唤醒信号的配置中,在配置唤醒信号的资源之外,还需要配置唤醒信号的空间信息。具体的,可以通过定义唤醒信号与NR信号或信道的QCL关系的方法来配置唤醒信号的空间信息,如与CSI-RS或SSB具有QCL关系。具体的,唤醒信号的空间信息还可以通过TCI状态来指示。特别的,在终端设备处于RRC去激活(RRC_INACTIVE)或者RRC空闲(RRC_IDLE)状态下,基站不维护终端设备使用的波束,此时,下行公共信道或信号采用波束扫描的方式发送,例如PDCCH,通过定义PDCCH的监听时机与SSB索引的对应关系,来确定不同监听时机发送的PDCCH所采用的波束方向,也就是其空间信息。对于唤醒信号,通过定义不同时域、频域或者码域的唤醒信号与NR信道或信号,如SSB index的对应关系,这样就可以定义唤醒信号的多波束发送。这种方式下,唤醒信号的空间信息不是通过显式的配置信息指示的,而是按照预定义的规则,不同时域、频域或者码域的唤醒信号对应了不同的空间信息。
具体的,如图10所示,WUS1和WUS2是网络配置的唤醒信号,其中,WUS1和SSB1具有QCL关系,WUS2和SSB2具有QCL关系。
示例3,在第一信息至少包括唤醒信号的传输参数的情况下,该唤醒信号的传输参数包括但不限于以下至少之一:
该唤醒信号的调制阶数,该唤醒信号的编码方式,该唤醒信号的编码速率,该唤醒信号的传输速率,该唤醒信号的符号长度。
具体的,网络设备发送的唤醒信号可以具有不同的调制阶数,编码方式、编码速率、信息速率、符号长度,可以具有不同的传输性能,也影响唤醒信号的接收性能。网络设备指示唤醒信号的调制阶数、编码方式、编码速率、信息速率、符号长度,除了便于终端设备的唤醒接收机对唤醒信号进行接收,还可以利用这些参数,估计唤醒信号的接收性能,从而确定是否使用唤醒接收机接收唤醒信号,并反馈给网络。
示例4,该第一信息还包括多套唤醒信号传输参数,其中,该多套唤醒信号传输参数中的每套唤醒信号传输参数包括但不限于以下至少之一:调制阶数,编码方式,编码速率,传输速率,符号长度,资源大小,功率信息。网络可以根据多套传输参数,针对不同的覆盖需求,选择特定的传输参数组合。
在示例4的一些实现方式,该终端设备根据该多套唤醒信号传输参数使用该唤醒接收机接收该唤醒信号。具体例如,终端设备在接收唤醒信号时,可以基于多套唤醒信号传输参数,对唤醒信号进行接收。也即,每次在接收唤醒信号时,终端设备可以基于多套唤醒信号传输参数接收唤醒信号。
在示例4的一些实现方式,该终端设备根据该多套唤醒信号传输参数中该唤醒信号关联的一套唤醒信号传输参数,使用该唤醒接收机接收该唤醒信号。
在示例4的一些实现方式,该唤醒信号关联的一套唤醒信号传输参数为该终端设备通过主收发机获取的,或者,该唤醒信号关联的一套唤醒信号传输参数为该终端设备通过该唤醒接收机获取的。也即,网络设备可以显式指示唤醒信号关联的一套唤醒信号传输参数。
在示例4的一些实现方式,该唤醒信号关联的一套唤醒信号传输参数基于该唤醒信号的资源位置确定,或者,该唤醒信号关联的一套唤醒信号传输参数基于该唤醒信号中的特征序列确定。也即,网络设备可以隐式指示唤醒信号关联的一套唤醒信号传输参数。
可选地,该特征序列用于该唤醒接收机进行同步或识别该唤醒信号。例如,通过相关接收的方式识别特征序列。
具体例如,网络指示传输参数的方式,可以通过NR信道进行指示,也可以通过唤醒信号进行指示。例如,可以在UE的主接收机开启期间,接收网络发送的关于唤醒信号的传输参数的配置,在UE的主接收机关闭期间,根据传输参数,通过唤醒接收机接收唤醒信号。
示例5,在该第一信息至少包括该唤醒信号的时频资源信息的情况下,该唤醒信号的时频资源信息包括但不限于以下至少之一:
该唤醒信号的频域信息,该唤醒信号的时域信息。
在示例5的一些实现方式,该唤醒信号的频域信息包括以下至少之一:该唤醒信号关联的频域参考点,该唤醒信号关联的频域偏移,该唤醒信号关联的频域带宽,该唤醒信号关联的频域范围,该唤醒信号关联的子载波间隔,该唤醒信号关联的参考子载波间隔。
需要说明的是,在NR系统中,终端设备工作的载波的频域位置通过网络配置。载波的频域位置的起点是基于一个频域参考点(point A)和频域偏移得到的,结合网络配置的载波的频域带宽的大小,终端设备可以得到载波的频域位置。在载波的带宽内,网络设备进一步配置带宽部分(Band Width Part,BWP)的频域位置,具体如图11所示。
在一些实现方式中,唤醒接收机独立于主收发机,其工作的频域位置可以不用考虑终端的主收发机工作的频域位置。例如,唤醒接收机可以和主收发机工作在不同的频段。尤其对于唤醒信号的覆盖范围小的问题,唤醒信号可以在频率相对低的频段进行配置,从而提高覆盖。从运营商部署小区的角度,网络发送的NR信号和唤醒信号尽量配置在相近的频域范围内,即运营商获得的授权频谱的范围内。同一运营商可能并没有同时获得不同频段的使用权。
基于以上考虑,唤醒信号所在的频域位置的配置可以是比较灵活的,但是,又不一定与主收发机工作的频域位置有必然的关联关系。因此,唤醒信号的频域位置可以有自己独立的配置,包括但不限于:频域参考点、频域偏移、频域带宽、参考子载波间隔等。其中,唤醒信号的频域位置可以是唤醒信号所在的频域带宽,频域带宽还可以包含多个频分的唤醒信号的频域资源。
在一些实现方式中,参考子载波间隔可以用于计算以物理资源块(physical resource block,PRB)个数表示的频域偏移或频域带宽对应的实际的频域大小。
在一些实现方式中,该唤醒信号的频域带宽包含与该唤醒信号频分的多个唤醒信号的频域资源。
在一些实现方式中,该唤醒信号的频域参考点为该唤醒信号关联的载波的频域位置的起点,或者,该唤醒信号的频域参考点为该唤醒信号关联的BWP的频域位置的起点。
具体例如,唤醒信号所在的频域位置的配置中,频域参考点可以复用NR系统的参考点A(Point A),也可以单独配置,如参考点B(Point B),如图12所示。
具体的,频域参考点还可以是配置的载波的频域位置的起点,此时,唤醒信号所在的频域位置可以位于载波的频域带宽范围内,也可以在载波的频域带宽范围外。进一步的,唤醒信号所在的频域位置的配置中,频域参考点还可以是配置的BWP的频域位置的起点。BWP可以是BWP#0,也可以是BWP标识为非零的BWP,如图13和图14所示。
在一些实现方式中,该唤醒信号关联的频域带宽属于多个频域带宽,其中,该多个频域带宽基于该唤醒接收机的类型和/或该唤醒接收机的能力确定;或者,该唤醒信号关联的频域范围属于多个频域范围,其中,该多个频域范围基于该唤醒接收机的类型和/或该唤醒接收机的能力确定。
具体的,由于唤醒接收机的极低复杂度,其工作的频段可能相对没有那么灵活,甚至是固定的几个频率范围和带宽,这取决于唤醒接收机的类型和能力。在这种情况下,网络对唤醒信号的频域位置的配置可能仅需要在有限的几个频率范围和带宽内指示其中一个或者多个即可。终端设备可以将唤醒接收机的相关类型或能力上报给网络,便于网络进行相关的配置。
在一些实现方式中,在该唤醒信号采用多载波发送的情况下,该唤醒信号的频域信息包括该唤醒信号关联的子载波间隔。具体例如,若该唤醒信号的频域位置在第一BWP内,则发送该唤醒信号采用的子载波间隔与该第一BWP配置的子载波间隔相同。
在一些实现方式中,该唤醒信号占用的频域位置位于授权频谱,或者,该唤醒信号占用的频域位置位于免授权频谱。
在示例5的一些实现方式,该唤醒信号的时域信息包括但不限于以下至少之一:
该唤醒信号关联的无线帧,该唤醒信号关联的子帧,该唤醒信号关联的时隙,该唤醒信号关联的符号,该唤醒信号对应的时域长度。
具体例如,唤醒信号对应的时域长度可以通过上限值和下限值限定,且上限值和下限值可以基于终端设备的能力确定。
需要说明的是,虽然唤醒接收机可以以极低的功耗工作,并随时接收唤醒信号,但是网络仍然可以配置唤醒信号的时域位置,用于终端设备的唤醒接收机在相应的时域位置进行接收。同时,不同的唤醒信号也可以做时分复用,不同的时域位置可以对应不同的空间信息,例如时域位置作为一种隐式的方式指示唤醒信号的空间信息。
具体例如,唤醒信号关联的时隙和唤醒信号关联的符号可以基于一个参考的子载波间隔。唤醒信号所使用的子载波间隔,也可以是唤醒信号的频域位置所在的BWP配置的子载波间隔,即唤醒信号和NR信号在BWP内使用相同的子载波间隔。
因此,在本申请实施例中,明确了唤醒信号的相关配置可以包括以下至少之一:唤醒信号的功率信息,该唤醒信号的空间信息,该唤醒信号的传输参数,该唤醒信号的时频资源信息。从而,终端设备可以基于唤醒信号的相关配置使用唤醒接收机接收唤醒信号。
上文结合图8至图14,详细描述了本申请的方法实施例,下文结合图15至图19,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图15示出了根据本申请实施例的终端设备300的示意性框图。如图15所示,终端设备300包括:
通信单元310,终端设备接收第一信息;
其中,该第一信息包括以下至少之一:唤醒信号的功率信息,该唤醒信号的空间信息,该唤醒信号的传输参数,该唤醒信号的时频资源信息;
其中,该第一信息用于该终端设备使用唤醒接收机接收该唤醒信号。
在一些实施例中,在该第一信息至少包括该唤醒信号的功率信息的情况下,该唤醒信号的功率信息包括以下至少之一:
承载该唤醒信号的子载波集合中被幅度调制中的高电平调制的资源元素对应的功率,承载该唤醒信号的资源元素的平均功率,该唤醒信号的功率与第一参考功率之间的功率偏移值,该唤醒信号的功率与该第一参考功率的比值,该唤醒信号的绝对功率。
在一些实施例中,该第一参考功率为与该唤醒信号具有准共址QCL关系的第一蜂窝网络信号的每个资源元素的功率EPRE。
在一些实施例中,该第一参考功率为第一蜂窝网络信号的EPRE,或者,该第一参考功率为第一蜂窝网络信道的EPRE。
在一些实施例中,该第一蜂窝网络信号包括以下至少之一:同步信号块SSB,信道状态信息参考信号CSI-RS,物理下行控制信道解调参考信号PDCCH DMRS,物理下行共享信道解调参考信号PDSCH DMRS。
在一些实施例中,该第一蜂窝网络信道包括以下至少之一:物理下行控制信道PDCCH,物理下行共享信道PDSCH。
在一些实施例中,该第一参考功率由协议约定,或者,该第一参考功率由网络设备配置。
在一些实施例中,该唤醒信号的功率信息基于以下至少之一确定:小区大小,该唤醒信号的覆盖需求。
在一些实施例中,该终端设备300还包括:处理单元320;
该处理单元320用于根据该唤醒信号的功率信息确定该唤醒信号的接收性能。
在一些实施例中,该处理单元320具体用于:
根据该唤醒信号的功率信息和第一测量结果,确定该唤醒信号的接收性能;其中,该第一测量结果包括以下至少之一:参考信号接收功率RSRP,参考信号接收质量RSRQ,信号干扰噪声比SINR。
在一些实施例中,该终端设备300还包括:处理单元320;
该处理单元320用于根据该唤醒信号的功率信息和第一测量结果确定该唤醒信号的路径损耗;其中,该第一测量结果包括以下至少之一:RSRP,RSRQ,SINR。
在一些实施例中,该第一测量结果为通过主收发机测量得到的测量结果,或者,该第一测量结果为通过该唤醒接收机测量得到的测量结果。
在一些实施例中,该通信单元310还用于发送该第一测量结果。
在一些实施例中,在该第一测量结果小于或等于第一阈值的情况下,该通信单元310还用于发送该第一测量结果。
在一些实施例中,该第一阈值由协议约定,或者,该第一阈值由网络设备配置。
在一些实施例中,在该第一信息至少包括该唤醒信号的空间信息的情况下,该唤醒信号的空间信息包括以下至少之一:
该唤醒信号关联的传输配置指示TCI状态,与该唤醒信号具有QCL关系的CSI-RS的资源索引,与该唤醒信号具有QCL关系的SSB的索引,该唤醒信号对应的SSB索引,第一对应关系;
其中,该第一对应关系包括多个唤醒信号与多个SSB的索引之间的映射关系,该多个唤醒信号至少包括该唤醒信号。
在一些实施例中,在该第一对应关系中,不同时域、频域或者码域的唤醒信号对应不同的SSB索引。
在一些实施例中,在该第一信息至少包括该唤醒信号的传输参数的情况下,该唤醒信号的传输参数包括以下至少之一:
该唤醒信号的调制阶数,该唤醒信号的编码方式,该唤醒信号的编码速率,该唤醒信号的传输速率,该唤醒信号的符号长度。
在一些实施例中,该第一信息还包括多套唤醒信号传输参数,其中,该多套唤醒信号传输参数中的每套唤醒信号传输参数包括以下至少之一:调制阶数,编码方式,编码速率,传输速率,符号长度,资源大小,功率信息。
在一些实施例中,该终端设备300还包括:处理单元320;
该处理单元320用于根据该多套唤醒信号传输参数使用该唤醒接收机接收该唤醒信号。
在一些实施例中,该终端设备300还包括:处理单元320;
该处理单元320还用于根据该多套唤醒信号传输参数中该唤醒信号关联的一套唤醒信号传输参数,使用该唤醒接收机接收该唤醒信号。
在一些实施例中,该唤醒信号关联的一套唤醒信号传输参数为该终端设备通过主收发机获取的,或者,该唤醒信号关联的一套唤醒信号传输参数为该终端设备通过该唤醒接收机获取的。
在一些实施例中,该唤醒信号关联的一套唤醒信号传输参数基于该唤醒信号的资源位置确定,或者,该唤醒信号关联的一套唤醒信号传输参数基于该唤醒信号中的特征序列确定。
在一些实施例中,该特征序列用于该唤醒接收机进行同步或识别该唤醒信号。
在一些实施例中,在该第一信息至少包括该唤醒信号的时频资源信息的情况下,该唤醒信号的时频资源信息包括以下至少之一:
该唤醒信号的频域信息,该唤醒信号的时域信息。
在一些实施例中,该唤醒信号的频域信息包括以下至少之一:该唤醒信号关联的频域参考点,该唤醒信号关联的频域偏移,该唤醒信号关联的频域带宽,该唤醒信号关联的频域范围,该唤醒信号关联的子载波间隔,该唤醒信号关联的参考子载波间隔。
在一些实施例中,该唤醒信号的频域带宽包含与该唤醒信号频分的多个唤醒信号的频域资源。
在一些实施例中,该唤醒信号的频域参考点为该唤醒信号关联的载波的频域位置的起点,或者,该唤醒信号的频域参考点为该唤醒信号关联的带宽部分BWP的频域位置的起点。
在一些实施例中,该唤醒信号关联的频域带宽属于多个频域带宽,其中,该多个频域带宽基于该唤醒接收机的类型和/或该唤醒接收机的能力确定;或者,
该唤醒信号关联的频域范围属于多个频域范围,其中,该多个频域范围基于该唤醒接收机的类型和/或该唤醒接收机的能力确定。
在一些实施例中,在该唤醒信号采用多载波发送的情况下,该唤醒信号的频域信息包括该唤醒信号关联的子载波间隔。
在一些实施例中,若该唤醒信号的频域位置在第一BWP内,则发送该唤醒信号采用的子载波间隔与该第一BWP配置的子载波间隔相同。
在一些实施例中,该唤醒信号占用的频域位置位于授权频谱,或者,该唤醒信号占用的频域位置位于免授权频谱。
在一些实施例中,该唤醒信号的时域信息包括以下至少之一:
该唤醒信号关联的无线帧,该唤醒信号关联的子帧,该唤醒信号关联的时隙,该唤醒信号关联的符号,该唤醒信号对应的时域长度。
在一些实施例中,该通信单元310还用于发送第一指示信息,该第一指示信息用于指示该终端设备是否使用该唤醒接收机接收该唤醒信号。
在一些实施例中,该第一信息通过以下之一承载:
系统消息,公共无线资源控制RRC信令,专用RRC信令,媒体接入控制层控制单元MAC CE,物理层信令。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备300可对应于本申请方法实施例中的终端设备,并且终端设备300中的各个单元的上述和其它操作和/或功能分别为了实现图8所示方法200中终端设备的相 应流程,为了简洁,在此不再赘述。
图16示出了根据本申请实施例的网络设备400的示意性框图。如图16所示,网络设备400包括:
通信单元410,用于发送第一信息;
其中,该第一信息包括以下至少之一:唤醒信号的功率信息,该唤醒信号的空间信息,该唤醒信号的传输参数,该唤醒信号的时频资源信息;
其中,该第一信息用于该终端设备使用唤醒接收机接收该唤醒信号。
在一些实施例中,在该第一信息至少包括该唤醒信号的功率信息的情况下,该唤醒信号的功率信息包括以下至少之一:
承载该唤醒信号的子载波集合中被幅度调制中的高电平调制的资源元素对应的功率,承载该唤醒信号的资源元素的平均功率,该唤醒信号的功率与第一参考功率之间的功率偏移值,该唤醒信号的功率与该第一参考功率的比值,该唤醒信号的绝对功率。
在一些实施例中,该第一参考功率为与该唤醒信号具有准共址QCL关系的第一蜂窝网络信号的每个资源元素的功率EPRE。
在一些实施例中,该第一参考功率为第一蜂窝网络信号的EPRE,或者,该第一参考功率为第一蜂窝网络信道的EPRE。
在一些实施例中,该第一蜂窝网络信号包括以下至少之一:同步信号块SSB,信道状态信息参考信号CSI-RS,物理下行控制信道解调参考信号PDCCH DMRS,物理下行共享信道解调参考信号PDSCH DMRS。
在一些实施例中,该第一蜂窝网络信道包括以下至少之一:物理下行控制信道PDCCH,物理下行共享信道PDSCH。
在一些实施例中,该第一参考功率由协议约定,或者,该第一参考功率由网络设备配置。
在一些实施例中,该唤醒信号的功率信息基于以下至少之一确定:小区大小,该唤醒信号的覆盖需求。
在一些实施例中,该唤醒信号的功率信息用于该终端设备确定该唤醒信号的接收性能。
在一些实施例中,该唤醒信号的功率信息和第一测量结果用于该终端设备确定该唤醒信号的接收性能;其中,该第一测量结果包括以下至少之一:参考信号接收功率RSRP,参考信号接收质量RSRQ,信号干扰噪声比SINR。
在一些实施例中,该唤醒信号的功率信息和第一测量结果用于该终端设备确定该唤醒信号的路径损耗;其中,该第一测量结果包括以下至少之一:RSRP,RSRQ,SINR。
在一些实施例中,该第一测量结果为通过主收发机测量得到的测量结果,或者,该第一测量结果为通过该唤醒接收机测量得到的测量结果。
在一些实施例中,该通信单元410还用于接收该第一测量结果。
在一些实施例中,在该第一测量结果小于或等于第一阈值的情况下,该通信单元410还用于接收该第一测量结果。
在一些实施例中,该第一阈值由协议约定,或者,该第一阈值由网络设备配置。
在一些实施例中,在该第一信息至少包括该唤醒信号的空间信息的情况下,该唤醒信号的空间信息包括以下至少之一:
该唤醒信号关联的传输配置指示TCI状态,与该唤醒信号具有QCL关系的CSI-RS的资源索引,与该唤醒信号具有QCL关系的SSB的索引,该唤醒信号对应的SSB索引,第一对应关系;
其中,该第一对应关系包括多个唤醒信号与多个SSB的索引之间的映射关系,该多个唤醒信号至少包括该唤醒信号。
在一些实施例中,在该第一对应关系中,不同时域、频域或者码域的唤醒信号对应不同的SSB索引。
在一些实施例中,在该第一信息至少包括该唤醒信号的传输参数的情况下,该唤醒信号的传输参数包括以下至少之一:
该唤醒信号的调制阶数,该唤醒信号的编码方式,该唤醒信号的编码速率,该唤醒信号的传输速率,该唤醒信号的符号长度。
在一些实施例中,该第一信息还包括多套唤醒信号传输参数,其中,该多套唤醒信号传输参数中的每套唤醒信号传输参数包括以下至少之一:调制阶数,编码方式,编码速率,传输速率,符号长度,资源大小,功率信息。
在一些实施例中,该多套唤醒信号传输参数用于该终端设备使用该唤醒接收机接收该唤醒信号。
在一些实施例中,该多套唤醒信号传输参数中该唤醒信号关联的一套唤醒信号传输参数用于该终 端设备使用该唤醒接收机接收该唤醒信号。
在一些实施例中,该唤醒信号关联的一套唤醒信号传输参数为该终端设备通过主收发机获取的,或者,该唤醒信号关联的一套唤醒信号传输参数为该终端设备通过该唤醒接收机获取的。
在一些实施例中,该唤醒信号关联的一套唤醒信号传输参数基于该唤醒信号的资源位置确定,或者,该唤醒信号关联的一套唤醒信号传输参数基于该唤醒信号中的特征序列确定。
在一些实施例中,该特征序列用于该唤醒接收机进行同步或识别该唤醒信号。
在一些实施例中,在该第一信息至少包括该唤醒信号的时频资源信息的情况下,该唤醒信号的时频资源信息包括以下至少之一:
该唤醒信号的频域信息,该唤醒信号的时域信息。
在一些实施例中,该唤醒信号的频域信息包括以下至少之一:该唤醒信号关联的频域参考点,该唤醒信号关联的频域偏移,该唤醒信号关联的频域带宽,该唤醒信号关联的频域范围,该唤醒信号关联的子载波间隔,该唤醒信号关联的参考子载波间隔。
在一些实施例中,该唤醒信号的频域带宽包含与该唤醒信号频分的多个唤醒信号的频域资源。
在一些实施例中,该唤醒信号的频域参考点为该唤醒信号关联的载波的频域位置的起点,或者,该唤醒信号的频域参考点为该唤醒信号关联的带宽部分BWP的频域位置的起点。
在一些实施例中,该唤醒信号关联的频域带宽属于多个频域带宽,其中,该多个频域带宽基于该唤醒接收机的类型和/或该唤醒接收机的能力确定;或者,
该唤醒信号关联的频域范围属于多个频域范围,其中,该多个频域范围基于该唤醒接收机的类型和/或该唤醒接收机的能力确定。
在一些实施例中,在该唤醒信号采用多载波发送的情况下,该唤醒信号的频域信息包括该唤醒信号关联的子载波间隔。
在一些实施例中,若该唤醒信号的频域位置在第一BWP内,则发送该唤醒信号采用的子载波间隔与该第一BWP配置的子载波间隔相同。
在一些实施例中,该唤醒信号占用的频域位置位于授权频谱,或者,该唤醒信号占用的频域位置位于免授权频谱。
在一些实施例中,该唤醒信号的时域信息包括以下至少之一:
该唤醒信号关联的无线帧,该唤醒信号关联的子帧,该唤醒信号关联的时隙,该唤醒信号关联的符号,该唤醒信号对应的时域长度。
在一些实施例中,该通信单元410还用于发送第一指示信息,该第一指示信息用于指示该终端设备是否使用该唤醒接收机接收该唤醒信号。
在一些实施例中,该第一信息通过以下之一承载:
系统消息,公共无线资源控制RRC信令,专用RRC信令,媒体接入控制层控制单元MAC CE,物理层信令。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备400可对应于本申请方法实施例中的网络设备,并且网络设备400中的各个单元的上述和其它操作和/或功能分别为了实现图8所示方法200中网络设备的相应流程,为了简洁,在此不再赘述。
图17是本申请实施例提供的一种通信设备500示意性结构图。图17所示的通信设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图17所示,通信设备500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
在一些实施例中,如图17所示,通信设备500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,该通信设备500具体可为本申请实施例的网络设备,并且该通信设备500可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备500具体可为本申请实施例的终端设备,并且该通信设备500可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图18是本申请实施例的装置的示意性结构图。图18所示的装置600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图18所示,装置600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
在一些实施例中,该装置600还可以包括输入接口630。其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些实施例中,该装置600还可以包括输出接口640。其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一些实施例中,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图19是本申请实施例提供的一种通信系统700的示意性框图。如图19所示,该通信系统700包括终端设备710和网络设备720。
其中,该终端设备710可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备720可以用于实现上述方法中由网络设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
在一些实施例中,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。
Claims (82)
- 一种无线通信的方法,其特征在于,包括:终端设备接收第一信息;其中,所述第一信息包括以下至少之一:唤醒信号的功率信息,所述唤醒信号的空间信息,所述唤醒信号的传输参数,所述唤醒信号的时频资源信息;其中,所述第一信息用于所述终端设备使用唤醒接收机接收所述唤醒信号。
- 如权利要求1所述的方法,其特征在于,在所述第一信息至少包括所述唤醒信号的功率信息的情况下,所述唤醒信号的功率信息包括以下至少之一:承载所述唤醒信号的子载波集合中被幅度调制中的高电平调制的资源元素对应的功率,承载所述唤醒信号的资源元素的平均功率,所述唤醒信号的功率与第一参考功率之间的功率偏移值,所述唤醒信号的功率与所述第一参考功率的比值,所述唤醒信号的绝对功率。
- 如权利要求2所述的方法,其特征在于,所述第一参考功率为与所述唤醒信号具有准共址QCL关系的第一蜂窝网络信号的每个资源元素的功率EPRE。
- 如权利要求2所述的方法,其特征在于,所述第一参考功率为第一蜂窝网络信号的EPRE,或者,所述第一参考功率为第一蜂窝网络信道的EPRE。
- 如权利要求3或4所述的方法,其特征在于,所述第一蜂窝网络信号包括以下至少之一:同步信号块SSB,信道状态信息参考信号CSI-RS,物理下行控制信道解调参考信号PDCCH DMRS,物理下行共享信道解调参考信号PDSCH DMRS。
- 如权利要求4所述的方法,其特征在于,所述第一蜂窝网络信道包括以下至少之一:物理下行控制信道PDCCH,物理下行共享信道PDSCH。
- 如权利要求2所述的方法,其特征在于,所述第一参考功率由协议约定,或者,所述第一参考功率由网络设备配置。
- 如权利要求2至7中任一项所述的方法,其特征在于,所述唤醒信号的功率信息基于以下至少之一确定:小区大小,所述唤醒信号的覆盖需求。
- 如权利要求2至8中任一项所述的方法,其特征在于,所述方法还包括:所述终端设备根据所述唤醒信号的功率信息确定所述唤醒信号的接收性能。
- 如权利要求9所述的方法,其特征在于,所述终端设备根据所述唤醒信号的功率信息确定所述唤醒信号的接收性能,包括:所述终端设备根据所述唤醒信号的功率信息和第一测量结果,确定所述唤醒信号的接收性能;其中,所述第一测量结果包括以下至少之一:参考信号接收功率RSRP,参考信号接收质量RSRQ,信号干扰噪声比SINR。
- 如权利要求2至10中任一项所述的方法,其特征在于,所述方法还包括:所述终端设备根据所述唤醒信号的功率信息和第一测量结果确定所述唤醒信号的路径损耗;其中,所述第一测量结果包括以下至少之一:RSRP,RSRQ,SINR。
- 如权利要求10或11所述的方法,其特征在于,所述第一测量结果为通过主收发机测量得到的测量结果,或者,所述第一测量结果为通过所述唤醒接收机测量得到的测量结果。
- 如权利要求10至12中任一项所述的方法,其特征在于,所述方法还包括:所述终端设备发送所述第一测量结果。
- 如权利要求13所述的方法,其特征在于,所述终端设备发送所述第一测量结果,包括:在所述第一测量结果小于或等于第一阈值的情况下,所述终端设备发送所述第一测量结果。
- 如权利要求14所述的方法,其特征在于,所述第一阈值由协议约定,或者,所述第一阈值由网络设备配置。
- 如权利要求1所述的方法,其特征在于,在所述第一信息至少包括所述唤醒信号的空间信息的情况下,所述唤醒信号的空间信息包括以下至少之一:所述唤醒信号关联的传输配置指示TCI状态,与所述唤醒信号具有QCL关系的CSI-RS的资源索引,与所述唤醒信号具有QCL关系的SSB的索引,所述唤醒信号对应的SSB索引,第一对应关系;其中,所述第一对应关系包括多个唤醒信号与多个SSB的索引之间的映射关系,所述多个唤醒信号至少包括所述唤醒信号。
- 如权利要求16所述的方法,其特征在于,在所述第一对应关系中,不同时域、频域或者码域的唤醒信号对应不同的SSB索引。
- 如权利要求1所述的方法,其特征在于,在所述第一信息至少包括所述唤醒信号的传输参数的情况下,所述唤醒信号的传输参数包括以下至少之一:所述唤醒信号的调制阶数,所述唤醒信号的编码方式,所述唤醒信号的编码速率,所述唤醒信号的传输速率,所述唤醒信号的符号长度。
- 如权利要求1所述的方法,其特征在于,所述第一信息还包括多套唤醒信号传输参数,其中,所述多套唤醒信号传输参数中的每套唤醒信号传输参数包括以下至少之一:调制阶数,编码方式,编码速率,传输速率,符号长度,资源大小,功率信息。
- 如权利要求19所述的方法,其特征在于,所述方法还包括:所述终端设备根据所述多套唤醒信号传输参数使用所述唤醒接收机接收所述唤醒信号。
- 如权利要求19所述的方法,其特征在于,所述方法还包括:所述终端设备根据所述多套唤醒信号传输参数中所述唤醒信号关联的一套唤醒信号传输参数,使用所述唤醒接收机接收所述唤醒信号。
- 如权利要求21所述的方法,其特征在于,所述唤醒信号关联的一套唤醒信号传输参数为所述终端设备通过主收发机获取的,或者,所述唤醒信号关联的一套唤醒信号传输参数为所述终端设备通过所述唤醒接收机获取的。
- 如权利要求21所述的方法,其特征在于,所述唤醒信号关联的一套唤醒信号传输参数基于所述唤醒信号的资源位置确定,或者,所述唤醒信号关联的一套唤醒信号传输参数基于所述唤醒信号中的特征序列确定。
- 如权利要求23所述的方法,其特征在于,所述特征序列用于所述唤醒接收机进行同步或识别所述唤醒信号。
- 如权利要求1所述的方法,其特征在于,在所述第一信息至少包括所述唤醒信号的时频资源信息的情况下,所述唤醒信号的时频资源信息包括以下至少之一:所述唤醒信号的频域信息,所述唤醒信号的时域信息。
- 如权利要求25所述的方法,其特征在于,所述唤醒信号的频域信息包括以下至少之一:所述唤醒信号关联的频域参考点,所述唤醒信号关联的频域偏移,所述唤醒信号关联的频域带宽,所述唤醒信号关联的频域范围,所述唤醒信号关联的子载波间隔,所述唤醒信号关联的参考子载波间隔。
- 如权利要求26所述的方法,其特征在于,所述唤醒信号的频域带宽包含与所述唤醒信号频分的多个唤醒信号的频域资源。
- 如权利要求26或27所述的方法,其特征在于,所述唤醒信号的频域参考点为所述唤醒信号关联的载波的频域位置的起点,或者,所述唤醒信号的频域参考点为所述唤醒信号关联的带宽部分BWP的频域位置的起点。
- 如权利要求26至28中任一项所述的方法,其特征在于,所述唤醒信号关联的频域带宽属于多个频域带宽,其中,所述多个频域带宽基于所述唤醒接收机的类型和/或所述唤醒接收机的能力确定;或者,所述唤醒信号关联的频域范围属于多个频域范围,其中,所述多个频域范围基于所述唤醒接收机的类型和/或所述唤醒接收机的能力确定。
- 如权利要求26至29中任一项所述的方法,其特征在于,在所述唤醒信号采用多载波发送的情况下,所述唤醒信号的频域信息包括所述唤醒信号关联的子载波间隔。
- 如权利要求30所述的方法,其特征在于,若所述唤醒信号的频域位置在第一BWP内,则发送所述唤醒信号采用的子载波间隔与所述第一BWP配置的子载波间隔相同。
- 如权利要求26至31中任一项所述的方法,其特征在于,所述唤醒信号占用的频域位置位于授权频谱,或者,所述唤醒信号占用的频域位置位于免授权频谱。
- 如权利要求25所述的方法,其特征在于,所述唤醒信号的时域信息包括以下至少之一:所述唤醒信号关联的无线帧,所述唤醒信号关联的子帧,所述唤醒信号关联的时隙,所述唤醒信号关联的符号,所述唤醒信号对应的时域长度。
- 如权利要求1至33中任一项所述的方法,其特征在于,所述方法还包括:所述终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备是否使用所述唤醒接收机接收所述唤醒信号。
- 如权利要求1至34中任一项所述的方法,其特征在于,所述第一信息通过以下之一承载:系统消息,公共无线资源控制RRC信令,专用RRC信令,媒体接入控制层控制单元MAC CE,物理层信令。
- 一种无线通信的方法,其特征在于,包括:网络设备发送第一信息;其中,所述第一信息包括以下至少之一:唤醒信号的功率信息,所述唤醒信号的空间信息,所述唤醒信号的传输参数,所述唤醒信号的时频资源信息;其中,所述第一信息用于终端设备使用唤醒接收机接收所述唤醒信号。
- 如权利要求36所述的方法,其特征在于,在所述第一信息至少包括所述唤醒信号的功率信息的情况下,所述唤醒信号的功率信息包括以下至少之一:承载所述唤醒信号的子载波集合中被幅度调制中的高电平调制的资源元素对应的功率,承载所述唤醒信号的资源元素的平均功率,所述唤醒信号的功率与第一参考功率之间的功率偏移值,所述唤醒信号的功率与所述第一参考功率的比值,所述唤醒信号的绝对功率。
- 如权利要求37所述的方法,其特征在于,所述第一参考功率为与所述唤醒信号具有准共址QCL关系的第一蜂窝网络信号的每个资源元素的功率EPRE。
- 如权利要求37所述的方法,其特征在于,所述第一参考功率为第一蜂窝网络信号的EPRE,或者,所述第一参考功率为第一蜂窝网络信道的EPRE。
- 如权利要求38或39所述的方法,其特征在于,所述第一蜂窝网络信号包括以下至少之一:同步信号块SSB,信道状态信息参考信号CSI-RS,物理下行控制信道解调参考信号PDCCH DMRS,物理下行共享信道解调参考信号PDSCH DMRS。
- 如权利要求39所述的方法,其特征在于,所述第一蜂窝网络信道包括以下至少之一:物理下行控制信道PDCCH,物理下行共享信道PDSCH。
- 如权利要求37所述的方法,其特征在于,所述第一参考功率由协议约定,或者,所述第一参考功率由网络设备配置。
- 如权利要求37至42中任一项所述的方法,其特征在于,所述唤醒信号的功率信息基于以下至少之一确定:小区大小,所述唤醒信号的覆盖需求。
- 如权利要求37至43中任一项所述的方法,其特征在于,所述唤醒信号的功率信息用于所述终端设备确定所述唤醒信号的接收性能。
- 如权利要求44所述的方法,其特征在于,所述唤醒信号的功率信息和第一测量结果用于所述终端设备确定所述唤醒信号的接收性能;其中,所述第一测量结果包括以下至少之一:参考信号接收功率RSRP,参考信号接收质量RSRQ,信号干扰噪声比SINR。
- 如权利要求37至45中任一项所述的方法,其特征在于,所述唤醒信号的功率信息和第一测量结果用于所述终端设备确定所述唤醒信号的路径损耗;其中,所述第一测量结果包括以下至少之一:RSRP,RSRQ,SINR。
- 如权利要求45或46所述的方法,其特征在于,所述第一测量结果为通过主收发机测量得到的测量结果,或者,所述第一测量结果为通过所述唤醒接收机测量得到的测量结果。
- 如权利要求45至47中任一项所述的方法,其特征在于,所述方法还包括:所述网络设备接收所述第一测量结果。
- 如权利要求48所述的方法,其特征在于,所述网络设备接收所述第一测量结果,包括:在所述第一测量结果小于或等于第一阈值的情况下,所述网络设备接收所述第一测量结果。
- 如权利要求49所述的方法,其特征在于,所述第一阈值由协议约定,或者,所述第一阈值由网络设备配置。
- 如权利要求36所述的方法,其特征在于,在所述第一信息至少包括所述唤醒信号的空间信息的情况下,所述唤醒信号的空间信息包括以下至少之一:所述唤醒信号关联的传输配置指示TCI状态,与所述唤醒信号具有QCL关系的CSI-RS的资源索引,与所述唤醒信号具有QCL关系的SSB的索引,所述唤醒信号对应的SSB索引,第一对应关系;其中,所述第一对应关系包括多个唤醒信号与多个SSB的索引之间的映射关系,所述多个唤醒信号至少包括所述唤醒信号。
- 如权利要求51所述的方法,其特征在于,在所述第一对应关系中,不同时域、频域或者码域的唤醒信号对应不同的SSB索引。
- 如权利要求36所述的方法,其特征在于,在所述第一信息至少包括所述唤醒信号的传输参数的情况下,所述唤醒信号的传输参数包括以下至少之一:所述唤醒信号的调制阶数,所述唤醒信号的编码方式,所述唤醒信号的编码速率,所述唤醒信号的传输速率,所述唤醒信号的符号长度。
- 如权利要求36所述的方法,其特征在于,所述第一信息还包括多套唤醒信号传输参数,其中,所述多套唤醒信号传输参数中的每套唤醒信号传输参数包括以下至少之一:调制阶数,编码方式,编码速率,传输速率,符号长度,资源大小,功率信息。
- 如权利要求54所述的方法,其特征在于,所述多套唤醒信号传输参数用于所述终端设备使用所述唤醒接收机接收所述唤醒信号。
- 如权利要求54所述的方法,其特征在于,所述多套唤醒信号传输参数中所述唤醒信号关联的一套唤醒信号传输参数用于所述终端设备使用所述唤醒接收机接收所述唤醒信号。
- 如权利要求56所述的方法,其特征在于,所述唤醒信号关联的一套唤醒信号传输参数为所述终端设备通过主收发机获取的,或者,所述唤醒信号关联的一套唤醒信号传输参数为所述终端设备通过所述唤醒接收机获取的。
- 如权利要求56所述的方法,其特征在于,所述唤醒信号关联的一套唤醒信号传输参数基于所述唤醒信号的资源位置确定,或者,所述唤醒信号关联的一套唤醒信号传输参数基于所述唤醒信号中的特征序列确定。
- 如权利要求58所述的方法,其特征在于,所述特征序列用于所述唤醒接收机进行同步或识别所述唤醒信号。
- 如权利要求36所述的方法,其特征在于,在所述第一信息至少包括所述唤醒信号的时频资源信息的情况下,所述唤醒信号的时频资源信息包括以下至少之一:所述唤醒信号的频域信息,所述唤醒信号的时域信息。
- 如权利要求60所述的方法,其特征在于,所述唤醒信号的频域信息包括以下至少之一:所述唤醒信号关联的频域参考点,所述唤醒信号关联的频域偏移,所述唤醒信号关联的频域带宽,所述唤醒信号关联的频域范围,所述唤醒信号关联的子载波间隔,所述唤醒信号关联的参考子载波间隔。
- 如权利要求61所述的方法,其特征在于,所述唤醒信号的频域带宽包含与所述唤醒信号频分的多个唤醒信号的频域资源。
- 如权利要求61或62所述的方法,其特征在于,所述唤醒信号的频域参考点为所述唤醒信号关联的载波的频域位置的起点,或者,所述唤醒信号的频域参考点为所述唤醒信号关联的带宽部分BWP的频域位置的起点。
- 如权利要求61至63中任一项所述的方法,其特征在于,所述唤醒信号关联的频域带宽属于多个频域带宽,其中,所述多个频域带宽基于所述唤醒接收机的类型和/或所述唤醒接收机的能力确定;或者,所述唤醒信号关联的频域范围属于多个频域范围,其中,所述多个频域范围基于所述唤醒接收机的类型和/或所述唤醒接收机的能力确定。
- 如权利要求61至64中任一项所述的方法,其特征在于,在所述唤醒信号采用多载波发送的情况下,所述唤醒信号的频域信息包括所述唤醒信号关联的子载波间隔。
- 如权利要求65所述的方法,其特征在于,若所述唤醒信号的频域位置在第一BWP内,则发送所述唤醒信号采用的子载波间隔与所述第一BWP配置的子载波间隔相同。
- 如权利要求61至66中任一项所述的方法,其特征在于,所述唤醒信号占用的频域位置位于授权频谱,或者,所述唤醒信号占用的频域位置位于免授权频谱。
- 如权利要求60所述的方法,其特征在于,所述唤醒信号的时域信息包括以下至少之一:所述唤醒信号关联的无线帧,所述唤醒信号关联的子帧,所述唤醒信号关联的时隙,所述唤醒信号关联的符号,所述唤醒信号对应的时域长度。
- 如权利要求36至68中任一项所述的方法,其特征在于,所述方法还包括:所述网络设备发送第一指示信息,所述第一指示信息用于指示所述终端设备是否使用所述唤醒接收机接收所述唤醒信号。
- 如权利要求36至39中任一项所述的方法,其特征在于,所述第一信息通过以下之一承载:系统消息,公共无线资源控制RRC信令,专用RRC信令,媒体接入控制层控制单元MAC CE,物理层信令。
- 一种终端设备,其特征在于,包括:通信单元,用于接收第一信息;其中,所述第一信息包括以下至少之一:唤醒信号的功率信息,所述唤醒信号的空间信息,所述唤醒信号的传输参数,所述唤醒信号的时频资源信息;其中,所述第一信息用于所述终端设备使用唤醒接收机接收所述唤醒信号。
- 一种网络设备,其特征在于,包括:通信单元,用于发送第一信息;其中,所述第一信息包括以下至少之一:唤醒信号的功率信息,所述唤醒信号的空间信息,所述唤醒信号的传输参数,所述唤醒信号的时频资源信息;其中,所述第一信息用于终端设备使用唤醒接收机接收所述唤醒信号。
- 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述终端设备执行如权利要求1至35中任一项所述的方法。
- 一种网络设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述网络设备执行如权利要求36至70中任一项所述的方法。
- 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至35中任一项所述的方法。
- 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求36至70中任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至35中任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求36至70中任一项所述的方法。
- 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至35中任一项所述的方法。
- 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求36至70中任一项所述的方法。
- 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至35中任一项所述的方法。
- 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求36至70中任一项所述的方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/099000 WO2023240502A1 (zh) | 2022-06-15 | 2022-06-15 | 无线通信的方法、终端设备和网络设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/099000 WO2023240502A1 (zh) | 2022-06-15 | 2022-06-15 | 无线通信的方法、终端设备和网络设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023240502A1 true WO2023240502A1 (zh) | 2023-12-21 |
Family
ID=89192740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/099000 WO2023240502A1 (zh) | 2022-06-15 | 2022-06-15 | 无线通信的方法、终端设备和网络设备 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023240502A1 (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111095995A (zh) * | 2017-09-15 | 2020-05-01 | 高通股份有限公司 | 用于唤醒信号设计和资源分配的技术和装置 |
US20200196244A1 (en) * | 2017-07-06 | 2020-06-18 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and device for handling wake-up signals |
CN112385276A (zh) * | 2018-06-15 | 2021-02-19 | 高通股份有限公司 | C-drx唤醒信号的经波束成形传输 |
US20210084590A1 (en) * | 2019-09-16 | 2021-03-18 | Qualcomm Incorporated | Configuration of control resources for wake-up signaling |
CN112789901A (zh) * | 2018-10-05 | 2021-05-11 | 高通股份有限公司 | 唤醒信令资源时机 |
CN113039852A (zh) * | 2018-09-14 | 2021-06-25 | 三星电子株式会社 | 用于在无线通信系统中监测物理下行链路控制信道的方法和装置 |
CN113905429A (zh) * | 2019-09-29 | 2022-01-07 | Oppo广东移动通信有限公司 | 一种监听唤醒信号的方法、电子设备及存储介质 |
US20220022137A1 (en) * | 2019-03-29 | 2022-01-20 | Huawei Technologies Co., Ltd. | Communication method and apparatus |
-
2022
- 2022-06-15 WO PCT/CN2022/099000 patent/WO2023240502A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200196244A1 (en) * | 2017-07-06 | 2020-06-18 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and device for handling wake-up signals |
CN111095995A (zh) * | 2017-09-15 | 2020-05-01 | 高通股份有限公司 | 用于唤醒信号设计和资源分配的技术和装置 |
CN112385276A (zh) * | 2018-06-15 | 2021-02-19 | 高通股份有限公司 | C-drx唤醒信号的经波束成形传输 |
CN113039852A (zh) * | 2018-09-14 | 2021-06-25 | 三星电子株式会社 | 用于在无线通信系统中监测物理下行链路控制信道的方法和装置 |
CN112789901A (zh) * | 2018-10-05 | 2021-05-11 | 高通股份有限公司 | 唤醒信令资源时机 |
US20220022137A1 (en) * | 2019-03-29 | 2022-01-20 | Huawei Technologies Co., Ltd. | Communication method and apparatus |
US20210084590A1 (en) * | 2019-09-16 | 2021-03-18 | Qualcomm Incorporated | Configuration of control resources for wake-up signaling |
CN113905429A (zh) * | 2019-09-29 | 2022-01-07 | Oppo广东移动通信有限公司 | 一种监听唤醒信号的方法、电子设备及存储介质 |
Non-Patent Citations (1)
Title |
---|
QUALCOMM INCORPORATED, APPLE, OPPO: "Wake-Up Signaling for C-DRX Mode", 3GPP DRAFT; R2-1709652 WAKE-UP SIGNALING FOR C-DRX MODE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Berlin, Germany; 20170821 - 20170825, 20 August 2017 (2017-08-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051319364 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3566341B1 (en) | Waking up a dozing wireless device | |
JP7420812B2 (ja) | 不連続受信中の起動シグナリングを容易にするための方法および装置 | |
US11838236B2 (en) | Uplink channel quality measurement using a subframe with high-intensity reference signal bursts | |
US11109312B2 (en) | Dynamic group wake-up reconfiguration | |
US8792459B2 (en) | Methods and apparatus for joint scheduling of peer-to-peer links and wireless wide area network links in cellular networks | |
JP2023500454A (ja) | PDCCHによるSCell休止インジケーション | |
US20220338118A1 (en) | Method and apparatus for transmitting and receiving data in wireless communication system | |
WO2019095310A1 (en) | Method and apparatus for uplink transmission in multi-carrier systems | |
WO2022068611A1 (zh) | 侧行链路的传输方法和终端 | |
US20130308524A1 (en) | Distributed interference management algorithm | |
US20240147424A1 (en) | Communication method and apparatus | |
EP4443984A1 (en) | Resource determining method and apparatus, and terminal | |
CN117561753A (zh) | 用于网络节能的发现信号稀疏传输 | |
WO2023240504A1 (zh) | 无线通信方法、装置、设备、存储介质及程序产品 | |
US11723110B2 (en) | Discontinuous operation on sidelink | |
WO2023240502A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
CN117295103A (zh) | 通信方法和装置 | |
WO2023159468A1 (zh) | 信息传输方法、终端设备和网络设备 | |
WO2024098196A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
WO2022077140A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
WO2024000493A1 (zh) | 状态确定方法、装置、设备、存储介质及程序产品 | |
WO2024146319A1 (zh) | 侧行功率控制的方法和装置 | |
WO2024186248A1 (en) | A method of continuous phase m-fsk modulation compatible with ofdm systems | |
WO2024102049A1 (en) | User equipment, network node and methods in a wireless communications network | |
WO2023191675A1 (en) | Wake-up radio with adaptive sensitivity and power consumption |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22946196 Country of ref document: EP Kind code of ref document: A1 |