WO2020200134A1 - 一种随机接入方法及通信装置 - Google Patents

一种随机接入方法及通信装置 Download PDF

Info

Publication number
WO2020200134A1
WO2020200134A1 PCT/CN2020/081937 CN2020081937W WO2020200134A1 WO 2020200134 A1 WO2020200134 A1 WO 2020200134A1 CN 2020081937 W CN2020081937 W CN 2020081937W WO 2020200134 A1 WO2020200134 A1 WO 2020200134A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
time
resource set
frequency resource
frequency
Prior art date
Application number
PCT/CN2020/081937
Other languages
English (en)
French (fr)
Inventor
吴艺群
陈雁
王艺
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20783535.6A priority Critical patent/EP3952568A4/en
Publication of WO2020200134A1 publication Critical patent/WO2020200134A1/zh
Priority to US17/487,495 priority patent/US20220015154A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a random access method and a communication device.
  • the random access (RA) process of user equipment may also be referred to as a random access channel (random access channel, RACH) process.
  • RACH random access channel
  • the RA process can be used in scenarios such as initial access, cell handover, uplink out-of-synchronization, scheduling request (SR) failure, system message request, and beam failure recovery.
  • SR scheduling request
  • the existing two-step RA process is adopted, which specifically includes: the UE sends a message A (MsgA) to the base station, where the MsgA may include two parts: random access preamble and uplink data. After receiving MsgA, the base station sends a message B (MsgB) to the UE, and MsgB is used for random access response and conflict resolution.
  • MsgA message A
  • MsgB message B
  • MsgB message B
  • the embodiments of the present application provide a random access method and a communication device to solve the interference problem between UEs in the prior art.
  • an embodiment of the present application provides a random access method, including: a terminal device receives configuration information sent by a network device; the configuration information is used to configure a first random access resource set and a second random access resource set
  • the first random access resource set includes at least one physical random access channel PRACH time-frequency resource, at least one random access preamble and at least one physical uplink shared channel PUSCH time-frequency resource, and the second random access resource set It includes at least one PRACH time-frequency resource, at least one random access preamble and at least one PUSCH time-frequency resource; when the timing advance TA when initiating random access is valid, the terminal device adopts the first random access resource set Sending a first random access preamble and first uplink data to the network device, where the first random access preamble is a random access preamble in the first random access resource set, and the first random access preamble is A random access preamble is carried on the first PRACH time-frequency resource in the first random access resource set, and the first uplink data is carried on the
  • the second uplink data is carried on the second PUSCH time-frequency resource in the second random access resource set.
  • UEs with invalid TA and UEs with valid TA use different resources to transmit uplink signals during random access, which can reduce mutual interference in signal transmission between UEs and improve data transmission efficiency.
  • any PUSCH time-frequency resource in the first random access resource set is different from any PUSCH time-frequency resource in the second random access resource set.
  • UEs with invalid TA and UEs with valid TA use different PUSCH resources to transmit uplink data during random access, which can reduce mutual interference in data transmission between UEs and improve data transmission efficiency.
  • any PRACH time-frequency resource in the first random access resource set is different from any PRACH time-frequency resource in the second random access resource set; or, the first random access resource set
  • Any random access preamble in the access resource set is different from any random access preamble in the second random access resource set.
  • at least one of the resources used when the TA is invalid and the three resources used when the TA is valid is different, which can reduce the mutual interference of data transmission between UEs to a certain extent and improve the efficiency of data transmission.
  • the terminal device uses the resources in the first random access resource set to send the first random access preamble and the first uplink data, including: Determine the transmission time of the first random access preamble according to the time domain position of the TA and the first PRACH time-frequency resource, and according to the effective TA and the time domain position of the first PUSCH time-frequency resource Determining the sending time of the first uplink data; sending the first random access preamble and the first random access preamble to the network device according to the determined sending time of the first random access preamble and the determined sending time of the first uplink data First uplink data; or, determining the sending time of the first random access preamble according to the time domain position of the first PRACH time-frequency resource, and according to the time domain of the TA and the first PUSCH time-frequency resource The location determines the sending time of the first uplink data, and sends the first random access preamble and the first random access preamble to the network device according to
  • the first uplink data when the TA is valid, the UE adjusts the transmission time of the uplink data at least, so that the time of each UE sending the uplink data when the TA is valid is aligned, reducing mutual interference between the UEs, and improving data transmission efficiency.
  • the TA is: the TA indicated by the network device; or, the TA value determined according to the downlink reference signal or the synchronization signal; or, the TA value determined according to the distance between the terminal device and the network device. Determine the TA value.
  • the UE can adjust the TA value by itself. For example, when the location changes, the accuracy of the current TA value decreases. By adjusting the TA indication by the UE itself, the TA value can be improved. Accuracy, reduce data transmission interference and improve data transmission efficiency.
  • TA is invalid, the TA value is generally equal to 0.
  • the value set of the configuration parameter associated with the PUSCH time-frequency resource included in the first random access resource set is different from the configuration parameter associated with the PUSCH time-frequency resource included in the second random access resource set.
  • the value sets are different; the configuration parameters include at least one of a modulation and coding scheme MCS, a cyclic prefix, an uplink control information parameter, and a power control parameter.
  • the TA is valid when the following conditions are met: the TA timer does not expire when random access is initiated; or the terminal device has the ability to adjust the TA according to the received downlink reference signal and location information ; Or, the time difference between the time when random access is initiated and the time of the last TA adjustment is less than the preset threshold.
  • the method further includes: the terminal device receives a timing advance instruction sent by the network device in response to the first random access preamble, where the timing advance instruction carries a TA adjustment amount; the terminal The device adjusts the value of the TA according to the TA and the TA adjustment amount.
  • the method further includes: the terminal device receives a timing advance instruction sent by the network device in response to the second random access preamble, the timing advance instruction carries a TA value; the terminal device Use the TA value as the new TA value.
  • an embodiment of the present application provides a random access method, including:
  • the network device sends configuration information; the configuration information is used to configure the first random access resource set required for random access when the timing advance TA is valid, and the second random access resource set required for random access when the TA is invalid Resource set; the first random access resource set includes multiple physical random access channel PRACH time-frequency resources, multiple random access preambles, and multiple PUSCH time-frequency resources, and the second random access resource set includes Multiple PRACH time-frequency resources, multiple random access preambles, and multiple PUSCH time-frequency resources; the network device detects random access preambles according to the first random access resource set and the second random access resource set And upstream data.
  • the resources used by the network equipment for random access when the TA is invalid and the resources used for random access when the TA is valid are configured separately, so that UEs with invalid TA and UEs with valid TA use different resources for random access Transmission of uplink signals can reduce mutual interference in signal transmission between UEs and improve data transmission efficiency.
  • any PUSCH time-frequency resource in the first random access resource set is different from any PUSCH time-frequency resource in the second random access resource set.
  • the network equipment is configured separately for the PUSCH time-frequency resource used for random access when the TA is invalid and the PUSCH time-frequency resource used for random access when the TA is valid. UEs with invalid TA and UEs with valid TA are performing random access. Using different PUSCH time-frequency resources to transmit uplink data at the time of entry can reduce the mutual interference of data transmission between UEs and improve the efficiency of data transmission.
  • any PRACH time-frequency resource in the first random access resource set is different from any PRACH time-frequency resource in the second random access resource set;
  • the network device detects random access preamble and uplink data according to the first random access resource set and the second random access resource set, including: when the first PRACH time-frequency is in the first random access resource set When the first random access preamble is detected on the resource, the uplink signal is detected on multiple PUSCH time-frequency resources in the first random access resource set; or, when the second PRACH time-frequency resource is on the second random access resource set When the second random access preamble is detected, the uplink signal is detected on multiple PUSCH time-frequency resources in the second random access resource set.
  • the PRACH time-frequency resources in different random access resource sets are different, so that after detecting a random access preamble on a certain PRACH time-frequency resource, the network device can determine which PRACH time-frequency resource is located at. Or on which PUSCH time-frequency resources to detect uplink data, the detection time can be reduced and the detection efficiency can be improved.
  • any random access preamble in the first random access resource set is different from any random access preamble in the second random access resource set; and the network device is different according to the
  • the first random access resource set and the second random access resource set detecting random access preamble and uplink data include: when a first random access preamble is detected and the first random access preamble is the first random access preamble When one of the multiple random access preambles included in a random access resource set, the uplink signal is detected on multiple PUSCH time-frequency resources in the first random access resource set; or, when the second random access preamble is detected And when the second random access preamble is one of the multiple random access preambles included in the second random access resource set, the uplink is detected on multiple PUSCH time-frequency resources in the second random access resource set. signal.
  • the network device can determine which PUSCH time-frequency resource or resources to detect uplink data on according to the preamble. Can reduce detection time and improve detection efficiency.
  • the method further includes: the network device receives a first instruction from a terminal device, the first instruction is used to indicate that the terminal device has the ability to track TA, and the ability to track TA characterizes the terminal The device supports tracking and adjusting TA according to the received downlink signal and/or the location information of the terminal device; the network device sends a second instruction to the terminal device according to the first instruction, and the second instruction is used to indicate The TA timing duration configured by the network device for the terminal device.
  • the terminal device has the ability to track TA through the network device itself, so that the network device can configure a longer TA timing duration according to the TA tracking ability of the terminal device, so that the UE has a longer TA effective duration.
  • the network device can configure a longer TA timing duration according to the TA tracking ability of the terminal device, so that the UE has a longer TA effective duration.
  • the method further includes: in response to the random access preamble and uplink data, sending a timing advance instruction; when the random access preamble and the uplink data are detected based on the first random access resource set, The timing advance instruction carries a TA adjustment amount; when the random access preamble and the uplink data are detected based on a second random access resource set, the timing advance instruction carries a TA value.
  • an embodiment of the present application provides a random access method, including:
  • the terminal device receives configuration information sent by the network device; wherein the configuration information is used to configure multiple random access resource sets, and each random access resource set in the multiple random access resource sets corresponds to a timing advance TA accuracy
  • the random access resource sets corresponding to different TA accuracy levels are different, and each random access resource set in the multiple random access resource sets includes at least one physical random access channel PRACH time-frequency resource, and at least one random access resource set.
  • Access preamble and at least one physical uplink shared channel PUSCH time-frequency resource the terminal device determines the TA accuracy level to which the TA belongs when initiating random access; the terminal device uses the random corresponding to the determined TA accuracy level To access the resources in the resource concentration, and send a first random access preamble and first uplink data to the network device, where the first random access preamble is the random access resource concentration corresponding to the determined TA accuracy level Random access preamble, the first random access preamble is carried on the first PRACH time-frequency resource in the random access resource set corresponding to the determined TA accuracy level, and the first uplink data is carried on the determined
  • the TA accuracy level corresponds to the first PUSCH time-frequency resource in the random access resource set.
  • UEs with different TA accuracy levels use different resources during random access, so that mutual interference when UEs transmit random access signals can be reduced, and data transmission efficiency can be improved.
  • different random access resource sets include different PUSCH time-frequency resources.
  • different PUSCH time-frequency resources are used to transmit uplink data during random access by UEs of different TA accuracy levels, thereby reducing mutual interference when UEs transmit uplink data during random access and improving data transmission efficiency.
  • different random access resource sets include different PRACH time-frequency resources; or, different random access resource sets include different random access preambles.
  • at least one of the resources is different, which can reduce the mutual interference of random access signal transmission between UEs to a certain extent and improve the efficiency of data transmission.
  • the terminal device uses the resources in the random access resource set corresponding to the determined TA accuracy level to send
  • the network device sending the first random access preamble and the first uplink data includes: determining the sending time of the first random access preamble according to the TA when the random access is initiated and the time domain position of the first PRACH time-frequency resource , And determine the transmission time of the first uplink data according to the time domain position of the TA and the first PUSCH time-frequency resource, and determine the transmission time of the first random access preamble and the determined first uplink data Sending time to send the first random access preamble and the first uplink data to the network device; or, determine the sending of the first random access preamble according to the time domain position of the first PRACH time-frequency resource Time, and determine the transmission time of the first uplink data according to the time domain position of the TA and the first PUSCH time-frequency resource, and determine the transmission time of the first random access preamble
  • the uplink data transmission time is adjusted, so that the uplink data transmission time of each UE whose TA accuracy level is greater than or equal to the first threshold is aligned, reducing UE Mutual interference between them, thereby improving data transmission efficiency.
  • the TA is: the TA indicated by the network device; or, the TA value determined according to the downlink reference signal or the synchronization signal; or, the TA value determined according to the distance between the terminal device and the network device. Determine the TA value.
  • it further includes: when the determined TA accuracy level is greater than or equal to a first threshold, the terminal device receives the timing sent by the network device in response to the first random access preamble An advance instruction, the timing advance instruction carries a TA adjustment amount; the terminal device adjusts the value of the TA according to the TA and the TA adjustment amount.
  • the method further includes: when the determined TA accuracy level is less than a first threshold, the terminal device receives the timing advance instruction sent by the network device in response to the first random access preamble , The timing advance instruction carries a TA value; the terminal device uses the TA value as a new TA value.
  • the value sets of the configuration parameters associated with the PUSCH time-frequency resources included in different random access resource sets are different; the configuration parameters include the modulation and coding scheme MCS, cyclic prefix, uplink control information parameters, and power At least one of the control parameters.
  • an embodiment of the present application provides a random access method, including:
  • the network device sends configuration information; the configuration information configures multiple random access resource sets, and each random access resource set in the multiple random access resource sets corresponds to a timing advance TA accuracy level, and different TA accuracy levels are The corresponding random access resource sets are different, and each random access resource set in the plurality of random access resource sets includes multiple physical random access channel PRACH time-frequency resources, multiple random access preambles, and multiple physical uplinks Shared channel PUSCH time-frequency resources; the network device detects random access preamble and uplink data according to the multiple random access resource sets.
  • the network equipment separately configures the resources used for random access of UEs with different TA accuracy levels, so that UEs with different TA accuracy levels use different resources to transmit uplink signals during random access, which can reduce signal transmission between UEs.
  • Mutual interference to improve data transmission efficiency.
  • different random access resource sets include different PUSCH time-frequency resources.
  • the network equipment separately configures the PUSCH time-frequency resources used for random access by UEs with different TA accuracy levels.
  • UEs with different TA accuracy levels use different PUSCH time-frequency resources to transmit uplink data during random access. Reduce the mutual interference of data transmission between UEs and improve data transmission efficiency.
  • the PRACH time-frequency resources included in different random access resource sets are different; the network device detects random access preamble and uplink data according to the multiple random access resource sets, including: When the random access preamble is detected on the first PRACH time-frequency resource in a random access resource set, the uplink signal is detected on multiple PUSCH time-frequency resources in the first random access resource set; wherein, the first The random resource set is one of the multiple random access resource sets.
  • the PRACH time-frequency resources in different random access resource sets are different, so that after detecting a random access preamble on a certain PRACH time-frequency resource, the network device can determine which PRACH time-frequency resource is located at. Or on which PUSCH time-frequency resources to detect uplink data, the detection time can be reduced and the detection efficiency can be improved.
  • different random access resource sets include different random access preambles; the network device detects random access preambles and uplink data according to the multiple random access resource sets, including: When the random access preamble and the random access preamble is one of the multiple random access preambles included in the first random access resource set, the multiple PUSCH time-frequency in the first random access resource set The uplink signal is detected on the resource; wherein the first random resource set is one of the multiple random access resource sets.
  • the network device can determine which PUSCH time-frequency resource or resources to detect uplink data on according to the preamble. Can reduce detection time and improve detection efficiency.
  • it further includes: when the random access preamble and the uplink data are detected on the resources included in the first random access resource set, sending a timing advance instruction; when the first random access When the TA accuracy level corresponding to the incoming resource set is greater than or equal to the first threshold, the timing advance instruction carries the TA adjustment amount; when the TA accuracy level corresponding to the first random access resource set is less than the first threshold, The timing advance instruction carries the TA value.
  • the terminal device has the ability to track TA through the network device itself, so that the network device can configure a longer TA timing duration according to the TA tracking ability of the terminal device, so that the UE has a longer TA effective duration.
  • the network device can configure a longer TA timing duration according to the TA tracking ability of the terminal device, so that the UE has a longer TA effective duration.
  • the embodiments of the present application provide a communication device.
  • the communication device may be a terminal device, or may be another device capable of supporting the terminal device to implement the method, for example, a device in a terminal device.
  • the device includes units or means for performing the steps of the first aspect or the third aspect above.
  • an embodiment of the present application provides a communication device.
  • the communication device may be a network device, or may be another device capable of supporting the network device to implement the method, for example, a device in a network device.
  • the device includes units or means for performing the steps of the second aspect or the fourth aspect above.
  • an embodiment of the present application provides a communication device, which is applied to terminal equipment.
  • the communication device is a device that can be installed in a terminal device.
  • the device that can be set in the terminal device can be a chip system, a module or a circuit, etc., which is not specifically limited in this application.
  • the communication device includes a processor, configured to implement the function of the terminal device in the method described in the first aspect or the third aspect.
  • the device may also include a memory for storing program instructions and data.
  • the memory is coupled with the processor, and the processor calls and executes program instructions stored in the memory to implement the functions of the terminal device in the method described in the first aspect or the third aspect.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the other device is a network device.
  • the communication interface may include a circuit, a bus, an interface, a communication interface, or any other device capable of implementing a communication function.
  • an embodiment of the present application provides a communication device, which is applied to network equipment.
  • the device is a device that can be installed in a network device.
  • the device that can be set in the network device can be a chip system, a module, or a circuit, etc., which is not specifically limited in this application.
  • the device includes a processor, configured to implement the function of the network device in the method described in the second aspect or the fourth aspect.
  • the device may also include a memory for storing program instructions and data.
  • the memory is coupled with the processor, and the processor calls and executes program instructions stored in the memory to implement the function of the network device in the method described in the second aspect or the fourth aspect.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the other device is a terminal device.
  • the communication interface may include a circuit, a bus, an interface, a communication interface, or any other device capable of implementing a communication function.
  • a tenth aspect provides a communication system, which may include the device described in the fifth aspect and the device described in the sixth aspect. Or include the device described in the seventh aspect and the device described in the eighth aspect.
  • a computer storage medium stores instructions that, when run on a communication device, cause the communication device to execute the first aspect or any one of the first aspects above.
  • the method described in the possible design, or the communication device is caused to perform the method described in the second aspect or any one of the possible designs of the second aspect, or the communication device is caused to perform the third aspect or the third aspect
  • the method described in any one of the possible designs, or the communication device is caused to execute the method described in the fourth aspect or any one of the fourth aspects.
  • a computer program product containing instructions.
  • the computer program product stores instructions that, when run on a communication device, cause the communication device to execute the first aspect or any one of the first aspects.
  • the method described in one possible design, or the communication device computer is made to execute the method described in the second aspect or any one of the possible designs of the second aspect, or the communication device is made to execute the third aspect or the first aspect.
  • the method described in any one of the possible designs of the three aspects, or the communication device is caused to execute the method described in the foregoing fourth aspect or any one of the possible designs of the fourth aspect.
  • an embodiment of the present application provides a chip system, which includes a processor and may also include a memory, for implementing the functions of the terminal device or the network device in the above method.
  • the chip system can be composed of chips, or can include chips and other discrete devices.
  • Figure 1 is a schematic diagram of a communication system architecture in an embodiment of the application
  • FIG. 2 is a schematic diagram of a random access process flow in an embodiment of this application.
  • FIG. 3 is a schematic diagram of another random access process flow diagram in an embodiment of this application.
  • Figure 4 is a schematic diagram of uplink time adjustment in an embodiment of the application.
  • FIG. 5 is a schematic flowchart of a random access method in an embodiment of this application.
  • 6A is a schematic diagram of resource correspondence in the first example in the first possible implementation manner in the embodiments of the application;
  • 6B is a schematic diagram of resource correspondence in the second example in the first possible implementation manner in the embodiments of the application.
  • 6C is a schematic diagram of resource correspondence in the third example of the first possible implementation manner in the embodiments of the application.
  • FIG. 7 is a schematic flowchart of another random access method in an embodiment of this application.
  • FIG. 8A is a schematic diagram of resource correspondence in the first example in the second possible implementation manner in the embodiment of the present application.
  • FIG. 8B is a schematic diagram of resource correspondence in the second example in the second possible implementation manner in the embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a communication device 800 in an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a communication device 900 in an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a base station 1000 in an embodiment of the application.
  • FIG. 12 is a schematic structural diagram of a terminal device 1100 in an embodiment of the application.
  • system and “network” in this article are often used interchangeably in this article.
  • the term “and/or” in this article is only an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, exist alone B these three situations.
  • the character “/” in this text generally indicates that the associated objects before and after are in an "or” relationship. It should be understood that in the embodiments of the present application, "B corresponding to A” means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean that B is determined only according to A, and B can also be determined according to A and/or other information.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or order of multiple objects. Importance.
  • the terms “including” and “having” in the embodiments of the present application, claims and drawings are not exclusive. For example, a process, method, system, product, or device that includes a series of steps or modules is not limited to the listed steps or modules, and may also include unlisted steps or modules.
  • the embodiments of this application can be applied to but not limited to 5G systems, such as NR systems, and can also be applied to LTE systems, long-term evolution-advanced (LTE-A) systems, and enhanced long-term evolution technologies (enhanced long term evolution).
  • LTE-A long-term evolution-advanced
  • eLTE enhanced long-term evolution technologies
  • -advanced (eLTE) and other communication systems can also be extended to related cellular systems such as wireless fidelity (WiFi), worldwide interoperability for microwave access (wimax), and 3GPP.
  • the specific communication system architecture applied in the embodiment of the present application may be as shown in FIG. 1, and includes a network device and multiple terminal devices. In FIG. 1, three terminal devices are taken as an example.
  • the terminal device 1-the terminal device 3 can send uplink data to the network device separately or at the same time. It should be noted that the embodiment of the application does not limit the number of terminal devices and network devices in the communication system shown in FIG. 1.
  • Terminal devices including devices that provide users with voice and/or data connectivity, such as handheld devices with wireless connection functions, or processing devices connected to wireless modems.
  • the terminal device can communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, V2X terminal equipment, machine-to-machine/machine-type communication ( machine-to-machine/machine-type communications, M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station) , Remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user device) etc.
  • IoT Internet of things
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket-sized, handheld, and computer-built mobile devices.
  • PCS personal communication service
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as various smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • vehicle-mounted terminal equipment for example, the vehicle-mounted terminal equipment is also called on-board unit (OBU).
  • OBU on-board unit
  • the terminal device may also include a relay. Or it can be understood that everything that can communicate with the base station can be regarded as a terminal device.
  • the terminal device is referred to as UE for example.
  • Network equipment can refer to equipment that communicates with wireless terminal equipment through one or more cells on the air interface in the access network.
  • the network device may be a node in a radio access network, may also be called a base station, or may also be called a radio access network (RAN) node (or device).
  • RAN radio access network
  • a base station is used as an example.
  • the network equipment are: gNB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (RNC), Node B (Node B) B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit) , BBU), or wireless fidelity (Wifi) access point (AP), etc.
  • the network device may include a centralized unit (CU) node and a distributed unit (DU) node. This structure splits the protocol layer of the eNB in the long-term evolution (LTE) system. Some of the protocol layer functions are placed under the centralized control of the CU, and some or all of the protocol layer functions are distributed in the DU. Centralized control of DU.
  • the RA process can also be referred to as the RACH process.
  • the base station sends a configuration message (also called an RA configuration message) to the UE, and the UE determines the available physical time-frequency resources according to the configuration message, that is, physical random access channel (PRACH) resources, also known as PRACH opportunities (PRACH Occasion, RO).
  • PRACH physical random access channel
  • PRACH Occasion PRACH Occasion
  • the RAR can include random access preamble and uplink data timing advance (TA), uplink resources for sending uplink data, and temporary cell radio network Temporary identifier (cell radio network temporary identifier, C-RNTI) and other parameters, so that the UE sends uplink data to the base station according to the indication of the RAR, and the base station receives the uplink data and sends a conflict resolution message to the UE.
  • the competition-based RA process is also called the four-step RA process.
  • the base station sends an RA indication message to the UE.
  • the RA indication message generally includes the random access preamble allocated for the UE and the sending random PRACH time-frequency resources used by the access preamble.
  • the UE sends the preamble according to the RA indication message, and the base station sends the RAR to the UE after receiving the preamble.
  • RAR can include uplink data timing advance (time advance, TA) amount, uplink resources used to send uplink data, and temporary cell radio network temporary identifier (C-RNTI), preamble (and received Same as preamble) and other parameters.
  • TA time advance
  • C-RNTI temporary cell radio network temporary identifier
  • the RA indication message can be sent to the UE through a downlink control channel or high-layer signaling.
  • the uplink resource may be a physical uplink shared channel (physical uplink shared channel, PUSCH) time-frequency resource.
  • the foregoing four-step RA process requires multiple signaling exchanges between the UE and the base station, and therefore has a relatively high time delay.
  • a two-step RA process is proposed to reduce latency, as shown in Figure 3.
  • the UE sends MsgA to the base station, where MsgA can include two parts: random access preamble and uplink signal, which is equivalent to 1 and 3 of four-step RA.
  • BS sends MsgB to UE.
  • MsgB is used to send random access response and conflict resolution, which is equivalent to 2 and 4 of four-step RA.
  • the two-step RA process can also be used for non-competitive access, as shown in Figure 3 (b).
  • the interval from the start time of UE1 sending the uplink signal to the start time of the base station receiving the uplink signal is also ⁇ T 1 . Therefore, for UE1, the base station has a time difference of 2 ⁇ T 1 from the beginning of sending downlink signals to the beginning of receiving uplink signals. Similarly, for U2, the base station is from the beginning of sending downlink signals to the beginning of receiving uplink signals. There is a time difference of 2 ⁇ T 2 at the time. Due to the different distances between the UEs and the base station, the uplink signals arrive at the base station at different times, which may cause timing deviations between the UEs. When the timing deviation is greater than the cyclic prefix (CP) of the orthogonal frequency division multiple (OFDM) symbol, UEs may interfere with each other.
  • CP cyclic prefix
  • OFDM orthogonal frequency division multiple
  • the UE In order to solve the interference problem between UEs, the UE needs to perform timing adjustment, also called timing advance (TA). As shown in Figure 4(b), UE1 advances the start time of sending uplink signals by 2 ⁇ T 1 , and UE2 advances the start time of sending uplink signals by 2 ⁇ T 2 , and the base station will receive the uplink signals of UE1 and UE2 at the same time. Signal to solve the problem of mutual interference between UEs.
  • the base station sends a TA to the UE in a random access response, and the UE adjusts timing according to the TA. When the distance between the UE and the base station changes, the timing needs to be adjusted accordingly.
  • RA when the UE sends an uplink signal, it will adjust the timing according to the TA fed back by the base station in the RAR, so in general, there will be no interference between UEs.
  • the base station may send a timing advance instruction to the UE to adapt to the situation where the TA changes after the UE moves. Each time the UE receives the timing advance command, it will restart the TA timer.
  • one way is to not perform TA adjustment on the preamble and uplink data part of MsgA.
  • the uplink data sent by different UEs may have a large timing deviation, and there may be large interference between the UEs.
  • the preamble and the uplink data part of the MsgA can be TA adjusted, or only the uplink data part can be TA adjusted, thereby reducing the interference between the uplink data parts.
  • embodiments of the present application provide a random access method and device, which specifically provide the following two possible implementation modes:
  • random access resource sets (including PRACH resources and PUSCH resources) are respectively configured for the case where the TA is valid and the case where the TA is invalid.
  • random access resource sets are respectively configured for different TA accuracy levels.
  • the base station sends configuration information, and the UE receives the configuration information sent by the base station.
  • the configuration information is used to configure a first random access resource set and a second random access resource set; the first random access resource set includes at least one physical random access channel PRACH time-frequency resource, and at least one random access resource set.
  • the configuration information is used to configure the first random access resource set and the second random access resource set.
  • One way is to implicitly indicate that the resources in the first random access resource set are valid for TA
  • the resource in the second random access resource set is used for random access when the TA is invalid.
  • the resources in the random access resource set will be distinguished according to different coding bit sequences, whether it is used for random access when the TA is valid or used for random access when the TA is invalid. Different formats are used to distinguish the random access resource concentration.
  • the resource of is used for random access when the TA is valid or random access when the TA is invalid, or the random access resource is distinguished by the order of resource configuration.
  • the resources in the concentration are used for random access when the TA is valid Or it is used when performing random access when TA is invalid.
  • Another way is to display and indicate that the resources in the first random access resource set are used for random access when the TA is valid, and the resources in the second random access resource set are used for random access when the TA is invalid.
  • Adopted by admission For example, through the indication field, when the indication field is filled with 0, it indicates that the resource is used for random access when the TA is invalid, and when the indication field is filled with 1, the indication resource is used for random access when the TA is valid. It may also be agreed in the protocol that the resources in the first random access resource set are used when the TA is valid, and the resources in the second random access resource set are used when the TA is invalid.
  • the PRACH time-frequency resource in the embodiment of the present application may also be referred to as a PRACH opportunity (PRACH occasion, RO), and the PUSCH time-frequency resource may also be referred to as a PUSCH opportunity (PUSCH occasion, PO).
  • PRACH occasion RO
  • PUSCH occasion PO
  • the configuration information may be sent through broadcast or multicast messages, or through UE-specific radio resource control (Radio Resource Control, RRC) messages, or other RRC configuration messages.
  • RRC Radio Resource Control
  • the configuration information may be carried in a master information block (MIB) or a system information block (SIB), and sent through a broadcast or multicast message.
  • MIB master information block
  • SIB system information block
  • the base station is configured with the first random access resource set and the second random access resource set, which can be understood as respectively configuring PRACH time-frequency resources and random access for random access when TA is valid. Preamble and PUSCH time-frequency resources, and PRACH time-frequency resources used for random access when TA is invalid, random access preamble and PUSCH time-frequency resources.
  • the three resources may be different, or only one resource may be different. There can be two different resources.
  • the following exemplarily describes the correspondence between the three resources corresponding to TA invalid and TA valid.
  • the first example is a first example:
  • the base station separately configures PRACH time-frequency resources and PUSCH time-frequency resources used for random access when TA is invalid, and PRACH time-frequency resources and PUSCH time-frequency resources used for random access when TA is valid.
  • the PRACH time-frequency resource used for random access when the TA is invalid and the PRACH time-frequency resource used for random access when the TA is valid may all be different.
  • any PRACH time-frequency resource included in the first random access resource set is different from any PRACH time-frequency resource included in the second random access resource set.
  • one or more PRACH time-frequency resources used for random access when the TA is valid is referred to as the first PRACH time-frequency resource set.
  • the one or more PRACH time-frequency resources used for random access when the TA is invalid is called the second PRACH time-frequency resource set. That is, in the first example, all PRACH time-frequency resources included in the first PRACH time-frequency resource set are different from all PRACH time-frequency resources included in the second PRACH time-frequency resource set.
  • the first PRACH time-frequency resource set includes two, RO#0 and RO#1
  • the second PRACH time-frequency resource set includes two, RO#2 and RO#3.
  • the number of PRACH time-frequency resources used for random access when the configured TA is valid and the number of PRACH time-frequency resources used for random access when the configured TA is invalid may be the same or different. This is not specifically limited.
  • one PRACH time-frequency resource may correspond to one or more preambles, for example, one PRACH time-frequency resource corresponds to 64 preambles.
  • different preambles have different functions.
  • the preamble can be divided into multiple preamble groups.
  • One PRACH time-frequency resource can correspond to one or more preamble groups, and one preamble group can include one or more preambles.
  • the preamble corresponding to each PRACH time-frequency resource in the first PRACH time-frequency resource set and the preamble corresponding to each PRACH time-frequency resource in the second PRACH time-frequency resource set may be the same or different.
  • RO0, RO1, RO2 and RO3 each correspond to 64 preambles.
  • RO0 and RO1 correspond to preamble1-preamble32
  • RO2 and RO3 correspond to preamble33-preamble64.
  • the PUSCH time-frequency resource used for random access when the TA is invalid and the PUSCH time-frequency resource used for random access when the TA is valid are all different.
  • One or more PUSCH time-frequency resources used for random access when TA is valid is called the first PUSCH time-frequency resource set
  • one or more PUSCH time-frequency resources used for random access when TA is invalid is called second PUSCH time-frequency resource set. That is, any PUSCH time-frequency resource in the first PUSCH time-frequency resource set is different from any PUSCH time-frequency resource in the second PUSCH time-frequency resource set.
  • the first PRACH time-frequency resource set corresponds to the first PUSCH time-frequency resource set
  • the second PRACH time-frequency resource set corresponds to the second PUSCH time-frequency resource set.
  • the first PRACH time-frequency resource set includes two PRACH time-frequency resources, RO0 and RO1
  • the second PRACH time-frequency resource includes two PRACH time-frequency resources, RO2 and RO3, respectively.
  • the first PUSCH time-frequency resource set includes one PUSCH time-frequency resource, which is PO0
  • the second PUSCH time-frequency resource set includes one PUSCH time-frequency resource, which is PO1.
  • RO0 and RO1 both correspond to PO0
  • RO2 and RO3 both correspond to PO1.
  • any random access preamble in the first random access resource set is different from any random access preamble in the second random access resource set.
  • All PRACH time-frequency resources used for random access when TA is invalid and all PRACH time-frequency resources used for random access when TA is valid may correspond to the same one-to-one correspondence.
  • the base station configures a PRACH time-frequency resource set, which is used to perform random access when the TA is invalid, and to perform random access when the TA is valid.
  • the PRACH time-frequency resource set may include one or more PRACH resources.
  • the PRACH time-frequency resource set corresponds to two preamble groups, such as group1 and group2, and each preamble group includes one or more preambles.
  • the number of preambles included in group1 and group2 may be the same or different. All preambles included in group1 are different from all preambles included in group2. For example, group1 includes preamble1-preamble32, and group2 includes preamble33-preamble64.
  • the preamble in group1 is used to perform random access when the TA is valid, and the preamble in group2 is used to perform random access when the TA is invalid.
  • any random access preamble in the first random access resource set is different from any random access preamble in the second random access resource set.
  • the PUSCH time-frequency resource used for random access when the TA is invalid and the PUSCH time-frequency resource used for random access when the TA is valid are all different.
  • One or more PUSCH time-frequency resources used for random access when TA is valid is called the first PUSCH time-frequency resource set
  • one or more PUSCH time-frequency resources used for random access when TA is invalid is called second PUSCH time-frequency resource set. That is, any PUSCH time-frequency resource in the first PUSCH time-frequency resource set is different from any PUSCH time-frequency resource in the second PUSCH time-frequency resource set.
  • group1 corresponds to the first PUSCH time-frequency resource set (PO#0)
  • group2 corresponds to the second PUSCH time-frequency resource set (PO# 1).
  • PRACH time-frequency resources and random access preambles used for random access when TA is invalid are not distinguished, and they can all be the same.
  • the PUSCH time-frequency resource used for random access when the configured TA is invalid is different from the PUSCH time-frequency resource used for random access when the configured TA is valid.
  • the base station configures a PRACH time-frequency resource set, and the PRACH time-frequency resource set is used to perform random access when the TA is invalid, and to perform random access when the TA is valid.
  • the PRACH time-frequency resource set may include one or more PRACH resources.
  • Each PRACH time-frequency resource in the PRACH time-frequency resource set can correspond to the same preamble or correspond to different preambles, and these preambles can be used to perform random access when the TA is invalid, and to perform random access when the TA is valid.
  • the base station configures two PUSCH time-frequency resource sets, namely the first PUSCH time-frequency resource set and the second PUSCH time-frequency resource set. The first PUSCH time-frequency resource set is used to perform random access when TA is valid, and the second PUSCH time-frequency resource set The resource set is used to perform random access when the TA is invalid.
  • the PRACH time-frequency resource set includes RO0
  • the first PUSCH time-frequency resource set includes PO0
  • the second PUSCH time-frequency resource set includes PO1
  • the PRACH time-frequency resource set corresponds to the first PUSCH time-frequency resource set and The second PUSCH time-frequency resource set. That is, RO0 corresponds to PO0 and PO1.
  • the PUSCH time-frequency resources described in the embodiments of this application are different, which means that the time-domain resources occupied by PUSCH are different, or the frequency-domain resources are different, or the time-domain and frequency-domain resources are both different; PRACH time-frequency resources The difference means that the time domain resources occupied by the PRACH are different, or the frequency domain resources are different, or the time domain and frequency domain resources are different.
  • the value set of the configuration parameter associated with the PUSCH time-frequency resource included in the first random access resource set is different from the configuration parameter associated with the PUSCH time-frequency resource included in the second random access resource set.
  • the value set is different.
  • the value set here may include multiple specific values or include a value range.
  • the configuration parameters include at least one of a modulation and coding scheme (MCS), a cyclic prefix (CP), an uplink control information parameter, and a power control parameter.
  • MCS modulation and coding scheme
  • CP cyclic prefix
  • uplink control information parameters may include the number of bits of uplink control information (UCI), the location and size of time-frequency resources of uplink control information, and so on.
  • the configuration parameters may be agreed upon by the protocol or configured by the base station.
  • the value range of the MCS configuration for the PUSCH time-frequency resource when the TA is valid is different from the value range of the MCS configuration for the PUSCH time-frequency resource when the TA is valid.
  • the uplink control information parameters meet at least one of the following conditions, Improve the efficiency of data transmission:
  • the MCS value range configured for the PUSCH time-frequency resource when the TA is valid is larger than the MCS value range configured for the PUSCH time-frequency resource when the TA is invalid;
  • the transmit power configured for the PUSCH time-frequency resource when the TA is valid may be greater than the transmit power configured for the PUSCH time-frequency resource when the TA is invalid;
  • the number of bits of uplink control information configured for PUSCH time-frequency resources when TA is valid is greater than the number of bits of uplink control information configured for PUSCH time-frequency resources when TA is invalid; or,
  • the time-frequency resource size of the uplink control information configured for the PUSCH time-frequency resource when the TA is valid is greater than the time-frequency resource location and size of the uplink control information configured for the PUSCH time-frequency resource when the TA is invalid.
  • the UE determines whether the TA when initiating random access is valid, if it is, execute S503, if not, execute S504.
  • the UE may determine whether the TA is valid in any of the following ways.
  • the UE can judge whether the TA is valid according to the TA timer. If the TA timer does not expire, the UE's TA is valid, otherwise the UE's TA is considered invalid. Generally, the UE receives the uplink timing advance instruction issued by the base station, and the UE adjusts the TA according to the timing advance instruction and restarts the TA timer.
  • the length of the TA timer can be configured by the base station.
  • the length of the TA timer (or referred to as TA timing duration) configured by the base station for each UE is the same.
  • the base station can configure the length of the TA timer for the UE according to the ability of the UE to adjust the TA (also referred to as the TA tracking ability).
  • the UE supports tracking and adjusting the current TA according to the downlink signal and/or the location information of the UE.
  • the downlink signal may be a downlink reference signal or a synchronization signal.
  • the location information of the UE may be the distance between the UE and the base station.
  • the UE sends a first indication to the base station.
  • the first indication is used to indicate that the UE has the TA tracking capability, and the TA tracking capability indicates that the UE supports tracking and adjusting the TA according to the received downlink signal and the location information of the UE.
  • the base station After receiving the first instruction, the base station sends a second instruction to the UE according to the first instruction, and the second instruction is used to instruct the base station to configure the TA timing duration for the UE according to the first instruction . That is, the timing duration of the TA timer is configured for the UE.
  • the parameter used to indicate the tracking capability of the TA may include at least one of the following:
  • the TA accuracy level carried in the first indication may be a factory parameter of the UE, or an operator may notify it through signaling.
  • the operator can notify the terminal device through pre-configuration signaling, or the operator can write the pre-configuration signaling in the subscriber identification module (SIM) of the terminal or the universal subscriber identity module (USIM).
  • SIM subscriber identification module
  • USIM universal subscriber identity module
  • the terminal device can obtain pre-configuration signaling and so on by reading the SIM or USIM.
  • the TA accuracy level carried in the first indication may also be the TA accuracy level determined when random access was performed last time.
  • the rated TA accuracy level is determined according to the start time length of the TA timing, or the signal strength of the received downlink signal, or according to the distance between the UE and the base station.
  • the specific determination manner refer to manner 1 to manner 3 in the second possible implementation manner corresponding to FIG. 7, and the description is not repeated here.
  • the accuracy of TA represents the size of the error between the adjusted TA (here, adjustment refers to the adjustment of the UE or the adjustment of the base station) and the accurate TA value.
  • the base station may be configured with a mapping relationship between the parameter indicating the TA tracking capability and the TA timing duration, so that the base station may configure the TA timing duration for the UE according to the first indication reported by the UE and the mapping relationship.
  • the UE has the ability to adjust the TA, and the UE's TA is effective.
  • the UE when it has the TA tracking capability, it can notify the base station.
  • the base station can configure the timing duration of the TA timer to infinity. If it is configured to infinity, that is, the UE's TA is always valid.
  • the UE has TA tracking capability.
  • the TA timer can be interrupted, or the impact of the TA timer timeout can be ignored, so as to determine that the UE's TA is valid.
  • the third method the time difference between the time when the random access is performed and the time of the last TA adjustment is less than the preset threshold.
  • the time when the random access is performed can be the start position or the time slot of the start position of the UE sending the random access preamble, or the start position or the start position of the UE sending the PUSCH.
  • the slot may also be the time when the random access process is initiated inside the terminal device or the time slot in which the time is located.
  • the time of the last TA adjustment may be the time when the TA indicated by the network device was received last time, or the time when the TA was tracked and adjusted last time.
  • S503 The UE uses the resources in the first random access resource set to send a first random access preamble and first uplink data to the network device.
  • the first random access preamble is a random access preamble in the first random access resource set, and the first random access preamble is carried in the first PRACH in the first random access resource set.
  • the first uplink data is carried on the first PUSCH time-frequency resource.
  • S504 The UE uses the resources in the second random access resource set to send a second random access preamble and second uplink data to the network device.
  • the second random access preamble is a random access preamble in the first random access resource set
  • the second random access preamble is carried on a second PRACH in the second random access resource set.
  • the second uplink data is carried on a second PUSCH time-frequency resource in the second random access resource set.
  • the random access preamble (first random access preamble or second random access preamble) and uplink data (first uplink data or second uplink data) can be carried in MsgA for transmission.
  • the UE When the UE performs two-step random access, it selects PRACH time-frequency resources, random access preamble and PUSCH time-frequency resources according to whether the TA is valid.
  • a mapping relationship between a synchronization signal block (synchronization signal block, SSB) and a PRACH time-frequency resource there is a mapping relationship between a synchronization signal block (synchronization signal block, SSB) and a PRACH time-frequency resource.
  • SSB synchronization signal block
  • a certain number of SSBs are mapped on each PRACH time-frequency resource.
  • the UE can select an SSB with a reference signal received power (RSRP) higher than a preset threshold, and then select a PRACH resource from the PRACH resources associated with the SSB.
  • RSRP reference signal received power
  • the UE determines that the TA is valid, determines the SSB whose RSRP is higher than the preset threshold, such as SSB0 and SSB1, and then determines the PRACH time-frequency mapping of SSB0 and SSB1 in the first PRACH time-frequency resource set Resource, select a PRACH time-frequency resource from the determined PRACH time-frequency resources.
  • the preamble is selected from the preamble corresponding to the selected PRACH time-frequency resource.
  • the first PUSCH time-frequency resource is selected from the first PUSCH time-frequency resource set for carrying uplink data.
  • the UE determines the PRACH time-frequency resource and preamble according to the RA indication message, and then determines the corresponding PUSCH resource according to the determined PRACH time-frequency resource.
  • the UE sends MsgA to the base station on the selected PRACH time-frequency resource and PUSCH time-frequency resource.
  • the sending time of the random access preamble and uplink data can be adjusted according to the valid TA at the same time. Otherwise, when the TA is invalid, the TA can be set to 0, that is No TA adjustment is performed on the random access preamble and uplink data.
  • the sending time of the random access preamble may be determined according to the effective TA and the time domain position of the first PRACH time-frequency resource, and according to the effective TA and the first PUSCH
  • the time domain position of the time-frequency resource determines the transmission time of the uplink data, and sends the first random access to the base station according to the determined transmission time of the first random access preamble and the determined transmission time of the first uplink data.
  • the preamble and the first uplink data may be determined according to the effective TA and the time domain position of the first PRACH time-frequency resource, and according to the effective TA and the first PUSCH
  • the time domain position of the time-frequency resource determines the transmission time of the uplink data, and sends the first random access to the base station according to the determined transmission time of the first random access preamble and the determined transmission time of the first uplink data.
  • the preamble and the first uplink data may be determined according to the effective TA and the time domain position of the first PRACH time-frequency resource, and according
  • the uplink data transmission time can be adjusted only according to the valid TA; otherwise, when the TA is invalid, the TA can be set to 0, that is, it is not for random access.
  • the preamble and upstream data are TA adjusted.
  • the transmission time of the first random access preamble is determined according to the time domain position of the first PRACH time-frequency resource, and according to the effective TA and the first PUSCH time-frequency resource Determine the sending time of the first uplink data based on the determined sending time of the first random access preamble and the determined sending time of the first uplink data to send the first random access preamble to the base station And the first uplink data.
  • the effective TA may be the TA indicated by the base station, and may be the TA value sent by the base station received during the last random access process.
  • the TA value determined by the UE according to the downlink signal or location information has TA tracking capability.
  • the UE tracks the adjusted TA value according to the downlink reference signal or synchronization signal, or the UE tracks the adjusted TA value according to the distance between the UE and the base station.
  • the base station When adjusting the TA, on the one hand, the base station The tracking adjustment is performed on the basis of the indicated TA. On the other hand, the tracking adjustment is performed again on the basis of the TA of the previous tracking adjustment. It should be understood that the TA can be updated every time, whether it is updated on the basis of the TA indicated by the base station or on the basis of the TA tracked and adjusted last time, it is performed again on the basis of the latest updated TA. Update.
  • S505 After the UE sends a random access preamble (first random access preamble or second random access preamble) and uplink data (first uplink data or second uplink data), S505 is performed.
  • the base station detects random access preamble and uplink data according to the first random access resource set and the second random access resource set.
  • the base station detects the random access preamble and uplink data in different manners.
  • the first detection method can be used.
  • Any PRACH time-frequency resource in the first random access resource set is different from any PRACH time-frequency resource in the second random access resource set, that is, the first PRACH time-frequency resource set and the first PUSCH time-frequency resource
  • the set has a mapping relationship and corresponds to TA being valid; the second PRACH time-frequency resource set and the second PUSCH time-frequency resource set have a mapping relationship, and corresponding to TA is invalid.
  • the UE detects the random access preamble on the PRACH time-frequency resources included in the first PRACH time-frequency resource set and the second PRACH time-frequency resource set.
  • the uplink data is detected on multiple PUSCH time-frequency resources in the first random access resource set; in other words,
  • the uplink data is detected on the first PUSCH time-frequency resource set corresponding to the first PRACH time-frequency resource set.
  • the uplink data is detected on multiple PUSCH time-frequency resources in the second random access resource set, in other words, When the second random access preamble is detected on the second PRACH time-frequency resource in the second PRACH time-frequency resource set, the uplink data is detected on the second PUSCH time-frequency resource set corresponding to the second PRACH time-frequency resource set.
  • the second detection method can be used.
  • Any random access preamble in the first random access resource set is different from any random access preamble in the second random access resource set.
  • the two preamble groups respectively correspond to a PUSCH time-frequency resource set.
  • the preamble group 1 corresponds to the first PUSCH time-frequency resource and corresponds to TA being valid
  • the preamble group 2 corresponds to the second PUSCH time-frequency resource and corresponds to TA being invalid.
  • the PRACH time-frequency resource set used for TA valid and TA invalid is the same.
  • the UE detects the preamble on the PRACH time-frequency resource set, and when the first random access preamble is detected, the first random access preamble is the number included in the first random access resource set.
  • One of the two random access preambles detects uplink data on multiple PUSCH time-frequency resources in the first random access resource set; when the second random access preamble is detected, the second random access preamble is all
  • One of the multiple random access preambles included in the second random access resource set detects uplink data on multiple PUSCH time-frequency resources in the second random access resource set.
  • the uplink data is detected on the PUSCH time-frequency resource included in the first PUSCH time-frequency resource set corresponding to preamble group 1.
  • the uplink data is detected on the PUSCH time-frequency resource included in the second PUSCH time-frequency resource set corresponding to group 2.
  • the third detection method can be used.
  • the PRACH time-frequency resource and random access preamble used for random access when TA is invalid, and the PRACH time-frequency resource and random access preamble used for random access when TA is valid are not distinguished. They can all be the same, but for the configured TA
  • the PUSCH time-frequency resource used for random access when invalid is different from the PUSCH time-frequency resource used for random access when the configured TA is valid.
  • the base station when detecting the random access preamble and uplink data, the base station detects the random access preamble on the PRACH time-frequency resource set configured by the base station.
  • the first random access preamble is detected, it is based on the bearer
  • the PUSCH time-frequency resource corresponding to the PRACH time-frequency resource of a random access preamble will correspond to two PUSCH time-frequency resource sets. Therefore, the uplink data is detected on the PUSCH time-frequency resource included in the corresponding two PUSCH time-frequency resource sets.
  • the base station after detecting the random access preamble and uplink data, the base station sends a timing advance instruction in response to the random access preamble and uplink data; when the random access preamble and uplink data are based on When the first random access resource set is detected, the timing advance instruction carries the TA adjustment amount; when the random access preamble and the uplink data are detected based on the second random access resource set, the timing advance instruction Carry TA value.
  • uplink data is detected on the PUSCH time-frequency resources included in the first PUSCH time-frequency resource set. Since the first PUSCH time-frequency resource set is used when performing random access when the TA is valid, it is determined that the UE is sending uplink data. TA adjustment is carried out when data is sent, so that the TA adjustment amount is carried in the sending timing advance command.
  • uplink data is detected on the PUSCH time-frequency resources included in the second PUSCH time-frequency resource set, since the second PUSCH time-frequency resource set is used when performing random access when the TA is invalid, it is determined that the UE is not sending uplink data. Perform TA adjustment so that the base station carries the TA value when sending the timing advance command.
  • the format used for the timing advance instruction carrying the TA adjustment amount and the timing advance instruction carrying the TA value can be different, for example, the number of occupied bits is different, or the timing advance instruction includes an indicator field, and the TA adjustment is indicated by the different value included in the indicator field Amount or TA value, or indicating whether the value is a TA adjustment amount or a TA value, for example, 1 bit is used to indicate whether the value is a TA adjustment amount or a TA value, where a bit value of 1 indicates that the value is a TA adjustment amount, and the bit value is 0 means the value is TA value.
  • the base station may carry the timing advance instruction in the MsgB message and send it.
  • the manner of determining the update TA according to the TA adjustment amount and the TA value carried by the timing advance instruction may be different.
  • Manner 1 The UE receives a timing advance instruction, and if the timing advance instruction carries a TA adjustment amount; the UE adjusts the value of the TA according to the effective TA and the TA adjustment amount.
  • UE when the UE effective TA adjustment value, the timing advance TA adjustment amount instruction notification T A, UE follows the timing advance TA adjustment command:
  • N TA_new N TA_old + (T A -31) ⁇ 16 ⁇ 64/2 ⁇ ;
  • N TA_new is the adjusted TA value
  • N TA_old is the effective TA before adjustment
  • is a parameter related to the subcarrier spacing.
  • Manner 2 The UE receives a timing advance instruction, and the timing advance instruction carries a TA value; the UE uses the TA value as a new effective TA value.
  • the timing advance instruction informs the TA value, and the UE performs the following TA adjustments according to the timing advance instruction:
  • N TA T A ⁇ 16 ⁇ 64/2 ⁇ ;
  • N TA is the adjusted TA value
  • is a parameter related to the subcarrier spacing.
  • the base station sends configuration information, and the UE receives the configuration information sent by the base station.
  • the configuration information is used to configure multiple random access resource sets, and each random access resource set in the multiple random access resource sets corresponds to a timing advance TA accuracy level, and random access corresponding to different TA accuracy levels
  • the input resource sets are different, and each random access resource set in the multiple random access resource sets includes at least one physical random access channel PRACH time-frequency resource, at least one random access preamble, and at least one physical uplink shared channel PUSCH time-frequency resource.
  • multiple TA accuracy levels can be configured, such as two or more TA accuracy levels.
  • the configuration information may be sent through broadcast or multicast messages, or through UE-specific RRC messages.
  • the configuration information may be carried in MIB or SIB and sent through broadcast or multicast messages.
  • the base station is configured with multiple random access resource sets, which can be understood as configuring PRACH time-frequency resources, random access preambles, and PUSCH time-frequency resources corresponding to each TA accuracy level.
  • all three resources may be different, or only one resource may be different, or two resources may be different.
  • TA accuracy level 1 corresponds to random access resource set 1
  • TA accuracy level 2 corresponds to random access resource set 2
  • TA accuracy level 3 corresponds to random access resource set 3.
  • the first example is a first example:
  • the PRACH time-frequency resources and PUSCH time-frequency resources used by the base station for random access of different TA accuracy levels are separately configured.
  • different random access resource sets include different PRACH time-frequency resources.
  • the PRACH time-frequency resources used for random access are different.
  • the PRACH time-frequency resources included in the random access resource set 1, the random access resource set 2 and the random access resource set 3 are all different.
  • PRACH time-frequency resource set 1 one or more PRACH time-frequency resources used for random access under TA accuracy level 1 will be referred to as PRACH time-frequency resource set 1, and random access will be performed under TA accuracy level 2.
  • PRACH time-frequency resource set 2 One or more PRACH time-frequency resources used for access are called PRACH time-frequency resource set 2
  • PRACH time-frequency resource set 3. one or more PRACH time-frequency resources used for random access under TA accuracy level 3 are called PRACH time-frequency resource set 3. . That is, in the first example, all PRACH time-frequency resources included in PRACH time-frequency resource set 1, all PRACH time-frequency resources included in PRACH time-frequency resource set 2, and all PRACH time-frequency resources included in PRACH time-frequency resource set 3. The frequency resources are all different.
  • PRACH time-frequency resource set 1 includes two, namely RO0 and RO1
  • PRACH time-frequency resource set 2 includes two, namely RO2 and RO3
  • PRACH time-frequency resource set 3 includes one, which is RO#4.
  • the number of PRACH time-frequency resources used for random access may be the same or different, which is not specifically limited in the embodiment of the present application.
  • one PRACH time-frequency resource may correspond to one or more preambles, for example, one PRACH time-frequency resource corresponds to 64 preambles.
  • different preambles have different functions.
  • the preamble can be divided into multiple preamble groups.
  • One PRACH time-frequency resource can correspond to one or more preamble groups, and one preamble group can include one or more preambles.
  • the random access preamble included in the random access resource set corresponding to different TA accuracy levels may be the same or different.
  • the preamble corresponding to each PRACH time-frequency resource in PRACH time-frequency resource set 1 and the preamble corresponding to each PRACH time-frequency resource in PRACH time-frequency resource set 2 may be the same or different.
  • RO0, RO1, RO2 and RO3, RO4 each correspond to 64 preambles.
  • RO0 and RO1 both correspond to preamble1-preamble32
  • RO2 and RO3 correspond to preamble33-preamble64
  • RO4 correspond to preamble32-preamble50
  • RO0 and RO1 correspond to preamble1-preamble30
  • RO2 and RO3 correspond to preamble31-preamble55
  • RO4 corresponds to preamble56-preamble64.
  • the PUSCH time-frequency resources used for random access under different TA accuracy levels may all be different.
  • one or more PUSCH time-frequency resources used for random access under TA accuracy level 1 are referred to as PUSCH time-frequency resource set 1
  • one and more PUSCH time-frequency resources used for random access under TA accuracy level 2 are referred to as PUSCH time-frequency resource set 1.
  • Each PUSCH time-frequency resource is called PUSCH time-frequency resource set 2
  • the 1 and multiple PUSCH time-frequency resources used for random access under TA accuracy level 3 are called PUSCH time-frequency resource set 3.
  • PRACH time-frequency resource set 1 corresponds to PUSCH time-frequency resource set 1
  • PRACH time-frequency resource set 2 corresponds to PUSCH time-frequency resource set 2.
  • PRACH time-frequency resource set 3 corresponds to PUSCH time-frequency resource set 3.
  • PRACH time-frequency resource set 1 includes two PRACH time-frequency resources, RO0 and RO1
  • PRACH time-frequency resource set 2 includes two PRACH time-frequency resources, RO2 and RO3, and PRACH time-frequency resource set 3 includes 1.
  • One PRACH time-frequency resource is RO4.
  • PUSCH time-frequency resource set 1 includes 1 PUSCH time-frequency resource, which is PO0
  • PUSCH time-frequency resource set 2 includes 1 PUSCH time-frequency resource, which is PO1
  • PUSCH time-frequency resource set 3 includes 1 PUSCH time-frequency resource , Is PO2, see Figure 8A, RO0 and RO1 both correspond to PO0, RO2 and RO3 both correspond to PO1, and RO4 correspond to PO2.
  • Different random access resource sets include different random access preambles.
  • the same PRACH time-frequency resources used for random access under different accuracy levels are taken as an example.
  • the base station configures a PRACH time-frequency resource set.
  • the PRACH time-frequency resource set is used for random access under TA accuracy level 1, and for random access under TA accuracy level 2, as well as for TA accuracy. Performed under level 3.
  • the PRACH time-frequency resource set may include one or more PRACH resources. Random access resource set 1, random access resource set 2, and random access resource set 3 all include the PRACH time-frequency resource set.
  • the PRACH time-frequency resource set may correspond to three preamble groups, such as group 1, group 2, and group 3. Each preamble group includes one or more preambles. The number of preambles included in group1, group2, and group3 may be the same or different.
  • group1 includes preamble1-preamble20
  • group2 includes preamble21-preamble40
  • group3 includes preamble41-preamble64.
  • the preamble in group1 is used for random access under TA accuracy level
  • the preamble in group2 is used for random access under TA accuracy level 2
  • the preamble in group3 is used for random access under TA accuracy level 3.
  • Access That is to say, group1 belongs to random access resource set 1, group2 belongs to random access resource set 2, and group3 belongs to random access resource set 3.
  • the PUSCH time-frequency resources used for random access under different TA accuracy levels may all be different.
  • one or more PUSCH time-frequency resources used for random access under TA accuracy level 1 are referred to as PUSCH time-frequency resource set 1
  • one and more PUSCH time-frequency resources used for random access under TA accuracy level 2 are referred to as PUSCH time-frequency resource set 1.
  • Each PUSCH time-frequency resource is called PUSCH time-frequency resource set 2
  • the 1 and multiple PUSCH time-frequency resources used for random access under TA accuracy level 3 are called PUSCH time-frequency resource set 3.
  • PUSCH time-frequency resource set 1 belongs to random access resource set 1
  • PUSCH time-frequency resource set 2 belongs to random access resource set 2
  • PUSCH time-frequency resource set 3 belongs to random access resource set 3.
  • Any PUSCH time-frequency resource in PUSCH time-frequency resource set 1 is different from any PUSCH time-frequency resource in PUSCH time-frequency resource set 2, and any PUSCH time-frequency resource in PUSCH time-frequency resource set 3.
  • group1 corresponds to PUSCH time-frequency resource set 1 (including PO 0)
  • group2 corresponds to PUSCH time-frequency resource set 2 (including PO1)
  • group3 corresponds to PUSCH time-frequency resource set 3 (including PO2), see FIG. 8B.
  • PRACH time-frequency resources and random access preambles used for random access with different TA accuracy levels can all be the same, but the PUSCH time-frequency used for random access at different TA accuracy levels configured The resources are not the same.
  • the base station configures a PRACH time-frequency resource set.
  • the PRACH time-frequency resource set is used for random access under TA accuracy level 1, and for random access under TA accuracy level 2, as well as for TA accuracy. Performed under level 3.
  • the PRACH time-frequency resource set may include one or more PRACH resources.
  • Random access resource set 1, random access resource set 2, and random access resource set 3 all include the PRACH time-frequency resource set.
  • Each PRACH time-frequency resource in the PRACH time-frequency resource set can correspond to the same preamble or correspond to different preambles, and these preambles can be used to perform random access under different TA accuracy levels.
  • the PUSCH time-frequency resources used for random access under different TA accuracy levels may all be different.
  • PUSCH time-frequency resource set 1 one or more PUSCH time-frequency resources used for random access under TA accuracy level 1 are referred to as PUSCH time-frequency resource set 1
  • PUSCH time-frequency resource set 2 one and more PUSCH time-frequency resources used for random access under TA accuracy level 2 are referred to as PUSCH time-frequency resource set 1.
  • Each PUSCH time-frequency resource is called PUSCH time-frequency resource set 2, and the 1 and multiple PUSCH time-frequency resources used for random access under TA accuracy level 3 are called PUSCH time-frequency resource set 3. That is, PUSCH time-frequency resource set 1 belongs to random access resource set 1, PUSCH time-frequency resource set 2 belongs to random access resource set 2, and PUSCH time-frequency resource set 3 belongs to random access resource set 3.
  • Any PUSCH time-frequency resource in PUSCH time-frequency resource set 1 is different from any PUSCH time-frequency resource in PUSCH time-frequency resource set 2, and any PUSCH time-frequency resource in PUSCH time-frequency resource set 3.
  • the value sets of the configuration parameters associated with the PUSCH time-frequency resources included in different random access resource sets are different.
  • the relevant description of the configuration parameters please refer to the relevant description in the first possible implementation manner, which will not be repeated here.
  • the value range of MCS configuration for PUSCH time-frequency resources under different TA accuracy levels is different.
  • the value set of the configuration parameter in the embodiment of the present application can be adjusted according to the TA accuracy level, so that more UEs are not affected by timing deviation, so as to improve the efficiency of data transmission.
  • the PUSCH resource corresponding to a UE with a low TA accuracy level may be configured as an extended CP (Extended CP, ECP) or a predefined CP length, so that the timing deviation between UEs is within the CP range.
  • extended CP Extended CP
  • predefined CP length so that the timing deviation between UEs is within the CP range.
  • uplink control information parameters meet at least one of the following conditions to improve the efficiency of data transmission:
  • the value range of MCS configured for PUSCH time-frequency resources with a high TA accuracy level is larger than the value range of MCS configured for PUSCH time-frequency resources with low TA accuracy level;
  • the transmit power configured for the PUSCH time-frequency resource with a high TA accuracy level may be greater than the transmit power configured for the PUSCH time-frequency resource with a low TA accuracy level;
  • the number of bits of uplink control information configured for PUSCH time-frequency resources with high TA accuracy is greater than the number of uplink control information configured for PUSCH time-frequency resources with low TA accuracy; or,
  • the time-frequency resource size of the uplink control information configured for the PUSCH time-frequency resource with a high TA accuracy level is greater than the time-frequency resource location and size of the uplink control information configured for the PUSCH time-frequency resource with a low TA accuracy level.
  • S702 The UE determines the TA accuracy level to which the TA belongs when initiating random access.
  • the UE may determine the TA accuracy level in any of the following ways.
  • the UE determines the TA accuracy level of the UE according to the start time length of the TA timer when initiating random access.
  • One TA accuracy level corresponds to a start time range, and there is no overlap between different start time ranges.
  • the length of the TA timer can be configured by the base station. If the UE receives the uplink timing advance instruction issued by the base station, it adjusts the TA according to the timing advance instruction and restarts the TA timer.
  • K-1 time thresholds T 1 , T 2 ,..., T K-1 can be set. Assuming that the value t after the TA timer is reset increases from 0 with time, t ⁇ T 1 corresponds to the TA accuracy level of the first gear, T 1 ⁇ t ⁇ T 2 corresponds to the TA accuracy grade of the second gear, and so on.
  • the time threshold may be changed according to the change of the timing duration.
  • the TA accuracy level of the UE can be regarded as the TA accuracy level of the Kth level, that is, the lowest TA accuracy level.
  • the UE can determine the current TA accuracy level according to the signal strength of the received downlink reference signal or synchronization signal.
  • One TA accuracy level corresponds to a signal strength range, and different signal strength ranges are There is no overlap between them.
  • K-1 signal strength thresholds P 1 , P 2 ,..., P K-1 can be set.
  • the signal strength p ⁇ P 1 corresponds to the TA accuracy grade of the Kth gear
  • P 1 ⁇ p ⁇ P 2 corresponds to the TA accuracy grade of the K-1 gear, and so on.
  • the UE When the UE performs TA estimation according to the distance between the UE and the base station, the UE can determine the current TA accuracy level according to the distance estimation accuracy.
  • One TA accuracy level corresponds to a range of distance estimation accuracy. Different distance estimation accuracy ranges are different. There is overlap.
  • the UE performs its own position estimation by measuring the reference signals (or synchronization signals) sent by multiple base stations and the position information of the base station, and judges the distance to the base station according to the position estimation result.
  • the UE can feed back the measurement result of the reference signal (or synchronization signal) to the base station.
  • the base station estimates the position of the UE after collecting the measurement result sent by the UE, and sends the position estimation result and estimation accuracy to the base station.
  • the accuracy of the distance estimation is related to factors such as the location of the base station participating in the distance estimation, the bandwidth and strength of the reference signal and other factors.
  • the UE determines that the TA when initiating random access is invalid, it can be determined that the current TA is 0, and the TA accuracy level of the UE is currently the lowest.
  • the UE uses the resources in the random access resource set corresponding to the determined TA accuracy level to send a first random access preamble and first uplink data to the network device.
  • the first random access preamble is a random access preamble in a random access resource set corresponding to the determined TA accuracy level, and the first random access preamble is carried at the determined TA accuracy level.
  • the first uplink data is carried on the first PUSCH time-frequency resource in the random access resource set corresponding to the determined TA accuracy level.
  • the random access preamble and uplink data can be carried in MsgA for transmission.
  • a certain number of SSBs are mapped on each PRACH time-frequency resource.
  • the UE can select an SSB with an RSRP higher than a preset threshold, and then select a PRACH resource from the PRACH resources associated with the SSB.
  • the UE determines the TA accuracy level 1, determines the SSB whose RSRP is higher than the preset threshold, such as SSB0 and SSB1, and then determines the mapping of SSB0 and SSB1 in PRACH time-frequency resource set 1.
  • PRACH time-frequency resources a PRACH time-frequency resource is selected from the determined PRACH time-frequency resources.
  • the preamble is selected from the preamble corresponding to the selected PRACH time-frequency resource.
  • a PUSCH time-frequency resource is selected from the PUSCH time-frequency resource set 1 to carry uplink data.
  • the UE determines the PRACH time-frequency resource and preamble according to the RA indication message, and then determines the corresponding PUSCH resource according to the determined PRACH time-frequency resource.
  • the UE sends MsgA to the base station on the selected PRACH time-frequency resource and PUSCH time-frequency resource.
  • the sending time of the random access preamble and the uplink data may be adjusted according to the TA when the random access is initiated at the same time. Otherwise, when the TA accuracy level is less than the first threshold, the TA accuracy level is the lowest level, then the TA of the UE is 0 at this time, that is, no TA adjustment is performed on the random access preamble and uplink data.
  • the sending time of the first random access preamble is determined according to the TA when random access is initiated and the time domain position of the first PRACH time-frequency resource, and according to the TA and the The time domain position of the first PUSCH time-frequency resource determines the transmission time of the first uplink data, and sends the data to the network device according to the determined transmission time of the first random access preamble and the determined transmission time of the first uplink data.
  • the first random access preamble and the first uplink data is performed according to the TA when random access is initiated and the time domain position of the first PRACH time-frequency resource, and according to the TA and the The time domain position of the first PUSCH time-frequency resource determines the transmission time of the first uplink data, and sends the data to the network device according to the determined transmission time of the first random access preamble and the determined transmission time of the first uplink data.
  • the first random access preamble and the first uplink data is performed according to the TA when random access is initiated and the time domain position of the first PR
  • the TA adjustment may be performed on the uplink data transmission time only according to the TA when random access is initiated, otherwise the TA accuracy level When it is less than the first threshold, the TA accuracy level is the lowest level, then the TA of the UE is 0 at this time, that is, no TA adjustment is performed on the random access preamble and uplink data.
  • the transmission time of the first random access preamble is determined according to the time domain position of the first PRACH time-frequency resource, and the time according to the TA and the first PUSCH time-frequency resource
  • the domain location determines the sending time of the first uplink data, and sends the first random access preamble to the network device according to the determined sending time of the first random access preamble and the determined sending time of the first uplink data, and The first uplink data.
  • the TA when performing random access may be the TA indicated by the base station, for example, it may be the TA value sent by the base station received during the last random access process.
  • the TA value determined by the UE according to the downlink signal or location information has TA tracking capability.
  • the UE tracks the adjusted TA value according to the downlink reference signal or synchronization signal, or the UE tracks the adjusted TA value according to the distance between the UE and the base station.
  • the base station When adjusting the TA, on the one hand, the base station The tracking adjustment is performed on the basis of the indicated TA. On the other hand, the tracking adjustment is performed again on the basis of the TA of the previous tracking adjustment. It should be understood that the TA can be updated every time, whether it is updated on the basis of the TA indicated by the base station or on the basis of the TA tracked and adjusted last time, it is performed again on the basis of the latest updated TA. Update.
  • the base station detects random access preamble and uplink data according to the multiple random access resource sets.
  • the base station detects the random access preamble and uplink data in different manners.
  • the first detection method can be used.
  • the PRACH time-frequency resources included in different random access resource sets are different.
  • the first detection method is to detect uplink signals on multiple PUSCH time-frequency resources in the first random access resource set when the random access preamble is detected on the PRACH time-frequency resources in the first random access resource set ; Wherein, the first random resource set is one of the multiple random access resource sets.
  • the UE detects the random access preamble on PRACH time-frequency resources included in PRACH time-frequency resource set 1, PRACH time-frequency resource set 2, and PRACH time-frequency resource set 3. For example, when the first random access preamble is detected on the first PRACH time-frequency resource in the random access resource set 1, the uplink data is detected on multiple PUSCH time-frequency resources in the random access resource set 1; that is, In other words, when the first random access preamble is detected on the first PRACH time-frequency resource in the PRACH time-frequency resource set 1, the uplink data is detected on the PUSCH time-frequency resource set 1 corresponding to the PRACH time-frequency resource set 1.
  • the second detection method can be used.
  • different random access resource sets include different random access preambles.
  • the first random access The uplink signal is detected on multiple PUSCH time-frequency resources in the resource set; wherein, the first random resource set is one of the multiple random access resource sets.
  • the UE detects the random access preamble on PRACH time-frequency resources included in PRACH time-frequency resource set 1, PRACH time-frequency resource set 2, and PRACH time-frequency resource set 3. For example, if the random access preamble 1 is detected, and the random access preamble 1 belongs to group1, the uplink data is detected on the PUSCH time-frequency resources included in the PUSCH time-frequency resource set 1 corresponding to group1.
  • the third detection method can be used.
  • the PRACH time-frequency resources and random access preambles used for random access with different TA accuracy levels are not distinguished and can all be the same, but the PUSCH time-frequency resources used for random access at different TA accuracy levels configured are different.
  • the base station when detecting random access preamble and uplink data, the base station detects the random access preamble on the PRACH time-frequency resource set configured by the base station.
  • the base station detects the random access preamble according to the bearer.
  • the PUSCH time-frequency resource corresponding to the PRACH time-frequency resource of the incoming preamble 1 will correspond to two PUSCH time-frequency resource sets here, so the uplink data is detected on the PUSCH time-frequency resource included in the corresponding two PUSCH time-frequency resource sets.
  • a timing advance instruction is sent; when the first random access resource set When the corresponding TA accuracy level is greater than or equal to the first threshold, the timing advance instruction carries the TA adjustment amount; when the TA accuracy level corresponding to the first random access resource set is less than the first threshold, the timing advance The instruction carries the TA value.
  • the TA accuracy level corresponding to the first random access resource set When uplink data is detected on the first random access resource set, and the TA accuracy level corresponding to the first random access resource set is greater than or equal to the first threshold, it indicates that the TA value is not 0, thereby determining that the UE is sending uplink data
  • the TA adjustment is carried out so that the TA adjustment amount is carried in the sending timing advance command.
  • the TA accuracy level corresponding to the first random access resource set is less than the first threshold, it indicates that the TA value is 0, and it is determined that the UE does not perform TA adjustment when sending uplink data, so that the base station sends the timing advance instruction to carry the TA value.
  • the format used for the timing advance instruction carrying the TA adjustment amount and the timing advance instruction carrying the TA value can be different, for example, the number of occupied bits is different, or the timing advance instruction includes an indicator field, and the TA adjustment is indicated by the different value included in the indicator field For example, 1 bit is used to indicate whether the value is a TA adjustment amount or a TA value. A bit value of 1 indicates that the value is a TA adjustment amount, and a bit value of 0 indicates that the value is a TA value.
  • the manner of determining the update TA according to the TA adjustment amount and the TA value carried by the timing advance instruction may be different.
  • Manner 1 and Manner 2 of the first possible implementation manner please refer to Manner 1 and Manner 2 of the first possible implementation manner, which will not be repeated here.
  • an embodiment of the present application provides a communication device 800, and the communication device 800 may include a transceiver module 801 and a processing module 802.
  • the apparatus 800 may be applied to a terminal device, and is used to execute the steps of FIG. 5 or FIG. 7 with the terminal device as the execution subject.
  • the apparatus 800 is configured to perform the steps performed by the UE in the first possible implementation manner corresponding to FIG. 5.
  • the transceiver module 801 is configured to receive configuration information sent by a network device; the configuration information is used to configure a first random access resource set and a second random access resource set; the first random access resource set includes At least one physical random access channel PRACH time-frequency resource, at least one random access preamble, and at least one physical uplink shared channel PUSCH time-frequency resource, the second set of random access resources includes at least one PRACH time-frequency resource, at least one random Access preamble and at least one PUSCH time-frequency resource;
  • the processing module 802 is used to determine whether the TA is valid when the random access is initiated.
  • the transceiver module 801 is further configured to use the resources in the first random access resource concentration to send the first random access preamble and the first uplink to the network device when the timing advance TA when initiating random access is valid.
  • Data wherein the first random access preamble is a random access preamble in the first random access resource set, and the first random access preamble is carried by the first random access preamble in the first random access resource set.
  • the first uplink data is carried on the first PUSCH time-frequency resource; or, when the TA at the time of initiating random access is invalid, the second random access resource set is used Resource, sending a second random access preamble and second uplink data to the network device, where the second random access preamble is a random access preamble in the first random access resource set, and the second The random access preamble is carried on the second PRACH time-frequency resource in the second random access resource set, and the second uplink data is carried on the second PUSCH time-frequency resource in the second random access resource set.
  • any PUSCH time-frequency resource in the first random access resource set is different from any PUSCH time-frequency resource in the second random access resource set.
  • any PRACH time-frequency resource in the first random access resource set is different from any PRACH time-frequency resource in the second random access resource set; or, the first random access resource set Any random access preamble of is different from any random access preamble in the second random access resource set.
  • the processing module 802 is further configured to determine the first random access preamble according to the time domain position of the TA and the first PRACH time-frequency resource
  • the sending time of the first uplink data is determined according to the effective TA and the time domain position of the first PUSCH time-frequency resource.
  • the transceiver module 801 is specifically configured to send the first random access preamble and the first random access preamble to the network device according to the determined sending time of the first random access preamble and the determined sending time of the first uplink data. Upstream data.
  • the processing module 802 determines the sending time of the first random access preamble according to the time domain position of the first PRACH time-frequency resource, and The time domain position of the TA and the first PUSCH time-frequency resource determines the transmission time of the first uplink data.
  • the transceiver module 801 is specifically configured to send the first random access preamble and the first random access preamble to the network device according to the determined sending time of the first random access preamble and the determined sending time of the first uplink data. Upstream data.
  • the TA is:
  • the TA value determined according to the distance between the terminal device and the network device.
  • the value set of configuration parameters associated with PUSCH time-frequency resources included in the first random access resource set is different from the value set of configuration parameters associated with PUSCH time-frequency resources included in the second random access resource set ;
  • the configuration parameters include at least one of a modulation and coding scheme MCS, a cyclic prefix, an uplink control information parameter, and a power control parameter.
  • the processing module 802 determines that the TA is valid when the following conditions are satisfied:
  • the TA timer did not expire when random access was initiated.
  • the terminal device has the ability to adjust TA according to the received downlink reference signal and location information; or,
  • the time difference between the time when the random access is initiated and the time of the last TA adjustment is less than the preset threshold.
  • the transceiver module 801 is further configured to receive a timing advance instruction sent by the network device in response to the first random access preamble, where the timing advance instruction carries a TA adjustment amount; the processing module 802 It is also used to adjust the value of the TA according to the TA and the TA adjustment amount.
  • the transceiver module 801 is further configured to receive a timing advance instruction sent by the network device in response to the second random access preamble, where the timing advance instruction carries a TA value; the processing module also uses To use the TA value as the new TA value.
  • the apparatus 800 is configured to perform the steps performed by the UE in the second possible implementation manner corresponding to FIG. 7.
  • the transceiver module 801 is used to receive configuration information sent by a network device
  • the configuration information is used to configure multiple random access resource sets, and each random access resource set in the multiple random access resource sets corresponds to a timing advance TA accuracy level, and different TA accuracy levels correspond to The random access resource sets are different, and each random access resource set in the multiple random access resource sets includes at least one physical random access channel PRACH time-frequency resource, at least one random access preamble and at least one physical uplink shared channel PUSCH time-frequency resources;
  • the processing module 802 is configured to determine the TA accuracy level to which the TA belongs when the random access is initiated;
  • the transceiver module 801 is further configured to use the resources in the random access resource set corresponding to the determined TA accuracy level to send a first random access preamble and first uplink data to the network device.
  • the random access preamble is a random access preamble in the random access resource set corresponding to the determined TA accuracy level
  • the first random access preamble carries the random access resource corresponding to the determined TA accuracy level
  • the first uplink data is carried on the first PUSCH time-frequency resource in the random access resource set corresponding to the determined TA accuracy level.
  • PUSCH time-frequency resources included in different random access resource sets are different.
  • the PRACH time-frequency resources included in different random access resource sets are different; or,
  • Different random access resource sets include different random access preambles.
  • the processing module 802 is further configured to perform random access based on the TA and the time domain position of the first PRACH time-frequency resource
  • the sending time of the first random access preamble is determined, and the sending time of the first uplink data is determined according to the time domain position of the TA and the first PUSCH time-frequency resource.
  • the transceiver module 801 is specifically configured to send the first random access preamble and the first random access preamble to the network device according to the determined sending time of the first random access preamble and the determined sending time of the first uplink data. Upstream data.
  • the processing module 802 is further configured to determine the first random access according to the time domain position of the first PRACH time-frequency resource Sending time of the preamble, and determining the sending time of the first uplink data according to the time domain position of the TA and the first PUSCH time-frequency resource;
  • the transceiver module 801 is specifically configured to send the first random access preamble and the first random access preamble to the network device according to the determined sending time of the first random access preamble and the determined sending time of the first uplink data. Upstream data.
  • the TA is:
  • the TA value determined according to the distance between the terminal device and the network device.
  • the transceiver module 801 is further configured to receive the timing advance instruction sent by the network device in response to the first random access preamble ,
  • the timing advance instruction carries a TA adjustment amount;
  • the processing module 802 is further configured to adjust the value of the TA according to the TA and the TA adjustment amount.
  • the transceiver module 801 is further configured to receive the timing advance instruction sent by the network device in response to the first random access preamble, so The timing advance instruction carries a TA value; the processing module 802 is also used for the terminal device to use the TA value as a new TA value.
  • the value sets of configuration parameters associated with PUSCH time-frequency resources included in different random access resource sets are different; the configuration parameters include the modulation and coding scheme MCS, cyclic prefix, uplink control information parameters, and power control parameters. At least one.
  • the apparatus 800 may be applied to a terminal device, and is used to execute the steps of FIG. 5 or FIG. 7 with the network device as the execution subject.
  • the apparatus 800 is configured to execute the steps executed by the base station in the first possible implementation manner corresponding to FIG. 5.
  • the transceiver module 801 is configured to send configuration information; the configuration information is used to configure the first random access resource set required for random access when the timing advance TA is valid, and the first random access resource set required for random access when the TA is invalid
  • the second random access resource set; the first random access resource set includes multiple physical random access channel PRACH time-frequency resources, multiple random access preambles, and multiple PUSCH time-frequency resources, and the second random access resource set
  • the incoming resource set includes multiple PRACH time-frequency resources, multiple random access preambles and multiple PUSCH time-frequency resources;
  • the processing module 802 detects random access preamble and uplink data according to the first random access resource set and the second random access resource set.
  • any PUSCH time-frequency resource in the first random access resource set is different from any PUSCH time-frequency resource in the second random access resource set.
  • any PRACH time-frequency resource in the first random access resource set is different from any PRACH time-frequency resource in the second random access resource set;
  • the processing module 802 is specifically configured to: when the first random access preamble is detected on the first PRACH time-frequency resource in the first random access resource set, the multiple PUSCH time-frequency resources in the first random access resource set The uplink signal is detected on the resource; or, when the second random access preamble is detected on the second PRACH time-frequency resource in the second random access resource set, on multiple PUSCH time-frequency resources in the second random access resource set Detect uplink signal.
  • any random access preamble in the first random access resource set is different from any random access preamble in the second random access resource set;
  • the processing module 802 is specifically configured to: when a first random access preamble is detected and the first random access preamble is one of a plurality of random access preambles included in the first random access resource set, Detect uplink signals on multiple PUSCH time-frequency resources in the first random access resource set; or, when a second random access preamble is detected and the second random access preamble is the second random access resource set When one of the multiple random access preambles included, the uplink signal is detected on multiple PUSCH time-frequency resources in the second random access resource set.
  • the transceiver module 801 is further configured to receive a first instruction from a terminal device, the first instruction is used to indicate that the terminal device has the ability to track TA, and the ability to track TA indicates that the terminal device supports The TA is tracked and adjusted according to the received downlink signal and/or the location information of the terminal device; a second instruction is sent to the terminal device according to the first instruction, and the second instruction is used to instruct the network device to be The TA timing duration configured by the terminal device.
  • the processing module 802 can also be used to generate a second instruction.
  • the processing module 802 is further configured to generate a timing advance instruction in response to the random access preamble and uplink data, and the transceiver module 801 is also configured to send the timing advance instruction.
  • the timing advance instruction when the random access preamble and uplink data are detected based on the first random access resource set, the timing advance instruction carries the TA adjustment amount; when the random access preamble and the uplink data are based on the second random access resource set When the access resource set is detected, the timing advance instruction carries the TA value.
  • the apparatus 800 is configured to execute the steps executed by the base station in the second possible implementation manner corresponding to FIG. 7.
  • the transceiver module 801 is configured to send configuration information; the configuration information configures a plurality of random access resource sets, and each random access resource set in the plurality of random access resource sets corresponds to a timing advance TA accuracy level.
  • the random access resource sets corresponding to the TA accuracy level are different, and each random access resource set in the multiple random access resource sets includes multiple physical random access channel PRACH time-frequency resources, multiple random access preambles, and Multiple physical uplink shared channel PUSCH time-frequency resources;
  • the processing module 802 is configured to detect random access preamble and uplink data according to the multiple random access resource sets.
  • PUSCH time-frequency resources included in different random access resource sets are different.
  • the PRACH time-frequency resources included in different random access resource sets are different; the processing module 802 is specifically configured to detect the random access resource on the first PRACH time-frequency resource in the first random access resource set.
  • the uplink signal is detected on multiple PUSCH time-frequency resources in the first random access resource set; wherein, the first random resource set is one of the multiple random access resource sets.
  • different random access resource sets include different random access preambles; the processing module 801 is specifically configured to detect the random access preamble and the random access preamble is the first random access preamble.
  • the uplink signal is detected on multiple PUSCH time-frequency resources in the first random access resource set; wherein, the first random resource set is the multiple One of a set of random access resources.
  • the transceiver module 801 is further configured to send a timing advance instruction when the processing module 802 detects the random access preamble and the uplink data on the resources included in the first random access resource set.
  • the timing advance instruction when the TA accuracy level corresponding to the first random access resource set is greater than or equal to the first threshold, the timing advance instruction carries the TA adjustment amount; when the TA accuracy level corresponding to the first random access resource set When it is less than the first threshold, the timing advance instruction carries a TA value.
  • the division of modules in the embodiments of the present application is illustrative, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of the present application may be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • the present application also provides a communication device 900, which can be applied to the network equipment shown in the above-mentioned embodiment, and can also be applied to the terminal equipment shown in the above-mentioned embodiment. Not limited here.
  • the device 900 includes at least one processor 910.
  • the device may also include at least one memory 920 for storing program instructions and/or data.
  • the memory 920 and the processor 910 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units, or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 910 may cooperate with the memory 920 to operate.
  • the processor 910 may execute program instructions stored in the memory 920 for the processor 910 to call to implement the functions of the processor 910 described above.
  • at least one of the at least one memory 920 may be included in the processor 910.
  • the apparatus 900 may further include a communication interface 930, and the apparatus 900 may exchange information with other devices through the communication interface 930.
  • the communication interface 930 may be a circuit, a bus, a transceiver, or any other device that can be used for information exchange.
  • the device 900 is applied to a network device.
  • the specific device 900 may be a network device, or a device capable of supporting the network device to implement the function of the network device in the method described in any of the above embodiments.
  • at least one processor 910 in the apparatus 900 is configured to implement the function of the network device in the method described in any of the foregoing embodiments.
  • the device 900 is applied to a terminal device.
  • the specific device 900 may be a terminal device or a device capable of supporting the terminal device to implement the function of the terminal device in the method described in any of the above embodiments.
  • at least one processor 910 in the apparatus 900 is configured to implement the function of the terminal device in the method described in any of the foregoing embodiments.
  • the device 900 may be a chip or a chip system.
  • the chip system in the embodiments of the present application may be composed of chips, or may include chips and other discrete devices.
  • connection medium between the communication interface 930, the processor 910, and the memory 920 is not limited in the embodiment of the present application.
  • the memory 920, the processor 910, and the communication interface 930 are connected by a bus.
  • the bus is represented by a thick line in FIG. 10, and the connection mode between other components is only for schematic illustration. It is not limited.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of representation, only one thick line is used to represent in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and may implement or Perform the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor. The steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (random-access memory, RAM).
  • the memory may also be any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function, for storing program instructions and/or data.
  • the present application also provides a schematic structural diagram of a network device, such as a base station.
  • the base station may be applied to the scenario of the communication system shown in FIG. 1, and the base station may be the network device shown in FIG. 5 and FIG. 7.
  • the base station can be used to execute the steps in the procedures shown in FIG. 5 and FIG. 7 with network equipment as the main body of execution.
  • the base station 1000 may include one or more radio frequency units, such as a remote radio unit (RRU) 1001 and one or more baseband units (BBU) (also referred to as digital units, digital units). , DU)1002.
  • RRU remote radio unit
  • BBU baseband units
  • DU digital units
  • the RRU 1001 may be a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 10011 and a radio frequency unit 10010.
  • the RRU1001 part can be used for the transmission and reception of radio frequency signals and the conversion between radio frequency signals and baseband signals, for example, for sending downlink control information to terminal equipment.
  • the BBU1002 part can be used for baseband processing, base station control, etc.
  • the RRU 1001 and the BBU 1002 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1002 is the control center of the base station, and can also be called a processing unit, which is used to complete baseband processing power, such as channel coding, multiplexing, modulation, and spread spectrum waiting.
  • the BBU processing unit
  • the BBU can be used to control the base station to execute the methods in the procedures shown in FIG. 5 and FIG. 7.
  • the BBU 1002 can be composed of one or more single boards, and multiple single boards can jointly support a single access standard radio access network (such as NR network), or can support different access standard radio access networks. Into the network.
  • the BBU 1002 may also include a memory 10021 and a processor 10022.
  • the memory 10021 is used to store necessary instructions and data.
  • the memory 10021 stores the "configuration information" in the foregoing embodiment, and the processor 10022 is used to control the base station to perform necessary actions.
  • the memory 10021 and the processor 10022 are used to serve one or more boards. In other words, the memory and processor can be set separately on each board, or multiple boards can share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • Figure 12 provides a schematic diagram of the structure of a terminal device.
  • the terminal device can be applied to the processes shown in Figures 5 and 7, with the terminal device as the execution subject.
  • Figure 12 only shows The main components of the terminal equipment are shown.
  • the terminal device 1100 may include a processor, a processor, a memory, a control circuit, and optionally, an antenna and/or an input/output device.
  • the processor can be used to process the communication protocol and communication data, control the user equipment, execute the software program, and process the data of the software program.
  • the memory can store software programs and/or data.
  • the control circuit can be used for conversion of baseband signal and radio frequency signal and processing of radio frequency signal.
  • the control circuit and the antenna together can also be called a transceiver, which can be used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., can be used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 12 only shows a memory and a processor. In actual user equipment, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processing unit can be used to control the entire user equipment and execute software programs. , Process the data of the software program.
  • the processor in FIG. 12 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors and are interconnected by technologies such as buses.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and various components of the terminal device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • an antenna and a control circuit with a transceiver function may be used as the transceiver module 1101 of the terminal device 1100, and a processor with a processing function may be regarded as the processing unit 1102 of the terminal device 1100.
  • the terminal device 1100 may include a transceiver unit 1101 and a processing unit 1102.
  • the transceiving unit 1101 may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1101 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1101 can be regarded as the sending unit, that is, the transceiver unit 1101 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may also be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the network equipment in each of the above device embodiments corresponds completely to the network equipment or terminal equipment in the terminal equipment and method embodiments, and the corresponding modules or units execute the corresponding steps, for example, the sending module (transmitter) method execution method implementation
  • the receiving module executes the receiving step in the method embodiment, and other steps except sending and receiving can be executed by the processing module (processor).
  • the sending module and the receiving module can form a transceiver module, and the transmitter and receiver can form a transceiver to realize the transceiver function together; there can be one or more processors.
  • the embodiment of the present invention also provides a communication system, which includes the aforementioned network device and terminal device.
  • the embodiments of the present application also provide a computer storage medium, the storage medium stores a software program, and when the software program is read and executed by one or more processors, any one or more of the above The method provided by the embodiment.
  • the computer storage medium may include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
  • the embodiments of the present application also provide a chip, which includes a processor, which is used to implement the functions involved in any one or more of the above embodiments, such as acquiring or processing the information involved in the above methods or news.
  • the chip further includes a memory for necessary program instructions and data executed by the processor.
  • the chip can be composed of a chip, or it can include a chip and other discrete devices.
  • the processor may be a central processing unit (Central Processing Unit, referred to as "CPU"), and the processor may also be other general-purpose processors, digital signal processors (DSP), and dedicated integrated Circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory may include read-only memory and random access memory, and provides instructions and data to the processor.
  • a part of the memory may also include a non-volatile random access memory.
  • the bus system may also include a power bus, a control bus, and a status signal bus.
  • various buses are marked as bus systems in the figure.
  • the steps of the above method can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the steps of the method disclosed in combination with the embodiments of the present invention may be directly embodied as executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种随机接入方法及通信装置,用以解决现有技术存在的在进行随机接入的过程中UE之间相互干扰的问题。一方面,本申请通过网络设备分别配置TA无效时进行随机接入采用的随机接入资源和TA有效时进行随机接入采用的随机接入资源,从而TA无效的UE和TA有效的UE采用的不同的随机接入资源进行随机接入,降低UE之间的相互干扰,提高数据传输的效率。另一方面,本申请通过网络设备分别配置不同TA精度等级的UE进行随机接入采用的随机接入资源,从而不同TA精度等级的UE采用的不同的随机接入资源进行随机接入,降低UE之间的相互干扰,提高数据传输的效率。

Description

一种随机接入方法及通信装置
相关申请的交叉引用
本申请要求在2019年03月29日提交中国专利局、申请号为201910253051.8、申请名称为“一种随机接入方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种随机接入方法及通信装置。
背景技术
用户设备(user equipment,UE)的随机接入(random access,RA)过程,也可称随机接入信道(random access channel,RACH)过程。以新无线(new radio,NR)系统为例,RA过程可以用于初始接入,小区切换,上行失步,调度请求(scheduling request,SR)失败,系统消息请求,波束失败恢复等场景。RA过程有两种可能的方式,基于竞争的(Contention-based)RA过程和非竞争的(Contention-free)RA过程。针对低时延要求的应用场景,现有采用两步RA过程,具体包括:UE向基站发送消息A(MsgA),其中MsgA可以包括随机接入前导和上行数据两部分。基站接收到MsgA后向UE发送消息B(MsgB),MsgB用于随机接入响应和冲突解决。
由于不同UE发送MsgB中的上行数据部分可能存在较大的定时偏差,从而造成UE之间存在较大的干扰。
发明内容
本申请实施例提供一种随机接入方法及通信装置,用以解决的现有技术存在的UE之间的干扰问题。
第一方面,本申请实施例提供一种随机接入方法,包括:终端设备接收网络设备发送的配置信息;所述配置信息用于配置第一随机接入资源集和第二随机接入资源集;所述第一随机接入资源集包括至少一个物理随机接入信道PRACH时频资源、至少一个随机接入前导和至少一个物理上行共享信道PUSCH时频资源,所述第二随机接入资源集包括至少一个PRACH时频资源、至少一个随机接入前导和至少一个PUSCH时频资源;在发起随机接入时的定时提前量TA有效时,所述终端设备采用所述第一随机接入资源集中的资源,向所述网络设备发送第一随机接入前导和第一上行数据,其中,所述第一随机接入前导为所述第一随机接入资源集中的随机接入前导,所述第一随机接入前导承载在所述第一随机接入资源集中的第一PRACH时频资源上,所述第一上行数据承载在所述第一PUSCH时频资源上;或者,在发起随机接入时的所述TA无效时,所述终端设备采用所述第二随机接入资源集中的资源,向所述网络设备发送第二随机接入前导和第二上行数据,其中,所述第二随机接入前导为所述第一随机接入资源集中的随机接入前导,所述第二随机接入前导承载在所述第二随机接入资源集中的第二PRACH时频资源上,所述第二上行数据承载 在所述第二随机接入资源集中的第二PUSCH时频资源上。本申请实施例中,TA无效的UE与TA有效的UE在进行随机接入时采用不同的资源传输上行信号,可以降低UE之间信号传输的相互干扰,提高数据传输效率。
在一种可能的设计中,所述第一随机接入资源集中的任一PUSCH时频资源和所述第二随机接入资源集中的任一PUSCH时频资源不同。上述设计中,TA无效的UE与TA有效的UE在进行随机接入时采用不同的PUSCH资源传输上行数据,可以降低UE之间数据传输的相互干扰,提高数据传输效率。
在一种可能的设计中,所述第一随机接入资源集中的任一PRACH时频资源和所述第二随机接入资源集中的任一PRACH时频资源不同;或者,所述第一随机接入资源集中的任一随机接入前导和所述第二随机接入资源集中的任一随机接入前导不同。上述设计中,TA无效时采用的资源和TA有效时采用的三种资源中,至少有一种资源不同,在一定程度上可以降低UE之间数据传输的相互干扰,提高数据传输的效率。
在一种可能的设计中,在发起随机接入时的TA有效时,所述终端设备采用所述第一随机接入资源集中的资源发送第一随机接入前导和第一上行数据,包括:根据所述TA和所述第一PRACH时频资源的时域位置确定所述第一随机接入前导的发送时间,以及根据所述有效的TA和所述第一PUSCH时频资源的时域位置确定所述第一上行数据的发送时间;根据确定的第一随机接入前导的发送时间以及确定的第一上行数据的发送时间向所述网络设备发送所述第一随机接入前导以及所述第一上行数据;或者,根据所述第一PRACH时频资源的时域位置确定所述第一随机接入前导的发送时间,以及根据所述TA和所述第一PUSCH时频资源的时域位置确定所述第一上行数据的发送时间,根据确定的第一随机接入前导的发送时间以及确定的第一上行数据的发送时间向所述网络设备发送所述第一随机接入前导以及所述第一上行数据。上述设计中,UE在TA有效时,至少对上行数据的传输时间进行TA调整,以使得TA有效的各个UE发送上行数据的时间对齐,减少UE之间的相互干扰,进而提高数据传输效率。
在一种可能的设计中,所述TA为:网络设备指示的TA;或者,根据下行参考信号或者同步信号确定的TA值;或者,根据所述终端设备与所述网络设备之间的距离所确定的TA值。上述设计中,不仅仅局限于网络设备指示给UE的TA值,UE可以自身调整TA值,比如在位置发生变化时,当前TA值的准确度降低,通过UE自身调整TA指示,可以提高TA的准确度,减少数据传输干扰,提高数据传输效率。
需要说明的是,如果TA无效时,TA值一般等于0。
在一种可能的设计中,第一随机接入资源集包括的PUSCH时频资源所关联的配置参数的取值集合与第二随机接入资源集包括的PUSCH时频资源所关联的配置参数的取值集合不同;所述配置参数包括调制编码方案MCS、循环前缀、上行控制信息参数以及功率控制参数中的至少一项。
在一种可能的设计中,在如下条件得到满足时所述TA有效:在发起随机接入时TA定时器未超时;或者,终端设备具备根据接收到的下行参考信号和位置信息调整TA的能力;或者,发起随机接入时的时间和上一次TA调整的时间差小于预设阈值。
在一种可能的设计中,还包括:所述终端设备接收到所述网络设备响应所述第一随机接入前导所发送的定时提前指令,所述定时提前指令携带TA调整量;所述终端设备根据所述TA以及所述TA调整量调整所述TA的取值。
在一种可能的设计中,还包括:所述终端设备接收到所述网络设备响应所述第二随机接入前导所发送的定时提前指令,所述定时提前指令携带TA值;所述终端设备将所述TA值作为新的TA值。
第二方面,本申请实施例提供一种随机接入方法,包括:
网络设备发送配置信息;所述配置信息用于配置定时提前量TA有效时进行随机接入所需要的第一随机接入资源集和所述TA无效时进行随机接入所需要的第二随机接入资源集;所述第一随机接入资源集包括多个物理随机接入信道PRACH时频资源、多个随机接入前导和多个PUSCH时频资源,所述第二随机接入资源集包括多个PRACH时频资源、多个随机接入前导和多个PUSCH时频资源;所述网络设备根据所述第一随机接入资源集和所述第二随机接入资源集检测随机接入前导和上行数据。上述方案,网络设备对于TA无效时进行随机接入采用的资源与TA有效时进行随机接入采用的资源分开配置,从而TA无效的UE与TA有效的UE在进行随机接入时采用不同的资源传输上行信号,可以降低UE之间信号传输的相互干扰,提高数据传输效率。
在一种可能的设计中,所述第一随机接入资源集中的任一PUSCH时频资源和所述第二随机接入资源集中的任一PUSCH时频资源不同。上述设计中,网络设备对于TA无效时进行随机接入采用的PUSCH时频资源与TA有效时进行随机接入采用的PUSCH时频资源分开配置,TA无效的UE与TA有效的UE在进行随机接入时采用不同的PUSCH时频资源传输上行数据,可以降低UE之间数据传输的相互干扰,提高数据传输效率。
在一种可能的设计中,所述第一随机接入资源集中的任一PRACH时频资源和所述第二随机接入资源集中的任一PRACH时频资源不同;
所述网络设备根据所述第一随机接入资源集和所述第二随机接入资源集检测随机接入前导和上行数据,包括:当在第一随机接入资源集中的第一PRACH时频资源上检测到第一随机接入前导时,在第一随机接入资源集中的多个PUSCH时频资源上检测上行信号;或者,当在第二随机接入资源集中第二PRACH时频资源上检测到第二随机接入前导时,在第二随机接入资源集中的多个PUSCH时频资源上检测上行信号。
上述设计中,不同的随机接入资源集中的PRACH时频资源不同,从而网络设备在某个PRACH时频资源上检测到随机接入前导(preamble)后,能够根据该PRACH时频资源确定在哪个或者哪些PUSCH时频资源上检测上行数据,可以减少检测时间,提高检测效率。
在一种可能的设计中,所述第一随机接入资源集中的任一随机接入前导和所述第二随机接入资源集中的任一随机接入前导不同;所述网络设备根据所述第一随机接入资源集和所述第二随机接入资源集检测随机接入前导和上行数据,包括:当检测到第一随机接入前导且所述第一随机接入前导为所述第一随机接入资源集包括的多个随机接入前导中的一个时,在第一随机接入资源集中的多个PUSCH时频资源上检测上行信号;或者,当检测到第二随机接入前导且所述第二随机接入前导为所述第二随机接入资源集包括的多个随机接入前导中的一个时,在第二随机接入资源集中的多个PUSCH时频资源上检测上行信号。
上述设计中,不同的随机接入资源集中的preamble不同,从而网络设备在检测到某个随机接入前导(preamble)后,能够根据该preamble确定在哪个或者哪些PUSCH时频资源上检测上行数据,可以减少检测时间,提高检测效率。
在一种可能的设计中,还包括:所述网络设备接收来自终端设备的第一指示,所述第一指示用于指示所述终端设备具备跟踪TA的能力,所述跟踪TA的能力表征终端设备支持根据接收到的下行信号和/或所述终端设备的位置信息跟踪调整TA;所述网络设备根据所述第一指示向所述终端设备发送第二指示,所述第二指示用于指示所述网络设备为所述终端设备配置的TA定时时长。
上述设计中,终端设备通过网络设备自身具备跟踪TA的能力,从而网络设备可以根据终端设备的跟踪TA的能力配置更长时间的TA定时时长,从而该UE有更长时间的TA有效的时长,在TA有效的时长内,降低与其它UE之间的相互干扰,提高数据传输效率。
在一种可能的设计中,还包括:响应于所述随机接入前导和上行数据,发送定时提前指令;当所述随机接入前导和上行数据基于第一随机接入资源集检测得到时,所述定时提前指令携带TA调整量;当所述随机接入前导和所述上行数据基于第二随机接入资源集检测得到时,所述定时提前指令携带TA值。
上述设计,针对TA有效的UE发送定时提前指令时,可以仅发送TA调整量,从而可以减少TA值占用的比特数,节省传输空间。
第二方面,本申请实施例提供一种随机接入方法,包括:
终端设备接收网络设备发送的配置信息;其中,所述配置信息用于配置多个随机接入资源集,所述多个随机接入资源集中每个随机接入资源集对应一个定时提前量TA精度等级,不同的TA精度等级所对应的随机接入资源集不同,所述多个随机接入资源集中的每个随机接入资源集包括至少一个物理随机接入信道PRACH时频资源、至少一个随机接入前导和至少一个物理上行共享信道PUSCH时频资源;所述终端设备确定在发起随机接入时的TA所属的TA精度等级;所述终端设备采用所述确定的TA精度等级所对应的随机接入资源集中的资源,向所述网络设备发送第一随机接入前导和第一上行数据,所述第一随机接入前导为所述确定的TA精度等级所对应的随机接入资源集中的随机接入前导,所述第一随机接入前导承载在所述确定的TA精度等级所对应的随机接入资源集中的第一PRACH时频资源上,所述第一上行数据承载在所述确定的TA精度等级所对应的随机接入资源集中的第一PUSCH时频资源上。
上述方案中,不同TA精度等级的UE随机接入时采用的资源不同,从而可以降低UE传输随机接入信号时的相互干扰,提高数据传输效率。
在一种可能的设计中,不同的随机接入资源集包括的PUSCH时频资源不同。上述设计中,不同TA精度等级的UE随机接入时采用的不同的PUSCH时频资源传输上行数据,从而可以降低UE在随机接入过程中传输上行数据时的相互干扰,提高数据传输效率。
在一种可能的设计中,不同随机接入资源集包括的PRACH时频资源不同;或者,不同随机接入资源集包括的随机接入前导不同。上述设计中,不同TA精度等级的UE采用的三种资源中,至少有一种资源不同,在一定程度上可以降低UE之间随机接入信号传输的相互干扰,提高数据传输的效率。
在一种可能的设计中,当所述确定的TA精度等级大于或者等于第一阈值时,所述终端设备采用所述确定的TA精度等级所对应的随机接入资源集中的资源,向所述网络设备发送第一随机接入前导和第一上行数据,包括:根据发起随机接入时的TA和所述第一PRACH时频资源的时域位置确定所述第一随机接入前导的发送时间,以及根据所述TA和所述第一PUSCH时频资源的时域位置确定所述第一上行数据的发送时间,根据确定的第 一随机接入前导的发送时间以及确定的第一上行数据的发送时间向所述网络设备发送所述第一随机接入前导以及所述第一上行数据;或者,根据所述第一PRACH时频资源的时域位置确定所述第一随机接入前导的发送时间,以及根据所述TA和所述第一PUSCH时频资源的时域位置确定所述第一上行数据的发送时间,根据确定的第一随机接入前导的发送时间以及确定的第一上行数据的发送时间向所述网络设备发送所述第一随机接入前导以及所述第一上行数据。
上述设计中,TA精度等级大于或者等于第一阈值时,至少对上行数据的传输时间进行TA调整,以使得TA精度等级大于或者等于第一阈值的各个UE发送上行数据的时间对齐,减少UE之间的相互干扰,进而提高数据传输效率。
在一种可能的设计中,所述TA为:网络设备指示的TA;或者,根据下行参考信号或者同步信号确定的TA值;或者,根据所述终端设备与所述网络设备之间的距离所确定的TA值。
在一种可能的设计中,还包括:当所述确定的TA精度等级大于或者等于第一阈值时,所述终端设备接收到所述网络设备响应所述第一随机接入前导所发送的定时提前指令,所述定时提前指令携带TA调整量;所述终端设备根据所述TA以及所述TA调整量调整所述TA的取值。
在一种可能的设计中,还包括:当所述确定的TA精度等级小于第一阈值时,所述终端设备接收到所述网络设备响应所述第一随机接入前导所发送的定时提前指令,所述定时提前指令携带TA值;所述终端设备将所述TA值作为新的TA值。
在一种可能的设计中,不同随机接入资源集包括的PUSCH时频资源所关联的配置参数的取值集合不同;所述配置参数包括调制编码方案MCS、循环前缀、上行控制信息参数以及功率控制参数中的至少一项。
第四方面,本申请实施例提供一种随机接入方法,包括:
网络设备发送配置信息;所述配置信息配置多个随机接入资源集,所述多个随机接入资源集中每个随机接入资源集对应一个定时提前量TA精度等级,不同的TA精度等级所对应的随机接入资源集不同,所述多个随机接入资源集中的每个随机接入资源集包括多个物理随机接入信道PRACH时频资源、多个随机接入前导和多个物理上行共享信道PUSCH时频资源;所述网络设备根据所述多个随机接入资源集检测随机接入前导和上行数据。上述方案,网络设备对于不同TA精度等级的UE进行随机接入采用的资源分开配置,从而不同TA精度等级的UE在进行随机接入时采用不同的资源传输上行信号,可以降低UE之间信号传输的相互干扰,提高数据传输效率。
在一种可能的设计中,不同的随机接入资源集包括的PUSCH时频资源不同。上述设计中,网络设备对于不同TA精度等级的UE进行随机接入采用的PUSCH时频资源分开配置,不同TA精度等级的UE在进行随机接入时采用不同的PUSCH时频资源传输上行数据,可以降低UE之间数据传输的相互干扰,提高数据传输效率。
在一种可能的设计中,不同随机接入资源集包括的PRACH时频资源不同;所述网络设备根据所述多个随机接入资源集检测随机接入前导和上行数据,包括:当在第一随机接入资源集中的第一PRACH时频资源上检测到所述随机接入前导时,在第一随机接入资源集中的多个PUSCH时频资源上检测上行信号;其中,所述第一随机资源集为所述多个随机接入资源集中的一个。
上述设计中,不同的随机接入资源集中的PRACH时频资源不同,从而网络设备在某个PRACH时频资源上检测到随机接入前导(preamble)后,能够根据该PRACH时频资源确定在哪个或者哪些PUSCH时频资源上检测上行数据,可以减少检测时间,提高检测效率。
在一种可能的设计中,不同随机接入资源集包括的随机接入前导不同;所述网络设备根据所述多个随机接入资源集检测随机接入前导和上行数据,包括:当检测到所述随机接入前导且所述随机接入前导为所述第一随机接入资源集包括的多个随机接入前导中的一个时,在第一随机接入资源集中的多个PUSCH时频资源上检测上行信号;其中,所述第一随机资源集为所述多个随机接入资源集中的一个。
上述设计中,不同的随机接入资源集中的preamble不同,从而网络设备在检测到某个随机接入前导(preamble)后,能够根据该preamble确定在哪个或者哪些PUSCH时频资源上检测上行数据,可以减少检测时间,提高检测效率。
在一种可能的设计中,还包括:当在第一随机接入资源集包括的资源上检测到所述随机接入前导和所述上行数据,发送定时提前指令;当所述第一随机接入资源集对应的TA精度等级大于或者等于第一阈值时,所述定时提前指令携带TA调整量;当所述第一随机接入资源集对应的TA精度等级小于所述第一阈值时,所述定时提前指令携带TA值。
上述设计中,终端设备通过网络设备自身具备跟踪TA的能力,从而网络设备可以根据终端设备的跟踪TA的能力配置更长时间的TA定时时长,从而该UE有更长时间的TA有效的时长,在TA有效的时长内,降低与其它UE之间的相互干扰,提高数据传输的效率。
第五方面,本申请实施例提供了一种通信装置,该通信装置可以是终端设备,也可以是其它能够支持终端设备实现该方法的装置,例如是可以终端设备中的装置。该装置包括用于执行以上第一方面或者第三方面各个步骤的单元或手段(means)。
第六方面,本申请实施例提供一种通信装置,该通信装置可以是网络设备,也可以是其它能够支持网络设备实现该方法的装置,例如是可以网络设备中的装置。该装置包括用于执行以上第二方面或者第四方面各个步骤的单元或手段(means)。
第七方面,本申请实施例提供一种通信装置,应用于终端设备。示例性地,通信装置是可以设置在终端设备中的装置。其中,可以设置在终端设备中的装置可以为芯片系统、模块或电路等,本申请对此不作具体限定。
所述通信装置包括处理器,用于实现上述第一方面或者第三方面描述的方法中终端设备的功能。所述装置还可以包括存储器,用于存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器调用并执行所述存储器中存储的程序指令,用于实现上述第一方面或者第三方面描述的方法中终端设备的功能。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信。示例性地,该其它设备为网络设备。在本申请实施例中,通信接口可以包括电路、总线、接口、通信接口或者其它任意能够实现通信功能的装置。
第八方面,本申请实施例提供一种通信装置,应用于网络设备。示例性地,装置是可以设置在网络设备中的装置。其中,可以设置在网络设备中的装置可以为芯片系统、模块或电路等,本申请对此不作具体限定。
所述装置包括处理器,用于实现上述第二方面或者第四方面描述的方法中网络设备的 功能。所述装置还可以包括存储器,用于存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器调用并执行所述存储器中存储的程序指令,用于实现上述第二方面或者第四方面描述的方法中网络设备的功能。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信。示例性地,该其它设备为终端设备。在本申请实施例中,通信接口可以包括电路、总线、接口、通信接口或者其它任意能够实现通信功能的装置。
第十方面,提供一种通信系统,该通信系统可以包括第五方面所述的装置和第六方面所述的装置。或者包括第七方面所述的装置和第八方面所述的装置。
第十一方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在通信装置上运行时,使得该通信装置执行上述第一方面或第一方面的任意一种可能的设计中所述的方法,或者使得该通信装置执行上述第二方面或第二方面的任意一种可能的设计中所述的方法,或者使得该通信装置执行上述第三方面或第三方面的任意一种可能的设计中所述的方法,或者使得该通信装置执行上述第四方面或第四方面的任意一种可能的设计中所述的方法。
第十二方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在通信装置上运行时,使得该通信装置执行上述第一方面或第一方面的任意一种可能的设计中所述的方法,或者使得该通信装置计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法,或者使得该通信装置执行上述第三方面或第三方面的任意一种可能的设计中所述的方法,或者使得该通信装置执行上述第四方面或第四方面的任意一种可能的设计中所述的方法。
第十三方面,本申请实施例提供了一种芯片系统,该芯片系统中包括处理器,还可以包括存储器,用于实现上述方法中终端设备或者网络设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
图1为本申请实施例中通信系统架构示意图;
图2为本申请实施例中一种随机接入过程流程示意图;
图3为本申请实施例中另一种随机接入过程流程示意图;
图4为本申请实施例中上行时间调整示意图;
图5为本申请实施例中一种随机接入方法流程示意图;
图6A为本申请实施例中第一种可能的实现方式中第一种示例下的资源对应关系示意图;
图6B为本申请实施例中第一种可能的实现方式中第二种示例下的资源对应关系示意图;
图6C为本申请实施例中第一种可能的实现方式中第三种示例下的资源对应关系示意图;
图7为本申请实施例中另一种随机接入方法流程示意图;
图8A本申请实施例中第二种可能的实现方式中第一种示例下的资源对应关系示意图;
图8B为本申请实施例中第二种可能的实现方式中第二种示例下的资源对应关系示意图;
图9为本申请实施例中通信装置800结构示意图;
图10为本申请实施例中通信装置900结构示意图;
图11为本申请实施例中基站1000结构示意图;
图12为本申请实施例中终端设备1100结构示意图。
具体实施方式
应理解,说明书通篇中提到的“一个实施例”、“一个实现方式”、“一个实施方式”或“一示例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”、“一个实现方式”、“一个实施方式”或“在一示例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。此外,本申请实施例和权利要求书及附图中的术语“包括”和“具有”不是排他的。例如,包括了一系列步骤或模块的过程、方法、系统、产品或设备没有限定于已列出的步骤或模块,还可以包括没有列出的步骤或模块。
本申请实施例可以应用于但不限于5G系统,比如NR系统,还可以应用于LTE系统,长期演进高级(long term evolution-advanced,LTE-A)系统、增强的长期演进技术(enhanced long term evolution-advanced,eLTE)等通信系统中,也可以扩展到如无线保真(wireless fidelity,WiFi)、全球微波互联接入(worldwide interoperability for microwave access,wimax)、以及3GPP等相关的蜂窝系统中。具体的本申请实施例所应用的通信系统架构可以如图1所示,包括网络设备和多个终端设备,图1中以三个终端设备为例。终端设备1-终端设备3可以分别或者同时向网络设备发送上行数据,需要说明的是,本申请实施例中不限定图1中所示通信系统中终端设备以及网络设备的个数。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、V2X终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、 或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
本申请实施例中,终端设备还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端设备。后续描述时,以将终端设备简称为UE为例。
2)网络设备,可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备。所述网络设备可以为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。后续描述中以称为基站为例说明。目前,一些网络设备的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。另外,在一种网络结构中,所述网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点。这种结构将长期演进(long term evolution,LTE)系统中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
3)RA过程,也可以称为RACH过程。
RA过程有两种可能的方式,基于竞争的RA过程和非竞争的RA过程,如图2所示。基站向UE发送配置消息(也可称为RA配置消息),UE根据该配置消息确定可用的物理时频资源,即物理随机接入信道(physical random access channel,PRACH)资源,也称为PRACH机会(PRACH Occasion,RO)。当采用基于竞争的(contention-based)RA过程,参见图2中的(a)所示,UE在可用的一个PRACH时频资源上向基站发送随机接入前导(preamble),基站接收到preamble后向UE发送随机接入响应(random access response,RAR),RAR中可以包括随机接入前导和上行数据定时提前(time advance,TA)量、用于 发送上行数据的上行资源以及临时的小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)等参数,从而UE根据RAR的指示向基站发送上行数据,基站接收到上行数据向UE发送冲突解决消息。基于竞争的RA过程又称为四步RA过程。当采用非竞争的(contention-free)RA过程,参见图2中的(b)所示,基站向UE发送RA指示消息,RA指示消息中一般包括为该UE分配的随机接入前导以及发送随机接入前导所采用的PRACH时频资源。UE根据RA指示消息发送preamble,基站接收到preamble后向UE发送RAR。RAR中可以包括上行数据定时提前(time advance,TA)量、用于发送上行数据的上行资源以及临时的小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)、preamble(与接收到的preamble相同)等参数。其中,RA指示消息可以通过下行控制信道或高层信令发送给UE。其中,上行资源可以为物理上行共享信道(physical uplink shared channel,PUSCH)时频资源。
4)两步随机接入。
上述四步RA过程需要UE和基站之间进行多次交互信令,因此具有较高的时延。对于一些具有低时延要求的应用场景,提出两步RA过程来降低时延,如图3所示。对于竞争接入的RA过程,参见图3中(a)所示,UE向基站发送MsgA,其中MsgA可以包括随机接入前导和上行信号两部分,等效于四步RA的①和③。BS接收到MsgA后向UE发送MsgB,MsgB用于发送随机接入响应和冲突解决,等效于四步RA的②和④。两步RA过程同样可以用于非竞争接入,参见图3中(b)所示。
5)上行时间调整。
如图4中(a)所示,由于基站和UE之间的信号传播有延迟,从基站发送下行信号的起始时刻到UE1接收下行信号的起始时刻的间隔为ΔT 1=d 1/c,其中d 1为基站和UE1之间的距离,c为信号传播速度。对于无线通信,c为光速。类似地,ΔT 2=d 2/c,其中d 2为基站和UE2之间的距离。如果UE1不进行上行定时调整,以接收下行信号的起始时刻为参考向基站发送上行信号,从UE1发送上行信号的起始时刻到基站接收上行信号的起始时刻间隔同样为ΔT 1。因此,针对UE1,基站从发送下行信号的起始时刻到接收上行信号的起始时刻存在2ΔT 1的时间差,同理,针对U2,基站从发送下行信号的起始时刻到接收上行信号的起始时刻存在2ΔT 2的时间差。由于各UE和基站之间的距离不同,使得上行信号到达基站的时间各不相同,造成UE之间可能存在定时偏差。而当定时偏差大于正交频分复用(orthogonal frequency division multiple,OFDM)符号的循环前缀(cyclic prefix,CP)时,UE之间会互相干扰。
为了解决UE之间的干扰问题,UE需要进行定时调整,也称为定时提前(timing advance,TA)。如图4中(b)所示,UE1将发送上行信号的起始时刻提前2ΔT 1,UE2将发送上行信号的起始时刻提前2ΔT 2,则基站将在相同的时刻接收到UE1和UE2的上行信号,从而解决UE间互相干扰的问题。在随机接入过程中,基站在随机接入响应中向UE发送TA,UE根据该TA进行定时调整。当UE和基站之间的距离发生变化时,需要对应地进行定时调整。对于四步RA来说,UE发送上行信号时,会根据基站在RAR中反馈的TA进行定时调整,从而一般情况下,UE之间不会存在干扰。
应该理解的是,当UE在进行上行信号传输的过程中,基站可能向UE发送定时提前指令,以适应UE移动后TA发生变化的情况。UE每次接收到定时提前指令后,将重启TA定时器。
对于两步RA,采用的一种方式是对MsgA的preamble和上行数据部分都不进行TA 调整。此时不同UE发送的上行数据部分可能存在较大的定时偏差,UE之间存在较大的干扰。另一种方式当UE的TA有效时,可以对MsgA的preamble和上行数据部分进行TA调整,或者仅对上行数据部分进行TA调整,从而减少上行数据部分之间的干扰。当网络中只有部分UE的TA有效时,无效TA的UE和有效TA的UE之间的上行数据传输可能存在干扰。
为解决上述无效TA的UE和有效TA的UE之间的上行数据传输可能存在干扰的问题,本申请实施例提供了一种随机接入方法及装置,具体提供如下两种可能的实现方式:
第一种可能的实现方式中,针对TA有效的情形和TA无效的情形分别配置随机接入资源集(包括PRACH资源、PUSCH资源)。
第二种可能的实现方式中,为不同TA精度等级分别配置随机接入资源集。
下面针对第一种可能的实现方式的具体实现进行详细说明,参见图5所示。
S501,基站发送配置信息,UE接收基站发送的配置信息。
其中,所述配置信息用于配置第一随机接入资源集和第二随机接入资源集;所述第一随机接入资源集包括至少一个物理随机接入信道PRACH时频资源、至少一个随机接入前导和至少一个PUSCH时频资源,所述第二随机接入资源集包括至少一个PRACH时频资源、至少一个随机接入前导和至少一个PUSCH时频资源。
示例性的,所述配置信息用于配置第一随机接入资源集和第二随机接入资源集,一种方式是,隐含指示所述第一随机接入资源集中的资源用于TA有效时进行随机接入所采用,所述第二随机接入资源集中的资源用于TA无效时进行随机接入所采用。比如,将按照不同编码比特顺序来区分随机接入资源集中的资源是在TA有效时进行随机接入采用或者在TA无效时进行随机接入时采用,通过不同的格式来区分随机接入资源集中的资源是在TA有效时进行随机接入采用或者在TA无效时进行随机接入时采用,或者通过资源配置的先后顺序来区分随机接入资源集中的资源是在TA有效时进行随机接入采用或者在TA无效时进行随机接入时采用。另一种方式是,显示指示所述第一随机接入资源集中的资源用于TA有效时进行随机接入所采用,所述第二随机接入资源集中的资源用于TA无效时进行随机接入所采用。比如通过指示字段,当该指示字段填充为0时,指示资源用于TA无效时进行随机接入所采用,指示字段填充为1时,指示资源用于TA有效时进行随机接入所采用。还可以在协议中约定TA有效时采用第一随机接入资源集中的资源,TA无效时采用第二随机接入资源集中的资源。
需要说明的是,本申请实施例中PRACH时频资源,也可以称为PRACH机会(PRACH occasion,RO),PUSCH时频资源,也可以称为PUSCH机会(PUSCH occasion,PO)。
作为一种示例,配置信息可以通过广播或者组播消息,或者通过UE专用的无线资源控制(radio resource control,RRC)消息,或者其他RRC配置消息发送。
示例性的,配置信息可以承载在主信息块(master information block,MIB)或者系统信息块(system information block,SIB),并通过广播或者组播消息发送。
在本申请实施例中,基站配置了第一随机接入资源集和第二随机接入资源集,可以理解为,是分别配置TA有效时进行随机接入采用的PRACH时频资源、随机接入前导和PUSCH时频资源,以及TA无效时进行随机接入采用的PRACH时频资源、随机接入前导和PUSCH时频资源。
应理解的是,对应到TA无效和TA有效的PRACH时频资源、随机接入前导以及PUSCH 时频资源的三种资源中,可以三种资源均不相同,也可以仅有一种资源不同,还可以有两种资源不同。
如下示例性地描述对应到TA无效和TA有效的三种资源之间的对应关系。
第一种示例:
基站针对TA无效时进行随机接入采用的PRACH时频资源、PUSCH时频资源,和TA有效时进行随机接入采用的PRACH时频资源、PUSCH时频资源,分开配置。
示例性的,TA无效时进行随机接入采用的PRACH时频资源和TA有效时进行随机接入采用的PRACH时频资源,可以全部不相同。换句话说,第一随机接入资源集包括的任一PRACH时频资源和第二随机接入资源集包括的任一PRACH时频资源不同。
为了描述方便,将TA有效时进行随机接入采用的一个或多个PRACH时频资源称为第一PRACH时频资源集。将TA无效时进行随机接入采用的一个和多个PRACH时频资源称为第二PRACH时频资源集。也就是说,第一种示例中,第一PRACH时频资源集包括的所有PRACH时频资源与第二PRACH时频资源集包括的所有PRACH时频资源均不同。
比如第一PRACH时频资源集包括2个,分别为RO#0和RO#1,而第二PRACH时频资源集包括2个,分别为RO#2和RO#3。需要说明的是,配置的TA有效时进行随机接入采用的PRACH时频资源数量与配置的TA无效时进行随机接入采用的PRACH时频资源数量可以相同,也可以不同,本申请实施例对此不作具体限定。
一种示例中,一个PRACH时频资源可以对应一个或者多个preamble,比如一个PRACH时频资源对应64个preamble。另一种示例中,不同的preamble的功能不同,preamble可以被划分为多个preamble组,一个PRACH时频资源可以对应一个或者多个preamble组,一个preamble组可以包括一个或者多个preamble。
需要说明的是,第一PRACH时频资源集中的每个PRACH时频资源对应的preamble与第二PRACH时频资源集中的每个PRACH时频资源对应的preamble可以相同,也可以不同。比如,RO0、RO1以及RO2和RO3均对应64个preamble。再比如,RO0、RO1均对应preamble1-preamble32,RO2和RO3对应preamble33-preamble64。
示例性的,TA无效时进行随机接入采用的PUSCH时频资源和TA有效时进行随机接入采用的PUSCH时频资源,全部不相同。将TA有效时进行随机接入采用的一个和多个PUSCH时频资源称为第一PUSCH时频资源集,将TA无效时进行随机接入采用的一个和多个PUSCH时频资源称为第二PUSCH时频资源集。也就是说,第一PUSCH时频资源集中的任一PUSCH时频资源和第二PUSCH时频资源集中的任一PUSCH时频资源不同。
PUSCH时频资源与PRACH时频资源之间存在映射关系,即第一PRACH时频资源集对应第一PUSCH时频资源集,第二PRACH时频资源集对应第二PUSCH时频资源集。比如第一PRACH时频资源集包括2个PRACH时频资源,分别为RO0和RO1,而第二PRACH时频资源包括2个PRACH时频资源,分别为RO2和RO3。第一PUSCH时频资源集中包括1个PUSCH时频资源,为PO0,第二PUSCH时频资源集中包括1个PUSCH时频资源,为PO1。则参见图6A所示,RO0和RO1均对应于PO0,RO2和RO3均对应于PO1。
第二种示例:所述第一随机接入资源集中的任一随机接入前导和所述第二随机接入资源集中的任一随机接入前导不同。
TA无效时进行随机接入采用的所有PRACH时频资源和TA有效时进行随机接入采用的所有PRACH时频资源,可以一一对应相同。
换句话说,基站配置一个PRACH时频资源集,该PRACH时频资源集既用于TA无效时执行随机接入,也用于TA有效时执行随机接入。该PRACH时频资源集可以包括一个或者多个PRACH资源。该PRACH时频资源集对应两个preamble组,比如group1和group2,每个preamble组包括一个或者多个preamble。group1和group2中包括的preamble数量可以相同也可以不相同。group1包括的所有preamble与group2包括的所有preamble均不相同,比如:group1包括preamble1-preamble32,group2包括preamble33-preamble64。两个preamble组中,group1中的preamble用于TA有效时执行随机接入,group2中的preamble用于TA无效时执行随机接入。换句话说,所述第一随机接入资源集中的任一随机接入前导和所述第二随机接入资源集中的任一随机接入前导不同。
示例性的,TA无效时进行随机接入采用的PUSCH时频资源和TA有效时进行随机接入采用的PUSCH时频资源,全部不相同。将TA有效时进行随机接入采用的一个和多个PUSCH时频资源称为第一PUSCH时频资源集,将TA无效时进行随机接入采用的一个和多个PUSCH时频资源称为第二PUSCH时频资源集。也就是说,第一PUSCH时频资源集中的任一PUSCH时频资源和第二PUSCH时频资源集中的任一PUSCH时频资源不同。
preamble组与PUSCH时频资源集之间存在映射关系,比如参见图6B所示,group1对应于第一PUSCH时频资源集(PO#0),group2对应于第二PUSCH时频资源集(PO#1)。
第三种示例:TA无效时进行随机接入采用的PRACH时频资源、随机接入前导,和TA有效时进行随机接入采用的PRACH时频资源、随机接入前导不作区分,可以全部相同,但针对配置的TA无效时进行随机接入采用的PUSCH时频资源与配置的TA有效时进行随机接入采用的PUSCH时频资源的不相同。
示例性的,基站配置一个PRACH时频资源集,该PRACH时频资源集既用于TA无效时执行随机接入,也用于TA有效时执行随机接入。该PRACH时频资源集可以包括一个或者多个PRACH资源。该PRACH时频资源集中每个PRACH时频资源可以对应相同的preamble或者对应不同的preamble,这些preamble既可以用于TA无效时执行随机接入,也用于TA有效时执行随机接入。基站配置两个PUSCH时频资源集,分别为第一PUSCH时频资源集和第二PUSCH时频资源集,第一PUSCH时频资源集用于TA有效时执行随机接入,第二PUSCH时频资源集用于TA无效时执行随机接入。
在该第三种示例下,一种方式中,PRACH时频资源集与两个PUSCH时频资源集均存在对应关系。另一种方式中,一个preamble对应两个PUSCH时频资源集。参见图6C所示,PRACH时频资源集包括RO0,第一PUSCH时频资源集中包括PO0,第二PUSCH时频资源集中包括PO1,而PRACH时频资源集对应于第一PUSCH时频资源集和第二PUSCH时频资源集。也就是RO0对应于PO0和PO1。
应理解的是,本申请实施例中所述的PUSCH时频资源不同,是指PUSCH所占用的时域资源不同,或者频域资源不同,或者时域和频域资源均不同;PRACH时频资源不同是指PRACH所占用的时域资源不同、或者频域资源不同、或者时域和频域资源均不同。
在一种可能的示例中,第一随机接入资源集包括的PUSCH时频资源所关联的配置参数的取值集合与第二随机接入资源集包括的PUSCH时频资源所关联的配置参数的取值集合不同。此处的取值集合可以包括多个具体值,或者包括一个取值范围。
其中,所述配置参数包括调制编码方案(modulation and coding scheme,MCS)、循环前缀(cyclic prefix,CP)、上行控制信息参数以及功率控制参数中的至少一项。上行控制 信息参数可以包括上行控制信息(uplink control information,UCI)的比特数、上行控制信息的时频资源位置和大小等。示例性的,配置参数可以是协议约定的或者由基站配置的。
示例性的,针对TA有效时PUSCH时频资源的MCS配置的取值范围与针对TA有效时PUSCH时频资源的MCS配置的取值范围不同。
例如,由于TA有效的UE之间的定时偏差可以配置在CP范围内,针对TA有效时或者TA无效时的PUSCH时频资源配置的MCS、发射功率,上行控制信息参数满足如下至少一个条件,以提升数据传输的效率:
针对TA有效时PUSCH时频资源配置的MCS取值范围大于针对TA无效时PUSCH时频资源配置的MCS取值范围;
针对TA有效时PUSCH时频资源配置的发射功率可以大于针对TA无效时PUSCH时频资源配置的发射功率;
针对TA有效时PUSCH时频资源配置的上行控制信息的比特数大于针对TA无效时PUSCH时频资源配置的上行控制信息的比特数;或者,
针对TA有效时PUSCH时频资源配置的上行控制信息的时频资源大小大于针对TA无效时PUSCH时频资源配置的上行控制信息的时频资源位置和大小。
S502,UE确定发起随机接入时的TA是否有效,若是执行S503,若否,执行S504。
示例性地,UE可以通过如下任一种方式确定TA是否有效。
第一种方式:
UE可以根据TA定时器判断TA是否有效。如果TA定时器未超时则UE的TA有效,否则认为UE的TA无效。一般性的,UE接收到基站下发的上行定时提前指令,UE根据定时提前指令调整TA并重启TA定时器。
TA定时器的长度可以由基站配置。一种方式是,基站为每个UE配置的TA定时器的长度(或者称为TA定时时长)均相同。另一种方式时,基站可以根据UE调整TA的能力(也可以称为TA跟踪能力),来为UE配置TA定时器的长度。比如UE支持根据下行信号和/或UE的位置信息跟踪调整当前的TA。下行信号可以是下行参考信号或者同步信号。UE的位置信息可以是UE与基站之间的距离。
UE向基站发送第一指示,所述第一指示用于指示所述UE具备TA的跟踪能力,所述跟踪TA的能力表征UE支持根据接收到的下行信号和所述UE的位置信息跟踪调整TA;基站接收到第一指示后,根据所述第一指示向所述UE发送第二指示,所述第二指示用于指示所述基站根据所述第一指示为所述UE配置的TA定时时长。也就是向UE配置TA定时器的定时时长。
作为一种示例,用于指示TA的跟踪能力的参数可以包括如下至少一项:
UE的TA精度等级、UE的跟踪调整TA的持续时长、UE的跟踪调整TA的时间间隔。
示例性的,第一指示中携带的TA精度等级可以是UE的出厂参数,或者运营商通过信令通知。比如,运营商可以通过预配置信令通知终端设备,或者运营商可以在终端的用户识别(subscriber identification module,SIM)或全球用户识别(universal subscriber identity module,USIM)中写入预配置信令,终端设备可以通过读取SIM或USIM,获取预配置信令等。
第一指示中携带的TA精度等级,还可以上一次执行随机接入时确定的TA精度等级。 比如根据TA定时的启动时长、或者接收到的下行信号的信号强度,或者根据UE与所述基站之间的距离来去诶额定TA精度等级。具体的确定方式可以参见图7对应的第二种可能的实现方式中的方式1-方式3,此处不再重复描述。
其中,TA的精度表示调整的TA(此处调整是指UE的调整或者基站的调整)和准确TA值的误差大小。TA的精度等级越高,表示调整的TA和准确TA值的误差越小。
示例性的,基站中可以配置有用于指示TA的跟踪能力的参数和TA定时时长的映射关系,从而基站可以根据UE上报的第一指示以及映射关系来为所述UE配置的TA定时时长。
其中,UE的TA精度等级越高对应的TA定时时长越长、UE的跟踪调整TA的持续时长越长对应的TA定时时长越大,或者UE的跟踪调整TA的时间间隔越短对应的TA定时时长越长。
第二种方式:
UE具备调整TA的能力,UE的TA有效。
一方面,当UE具备TA跟踪能力时,可以通知给基站,一种可能的方式,基站可以将TA定时器的定时时长配置为无穷大,如果配置为无穷大,也就是该UE的TA始终有效。另一方面,UE具备TA跟踪能力,当UE执行TA跟踪时,可以中断TA定时器,或者不考虑TA定时器超时的影响,从而确定UE的TA有效。
第三种方式:执行随机接入时的时间和上一次TA调整的时间差小于预设阈值。
需要说明的是,执行随机接入时的时间可以是UE发送随机接入前导的起始位置或者起始位置所在的时隙,也可以是UE发送PUSCH的起始位置或者起始位置所在的时隙,也可以是终端设备内部发起随机接入过程的时刻或该时刻所在的时隙。
例如,上一次TA调整的时间可以是上一次接收到网络设备指示的TA的时间,或者上一次跟踪调整TA的时间。
S503,所述UE采用所述第一随机接入资源集中的资源,向所述网络设备发送第一随机接入前导和第一上行数据。
其中,所述第一随机接入前导为所述第一随机接入资源集中的随机接入前导,所述第一随机接入前导承载在所述第一随机接入资源集中的第一PRACH时频资源上,所述第一上行数据承载在所述第一PUSCH时频资源上。
S504,所述UE采用所述第二随机接入资源集中的资源,向所述网络设备发送第二随机接入前导和第二上行数据。
其中,所述第二随机接入前导为所述第一随机接入资源集中的随机接入前导,所述第二随机接入前导承载在所述第二随机接入资源集中的第二PRACH时频资源上,所述第二上行数据承载在所述第二随机接入资源集中的第二PUSCH时频资源上。
在本申请实施例中,随机接入前导(第一随机接入前导或者第二随机接入前导)和上行数据(第一上行数据或者第二上行数据)可以承载在MsgA发送。
UE执行两步随机接入时,根据TA是否有效选择PRACH时频资源、随机接入前导和PUSCH时频资源。
在一种可能的实施方式中,同步信号块(synchronization signal block,SSB)和PRACH时频资源存在映射关系。每个PRACH时频资源上映射一定数量的SSB。UE在选择PRACH资源时,可以选择参考信号接收功率(Reference signal received power,RSRP)高于预设 门限的SSB,然后从SSB关联的PRACH资源中选择PRACH资源。比如,在资源关系的第一种示例下,UE确定TA有效,确定RSRP高于预设门限的SSB,比如SSB0和SSB1,然后确定第一PRACH时频资源集中SSB0和SSB1所映射的PRACH时频资源,在确定的PRACH时频资源中选择一个PRACH时频资源。当UE进行基于竞争的两步随机接入时,在选择的PRACH时频资源对应的preamble中选择preamble。然后根据PRACH时频资源与PUSCH时频资源的映射关系,在第一PUSCH时频资源集中选择第一PUSCH时频资源用于承载上行数据。当UE进行非竞争的两步随机接入时,UE根据RA指示消息确定PRACH时频资源和preamble,然后根据确定的PRACH时频资源确定对应的PUSCH资源。
UE在选择的PRACH时频资源和PUSCH时频资源上向基站发送MsgA。
在一种可能的实施方式中,当UE的TA有效时,可以同时根据有效的TA对随机接入前导和上行数据的发送时间进行TA调整,否则TA无效时,可以将TA设置为0,即不对随机接入前导和上行数据进行TA调整。
具体的,在执行S503时,可以根据有效的TA和所述第一PRACH时频资源的时域位置确定所述随机接入前导的发送时间,以及根据所述有效的TA和所述第一PUSCH时频资源的时域位置确定所述上行数据的发送时间,根据确定的第一随机接入前导的发送时间以及确定的第一上行数据的发送时间向所述基站发送所述第一随机接入前导以及所述第一上行数据。
在另一种可能的实施方式中,当UE的TA有效时,可以仅根据有效的TA对上行数据的发送时间进行TA调整,否则TA无效时,可以将TA设置为0,即不对随机接入前导和上行数据进行TA调整。
具体的,在执行S503时,根据所述第一PRACH时频资源的时域位置确定所述第一随机接入前导的发送时间,以及根据所述有效的TA和所述第一PUSCH时频资源的时域位置确定所述第一上行数据的发送时间,根据确定的第一随机接入前导的发送时间以及确定的第一上行数据的发送时间向所述基站发送所述第一随机接入前导以及所述第一上行数据。
在一种示例中,有效的TA可以为基站指示的TA,可以是上一次随机接入过程中接收到的基站发送的TA值。
在另一种示例中,UE根据下行信号或者位置信息确定的TA值。UE具有TA跟踪能力,UE根据下行参考信号或者同步信号跟踪调整TA后的TA值,或者UE根据UE与基站之间的距离跟踪调整TA后的TA值,在调整TA时,一方面可以在基站指示的TA的基础上进行跟踪调整,另一方面,在上一次跟踪调整的TA的基础上再次进行跟踪调整。应理解的是,可以每次调整更新TA,无论是在基站指示的TA的基础上更新,还是在上一次跟踪调整的TA的基础上更新,均是在最近一次更新的TA的基础上再次进行更新。
在所述UE发送随机接入前导(第一随机接入前导或者第二随机接入前导)和上行数据(第一上行数据或者第二上行数据)后,执行S505。
S505,所述基站根据所述第一随机接入资源集和所述第二随机接入资源集检测随机接入前导和上行数据。
第一种可能的实现方式中,在不同的三种资源关系下,基站检测随机接入前导和上行数据的方式不同。
在第一种示例下,可以采用第一种检测方式。
所述第一随机接入资源集中的任一PRACH时频资源和所述第二随机接入资源集中的任一PRACH时频资源不同,即第一PRACH时频资源集、第一PUSCH时频资源集存在映射关系,且对应于TA有效;第二PRACH时频资源集、第二PUSCH时频资源集存在映射关系,且对应于TA无效。
第一种检测方式,UE在第一PRACH时频资源集和第二PRACH时频资源集包括的PRACH时频资源上检测随机接入前导。当在第一随机接入资源集中第一PRACH时频资源上检测到第一随机接入前导时,在第一随机接入资源集中的多个PUSCH时频资源上检测上行数据;换句话说,在第一PRACH时频资源集中的第一PRACH时频资源上检测到第一随机接入前导时,在第一PRACH时频资源集对应的第一PUSCH时频资源集上检测上行数据。当在第二随机接入资源集中第二PRACH时频资源上检测到第二随机接入前导时,在第二随机接入资源集中的多个PUSCH时频资源上检测上行数据,换句话说,当在第二PRACH时频资源集中的第二PRACH时频资源上检测到第二随机接入前导时,在第二PRACH时频资源集对应的第二PUSCH时频资源集上检测上行数据。
在第二种示例下,可以采用第二种检测方式。
所述第一随机接入资源集中的任一随机接入前导和所述第二随机接入资源集中的任一随机接入前导不同。两个preamble组分别对应一个PUSCH时频资源集。preamble组1对应于第一PUSCH时频资源,且对应于TA有效,Preamble组2对应于第二PUSCH时频资源,且对应于TA无效。TA有效和TA无效所采用的PRACH时频资源集相同。
第二种检测方式,UE在该PRACH时频资源集上检测preamble,当检测到第一随机接入前导时,所述第一随机接入前导为所述第一随机接入资源集包括的多个随机接入前导中的一个,在第一随机接入资源集中的多个PUSCH时频资源上检测上行数据;当检测到第二随机接入前导时,所述第二随机接入前导为所述第二随机接入资源集包括的多个随机接入前导中的一个,在第二随机接入资源集中的多个PUSCH时频资源上检测上行数据。换句话说,当检测到的preamble属于preamble组1,在preamble组1对应的第一PUSCH时频资源集包括的PUSCH时频资源上检测上行数据,当检测到的preamble属于preamble组2,在preamble组2对应的第二PUSCH时频资源集包括的PUSCH时频资源上检测上行数据。
在第三种示例下,可以采用第三种检测方式。
TA无效时进行随机接入采用的PRACH时频资源、随机接入前导,和TA有效时进行随机接入采用的PRACH时频资源、随机接入前导不作区分,可以全部相同,但针对配置的TA无效时进行随机接入采用的PUSCH时频资源与配置的TA有效时进行随机接入采用的PUSCH时频资源的不相同。
第三种检测方式,在对随机接入前导和上行数据检测时,基站在基站所配置的PRACH时频资源集上检测随机接入前导,当检测到第一随机接入前导时,根据承载第一随机接入前导的PRACH时频资源对应的PUSCH时频资源,这里会对应两个PUSCH时频资源集,因此在对应的两个PUSCH时频资源集包括的PUSCH时频资源上检测上行数据。
在一种可能的实施方式中,基站在检测到随机接入前导和上行数据后,响应于所述随机接入前导和上行数据,发送定时提前指令;当所述随机接入前导和上行数据基于第一随机接入资源集检测得到时,所述定时提前指令携带TA调整量;当所述随机接入前导和所述上行数据基于第二随机接入资源集检测得到时,所述定时提前指令携带TA值。
示例性的,在第一PUSCH时频资源集包括的PUSCH时频资源上检测到上行数据,由于第一PUSCH时频资源集是TA有效时执行随机接入时使用的,从而确定UE在发送上行数据时进行了TA调整,从而在发送定时提前指令携带TA调整量。当在第二PUSCH时频资源集包括的PUSCH时频资源上检测到上行数据,由于第二PUSCH时频资源集是TA无效时执行随机接入时使用的,从而确定UE在发送上行数据时未进行TA调整,从而基站在发送定时提前指令携带TA值。对于携带TA调整量的定时提前指令和携带TA值的定时提前指令采用的格式可以不同,比如占用比特数不同,或者定时提前指令中包括指示字段,通过指示字段包括的不同的数值来指示TA调整量或者TA值,或者指示该数值是TA调整量还是TA值,比如通过1比特来指示该数值是TA调整量还是TA值,其中比特值为1表示该数值为TA调整量,而比特值为0表示该数值为TA值。
本申请实施例中,基站可以将定时提前指令承载在MsgB消息中发送。
示例性的,UE接收到定时提前指令后,根据定时提前指令携带的TA调整量和TA值确定更新TA的方式可以不同。
方式一:所述UE接收到定时提前指令,若所述定时提前指令携带TA调整量;UE根据有效的TA以及所述TA调整量调整所述TA的取值。
例如,当UE调整有效TA的值时,定时提前指令通知TA调整量T A,UE根据定时提前指令进行如下TA调整:
N TA_new=N TA_old+(T A-31)·16·64/2 μ
其中N TA_new是调整后的TA值,N TA_old是调整前的有效TA,μ是和子载波间隔有关的参数。
方式二,所述UE接收到定时提前指令,所述定时提前指令携带TA值;所述UE将所述TA值作为新的有效TA值。
例如,当UE执行随机接入时TA无效时,即TA=0,定时提前指令通知TA值,UE根据定时提前指令进行如下TA调整:
N TA=T A·16·64/2 μ
其中N TA是调整后的TA值,μ是和子载波间隔有关的参数。
下面针对第二种可能的实现方式的具体实现进行详细说明,参见图7所示。
S701,基站发送配置信息,UE接收基站发送的配置信息。
所述配置信息用于配置多个随机接入资源集,所述多个随机接入资源集中每个随机接入资源集对应一个定时提前量TA精度等级,不同的TA精度等级所对应的随机接入资源集不同,所述多个随机接入资源集中的每个随机接入资源集包括至少一个物理随机接入信道PRACH时频资源、至少一个随机接入前导和至少一个物理上行共享信道PUSCH时频资源;
其中,可以配置多个TA精度等级,比如两个或者多个TA精度等级。
作为一种示例,配置信息可以通过广播或者组播消息,或者通过UE专用的RRC消息发送。
示例性的,配置信息可以承载在MIB或者SIB,并通过广播或者组播消息发送。
在本申请实施例中,基站配置了多个随机接入资源集,可以理解为,是分别配置每个TA精度等级对应的PRACH时频资源、随机接入前导和PUSCH时频资源。
应理解的是,PRACH时频资源、随机接入前导以及PUSCH时频资源的三种资源中,可以三种资源均不相同,也可以仅有一种资源不同,还可以有两种资源不同。
如下示例性地描述对应到不同的TA精度等级的三种资源之间的对应关系。以3个TA精度等级为例,分别为TA精度等级1、TA精度等级2和TA精度等级3。TA精度等级1对应于随机接入资源集1,TA精度等级2对应于随机接入资源集2,TA精度等级3对应于随机接入资源集3。
第一种示例:
基站针对不同TA精度等级进行随机接入采用的PRACH时频资源、PUSCH时频资源,分开配置。
示例性的,不同的随机接入资源集包括的PRACH时频资源不同,换句话说,在不同TA精度等级下,进行随机接入采用的PRACH时频资源不相同。比如,随机接入资源集1、随机接入资源集2和随机接入资源集3包括的PRACH时频资源全部不相同。
在第一种示例下,为了描述方便,将在TA精度等级1下进行随机接入采用的一个和多个PRACH时频资源称为PRACH时频资源集1、将在TA精度等级2下进行随机接入采用的一个和多个PRACH时频资源称为PRACH时频资源集2,将在TA精度等级3下进行随机接入采用的一个和多个PRACH时频资源称为PRACH时频资源集3。也就是说,第一种示例中,PRACH时频资源集1包括的所有PRACH时频资源、PRACH时频资源集2包括的所有PRACH时频资源、以及PRACH时频资源集3包括的所有PRACH时频资源均不同。
比如PRACH时频资源集1包括2个,分别为RO0和RO1,而PRACH时频资源集2包括2个,分别为RO2和RO3,PRACH时频资源集3包括1个,为RO#4。需要说明的是,不同TA精度等级下,进行随机接入采用的PRACH时频资源数量可以相同,也可以不同,本申请实施例对此不作具体限定。
一种示例中,一个PRACH时频资源可以对应一个或者多个preamble,比如一个PRACH时频资源对应64个preamble。另一种示例中,不同的preamble的功能不同,preamble可以被划分为多个preamble组,一个PRACH时频资源可以对应一个或者多个preamble组,一个preamble组可以包括一个或者多个preamble。
需要说明的是,不同的TA精度等级对应随机接入资源集包括的随机接入前导可以相同,也可以不同。比如,PRACH时频资源集1中的每个PRACH时频资源对应的preamble与PRACH时频资源集2中的每个PRACH时频资源对应的preamble可以相同,也可以不同。
比如,RO0、RO1以及RO2和RO3、RO4均对应64个preamble。再比如,RO0、RO1均对应preamble1-preamble32,RO2和RO3对应preamble33-preamble64、RO4对应preamble32-preamble50。再比如,RO0、RO1均对应preamble1-preamble30,RO2和RO3对应preamble31-preamble55,RO4对应preamble56-preamble64。
示例性的,不同的TA精度等级下进行随机接入采用的PUSCH时频资源可以全部不相同。比如,为了描述方便,将TA精度等级1下进行随机接入采用的一个和多个PUSCH时频资源称为PUSCH时频资源集1,将TA精度等级2下进行随机接入采用的一个和多个PUSCH时频资源称为PUSCH时频资源集2,将TA精度等级3下进行随机接入采用的1和多个PUSCH时频资源称为PUSCH时频资源集3。也就是说,PUSCH时频资源集1中 的任一PUSCH时频资源、和PUSCH时频资源集2中的任一PUSCH时频资源,以及PUSCH时频资源集3中任一PUSCH时频资源均不同。
在第一种示例下,PUSCH时频资源与PRACH时频资源之间存在映射关系,即PRACH时频资源集1对应PUSCH时频资源集1,PRACH时频资源集2对应PUSCH时频资源集2,PRACH时频资源集3对应PUSCH时频资源集3。比如PRACH时频资源集1包括2个PRACH时频资源,分别为RO0和RO1,而PRACH时频资源集2包括2个PRACH时频资源,分别为RO2和RO3,PRACH时频资源集3包括1个PRACH时频资源,为RO4。PUSCH时频资源集1中包括1个PUSCH时频资源,为PO0,PUSCH时频资源集2中包括1个PUSCH时频资源,为PO1,PUSCH时频资源集3中包括1个PUSCH时频资源,为PO2,参见图8A所示,则RO0和RO1均对应于PO0,RO2和RO3均对应于PO1,RO4对应于PO2。
第二种示例:
不同随机接入资源集包括的随机接入前导不同。
示例性的,在第二种示例中,以不同精度等级下进行随机接入采用的PRACH时频资源相同为例。
换句话说,基站配置一个PRACH时频资源集,该PRACH时频资源集既用于TA精度等级1下进行随机接入,也用于TA精度等级2下进行随机接入,也用于TA精度等级3下进行。该PRACH时频资源集可以包括一个或者多个PRACH资源。随机接入资源集1、随机接入资源集2和随机接入资源集3均包括该PRACH时频资源集。该PRACH时频资源集可以对应3个preamble组,比如组(group)1、group2、group3,每个preamble组包括一个或者多个preamble。group1、group2和group3中包括的preamble数量可以相同也可以不相同。group1包括的所有preamble、group2包括的所有preamble、以及group3包括的所有preamble均不相同,比如:group1包括preamble1-preamble20,group2包括preamble21-preamble40,group3包括preamble41-preamble64。三个preamble组中,group1中的preamble用于TA精度等级下进行随机接入,group2中的preamble用于TA精度等级2下进行随机接入,group3中的preamble用于TA精度等级3下进行随机接入。也就是说,group1属于随机接入资源集1,group2属于随机接入资源集2,group3属于随机接入资源集3。
示例性的,在第二种示例下,不同TA精度等级下进行随机接入采用的PUSCH时频资源可以全部不相同。比如,为了描述方便,将TA精度等级1下进行随机接入采用的一个和多个PUSCH时频资源称为PUSCH时频资源集1,将TA精度等级2下进行随机接入采用的一个和多个PUSCH时频资源称为PUSCH时频资源集2,将TA精度等级3下进行随机接入采用的1和多个PUSCH时频资源称为PUSCH时频资源集3。也就是说,PUSCH时频资源集1属于随机接入资源集1,PUSCH时频资源集2属于随机接入资源集2,PUSCH时频资源集3属于随机接入资源集3。PUSCH时频资源集1中的任一PUSCH时频资源、和PUSCH时频资源集2中的任一PUSCH时频资源,以及PUSCH时频资源集3中任一PUSCH时频资源均不同。
在第二种示例下,preamble组与PUSCH时频资源集之间存在映射关系,group1对应于PUSCH时频资源集1(包括PO 0),group2对应于PUSCH时频资源集2(包括PO1),group3对应于PUSCH时频资源集3(包括PO2),参见图8B所示。
第三种示例:不同的TA精度等级进行随机接入采用的PRACH时频资源、随机接入前导,不作区分,可以全部相同,但配置的不同TA精度等级下进行随机接入采用的PUSCH时频资源不相同。
示例性的,基站配置一个PRACH时频资源集,该PRACH时频资源集既用于TA精度等级1下进行随机接入,也用于TA精度等级2下进行随机接入,也用于TA精度等级3下进行。该PRACH时频资源集可以包括一个或者多个PRACH资源。随机接入资源集1、随机接入资源集2和随机接入资源集3均包括该PRACH时频资源集。该PRACH时频资源集中每个PRACH时频资源可以对应相同的preamble或者对应不同的preamble,这些preamble既可以用于不同TA精度等级下执行随机接入。示例性的,在第三种示例下,不同TA精度等级下进行随机接入采用的PUSCH时频资源可以全部不相同。
比如,为了描述方便,将TA精度等级1下进行随机接入采用的一个和多个PUSCH时频资源称为PUSCH时频资源集1,将TA精度等级2下进行随机接入采用的一个和多个PUSCH时频资源称为PUSCH时频资源集2,将TA精度等级3下进行随机接入采用的1和多个PUSCH时频资源称为PUSCH时频资源集3。也就是说,PUSCH时频资源集1属于随机接入资源集1,PUSCH时频资源集2属于随机接入资源集2,PUSCH时频资源集3属于随机接入资源集3。PUSCH时频资源集1中的任一PUSCH时频资源、和PUSCH时频资源集2中的任一PUSCH时频资源,以及PUSCH时频资源集3中任一PUSCH时频资源均不同。
在一种可能的示例中,不同随机接入资源集包括的PUSCH时频资源所关联的配置参数的取值集合不同。关于配置参数的相关说明可以参见第一种可能的实现方式中的相关描述,此处不再赘述。
示例性的,针对在不同TA精度等级下PUSCH时频资源的MCS配置的取值范围与不同。
本申请实施例中配置参数的取值集合可以根据TA精度等级进行调整,使得更多的UE不受定时偏差的影响,以提升数据传输的效率。例如,TA精度等级低的UE对应的PUSCH资源可以配置为扩展CP(Extended CP,ECP)或预先定义的CP长度,使得UE之间的定时偏差在CP范围内。
例如,针对不同的TA精度等级的PUSCH时频资源配置的MCS、发射功率,上行控制信息参数满足如下至少一个条件,以提升数据传输的效率:
针对TA精度等级高的PUSCH时频资源配置的MCS取值范围大于针对TA精度等级低的PUSCH时频资源配置的MCS取值范围;
针对TA精度等级高的PUSCH时频资源配置的发射功率可以大于针对TA精度等级低的PUSCH时频资源配置的发射功率;
针对TA精度等级高的PUSCH时频资源配置的上行控制信息的比特数大于针对TA精度等级低的PUSCH时频资源配置的上行控制信息的比特数;或者,
针对TA精度等级高PUSCH时频资源配置的上行控制信息的时频资源大小大于针对TA精度等级低的PUSCH时频资源配置的上行控制信息的时频资源位置和大小。
S702,所述UE确定在发起随机接入时的TA所属的TA精度等级。
示例性地,UE可以通过如下任一种方式确定TA精度等级。
方式1:
UE根据在发起随机接入时的TA定时器的启动时长确定所述UE的TA精度等级,一个TA精度等级对应的一个启动时长范围,不同的启动时长范围之间不存在重叠。
TA定时器的长度可以由基站配置。如果UE接收到基站下发的上行定时提前指令,则根据定时提前指令调整TA并重启TA定时器。
例如,TA精度等级包括K个,则可以设置K-1个时间门限值T 1,T 2,…,T K-1。假设TA定时器重置后的值t随时间从0开始增加,则t≤T 1对应第一档的TA精度等级,T 1<t≤T 2对应第二档的TA精度等级,依次类推。
示例性的,时间门限值可以根据定时时长的变化而变化。
需要说明的是,定时器超时时,UE的TA等于0,比如T k-1<t,则可以认为UE的TA精度等级为第K档的TA精度等级,也就是最低的TA精度等级。
方式2:
当UE根据下行参考信号或者同步信号进行TA估计时,UE可以根据接收下行参考信号或同步信号的信号强度确定当前的TA精度等级,一个TA精度等级对应一个信号强度范围,不同的信号强度范围之间不存在重叠。
例如,TA精度等级包括K个,则可以设置K-1个信号强度门限值P 1,P 2,…,P K-1。信号强度p≤P 1对应第K档的TA精度等级,P 1<p≤P 2对应第K-1档的TA精度等级,依次类推。
方式3:
当UE根据UE与所述基站之间的距离进行TA估计时,UE可以根据距离估计精度确定当前的TA精度等级,一个TA精度等级对应一个距离估计精度范围,不同的距离估计精度范围之间不存在重叠。
在UE自主定位的情况下,UE通过测量多个基站发送的参考信号(或者同步信号)和基站的位置信息进行UE自身的位置估计,并根据位置估计结果判断与所述基站之间的距离。在基站辅助定位的情况下,UE能将参考信号(或者同步信号)的测量结果反馈给基站,基站收集UE发送的测量结果后对UE的位置进行估计,并将位置估计结果和估计精度发送给UE。上述方法中,距离估计精度和参与距离估计的基站位置,参考信号的带宽和强度等因素有关。
在一种可能的方式中,若UE确定发起随机接入时的TA无效,则可以确定当前TA为0,并且UE的TA精度等级当前为最低。
确定TA是否有效的方式,可以参见上述第一种可能的实现方式中的相关描述,此处不再赘述。
S703,所述UE采用所述确定的TA精度等级所对应的随机接入资源集中的资源,向所述网络设备发送第一随机接入前导和第一上行数据。
其中,所述第一随机接入前导为所述确定的TA精度等级所对应的随机接入资源集中的随机接入前导,所述第一随机接入前导承载在所述确定的TA精度等级所对应的随机接入资源集中的第一PRACH时频资源上,所述第一上行数据承载在所述确定的TA精度等级所对应的随机接入资源集中的第一PUSCH时频资源上。
在本申请实施例中,随机接入前导和上行数据可以承载在MsgA发送。
在一种可能的示例中,SSB和PRACH时频资源存在映射关系。每个PRACH时频资源上映射一定数量的SSB。UE在选择PRACH资源时,可以选择RSRP高于预设门限的 SSB,然后从SSB关联的PRACH资源中选择PRACH资源。
比如,在资源关系的第一种示例下,UE确定为TA精度等级1,确定RSRP高于预设门限的SSB,比如SSB0和SSB1,然后确定PRACH时频资源集1中SSB0和SSB1所映射的PRACH时频资源,在确定的PRACH时频资源中选择一个PRACH时频资源。当UE进行基于竞争的两步随机接入时,在选择的PRACH时频资源对应的preamble中选择preamble。然后根据PRACH时频资源与PUSCH时频资源的映射关系,在PUSCH时频资源集1中选择一个PUSCH时频资源用于承载上行数据。当UE进行非竞争的两步随机接入时,UE根据RA指示消息确定PRACH时频资源和preamble,然后根据确定的PRACH时频资源确定对应的PUSCH资源。
UE在选择的PRACH时频资源和PUSCH时频资源上向基站发送MsgA。
在一种可能的实施方式中,当所述确定的TA精度等级大于或者等于第一阈值时,可以同时根据发起随机接入时的TA对随机接入前导和上行数据的发送时间进行TA调整,否则TA精度等级小于第一阈值时,TA精度等级为最低等级,则此时UE的TA为0,即不对随机接入前导和上行数据进行TA调整。
具体的,在执行S703时,根据发起随机接入时的TA和所述第一PRACH时频资源的时域位置确定所述第一随机接入前导的发送时间,以及根据所述TA和所述第一PUSCH时频资源的时域位置确定所述第一上行数据的发送时间,根据确定的第一随机接入前导的发送时间以及确定的第一上行数据的发送时间向所述网络设备发送所述第一随机接入前导以及所述第一上行数据。
在另一种可能的实施方式中,当所述确定的TA精度等级大于或者等于第一阈值时,可以仅根据发起随机接入时的TA对上行数据的发送时间进行TA调整,否则TA精度等级小于第一阈值时,TA精度等级为最低等级,则此时UE的TA为0,即不对随机接入前导和上行数据进行TA调整。
具体的,在执行S703时,根据所述第一PRACH时频资源的时域位置确定所述第一随机接入前导的发送时间,以及根据所述TA和所述第一PUSCH时频资源的时域位置确定所述第一上行数据的发送时间,根据确定的第一随机接入前导的发送时间以及确定的第一上行数据的发送时间向所述网络设备发送所述第一随机接入前导以及所述第一上行数据。
在一种示例中,执行随机接入时的TA可以为基站指示的TA,比如,可以是上一次随机接入过程中接收到的基站发送的TA值。
在另一种示例中,UE根据下行信号或者位置信息确定的TA值。UE具有TA跟踪能力,UE根据下行参考信号或者同步信号跟踪调整TA后的TA值,或者UE根据UE与基站之间的距离跟踪调整TA后的TA值,在调整TA时,一方面可以在基站指示的TA的基础上进行跟踪调整,另一方面,在上一次跟踪调整的TA的基础上再次进行跟踪调整。应理解的是,可以每次调整更新TA,无论是在基站指示的TA的基础上更新,还是在上一次跟踪调整的TA的基础上更新,均是在最近一次更新的TA的基础上再次进行更新。
S704,所述基站根据所述多个随机接入资源集检测随机接入前导和上行数据。
第二种可能的实现方式中,在不同的三种资源关系下,基站检测随机接入前导和上行数据的方式不同。
在第一种示例下,可以采用第一种检测方式。
第一种示例中,不同的随机接入资源集包括的PRACH时频资源不同。
第一种检测方式,当在第一随机接入资源集中的PRACH时频资源上检测到所述随机接入前导时,在第一随机接入资源集中的多个PUSCH时频资源上检测上行信号;其中,所述第一随机资源集为所述多个随机接入资源集中的一个。
例如,UE在PRACH时频资源集1、PRACH时频资源集2和PRACH时频资源集3包括的PRACH时频资源上检测随机接入前导。比如,当在随机接入资源集1中第一PRACH时频资源上检测到第一随机接入前导时,在随机接入资源集1中的多个PUSCH时频资源上检测上行数据;也就是说,在PRACH时频资源集1中的第一PRACH时频资源上检测到第一随机接入前导时,在PRACH时频资源集1对应的PUSCH时频资源集1上检测上行数据。
在第二种示例下,可以采用第二种检测方式。
在第二种示例中,不同的随机接入资源集包括的随机接入前导不同。
第二种检测方式,当检测到所述随机接入前导且所述随机接入前导为所述第一随机接入资源集包括的多个随机接入前导中的一个时,在第一随机接入资源集中的多个PUSCH时频资源上检测上行信号;其中,所述第一随机资源集为所述多个随机接入资源集中的一个。
例如,UE在PRACH时频资源集1、PRACH时频资源集2和PRACH时频资源集3包括的PRACH时频资源上检测随机接入前导。比如,检测到随机接入前导1,随机接入前导1属于group1,则在group1对应的PUSCH时频资源集1包括的PUSCH时频资源上检测上行数据。
在第三种示例下,可以采用第三种检测方式。
不同的TA精度等级进行随机接入采用的PRACH时频资源、随机接入前导,不作区分,可以全部相同,但配置的不同TA精度等级下进行随机接入采用的PUSCH时频资源不相同。
第三种检测方式,在对随机接入前导和上行数据检测时,基站在基站所配置的PRACH时频资源集上检测随机接入前导,当检测到随机接入前导1时,根据承载随机接入前导1的PRACH时频资源对应的PUSCH时频资源,这里会对应两个PUSCH时频资源集,因此在对应的两个PUSCH时频资源集包括的PUSCH时频资源上检测上行数据。
在一种可能的示例中,当在第一随机接入资源集包括的资源上检测到所述随机接入前导和所述上行数据,发送定时提前指令;当所述第一随机接入资源集对应的TA精度等级大于或者等于第一阈值时,所述定时提前指令携带TA调整量;当所述第一随机接入资源集对应的TA精度等级小于所述第一阈值时,所述定时提前指令携带TA值。
当在第一随机接入资源集上检测到上行数据,第一随机接入资源集对应的TA精度等级大于或者等于第一阈值时,表明TA值不为0,从而确定UE在发送上行数据时进行了TA调整,从而在发送定时提前指令携带TA调整量。而在第一随机接入资源集对应的TA精度等级小于第一阈值时,表明TA值为0,确定UE在发送上行数据时未进行TA调整,从而基站在发送定时提前指令携带TA值。对于携带TA调整量的定时提前指令和携带TA值的定时提前指令采用的格式可以不同,比如占用比特数不同,或者定时提前指令中包括指示字段,通过指示字段包括的不同的数值来指示TA调整量或者TA值,比如通过1比特来指示该数值是TA调整量还是TA值,其中比特值为1表示该数值为TA调整量,而比特值为0表示该数值为TA值。
示例性的,UE接收到定时提前指令后,根据定时提前指令携带的TA调整量和TA值确定更新TA的方式可以不同。具体可以参见第一种可能的实现方式的方式一和方式二,此处不再赘述。
与上述构思相同,如图9所示,本申请实施例提供一种通信装置800,该通信装置800可包括收发模块801和处理模块802。
在本申请的一种可能的实施方式中,该装置800可应用于终端设备,用于执行上述图5或者图7以终端设备为执行主体的步骤。
在本申请的一示例中,装置800用于执行图5对应的第一种可能的实现方式中UE所执行的步骤。
具体的,收发模块801,用于接收网络设备发送的配置信息;所述配置信息用于配置第一随机接入资源集和第二随机接入资源集;所述第一随机接入资源集包括至少一个物理随机接入信道PRACH时频资源、至少一个随机接入前导和至少一个物理上行共享信道PUSCH时频资源,所述第二随机接入资源集包括至少一个PRACH时频资源、至少一个随机接入前导和至少一个PUSCH时频资源;
处理模块802,用于确定在发起随机接入时的TA是否有效。
收发模块801,还用于在发起随机接入时的定时提前量TA有效时,采用所述第一随机接入资源集中的资源,向所述网络设备发送第一随机接入前导和第一上行数据,其中,所述第一随机接入前导为所述第一随机接入资源集中的随机接入前导,所述第一随机接入前导承载在所述第一随机接入资源集中的第一PRACH时频资源上,所述第一上行数据承载在所述第一PUSCH时频资源上;或者,在发起随机接入时的所述TA无效时,采用所述第二随机接入资源集中的资源,向所述网络设备发送第二随机接入前导和第二上行数据,其中,所述第二随机接入前导为所述第一随机接入资源集中的随机接入前导,所述第二随机接入前导承载在所述第二随机接入资源集中的第二PRACH时频资源上,所述第二上行数据承载在所述第二随机接入资源集中的第二PUSCH时频资源上。
示例性的,所述第一随机接入资源集中的任一PUSCH时频资源和所述第二随机接入资源集中的任一PUSCH时频资源不同。
示例性的,所述第一随机接入资源集中的任一PRACH时频资源和所述第二随机接入资源集中的任一PRACH时频资源不同;或者,所述第一随机接入资源集中的任一随机接入前导和所述第二随机接入资源集中的任一随机接入前导不同。
示例性的,在发起随机接入时的TA有效时,所述处理模块802,还用于根据所述TA和所述第一PRACH时频资源的时域位置确定所述第一随机接入前导的发送时间,以及根据所述有效的TA和所述第一PUSCH时频资源的时域位置确定所述第一上行数据的发送时间。
所述收发模块801,具体用于根据确定的第一随机接入前导的发送时间以及确定的第一上行数据的发送时间向所述网络设备发送所述第一随机接入前导以及所述第一上行数据。
示例性的,在发起随机接入时的TA有效时,所述处理模块802,根据所述第一PRACH时频资源的时域位置确定所述第一随机接入前导的发送时间,以及根据所述TA和所述第一PUSCH时频资源的时域位置确定所述第一上行数据的发送时间。
所述收发模块801,具体用于根据确定的第一随机接入前导的发送时间以及确定的第 一上行数据的发送时间向所述网络设备发送所述第一随机接入前导以及所述第一上行数据。
示例性的,所述TA为:
网络设备指示的TA;或者,
根据下行参考信号或者同步信号确定的TA值;或者,
根据所述终端设备与所述网络设备之间的距离所确定的TA值。
示例性的,第一随机接入资源集包括的PUSCH时频资源所关联的配置参数的取值集合与第二随机接入资源集包括的PUSCH时频资源所关联的配置参数的取值集合不同;
所述配置参数包括调制编码方案MCS、循环前缀、上行控制信息参数以及功率控制参数中的至少一项。
示例性的,所述处理模块802,在确定在如下条件得到满足时确定所述TA有效:
在发起随机接入时TA定时器未超时;或者,
终端设备具备根据接收到的下行参考信号和位置信息调整TA的能力;或者,
发起随机接入时的时间和上一次TA调整的时间差小于预设阈值。
示例性的,所述收发模块801,还用于接收到所述网络设备响应所述第一随机接入前导所发送的定时提前指令,所述定时提前指令携带TA调整量;所述处理模块802还用于根据所述TA以及所述TA调整量调整所述TA的取值。
示例性的,所述收发模块801,还用于接收到所述网络设备响应所述第二随机接入前导所发送的定时提前指令,所述定时提前指令携带TA值;所述处理模块还用于将所述TA值作为新的TA值。
在本申请的一示例中,装置800用于执行图7对应的第二种可能的实现方式中UE所执行的步骤。
收发模块801,用于接收网络设备发送的配置信息;
其中,所述配置信息用于配置多个随机接入资源集,所述多个随机接入资源集中每个随机接入资源集对应一个定时提前量TA精度等级,不同的TA精度等级所对应的随机接入资源集不同,所述多个随机接入资源集中的每个随机接入资源集包括至少一个物理随机接入信道PRACH时频资源、至少一个随机接入前导和至少一个物理上行共享信道PUSCH时频资源;
处理模块802,用于确定在发起随机接入时的TA所属的TA精度等级;
所述收发模块801,还用于采用所述确定的TA精度等级所对应的随机接入资源集中的资源,向所述网络设备发送第一随机接入前导和第一上行数据,所述第一随机接入前导为所述确定的TA精度等级所对应的随机接入资源集中的随机接入前导,所述第一随机接入前导承载在所述确定的TA精度等级所对应的随机接入资源集中的第一PRACH时频资源上,所述第一上行数据承载在所述确定的TA精度等级所对应的随机接入资源集中的第一PUSCH时频资源上。
示例性的,不同的随机接入资源集包括的PUSCH时频资源不同。
示例性的,不同随机接入资源集包括的PRACH时频资源不同;或者,
不同随机接入资源集包括的随机接入前导不同。
示例性的,当所述确定的TA精度等级大于或者等于第一阈值时,所述处理模块802,还用于根据发起随机接入时的TA和所述第一PRACH时频资源的时域位置确定所述第一 随机接入前导的发送时间,以及根据所述TA和所述第一PUSCH时频资源的时域位置确定所述第一上行数据的发送时间。
所述收发模块801,具体用于根据确定的第一随机接入前导的发送时间以及确定的第一上行数据的发送时间向所述网络设备发送所述第一随机接入前导以及所述第一上行数据。
示例性的,当所述确定的TA精度等级大于或者等于第一阈值时,所述处理模块802,还用于根据所述第一PRACH时频资源的时域位置确定所述第一随机接入前导的发送时间,以及根据所述TA和所述第一PUSCH时频资源的时域位置确定所述第一上行数据的发送时间;
所述收发模块801,具体用于根据确定的第一随机接入前导的发送时间以及确定的第一上行数据的发送时间向所述网络设备发送所述第一随机接入前导以及所述第一上行数据。
示例性的,所述TA为:
网络设备指示的TA;或者,
根据下行参考信号或者同步信号确定的TA值;或者,
根据所述终端设备与所述网络设备之间的距离所确定的TA值。
示例性的,当所述确定的TA精度等级大于或者等于第一阈值时,所述收发模块801,还用于接收到所述网络设备响应所述第一随机接入前导所发送的定时提前指令,所述定时提前指令携带TA调整量;所述处理模块802,还用于根据所述TA以及所述TA调整量调整所述TA的取值。
示例性的,当所述确定的TA精度等级小于第一阈值时,所述收发模块801,还用于接收到所述网络设备响应所述第一随机接入前导所发送的定时提前指令,所述定时提前指令携带TA值;所述处理模块802,还用于所述终端设备将所述TA值作为新的TA值。
示例性的,不同随机接入资源集包括的PUSCH时频资源所关联的配置参数的取值集合不同;所述配置参数包括调制编码方案MCS、循环前缀、上行控制信息参数以及功率控制参数中的至少一项。
在本申请的另一种可能的实施方式中,该装置800可应用于终端设备,用于执行上述图5或者图7以网络设备为执行主体的步骤。
在本申请的一示例中,装置800用于执行图5对应的第一种可能的实现方式中基站所执行的步骤。
收发模块801,用于发送配置信息;所述配置信息用于配置定时提前量TA有效时进行随机接入所需要的第一随机接入资源集和所述TA无效时进行随机接入所需要的第二随机接入资源集;所述第一随机接入资源集包括多个物理随机接入信道PRACH时频资源、多个随机接入前导和多个PUSCH时频资源,所述第二随机接入资源集包括多个PRACH时频资源、多个随机接入前导和多个PUSCH时频资源;
所述处理模块802,根据所述第一随机接入资源集和所述第二随机接入资源集检测随机接入前导和上行数据。
示例性的,所述第一随机接入资源集中的任一PUSCH时频资源和所述第二随机接入资源集中的任一PUSCH时频资源不同。
示例性的,所述第一随机接入资源集中的任一PRACH时频资源和所述第二随机接入资源集中的任一PRACH时频资源不同;
所述处理模块802,具体用于当在第一随机接入资源集中的第一PRACH时频资源上检测到第一随机接入前导时,在第一随机接入资源集中的多个PUSCH时频资源上检测上行信号;或者,当在第二随机接入资源集中第二PRACH时频资源上检测到第二随机接入前导时,在第二随机接入资源集中的多个PUSCH时频资源上检测上行信号。
示例性的,所述第一随机接入资源集中的任一随机接入前导和所述第二随机接入资源集中的任一随机接入前导不同;
所述处理模块802,具体用于当检测到第一随机接入前导且所述第一随机接入前导为所述第一随机接入资源集包括的多个随机接入前导中的一个时,在第一随机接入资源集中的多个PUSCH时频资源上检测上行信号;或者,当检测到第二随机接入前导且所述第二随机接入前导为所述第二随机接入资源集包括的多个随机接入前导中的一个时,在第二随机接入资源集中的多个PUSCH时频资源上检测上行信号。
示例性的,所述收发模块801,还用于接收来自终端设备的第一指示,所述第一指示用于指示所述终端设备具备跟踪TA的能力,所述跟踪TA的能力表征终端设备支持根据接收到的下行信号和/或所述终端设备的位置信息跟踪调整TA;根据所述第一指示向所述终端设备发送第二指示,所述第二指示用于指示所述网络设备为所述终端设备配置的TA定时时长。
其中,处理模块802,还可以用于生成第二指示。
示例性的,所述处理模块802,还用于响应于所述随机接入前导和上行数据,生成定时提前指令,所述收发模块801,还用于发送所述定时提前指令。
其中,当所述随机接入前导和上行数据基于第一随机接入资源集检测得到时,所述定时提前指令携带TA调整量;当所述随机接入前导和所述上行数据基于第二随机接入资源集检测得到时,所述定时提前指令携带TA值。
在本申请的另一示例中,装置800用于执行图7对应的第二种可能的实现方式中基站所执行的步骤。
收发模块801,用于发送配置信息;所述配置信息配置多个随机接入资源集,所述多个随机接入资源集中每个随机接入资源集对应一个定时提前量TA精度等级,不同的TA精度等级所对应的随机接入资源集不同,所述多个随机接入资源集中的每个随机接入资源集包括多个物理随机接入信道PRACH时频资源、多个随机接入前导和多个物理上行共享信道PUSCH时频资源;
所述处理模块802,用于根据所述多个随机接入资源集检测随机接入前导和上行数据。
示例性的,不同的随机接入资源集包括的PUSCH时频资源不同。
示例性的,不同随机接入资源集包括的PRACH时频资源不同;所述处理模块802,具体用于当在第一随机接入资源集中的第一PRACH时频资源上检测到所述随机接入前导时,在第一随机接入资源集中的多个PUSCH时频资源上检测上行信号;其中,所述第一随机资源集为所述多个随机接入资源集中的一个。
示例性的,不同随机接入资源集包括的随机接入前导不同;所述处理模块801,具体用于当检测到所述随机接入前导且所述随机接入前导为所述第一随机接入资源集包括的多个随机接入前导中的一个时,在第一随机接入资源集中的多个PUSCH时频资源上检测 上行信号;其中,所述第一随机资源集为所述多个随机接入资源集中的一个。
示例性的,所述收发模块801,还用于当所述处理模块802在第一随机接入资源集包括的资源上检测到所述随机接入前导和所述上行数据,发送定时提前指令。
其中,当所述第一随机接入资源集对应的TA精度等级大于或者等于第一阈值时,所述定时提前指令携带TA调整量;当所述第一随机接入资源集对应的TA精度等级小于所述第一阈值时,所述定时提前指令携带TA值。
在本申请实施例中,关于收发模块801以及处理模块802执行的步骤的具体介绍,可参见上述图5和图7所对应的实施例中的介绍。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图10所示,本申请还提供一种通信装置900,该装置900可应用于上述实施例中所示的网络设备,也可应用于上述实施例所示的终端设备,在此不限定。
基于相同的构思,如图10所示,为本申请提供的一种装置900。装置900中包括至少一个处理器910。装置还可以包括至少一个存储器920,用于存储程序指令和/或数据。存储器920和处理器910耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器910可能和存储器920协同操作。处理器910可能执行存储器920中存储的程序指令,以供处理器910调用,实现上述处理器910的功能。可选的,所述至少一个存储器920中的至少一个可以包括于处理器910中。装置900中还可以包括通信接口930,装置900可以通过通信接口930和其它设备进行信息交互。通信接口930可以是电路、总线、收发器或者其它任意可以用于进行信息交互的装置。
在一种可能的实施方式中,该装置900应用于网络设备,具体装置900可以是网络设备,也可以是能够支持网络设备实现上述任一实施例所述的方法中网络设备的功能的装置。示例性地,该装置900中的至少一个处理器910用于实现上述任一实施例所述的方法中网络设备的功能。
在一种可能的实施方式中,该装置900应用于终端设备,具体装置900可以是终端设备,也可以是能够支持终端设备实现上述任一实施例所述的方法中终端设备的功能的装置。示例性地,该装置900中的至少一个处理器910用于实现上述任一实施例所述的方法中终端设备的功能。
示例性地,装置900可以是芯片或芯片系统。可选的,在本申请实施例中芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例中不限定上述通信接口930、处理器910以及存储器920之间的具体连接介质。本申请实施例在图10中以存储器920、处理器910以及通信接口930之间通过总线连接,总线在图10中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现 场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
基于以上构思,如图11所示,本申请还提供一种网络设备,比如基站的结构示意图。该基站可应用于上述图1所示通信系统的场景中,该基站可以为图5、图7所示的网络设备。该基站可用于执行上述图5、图7所示流程中,以网络设备为执行主体的步骤。具体的,基站1000可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1001和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1002。该RRU1001可以为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线10011和射频单元10010。该RRU1001部分可以用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送下行控制信息等。该BBU1002部分可以用于基带处理,对基站进行控制等。该RRU1001和BBU1002可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
该BBU1002为基站的控制中心,也可以称为处理单元,用于完成基带处理功率,如信道编码,复用,调制,扩频等待。例如该BBU(处理单元)可以用于控制基站执行图5、图7所示流程中的方法。
在一个示例中,该BBU1002可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如NR网),也可以分别支持不同接入制式的无线接入网。该BBU1002还可包括存储器10021和处理器10022。该存储器10021用以存储必要的指令和数据。例如存储器10021存储上述实施例中的“配置信息”,该处理器10022用于控制基站进行必要的动作。该存储器10021和处理器10022用于服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器,也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
与上述构思相同,图12提供了一种终端设备的结构示意图,该终端设备可适用于图5、图7所示的流程,以终端设备为执行主体的步骤,为了便于说明,图12仅示出了终端设备的主要部件。如图12所示,终端设备1100可包括处理器、处理器、存储器、控制电路,可选的,还可以包括天线和/或输入输出装置。处理器可用于对通信协议以及通信数据进行处理,以及对用户设备进行控制,执行软件程序,处理软件程序的数据。存储器可以存储软件程序和/或数据。控制电路可用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,可用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏、键盘等,可用于接收用户输入的数据以及对用户输出数据。
在本申请实施例中,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基 带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到用户设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图12仅示出了一个存储器和处理器。在实际的用户设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器可用于对通信协议以及通信数据进行处理,中央处理器可用于对整个用户设备进行控制,执行软件程序,处理软件程序的数据。图12中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。该基带处理器也可以表述为基带处理电路或者基带处理芯片。该中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在本申请实施例中,可以将具有收发功能的天线和控制电路作为终端设备1100的收发模块1101,将具有处理功能的处理器视为终端设备1100的处理单元1102。如图12所示,终端设备1100可包括收发单元1101和处理单元1102。收发单元1101也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1101中用于实现接收功能的器件视为接收单元,将收发单元1101中用于实现发送功能的器件视为发送单元,即收发单元1101包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元也可以称为发射机、发射器或发射电路等。
应理解,上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如发送模块(发射器)方法执行方法实施例中发送的步骤,接收模块(接收器)执行方法实施例中接收的步骤,除发送接收外的其它步骤可以由处理模块(处理器)执行。具体模块的功能可以参考相应的方法实施例。发送模块和接收模块可以组成收发模块,发射器和接收器可以组成收发器,共同实现收发功能;处理器可以为一个或多个。
根据本申请实施例提供的方法,本发明实施例还提供一种通信系统,其包括前述的网络设备和终端设备。
基于以上实施例,本申请实施例还提供了一种计算机存储介质,该存储介质中存储软件程序,该软件程序在被一个或多个处理器读取并执行时可实现上述任意一个或多个实施例提供的方法。该计算机存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种芯片,该芯片包括处理器,用于实现上述任意一个或多个实施例所涉及的功能,例如获取或处理上述方法中所涉及的信息或者消息。可选地,该芯片还包括存储器,该存储器,用于处理器所执行必要的程序指令和数据。该芯片,可以由芯片构成,也可以包含芯片和其他分立器件。
应理解,在本发明实施例中,处理器可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。

Claims (18)

  1. 一种随机接入方法,其特征在于,包括:
    终端设备接收网络设备发送的配置信息;所述配置信息用于配置第一随机接入资源集和第二随机接入资源集;所述第一随机接入资源集包括至少一个物理随机接入信道PRACH时频资源、至少一个随机接入前导和至少一个物理上行共享信道PUSCH时频资源,所述第二随机接入资源集包括至少一个PRACH时频资源、至少一个随机接入前导和至少一个PUSCH时频资源;
    在发起随机接入时的定时提前量TA有效时,所述终端设备采用所述第一随机接入资源集中的资源,向所述网络设备发送第一随机接入前导和第一上行数据,其中,所述第一随机接入前导为所述第一随机接入资源集中的随机接入前导,所述第一随机接入前导承载在所述第一随机接入资源集中的第一PRACH时频资源上,所述第一上行数据承载在所述第一PUSCH时频资源上;或者,
    在发起随机接入时的所述TA无效时,所述终端设备采用所述第二随机接入资源集中的资源,向所述网络设备发送第二随机接入前导和第二上行数据,其中,所述第二随机接入前导为所述第一随机接入资源集中的随机接入前导,所述第二随机接入前导承载在所述第二随机接入资源集中的第二PRACH时频资源上,所述第二上行数据承载在所述第二随机接入资源集中的第二PUSCH时频资源上。
  2. 如权利要求1所述的方法,其特征在于,所述第一随机接入资源集中的任一PUSCH时频资源和所述第二随机接入资源集中的任一PUSCH时频资源不同。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一随机接入资源集中的任一PRACH时频资源和所述第二随机接入资源集中的任一PRACH时频资源不同;或者,
    所述第一随机接入资源集中的任一随机接入前导和所述第二随机接入资源集中的任一随机接入前导不同。
  4. 如权利要求1-3任一项所述的方法,其特征在于,在发起随机接入时的TA有效时,所述终端设备采用所述第一随机接入资源集中的资源发送第一随机接入前导和第一上行数据,包括:
    根据所述TA和所述第一PRACH时频资源的时域位置确定所述第一随机接入前导的发送时间,以及根据所述有效的TA和所述第一PUSCH时频资源的时域位置确定所述第一上行数据的发送时间;根据确定的第一随机接入前导的发送时间以及确定的第一上行数据的发送时间向所述网络设备发送所述第一随机接入前导以及所述第一上行数据;或者,
    根据所述第一PRACH时频资源的时域位置确定所述第一随机接入前导的发送时间,以及根据所述TA和所述第一PUSCH时频资源的时域位置确定所述第一上行数据的发送时间,根据确定的第一随机接入前导的发送时间以及确定的第一上行数据的发送时间向所述网络设备发送所述第一随机接入前导以及所述第一上行数据。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述TA为:
    网络设备指示的TA;或者,
    根据下行参考信号或者同步信号确定的TA值;或者,
    根据所述终端设备与所述网络设备之间的距离所确定的TA值。
  6. 如权利要求1-5任一项所述的方法,其特征在于,第一随机接入资源集包括的PUSCH 时频资源所关联的配置参数的取值集合与第二随机接入资源集包括的PUSCH时频资源所关联的配置参数的取值集合不同;
    所述配置参数包括调制编码方案MCS、循环前缀、上行控制信息参数以及功率控制参数中的至少一项。
  7. 如权利要求1-6任一项所述的方法,其特征在于,在如下条件得到满足时所述TA有效:
    在发起随机接入时TA定时器未超时;或者,
    所述终端设备具备根据接收到的下行参考信号和位置信息调整TA的能力;或者,
    发起随机接入时的时间和上一次TA调整的时间差小于预设阈值。
  8. 如权利要求1-7任一项所述的方法,其特征在于,还包括:
    所述终端设备接收到所述网络设备响应所述第一随机接入前导所发送的定时提前指令,所述定时提前指令携带TA调整量;
    所述终端设备根据所述TA以及所述TA调整量调整所述TA的取值。
  9. 如权利要求1-7任一项所述的方法,其特征在于,还包括:
    所述终端设备接收到所述网络设备响应所述第二随机接入前导所发送的定时提前指令,所述定时提前指令携带TA值;
    所述终端设备将所述TA值作为新的TA值。
  10. 一种随机接入方法,其特征在于,包括:
    网络设备发送配置信息;所述配置信息用于配置定时提前量TA有效时进行随机接入所需要的第一随机接入资源集和所述TA无效时进行随机接入所需要的第二随机接入资源集;所述第一随机接入资源集包括多个物理随机接入信道PRACH时频资源、多个随机接入前导和多个PUSCH时频资源,所述第二随机接入资源集包括多个PRACH时频资源、多个随机接入前导和多个PUSCH时频资源;
    所述网络设备根据所述第一随机接入资源集和所述第二随机接入资源集检测随机接入前导和上行数据。
  11. 如权利要求10所述的方法,其特征在于,所述第一随机接入资源集中的任一PUSCH时频资源和所述第二随机接入资源集中的任一PUSCH时频资源不同。
  12. 如权利要求10或11所述的方法,其特征在于,所述第一随机接入资源集中的任一PRACH时频资源和所述第二随机接入资源集中的任一PRACH时频资源不同;
    所述网络设备根据所述第一随机接入资源集和所述第二随机接入资源集检测随机接入前导和上行数据,包括:
    当在第一随机接入资源集中的第一PRACH时频资源上检测到第一随机接入前导时,在第一随机接入资源集中的多个PUSCH时频资源上检测上行信号;或者,
    当在第二随机接入资源集中第二PRACH时频资源上检测到第二随机接入前导时,在第二随机接入资源集中的多个PUSCH时频资源上检测上行信号。
  13. 如权利要求10或11所述的方法,其特征在于,所述第一随机接入资源集中的任一随机接入前导和所述第二随机接入资源集中的任一随机接入前导不同;
    所述网络设备根据所述第一随机接入资源集和所述第二随机接入资源集检测随机接入前导和上行数据,包括:
    当检测到第一随机接入前导且所述第一随机接入前导为所述第一随机接入资源集包 括的多个随机接入前导中的一个时,在第一随机接入资源集中的多个PUSCH时频资源上检测上行信号;或者,
    当检测到第二随机接入前导且所述第二随机接入前导为所述第二随机接入资源集包括的多个随机接入前导中的一个时,在第二随机接入资源集中的多个PUSCH时频资源上检测上行信号。
  14. 如权利要求10-13任一项所述的方法,其特征在于,还包括:
    所述网络设备接收来自终端设备的第一指示,所述第一指示用于指示所述终端设备具备跟踪TA的能力,所述跟踪TA的能力表征终端设备支持根据接收到的下行信号和/或所述终端设备的位置信息跟踪调整TA;
    所述网络设备根据所述第一指示向所述终端设备发送第二指示,所述第二指示用于指示所述网络设备为所述终端设备配置的TA定时时长。
  15. 如权利要求10-14任一项所述的方法,其特征在于,还包括:
    响应于所述随机接入前导和上行数据,发送定时提前指令;
    当所述随机接入前导和上行数据基于第一随机接入资源集检测得到时,所述定时提前指令携带TA调整量;
    当所述随机接入前导和所述上行数据基于第二随机接入资源集检测得到时,所述定时提前指令携带TA值。
  16. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储计算机执行指令;
    所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置实现如权利要求1至15任一项所述的方法中如下设备的功能:所述网络设备,或者,所述终端设备。
  17. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机指令,当所述计算机指令被通信装置执行时,使得所述通信装置执行如权利要求1至15中任一项所述的方法。
  18. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,当所述计算机指令被通信装置执行时,使得所述通信装置执行如权利要求1至15中任一项所述的方法。
PCT/CN2020/081937 2019-03-29 2020-03-28 一种随机接入方法及通信装置 WO2020200134A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20783535.6A EP3952568A4 (en) 2019-03-29 2020-03-28 DIRECT ACCESS METHOD AND COMMUNICATION DEVICE
US17/487,495 US20220015154A1 (en) 2019-03-29 2021-09-28 Random access method and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910253051.8A CN111757528B (zh) 2019-03-29 2019-03-29 一种随机接入方法及通信装置
CN201910253051.8 2019-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/487,495 Continuation US20220015154A1 (en) 2019-03-29 2021-09-28 Random access method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2020200134A1 true WO2020200134A1 (zh) 2020-10-08

Family

ID=72665004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081937 WO2020200134A1 (zh) 2019-03-29 2020-03-28 一种随机接入方法及通信装置

Country Status (4)

Country Link
US (1) US20220015154A1 (zh)
EP (1) EP3952568A4 (zh)
CN (1) CN111757528B (zh)
WO (1) WO2020200134A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022175012A1 (en) * 2021-02-17 2022-08-25 Nokia Technologies Oy Adjusted ue tx power ramping for initial access for support of nr over ntn

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166797A1 (ko) * 2019-02-11 2020-08-20 엘지전자 주식회사 측위를 위한 상향링크 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2021030804A1 (en) * 2019-08-15 2021-02-18 Hyoungsuk Jeon Reception of random access response
WO2022163886A1 (ko) * 2021-02-01 2022-08-04 엘지전자 주식회사 뉴럴 네트워크에 기반한 상향링크 제어 정보 전송 방법 및 장치
WO2023179851A1 (en) * 2022-03-23 2023-09-28 Nokia Technologies Oy Ue-specific random access preamble reception error indication and assistance information for wireless networks
WO2024036428A1 (en) * 2022-08-15 2024-02-22 Qualcomm Incorporated Resolving abnormal timing advance commands

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101473562A (zh) * 2006-05-01 2009-07-01 诺基亚公司 通过使用专用上行链路资源指派来提供上行链路同步的设备、方法和计算机程序产品
CN102812761A (zh) * 2010-01-08 2012-12-05 交互数字专利控股公司 保持与多个上行链路载波的时间校准
CN108366421A (zh) * 2018-02-09 2018-08-03 京信通信系统(中国)有限公司 无线通信系统中的设备接入方法及终端装置、接入点装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281626B (zh) * 2011-07-06 2013-10-02 电信科学技术研究院 一种上行定时提前量的确定方法及装置
EP3557938B1 (en) * 2017-01-05 2021-07-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for random access
JPWO2020230761A1 (zh) * 2019-05-13 2020-11-19

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101473562A (zh) * 2006-05-01 2009-07-01 诺基亚公司 通过使用专用上行链路资源指派来提供上行链路同步的设备、方法和计算机程序产品
CN102812761A (zh) * 2010-01-08 2012-12-05 交互数字专利控股公司 保持与多个上行链路载波的时间校准
CN108366421A (zh) * 2018-02-09 2018-08-03 京信通信系统(中国)有限公司 无线通信系统中的设备接入方法及终端装置、接入点装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion on Channel Structure for 2-Step RACH", 3GPP TSG RAN WG1 MEETING #96 R1-1902027, 16 February 2019 (2019-02-16), XP051599723 *
See also references of EP3952568A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022175012A1 (en) * 2021-02-17 2022-08-25 Nokia Technologies Oy Adjusted ue tx power ramping for initial access for support of nr over ntn

Also Published As

Publication number Publication date
EP3952568A1 (en) 2022-02-09
CN111757528B (zh) 2022-08-19
EP3952568A4 (en) 2022-06-08
US20220015154A1 (en) 2022-01-13
CN111757528A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
WO2020200134A1 (zh) 一种随机接入方法及通信装置
RU2663220C1 (ru) Беспроводное устройство, первый сетевой узел и способы в них
US11109392B2 (en) Communication method, network device, and relay device
CN108934192B (zh) 用于无线通信系统中的随机接入的方法和装置
US20220053576A1 (en) Random access method and device and communication system
US20190239167A1 (en) Power Control Enhancement for Random Access
EP3711432B1 (en) Window length of random access response in new radio
JP7434332B2 (ja) 2ステップランダムアクセスプロシージャのための方法および装置
US20200137703A1 (en) Synchronization method and apparatus
WO2022027521A1 (zh) 上行信号的发送和接收方法以及装置
WO2020191679A1 (zh) 随机接入方法、终端设备和网络设备
CN114424666B (zh) 一种通信方法及装置
WO2021012822A1 (zh) 一种通信方法及装置
WO2021077343A1 (zh) 无线通信方法和终端设备
US20210195631A1 (en) A Network Node, a Communications Device and Methods Therein for Transmission of Uplink Grants
WO2021057418A1 (en) Method and apparatus for channel state information
US11259330B2 (en) Communications device and methods therein for transmission of a message in response to a random access response comprising multiple grants
WO2020206658A1 (zh) 无线通信方法、终端设备和网络设备
JP2023513296A (ja) アップリンク伝送方法及び装置
WO2021160088A1 (en) Method and apparatus for random access
WO2021160069A1 (en) Method and apparatus for random access
US20210204327A1 (en) Method for controlling power ramp counter, and terminal device
WO2023020542A1 (zh) 随机接入的方法和装置
WO2022213293A1 (zh) 随机接入前导序列的发送和配置方法以及装置
WO2022067783A1 (zh) 收发数据的方法、装置和通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020783535

Country of ref document: EP

Effective date: 20211026