WO2021012822A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021012822A1
WO2021012822A1 PCT/CN2020/095128 CN2020095128W WO2021012822A1 WO 2021012822 A1 WO2021012822 A1 WO 2021012822A1 CN 2020095128 W CN2020095128 W CN 2020095128W WO 2021012822 A1 WO2021012822 A1 WO 2021012822A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
measurement value
downlink measurement
mapping relationship
target
Prior art date
Application number
PCT/CN2020/095128
Other languages
English (en)
French (fr)
Inventor
何青春
娄崇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021012822A1 publication Critical patent/WO2021012822A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method and device.
  • Random access can also be called random access channel (random access channel, RACH).
  • RACH random access channel
  • RRC radio resource control
  • terminal devices need to enter from the idle state or inactive state of the radio resource control (radio resource control, RRC) through random access Only in the RRC connection state can various bearers be established with the network equipment, and then communicate with the network equipment.
  • RRC radio resource control
  • the random access of terminal equipment usually adopts four-step random access (4-step physical random access channel, 4-step RACH).
  • 4-step random access involves the terminal equipment sending a random access preamble to the network equipment.
  • the network device sends a random access response (RAR) to the terminal device, the terminal device sends uplink data to the network device and the network device sends conflict resolution information (contention resolution message, CRM) to the terminal device.
  • RAR random access response
  • CRM conflict resolution information
  • two-step random access (2-Step RACH) is proposed.
  • two-step random access only terminal equipment
  • the network device sends a random access request including a random access preamble and uplink data, and the network device sends a random access response that can be used for random access response and conflict resolution to the terminal device in two steps.
  • the network equipment will estimate a timing advance (TA) based on the random access preamble sent by the terminal equipment, and indicate the estimated TA to the terminal equipment through the random access response.
  • the terminal device sends uplink data according to the TA.
  • the terminal device sends a random access request including the random access preamble and the uplink data to the network device, so the terminal device cannot send the random access preamble
  • the TA estimated by the network device is obtained and used for the transmission of uplink data, which reduces the reliability of uplink data transmission.
  • the embodiments of the present application provide a communication method and device to solve the problem of how a terminal device determines a TA during two-step random access to improve the reliability of uplink data transmission.
  • an embodiment of the present application provides a communication method.
  • the method includes: a communication device receives configuration information, where the configuration information includes a mapping relationship between a downlink measurement value and a TA; the communication device obtains a downlink measurement value; The communication device determines the target TA according to the obtained downlink measurement value and the mapping relationship between the downlink measurement value and the TA.
  • the communication device described in the embodiment of the present application may be a terminal device or a processing chip in the terminal device, or the like.
  • the terminal device can determine the target TA according to the obtained downlink measurement value, which is used for sending uplink data when the terminal device two-step random access occurs. Improve the reliability of uplink data transmission.
  • the configuration information also includes the mapping relationship between the downlink measurement value and the timing advance offset TA_offset
  • the communication device determines the target TA, it may also be based on the obtained downlink measurement value and the downlink measurement value.
  • the mapping relationship between the measured value and TA_offset determines the target TA_offset; the communication device adjusts the target TA according to the target TA_offset.
  • the mapping relationship between the downlink measurement value and TA_offset is also introduced in the configuration information, which can further enable the terminal device to obtain the target TA_offset according to the obtained downlink measurement value, and use the target TA_offset to optimize and adjust the determined target TA, which is beneficial to Improve the reliability of uplink data transmission.
  • the configuration information further includes the mapping relationship between the number of random access request retransmissions and the timing advance increase step TA_Rampingstep
  • the mapping relationship between the number of random access request retransmissions and TA_Rampingstep is also introduced in the configuration information.
  • the terminal device When the terminal device retransmits or repeatedly sends the random access request, it is based on the random access request retransmission number and TA_Rampingstep
  • the mapping relationship adjusts the target TA determined according to the downlink measurement value, which is beneficial to improve the reliability of uplink data transmission.
  • the mapping relationship between the downlink measurement value and the TA includes: the mapping relationship between the difference between the downlink measurement value and a predefined measurement threshold and the TA.
  • the terminal device can determine the target TA according to the obtained downlink measurement value and the predefined measurement threshold, and use When the terminal equipment is two-step random access, the uplink data is sent to improve the reliability of uplink data transmission.
  • the downlink measurement value may include one or more of the following: reference signal received power RSRP; or, reference signal received quality RSRQ; or, reference signal SINR; or, below Road loss.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • SINR reference signal SINR
  • the method further includes: the communication device sends a random access request according to the target TA, where the random access request includes a random access preamble and uplink data.
  • the terminal device sends a random access request including a random access preamble and uplink data according to the received configuration information and determines the target TA, which can better ensure the reliability of uplink data transmission.
  • the method further includes: the communication device receives a random access response; when the communication device successfully parses the temporary cell radio network temporary identification data unit TC-RNTI SDU in the random response , Start or restart the inactive timer DRX-inactive timer.
  • the communication device receives a random access response; when the communication device successfully parses the temporary cell radio network temporary identification data unit TC-RNTI SDU in the random response , Start or restart the inactive timer DRX-inactive timer.
  • the discontinuous reception C-DRX activation period of the communication device includes a random access response reception window.
  • the terminal equipment it is convenient for the terminal equipment to receive the random access response.
  • the communication device monitors the physical downlink control channel PDCCH. In the above design, the omission of the random access response by the terminal equipment is avoided, and the reception of the random access response by the terminal equipment is guaranteed.
  • the method further includes: switching the random access type of the application when the communication device determines that the random access type of the current application satisfies the switching condition.
  • the above design facilitates the terminal equipment to select the best random access type for random access, so as to ensure the reliability of random access.
  • the communication device may determine that the random access type of the current application satisfies the handover condition when at least one of the following conditions is met: the communication device initiates on the random access type of the current application The number of random access requests is greater than the first threshold; the communication device switches to a beam and/or bandwidth and/or carrier that does not match the currently applied random access type; the communication device is on the currently applied random access type The number of consecutive failures of initiating random access requests is greater than the second threshold; the communication device determines that the downlink measurement value is greater than the third threshold or less than the fourth threshold.
  • the above design can enrich the realization of the random access type switching conditions, and it is convenient to select the corresponding random access type switching conditions according to the communication system and communication requirements.
  • the communication device may also initialize random access parameters.
  • the random access parameters include the number of initiating random access requests, the number of power ramps, and the physical uplink shared channel payload PUSCH. One or more of payload buffer and Msg3 buffer. In the above design, random access parameter initialization is performed when random access type switching occurs, which can avoid unnecessary random access failures.
  • an embodiment of the present application provides a communication method.
  • the method includes: a network device sends configuration information, where the configuration information includes a mapping relationship between a downlink measurement value and a timing advance TA.
  • the terminal device can be instructed to determine the target TA according to the obtained downlink measurement value, which is used for the terminal device to send uplink data during two-step random access To improve the reliability of uplink data transmission.
  • the configuration information may further include: a mapping relationship between the downlink measurement value and TA_offset.
  • the mapping relationship between the downlink measurement value and TA_offset is also introduced in the configuration information, which can further enable the terminal device to obtain the target TA_offset according to the obtained downlink measurement value, and use the target TA_offset to optimize and adjust the determined target TA, which is beneficial to Improve the reliability of uplink data transmission.
  • the configuration information may further include: a mapping relationship between the number of random access request retransmissions and TA_Rampingstep.
  • the mapping relationship between the number of random access request retransmissions and TA_Rampingstep is also introduced in the configuration information, which is used when the terminal device retransmits or repeatedly sends the random access request, according to the number of random access request retransmissions and TA_Rampingstep.
  • the mapping relationship optimizes and adjusts the target TA determined according to the downlink measurement value, which is beneficial to improve the reliability of uplink data transmission.
  • the mapping relationship between the downlink measurement value and the TA includes: the mapping relationship between the difference between the downlink measurement value and a predefined measurement threshold and the TA.
  • the terminal device can determine the target TA according to the obtained downlink measurement value and the predefined measurement threshold, and use When the terminal equipment is two-step random access, the uplink data is sent to improve the reliability of uplink data transmission.
  • an embodiment of the present application provides a communication device that has the function of implementing the first aspect or any one of the possible design methods in the first aspect.
  • the function can be implemented by hardware or by hardware.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device can be a chip or an integrated circuit.
  • the device includes a memory and a processor, and the memory is used to store a program executed by the processor.
  • the program is executed by the processor, the device can execute the first aspect or any of the first aspects.
  • One possible design is the function of the method described.
  • the device may be a terminal device.
  • an embodiment of the present application provides a communication device that has the function of implementing the second aspect or any of the possible design methods in the second aspect.
  • the function can be implemented by hardware or by hardware.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device can be a chip or an integrated circuit.
  • the device includes a memory and a processor, and the memory is used to store a program executed by the processor.
  • the program is executed by the processor, the device can execute the second aspect or any of the second aspects.
  • One possible design is the function of the method described.
  • the device may be a network device.
  • embodiments of the present application provide a computer-readable storage medium that stores computer instructions.
  • the computer instructions When the computer instructions are executed, the first aspect or any of the first aspects can be realized.
  • the embodiments of the present application also provide a computer program product, including a computer program or instruction.
  • the computer program or instruction When executed, it can implement the above-mentioned first aspect or any of the possible designs of the first aspect.
  • FIG. 1 is a schematic diagram of a communication architecture in an embodiment of this application.
  • FIGS. 2A and 2B are schematic diagrams of uplink time adjustment in an embodiment of this application.
  • Figure 3 is one of the schematic diagrams of a four-step random access process in an embodiment of this application.
  • Figure 4 is a schematic diagram of a two-step random access process in an embodiment of this application.
  • FIG. 5 is one of the schematic diagrams of a communication process provided by an embodiment of this application.
  • FIG. 6 is the second schematic diagram of a communication process provided by an embodiment of this application.
  • FIG. 7 is the third schematic diagram of a communication process provided by an embodiment of this application.
  • FIG. 8 is a fourth schematic diagram of a communication process provided by an embodiment of this application.
  • FIG. 9 is a schematic block diagram of a terminal device provided by an embodiment of the application.
  • FIG. 10 is another schematic block diagram of a terminal device according to an embodiment of the application.
  • FIG. 11 is a schematic block diagram of a network device provided by an embodiment of this application.
  • FIG. 12 is another schematic block diagram of a network device provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of a terminal device provided by an embodiment of the application.
  • FIG. 14 is a schematic block diagram of a communication device provided by an embodiment of the application.
  • FIG. 15 is another schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 16 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • the technical solutions of the embodiments of this application can be applied to various communication systems, for example: 5G systems, NR systems, LTE systems, long term evolution-advanced (LTE-A) systems and other communication systems, and can also be extended to Such as wireless fidelity (WiFi), worldwide interoperability for microwave access (wimax), 3GPP and other related cellular systems, and future communication systems, such as 6G systems.
  • the communication system architecture applied in the embodiment of the present application may be as shown in FIG. 1, including a network device and multiple terminal devices. In FIG. 1, three terminal devices are taken as an example. Terminal equipment 1-terminal equipment 3 can communicate with network equipment separately or at the same time. It should be noted that the number of terminal equipment and network equipment in the communication system shown in FIG. 1 is not limited in the embodiment of this application.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean that B is determined only according to A, and B can also be determined according to A and/or other information.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or order of multiple objects. Importance.
  • the "plurality" involved in this application is two or more.
  • information information
  • signal signal
  • message messages
  • channel channel
  • the meanings to be expressed are the same when the differences are not emphasized. of. " ⁇ (of)”, “corresponding (relevant)” and “corresponding” can sometimes be used together. It should be pointed out that the meanings to be expressed are the same when the difference is not emphasized.
  • Terminal devices including devices that provide users with voice and/or data connectivity, such as handheld devices with wireless connection functions, or processing devices connected to wireless modems.
  • the terminal device can communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, V2X terminal equipment, machine-to-machine/machine-type communication ( machine-to-machine/machine-type communications, M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station) , Remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user device) etc.
  • IoT Internet of things
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket-sized, handheld, and computer-built mobile devices.
  • PCS personal communication service
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as various smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • vehicle-mounted terminal equipment for example, the vehicle-mounted terminal equipment is also called on-board unit (OBU).
  • OBU on-board unit
  • the terminal device may also include a relay. Or it can be understood that everything that can communicate with the base station can be regarded as a terminal device.
  • Network equipment can refer to equipment that communicates with wireless terminal equipment through one or more cells on the air interface in the access network.
  • the network device may be a node in a radio access network, may also be called a base station, or may also be called a radio access network (RAN) node (or device).
  • RAN radio access network
  • the network equipment are: gNB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (RNC), Node B (Node B) B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit) , BBU), or wireless fidelity (Wifi) access point (AP), etc.
  • the network device may include a centralized unit (CU) node and a distributed unit (DU) node. This structure splits the protocol layer of the eNB in the long-term evolution (LTE) system. Some of the protocol layer functions are placed under the centralized control of the CU, and some or all of the protocol layer functions are distributed in the DU. Centralized control of DU.
  • c is the speed of light.
  • ⁇ T 2 d 2 /c, where d 2 is the distance between the network device and the terminal device 2.
  • the interval from the start time of the terminal device 1 sending the uplink signal to the start time of the network device receiving the uplink signal is the same Is ⁇ T 1 . Therefore, for terminal device 1, the network device has a time difference of 2 ⁇ T 1 from the start time of sending the downlink signal to the start time of receiving the uplink signal. Similarly, for terminal device 2, the network device is from the start time of sending the downlink signal to There is a time difference of 2 ⁇ T 2 at the beginning of receiving the uplink signal. As the distance between each terminal device and the network device is different, the time for the uplink signal to reach the network device is different, which may cause timing deviation between the terminal devices. When the timing deviation is greater than the cyclic prefix (CP) of the orthogonal frequency division multiple (OFDM) symbol, terminal devices will interfere with each other.
  • CP cyclic prefix
  • OFDM orthogonal frequency division multiple
  • terminal devices need to perform timing adjustment, also known as timing advance, or TA.
  • TA timing advance
  • the terminal device 1 advances the start time of sending uplink signals by 2 ⁇ T 1
  • the terminal device 2 advances the start time of sending uplink signals by 2 ⁇ T 2
  • the network device will receive the terminal device 1 and The uplink signal of the terminal device 2 solves the problem of mutual interference between the terminal devices.
  • the network device sends a TA to the terminal device in a random access response, and the terminal device adjusts timing according to the TA.
  • the terminal device adjusts timing according to the TA.
  • the terminal device sends an uplink signal it will adjust the timing according to the TA fed back by the network device in the random access response, so that in general, there will be no interference between the terminal devices.
  • Random access random access is divided into four-step random access and two-step random access.
  • step one the terminal device sends a random access preamble (Msg1) to the network device;
  • step two after the network device receives the random access preamble, it sends a random access response (Msg2) to the terminal device, and then randomly connects
  • the incoming response can include parameters such as the random access preamble, TA, uplink resource configuration information for sending uplink data, and temporary cell radio network temporary identifier (C-RNTI);
  • Step 3 Terminal equipment Receive a random access response.
  • the terminal device determines that The random access response is for the terminal device.
  • the terminal device sends uplink data (Msg3) to the network device according to the instructions of the random access response, such as sending uplink data to the network device according to the indicated TA;
  • Step 4 The network device receives the terminal
  • the uplink data sent by the device sends a conflict resolution message (Msg4) to the terminal device.
  • the network device will carry a unique terminal device identifier in the conflict resolution message to specify the terminal device that is successfully connected, and other terminal devices that have not successfully connected will restart Random access.
  • Step 1 The terminal device sends a message A (MsgA) to the network device, that is, sends a random access request to the network device.
  • MsgA contains the random access preamble and uplink data , which is equivalent to Msg1 and Msg3 in the four-step random access process; after the network device receives the MsgA sent by the terminal device, it sends a message B (MsgB) to the terminal device, that is, sends a random access response to the terminal device.
  • MsgB can be used for Sending random access response and conflict resolution is equivalent to Msg2 and Msg4 of four-step random access.
  • the four-step random access terminal device in the idle state or inactive state to enter the RRC connection state at least four signaling interactions need to be completed to communicate with the network device.
  • services such as ultra-reliable and low latency communications (URLLC), enhanced mobile broadband (eMBB), etc.
  • URLLC ultra-reliable and low latency communications
  • eMBB enhanced mobile broadband
  • four signaling interactions will produce high latency, which is not conducive to URLLC, Low latency requirements of eMBB.
  • mMTC large-scale machine type communications
  • the terminal device needs to complete a four-step random access every time to enter the RRC connection state to send data, and then Returning to the idle state or the inactive state again not only has a higher delay, but also a serious signaling overhead.
  • the number of signaling interactions required for two-step random access is reduced, which reduces signaling overhead and delay, and is suitable for application scenarios with low delay requirements.
  • the network equipment will estimate a TA based on the random access preamble sent by the terminal equipment, and indicate the estimated TA to the terminal equipment through the random access response, and the terminal equipment will perform uplink data according to the TA.
  • the terminal device sends a random access request including the random access preamble and uplink data to the network device. Therefore, the terminal device cannot obtain the TA estimated by the network device by sending the random access preamble. For the transmission of uplink data, the reliability of uplink data transmission is reduced.
  • This application aims to solve the problem of how the terminal device determines the TA during two-step random access to improve the reliability of uplink data transmission.
  • Fig. 5 is a schematic diagram of a communication process provided by an embodiment of the application, and the process includes:
  • the network device sends configuration information, and the terminal device receives the configuration information, where the configuration information includes the mapping relationship between the downlink measurement value and the TA.
  • the downlink measurement value may be a measurement value of a downlink signal or channel between the terminal device and the network device.
  • the network device The mapping relationship between the downlink measurement value and the TA is pre-configured in the, where the mapping relationship between the downlink measurement value and the TA can be based on the different distance from the network device, the downlink measurement value between the terminal device and the network device and the corresponding TA Configure it.
  • the downlink measurement values include, but are not limited to, reference signal receiving power (RSRP), reference signal receiving quality (RSRQ), reference signal signal to interference plus noise ratio (SINR) Or one or more of the downlink path losses.
  • the configuration information may be sent through broadcast or multicast messages, or through radio resource control (Radio Resource Control, RRC) messages dedicated to terminal devices, or other RRC configuration messages.
  • RRC Radio Resource Control
  • the configuration information can also be pre-stored in the terminal device through a protocol definition or other means.
  • the downlink measurement value is only one of RSRP, RSRQ, SINR or downlink path loss
  • RSRP or RSRQ or SINR decreases, according to the mapping relationship between the downlink measurement value and TA, it is determined to be the same as RSRP or RSRQ.
  • the TA corresponding to the SINR increases; as the downlink path loss increases, the determined TA corresponding to the downlink path loss increases according to the mapping relationship between the downlink measurement value and the TA.
  • the downlink measurement value is more than one of RSRP, RSRQ, SINR, or downlink path loss
  • the determined and The TA corresponding to RSRP or RSRQ or SINR increases; as the downlink path loss increases, the determined TA corresponding to the downlink path loss increases according to the mapping relationship between the downlink measurement value and the TA.
  • mapping relationship between the downlink measurement value and TA can be expressed in the form of the mapping relationship between the lower line measurement value and TA, or the mapping table between the lower line measurement value and TA, etc., as long as the downlink measurement value and TA can be clearly indicated The mapping relationship of TA is sufficient.
  • the measured value of the following row is RSRP as an example.
  • mapping relationship between the downlink measured value and TA can be as follows:
  • TAG TA groups
  • the downlink measurement values A 1 , A 2 ... B1, B2... C1, C2... in Table 1 above can be specific downlink measurement values, or they can be non-overlapping downlink measurement values. Interval.
  • mapping relationship between the downlink measurement value and the TA exists in the form of the mapping relationship table between the lower row measurement value and the TA
  • the mapping relationship table between the downlink measurement value and the TA records the possible RSRP, RSRQ, SINR and downlink path for each group. Loss exists in the mapped TA.
  • the mapping relationship between the downlink measurement value and the TA may also be the mapping relationship between the difference between the downlink measurement value and a predefined measurement threshold and the TA, where the predefined measurement threshold may be sent by a network device
  • the predefined measurement threshold may be sent by a network device
  • the mapping relationship between the difference between the downlink measurement value and the predefined measurement threshold and the TA may be based on the difference between the downlink measurement value between the terminal device and the network device and the predefined measurement threshold at a different distance from the network device Value, and the corresponding TA configuration.
  • the mapping relationship between the difference between the downlink measurement value and the predefined measurement threshold and the TA may be expressed in the manner of a mapping relationship, or may be expressed in the manner of a mapping relationship table, which is not limited in this application.
  • the configuration information can also include physical random access channel (physical random access channel, PRACH) time-frequency resources, random access preamble, and physical uplink shared channel (PUSCH) configured for random access. Time-frequency resources and other information.
  • PRACH physical random access channel
  • PUSCH physical uplink shared channel
  • the terminal device obtains a downlink measurement value with the network device.
  • the terminal device may obtain the downlink measurement values.
  • the RSRP is obtained according to the average value of the signal power received on all resource elements (RE) carrying the reference signal in a certain symbol of the downlink signal of the network device; according to the RSRP and the signal strength of the downlink signal received by the network device
  • the ratio of the received Signal Strength Indication (RSSI) is used to obtain the RSRQ;
  • the SINR is obtained according to the ratio of the strength of the useful signal in the received downlink signal of the network equipment to the strength of the interference signal (noise and interference);
  • the difference between the signal strength of the transmitted downlink signal and the RSRP obtains the downlink path loss.
  • the terminal device determines the target TA according to the obtained downlink measurement value.
  • the obtained downlink measurement value may be brought into the mapping relationship expression to obtain the target TA.
  • the target TA may be obtained by querying the mapping relationship table based on the obtained downlink measurement value.
  • the terminal device sends a random access request to the network device according to the target TA, where the random access request includes a random access preamble and uplink data.
  • the random access request refers to the MsgA in two-step random access, including random access preamble and uplink data.
  • the uplink data is the effective bearer of the physical uplink shared channel (PUSCH payload) or called uplink effective.
  • Load (UL payload) that is, Msg3 of four-step random access as shown in Figure 3.
  • the uplink data can be RRC connection establishment request, RRC reestablishment request, RRC connection recovery, beam recovery request, system message based on Msg3 Get request, small packet data, etc.
  • the terminal device Before performing random access, the terminal device obtains the downlink measurement value with the network device through downlink measurement, and determines the corresponding downlink measurement value according to the downlink measurement value obtained by the measurement and the mapping relationship between the downlink measurement value and the TA The target TA.
  • the measured value in the following row is RSBP.
  • the mapping relationship between the downlink measurement value and TA is shown in Table 1 as an example.
  • the downlink measurement value obtained by the terminal device through the downlink measurement and the network device is B 1
  • the target corresponding to B 1 is determined TA is TA 21 .
  • the terminal equipment also determines the PRACH time-frequency resources, random access preamble and PUSCH time-frequency resources used to initiate random access according to the PRACH time-frequency resources, random access preambles and PUSCH time-frequency resources configured by the network equipment for random access .
  • the terminal device determines the sending time of the random access preamble according to the position of the PRACH time-frequency resource used to initiate random access and the target TA, and according to the PUSCH used
  • the position of the time-frequency resource in the time domain and the target TA determine the sending time of uplink data, and send the random access preamble and uplink data to the network device according to the determined sending time of the random access preamble and the determined sending time of the uplink data ,
  • Complete the sending of random access request that is, the target TA acts on the sending/transmission of random access preamble and uplink data at the same time.
  • the terminal device directly determines the transmission time of the random access preamble according to the position of the PRACH time-frequency resource used for initiating random access in the time domain, and according to the PUSCH time-frequency resource in the time domain.
  • the location and the target TA determine the sending time of the uplink data, and according to the determined sending time of the random access preamble and the determined sending time of the uplink data, send the random access preamble and the uplink data to the network device to complete the random access request Send, that is, the target TA only acts on the sending/transmission of uplink data.
  • the terminal device After the terminal device sends a random access request to the network device, it monitors the physical Downlink Control Channel (PDCCH) of the network device in the random access response receiving window to ensure the reception of the random access response sent by the network device .
  • the discontinuous reception (C-DRX) activation period of the terminal device includes the random access response reception window, and if the C-DRX activation period is consistent with the terminal device
  • the measurement gaps (call gapping, GAP) overlap, and the terminal device monitors the PDCCH.
  • the terminal device can monitor whether there is a random access response transmission on the PDCCH, and if the random access response receiving window and the terminal device's measurement GAP Overlap, there is conflict, the terminal equipment will not interrupt the sending and receiving of data, continue to monitor the PDCCH, and will not measure the information of the target cell to ensure the reception of the random access response.
  • the random access response refers to the MsgB in two-step random access, that is, the response information for the random access request (MsgA), including the response information for the random access preamble and the response information for the uplink data. At least one.
  • S505 The network device sends a random access response, and the terminal device receives a random access response.
  • the network device After the network device receives the random access request including the random access preamble and uplink data sent by the terminal device, it generates response information for the random access preamble.
  • the response information may include parameters such as the random access preamble and TC-RNTI.
  • the network device allocates the same TC-RNTI to multiple terminal devices. If the network device allocates the same TC-RNTI to multiple terminal devices, the network device will use the terminal device identification contained in the uplink data. , Select a terminal device identifier from multiple terminal devices allocated the same TC-RNTI, scramble through TC-RNTI, generate a contention resolution message, and send a contention resolution message including response information for the random access preamble to Terminal Equipment.
  • the terminal device receives the random access response in the random access response receiving window, and if it successfully resolves its own identity from the contention resolution message according to the TC-RNTI in the random access response, it successfully responds to the TC-RNTI in the random access response Analyzing the data unit (serving data unit, SDU) indicates that the random access is successful, and the terminal device can start or restart the inactive timer (DRX-inactive timer), continue to monitor the PDCCH, and every time a new data transmission of the PDCCH is detected , Restart the DRX-inactive timer once until the DRX-inactive timer times out.
  • DRX-inactive timer inactive timer
  • the configuration information includes the mapping relationship between the downlink measurement value and the TA, and also includes the mapping relationship between the downlink measurement value and the timing advance offset (TA_offset).
  • TA_offset the timing advance offset
  • the network device sends configuration information, and the terminal device receives the configuration information.
  • the configuration information includes the mapping relationship between the downlink measurement value and TA and the mapping relationship between the downlink measurement value and TA_offset.
  • the terminal device obtains a downlink measurement value with the network device.
  • the terminal device determines the target TA and the target TA_offset according to the obtained downlink measurement value.
  • the terminal device adjusts the target TA according to the target TA_offset.
  • the terminal device sends a random access request to the network device according to the target TA, where the random access request includes a random access preamble and uplink data.
  • S606 The network device sends a random access response, and the terminal device receives a random access response.
  • the network device in order to further refine the TA and ensure the reliability of uplink data transmission, the network device also introduces the mapping relationship between the downlink measurement value and TA_offset in the configuration information, which is used by the terminal device according to the obtained downlink
  • the measurement value determines the target TA_offset, and the target TA determined according to the obtained downlink measurement value and the mapping relationship between the downlink measurement value and the TA is adjusted.
  • the mapping relationship between the downlink measurement value and TA_offset can also be expressed in the manner of a mapping relationship between the downlink measurement value and TA_offset, or a manner such as a mapping table of the downlink measurement value and TA_offset.
  • the measured value of the following row is RSRP as an example.
  • mapping relationship between the downlink measured value and TA_offset can be as follows:
  • mapping relationship between the downlink measurement value and TA_offset exists in the form of the mapping relationship table between the following row measurement value and TA_offset
  • the mapping relationship table between the downlink measurement value and TA_offset records the possible RSRP, RSRQ, SINR and downlink path in each group. The TA_offset of the mapping is lost.
  • the terminal device obtains the downlink measurement value with the network device through the downlink measurement before performing random access, and according to the measurement obtained
  • the downlink measurement value and the mapping relationship between the downlink measurement value and TA are determined to determine the target TA corresponding to the downlink measurement value obtained by the measurement; and the downlink measurement value obtained by the measurement and the mapping relationship between the downlink measurement value and TA_offset are determined to determine the downlink measurement value obtained by the measurement.
  • the target TA_offset corresponding to the measured value, and the target TA is adjusted through the target TA_offset.
  • the measured value in the following row is RSBP.
  • the mapping relationship between the downlink measurement value and TA is shown in Table 1, and the mapping relationship between the downlink measurement value and TA_offset is shown in Table 2 as an example.
  • the downlink measurement value is B 1
  • it is determined that the target TA corresponding to B 1 is TA 21
  • the target TA_offset corresponding to B 1 is offset 21
  • the terminal device adjusts TA 21 through offset 21 to obtain the target TA ( TA 21 +offset 21 ).
  • the configuration information includes the mapping relationship between the downlink measurement value and TA, as well as the mapping relationship between the number of random access request retransmissions and the timing advance increase step (TA_Rampingstep).
  • T_Rampingstep the mapping relationship between the number of random access request retransmissions and the timing advance increase step
  • the network device sends configuration information, and the terminal device receives the configuration information.
  • the configuration information includes the mapping relationship between the downlink measurement value and the TA, and the mapping relationship between the random access request retransmission times and the TA_Rampingstep.
  • the terminal device obtains the downlink measurement value with the network device, and obtains the number of random access request retransmissions.
  • the terminal device determines the target TA according to the obtained downlink measurement value; and determines the target TA_Rampingstep according to the obtained random access request retransmission times.
  • S704 The terminal device adjusts the target TA according to the target TA_Rampingstep.
  • the terminal device sends a random access request to the network device according to the target TA, where the random access request includes a random access preamble and uplink data.
  • S706 The network device sends a random access response, and the terminal device receives a random access response.
  • the network device also introduces the mapping relationship between the number of retransmissions of the random access request and TA_Rampingstep in the configuration information, which is used to retransmit or repeatedly send the random access request according to the random access request.
  • the mapping relationship between the number of retransmissions and TA_Rampingstep adjusts the target TA determined according to the obtained downlink measurement value and the mapping relationship between the downlink measurement value and the TA.
  • a counting module/counter is included in the terminal device to record the number of retransmissions of random access requests. Each time a random access request or uplink data is retransmitted, the count of the counter is increased by one.
  • mapping relationship between the number of random access request retransmissions and TA_Rampingstep can also be expressed in the manner of the mapping relationship between the number of random access request retransmissions and TA_Rampingstep, or the random access request retransmission The number of times and the TA_Rampingstep mapping relationship table is expressed.
  • the mapping relationship between the number of random access request retransmissions and TA_Rampingstep can be as follows:
  • counter is the number of random access request retransmissions.
  • the value of counter is 0, it means that the random access request retransmission has not been performed currently, and step 0 can be set to 0.
  • the terminal device may first determine whether it is a retransmission random access request before performing random access.
  • the terminal device obtains the downlink measurement value and the random access request retransmission times with the network device through downlink measurement, and determines the downlink measurement value obtained from the measurement according to the downlink measurement value obtained by the measurement and the mapping relationship between the downlink measurement value and the TA The corresponding target TA; and according to the obtained random access request retransmission times and the mapping relationship between the random access request retransmission times and TA_Rampingstep, the target TA_Rampingstep corresponding to the obtained random access request retransmission times is determined, and the target TA_Rampingstep is used to pair The target TA is adjusted.
  • the measured value in the following row is RSBP.
  • the mapping relationship between the downlink measurement value and TA is shown in Table 1, and the mapping relationship between the number of random access request retransmissions and TA_Rampingstep is shown in Table 3 as an example.
  • the random access request retransmission obtained by the terminal device 2 number of times, measuring a downlink between the network device obtained by the downlink measurement is B 1
  • B 1 is determined corresponding target TA is the TA 21 is, with the corresponding target 2 is TA_Rampingstep step 2
  • step 2 through a pair of the terminal device TA 21 adjusts to obtain the target TA (TA 21 +step 2 ) of the random access application.
  • the network device can also simultaneously introduce the mapping relationship between the downlink measurement value and TA_offset, the mapping relationship between the number of random access request retransmissions and TA_Rampingstep, for Adjust TA.
  • the measured value in the following row is RSBP
  • the mapping relationship between downlink measurement value and TA is shown in Table 1
  • the mapping relationship between downlink measurement value and TA_offset is shown in Table 2
  • the mapping relationship between random access request retransmission times and TA_Rampingstep is shown in Table 3.
  • the terminal apparatus obtains the random access request retransmission number is 2, the downlink measurements between the network device obtained by the downlink measurement is B 1, and B is determined corresponding to the target TA TA 21 is 1, and B
  • the target TA_offset corresponding to 1 is offset 21
  • the target TA_Rampingstep corresponding to 2 is step 2 to obtain the target TA (TA 21 +offset 21 +step 2 ) of the random access application.
  • the terminal device can also detect whether the currently applied random access type (RACH type) meets the random access type switching conditions, and when it is determined that the currently applied random access type meets the switching conditions, Switch the random access type of the application to ensure the reliability of random access.
  • RACH type currently applied random access type
  • the terminal device determines that the random access type of the current application satisfies the handover condition as at least one of the following: (1) The number of times that the terminal device initiates random access requests on the random access type of the current application is greater than the first threshold; (2) The terminal device switches to a beam and/or bandwidth and/or carrier that does not match the currently applied random access type; (3) The number of consecutive failures of the terminal device to initiate random access requests on the currently applied random access type is greater than the second Threshold; (4) The terminal device determines that the downlink measurement value is greater than the third threshold or less than the fourth threshold.
  • the first threshold, the second threshold, the third threshold, the fourth threshold, and the beam and/or bandwidth and/or carrier corresponding to the random access type can be sent to the terminal device by the network device through broadcast or multicast messages, or through the terminal device dedicated RRC message, etc. , It can also be pre-defined by agreement.
  • the terminal device can also initialize random access parameters after switching the random access type.
  • the random access parameters include the number of initiating random access requests and power. One or more of the number of hill climbing, PUSCH payload buffer, and Msg3 buffer.
  • the terminal device when the terminal device meets the handover condition in the two-step random access, such as initiating a random access request on the two-step random access
  • the handover condition in the two-step random access such as initiating a random access request on the two-step random access
  • the two-step random access is switched to the four-step random access Access: Initiate random access on the four-step random access resource configured by the network equipment to ensure the effect of random access.
  • the terminal device initializes the saved random access parameters after switching from two-step random access to four-step random access, so as to avoid the terminal device from performing four-step random access after the switch, because the terminal device saves An error occurred in the random access parameters of the two-step random access.
  • each network element includes a hardware structure and/or software module (or unit) corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • FIG. 9 shows a possible exemplary block diagram of a communication device involved in an embodiment of the present application, and the device 900 may exist in the form of software.
  • the apparatus 900 may include: a processing unit 902 and a transceiver unit 903.
  • the processing unit 902 is used to control and manage the actions of the device 900.
  • the transceiver unit 903 is used to support communication between the device 900 and other network entities.
  • the transceiver unit 903 may include a receiving unit and/or a sending unit, which are used to perform receiving and sending operations, respectively.
  • the device 900 may further include a storage unit 901 for storing program codes and/or data of the device 900.
  • the apparatus 900 may be the terminal device in any of the above embodiments, or may also be a semiconductor chip provided in the terminal device.
  • the processing unit 902 may support the apparatus 900 to perform the actions of the terminal device in the foregoing method examples.
  • the processing unit 902 mainly executes the internal actions of the terminal device in the method example, and the transceiver unit 903 can support the communication between the apparatus 900 and the network device.
  • the transceiver unit 903 is configured to receive configuration information, where the configuration information includes the mapping relationship between the downlink measurement value and the timing advance TA; the processing unit 902 is configured to obtain the downlink measurement value; The processing unit 902 is further configured to determine the target TA according to the obtained downlink measurement value.
  • the processing unit 902 is further configured to, after determining the target TA, be further configured to, according to the obtained downlink measurement value, Determine the target TA_offset; adjust the target TA according to the target TA_offset.
  • the processing unit 902 is further configured to obtain random access after determining the target TA. Access retransmission times; determine the target TA_Rampingstep according to the obtained random access retransmission times; adjust the target TA according to the target TA_Rampingstep.
  • the mapping relationship between the downlink measurement value and the TA includes: the mapping relationship between the difference between the downlink measurement value and a predefined measurement threshold and the TA.
  • the downlink measurement value includes one or more of the following:
  • the transceiver unit 903 is further configured to send a random access request according to the target TA, where the random access request includes a random access preamble and uplink data.
  • the transceiver unit 903 is also used to receive a random access response
  • the processing unit 902 is further configured to start or restart the inactive timer DRX-inactive timer when the temporary cell radio network temporary identification data unit TC-RNTI SDU in the random response is successfully analyzed.
  • the discontinuous reception C-DRX activation period of the transceiver unit 903 includes a random access response reception window.
  • the transceiver unit 903 monitors the physical downlink control channel PDCCH.
  • the processing unit 902 is further configured to switch the random access type of the application when it is determined that the random access type of the current application satisfies the switching condition.
  • the processing unit 902 determines that the random access type of the current application satisfies the handover condition when at least one of the following conditions is met:
  • the number of random access requests initiated on the currently applied random access type is greater than the first threshold
  • the number of consecutive failures to initiate random access requests on the currently applied random access type is greater than the second threshold
  • the downlink measurement value is greater than the third threshold or less than the fourth threshold.
  • the processing unit 902 is further configured to initialize random access parameters.
  • the random access parameters include the number of random access requests initiated, the number of power ramps, and the physical uplink shared channel.
  • an embodiment of the present application also provides a terminal device 1000.
  • the terminal device 1000 includes a processor 1010, a memory 1020, and a transceiver 1030.
  • the memory 1020 stores instructions or programs, and the memory 1020 is used to implement the foregoing The function of the storage unit 901 in the embodiment.
  • the processor 1010 is configured to execute instructions or programs stored in the memory 1020. When the instructions or programs stored in the memory 1020 are executed, the processor 1010 is used to perform the operations performed by the processing unit 902 in the foregoing embodiment, and the transceiver 1030 is used to perform the operations performed by the transceiving unit 903 in the foregoing embodiment.
  • the terminal device 900 or the terminal device 1000 may correspond to the terminal device in the communication method (FIG. 5 to FIG. 8) of the embodiment of the present application, and each module in the terminal device 900 or the terminal device 1000 The operations and/or functions of are used to implement the corresponding processes of the methods in FIG. 5 to FIG. 8. For brevity, details are not repeated here.
  • FIG. 11 shows a possible exemplary block diagram of another device involved in an embodiment of the present application, and the device 1100 may exist in the form of software.
  • the apparatus 1100 may include: a processing unit 1102 and a transceiver unit 1103.
  • the processing unit 1102 is used to control and manage the actions of the device 1100.
  • the transceiver unit 1103 is used to support the communication between the device 1100 and other network entities.
  • the transceiver unit 1103 may include a receiving unit and/or a sending unit, which are used to perform receiving and sending operations, respectively.
  • the device 1100 may further include a storage unit 1101 for storing program codes and/or data of the device 1100.
  • the apparatus 1100 may be the network device in any of the foregoing embodiments (for example, the network device is the network device in Embodiment 1), or may also be a semiconductor chip provided in the network device.
  • the processing unit 1102 may support the apparatus 1100 to execute the actions of the network device in the above method examples.
  • the processing unit 1102 mainly executes the internal actions of the network device in the method example, and the transceiver unit 1103 can support the communication between the apparatus 1100 and the terminal device.
  • the processing unit 1102 is configured to obtain configuration information, where the configuration information includes the mapping relationship between the downlink measurement value and the timing advance TA; the transceiver unit 1103 is configured to send the configuration information.
  • the configuration information further includes:
  • mapping relationship between the downlink measurement value and the timing advance offset TA_offset is the mapping relationship between the downlink measurement value and the timing advance offset TA_offset.
  • the configuration information further includes:
  • mapping relationship between the random access request retransmission times and the timing advance increase step TA_Rampingstep is the mapping relationship between the random access request retransmission times and the timing advance increase step TA_Rampingstep.
  • mapping relationship between the downlink measurement value and TA includes:
  • mapping relationship between the difference between the downlink measurement value and the predefined measurement threshold and the TA is the mapping relationship between the difference between the downlink measurement value and the predefined measurement threshold and the TA.
  • an embodiment of the present application further provides a network device 1200.
  • the network device 1200 includes a processor 1210, a memory 1220, and a transceiver 1230.
  • the memory 1220 stores instructions or programs, and the memory 1220 is used to implement the foregoing The function of the storage unit 1101 in the embodiment.
  • the processor 1210 is configured to execute instructions or programs stored in the memory 1220. When the instructions or programs stored in the memory 1220 are executed, the processor 1210 is used to perform the operations performed by the processing unit 1102 in the foregoing embodiment, and the transceiver 1230 is used to perform the operations performed by the transceiver unit 1103 in the foregoing embodiment.
  • the network device 1100 or the network device 1200 may correspond to the network device in the communication method (FIG. 5 to FIG. 8) of the embodiment of the present application, and each module in the network device 1100 or the network device 1200 The operations and/or functions of are used to implement the corresponding processes of the methods in FIG. 5 to FIG. 8. For brevity, details are not repeated here.
  • the embodiment of the present application also provides a communication device, which may be a terminal device or a circuit.
  • the communication device may be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 13 shows a simplified structural diagram of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in FIG. 13. In actual terminal equipment products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiver function may be regarded as the transceiver unit (or communication unit) of the terminal device, and the processor with the processing function may be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1310 and a processing unit 1320.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1310 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1310 as the sending unit, that is, the transceiver unit 1310 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, receiver, or receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1310 is used to perform sending and receiving operations on the terminal device side in the foregoing method embodiment
  • processing unit 1320 is used to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • the transceiving unit 1310 is used to perform the sending and receiving operations on the terminal device side in S501, S504, and S505 of FIG. 5, and/or the transceiving unit 1310 is also used to perform the terminal device in the embodiment of the present application.
  • the processing unit 1320 is configured to execute S502 and S503 in FIG. 5, and/or the processing unit 1320 is also configured to execute other processing steps on the terminal device side in the embodiment of the present application.
  • the transceiving unit 1310 is used to perform the sending operations on the terminal device side in S601, S605, and S606 in FIG. 6, and/or the transceiving unit 1310 is also used to perform the terminal device in this embodiment of the application.
  • the processing unit 1320 is configured to execute S602, S603, and S604 in FIG. 6, and/or the processing unit 1320 is also configured to execute other processing steps on the terminal device side in the embodiment of the present application.
  • the transceiving unit 1310 is used to perform the sending operations on the terminal device side in S701, S705, and S706 of FIG. 7, and/or the transceiving unit 1310 is also used to perform the terminal device in the embodiment of the present application.
  • the processing unit 1320 is configured to execute S702, S703, and S704 in FIG. 7, and/or the processing unit 1320 is also configured to execute other processing steps on the terminal device side in the embodiment of the present application.
  • the device may include a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit and/or a communication interface;
  • the processing unit is an integrated processor or microprocessor or integrated circuit.
  • the device can perform functions similar to the processor 1010 in FIG. 10.
  • the device includes a processor 1410, a data sending processor 1420, and a data receiving processor 1430.
  • the processing unit 902 in the foregoing embodiment may be the processor 1410 in FIG. 14 and completes corresponding functions.
  • the transceiver unit 903 in the foregoing embodiment may be the sending data processor 1420 and/or the receiving data processor 1430 in FIG. 14.
  • the channel encoder, modulator, symbol generation module, channel decoder, demodulator, and channel estimation module are shown in FIG. 14, it can be understood that these modules do not constitute a restrictive description of this embodiment, but are merely illustrative. .
  • the processing device 1500 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as a modulation subsystem therein.
  • the modulation subsystem may include a processor 1503 and an interface 1504.
  • the processor 1503 completes the function of the aforementioned processing unit 902, and the interface 1504 completes the function of the aforementioned transceiver unit 903.
  • the modulation subsystem includes a memory 1506, a processor 1503, and a program stored on the memory 1506 and running on the processor.
  • the processor 1503 executes the program on the terminal device side in the above method embodiment. Methods.
  • the memory 1506 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 1500, as long as the memory 1506 can be connected to the The processor 1503 is fine.
  • a computer-readable storage medium is provided, and an instruction is stored thereon.
  • the instruction is executed, the method on the terminal device side in the foregoing method embodiment can be executed.
  • a computer program product containing instructions is provided.
  • the instructions are executed, the method on the terminal device side in the foregoing method embodiment can be executed.
  • the device 1600 includes one or more radio frequency units, such as a remote radio unit (RRU) 1610 and one or more basebands.
  • a unit (baseband unit, BBU) also referred to as a digital unit, DU) 1620.
  • BBU baseband unit
  • the RRU 1610 may be called a transceiver unit, which corresponds to the transceiver unit 1103 in FIG. 11.
  • the transceiver unit may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 1611 ⁇ RF unit 1612.
  • the RRU 1610 part is mainly used for receiving and sending radio frequency signals and converting radio frequency signals and baseband signals, for example, for sending configuration information to terminal devices.
  • the 1620 part of the BBU is mainly used for baseband processing and control of the base station.
  • the RRU 1610 and the BBU 1620 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1620 is the control center of the base station, and may also be called a processing module, which may correspond to the processing unit 1102 in FIG. 11, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing module
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing indication information.
  • the BBU 1620 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network (such as an LTE network) of a single access standard, or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1620 also includes a memory 1621 and a processor 1622.
  • the memory 1621 is used to store necessary instructions and data.
  • the processor 1622 is used to control the base station to perform necessary actions, for example, used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 1621 and the processor 1622 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • a computer-readable storage medium is provided, and instructions are stored thereon.
  • the instructions are executed, the method on the network device side in the foregoing method embodiment can be executed.
  • a computer program product containing instructions is provided.
  • the instructions are executed, the method on the network device side in the foregoing method embodiment can be executed.
  • each step in the method provided in this embodiment can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose central processing unit (central processing unit, CPU), general-purpose processor, digital signal processing (digital signal processing, DSP), application specific integrated circuits (ASIC), field programmable gate array Field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof; it can also be a combination that implements computing functions, such as a combination of one or more microprocessors, DSP and micro-processing The combination of the device and so on.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory or storage unit in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct rambus RAM direct rambus RAM
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium, or transmitted through the computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server integrating one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, and a magnetic tape; it may also be an optical medium, such as a DVD; it may also be a semiconductor medium, such as a solid state disk (SSD).
  • the various illustrative logic units and circuits described in the embodiments of this application can be implemented by general-purpose processors, digital signal processors, application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, Discrete gates or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor, and optionally, the general-purpose processor may also be any traditional processor, controller, microcontroller, or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration achieve.
  • the steps of the method or algorithm described in the embodiments of the present application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other storage medium in the field.
  • the storage medium may be connected to the processor, so that the processor can read information from the storage medium, and can store and write information to the storage medium.
  • the storage medium may also be integrated into the processor.
  • the processor and the storage medium can be arranged in an ASIC, and the ASIC can be arranged in a terminal device.
  • the processor and the storage medium may also be arranged in different components in the terminal device.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,公开了一种通信方法及装置,用以解决在两步随机接入时,终端设备如何确定定时提前量TA,以提高上行数据传输的可靠性的问题。该方法为:终端设备接收配置信息,所述配置信息包括下行测量值与TA的映射关系;所述终端设备获得下行测量值;所述终端设备根据获得的下行测量值,确定目标TA。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2019年07月22日提交中国专利局、申请号为201910661809.1、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
随机接入(random access,RA),也可称随机接入信道(random access channel,RACH)。在长期演进(long term evolution,LTE)、新无线(new radio,NR)等系统中终端设备需要通过随机接入从无线资源控制(radio resource control,RRC)空闲态或非激活(inactive)态进入RRC连接态,才能与网络设备建立起各种承载,进而与网络设备进行通信。目前,终端设备的随机接入通常采用四步随机接入(4-step physical random access channel,4-step RACH),四步随机接入包括终端设备向网络设备发送随机接入前导(preamble),网络设备向终端设备发送随机接入响应(random access response,RAR),终端设备向网络设备发送上行数据和网络设备向终端设备发送冲突解决信息(contention resolution message,CRM)。为了支持低时延场景下的随机接入,或者减少NR中非授权载波的监听次数,提出了两步随机接入(2-Step RACH),在两步随机接入中,仅有终端设备向网络设备发送包括随机接入前导和上行数据的随机接入请求,网络设备向终端设备发送可用于随机接入响应和冲突解决的随机接入应答两个步骤。
然而,不同于四步随机接入时,网络设备会根据终端设备发送的随机接入前导估计出一个定时提前量(timing advance,TA),并通过随机接入响应指示给终端设备估计出的TA,终端设备根据TA进行上行数据的发送,在两步随机接入时,终端设备向网络设备发送包括随机接入前导和上行数据的随机接入请求,因此终端设备无法通过随机接入前导的发送获得网络设备估计出的TA,用于上行数据的发送,降低了上行数据传输的可靠性。
发明内容
本申请实施例提供一种通信方法及装置,用以解决在两步随机接入时,终端设备如何确定TA,以提高上行数据传输的可靠性的问题。
第一方面,本申请实施例提供了一种通信方法,该方法包括:通信设备接收配置信息,所述配置信息包括下行测量值与TA的映射关系;所述通信设备获得下行测量值;所述通信设备根据获得的下行测量值以及所述下行测量值与TA的映射关系,确定目标TA。
本申请实施例中所描述的通信设备可以为终端设备或者终端设备中的处理芯片等。采用上述方法,通过配置信息中包括的下行测量值与TA的映射关系,终端设备可以根据获得的下行测量值,确定目标TA,用于终端设备两步随机接入时,上行数据的发送,以提 高上行数据传输的可靠性。
在一种可能的设计中,如果所述配置信息还包括下行测量值与定时提前量偏移TA_offset的映射关系,所述通信设备确定目标TA之后,还可以根据获得的下行测量值以及所述下行测量值与TA_offset的映射关系,确定目标TA_offset;所述通信设备根据所述目标TA_offset对所述目标TA进行调整。上述设计中,在配置信息中还引入了下行测量值与TA_offset的映射关系,进一步可以使终端设备根据获得的下行测量值得到目标TA_offset,并使用目标TA_offset对确定的目标TA进行优化调整,有利于提高上行数据传输的可靠性。
在一种可能的设计中,如果所述配置信息还包括随机接入请求重传次数与定时提前量增长步长TA_Rampingstep的映射关系,所述通信设备确定目标TA之后,还可以获得随机接入重传次数;所述通信设备根据获得的随机接入重传次数,确定目标TA_Rampingstep;所述通信设备根据所述目标TA_Rampingstep对所述目标TA进行调整。上述设计中,在配置信息中还引入了随机接入请求重传次数与TA_Rampingstep的映射关系,用于终端设备重传或重复发送随机接入请求时,根据随机接入请求重传次数与TA_Rampingstep的映射关系,对根据下行测量值确定的目标TA进行调整,有利于提高上行数据传输的可靠性。
在一种可能的设计中,所述下行测量值与TA的映射关系,包括:所述下行测量值与预定义测量门限之间的差值与TA的映射关系。上述设计中,通过配置信息中包括的下行测量值与预定义测量门限之间的差值与TA的映射关系,终端设备可以根据获得的下行测量值以及预定义的测量门限,确定目标TA,用于终端设备两步随机接入时,上行数据的发送,提高上行数据传输的可靠性。
在一种可能的设计中,所述下行测量值可以包括以下中的一个或多个:参考信号接收功率RSRP;或,参考信号接收质量RSRQ;或,参考信号信干噪比SINR;或,下行路损。上述设计中,丰富了下行测量值的实现,便于根据通信系统和通信要求,选择相应的下行测量值。
在一种可能的设计中,所述方法还包括:所述通信设备根据所述目标TA,发送随机接入请求,所述随机接入请求包括随机接入前导preamble和上行数据。上述设计中,终端设备根据接收到的配置信息,确定的目标TA,进行包括随机接入前导和上行数据的随机接入请求的发送,可以较好保证上行数据传输的可靠性。
在一种可能的设计中,所述方法还包括:所述通信设备接收随机接入应答;所述通信设备在成功解析所述随机应答中的临时小区无线网络临时标识数据单元TC-RNTI SDU时,启动或重启非激活态定时器DRX-inactive timer。上述设计中,便于终端设备对PDCCH的监控,保证对下行控制信息的接收。
在一种可能的设计中,所述通信设备的不连续接收C-DRX激活期包括随机接入应答接收窗。上述设计中,便于终端设备随机接入应答的接收。
在一种可能的设计中,如果所述随机接入应答接收窗与所述通信设备的测量间隙GAP重叠,所述通信设备监听物理下行控制信道PDCCH。上述设计中,避免了终端设备对随机接入应答的遗漏,保证了终端设备对随机接入应答的接收。
在一种可能的设计中,所述方法还包括:所述通信设备在确定当前应用的随机接入类型满足切换条件时,切换应用的随机接入类型。上述设计,便于终端设备选择最佳的随机接入类型进行随机接入,以保证随机接入的可靠性。
在一种可能的设计中,所述通信设备可以在以下条件中的至少一项满足时,确定当前 应用的随机接入类型满足切换条件:所述通信设备在当前应用的随机接入类型上发起随机接入请求的次数大于第一阈值;所述通信设备切换到与当前应用的随机接入类型不符的波束和/或带宽和/或载波;所述通信设备在当前应用的随机接入类型上发起随机接入请求连续失败的次数大于第二阈值;所述通信设备确定下行测量值大于第三阈值或小于第四阈值。上述设计,可以丰富随机接入类型切换条件的实现,便于根据通信系统和通信要求,选择相应的随机接入类型切换条件。
在一种可能的设计中,所述通信设备还可以对随机接入参数进行初始化,所述随机接入参数包括发起随机接入请求的次数、功率爬坡的次数、物理上行共享信道有效载荷PUSCH payload缓存buffer、Msg3 buffer中的一种或多种。上述设计,在发生随机接入类型切换时,进行随机接入参数初始化,可以避免不必要的随机接入失败的问题。
第二方面,本申请实施例提供了一种通信方法,该方法包括:网络设备发送配置信息,所述配置信息包括下行测量值与定时提前量TA的映射关系。采用上述方法,通过配置信息中包括的下行测量值与TA的映射关系,可以指示终端设备根据获得的下行测量值,确定目标TA,用于终端设备在两步随机接入时,上行数据的发送,以提高上行数据传输的可靠性。
在一种可能的设计中,所述配置信息还可以包括:下行测量值与TA_offset的映射关系。上述设计中,在配置信息中还引入了下行测量值与TA_offset的映射关系,进一步可以使终端设备根据获得的下行测量值得到目标TA_offset,并使用目标TA_offset对确定的目标TA进行优化调整,有利于提高上行数据传输的可靠性。
在一种可能的设计中,所述配置信息还可以包括:随机接入请求重传次数与TA_Rampingstep的映射关系。上述设计中,在配置信息中还引入了随机接入请求重传次数与TA_Rampingstep的映射关系,用于终端设备重传或重复发送随机接入请求时,根据随机接入请求重传次数与TA_Rampingstep的映射关系,对根据下行测量值确定的目标TA进行优化调整,有利于提高上行数据传输的可靠性。
在一种可能的设计中,所述下行测量值与TA的映射关系,包括:所述下行测量值与预定义测量门限之间的差值与TA的映射关系。上述设计中,通过配置信息中包括的下行测量值与预定义测量门限之间的差值与TA的映射关系,终端设备可以根据获得的下行测量值以及预定义的测量门限,确定目标TA,用于终端设备两步随机接入时,上行数据的发送,提高上行数据传输的可靠性。
第三方面,本申请实施例提供一种通信装置,该装置具有实现上述第一方面或者第一方面的任一种可能的设计中方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,该装置可以是芯片或者集成电路。
在一个可能的设计中,该装置包括存储器和处理器,存储器用于存储所述处理器执行的程序,当程序被处理器执行时,所述装置可以执行上述第一方面或者第一方面的任一种可能的设计中所述的方法的功能。
在一个可能的设计中,该装置可以为终端设备。
第四方面,本申请实施例提供一种通信装置,该装置具有实现上述第二方面或者第二方面的任一种可能的设计中方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,该装置可以是芯片或者集成电路。
在一个可能的设计中,该装置包括存储器和处理器,存储器用于存储所述处理器执行的程序,当程序被处理器执行时,所述装置可以执行上述第二方面或者第二方面的任一种可能的设计中所述的方法的功能。
在一个可能的设计中,该装置可以为网络设备。
第五方面,本申请实施例提供一种计算机可读存储介质,所述存储介质存储有计算机指令,当所述计算机指令被执行时,可以实现上述第一方面或者第一方面的任一种可能的设计中所述的方法,或实现上述第二方面或者第二方面的任一种可能的设计中所述的方法。
第六方面,本申请实施例还提供一种计算机程序产品,包括计算机程序或指令,当计算机程序或指令被执行时,可以实现上述第一方面或者第一方面的任一种可能的设计中所述的方法,或实现上述第二方面或者第二方面的任一种可能的设计中所述的方法。
附图说明
图1为本申请实施例中一种通信架构示意图;
图2A和图2B为本申请实施例中上行时间调整示意图;
图3为本申请实施例中一种四步随机接入过程示意图之一;
图4为本申请实施例中一种两步随机接入过程示意图;
图5为本申请实施例提供的一种通信过程示意图之一;
图6为本申请实施例提供的一种通信过程示意图之二;
图7为本申请实施例提供的一种通信过程示意图之三;
图8为本申请实施例提供的一种通信过程示意图之四;
图9为本申请实施例提供的终端设备的示意性框图;
图10为本申请实施例提供的终端设备的另一示意性框图;
图11为本申请实施例提供的网络设备的示意性框图;
图12为本申请实施例提供的网络设备的另一示意性框图;
图13为本申请实施例提供的终端设备的结构示意图;
图14为本申请实施例提供的通信装置的示意性框图;
图15为本申请实施例提供的通信装置的另一示意性框图;
图16为本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:5G系统,NR系统,LTE系统,长期演进高级(long term evolution-advanced,LTE-A)系统等通信系统中,也可以扩展到如无线保真(wireless fidelity,WiFi)、全球微波互联接入(worldwide interoperability for microwave access,wimax)、以及3GPP等相关的蜂窝系统中,及未来的通信系统,如6G系统等。具体的,本申请实施例所应用的通信系统架构可以如图1所示,包括网络设备和多个终端设备,图1中以三个终端设备为例。终端设备1-终端设备3可以分别或者同时与网络设备进行通信,需要说明的是,本申请实施例中不限定图1中所示通信系统中终端 设备以及网络设备的个数。
另外,需要理解,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例和权利要求书及附图中的术语“包括”和“具有”不是排他的。例如,包括了一系列步骤或模块的过程、方法、系统、产品或设备没有限定于已列出的步骤或模块,还可以包括没有列出的步骤或模块。本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。本申请中涉及的“多个”为两个或两个以上。
此外,本申请实施例中,信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
在介绍本申请实施例之前,首先对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、V2X终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智 能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
本申请实施例中,终端设备还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端设备。
2)网络设备,可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备。所述网络设备可以为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。目前,一些网络设备的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。另外,在一种网络结构中,所述网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点。这种结构将长期演进(long term evolution,LTE)系统中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
3)上行时间调整。
如图2A所示,由于网络设备和终端设备之间的信号传播有延迟,从网络设备发送下行信号的起始时刻到终端设备1接收下行信号的起始时刻的间隔为ΔT 1=d 1/c,其中d 1为网络设备和终端设备1之间的距离,c为信号传播速度。对于无线通信,c为光速。类似地,ΔT 2=d 2/c,其中d 2为网络设备和终端设备2之间的距离。如果终端设备1不进行上行定时调整,以接收下行信号的起始时刻为参考向网络设备发送上行信号,从终端设备1发送上行信号的起始时刻到网络设备接收上行信号的起始时刻间隔同样为ΔT 1。因此,针对终端设备1,网络设备从发送下行信号的起始时刻到接收上行信号的起始时刻存在2ΔT 1的时间差,同理,针对终端设备2,网络设备从发送下行信号的起始时刻到接收上行信号的起始时刻存在2ΔT 2的时间差。由于各终端设备和网络设备之间的距离不同,使得上行信号到达网络设备的时间各不相同,造成终端设备之间可能存在定时偏差。而当定时偏差大于正交频分复用(orthogonal frequency division multiple,OFDM)符号的循环前缀(cyclic prefix,CP)时,终端设备之间会互相干扰。
为了解决终端设备之间的干扰问题,终端设备需要进行定时调整,也称为定时提前量,即TA。如图2B所示,终端设备1将发送上行信号的起始时刻提前2ΔT 1,终端设备2将发送上行信号的起始时刻提前2ΔT 2,则网络设备将在相同的时刻接收到终端设备1和终端设备2的上行信号,从而解决终端设备间互相干扰的问题。在随机接入过程中,网络设备在随机接入响应中向终端设备发送TA,终端设备根据该TA进行定时调整。当终端设备和 网络设备之间的距离发生变化时,需要对应地进行定时调整。对于四步随机接入来说,终端设备发送上行信号时,会根据网络设备在随机接入响应中反馈的TA进行定时调整,从而一般情况下,终端设备之间不会存在干扰。
4)随机接入(RA),随机接入分为四步随机接入和两步随机接入。参照图3所示,步骤一:终端设备向网络设备发送随机接入前导(Msg1);步骤二:网络设备接收到随机接入前导后,向终端设备发送随机接入响应(Msg2),随机接入响应中可以包括随机接入前导、TA、用于发送上行数据的上行资源的配置信息以及临时的小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)等参数;步骤三:终端设备接收随机接入响应,如果该随机接入响应中的随机接入前导的序列编号所指示的随机接入前导与步骤一中终端设备向网络设备发送的随机接入前导相同,则终端设备确定该随机接入响应是针对该终端设备的,终端设备根据随机接入响应的指示向网络设备发送上行数据(Msg3),如根据指示的TA向网络设备发送上行数据;步骤四:网络设备接收到终端设备发送的上行数据,向终端设备发送冲突解决消息(Msg4),网络设备在冲突解决消息中将携带唯一终端设备标识指定接入成功的终端设备,而其它没有接入成功的终端设备将重新发起随机接入。
参照图4所示,为两步随机接入过程示意图,步骤一:终端设备向网络设备发送消息A(MsgA),即向网络设备发送随机接入请求,MsgA中包含随机接入前导和上行数据,等效于四步随机接入过程中的Msg1和Msg3;网络设备接收到终端设备发送的MsgA后,向终端设备发送消息B(MsgB),即向终端设备发送随机接入应答,MsgB可用于发送随机接入响应和冲突解决,等效于四步随机接入的Msg2和Msg4。
对于四步随机接入处于空闲态或inactive态的终端设备进入RRC连接态,与网络设备进行通信至少需要完成四次信令交互。对于高可靠低时延通信(ultra-reliable and low latency communications,URLLC)、增强移动宽带(enhanced mobile broadband,eMBB)等业务等,四次信令交互会产生较高的时延,不利于URLLC、eMBB低时延的要求。对于大规模机器通信(massive machine type communications,mMTC)业务,由于大部分业务都是零星的小包,终端设备每一次都需要完整的进行一次四步随机接入进入RRC连接态才能发送一次数据,然后再次返回空闲态或inactive态,不仅时延较高,信令开销也比较严重。而两步随机接入需要的信令交互次数减少,降低了信令开销,也降低了时延,适用于有低时延要求的应用场景。
然而,不同于四步随机接入时,网络设备会根据终端设备发送的随机接入前导估计出一个TA,并通过随机接入响应指示给终端设备估计出的TA,终端设备根据TA进行上行数据的发送,在两步随机接入时,终端设备向网络设备发送包括随机接入前导和上行数据的随机接入请求,因此终端设备无法通过发送随机接入前导获得网络设备估计出的TA,用于上行数据的发送,降低了上行数据传输的可靠性。本申请旨在解决在两步随机接入时,终端设备如何确定TA,以提高上行数据传输的可靠性的问题。
下面结合附图详细说明本申请实施例。
【实施例一】
图5为本申请实施例提供的一种通信过程示意图,该过程包括:
S501:网络设备发送配置信息,终端设备接收配置信息,所述配置信息包括下行测量值与TA的映射关系。
其中,所述下行测量值可以为终端设备与网络设备之间下行方向信号或信道的测量值。
随着终端设备与网络设备之间距离的增加,终端设备接收到的网络设备下行信号的质量呈现下降趋势,如下行信号的功率、信干噪比等会下降,路损会增加。而终端设备与网络设备之间距离的增加,会导致终端设备与网络设备之间的定时偏差增大,终端设备需要进行定时调整的TA增大,因此,在本申请实施例中,在网络设备中预先配置有下行测量值与TA的映射关系,其中所述下行测量值与TA的映射关系,可以根据与网络设备不同的距离上,终端设备与网络设备之间的下行测量值和对应的TA进行配置。所述下行测量值包括但不限于参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receivingquality,RSRQ)、参考信号信干噪比(signal to interference plus noise ratio,SINR)或者下行路损中的一个或多个。
作为一种示例,配置信息可以通过广播或者组播消息,或者通过终端设备专用的无线资源控制(radio resource control,RRC)消息,或者其他RRC配置消息发送。
在另一种可能的实施中,配置信息也可以通过协议定义等方式预先保存在终端设备中。
应当理解,当下行测量值仅为RSRP、RSRQ、SINR或者下行路损中的一个时,随着RSRP或RSRQ或SINR的减小,根据下行测量值与TA的映射关系,确定的与RSRP或RSRQ或SINR对应的TA增大;随着下行路损的增大,根据下行测量值与TA的映射关系,确定的与下行路损对应的TA增大。
当下行测量值为RSRP、RSRQ、SINR或者下行路损等中的多个时,随着RSRP、RSRQ或SINR中的一个或多个减小,根据下行测量值与TA的映射关系,确定的与RSRP或RSRQ或SINR对应的TA增大;随着下行路损的增大,根据下行测量值与TA的映射关系,确定的与下行路损对应的TA增大。
示例的,下行测量值与TA的映射关系,可以以下行测量值与TA的映射关系式的方式表示,也可以以下行测量值与TA的映射表等方式表示,只要能清楚表示下行测量值与TA的映射关系即可。
以下行测量值为RSRP为例,下行测量值与TA的映射关系式可以为TA=K*RSRP+C,其中,K和C为根据在与网络设备不同的距离上,终端设备与网络设备之间的RSRP和对应的TA,配置的参数。
仍以下行测量值为RSRP为例,下行测量值与TA的映射关系表可以如下所示:
Figure PCTCN2020095128-appb-000001
表1
如表1所示,在网络设备中根据终端设备与网络设备的下行测量值配置有三个TA组(TAG),分别为TAG1、TAG2和TAG3,分别对应终端设备位于距离网络设备的近点区间、终端设备位于距离网络设备的中点区间和终端设备位于距离网络设备的远点区间。另,需要理解的是上述表1中的下行测量值A 1、A 2…B1、B2…C1、C2…可以为一个个具体的下行测量值,也可以为一个个互不重叠的下行测量值区间。
另外,如果下行测量值包括RSRP、RSRQ、SINR或者下行路损等中的多个时,以下行测量值包括RSRP、RSRQ、SINR和下行路损为例,下行测量值与TA的映射关系式可以为TA=M*RSRP+N*RSRQ+O*SINR+P*XXLS+R,其中,XXLS为下行路损,M、N、O、P、R为根据在与网络设备不同的距离上,终端设备与网络设备之间的RSRP、RSRQ、SINR、下行路损和对应的TA,配置的参数。如果下行测量值与TA的映射关系以下行测量值与TA的映射关系表的形式存在,则在下行测量值与TA的映射关系表中记录有与每组可能的RSRP、RSRQ、SINR和下行路损存在映射的TA。
在一种可能的实施中,下行测量值与TA的映射关系还可以为下行测量值与预定义测量门限之间的差值与TA的映射关系,其中所述预定义测量门限可以由网络设备发送给终端设备,如在终端设备接入到网络设备时,由网络设备发送给终端设备;也可以通过协议定义,并预先写入网络设备和终端设备中。所述下行测量值与预定义测量门限之间的差值与TA的映射关系,可以根据与网络设备不同的距离上,终端设备与网络设备之间的下行测量值与预定义的测量门限的差值,以及对应的TA进行配置。具体的,所述下行测量值与预定义测量门限之间的差值与TA的映射关系可以以映射关系式的方式表示,也可以以映射关系表的方式表示,本申请对此不进行限定。
此外,在配置信息中还可以包括为随机接入配置的物理随机接入信道(physical random access channel,PRACH)时频资源、随机接入前导、和物理上行共享信道(physical uplink shared channel,PUSCH)时频资源等信息。
S502:所述终端设备获得与所述网络设备之间的下行测量值。
示例的,对于RSRP、RSRQ、SINR和下行路损等下行测量值,终端设备可以通过下行测量的方式获得。如根据在网络设备下行信号某个符号内承载参考信号的所有资源粒子 (resource element,RE)上接收到的信号功率的平均值得到RSRP;根据所述RSRP与对网络设备下行信号接收的信号强度指示(Received Signal Strength Indication,RSSI)的比值得到RSRQ;根据接收到的网络设备下行信号中有用信号的强度与干扰信号(噪声和干扰)的强度的比值得到SINR;根据网络设备下行信号中携带的发送下行信号的信号强度与所述RSRP的差值得到下行路损。
S503:所述终端设备根据获得的下行测量值,确定目标TA。
示例性的,如果下行测量值与TA的映射关系基于映射关系式表示,则可以将获得的下行测量值带入所述映射关系式,求解得到目标TA。另一示例性的,如果下行测量值与TA的映射关系基于映射关系表表示,则可以基于获得的下行测量值查询映射关系表得到目标TA。
S504:终端设备根据所述目标TA,向所述网络设备发送随机接入请求,所述随机接入请求包括随机接入前导和上行数据。
在本申请实施例中,随机接入请求指的是两步随机接入中的MsgA,包括随机接入前导和上行数据,上行数据即物理上行共享信道的有效承载(PUSCH payload)或称上行有效载荷(UL payload),也就是如图3所示的四步随机接入的Msg3,所述上行数据可以是RRC连接建立请求,RRC重建请求,RRC连接恢复,波束恢复请求,基于Msg3的系统消息获取请求,小包数据等。
在进行随机接入前,终端设备通过下行测量获得与网络设备之间的下行测量值,并根据测量获得的下行测量值和下行测量值与TA的映射关系,确定与测量获得的下行测量值对应的目标TA。以下行测量值为RSBP,下行测量值与TA的映射关系如表1所示为例,终端设备通过下行测量获得的与网络设备之间的下行测量值为B 1,确定与B 1对应的目标TA为TA 21。终端设备并根据网络设备为随机接入配置的PRACH时频资源、随机接入前导和PUSCH时频资源的信息,确定发起随机接入采用的PRACH时频资源、随机接入前导和PUSCH时频资源。
在执行S504时,在一种可能的实施中,终端设备根据发起随机接入采用的PRACH时频资源在时域的位置和所述目标TA确定随机接入前导的发送时间,以及根据采用的PUSCH时频资源在时域的位置和所述目标TA确定上行数据的发送时间,根据确定的随机接入前导的发送时间以及确定的上行数据的发送时间,向网络设备发送随机接入前导和上行数据,完成随机接入请求的发送,即目标TA同时作用于随机接入前导和上行数据的发送/传输。
在另一种可能的实施中,终端设备根据发起随机接入采用的PRACH时频资源在时域的位置,直接确定随机接入前导的发送时间,以及根据采用的PUSCH时频资源在时域的位置和所述目标TA确定上行数据的发送时间,根据确定的随机接入前导的发送时间以及确定的上行数据的发送时间,向网络设备发送随机接入前导和上行数据,完成随机接入请求的发送,即目标TA仅作用于上行数据的发送/传输。
终端设备向网络设备发送随机接入请求后,会在随机接入应答接收窗监听网络设备的物理下行控制信道(Physical Downlink Control Channel,PDCCH),以保证对网络设备发送的随机接入应答的接收。在本申请实施例中,为了保证终端设备对随机接入应答的接收,终端设备的不连续接收(C-DRX)激活期包含随机接入应答接收窗,并且如果C-DRX激活期与终端设备的测量间隙(call gapping,GAP)重叠,终端设备监听PDCCH。也就是 说,在随机接入应答接收窗,终端设备的C-DRX处于激活期,终端设备能够监听PDCCH是否存在随机接入应答的传输,并且如果随机接入应答接收窗与终端设备的测量GAP重叠,存在冲突,终端设备不中断对数据的发送和接收,继续保持对PDCCH的监听,不去测量目标小区的信息,以保证对随机接入应答的接收。
此处,随机接入应答指的是两步随机接入中的MsgB,即针对随机接入请求(MsgA)的响应信息,包括针对随机接入前导的响应信息和针对上行数据的响应信息中的至少一种。
S505:所述网络设备发送随机接入应答,所述终端设备接收随机接入应答。
网络设备接收终端设备发送的包括随机接入前导和上行数据的随机接入请求后,生成针对随机接入前导的响应信息,所述响应信息中可以包括随机接入前导、TC-RNTI等参数,此时可能会出现网络设备为多个终端设备分配同一个TC-RNTI的情况,如果出现网络设备为多个终端设备分配同一个TC-RNTI的情况,网络设备根据上行数据中包含的终端设备标识,从分配同一个TC-RNTI的多个终端设备中,选择一个终端设备标识,通过TC-RNTI加扰,生成竞争解决消息,并将包括针对随机接入前导的响应信息的竞争解决消息发送给终端设备。
终端设备在随机接入应答接收窗接收到随机接入应答,如果根据随机接入应答中的TC-RNTI成功从竞争解决消息中解析出自身标识,即成功对随机接入应答中的TC-RNTI数据单元(serving data unit,SDU)进行解析,则表示随机接入成功,终端设备可以启动或重启非激活态定时器(DRX-inactive timer),继续监听PDCCH,每监听到一次PDCCH新的数据传输,重启一次DRX-inactive timer,直至DRX-inactive timer超时。
【实施例二】
在另一种可能的通信过程中,配置信息包括下行测量值与TA的映射关系,还包括下行测量值与定时提前量偏移(TA_offset)的映射关系,通信过程参见图6。
S601:网络设备发送配置信息,终端设备接收配置信息,所述配置信息包括下行测量值与TA的映射关系及下行测量值与TA_offset的映射关系。
S602:所述终端设备获得与所述网络设备之间的下行测量值。
S603:所述终端设备根据获得的下行测量值,确定目标TA和目标TA_offset。
S604:所述终端设备根据所述目标TA_offset对所述目标TA进行调整。
S605:终端设备根据所述目标TA,向所述网络设备发送随机接入请求,所述随机接入请求包括随机接入前导和上行数据。
S606:所述网络设备发送随机接入应答,所述终端设备接收随机接入应答。
不同于图5所示的通信过程,为了进一步细化TA,保证上行数据发送的可靠性,网络设备在配置信息中还引入了下行测量值与TA_offset的映射关系,用于终端设备根据获得的下行测量值确定目标TA_offset,对根据获得的下行测量值和下行测量值与TA的映射关系确定的目标TA进行调整。与下行测量值与TA的映射关系类似,下行测量值与TA_offset的映射关系也可以以下行测量值与TA_offset的映射关系式的方式表示,或下行测量值与TA_offset的映射表等方式表示。
以下行测量值为RSRP为例,下行测量值与TA_offset的映射关系式可以为TA_offset=U*RSRP+V,其中,U和V为根据在与网络设备不同的距离上,终端设备与网络设备之间的RSRP和对应的TA_offset,配置的参数。
仍以下行测量值为RSRP为例,下行测量值与TA_offset的映射关系表可以如下所示:
Figure PCTCN2020095128-appb-000002
表2
同样,如果下行测量值包括RSRP、RSRQ、SINR或者下行路损等中的多个时,以下行测量值包括RSRP、RSRQ、SINR和下行路损为例,下行测量值与TA_offset的映射关系式可以为TA=S*RSRP+T*RSRQ+W*SINR+X*XXLS+Y,其中,XXLS为下行路损,S、T、W、X、Y为根据在与网络设备不同的距离上,终端设备与网络设备之间的RSRP、RSRQ、SINR、下行路损和对应的TA_offset,配置的参数。如果下行测量值与TA_offset的映射关系以下行测量值与TA_offset的映射关系表的形式存在,则在下行测量值与TA_offset的映射关系表中记录有与每组可能的RSRP、RSRQ、SINR和下行路损存在映射的TA_offset。
在配置信息包括下行测量值与TA的映射关系及下行测量值与TA_offset的映射关系时,在进行随机接入前,终端设备通过下行测量获得与网络设备之间的下行测量值,根据测量获得的下行测量值和下行测量值与TA的映射关系,确定与测量获得的下行测量值对应的目标TA;并根据测量获得的下行测量值和下行测量值与TA_offset的映射关系,确定与测量获得的下行测量值对应的目标TA_offset,并通过目标TA_offset对目标TA进行调整。以下行测量值为RSBP,下行测量值与TA的映射关系如表1所示、下行测量值与TA_offset的映射关系如表2所示为例,终端设备通过下行测量获得的与网络设备之间的下行测量值为B 1,确定与B 1对应的目标TA为TA 21,与B 1对应的目标TA_offset为offset 21,终端设备通过offset 21对TA 21进行调整,得到随机接入应用的目标TA(TA 21+offset 21)。
在图6所示的通信过程中,关于配置信息的发送接收,及终端设备发送随机接入请求和接收网络设备发送的随机接入应答等可以参考图5所示的通信过程,重复之处不再进行赘述。
【实施例三】
在另一种可能的通信过程中,配置信息包括下行测量值与TA的映射关系,还包括随机接入请求重传次数与定时提前量增长步长(TA_Rampingstep)的映射关系,通信过程参见图7所示。
S701:网络设备发送配置信息,终端设备接收配置信息,所述配置信息包括下行测量值与TA的映射关系及随机接入请求重传次数与TA_Rampingstep的映射关系。
S702:所述终端设备获得与所述网络设备之间的下行测量值,并获得随机接入请求重 传次数。
S703:所述终端设备根据获得的下行测量值,确定目标TA;并根据获得的随机接入请求重传次数确定目标TA_Rampingstep。
S704:所述终端设备根据所述目标TA_Rampingstep对所述目标TA进行调整。
S705:终端设备根据所述目标TA,向所述网络设备发送随机接入请求,所述随机接入请求包括随机接入前导和上行数据。
S706:所述网络设备发送随机接入应答,所述终端设备接收随机接入应答。
不同于图5所示的通信过程,网络设备在配置信息中还引入了随机接入请求重传次数与TA_Rampingstep的映射关系,用于重传或重复发送随机接入请求时,根据随机接入请求重传次数与TA_Rampingstep的映射关系,对根据获得的下行测量值和下行测量值与TA的映射关系确定的目标TA进行调整。其中,在终端设备中包括计数模块/计数器(counter)用于记录随机接入请求重传次数,随机接入请求或上行数据每重传一次,counter的计数加1。
与下行测量值与TA的映射关系类似,随机接入请求重传次数与TA_Rampingstep的映射关系,也可以以随机接入请求重传次数与TA_Rampingstep映射关系式的方式表示,或随机接入请求重传次数与TA_Rampingstep映射关系表的方式表示。随机接入请求重传次数与TA_Rampingstep的映射关系式可以为TA_Rampingstep=I*counter+J,其中counter为随机接入请求重传次数,I、J配置的定时提前量增长步长调整参数。随机接入请求重传次数与TA_Rampingstep的映射关系表可以如下所示:
counter TA_Rampingstep
0 step 0
1 step 1
2 Step 2
…… ……
n step n
表3
在表1中counter为随机接入请求重传次数,当counter的值为0时,表示当前未进行过随机接入请求重传,可以将step 0设置为0。具体在配置信息包括下行测量值与TA的映射关系及随机接入请求重传次数与TA_Rampingstep映射关系时,在进行随机接入前,终端设备可以首先判断是否为重传随机接入请求,如果是,终端设备通过下行测量获得与网络设备之间的下行测量值及随机接入请求重传次数,根据测量获得的下行测量值和下行测量值与TA的映射关系,确定与测量获得的下行测量值对应的目标TA;并根据获得的随机接入请求重传次数和随机接入请求重传次数与TA_Rampingstep映射关系,确定与获得的随机接入请求重传次数对应的目标TA_Rampingstep,并通过目标TA_Rampingstep对目标TA进行调整。以下行测量值为RSBP,下行测量值与TA的映射关系如表1所示,随机接入请求重传次数与TA_Rampingstep映射关系如表3所示为例,终端设备获得的随机接入请求重传次数为2,通过下行测量获得的与网络设备之间的下行测量值为B 1,确定与B 1对应的目标TA为TA 21,与2对应的目标TA_Rampingstep为step 2,终端设备通过step 2对TA 21进行调整,得到随机接入应用的目标TA(TA 21+step 2)。
当然了,在配置信息中包括下行测量值与TA的映射关系的基础上,网络设备还可以 同时引入下行测量值与TA_offset的映射关系、随机接入请求重传次数与TA_Rampingstep的映射关系,用于对TA进行调整。以下行测量值为RSBP,下行测量值与TA的映射关系如表1所示、下行测量值与TA_offset的映射关系如表2所示、随机接入请求重传次数与TA_Rampingstep映射关系如表3所示为例,终端设备获得的随机接入请求重传次数为2,通过下行测量获得的与网络设备之间的下行测量值为B 1,确定与B 1对应的目标TA为TA 21,与B 1对应的目标TA_offset为offset 21,与2对应的目标TA_Rampingstep为step 2,得到随机接入应用的目标TA(TA 21+offset 21+step 2)。
为了保证随机接入的效果,终端设备还可以对当前应用的随机接入类型(RACH type)是否满足随机接入类型切换的条件进行检测,在确定当前应用的随机接入类型满足切换条件时,切换应用的随机接入类型,以保证随机接入的可靠性。其中,终端设备确定当前应用的随机接入类型满足切换条件为以下至少一项:(1)终端设备在当前应用的随机接入类型上发起随机接入请求的次数大于第一阈值;(2)终端设备切换到与当前应用的随机接入类型不符的波束和/或带宽和/或载波;(3)终端设备在当前应用的随机接入类型上发起随机接入请求连续失败的次数大于第二阈值;(4)终端设备确定下行测量值大于第三阈值或小于第四阈值。
其中,所述第一阈值、第二阈值、第三阈值、第四阈值,及与随机接入类型相符的波束和/或带宽和/或载波等,如四步随机接入相符的波束和/或带宽和/或载波、与两步随机接入相符的波束和/或带宽和/或载波,可以由网络设备通过广播或者组播消息,或者通过终端设备专用的RRC消息等方式发送给终端设备,也可以由协议预先规定。
另外,为了避免不必要的随机接入失败的问题,终端设备还可以在切换随机接入类型后,对随机接入参数进行初始化,所述随机接入参数包括发起随机接入请求的次数、功率爬坡的次数、PUSCH payload缓存(buffer)、Msg3 buffer中的一种或多种。
参照图8所示,假设终端设备当前应用的随机接入类型为两步随机接入,终端设备在两步随机接入满足切换条件时,如在两步随机接入上发起随机接入请求的次数大于第一阈值,或在两步随机接入上发起随机接入请求连续失败的次数大于第二阈值时,确定两步随机接入满足切换条件,由两步随机接入切换到四步随机接入,在网络设备配置的四步随机接入的资源上发起随机接入,以保证随机接入的效果。同时终端设备在由两步随机接入切换到四步随机接入后,将保存的随机接入参数进行初始化,以避免切换后终端设备在进行四步随机接入时,因应用终端设备保存的两步随机接入的随机接入参数出现错误。
上述主要网络设备和终端设备之间交互的角度对本申请提供的方案进行了介绍。可以理解的是,为了实现上述功能,各网元包括了执行各个功能相应的硬件结构和/或软件模块(或单元)。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在采用集成的单元(模块)的情况下,图9示出了本申请实施例中所涉及的一种通信装置的可能的示例性框图,该装置900可以以软件的形式存在。装置900可以包括:处理单元902和收发单元903。处理单元902用于对装置900的动作进行控制管理。收发单元903用于支持装置900与其他网络实体的通信。可选地,收发单元903可以包括接收单元 和/或发送单元,分别用于执行接收和发送操作。装置900还可以包括存储单元901,用于存储装置900的程序代码和/或数据。
该装置900可以为上述任一实施例中的终端设备、或者还可以为设置在终端设备中的半导体芯片。处理单元902可以支持装置900执行上文中各方法示例中终端设备的动作。或者,处理单元902主要执行方法示例中的终端设备内部动作,收发单元903可以支持装置900与网络设备之间的通信。
具体地,在一个可能的实施例中,收发单元903,用于接收配置信息,所述配置信息包括下行测量值与定时提前量TA的映射关系;处理单元902,用于获得下行测量值;所述处理单元902,还用于根据获得的下行测量值,确定目标TA。
在一种可能的设计中,如果所述配置信息还包括下行测量值与定时提前量偏移TA_offset的映射关系,所述处理单元902在确定目标TA之后,还用于根据获得的下行测量值,确定目标TA_offset;根据所述目标TA_offset对所述目标TA进行调整。
在一种可能的设计中,如果所述配置信息还包括随机接入请求重传次数与定时提前量增长步长TA_Rampingstep的映射关系,所述处理单元902在确定目标TA之后,还用于获得随机接入重传次数;根据获得的随机接入重传次数,确定目标TA_Rampingstep;根据所述目标TA_Rampingstep对所述目标TA进行调整。
在一种可能的设计中,所述下行测量值与TA的映射关系,包括:所述下行测量值与预定义测量门限之间的差值与TA的映射关系。
在一种可能的设计中,所述下行测量值包括以下中的一个或多个:
参考信号接收功率RSRP;或,
参考信号接收质量RSRQ;或,
参考信号信干噪比SINR;或,
下行路损。
在一种可能的设计中,所述收发单元903,还用于根据所述目标TA,发送随机接入请求,所述随机接入请求包括随机接入前导preamble和上行数据。
在一种可能的设计中,所述收发单元903,还用于接收随机接入应答;
所述处理单元902,还用于在成功解析所述随机应答中的临时小区无线网络临时标识数据单元TC-RNTI SDU时,启动或重启非激活态定时器DRX-inactive timer。
在一种可能的设计中,所述收发单元903的不连续接收C-DRX激活期包括随机接入应答接收窗。
在一种可能的设计中,如果所述随机接入应答接收窗与所述收发单元903的测量间隙GAP重叠,所述收发单元903监听物理下行控制信道PDCCH。
在一种可能的设计中,所述处理单元902,还用于在确定当前应用的随机接入类型满足切换条件时,切换应用的随机接入类型。
在一种可能的设计中,所述处理单元902在以下条件中的至少一项满足时,确定当前应用的随机接入类型满足切换条件:
在当前应用的随机接入类型上发起随机接入请求的次数大于第一阈值;
切换到与当前应用的随机接入类型不符的波束和/或带宽和/或载波;
在当前应用的随机接入类型上发起随机接入请求连续失败的次数大于第二阈值;
下行测量值大于第三阈值或小于第四阈值。
在一种可能的设计中,所述处理单元902,还用于对随机接入参数进行初始化,所述随机接入参数包括发起随机接入请求的次数、功率爬坡的次数、物理上行共享信道有效载荷PUSCH payload缓存buffer、Msg3 buffer中的一种或多种。
如图10所示,本申请实施例还提供一种终端设备1000,该终端设备1000包括处理器1010,存储器1020与收发器1030,其中,存储器1020中存储指令或程序,存储器1020用于实现上述实施例中存储单元901的功能。处理器1010用于执行存储器1020中存储的指令或程序。存储器1020中存储的指令或程序被执行时,该处理器1010用于执行上述实施例中处理单元902执行的操作,收发器1030用于执行上述实施例中收发单元903执行的操作。
应理解,根据本申请实施例的终端设备900或终端设备1000可对应于本申请实施例的通信方法(图5至图8)中的终端设备,并且终端设备900或终端设备1000中的各个模块的操作和/或功能分别为了实现图5至图8中的各个方法的相应流程,为了简洁,在此不再赘述。
在采用集成的单元(模块)的情况下,图11示出了本申请实施例中所涉及的又一种装置的可能的示例性框图,该装置1100可以以软件的形式存在。装置1100可以包括:处理单元1102和收发单元1103。处理单元1102用于对装置1100的动作进行控制管理。收发单元1103用于支持装置1100与其他网络实体的通信。可选地,收发单元1103可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。装置1100还可以包括存储单元1101,用于存储装置1100的程序代码和/或数据。
该装置1100可以为上述任一实施例中的网络设备(比如,网络设备为实施例一中的网络设备)、或者还可以为设置在网络设备中的半导体芯片。处理单元1102可以支持装置1100执行上文中各方法示例中网络设备的动作。或者,处理单元1102主要执行方法示例中的网络设备内部动作,收发单元1103可以支持装置1100与终端设备之间的通信。
具体地,在一个实施例中,处理单元1102,用于获得配置信息,所述配置信息包括下行测量值与定时提前量TA的映射关系;收发单元1103,用于发送所述配置信息。
在一种可能的设计中,所述配置信息还包括:
下行测量值与定时提前量偏移TA_offset的映射关系。
在一种可能的设计中,所述配置信息还包括:
随机接入请求重传次数与定时提前量增长步长TA_Rampingstep的映射关系。
在一种可能的设计中,所述下行测量值与TA的映射关系,包括:
所述下行测量值与预定义测量门限之间的差值与TA的映射关系。
如图12所示,本申请实施例还提供一种网络设备1200,该网络设备1200包括处理器1210,存储器1220与收发器1230,其中,存储器1220中存储指令或程序,存储器1220用于实现上述实施例中存储单元1101的功能。处理器1210用于执行存储器1220中存储的指令或程序。存储器1220中存储的指令或程序被执行时,该处理器1210用于执行上述实施例中处理单元1102执行的操作,收发器1230用于执行上述实施例中收发单元1103执行的操作。
应理解,根据本申请实施例的网络设备1100或网络设备1200可对应于本申请实施例的通信方法(图5至图8)中的网络设备,并且网络设备1100或网络设备1200中的各个模块的操作和/或功能分别为了实现图5至图8中的各个方法的相应流程,为了简洁,在此 不再赘述。
本申请实施例还提供一种通信装置,该通信装置可以是终端设备也可以是电路。该通信装置可以用于执行上述方法实施例中由终端设备所执行的动作。
当该通信装置为终端设备时,图13示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图13中,终端设备以手机作为例子。如图13所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图13中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元(或通信单元),将具有处理功能的处理器视为终端设备的处理单元。如图13所示,终端设备包括收发单元1310和处理单元1320。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1310中用于实现接收功能的器件视为接收单元,将收发单元1310中用于实现发送功能的器件视为发送单元,即收发单元1310包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1310用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1320用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元1310用于执行图5的S501、S504、S505中终端设备侧的发送和接收操作,和/或收发单元1310还用于执行本申请实施例中终端设备侧的其他收发步骤。处理单元1320,用于执行图5中的S502、S503,和/或处理单元1320还用于执行本申请实施例中终端设备侧的其他处理步骤。
再例如,在另一种实现方式中,收发单元1310用于执行图6的S601、S605、S606中终端设备侧的发送操作,和/或收发单元1310还用于执行本申请实施例中终端设备侧的其他收发步骤。处理单元1320用于执行图6中的S602、S603、S604,和/或处理单元1320还用于执行本申请实施例中终端设备侧的其他处理步骤。
又例如,在再一种实现方式中,收发单元1310用于执行图7的S701、S705、S706中终端设备侧的发送操作,和/或收发单元1310还用于执行本申请实施例中终端设备侧的其他收发步骤。处理单元1320用于执行图7中的S702、S703、S704,和/或处理单元1320 还用于执行本申请实施例中终端设备侧的其他处理步骤。
当该通信装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
本实施例中的通信装置为终端设备时,可以参照图14所示的设备。作为一个例子,该设备可以完成类似于图10中处理器1010的功能。在图14中,该设备包括处理器1410,发送数据处理器1420,接收数据处理器1430。上述实施例中的处理单元902可以是图14中的该处理器1410,并完成相应的功能。上述实施例中的收发单元903可以是图14中的发送数据处理器1420,和/或接收数据处理器1430。虽然图14中示出了信道编码器、调制器、符号生成模块、信道解码器、解调器、信道估计模块,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图15示出本实施例的另一种形式。处理装置1500中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信装置可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器1503,接口1504。其中处理器1503完成上述处理单元902的功能,接口1504完成上述收发单元903的功能。作为另一种变形,该调制子系统包括存储器1506、处理器1503及存储在存储器1506上并可在处理器上运行的程序,该处理器1503执行该程序时实现上述方法实施例中终端设备侧的方法。需要注意的是,所述存储器1506可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置1500中,只要该存储器1506可以连接到所述处理器1503即可。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有指令,该指令被执行时可以执行上述方法实施例中终端设备侧的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时可以执行上述方法实施例中终端设备侧的方法。
本实施例中的装置为网络设备时,该网络设备可以如图16所示,装置1600包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1610和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1620。所述RRU 1610可以称为收发单元,与图11中的收发单元1103对应,可选地,该收发单元还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1611和射频单元1612。所述RRU 1610部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送配置信息。所述BBU 1620部分主要用于进行基带处理,对基站进行控制等。所述RRU 1610与BBU 1620可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1620为基站的控制中心,也可以称为处理模块,可以与图11中的处理单元1102对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 1620可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1620还包括存储器1621和处理器1622。所述存储器1621用以存储必要的指令和数据。所述处理器1622用于控制基站进行必要的动作,例 如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器1621和处理器1622可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有指令,该指令被执行时可以执行上述方法实施例中网络设备侧的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时可以执行上述方法实施例中网络设备侧的方法。
在实现过程中,本实施例提供的方法中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合;也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
可以理解,本申请实施例中的存储器或存储单元可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征对本申请实施例进行了描述,显而易见的,在不脱离本申请实施例的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请实施例的示例性说明,且视为已覆盖本申请实施例范围内的任意和所有修改、变化、组合或等同物。

Claims (37)

  1. 一种通信方法,其特征在于,包括:
    通信设备接收配置信息,所述配置信息包括下行测量值与定时提前量TA的映射关系;
    所述通信设备获得下行测量值;
    所述通信设备根据获得的下行测量值,确定目标TA。
  2. 如权利要求1所述的方法,其特征在于,如果所述配置信息还包括下行测量值与定时提前量偏移TA_offset的映射关系,所述通信设备确定目标TA之后,还包括:
    所述通信设备根据获得的下行测量值,确定目标TA_offset;
    所述通信设备根据所述目标TA_offset对所述目标TA进行调整。
  3. 如权利要求1或2所述的方法,其特征在于,如果所述配置信息还包括随机接入请求重传次数与定时提前量增长步长TA_Rampingstep的映射关系,所述通信设备确定目标TA之后,还包括:
    所述通信设备获得随机接入重传次数;
    所述通信设备根据获得的随机接入重传次数,确定目标TA_Rampingstep;
    所述通信设备根据所述目标TA_Rampingstep对所述目标TA进行调整。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述下行测量值与TA的映射关系,包括:
    所述下行测量值与预定义测量门限之间的差值与TA的映射关系。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述下行测量值包括以下中的一个或多个:
    参考信号接收功率RSRP;或,
    参考信号接收质量RSRQ;或,
    参考信号信干噪比SINR;或,
    下行路损。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    所述通信设备根据所述目标TA,发送随机接入请求,所述随机接入请求包括随机接入前导preamble和上行数据。
  7. 如权利要求6所述的方法,其特征在于,所述方法还包括:
    所述通信设备接收随机接入应答;
    所述通信设备在成功解析所述随机应答中的临时小区无线网络临时标识数据单元TC-RNTI SDU时,启动或重启非激活态定时器DRX-inactive timer。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述通信设备的不连续接收C-DRX激活期包括随机接入应答接收窗。
  9. 如权利要求8所述的方法,其特征在于,如果所述随机接入应答接收窗与所述通信设备的测量间隙GAP重叠,所述通信设备监听物理下行控制信道PDCCH。
  10. 如权利要求1-9任一项所述的方法,其特征在于,所述方法还包括:
    所述通信设备在确定当前应用的随机接入类型满足切换条件时,切换应用的随机接入类型。
  11. 如权利要求10所述的方法,其特征在于,所述通信设备在以下条件中的至少一项 满足时,确定当前应用的随机接入类型满足切换条件:
    所述通信设备在当前应用的随机接入类型上发起随机接入请求的次数大于第一阈值;
    所述通信设备切换到与当前应用的随机接入类型不符的波束和/或带宽和/或载波;
    所述通信设备在当前应用的随机接入类型上发起随机接入请求连续失败的次数大于第二阈值;
    所述通信设备确定下行测量值大于第三阈值或小于第四阈值。
  12. 如权利要求10所述的方法,其特征在于,所述方法还包括:
    对随机接入参数进行初始化,所述随机接入参数包括发起随机接入请求的次数、功率爬坡的次数、物理上行共享信道有效载荷PUSCH payload缓存buffer、Msg3 buffer中的一种或多种。
  13. 一种通信方法,其特征在于,包括:
    网络设备发送配置信息,所述配置信息包括下行测量值与定时提前量TA的映射关系。
  14. 如权利要求13所述的方法,其特征在于,所述配置信息还包括:
    下行测量值与定时提前量偏移TA_offset的映射关系。
  15. 如权利要求13或14所述的方法,其特征在于,所述配置信息还包括:
    随机接入请求重传次数与定时提前量增长步长TA_Rampingstep的映射关系。
  16. 如权利要求13-15任一项所述的方法,其特征在于,所述下行测量值与TA的映射关系,包括:
    所述下行测量值与预定义测量门限之间的差值与TA的映射关系。
  17. 一种通信装置,其特征在于,包括:
    收发单元,用于接收配置信息,所述配置信息包括下行测量值与定时提前量TA的映射关系;
    处理单元,用于获得下行测量值;
    所述处理单元,还用于根据获得的下行测量值,确定目标TA。
  18. 如权利要求17所述的装置,其特征在于,如果所述配置信息还包括下行测量值与定时提前量偏移TA_offset的映射关系,所述处理单元在确定目标TA之后,还用于根据获得的下行测量值,确定目标TA_offset;根据所述目标TA_offset对所述目标TA进行调整。
  19. 如权利要求17或18所述的装置,其特征在于,如果所述配置信息还包括随机接入请求重传次数与定时提前量增长步长TA_Rampingstep的映射关系,所述处理单元在确定目标TA之后,还用于获得随机接入重传次数;根据获得的随机接入重传次数,确定目标TA_Rampingstep;根据所述目标TA_Rampingstep对所述目标TA进行调整。
  20. 如权利要求17-19任一项所述的装置,其特征在于,所述下行测量值与TA的映射关系,包括:
    所述下行测量值与预定义测量门限之间的差值与TA的映射关系。
  21. 如权利要求17-20任一项所述的装置,其特征在于,所述下行测量值包括以下中的一个或多个:
    参考信号接收功率RSRP;或,
    参考信号接收质量RSRQ;或,
    参考信号信干噪比SINR;或,
    下行路损。
  22. 如权利要求17-21任一项所述的装置,其特征在于,所述收发单元,还用于根据所述目标TA,发送随机接入请求,所述随机接入请求包括随机接入前导preamble和上行数据。
  23. 如权利要求22所述的装置,其特征在于,所述收发单元,还用于接收随机接入应答;
    所述处理单元,还用于在成功解析所述随机应答中的临时小区无线网络临时标识数据单元TC-RNTI SDU时,启动或重启非激活态定时器DRX-inactive timer。
  24. 如权利要求17-23任一项所述的装置,其特征在于,所述收发单元的不连续接收C-DRX激活期包括随机接入应答接收窗。
  25. 如权利要求24所述的装置,其特征在于,如果所述随机接入应答接收窗与所述收发单元的测量间隙GAP重叠,所述收发单元监听物理下行控制信道PDCCH。
  26. 如权利要求17-25任一项所述的装置,其特征在于,所述处理单元,还用于在确定当前应用的随机接入类型满足切换条件时,切换应用的随机接入类型。
  27. 如权利要求26所述的装置,其特征在于,所述处理单元在以下条件中的至少一项满足时,确定当前应用的随机接入类型满足切换条件:
    在当前应用的随机接入类型上发起随机接入请求的次数大于第一阈值;
    切换到与当前应用的随机接入类型不符的波束和/或带宽和/或载波;
    在当前应用的随机接入类型上发起随机接入请求连续失败的次数大于第二阈值;
    下行测量值大于第三阈值或小于第四阈值。
  28. 如权利要求26所述的装置,其特征在于,所述处理单元,还用于对随机接入参数进行初始化,所述随机接入参数包括发起随机接入请求的次数、功率爬坡的次数、物理上行共享信道有效载荷PUSCH payload缓存buffer、Msg3 buffer中的一种或多种。
  29. 一种通信装置,其特征在于,包括:
    处理单元,用于获得配置信息,所述配置信息包括下行测量值与定时提前量TA的映射关系;
    收发单元,用于发送所述配置信息。
  30. 如权利要求29所述的装置,其特征在于,所述配置信息还包括:
    下行测量值与定时提前量偏移TA_offset的映射关系。
  31. 如权利要求29或30所述的装置,其特征在于,所述配置信息还包括:
    随机接入请求重传次数与定时提前量增长步长TA_Rampingstep的映射关系。
  32. 如权利要求29-31任一项所述的装置,其特征在于,所述下行测量值与TA的映射关系,包括:
    所述下行测量值与预定义测量门限之间的差值与TA的映射关系。
  33. 一种通信装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其特征在于,所述处理器执行所述程序时实现权利要求1至12中任一项所述的通信方法。
  34. 一种通信装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其特征在于,所述处理器执行所述程序时实现权利要求13至16中任一项所述的通信方法。
  35. 一种计算机可读存储介质,其上存储有指令,其特征在于,该指令被执行时执行权利要求1至12中任一项所述方法。
  36. 一种计算机可读存储介质,其上存储有指令,其特征在于,该指令被执行时执行权利要求13至16中任一项所述方法。
  37. 一种通信系统,其特征在于,包括权利要求17-28之一的通信装置,以及权利要求29-32之一的通信装置。
PCT/CN2020/095128 2019-07-22 2020-06-09 一种通信方法及装置 WO2021012822A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910661809.1A CN112291842A (zh) 2019-07-22 2019-07-22 一种通信方法及装置
CN201910661809.1 2019-07-22

Publications (1)

Publication Number Publication Date
WO2021012822A1 true WO2021012822A1 (zh) 2021-01-28

Family

ID=74192512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095128 WO2021012822A1 (zh) 2019-07-22 2020-06-09 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN112291842A (zh)
WO (1) WO2021012822A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023245499A1 (zh) * 2022-06-22 2023-12-28 北京小米移动软件有限公司 一种发送接收点trp的配置方法、装置、设备及存储介质
CN115835296B (zh) * 2022-11-23 2023-08-15 上海山源电子科技股份有限公司 针对5g网络的信息干扰处理方法、装置、设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016168024A1 (en) * 2015-04-14 2016-10-20 Qualcomm Incorporated Random access for low latency wireless communications
CN107666679A (zh) * 2016-07-27 2018-02-06 中兴通讯股份有限公司 一种通信网络中校准定位算法参数的方法及装置
CN108471593A (zh) * 2017-02-23 2018-08-31 普天信息技术有限公司 一种基于lte系统的静态定位方法和装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1976528A (zh) * 2006-12-15 2007-06-06 北京中星微电子有限公司 一种获得路径损耗误差的方法及装置
CN101646251B (zh) * 2008-08-07 2012-07-18 中兴通讯股份有限公司 随机接入过程和测量间隙冲突的处理方法
CN101883423B (zh) * 2009-05-07 2012-07-04 电信科学技术研究院 一种确定终端的位置信息的方法、系统和装置
CN102740447B (zh) * 2011-04-13 2016-05-25 华为技术有限公司 确定定时提前量的方法、终端设备和网络侧设备
WO2016019895A1 (en) * 2014-08-08 2016-02-11 Mediatek Inc. User equipment and timing advance value updating method thereof
CN106941397B (zh) * 2016-01-04 2020-04-24 中兴通讯股份有限公司 在非授权频段上通信的方法和装置
US10631319B2 (en) * 2016-06-15 2020-04-21 Convida Wireless, Llc Grant-less uplink transmission for new radio
CN107801240A (zh) * 2016-09-07 2018-03-13 中兴通讯股份有限公司 一种发送、接收定时提前量的方法和装置
CN108377504B (zh) * 2016-11-18 2020-02-07 北京佰才邦技术有限公司 一种非随机接入切换的增强方法、装置、基站及终端
CN109392076A (zh) * 2017-08-10 2019-02-26 中国电信股份有限公司 用于实现快速随机接入的方法、装置和系统
KR102460782B1 (ko) * 2018-01-10 2022-10-31 삼성전자 주식회사 차세대 이동통신 시스템에서 시스템 정보 요청 시 효율적으로 단말 동작을 수행하는 방법 및 장치
CN109274442B (zh) * 2018-09-30 2021-06-22 京信通信系统(中国)有限公司 重传次数配置方法、装置、基站及系统
CN109788548B (zh) * 2019-02-19 2020-06-12 上海交通大学 时间提前补偿的卫星移动通信随机接入方法、系统及介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016168024A1 (en) * 2015-04-14 2016-10-20 Qualcomm Incorporated Random access for low latency wireless communications
CN107666679A (zh) * 2016-07-27 2018-02-06 中兴通讯股份有限公司 一种通信网络中校准定位算法参数的方法及装置
CN108471593A (zh) * 2017-02-23 2018-08-31 普天信息技术有限公司 一种基于lte系统的静态定位方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on the preconfigured UL resource", 3GPP TSG-RAN WG4 MEETING #90BIS; R4-1903672 DISCUSSION ON THE PRECONFIGURED UL RESOURCE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 1 April 2019 (2019-04-01), Xi’an, China; 20190408 - 20190412, XP051714072 *
SIERRA WIRELESS: "LTE-M Pre-configured UL Resources Design Considerations", GPP TSG RAN WG1 MEETING #97 ; R1-1906460 LTE-M PUR, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 13 May 2019 (2019-05-13), Reno, USA; 20190513 - 20190517, XP051727910 *

Also Published As

Publication number Publication date
CN112291842A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
US11303343B2 (en) Method, terminal device, and network device for beam failure management and beam recovery
US11523361B2 (en) Method, terminal device and network device for time advance adjustment
US20230103652A1 (en) Method for determining timing advance (ta), network device, and terminal
WO2020200134A1 (zh) 一种随机接入方法及通信装置
WO2021051364A1 (zh) 一种通信方法、装置及设备
US20220417985A1 (en) Communication method and apparatus
WO2021179895A1 (zh) 一种通信方法及装置
US20230063450A1 (en) Positioning Capabilities of Reduced Capability New Radio Devices
WO2020215922A1 (zh) 直流分量的频域位置的确定方法及装置、存储介质、终端、基站
TW201947975A (zh) 訊息確定方法、終端設備和網路設備
US20220217034A1 (en) Communication method and apparatus
WO2020191679A1 (zh) 随机接入方法、终端设备和网络设备
WO2022027521A1 (zh) 上行信号的发送和接收方法以及装置
WO2021012822A1 (zh) 一种通信方法及装置
WO2020172777A1 (zh) 随机接入的方法和设备
WO2021109039A1 (zh) 一种通信方法、装置及设备
WO2021077343A1 (zh) 无线通信方法和终端设备
WO2022078472A1 (en) Method of propagation delay compensation and related devices
WO2022151066A1 (zh) 一种通信方法及装置
WO2021134792A1 (zh) 一种下行传输质量检测的评估时长确定方法及装置
WO2021062796A1 (zh) 一种通信方法及装置
WO2021062825A1 (zh) 发送或接收反馈信息的方法和装置
WO2021142800A1 (zh) 通信方法及装置
WO2023035991A1 (zh) 一种资源配置方法及装置
WO2022151266A1 (zh) 一种媒体接入访问mac信令适用时间的确定方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844356

Country of ref document: EP

Kind code of ref document: A1