WO2021179895A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021179895A1
WO2021179895A1 PCT/CN2021/077241 CN2021077241W WO2021179895A1 WO 2021179895 A1 WO2021179895 A1 WO 2021179895A1 CN 2021077241 W CN2021077241 W CN 2021077241W WO 2021179895 A1 WO2021179895 A1 WO 2021179895A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
terminal device
resource
bandwidth
message
Prior art date
Application number
PCT/CN2021/077241
Other languages
English (en)
French (fr)
Inventor
张向东
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21767363.1A priority Critical patent/EP4114118A4/en
Publication of WO2021179895A1 publication Critical patent/WO2021179895A1/zh
Priority to US17/940,471 priority patent/US20230007698A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and device.
  • a terminal device To communicate with a network device, a terminal device needs to first access the network device through a random access process. In the random access process, the first terminal device needs to send a third message (Msg3) to the network device.
  • Msg3 the band used to carry Msg3 resources may reach the bandwidth of the initial BWP.
  • the bandwidth of the initial bandwidth part (initial bandwidth part, initial BWP) is configured through a system information block (SIB) (for example, SIB1), and is generally configured to be relatively large, such as 20M.
  • SIB system information block
  • NR light terminal devices such as new radio (NR) light terminal devices, or redced capability (REDCAP).
  • REDCAP redced capability
  • the bandwidth may be limited.
  • the maximum supported bandwidth may be 5M or 10M.
  • the channel bandwidth of the terminal device may be less than the bandwidth of the initial BWP. If the bandwidth of the resource used to carry Msg3 is greater than the channel bandwidth of the terminal device, the terminal device cannot send Msg3 to the network device, which will cause the terminal device to fail to complete random access .
  • the embodiments of the present application provide a communication method and device, which are used to improve the success rate of random access of a first terminal device.
  • a first communication method comprising: determining a first resource; sending a first random access message on the first resource, wherein the bandwidth of the first resource is less than or equal to the first terminal device
  • the channel bandwidth of the first terminal device is less than or equal to the channel bandwidth of the second terminal device, the channel bandwidth of the second terminal device is greater than or equal to the first bandwidth, and the first bandwidth is configured by the network device .
  • the method may be executed by a first communication device, and the first communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip.
  • the first communication device is a terminal device, or a chip set in the terminal device for realizing the function of the terminal device, or other component used for realizing the function of the terminal device.
  • the first communication device is the first terminal device.
  • the first terminal device when the first terminal device sends the first random access message, it may determine a resource with a bandwidth less than or equal to the channel bandwidth of the first terminal device as the first resource.
  • the first random access message is, for example, Msg3 or MsgA. If the bandwidth of the first resource is supported by the first terminal device, the first terminal device can send Msg3 or MsgA normally.
  • the technical solutions provided in the embodiments of this application can be used to complete the transmission of Msg3 or MsgA. Therefore, the technical solutions provided in the embodiments of this application can improve the terminal device's ability to complete random access. Success rate.
  • the first resource is a part of a second resource, wherein the second resource is used by the second terminal device to send a first random access message, and the second resource The bandwidth of is less than or equal to the first bandwidth.
  • the second resource may include one or more resources, and the bandwidth of the second resource is less than or equal to the channel bandwidth of the second terminal device means that the bandwidth of each resource in the one or more resources is less than or equal to the second resource.
  • the channel bandwidth of the terminal device For example, there are 5 resources available for the terminal device to send the first random access message, and these 5 resources belong to the second resource. Among the five resources, the bandwidth of each of the two resources is less than or equal to the channel bandwidth of the first terminal device, and the first terminal device may select one of these two resources as the first resource.
  • the second resource can be selected to send the first random access message, or the first resource can be selected to send the first random access message.
  • the second terminal device can choose one of these 5 resources to send Random access to the first message, or one of these two resources can also be selected to send the random access first message. It is equivalent to that although the resource that can be selected by the first terminal device is set, it does not affect the resource selection of the second terminal device. For the second terminal device, the optional resources are not reduced, so that the resource efficiency can be improved. Utilization rate.
  • the method further includes:
  • the first random access message may be Msg3, and the first terminal device may send a random access request message to the network device in the third resource before sending Msg3 to the network device , The network device receives the random access request message from the first terminal device in the third resource.
  • the random access request message is, for example, Msg1, that is, preamble.
  • Msg3 is the initial transmission
  • the network device may send a random access response message to the first terminal device, and the first terminal device receives the random access response message from the network device.
  • the random access response message may schedule the first resource. In this way, the first terminal device can determine the first resource after receiving the random access response message.
  • the random access response message is, for example, Msg2, that is, RAR message.
  • the third resource may be a part of the fourth resource, and the fourth resource may be used for the second terminal device to send Msg1.
  • the bandwidth of the fourth resource can be less than or equal to the channel bandwidth of the second terminal device (here can refer to the uplink channel bandwidth of the second terminal device), and the bandwidth of the fourth resource can also be less than or equal to the bandwidth of the initial BWP (here can be Refers to the bandwidth of the initial upstream BWP).
  • the third resource is a random access resource corresponding to a first random access opportunity, the first random access opportunity is one of N random access opportunities, and each of the N random access opportunities
  • the bandwidth of the resource for sending the first random access message corresponding to the random access opportunity is less than or equal to the channel bandwidth of the first terminal device; or,
  • the third resource is one of M random access resources, and the bandwidth of the resource for sending the first random access message corresponding to each of the M random access resources is less than or equal to The channel bandwidth of the first terminal device; or,
  • the third resource is one of K random access resources, the K random access resources correspond to H random access opportunities, and the H random access opportunities belong to P random access opportunities, so
  • the bandwidth of the resource for sending the first random access message corresponding to each of the K random access resources is less than or equal to the channel bandwidth of the first terminal device;
  • N, M, K, H, and P are all integers greater than or equal to 1, and H is less than or equal to P.
  • corresponding resources for sending random access request messages can be preset (for example, these preset resources are called preset resources), and these presets are specified
  • the bandwidth of the resource for sending the first random access message corresponding to each resource in the resources is less than or equal to the channel bandwidth of the first terminal device (the channel bandwidth of the first terminal device may include the uplink channel bandwidth and the downlink channel bandwidth, This mainly refers to the uplink channel bandwidth of the first terminal device), that is, the bandwidth of the resource used to send the first random access message (for example, Msg3) corresponding to each resource in the preset resources is less than or equal to the first The channel bandwidth of the terminal device.
  • the network device After the network device receives the random access request message from the first terminal device, if it is determined that the random access resource used to send the random access request message belongs to the preset resource set in advance, the network device is the first terminal device When allocating resources for sending the first random access message, a resource with a bandwidth less than or equal to the channel bandwidth of the first terminal device can be selected. By presetting the resource for sending the random access request message, the resource scheduled by the network device for sending the first random access message can meet the capability requirements of the first terminal device, and the terminal device’s ability to receive random access is improved. The success rate of sending the first incoming message.
  • the method further includes:
  • the network device After the first terminal device is connected to the network device, it needs to communicate under the coverage of the network device.
  • the network device also needs to configure corresponding dedicated parameters for the first terminal device, so that the first terminal device can communicate on the network according to these dedicated parameters. Communication under the coverage of the device.
  • the network device may include the dedicated configuration information for configuring the dedicated parameters in the first downlink message and send it to the first terminal device, so that the first terminal device can obtain the dedicated configuration information.
  • the dedicated configuration information includes configuration information of a dedicated BWP, and the bandwidth of the dedicated BWP is less than or equal to the channel bandwidth of the first terminal device.
  • the dedicated configuration information may include the configuration information of the dedicated BWP.
  • the bandwidth of the dedicated BWP allocated by the network device to the first terminal device may be less than or equal to the bandwidth of the first terminal device, so that the bandwidth of the dedicated BWP can meet the requirements of the first terminal device. skill requirements.
  • the third resource is used to determine the dedicated parameter, and the third resource is used to send a random access request message; or,
  • the first resource is used to determine the dedicated parameter; or,
  • the first random access message includes first information, and the first information is used to determine the dedicated parameter; or,
  • the method further includes: sending a first uplink message to the network device, the first uplink message including first information, and the first information is used to determine the dedicated parameter;
  • the first information includes type information and/or service type information of the first terminal device, and the service is a service supported by the first terminal device.
  • the dedicated parameter allocated by the network device to the first terminal device may be a restricted configuration parameter.
  • the bandwidth of the dedicated BWP allocated to the first terminal device may be less than or equal to the bandwidth of the first terminal device.
  • the channel bandwidth of the device it can be considered that the network device determines the dedicated parameter of the first terminal device according to the third resource.
  • the dedicated parameter allocated by the network device to the first terminal device may be a restricted configuration parameter, for example, the bandwidth of the dedicated BWP allocated to the first terminal device may be Less than or equal to the channel bandwidth of the first terminal device. In this case, it can be considered that the network device determines the dedicated parameter of the first terminal device according to the first resource. In the above two cases, there is no need for the first terminal device to send additional information to the network device, and the network device can configure dedicated parameters for the first terminal device according to corresponding resources, which helps to save signaling overhead.
  • the first random access message may include the first information, and the network device may configure the dedicated parameter for the first terminal device according to the first information.
  • the first information indicates that the first terminal device is a first terminal device with limited bandwidth
  • the dedicated parameter configured by the network device for the first terminal device according to the first information may be a limited configuration parameter, such as the bandwidth of a dedicated BWP It may be less than or equal to the channel bandwidth of the first terminal device.
  • the first terminal device does not send the first information to the network device through the first random access message, but sends the first information to the network device through another message (the first uplink message), then the network device may also send the first information according to the first message
  • One piece of information configures dedicated parameters for the first terminal device.
  • the first terminal device can send the first information to the network device, and the network device can configure dedicated parameters for the first terminal device based on the first information, which can make the dedicated parameters configured by the network device more consistent with the first terminal Capability requirements of the equipment.
  • the third resource is a random access resource with adjusted subcarrier spacing, wherein the bandwidth of the third resource before the subcarrier spacing is adjusted is greater than that of the first terminal device. Channel bandwidth.
  • the random access resources on some random access opportunities can be adjusted.
  • the carrier spacing enables the adjusted random access resources to meet the requirements of bandwidth-constrained terminal devices.
  • the third resource may be a random access resource whose subcarrier interval has not been adjusted, or may also be a random access resource whose subcarrier interval has been adjusted. If the third resource is a random access resource with adjusted sub-carrier spacing, before adjusting the sub-carrier spacing of the third resource, the bandwidth of the third resource may be greater than the channel bandwidth of the first terminal device.
  • the terminal device with limited bandwidth may not support the third resource, but after adjusting the subcarrier interval, the terminal device with limited bandwidth can support the third resource.
  • the bandwidth-constrained terminal device can select more resources to send the random access request message, which expands the resource selection range of the bandwidth-constrained terminal device, and improves the success rate of resource selection.
  • the channel bandwidth of the first terminal device includes an uplink channel bandwidth and a downlink channel bandwidth
  • the method further includes:
  • the uplink channel bandwidth of the first terminal device is greater than or equal to the third bandwidth, and/or the downlink channel bandwidth of the first terminal device is greater than or equal to the second bandwidth, where the third bandwidth is used for The bandwidth for sending the random access request message in the first cell covered by the network device, and the second bandwidth is the bandwidth of the control resource set 0;
  • the first terminal device can access the first cell.
  • the bandwidth of the random access resource for which the first terminal device sends the random access request message is the third bandwidth, so as long as the uplink channel bandwidth of the first terminal device is greater than or equal to the third bandwidth, the first terminal device can send the random access request information.
  • the bandwidth at which the first terminal device receives the random access response is the bandwidth of CORESET#0, so as long as the downlink channel bandwidth of the first terminal device is greater than or equal to the second bandwidth, the first terminal device can receive the random access response message. As long as the first terminal device can send a random access request message in a cell, and/or can receive a random access response message in this cell, that is, it can access the cell.
  • the first terminal device determines that the uplink channel bandwidth of the first terminal device is greater than or equal to the third bandwidth, and/or determines that the downlink channel bandwidth of the first terminal device is greater than or equal to the second bandwidth, it can determine that the first terminal device can Access the first cell. In this way, the first terminal device does not need to make a judgment based on the bandwidth of the initial BWP, which increases the success rate of the terminal device with limited bandwidth in accessing the cell. Moreover, the conditions for the terminal equipment with limited bandwidth for cell selection are reduced, which increases the number of terminal equipment in the cell that can be accessed.
  • the method further includes:
  • the second bandwidth and the third bandwidth are determined according to the system message.
  • the second bandwidth and the third bandwidth may be configured through system messages, or may also be configured through other messages.
  • the bandwidth of the control resource set 0 is less than or equal to the first bandwidth.
  • the first bandwidth is, for example, the bandwidth of the initial BWP, and the bandwidth of the control resource set 0 may generally be less than or equal to the bandwidth of the initial BWP.
  • a second communication method comprising: receiving a first random access message from a first terminal device at a first resource, wherein the bandwidth of the first resource is less than or equal to the first terminal
  • the channel bandwidth of the device, the channel bandwidth of the first terminal device is less than or equal to the channel bandwidth of the second terminal device, the channel bandwidth of the second terminal device is greater than or equal to the first bandwidth
  • the first bandwidth is the network device configuration
  • the method may be executed by a second communication device, and the second communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip.
  • the second communication device is a network device, or a chip set in the network device for realizing the function of the network device, or other component used for realizing the function of the network device.
  • the second communication device is a network device.
  • the dedicated configuration information includes configuration information of a dedicated BWP, and the bandwidth of the dedicated BWP is less than or equal to the channel bandwidth of the first terminal device.
  • the method further includes: receiving a random access request message from the first terminal device at a third resource, where the dedicated parameter is determined according to the third resource; or,
  • the dedicated parameter is determined according to the first resource; or,
  • the first random access message includes first information, and the dedicated parameter is determined according to the first information; or,
  • the method further includes: receiving a first uplink message from the first terminal device, where the dedicated parameter is determined according to the first information included in the first uplink message;
  • the first information includes type information and/or service type information of the first terminal device, and the service is a service supported by the first terminal device.
  • the method further includes:
  • a random access request message from the first terminal device is received at a third resource, where the third resource is a part of a fourth resource, and the fourth resource is used to receive a random access request message from the second terminal device.
  • the method further includes:
  • the first configuration information is used to configure N random access opportunities, and the bandwidth of the resource for sending the first random access message corresponding to each of the N random access opportunities is less than or Equal to the channel bandwidth of the first terminal device; or,
  • the first configuration information is used to configure M random access resources, and the bandwidth of the resource for sending the first random access message corresponding to each of the M random access resources is less than or equal to The channel bandwidth of the first terminal device; or,
  • the first configuration information is used to configure K random access resources corresponding to H random access opportunities, the H random access opportunities belong to P random access opportunities, and among the K random access resources
  • the bandwidth of the resource for sending the first random access message corresponding to each random access resource is less than or equal to the channel bandwidth of the first terminal device;
  • N, M, K, H, and P are all integers greater than or equal to 1, and H is less than or equal to P.
  • corresponding resources for sending random access request messages can be preset (for example, these preset resources are called preset resources), and it is specified that each of these preset resources corresponds to
  • the bandwidth of the resource used to send the first random access message is less than or equal to the channel bandwidth of the first terminal device (the channel bandwidth of the first terminal device may include the uplink channel bandwidth and the downlink channel bandwidth, which mainly refers to the first terminal device That is, the bandwidth of the resource used to send the first random access message (such as Msg3) corresponding to each resource in the preset resources is less than or equal to the channel bandwidth of the first terminal device, and the first The configuration information can then be used to configure preset resources.
  • the network device can select a resource with a bandwidth less than or equal to the channel bandwidth of the first terminal device when allocating the resource for sending the first random access message to the first terminal device. In this way, the network equipment can allocate resources that meet the capability requirements of the terminal equipment to the terminal equipment with limited bandwidth, and improve the success rate of the terminal equipment sending the first random access message, which is also a corresponding increase in the random access of the terminal equipment. Success rate.
  • the method further includes:
  • the bandwidth of the second resource is less than or equal to the first bandwidth, and the first resource is a part of the second resource.
  • the network device may pre-configure G resources for the first terminal device.
  • the G resources belong to the second resource, for example, the bandwidth of each of the G resources is less than or equal to the channel bandwidth of the first terminal device, and G is greater than Or an integer equal to 1.
  • the first terminal device may select one resource from G resources as the first resource. In this way, the network device can configure the first terminal device with resources that meet the capability requirements of the first terminal device in advance, and the first terminal device needs to send the first random access message (for example, MsgA) from the configured resources.
  • MsgA the first random access message
  • a third communication method comprising: determining that the uplink channel bandwidth of the terminal device is greater than or equal to the third bandwidth, and/or the downlink channel bandwidth of the terminal device is greater than or equal to the second bandwidth, wherein, The third bandwidth is a bandwidth used to send a random access request message in the first cell, and the second bandwidth is a bandwidth of control resource set 0; it is determined that the terminal device can access the first cell.
  • the method may be executed by a third communication device, and the third communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip.
  • the third communication device is a terminal device, or a chip set in the terminal device for realizing the function of the terminal device, or other component used for realizing the function of the terminal device.
  • the third communication device is a terminal device.
  • the bandwidth of the random access resource for which the terminal device sends the random access request message is the third bandwidth, so as long as the uplink channel bandwidth of the terminal device is greater than or equal to the third bandwidth, the terminal device can send the random access request message.
  • the bandwidth at which the terminal device receives the random access response is the bandwidth of CORESET#0, so as long as the downlink channel bandwidth of the terminal device is greater than or equal to the second bandwidth, the terminal device can receive the random access response message. As long as the terminal device can send a random access request message in a cell, and/or can receive a random access response message in the cell, that is, it can access the cell.
  • the terminal device determines that the uplink channel bandwidth of the terminal device is greater than or equal to the third bandwidth, and/or determines that the downlink channel bandwidth of the terminal device is greater than or equal to the second bandwidth, it can determine that the terminal device can access the first bandwidth.
  • the third bandwidth is generally smaller than the bandwidth of the initial uplink BWP, and the second bandwidth is generally smaller than the bandwidth of the initial downlink BWP. Therefore, this embodiment of the application increases the success of the terminal devices with limited bandwidth in accessing the cell through this provision. Rate. Moreover, the conditions for the terminal equipment with limited bandwidth for cell selection are reduced, which increases the number of terminal equipment in the cell that can be accessed.
  • the method further includes:
  • the third bandwidth and the second bandwidth are determined according to the system message.
  • the system message can configure the second bandwidth, or configure the third bandwidth, or configure the second bandwidth and the third bandwidth.
  • the second bandwidth and/or the third bandwidth may also be configured through other messages.
  • the bandwidth of the control resource set 0 is less than or equal to the bandwidth of the initial BWP.
  • the bandwidth of control resource set 0 may generally be less than or equal to the bandwidth of the initial BWP. Of course it is not limited to this.
  • a communication device is provided, for example, the communication device is the first communication device as described above.
  • the first communication device is configured to execute the method in the foregoing first aspect or any possible implementation manner.
  • the first communication device may include a module for executing the method in the first aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the transceiver module may include a sending module.
  • the transceiver module may further include a receiving module, and the sending module and the receiving module may be different functional modules, or may be the same functional module, but can implement different functions.
  • the first communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a network device.
  • the first communication device is the first terminal device.
  • the transceiver module may also be implemented by a transceiver, and the processing module may also be implemented by a processor.
  • the sending module may be implemented by a transmitter, and the receiving module may be implemented by a receiver.
  • the transmitter and the receiver may be different functional modules, or may be the same functional module, but can implement different functions.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the transceiver (or transmitter and receiver) is, for example, a communication interface in the chip, and the communication interface is connected to the radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • the first communication device is the first terminal device, and the processing module, the sending module, and the receiving module are used as examples for the introduction. in,
  • the processing module is used to determine the first resource
  • the sending module is configured to send a first random access message on the first resource, where the bandwidth of the first resource is less than or equal to the channel bandwidth of the first terminal device, and the channel bandwidth of the first terminal device Less than or equal to the channel bandwidth of the second terminal device, the channel bandwidth of the second terminal device is greater than or equal to the first bandwidth, and the first bandwidth is configured by the network device.
  • the first resource is a part of a second resource, wherein the second resource is used by the second terminal device to send a first random access message, and the second resource The bandwidth of is less than or equal to the first bandwidth.
  • the sending module is further configured to send a random access request message on a third resource, the third resource is a part of the fourth resource, and the fourth resource is used for the second terminal device to send random access Request message
  • the receiving module is configured to receive a random access response message, where the random access response message is used to schedule the first resource.
  • the third resource is a random access resource corresponding to a first random access opportunity, the first random access opportunity is one of N random access opportunities, and each of the N random access opportunities
  • the bandwidth of the resource for sending the first random access message corresponding to the random access opportunity is less than or equal to the channel bandwidth of the first terminal device; or,
  • the third resource is one of M random access resources, and the bandwidth of the resource for sending the first random access message corresponding to each of the M random access resources is less than or equal to The channel bandwidth of the first terminal device; or,
  • the third resource is one of K random access resources, the K random access resources correspond to H random access opportunities, and the H random access opportunities belong to P random access opportunities, so
  • the bandwidth of the resource for sending the first random access message corresponding to each of the K random access resources is less than or equal to the channel bandwidth of the first terminal device;
  • N, M, K, H, and P are all integers greater than or equal to 1, and H is less than or equal to P.
  • the receiving module is further configured to receive a first downlink message from the network device, where the first downlink message includes dedicated configuration information of the first terminal device,
  • the dedicated configuration information is used to configure dedicated parameters.
  • the dedicated configuration information includes configuration information of a dedicated BWP, and the bandwidth of the dedicated BWP is less than or equal to the channel bandwidth of the first terminal device.
  • the third resource is used to determine the dedicated parameter, and the third resource is used to send a random access request message; or,
  • the first resource is used to determine the dedicated parameter; or,
  • the first random access message includes first information, and the first information is used to determine the dedicated parameter; or,
  • the sending module is further configured to send a first uplink message to the network device, where the first uplink message includes first information, and the first information is used to determine the dedicated parameter;
  • the first information includes type information and/or service type information of the first terminal device, and the service is a service supported by the first terminal device.
  • the third resource is a random access resource with adjusted subcarrier spacing, wherein the bandwidth of the third resource before the subcarrier spacing is adjusted is greater than that of the first terminal device. Channel bandwidth.
  • the channel bandwidth of the first terminal device includes an uplink channel bandwidth and a downlink channel bandwidth
  • the processing module is further configured to:
  • the uplink channel bandwidth of the first terminal device is greater than or equal to the third bandwidth, and/or the downlink channel bandwidth of the first terminal device is greater than or equal to the second bandwidth, where the third bandwidth is used for The bandwidth for sending the random access request message in the first cell covered by the network device, and the second bandwidth is the bandwidth of the control resource set 0;
  • the first terminal device can access the first cell.
  • the receiving module is further configured to receive system messages in the first cell;
  • the processing module is further configured to determine the second bandwidth and the third bandwidth according to the system message.
  • the bandwidth of the control resource set 0 is less than or equal to the first bandwidth.
  • a communication device is provided, for example, the communication device is the second communication device as described above.
  • the second communication device is used to execute the method in the above-mentioned second aspect or any possible implementation manner.
  • the second communication device may include a module for executing the method in the second aspect or any possible implementation manner, for example, includes a transceiver module.
  • the second communication device may further include a processing module.
  • the transceiver module may include a sending module and a receiving module. The sending module and the receiving module may be different functional modules, or may be the same functional module, but can implement different functions.
  • the second communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a network device.
  • the second communication device is a network device.
  • the transceiver module may also be implemented by a transceiver, and the processing module may also be implemented by a processor.
  • the sending module may be implemented by a transmitter, and the receiving module may be implemented by a receiver.
  • the transmitter and the receiver may be different functional modules, or may be the same functional module, but can implement different functions.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the transceiver (or, transmitter and receiver) is, for example, a communication interface in the chip, and the communication interface is connected to a radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • the second communication device is continued to be a network device, and the processing module, the sending module, and the receiving module are used as examples for the introduction. in,
  • the receiving module is configured to receive a first random access message from a first terminal device in a first resource, wherein the bandwidth of the first resource is less than or equal to the channel bandwidth of the first terminal device, and the first resource
  • the channel bandwidth of a terminal device is less than or equal to the channel bandwidth of the second terminal device, the channel bandwidth of the second terminal device is greater than or equal to the first bandwidth, and the first bandwidth is configured by the network device;
  • the sending module is further configured to send a first downlink message to the first terminal device, where the first downlink message includes dedicated configuration information, and the dedicated configuration information is used to configure dedicated parameters.
  • the dedicated configuration information includes configuration information of a dedicated BWP, and the bandwidth of the dedicated BWP is less than or equal to the channel bandwidth of the first terminal device.
  • the receiving module is further configured to receive a random access request message from the first terminal device in a third resource, and the dedicated parameter is determined according to the third resource; or,
  • the dedicated parameter is determined according to the first resource; or,
  • the first random access message includes first information, and the dedicated parameter is determined according to the first information; or,
  • the receiving module is further configured to receive a first uplink message from the first terminal device, where the dedicated parameter is determined according to the first information included in the first uplink message;
  • the first information includes type information and/or service type information of the first terminal device, and the service is a service supported by the first terminal device.
  • the receiving module is further configured to receive a random access request message from the first terminal device in a third resource, where the third resource is a part of a fourth resource, and the fourth resource is used to receive A random access request message of the second terminal device;
  • the sending module is further configured to send a random access response message to the first terminal device, where the random access response message is used to schedule the first resource.
  • the sending module is further configured to send first configuration information to the first terminal device; wherein,
  • the first configuration information is used to configure N random access opportunities, and the bandwidth of the resource for sending the first random access message corresponding to each of the N random access opportunities is less than or Equal to the channel bandwidth of the first terminal device; or,
  • the first configuration information is used to configure M random access resources, and the bandwidth of the resource for sending the first random access message corresponding to each of the M random access resources is less than or equal to The channel bandwidth of the first terminal device; or,
  • the first configuration information is used to configure K random access resources corresponding to H random access opportunities, the H random access opportunities belong to P random access opportunities, and among the K random access resources
  • the bandwidth of the resource for sending the first random access message corresponding to each random access resource is less than or equal to the channel bandwidth of the first terminal device;
  • N, M, K, H, and P are all integers greater than or equal to 1, and H is less than or equal to P.
  • the sending module is further configured to send second configuration information to the first terminal device, where the second configuration information is used to configure a second resource, and the second The resource is used by the second terminal device to send a first random access message, the bandwidth of the second resource is less than or equal to the first bandwidth, and the first resource is a part of the second resource.
  • a communication device is provided, for example, the communication device is the third communication device as described above.
  • the third communication device is used to execute the method in the third aspect or any possible implementation manner.
  • the third communication device may include a module for executing the method in the third aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the transceiver module may include a sending module and a receiving module.
  • the sending module and the receiving module may be different functional modules, or may be the same functional module, but can implement different functions.
  • the third communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the third communication device is a terminal device.
  • the transceiver module may also be implemented by a transceiver, and the processing module may also be implemented by a processor.
  • the sending module may be implemented by a transmitter
  • the receiving module may be implemented by a receiver.
  • the transmitter and the receiver may be different functional modules, or may be the same functional module, but can implement different functions.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the third communication device is a chip set in the communication device
  • the transceiver (or, the transmitter and the receiver) is, for example, a communication interface in the chip, and the communication interface is connected to the radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • the third communication device is continued to be a terminal device, and the processing module and the transceiver module are used as examples for the introduction.
  • the communication device described in the sixth aspect and the communication device described in the fourth aspect may be the same communication device, or may be different communication devices. in,
  • the transceiver module is used to communicate with other devices;
  • the processing module is configured to determine that the uplink channel bandwidth of the terminal device is greater than or equal to the third bandwidth, and/or the downlink channel bandwidth of the terminal device is greater than or equal to the second bandwidth, where the third bandwidth is used for The bandwidth for sending the random access request message in the first cell, where the second bandwidth is the bandwidth of the control resource set 0;
  • the processing module is further configured to determine that the terminal device can access the first cell.
  • the transceiver module is configured to receive system messages in the first cell
  • the processing module is further configured to determine the third bandwidth and the second bandwidth according to the system message.
  • the transceiver module includes a sending module, then in an optional implementation manner,
  • the sending module is configured to receive system messages in the first cell
  • the processing module is further configured to determine the third bandwidth and the second bandwidth according to the system message.
  • the bandwidth of the control resource set 0 is less than or equal to the bandwidth of the initial BWP.
  • a communication device is provided.
  • the communication device is, for example, the first communication device as described above.
  • the communication device includes a processor and a communication interface, and the communication interface can be used to communicate with other devices or equipment.
  • it may also include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the methods described in the first aspect or various possible implementation manners.
  • the first communication device may not include a memory, and the memory may be located outside the first communication device.
  • the processor, the memory, and the communication interface are coupled with each other, and are used to implement the methods described in the first aspect or various possible implementation manners.
  • the first communication device when the processor executes the computer instructions stored in the memory, the first communication device is caused to execute the method in the foregoing first aspect or any one of the possible implementation manners.
  • the first communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a first terminal device.
  • the communication interface is realized by a transceiver (or a transmitter and a receiver) in the communication device, for example, the transceiver is realized by an antenna, a feeder and a receiver in the communication device. Codec and other implementations.
  • the communication interface is, for example, an input/output interface of the chip, such as input/output pins, etc., and the communication interface is connected to the radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • a communication device is provided.
  • the communication device is, for example, the second communication device as described above.
  • the communication device includes a processor and a communication interface, and the communication interface can be used to communicate with other devices or equipment.
  • it may also include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the methods described in the second aspect or various possible implementation manners.
  • the second communication device may not include a memory, and the memory may be located outside the second communication device.
  • the processor, the memory, and the communication interface are coupled with each other, and are used to implement the methods described in the second aspect or various possible implementation manners.
  • the second communication device when the processor executes the computer instructions stored in the memory, the second communication device is caused to execute the method in the second aspect or any one of the possible implementation manners.
  • the second communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a network device.
  • the communication interface is realized by, for example, a transceiver (or transmitter and receiver) in the communication device.
  • the transceiver is realized by the antenna, feeder, and Codec and other implementations.
  • the communication interface is, for example, an input/output interface of the chip, such as an input/output pin, etc., and the communication interface is connected to a radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • a communication device is provided.
  • the communication device is, for example, the third communication device as described above.
  • the communication device includes a processor and a communication interface, and the communication interface can be used to communicate with other devices or equipment.
  • it may also include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the methods described in the third aspect or various possible implementation manners.
  • the third communication device may not include a memory, and the memory may be located outside the third communication device.
  • the processor, the memory, and the communication interface are coupled with each other to implement the methods described in the third aspect or various possible implementation manners.
  • the third communication device when the processor executes the computer instructions stored in the memory, the third communication device is caused to execute the method in the third aspect or any one of the possible implementation manners.
  • the third communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the communication interface is realized by a transceiver (or a transmitter and a receiver) in the communication device, for example, for example, the transceiver is realized by an antenna, a feeder and a receiver in the communication device. Codec and other implementations.
  • the communication interface is, for example, an input/output interface of the chip, such as an input/output pin, etc., and the communication interface is connected to a radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • the communication device described in the ninth aspect and the communication device described in the seventh aspect may be the same communication device, or may also be different communication devices.
  • a chip in a tenth aspect, includes a processor and a communication interface, the processor is coupled with the communication interface, and is used to implement the method provided in the first aspect or any of the optional implementation manners above .
  • the chip may also include a memory.
  • the processor may read and execute a software program stored in the memory to implement the above-mentioned first aspect or any one of the optional implementation manners. method.
  • the memory may not be included in the chip, but located outside the chip, which is equivalent to that the processor can read and execute the software program stored in the external memory to implement the first aspect or Any of the methods provided by the alternative implementations.
  • a chip in an eleventh aspect, includes a processor and a communication interface, and the processor is coupled to the communication interface and configured to implement the above-mentioned second aspect or any one of the optional implementation manners. method.
  • the chip may also include a memory.
  • the processor may read and execute a software program stored in the memory to implement the above-mentioned second aspect or any one of the optional implementation manners. method.
  • the memory may not be included in the chip, but located outside the chip, which is equivalent to that the processor can read and execute the software program stored in the external memory to implement the second aspect or Any of the methods provided by the alternative implementations.
  • a chip in a twelfth aspect, includes a processor and a communication interface, and the processor is coupled to the communication interface and configured to implement the above-mentioned third aspect or any one of the optional implementation manners. method.
  • the chip may also include a memory.
  • the processor may read and execute a software program stored in the memory to implement the third aspect or any one of the optional implementation manners. method.
  • the memory may not be included in the chip, but located outside the chip, which is equivalent to that the processor can read and execute the software program stored in the external memory to implement the third aspect or Any of the methods provided by the alternative implementations.
  • the communication device described in the twelfth aspect and the communication device described in the tenth aspect may be the same communication device, or may be different communication devices.
  • a first communication system includes the communication device described in the fourth aspect, the communication device described in the seventh aspect, or the communication device described in the tenth aspect, and the communication device described in the fifth aspect A communication device, the communication device according to the eighth aspect, or the communication device according to the eleventh aspect.
  • a first communication system which includes the communication device according to the sixth aspect, the communication device according to the ninth aspect, or the communication device according to the twelfth aspect.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store a computer program, and when the computer program is run on a computer, the computer executes the first aspect or any one of the above. The method described in one possible implementation.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store a computer program, and when the computer program runs on a computer, the computer executes the second aspect or any one of the above. The method described in one possible implementation.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store a computer program, and when the computer program runs on a computer, the computer executes the third aspect or any one of the above. The method described in one possible implementation.
  • a computer program product containing instructions is provided.
  • the computer program product is used to store a computer program.
  • the computer program runs on a computer, the computer executes the first aspect or any one of the above. The method described in one possible implementation.
  • a computer program product containing instructions is provided.
  • the computer program product is used to store a computer program.
  • the computer program runs on a computer, the computer executes the second aspect or any one of the above. The method described in one possible implementation.
  • a computer program product containing instructions is provided.
  • the computer program product is used to store a computer program.
  • the computer program runs on a computer, the computer executes the third aspect or any one of the above. The method described in one possible implementation.
  • the first terminal device when the first terminal device sends the first random access message, it may determine a resource with a bandwidth less than or equal to the channel bandwidth of the first terminal device as the first resource.
  • the first random access message is, for example, Msg3 or MsgA. Even for terminal devices with limited capabilities, the sending of Msg3 or MsgA can be completed after adopting the technical solutions provided in the embodiments of this application, thereby improving the terminal devices to complete random access. The success rate.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the application
  • FIG. 2 is a flowchart of the first communication method provided by an embodiment of this application.
  • FIG. 3 is a flowchart of a second communication method provided by an embodiment of this application.
  • FIG. 4 is a schematic block diagram of a first terminal device according to an embodiment of the application.
  • FIG. 5 is a schematic block diagram of a network device provided by an embodiment of this application.
  • FIG. 6 is a schematic block diagram of a terminal device provided by an embodiment of the application.
  • FIG. 7 is a schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 8 is another schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 9 is still another schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 10 is another schematic block diagram of a communication device provided by an embodiment of this application.
  • Terminal devices including devices that provide users with voice and/or data connectivity, specifically, include devices that provide users with voice, or include devices that provide users with data connectivity, or include devices that provide users with voice and data connectivity Sexual equipment.
  • it may include a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN), exchange voice or data with the RAN, or exchange voice and data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle to everything (V2X) terminal equipment , Machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit, subscriber unit station), mobile station (mobile station), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user Agent (user agent), or user equipment (user device), etc.
  • UE user equipment
  • M2M/MTC Machine-to-machine/machine-type communications
  • IoT Internet of things
  • subscriber unit subscriber unit station
  • mobile station mobile station
  • remote station remote station
  • access point access point
  • AP remote terminal
  • remote terminal remote terminal
  • access terminal access terminal
  • user terminal user terminal
  • user Agent user agent
  • user equipment user device
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket-sized, hand-held, mobile devices with built-in computers, and so on.
  • PCS personal communication service
  • PCS cordless phones
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be regarded as vehicle-mounted terminal equipment, for example, the vehicle-mounted terminal equipment is also called on-board unit (OBU). ).
  • OBU on-board unit
  • the terminal device may also include a relay. Or it can be understood that everything that can communicate with the base station can be regarded as a terminal device.
  • the device for realizing the function of the terminal device may be a terminal device, or a device capable of supporting the terminal device to realize the function, such as a chip system, and the device may be installed in the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device used to implement the functions of the terminal is a terminal device as an example to describe the technical solutions provided in the embodiments of the present application.
  • Network equipment including, for example, access network (AN) equipment, such as a base station (e.g., access point), which may refer to equipment that communicates with wireless terminal equipment through one or more cells on the air interface in the access network
  • AN access network
  • a base station e.g., access point
  • V2X vehicle-to-everything
  • the base station can be used to convert the received air frame and IP packet to each other, as a router between the terminal device and the rest of the access network, where the rest of the access network can include the IP network.
  • the RSU can be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may include the LTE system or the evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in the long term evolution-advanced (LTE-A), or may also include the fifth-generation mobile Communication technology (the 5th generation, 5G) NR system (also referred to as NR system) next generation node B (next generation node B, gNB) or may also include cloud radio access network (cloud radio access network, Cloud RAN) system Centralized unit (CU) and distributed unit (DU) in, the embodiment of the present application is not limited.
  • 5G 5th generation
  • NR system also referred to as NR system
  • next generation node B next generation node B
  • cloud radio access network cloud radio access network
  • Cloud RAN Centralized unit
  • DU distributed unit
  • the network equipment may also include core network equipment.
  • the core network equipment includes, for example, access and mobility management functions (AMF). Since the embodiments of the present application do not involve the core network, unless otherwise specified in the following text, the network devices mentioned all refer to the access network devices.
  • AMF access and mobility management functions
  • the device used to implement the function of the network device may be a network device, or a device capable of supporting the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the device used to implement the functions of the network equipment is a network device as an example to describe the technical solutions provided in the embodiments of the present application.
  • At least one of a, b, or c can mean: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the size, content, order, and timing of multiple objects. , Priority or importance, etc.
  • the first resource and the second resource are only used to distinguish different resources, but do not indicate the difference in size, priority, or importance of the two resources.
  • the terminal equipment can realize the uplink synchronization with the network equipment through the random access process.
  • the random access process includes a contention-based random access process and a non-contention random access process.
  • the contention-based random access process is completed in four steps: 1.
  • the terminal device sends a random access request to the network device.
  • the random access request can also be called the first message (Msg1), which contains the random access preamble ( preamble); 2.
  • the network device sends a random access response (RAR) message to the terminal device.
  • the RAR message may also be called the second message (Msg2); 3.
  • the network device sends contention resolution information to the terminal device, and the message that carries the contention resolution information is called the fourth message (Msg4).
  • the RAR message may include a random access preamble identifier (RAP ID), and when the RAP ID matches (or the same) as the preamble ID selected by the terminal device, the terminal device considers the RAR message to be in response to the terminal RAR message of the preamble sent by the device.
  • RAP ID random access preamble identifier
  • MsgA message A
  • MsgA includes preamble and possible uplink data (similar to Msg1 and Msg3 in the 4-step random access process), the uplink data is carried on the data channel (such as PUSCH); 2.
  • the terminal device receives the message B (MsgB) from the network device, or MsgB can also be called the second message ( Msg2 and Msg4, which are similar to the 4-step random access process, are used to complete contention resolution, perform uplink synchronization, and obtain cell-radio network temporary identifier (C-RNTI), etc.
  • MsgB message B
  • Msg2 and Msg4 which are similar to the 4-step random access process, are used to complete contention resolution, perform uplink synchronization, and obtain cell-radio network temporary identifier (C-RNTI), etc.
  • C-RNTI cell-radio network temporary identifier
  • the bandwidth of the terminal equipment there are certain requirements for the bandwidth of the terminal equipment.
  • some terminal devices with normal functions there are also some terminal devices with limited capabilities, such as NR light terminal devices (redcap, Little Red Hat), enhanced machine type communication (eMTC) terminal devices, or narrowband Internet of Things (narrow band internet of things, NB-IoT) terminal equipment, etc.
  • the bandwidth may be limited.
  • the maximum bandwidth supported by the NR light terminal device may be 5M, 10M, or 20M. If such a terminal device is required in accordance with the bandwidth requirement of an ordinary terminal device, it may cause random access failure.
  • RACH dedicated random access channel
  • the eMTC terminal device or NB-IoT terminal device can select the reserved RACH resource to send Msg1 to the network device, and the network device can determine whether the terminal device is an eMTC terminal device or NB-IoT device through the RACH resource used by the terminal device that initiates random access. IoT terminal equipment. If the network device determines that the terminal device is an eMTC terminal device or an NB-IoT terminal device, the network device starts with the RAR message and schedules the terminal device to use a narrowband control channel or data channel.
  • RAR dedicated random access channel
  • RACH resources need to be reserved instead of sharing RACH resources with ordinary terminal equipment, which may cause a certain waste of resources. For example, in some cases, if the number of eMTC terminal devices or NBIoT terminal devices that initiate random access is small, the reserved RACH resources will be idle, while the RACH resources of ordinary terminal devices may not be enough.
  • NR light terminal equipment can normally receive synchronization signals and physical broadcast channel blocks (synchronization signal and physical broadcast channel block, SSB), and SSB includes master information block (master information block, MIB), so NR The light terminal device can receive MIB normally.
  • the MIB includes configuration information of the control channel of SIB1, and configuration information including control resource set (CORESET) #0.
  • the NR light terminal device monitors the control channel used to schedule SIB1 according to the configuration information of CORESET#0, thereby receiving SIB1.
  • SIB1 includes downlink configuration information and uplink configuration information.
  • the uplink configuration information includes RACH configuration information. Currently, the bandwidth of RACH resources can be determined according to Table 1.
  • L RA is the length of the preamble sequence.
  • ⁇ f RA represents the subcarrier spacing of RACH resources.
  • ⁇ f represents the subcarrier spacing of the physical uplink shared channel (physical uplink shared channel, PUSCH).
  • RB resource block
  • the terminal device can support the configuration of this row.
  • M is 1.02M. If the bandwidth of the NR light terminal device is 5M, 1.02M is less than 5M Therefore, the configuration shown in the second row of Table 1 is supported by the NR light terminal device.
  • the NR light terminal device can support the configuration from the second row to the thirteenth row in Table 1; if the bandwidth of the NR light terminal device is 10M, then The NR light terminal device can support the configuration from the second row to the fifteenth row in Table 1. If the bandwidth of the NR light terminal device is 20M, the NR light terminal device can support the configuration from the second row to the seventeenth row in Table 1. Configuration, that is, all the configurations in Table 1.
  • the current protocol stipulates that when receiving system messages, the control channel Using the configuration corresponding to CORESET#0, the bandwidth of the data channel carrying SIB1 is also limited to the bandwidth of CORESET#0.
  • the bandwidth of the data channel of the downlink RAR message and the contention resolution message Msg4 is also limited to the bandwidth range of CORESET#0. Therefore, for NR light UE, as long as the NR light terminal device can monitor CORESET#0, then the NR light terminal device can receive RAR and Msg4.
  • the terminal device also needs to send Msg3 to the network device during the random access process.
  • the bandwidth of the resources used to send Msg3 may reach the bandwidth of the initial uplink BWP.
  • the bandwidth of the initial uplink BWP is configured through system messages. Generally speaking, the configured bandwidth is relatively large.
  • the upstream bandwidth is likely to be smaller than the initial upstream BWP bandwidth.
  • the resource bandwidth used to send Msg3 may be greater than the bandwidth of the NR light terminal device, and the NR light terminal device cannot send to the network device Msg3, this will cause NR light terminal equipment to fail to complete random access.
  • the technical solutions of the embodiments of the present application are provided.
  • the first terminal device when the first terminal device sends the first random access message, it may determine a resource with a bandwidth less than or equal to the channel bandwidth of the first terminal device as the first resource.
  • the first random access message is, for example, Msg3 or MsgA. If the bandwidth of the first resource is supported by the first terminal device, the first terminal device can send Msg3 or MsgA normally.
  • the technical solutions provided in the embodiments of this application can be used to complete the transmission of Msg3 or MsgA. Therefore, the technical solutions provided in the embodiments of this application can improve the terminal device's ability to complete random access. Success rate.
  • the first resource can be selected to send the first random access message, that is, these resources are not only reserved for bandwidth recipients. Terminal devices with limited bandwidth can also use these resources. In this way, resource utilization can be improved and resource waste can be reduced.
  • the technical solutions provided in the embodiments of this application can be applied to the 4th generation (4G) mobile communication technology (the 4th generation, 4G) system, such as the LTE system, or can be applied to the 5G system, such as the NR system, or can also be applied to the next generation Mobile communication systems or other similar communication systems are not specifically restricted.
  • the 4th generation, 4G 4th generation
  • the 5G system such as the NR system
  • next generation Mobile communication systems or other similar communication systems are not specifically restricted.
  • Figure 1 is an application scenario of an embodiment of this application.
  • Figure 1 includes network equipment, terminal equipment 1 and terminal equipment 2.
  • the network device and the terminal device 1 can communicate.
  • the terminal device 1 can initiate random access to the network device.
  • the network device and the terminal device 2 can also communicate.
  • the terminal device 2 can initiate random access to the network device.
  • the terminal device 1 may be a terminal device with limited bandwidth, such as an NR light terminal device.
  • the terminal device 2 may be a terminal device with unlimited bandwidth, or a common terminal device.
  • the network equipment for example, works in an evolved UMTS terrestrial radio access (E-UTRA) system, or works in an NR system, or works in a next-generation communication system or other communication systems.
  • E-UTRA evolved UMTS terrestrial radio access
  • the network device in FIG. 1 is, for example, a base station.
  • network devices correspond to different devices in different systems.
  • they can correspond to an eNB
  • 5G system they correspond to an access network device in 5G, such as gNB.
  • the technical solutions provided by the embodiments of the present application can also be applied to future mobile communication systems.
  • the network equipment in FIG. 1 can also correspond to the network equipment in the future mobile communication system.
  • Figure 1 takes the network device as a base station as an example.
  • the network device can also be a device such as an RSU.
  • the terminal device 1 and the terminal device 2 in FIG. 1 both take a mobile phone as an example.
  • the terminal device in the embodiment of the present application is not limited to a mobile phone.
  • FIG. 2 is a flowchart of this method.
  • the application of this method to the network architecture shown in FIG. 1 is taken as an example.
  • the method executed by the network device and the first terminal device is taken as an example. Because this embodiment is applied to the network architecture shown in FIG. 1 as an example, the network device described below may be the network device in the network architecture shown in FIG. 1, and the first terminal device described below It may be the terminal device 1 in the network architecture shown in FIG. 1, and the second terminal device described below may be the terminal device 2 in the network architecture shown in FIG. 1.
  • the first terminal device determines a first resource.
  • the bandwidth of the first resource is less than or equal to the channel bandwidth (channel bandwidth) of the first terminal device.
  • the first terminal device is, for example, a terminal device with limited bandwidth.
  • the limited bandwidth of the first terminal device may mean that the channel bandwidth of the first terminal device is less than or equal to the channel bandwidth of the second terminal device, and the second terminal device is a common terminal device, such as an NR terminal. equipment.
  • the channel bandwidth of the second terminal device may be greater than or equal to the first bandwidth, the channel bandwidth of the second terminal device may also be smaller than or equal to the carrier bandwidth, and the carrier bandwidth may be the bandwidth of the carrier where the first terminal device and the second terminal device are located.
  • the limited bandwidth of the first terminal device in the embodiment of the present application may mean that the channel bandwidth of the first terminal device is smaller than the first bandwidth.
  • the first bandwidth may be configured by the network device, for example, the first bandwidth is the bandwidth of the initial BWP configured by the network device.
  • the first bandwidth configured by the network device may be greater than or equal to the channel bandwidth of the first terminal device, or may be smaller than the channel bandwidth of the first terminal device.
  • the first terminal device is, for example, an NR light terminal device.
  • the first terminal device may also be other types of bandwidth-limited terminal devices, such as eMTC terminal devices or NB-IoT terminal devices.
  • the first resource is used to send the first random access message in the random access process. It should be noted that the first random access message does not refer to Msg1. If the type of the random access procedure is 4-step RACH, the first random access message may be Msg3; or, if the type of the random access procedure is 2-step RACH, the first random access message may be MsgA.
  • a risk point in the bandwidth of the first terminal device when performing random access is that the bandwidth of the resource used to send Msg3 is
  • the bandwidth of the initial BWP is for reference, and the bandwidth of the resource used to send Msg3 may reach the bandwidth of the initial BWP.
  • the initial BWP may include the initial uplink BWP and the initial downlink BWP.
  • the bandwidth of the initial uplink BWP and the initial downlink BWP are the resources configured by the network device to send Msg3 through SIB1 as uplink resources.
  • the resources used to send Msg3 When the bandwidth reaches the bandwidth of the initial BWP, it may mean that the bandwidth of the resource for sending Msg3 is allocated within the bandwidth range of the bandwidth of the entire initial uplink BWP, for example, it occupies the entire initial uplink BWP.
  • the resources used to send Msg3 may be allocated by the network equipment through RAR messages; or, if Msg3 is retransmission, the resources used to send Msg3 may be the network equipment through a temporary cell.
  • -It is allocated by the physical downlink control channel (PDCCH) scrambled by the radio network temporary identifier (RNTI). If the first terminal device is a terminal device with limited bandwidth, such a bandwidth requirement is likely to be greater than the capability of the first terminal device, which may cause random access failure.
  • PDCCH physical downlink control channel
  • RNTI radio network temporary identifier
  • the bandwidth of the first resource determined by the first terminal device for sending the first random access message is less than or equal to the channel bandwidth of the first terminal device.
  • the channel bandwidth of the first terminal device may include the uplink channel bandwidth and the downlink channel bandwidth.
  • the bandwidth of the first resource is less than or equal to the channel bandwidth of the first terminal device.
  • the bandwidth of the first resource may be less than or equal to the channel bandwidth of the first terminal device. Upstream channel bandwidth. In this way, the bandwidth of the first resource can be supported by the first terminal device, thereby increasing the success rate of the first terminal device sending the first random access message.
  • the first resource may be configured by the network device.
  • S202 may also be executed, the network device sends the second configuration information to the first terminal device, and the first terminal device receives the second configuration information from the network device.
  • the second configuration information may configure G resources, the bandwidth of each of the G resources is less than or equal to the channel bandwidth of the first terminal device, and G is an integer greater than or equal to 1.
  • S202 is an optional step and does not have to be performed, so it is represented by a dotted line in FIG. 2.
  • the first terminal device may select one resource from G resources as the first resource.
  • the network device can configure the first terminal device with resources that meet the capability requirements of the first terminal device in advance.
  • the first terminal device needs to send MsgA, it can select the resource to send from the configured resources, reducing the first terminal device.
  • the time delay for a terminal device to send MsgA, and because the pre-configured resources meet the capability requirements of the first terminal device, the success rate of the first terminal device to send MsgA can also be improved.
  • the G resources may be a part of the second resource, then the first resource is a part of the second resource, and the second resource is used for the second terminal device to send MsgA.
  • the first terminal device is a terminal device with limited bandwidth
  • the second terminal device is a terminal device with unlimited bandwidth.
  • the channel bandwidth of the first terminal device is less than or equal to the channel bandwidth of the second terminal device.
  • the channel bandwidth of the second terminal device is greater than or equal to the first bandwidth. Since the second terminal device can use the second resource to send MsgA, the bandwidth of the second resource is less than or equal to the channel bandwidth of the second terminal device.
  • the second resource may include one or more resources, and the bandwidth of the second resource is less than or equal to the channel bandwidth of the second terminal device means that the bandwidth of each resource in the one or more resources is less than or equal to the second resource.
  • the channel bandwidth of the terminal device For example, there are five resources available for the terminal device to send MsgA, and these five resources belong to the second resource. Among the five resources, the bandwidth of each of the two resources is less than or equal to the channel bandwidth of the first terminal device, so the G resources configured by the network device are these two resources.
  • the first terminal device may select one of these two resources as the first resource.
  • the second resource can be selected to send MsgA, or the first resource can be selected to send MsgA.
  • the second terminal device can choose one of these 5 resources to send MsgA, or can also choose these 2 resources One of them sends MsgA.
  • the type of the random access process is 4-step RACH
  • the first random access message is Msg3
  • the first resource may be scheduled by the network device.
  • the type of the random access process is 4-step RACH, so before S201, S203 can also be performed.
  • the first terminal device sends a random access request message to the network device in the third resource, and the network device receives the message from the first resource in the third resource. Random access request message of the terminal device.
  • the bandwidth of the third resource can be less than or equal to the channel bandwidth of the first terminal device (here can refer to the uplink channel bandwidth of the first terminal device), and the bandwidth of the third resource can also be less than or equal to the bandwidth of the initial BWP (here can be Refers to the bandwidth of the initial upstream BWP).
  • the random access request message is, for example, Msg1, that is, preamble.
  • Msg3 is the initial transmission, after S203 and before S201, S204 can also be performed.
  • the network device sends a random access response message to the first terminal device, and the first terminal device receives a random access response message from the network device. .
  • the random access response message may schedule the first resource. In this way, the first terminal device can determine the first resource after receiving the random access response message.
  • the random access response message is, for example, Msg2, that is, RAR message.
  • S204 may be that the network device sends the PDCCH scrambled with TC-RNTI to the first terminal device, and the first terminal device receives the PDCCH from the network device.
  • the PDCCH can schedule the first resource.
  • the first terminal device can determine the first resource after receiving the PDCCH.
  • S203 and S204 are optional steps and are not necessary to be performed, so they are represented by dashed lines in FIG. 2.
  • S204 in FIG. 2 takes the network device sending a random access response message as an example.
  • the third resource used to send the random access request message may be configured by the network device.
  • S205 may also be executed.
  • the network device sends the first configuration information to the first terminal device, and the first terminal device receives the first configuration information from the network device.
  • the resources used to send Msg3 are collectively referred to as scheduled transmission resources in this article.
  • corresponding resources for sending random access request messages can be preset (for example, these preset resources are called preset resources), and it is specified that each of these preset resources corresponds to
  • the bandwidth of the scheduled transmission resource is less than or equal to the channel bandwidth of the first terminal device (the channel bandwidth of the first terminal device may include the uplink channel bandwidth and the downlink channel bandwidth, here mainly refers to the uplink channel bandwidth of the first terminal device), that is In other words, the bandwidth of the resource used to send the first random access message (such as Msg3) corresponding to each of the preset resources is less than or equal to the channel bandwidth of the first terminal device, and the first configuration information can be used to configure the preset Set up resources.
  • the first terminal device may be a terminal device with limited bandwidth, such as an NR light terminal device, etc. Therefore, the preset resource set here may be a resource that can be supported by the first terminal device with limited bandwidth.
  • the random access resources that the bandwidth-constrained terminal device can support refer to Table 1. If the corresponding preset resource is preset, after receiving the random access request message from the first terminal device, if the network device determines that the random access resource used to send the random access request message belongs to the preset preset Resource, the network device can select a resource with a bandwidth less than or equal to the channel bandwidth of the first terminal device when allocating scheduled transmission resources for the first terminal device.
  • the network device can allocate resources for sending Msg3 to the first terminal device through the RAR message, or if the Msg3 is a retransmission, the network device can use the PDCCH scrambled with TC-RNTI as the first transmission.
  • a terminal device allocates resources for sending Msg3.
  • the third resource may be a part of the fourth resource, and the fourth resource may be used for the second terminal device to send Msg1.
  • the bandwidth of the fourth resource can be less than or equal to the channel bandwidth of the second terminal device (here can refer to the uplink channel bandwidth of the second terminal device), and the bandwidth of the fourth resource can also be less than or equal to the bandwidth of the initial BWP (here can be Refers to the bandwidth of the initial upstream BWP).
  • there are 7 resources available for the terminal device to send Msg1 and these 4 resources belong to the fourth resource. Among these 7 resources, 3 resources are available for the first terminal device to send Msg1.
  • the bandwidth of each of these 3 resources is less than or equal to the channel bandwidth of the first terminal device (here it may refer to the first terminal device Upstream channel bandwidth), then the preset resources configured by the network device include these three resources.
  • the first terminal device may select one of these three resources as the third resource.
  • the fourth resource can be selected to send Msg1, or the third resource can be selected to send Msg1.
  • the second terminal device can choose one of these 7 resources to send Msg1, or can also choose these 3 resources One of them sends Msg1.
  • the preset resource includes N random access occasions (RO), and the first configuration information may configure N random access opportunities. Among these N random access opportunities The bandwidth of the resource for sending the first random access message corresponding to each random access opportunity is less than or equal to the channel bandwidth of the first terminal device.
  • Random access opportunities may include time-frequency resources for random access. If this is the case, the third resource may be a random access resource corresponding to the first random access opportunity among the N random access opportunities. That is, the first terminal device may select the random access resource corresponding to the first random access opportunity from the N random access opportunities as the third resource.
  • the first random access opportunity may be any one of N random access opportunities.
  • the network device When the first terminal device wants to send a random access request, if the random access resource corresponding to one of the N random access opportunities is selected to send, the network device receives the request through the random access resource. After the random access request message from the first terminal device, when the scheduled transmission resource is allocated to the first terminal device, the allocated bandwidth of the scheduled transmission resource may be less than or equal to the channel bandwidth of the first terminal device. And such a bandwidth can be supported by the first terminal device, so the transmission success rate of Msg3 can be improved.
  • the network device receives from the first terminal device After the random access request message, when allocating scheduled transmission resources for the first terminal device, the allocated bandwidth of the scheduled transmission resource may be less than or equal to the channel bandwidth of the first terminal device, or greater than the channel bandwidth of the first terminal device. bandwidth.
  • the random access opportunity correspond to the scheduled transmission resource, more random access resources can be set, and the amount of information used to indicate these random access resources is small.
  • the random access resource described in this article refers to the resource used to send a random access request message, and one random access opportunity can correspond to one or more random access resources.
  • This embodiment can also be used for 2-step RACH MsgA resource selection.
  • the bandwidth of the resource for sending uplink data (carried on the PUSCH) in the MsgA corresponding to each random access opportunity among the N random access opportunities is less than or equal to the channel bandwidth of the first terminal device.
  • the preset resource includes M random access resources, and the first configuration information may configure M random access resources, and each of the M random access resources may be randomly accessed.
  • the bandwidth of the resource for sending the first random access message corresponding to the incoming resource is less than or equal to the channel bandwidth of the first terminal device.
  • the random access resource may be a random access preamble, such as a preamble. If this is the case, the third resource may be any random access resource among the M random access resources. In other words, the first terminal device may select one random access resource from the M random access resources as the third resource.
  • the network device When the first terminal device wants to send a random access request, if one of the M random access resources is selected to send, the network device receives the random access request from the first terminal device through the random access resource. After the access request message is received, when the scheduled transmission resource is allocated to the first terminal device, the allocated bandwidth of the scheduled transmission resource may be less than or equal to the channel bandwidth of the first terminal device. And such a bandwidth can be supported by the first terminal device, so the transmission success rate of Msg3 can be improved. If the resource used by the first terminal device to send the random access request message is not any random access resource among the M random access resources, the network device receives the random access request message from the first terminal device.
  • the allocated bandwidth of the scheduled transmission resources may be less than or equal to the channel bandwidth of the first terminal device, or may be greater than the channel bandwidth of the first terminal device.
  • Making the random access resources correspond to the scheduled transmission resources can make the granularity of the set random access resources finer, and it is more convenient for terminal devices with limited bandwidth and ordinary terminal devices to select random access resources.
  • This embodiment can also be used for 2-step RACH MsgA resource selection. For example, the bandwidth of the resource for sending uplink data (carried on the PUSCH) in the MsgA corresponding to each random access resource in the M random access resources is less than or equal to the channel bandwidth of the first terminal device.
  • the preset resource includes K random access resources corresponding to H random access opportunities, the H random access opportunities belong to P random access opportunities, and the K random access opportunities Incoming resources are all random access resources or part of random access resources corresponding to H random access opportunities.
  • the preset resource is a specific random access resource corresponding to a specific random access opportunity.
  • the first configuration information may configure the K random access resources corresponding to the H random access opportunities, and each random access resource in the K random access resources corresponds to the resource used to send the first random access message.
  • the bandwidth is less than or equal to the channel bandwidth of the first terminal device. If this is the case, the third resource may be any random access resource among the K random access resources.
  • the first terminal device may select one random access resource from the K random access resources as the third resource.
  • the network device receives the random access request from the first terminal device through the random access resource.
  • the allocated bandwidth of the scheduled transmission resource may be less than or equal to the channel bandwidth of the first terminal device. And such a bandwidth can be supported by the first terminal device, so the transmission success rate of Msg3 can be improved. If the resource used by the first terminal device to send the random access request message is not any random access resource among the K random access resources, the network device receives the random access request message from the first terminal device.
  • the allocated bandwidth of the scheduled transmission resources may be less than or equal to the channel bandwidth of the first terminal device, or may be greater than the channel bandwidth of the first terminal device.
  • Corresponding random access opportunities with scheduled transmission resources helps reduce the amount of information in the correspondence.
  • Corresponding random access resources with scheduled transmission resources can make the granularity of the set random access resources finer, and it is more convenient for terminal devices with limited bandwidth and ordinary terminal devices to select random access resources.
  • the corresponding random access resources can all be in correspondence with the scheduled transmission resources, or only part of the random access resources can be in correspondence with the scheduled transmission resources. The application of random access resources corresponding to the access opportunity is more flexible.
  • This implementation manner can also be used for 2-step RACH MsgA resource selection.
  • the K random access resources are H random access opportunities and the bandwidth of the resources used to send the uplink data (carried on the PUSCH) in the MsgA is less than or equal to the channel bandwidth of the first terminal device.
  • N, M, K, H, and P are all integers greater than or equal to 1, and H is less than or equal to P.
  • the corresponding preset resources can also be set in other ways, and it is specified that the bandwidth of the scheduled transmission resource corresponding to these preset resources is less than or equal to the channel bandwidth of the first terminal device.
  • the third resource may not be configured by the network device, for example, it may be specified through a protocol.
  • the protocol may specify N random access opportunities, or M random access resources, or K random access resources corresponding to H random access opportunities, and so on. If this is the case, there is no need to perform S205. It can be seen that S205 is an optional step and does not have to be performed, so it is represented by a dotted line in FIG. 2.
  • the network device still needs to allocate corresponding scheduled transmission resources to the first terminal device after receiving the random access request message from the first terminal device. That is, the above method is equivalent to just setting the bandwidth of the scheduled transmission resource corresponding to the corresponding preset resource to be less than or equal to the channel bandwidth of the first terminal device, but it does not specify which scheduled transmission resource or resources these preset resources correspond to. .
  • the network device also needs to allocate the scheduled transmission resource to the first terminal device according to the requirement (that is, the bandwidth of the scheduled transmission resource corresponding to the preset resource needs to be less than or equal to the channel bandwidth of the first terminal device).
  • the embodiment of the present application proposes that the corresponding relationship between the preset resource and the scheduled transmission resource can be directly set.
  • the bandwidth of these scheduled transmission resources is less than or equal to the channel bandwidth of the first terminal device.
  • the first terminal device is the first terminal device with limited bandwidth. That is to say, not only the preset resources are set, but also the scheduled transmission resources corresponding to these preset resources are set.
  • the first terminal device can know the corresponding scheduled transmission resource after selecting the preset resource, and can send Msg3 in the scheduled transmission resource; and the network device, after receiving the random access request message from the first terminal device, If it is determined that the random access resource used to send the random access request message is a preset resource with a corresponding relationship, the network device can still send the RAR message (or the PDCCH scheduled by TC-RNTI) to the first terminal device.
  • the network device may receive the Msg3 from the first terminal device in the scheduled transmission resource. That is, in this way, the first resource is also pre-configured.
  • the preset resource includes N random access opportunities, that is, the correspondence relationship between N random access opportunities and scheduled transmission resources can be set.
  • the first configuration information may configure the correspondence between N random access opportunities and the scheduled transmission resources, or the correspondence may also be specified by the protocol.
  • each of the N random access opportunities can correspond to one or more random access resources, and each random access resource can correspond to one or more scheduled transmission resources. Therefore, the N random access opportunities
  • Each random access opportunity among the access opportunities may correspond to at least one scheduled transmission resource.
  • the first terminal device When the first terminal device wants to send a random access request message, if the random access resource corresponding to the random access opportunity with the corresponding relationship is selected, the bandwidth of the scheduled transmission resource corresponding to the random access resource is less than or equal to The channel bandwidth of the first terminal device, that is, the first terminal device may send Msg3 through a scheduled transmission resource with a bandwidth less than or equal to the channel bandwidth of the first terminal device. And such a bandwidth can be supported by the first terminal device, so the transmission success rate of Msg3 can be improved.
  • the network device no longer needs to allocate scheduled transmission resources to the first terminal device, and the first terminal device can clarify the scheduled transmission resource corresponding to the selected random access opportunity according to the corresponding relationship, so that Msg3 can be sent in the corresponding scheduled transmission resource.
  • the network device no longer needs to allocate scheduled transmission resources to the first terminal device, and the first terminal device can clarify the scheduled transmission resource corresponding to the selected random access opportunity according to the corresponding relationship, so that Msg3 can be sent in the corresponding scheduled transmission resource.
  • Corresponding random access opportunities with scheduled transmission resources helps reduce the amount of information in the correspondence.
  • the preset resources include M random access resources, that is, the correspondence relationship between M random access resources and scheduled transmission resources can be set, then the first The configuration information may configure the corresponding relationship between M random access resources and scheduled transmission resources, or the corresponding relationship may also be specified by an agreement.
  • M is an integer greater than or equal to 1.
  • One random access resource can correspond to one or more scheduled transmission resources. Therefore, M random access resources can correspond to at least one scheduled transmission resource.
  • the first terminal device When the first terminal device wants to send a random access request, if a random access resource with a corresponding relationship is selected, the bandwidth of the scheduled transmission resource corresponding to the random access resource is less than or equal to the channel bandwidth of the first terminal device That is, the first terminal device may send Msg3 through a scheduled transmission resource with a bandwidth less than or equal to the channel bandwidth of the first terminal device. And such a bandwidth can be supported by the first terminal device, so the transmission success rate of Msg3 can be improved. Moreover, the network device no longer needs to allocate scheduled transmission resources to the first terminal device, and the first terminal device can clarify the scheduled transmission resource corresponding to the selected random access resource according to the corresponding relationship, so that Msg3 can be sent in the corresponding scheduled transmission resource.
  • the preset resources include K random access resources corresponding to H random access opportunities, that is, K random access resources corresponding to H random access opportunities can be set
  • the corresponding relationship between random access resources and scheduled transmission resources then the first configuration information may configure the corresponding relationship between K random access resources corresponding to H random access opportunities and scheduled transmission resources, or the corresponding relationship may also be Can be stipulated by agreement.
  • H random access opportunities belong to P random access opportunities.
  • H, K, and P are all integers greater than or equal to 1, and H is greater than K, or H is less than K, or H is equal to K. H is less than or equal to P.
  • Each of the H random access opportunities may correspond to one or more random access resources, and the K random access resources may be all or part of the random access resources corresponding to the H random access opportunities Random access resources.
  • One random access resource can correspond to one or more scheduled transmission resources. Therefore, K random access resources can correspond to at least one scheduled transmission resource.
  • the first terminal device wants to send a random access request, if a random access resource with a corresponding relationship is selected, the bandwidth of the scheduled transmission resource corresponding to the random access resource is less than or equal to the channel bandwidth of the first terminal device, That is, the first terminal device may send Msg3 through a scheduled transmission resource with a bandwidth less than or equal to the channel bandwidth of the first terminal device.
  • the network device no longer needs to allocate scheduled transmission resources to the first terminal device, and the first terminal device can clarify the scheduled transmission resource corresponding to the selected random access resource according to the corresponding relationship, so that Msg3 can be sent in the corresponding scheduled transmission resource.
  • Making the random access opportunity and the random access resource correspond to the scheduled transmission resource can make the setting granularity of the correspondence relationship finer, and it is more convenient for terminal devices with limited bandwidth and ordinary terminal devices to select random access resources.
  • the corresponding random access resources can all be in correspondence with the scheduled transmission resources, or only part of the random access resources can be in correspondence with the scheduled transmission resources. The application of random access resources corresponding to the access opportunity is more flexible.
  • the corresponding relationship between the preset resource and the scheduled transmission resource can also be set in other ways.
  • the preset resource that is set needs to be a resource that can be supported by a bandwidth-constrained terminal device.
  • Table 1 describes which random access resources the bandwidth-constrained terminal device can support.
  • the random access on some random access opportunities can be adjusted.
  • the sub-carrier spacing of the input resources enables the adjusted random access resources to meet the requirements of bandwidth-constrained terminal devices.
  • the terminal device with limited bandwidth is the NR light terminal device, and the bandwidth of the NR light terminal device is, for example, 5M, then the configuration in the 14th row and the 15th row in Table 1 are not supported by the NR light terminal device.
  • the subcarrier spacing of random access resources on some random access opportunities can be temporarily adjusted, so that the NR light terminal device can support the preamble.
  • Table 2 is the result of adjusting the subcarrier spacing of the fourteenth row and the fifteenth row of Table 1.
  • Table 2 adjusts the subcarrier interval corresponding to the preamble in the fourteenth row and the fifteenth row from 60KHz to 30KHz.
  • the NR light terminal device with a bandwidth of 5M can support the configuration of these two lines.
  • the NR light terminal device with a bandwidth of 5M can select the preamble corresponding to any of the two lines when sending a random access request message. .
  • the third resource may be a random access resource whose subcarrier interval has not been adjusted, or may also be a random access resource whose subcarrier interval has been adjusted. If the third resource is a random access resource with adjusted sub-carrier spacing, before adjusting the sub-carrier spacing of the third resource, the bandwidth of the third resource may be greater than the channel bandwidth of the first terminal device. That is, before adjusting the subcarrier interval, the terminal device with limited bandwidth may not support the third resource, but after adjusting the subcarrier interval, the terminal device with limited bandwidth can support the third resource.
  • the first terminal device sends a first random access message to the network device in the first resource, and the network device receives the first random access message from the first terminal device in the first resource.
  • the first terminal device may send a first random access message on the first resource.
  • a first random access message For the introduction of the first message of random access, please refer to the preceding text.
  • the network device configures a dedicated parameter for the first terminal device, so that the first terminal device can use the dedicated parameter to work in the coverage downlink of the network device.
  • Dedicated parameters for example, include dedicated (bandwidth part, BWP) parameters, and dedicated BWP parameters, for example, include dedicated BWP bandwidth and other parameters.
  • the dedicated parameters may also include some other configuration parameters. For the first terminal device with limited bandwidth, it is better to enable the dedicated parameters allocated by the network device to meet the capability requirements of the first terminal device, so that the first terminal device can work normally. For example, the bandwidth of the dedicated BWP of the first terminal device meets the capability requirement of the first terminal device.
  • an implementation manner is that the bandwidth of the dedicated BWP of the first terminal device is less than or equal to the channel bandwidth of the first terminal device.
  • the working bandwidth of the first terminal device may include the uplink channel bandwidth and the downlink channel bandwidth.
  • the dedicated BWP of the first terminal device may also include the uplink dedicated BWP and the downlink dedicated BWP. Then the bandwidth of the dedicated BWP of the first terminal device is less than or equal to the first
  • the channel bandwidth of the terminal device may include that the bandwidth of the uplink dedicated BWP of the first terminal device is less than or equal to the uplink channel bandwidth of the first terminal device, and the bandwidth of the downlink dedicated BWP of the first terminal device is less than or equal to the bandwidth of the first terminal device. Downlink channel bandwidth.
  • the first random access message may include the first information, and the first information may include the type information of the terminal device, or include the terminal device The type information of the supported service, or the type information of the terminal device and the type information of the service supported by the terminal device.
  • the type information of the terminal device can be used to determine whether the terminal device is a terminal device with limited bandwidth, that is, the network device can determine whether the terminal device is a terminal device with limited bandwidth according to the type information of the terminal device.
  • the first random access message includes the first information, it may indicate that the first message of random access is sent by a bandwidth-limited terminal device; and if the first random access message does not include the first information, it may indicate that the first message is sent.
  • the first message of random access is not a bandwidth-limited terminal device.
  • the type of terminal equipment includes, for example, NR light terminal equipment type, eMTC terminal equipment type, or NB-IoT terminal equipment type, etc. In addition, these types can also be subdivided.
  • NR light terminal equipment type can also include mode (type) 1 terminal device or type 2 terminal device, etc.
  • the service types supported by the terminal equipment include, for example, industrial sensor service types, wearable types, or monitoring service types.
  • the first information is sent by the first terminal device to the network device, if the first information includes the type information of the terminal device, it may include the type information of the first terminal device; the same goes for If the first information includes the type information of the service supported by the terminal device, it may include the type information of the service supported by the first terminal device.
  • the network device After the network device receives the first random access message from the first terminal device, it can obtain the type information of the first terminal device and/or the type information of the service supported by the first terminal device according to the first information. The obtained information can determine the dedicated parameters of the first terminal device, so that the dedicated parameters configured by the network device can meet the capability requirements of the first terminal device.
  • the network device sends a downlink message A to the first terminal device, and the first terminal device receives the downlink message A from the network device.
  • the downlink message A is Msg4, or a radio resource control (RRC) message included in Msg4, or other messages, such as RRC messages after Msg4 ( For example, the RRC reconfiguration message); or, if the first random access message is MsgA, the downlink message A is MsgB, or an RRC message included in MsgB, such as an RRC message after MsgB (for example, an RRC reconfiguration message), or It can be other messages.
  • RRC radio resource control
  • the RRC message may be an RRC setup (RRC setup) message; or, if the random access procedure is used to re-establish an RRC connection, the RRC message may be an RRC re-establishment. (RRC reestablishment) message or RRC setup message.
  • RRC setup RRC setup
  • RRC resume RRC resume
  • the network device may configure dedicated parameters for the terminal device that sends the first information according to the first information.
  • the first information indicates that the terminal device sending the first information is a terminal device with limited bandwidth
  • the dedicated parameter configured by the network device for the terminal device according to the first information may be a limited configuration parameter, such as a dedicated BWP configured
  • the bandwidth can be less than or equal to the channel bandwidth of the first terminal device; or, if the first information indicates that the terminal device sending the first information is a terminal device with unlimited bandwidth, the network device configures a dedicated terminal device for the terminal device according to the first information.
  • the parameter may be a restricted configuration parameter, for example, the configured dedicated BWP bandwidth may be less than or equal to the channel bandwidth of the terminal device, or the dedicated parameter configured for the terminal device according to the first information may also be an unlimited configuration parameter
  • the bandwidth of the configured dedicated BWP may be greater than the channel bandwidth of the terminal device.
  • the first information is sent by the first terminal device, and the first terminal device is a terminal device with limited bandwidth. Therefore, the dedicated parameters configured by the network device for the first terminal device according to the first information may be limited.
  • the configured dedicated BWP bandwidth may be less than or equal to the channel bandwidth of the first terminal device.
  • the dedicated parameter corresponding to the preset resource in S201 is a restricted configuration parameter, for example, the bandwidth of the dedicated BWP corresponding to the preset resource is less than or equal to the first The channel bandwidth of the terminal device. If this is the case, the first random access message may not include the first information.
  • the dedicated parameter allocated by the network device to the first terminal device is a restricted configuration parameter. For example, the bandwidth of the dedicated BWP allocated to the first terminal device may be less than or equal to the channel bandwidth of the first terminal device. In this case, it can be considered that the network device determines the dedicated parameter of the first terminal device according to the third resource.
  • the dedicated parameters corresponding to the G resources configured by the network device are restricted configuration parameters.
  • the bandwidth of the dedicated BWP corresponding to each of the G resources is less than Or equal to the channel bandwidth of the first terminal device. If this is the case, the first random access message may not include the first information.
  • the dedicated parameter allocated by the network device to the first terminal device is a restricted configuration parameter.
  • the bandwidth of the dedicated BWP allocated to the first terminal device may be less than or equal to the channel bandwidth of the first terminal device. In this case, it can be considered that the network device determines the dedicated parameter of the first terminal device according to the first resource.
  • the network device after the network device allocates dedicated parameters to the terminal device, it can send the configuration information (for example, called dedicated configuration information) of the dedicated parameter allocated to the first terminal device to the first terminal through the downlink message A equipment.
  • the downlink message A at this time may also be referred to as the first downlink message.
  • the first terminal device After receiving the first downlink message, the first terminal device can obtain the dedicated configuration information of the first terminal device according to the first downlink message.
  • the first downlink message at this time is Msg4, or an RRC message included in Msg4, or an RRC message after Msg4 (such as an RRC reconfiguration message), or MsgB, or an RRC message included in MsgB, or after MsgB RRC messages (such as RRC reconfiguration messages), and so on.
  • the network device may normally be the first terminal device Assign dedicated parameters.
  • the bandwidth of the dedicated BWP allocated by the network device to the first terminal device may be less than or equal to the bandwidth of the first terminal device, or may be greater than the bandwidth of the first terminal device.
  • the network device may not allocate dedicated parameters for the first terminal device.
  • the network device can send the configuration information (for example, referred to as the first dedicated configuration information) of the dedicated parameter allocated to the first terminal device to the first terminal device through a downlink message A.
  • the downlink message A It is not the first downlink message.
  • the first terminal device After receiving the downlink message A, the first terminal device can obtain the first dedicated configuration information of the first terminal device according to the downlink message A.
  • the first terminal device sends a first uplink message to the network device, and the network device receives the first uplink message from the first terminal device.
  • the first upstream message does not refer to Msg3.
  • the first uplink message is, for example, the fifth message (Msg5), or other messages after random access is completed, such as RRC messages.
  • the first uplink message is, for example, an uplink message sent after MsgB, such as an RRC message.
  • the network device cannot configure the first terminal device with special parameters that meet the capabilities of the first terminal device through messages such as Msg4 or MsgB, that is, it cannot be guaranteed to pass
  • the dedicated parameters configured in messages such as Msg4 or MsgB can meet the bandwidth requirement of the first terminal device, or the network device may not allocate dedicated parameters to the first terminal device through messages such as Msg4 or MsgB.
  • the dedicated parameters corresponding to the preset resources described in S201 are restricted configuration parameters, such as the The bandwidth of the dedicated BWP corresponding to the preset resource is less than or equal to the channel bandwidth of the first terminal device. If this is the case, the first random access message may or may not include the first information. Even if the first random access message does not include the first information, the dedicated parameters allocated by the network device to the first terminal device are also restricted configuration parameters. For example, the bandwidth of the dedicated BWP allocated to the first terminal device may be less than or equal to the first terminal device. The channel bandwidth of the device.
  • the dedicated parameters corresponding to the G resources configured by the network device are restricted configuration parameters, such as the bandwidth of the dedicated BWP corresponding to each of the G resources Less than or equal to the channel bandwidth of the first terminal device. If this is the case, the first random access message may or may not include the first information. Even if the first random access message does not include the first information, the dedicated parameters allocated by the network device to the first terminal device are also restricted configuration parameters. For example, the bandwidth of the dedicated BWP allocated to the first terminal device may be less than or equal to the first terminal device. The channel bandwidth of the device.
  • the first terminal device may also send the first information to the network device through a subsequent first uplink message.
  • the network device receives the first uplink message from the first terminal device, if it is determined according to the first information that the first terminal device is a terminal device with limited bandwidth, and the network device uses a message such as Msg4 or MsgA to allocate a dedicated terminal device to the first terminal device.
  • Msg4 or MsgA uses a message such as Msg4 or MsgA to allocate a dedicated terminal device to the first terminal device.
  • the parameters do not meet the capabilities of the first terminal device (for example, the allocated dedicated BWP bandwidth is greater than the channel bandwidth of the first terminal device), or the network device has not allocated the dedicated parameters for the first terminal device through messages such as Msg4 or MsgA, then the network The device can allocate dedicated parameters to the first terminal device according to the first information.
  • the dedicated parameters allocated by the network device to the first terminal device can meet the actual capability requirements of the first terminal device, for example, the dedicated BWP allocated to the first terminal device
  • the bandwidth may be less than or equal to the channel bandwidth of the first terminal device; or, if the first terminal device is determined to be a terminal device with unlimited bandwidth according to the first information, and the network device allocates the first terminal device through a message such as Msg4 or MsgA
  • the dedicated parameters do not meet the capabilities of the first terminal device (for example, the allocated dedicated BWP has a small bandwidth), or the network device does not allocate dedicated parameters to the first terminal device through messages such as Msg4 or MsgA, the network device can use the first information Allocate dedicated transmission to the first terminal device.
  • the dedicated parameters allocated by the network device to the first terminal device can meet the capability requirements of the first terminal device.
  • the bandwidth of the dedicated BWP for the first terminal device can be larger for full application. The capabilities of the first terminal device.
  • the network device may send dedicated configuration information to the first terminal device through a downlink message B, and the dedicated configuration information is used to configure the dedicated parameters for the first terminal device.
  • the downlink message B at this time may be referred to as the first downlink message, and in this case, messages such as Msg4 or MsgB cannot be referred to as the first downlink message.
  • the network device sends a downlink message B to the first terminal device, and the first terminal device receives the downlink message B from the network device.
  • the first downlink message may include dedicated configuration information allocated by the network device to the first terminal device.
  • the downlink message B is, for example, an RRC message, or may be other messages.
  • S208 to S209 are optional steps, which are not necessary to be performed, so they are represented by dashed lines in FIG. 3.
  • the first terminal device can notify the network device of the type information of the first terminal device and/or the type information of the service supported by the first terminal device, so that the network device can allocate the information to the first terminal device.
  • the dedicated parameters that match the capabilities of the first terminal device enable the first terminal device to work normally.
  • the first terminal device may send the type information of the first terminal device and/or the type information of the service supported by the first terminal device to the network device through messages such as Msg3 or MsgA, or may also send the first terminal device through other messages such as Msg5.
  • the type information of the device and/or the type information of the service supported by the first terminal device is sent to the network device, which is relatively flexible.
  • the first terminal device when the first terminal device sends the first random access message, it may determine a resource with a bandwidth less than or equal to the channel bandwidth of the first terminal device as the first resource.
  • the first random access message is, for example, Msg3 or MsgA. If the bandwidth of the first resource is supported by the first terminal device, the first terminal device can send Msg3 or MsgA normally.
  • the technical solutions provided in the embodiments of this application can be used to complete the transmission of Msg3 or MsgA. Therefore, the technical solutions provided in the embodiments of this application can improve the terminal device's ability to complete random access. Success rate.
  • these preset resources are not dedicated to terminal devices with limited bandwidth. Even terminal devices with unlimited bandwidth can be selected These preset resources. Because the terminal device can subsequently send the type information of the terminal device and/or the type information of the service supported by the terminal device to the network device, the network device can allocate a dedicated BWP to the terminal device based on this information, so even if the bandwidth is not affected The use of these preset resources by a limited number of terminal devices will not make the capabilities of these terminal devices unable to be fully utilized. Moreover, these preset resources are not dedicated to terminal devices with limited bandwidth, which also reduces resource waste.
  • the channel bandwidth (channel bandwidth) of the terminal device is required to be greater than or equal to the bandwidth of the initial BWP.
  • the channel bandwidth of the terminal device includes the uplink channel bandwidth and the downlink channel bandwidth.
  • the uplink channel bandwidth of the terminal device is greater than the bandwidth of the initial uplink BWP
  • the downlink channel bandwidth (initial downlink BWP) of the terminal device is greater than the bandwidth of the initial downlink BWP .
  • the bandwidth of the initial uplink BWP and the bandwidth of the initial downlink BWP are configured by the network device through SIB1.
  • the embodiment of the present application provides a second communication method, which can solve this problem without adjusting the bandwidth of the initial BWP of the cell.
  • FIG. 3 is a flowchart of the second communication method provided in an embodiment of this application.
  • the application of this method to the network architecture shown in FIG. 1 is taken as an example.
  • the method executed by the network device and the terminal device is taken as an example. Because this embodiment is applied to the network architecture shown in FIG. 1 as an example, the network device described below may be the network device in the network architecture shown in FIG. 1, and the terminal device described below may be The terminal device 1 or the terminal device 2 in the network architecture shown in FIG. 1.
  • S301 Determine that the uplink channel bandwidth of the terminal device is greater than or equal to the third bandwidth, and/or determine that the downlink channel bandwidth of the terminal device is greater than or equal to the second bandwidth.
  • the terminal device is, for example, a terminal device with limited bandwidth.
  • the terminal device may be the first terminal device in the embodiment shown in FIG. 2, for example, an NR light terminal device.
  • the terminal device may also be a terminal device with unlimited bandwidth.
  • the terminal device described in the embodiment of the present application may also be the second terminal device in the embodiment shown in FIG. 2.
  • the terminal device can determine whether the uplink channel bandwidth of the terminal device is greater than or equal to the third bandwidth; or, determine whether the downlink channel bandwidth of the terminal device is greater than or equal to the second bandwidth; or, determine whether the uplink channel bandwidth of the terminal device is greater than or equal to the second bandwidth. Or equal to the third bandwidth, and determine whether the downlink channel bandwidth of the terminal device is greater than or equal to the second bandwidth. That is to say, for the condition of the uplink channel bandwidth and the condition of the downlink channel bandwidth, the terminal device may only determine one of the conditions, or may also determine two conditions. If only one condition is determined, the terminal device needs to perform fewer steps, which helps to improve the efficiency of the terminal device accessing the first cell; if two conditions are determined, the determination result can be made more accurate. In the embodiment of the present application, the terminal device determines that the uplink channel bandwidth of the terminal device is greater than or equal to the third bandwidth, and/or the downlink channel bandwidth of the terminal device is greater than or equal to the second bandwidth, as an example.
  • the third bandwidth may be the bandwidth used by the terminal device to send the random access request message in the first cell, and the second bandwidth may be the bandwidth of CORESET#0.
  • the random access request message is, for example, Msg1, or preamble.
  • the terminal device determines that the terminal device can access the first cell.
  • the terminal device determines in S301 whether the uplink channel bandwidth of the terminal device is greater than or equal to the third bandwidth, then if the uplink channel bandwidth of the terminal device is greater than or equal to the third bandwidth, the terminal device determines that the terminal device can access Enter the first cell, and if the uplink channel bandwidth of the terminal device is less than the third bandwidth, the terminal device determines that the terminal device cannot access the first cell; or, if the terminal device determines in S301 that the terminal device’s downlink Whether the channel bandwidth is greater than or equal to the second bandwidth, then if the downlink channel bandwidth of the terminal device is greater than or equal to the second bandwidth, the terminal device determines that the terminal device can access the first cell, and if the downlink channel bandwidth of the terminal device Less than the second bandwidth, the terminal device determines that the terminal device cannot access the first cell; or, if the terminal device determines in S301 whether the uplink channel bandwidth of the terminal device is greater than or equal to the third bandwidth, and the first terminal device Whether the downlink channel bandwidth of the device is
  • the bandwidth of the random access resource for which the terminal device sends the random access request message is the third bandwidth, so as long as the uplink channel bandwidth of the terminal device is greater than or equal to the third bandwidth, the terminal device can send the random access request message.
  • the bandwidth at which the terminal device receives the random access response is the bandwidth of CORESET#0, so as long as the downlink channel bandwidth of the terminal device is greater than or equal to the second bandwidth, the terminal device can receive the random access response message. As long as the terminal device can send a random access request message in a cell, and/or can receive a random access response message in the cell, that is, it can access the cell.
  • the terminal device determines that the uplink channel bandwidth of the terminal device is greater than or equal to the third bandwidth, and/or determines that the downlink channel bandwidth of the terminal device is greater than or equal to the second bandwidth, it can determine that the terminal device can access the first bandwidth. Community.
  • the third bandwidth and the second bandwidth can be configured through system messages.
  • S303 can be executed before S301.
  • the network device sends a system message in the first cell, and the terminal device receives a system message from the network device in the first cell.
  • the system message can be configured with a third bandwidth or a second bandwidth, or Configure the third bandwidth and the second bandwidth. If the system message is configured with the third bandwidth, the terminal device can determine the third bandwidth according to the system message; or, if the system message is configured with the second bandwidth, the terminal device can determine the second bandwidth according to the system message; or, If the system message configures the second bandwidth and the third bandwidth, the terminal device can determine the second bandwidth and the third bandwidth according to the system message.
  • the terminal device can determine whether the downlink channel bandwidth of the terminal device is greater than or equal to the second bandwidth when performing S301; or, if the system message is configured with the third bandwidth Bandwidth and the second bandwidth is not configured, the terminal device can determine whether the uplink channel bandwidth of the terminal device is greater than or equal to the third bandwidth when performing S301; or, if the system message configures the second bandwidth and the third bandwidth, the terminal device is When S301 is performed, it can be determined whether the downlink channel bandwidth of the terminal device is greater than or equal to the second bandwidth, or whether the uplink channel bandwidth of the terminal device is greater than or equal to the third bandwidth, or whether the downlink channel bandwidth of the terminal device is greater than or equal to the third bandwidth. Equal to the second bandwidth, and determine whether the uplink channel bandwidth of the terminal device is greater than or equal to the third bandwidth.
  • the system message is, for example, SIB1.
  • S303 is an optional step and does not have to be performed, so it is represented by a dotted line in FIG. 3.
  • the third bandwidth is generally smaller than the bandwidth of the initial uplink BWP, and the second bandwidth is generally smaller than the bandwidth of the initial downlink BWP. Therefore, this embodiment of the application increases the success of the terminal devices with limited bandwidth in accessing the cell through this provision. Rate. Moreover, the conditions for the terminal equipment with limited bandwidth for cell selection are reduced, which increases the number of terminal equipment in the cell that can be accessed.
  • a terminal device can determine whether it can access the first cell through the method provided by the embodiment shown in FIG. For a cell, the method provided in the embodiment shown in FIG. 2 is then used to send a random access request message, etc., to the network device.
  • the method of the embodiment shown in FIG. 3 may be directed to the first cell, that is, the terminal device sends a random access request message in the first cell, and subsequent steps are also performed in the first cell.
  • S201 to S208 in the embodiment shown in FIG. 2 may be executed, or, before S201 in the embodiment shown in FIG. 2, S301 to S301 in the embodiment shown in FIG. 3 may also be executed.
  • S303 S303.
  • the embodiment shown in FIG. 3 and the embodiment shown in FIG. 2 may also be applied separately without affecting each other.
  • FIG. 4 is a schematic block diagram of a communication device 400 provided by an embodiment of the application.
  • the communication apparatus 400 is, for example, the first terminal device 400.
  • the first terminal device 400 includes a processing module 410 and a sending module 420.
  • a receiving module 430 may also be included.
  • the first terminal device 400 may be a terminal device, or a chip applied in the terminal device or other combination devices, components, etc. having the above-mentioned terminal device functions.
  • the sending module 420 may be a transmitter
  • the receiving module 430 may be a receiver
  • the transmitter may include an antenna and a radio frequency circuit, etc.
  • the receiver may also include an antenna and a radio frequency circuit, etc.
  • the transmitter can belong to a functional module, such as a transceiver, or the transmitter and receiver can also be independent functional modules
  • the processing module 410 can be a processor, such as a baseband processor, and the baseband processor can include a Or multiple central processing units (central processing units, CPUs).
  • the sending module 420 and the receiving module 430 may be radio frequency units, and the processing module 410 may be a processor, such as a baseband processor.
  • the sending module 420 and the receiving module 430 may be input and output interfaces of a chip (for example, a baseband chip) (for example, the sending module 420 is an output interface, and the receiving module 430 is an input interface, or input and output. If it is the same interface, the sending module 420 and the receiving module 430 are both the interface), and the processing module 410 may be a processor of the chip system, and may include one or more central processing units.
  • processing module 410 in the embodiment of the present application may be implemented by a processor or processor-related circuit components
  • the sending module 420 may be implemented by a transmitter or a transmitter-related circuit component
  • the receiving module 430 may be implemented by a receiver or a receiver-related circuit component. Circuit component realization.
  • the processing module 410 may be used to perform all operations other than the transceiving operation performed by the first terminal device in the embodiment shown in FIG. 2, such as S201, and/or other operations used to support the technology described herein. process.
  • the sending module 420 may be used to perform all the sending operations performed by the first terminal device in the embodiment shown in FIG. 2, such as S203, S206, and S208, and/or other processes used to support the technology described herein.
  • the receiving module 430 may be used to perform all the receiving operations performed by the first terminal device in the embodiment shown in FIG. 2, such as S202, S204, S205, S207, and S209, and/or for supporting the technology described herein Other processes.
  • the sending module 420 and the receiving module 430 can be a functional module, which can be called a transceiver module.
  • the transceiver module can complete both the sending operation and the receiving operation.
  • the transceiver module can be used to perform the implementation shown in FIG. 2 In the example, all the sending and receiving operations performed by the first terminal device.
  • the transceiver module can be considered as the sending module, and when the receiving operation is performed, the transceiver module can be considered as the receiving module; or,
  • the sending module 420 and the receiving module 430 can also be two functional modules.
  • the transceiver module can be regarded as a collective term for these two functional modules.
  • the sending module 420 is used to complete the sending operation.
  • the sending module 420 can be used to perform the operation shown in FIG.
  • the receiving module 430 is used to complete all the sending operations performed by the first terminal device.
  • the receiving module 430 may be used to perform the embodiment shown in FIG. 2 by the first terminal device. All receive operations performed.
  • processing module 410 is used to determine the first resource
  • the sending module 420 is configured to send a first random access message on the first resource, where the bandwidth of the first resource is less than or equal to the channel bandwidth of the first terminal device 400, and the channel bandwidth of the first terminal device 400 is less than Or equal to the channel bandwidth of the second terminal device, the channel bandwidth of the second terminal device is greater than or equal to the first bandwidth, and the first bandwidth is configured by the network device.
  • the first resource is a part of a second resource, where the second resource is used by the second terminal device to send a first random access message, and the second resource is The bandwidth is less than or equal to the first bandwidth.
  • the sending module 420 is further configured to send a random access request message on a third resource, the third resource is a part of the fourth resource, and the fourth resource is used for the second terminal device to send a random access request information;
  • the receiving module 430 is configured to receive a random access response message, where the random access response message is used to schedule the first resource.
  • the third resource is a random access resource corresponding to a first random access opportunity, the first random access opportunity is one of N random access opportunities, and each of the N random access opportunities
  • the bandwidth of the resource for sending the first random access message corresponding to the random access opportunity is less than or equal to the channel bandwidth of the first terminal device 400; or,
  • the third resource is one of M random access resources, and the bandwidth of the resource for sending the first random access message corresponding to each of the M random access resources is less than or equal to The channel bandwidth of the first terminal device 400; or,
  • the third resource is one of K random access resources, the K random access resources correspond to H random access opportunities, and the H random access opportunities belong to P random access opportunities, so
  • the bandwidth of the resource for sending the first random access message corresponding to each of the K random access resources is less than or equal to the channel bandwidth of the first terminal device 400;
  • N, M, K, H, and P are all integers greater than or equal to 1, and H is less than or equal to P.
  • the receiving module 430 is further configured to receive a first downlink message from the network device, where the first downlink message includes the dedicated configuration information of the first terminal device 400, and the dedicated The configuration information is used to configure dedicated parameters.
  • the dedicated configuration information includes configuration information of a dedicated BWP, and the bandwidth of the dedicated BWP is less than or equal to the channel bandwidth of the first terminal device 400.
  • the third resource is used to determine the dedicated parameter, and the third resource is used to send a random access request message; or,
  • the first resource is used to determine the dedicated parameter; or,
  • the first random access message includes first information, and the first information is used to determine the dedicated parameter; or,
  • the sending module 420 is further configured to send a first uplink message to the network device, where the first uplink message includes first information, and the first information is used to determine the dedicated parameter;
  • the first information includes type information and/or service type information of the first terminal device 400, and the service is a service supported by the first terminal device 400.
  • the third resource is a random access resource with adjusted subcarrier spacing, wherein the bandwidth of the third resource before the subcarrier spacing is adjusted is greater than the channel bandwidth of the first terminal device 400 .
  • the channel bandwidth of the first terminal device 400 includes an uplink channel bandwidth and a downlink channel bandwidth
  • the processing module 410 is further configured to:
  • the uplink channel bandwidth of the first terminal device 400 is greater than or equal to the third bandwidth, and/or the downlink channel bandwidth of the first terminal device 400 is greater than or equal to the second bandwidth, where the third bandwidth is used for The bandwidth for sending the random access request message in the first cell covered by the network device, where the second bandwidth is the bandwidth of the control resource set 0;
  • the first terminal device 400 can access the first cell.
  • the receiving module 430 is further configured to receive system messages in the first cell;
  • the processing module 410 is further configured to determine the second bandwidth and the third bandwidth according to the system message.
  • the bandwidth of the control resource set 0 is less than or equal to the first bandwidth.
  • FIG. 5 is a schematic block diagram of a communication device 500 according to an embodiment of the application.
  • the communication device 500 is a network device 500, for example.
  • the network device 500 includes a sending module 520 and a receiving module 530.
  • a processing module 510 may also be included.
  • the network device 500 may be a network device, or may be a chip applied to the network device or other combination devices, components, etc. having the above-mentioned network device functions.
  • the transmitting module 520 may be a transmitter
  • the receiving module 530 may be a receiver.
  • the transmitter may include an antenna and a radio frequency circuit, etc.
  • the receiver may also include an antenna and a radio frequency circuit, etc., the transmitter and receiver.
  • the processor may belong to a functional module, such as a transceiver, or the transmitter and receiver may also be independent functional modules; the processing module 510 may be a processor, such as a baseband processor, and the baseband processor may include one or more CPUs.
  • the sending module 520 and the receiving module 530 may be radio frequency units, and the processing module 510 may be a processor, such as a baseband processor.
  • the sending module 520 and the receiving module 530 may be input and output interfaces of a chip (for example, a baseband chip) (for example, the sending module 520 is an output interface, and the receiving module 530 is an input interface, or the input and output are the same Interface, the sending module 520 and the receiving module 530 are the interfaces), and the processing module 510 may be a processor of the chip system, and may include one or more central processing units.
  • a chip for example, a baseband chip
  • the sending module 520 is an output interface
  • the receiving module 530 is an input interface, or the input and output are the same Interface
  • the sending module 520 and the receiving module 530 are the interfaces
  • the processing module 510 may be a processor of the chip system, and may include one or more central processing units.
  • processing module 510 in the embodiment of the present application may be implemented by a processor or processor-related circuit components
  • the sending module 520 may be implemented by a transmitter or a transmitter-related circuit component
  • the receiving module 530 may be implemented by a receiver or a receiver-related circuit component. Circuit component realization.
  • the processing module 510 may be used to perform all operations performed by the network device in the embodiment shown in FIG. 2 except for the transceiving operation, such as the operation of configuring dedicated parameters for the first terminal device, and/or for supporting Other processes of the technique described in this article.
  • the sending module 520 can be used to perform all the sending operations performed by the network device in the embodiment shown in FIG. 2, such as S202, S204, S205, S207, and S209, and/or other processes used to support the technology described herein .
  • the receiving module 530 may be used to perform all receiving operations performed by the network device in the embodiment shown in FIG. 2, such as S203, S206, and S208, and/or other processes used to support the technology described herein.
  • the receiving module 530 is configured to receive a first random access message from a first terminal device in a first resource, where the bandwidth of the first resource is less than or equal to the channel bandwidth of the first terminal device, and The channel bandwidth of the first terminal device is less than or equal to the channel bandwidth of the second terminal device, the channel bandwidth of the second terminal device is greater than or equal to the first bandwidth, and the first bandwidth is configured by the network device;
  • the sending module 520 is configured to send a first downlink message to the first terminal device, where the first downlink message includes dedicated configuration information, and the dedicated configuration information is used to configure dedicated parameters.
  • the dedicated configuration information includes configuration information of a dedicated BWP, and the bandwidth of the dedicated BWP is less than or equal to the channel bandwidth of the first terminal device.
  • the receiving module 530 is further configured to receive a random access request message from the first terminal device in a third resource, and the dedicated parameter is determined according to the third resource; or,
  • the dedicated parameter is determined according to the first resource; or,
  • the first random access message includes first information, and the dedicated parameter is determined according to the first information; or,
  • the receiving module 530 is further configured to receive a first uplink message from the first terminal device, where the dedicated parameter is determined according to the first information included in the first uplink message;
  • the first information includes type information and/or service type information of the first terminal device, and the service is a service supported by the first terminal device.
  • the receiving module 530 is further configured to receive a random access request message from the first terminal device in a third resource, where the third resource is a part of a fourth resource, and the fourth resource is used to receive a random access request message from the first terminal device.
  • the sending module 520 is further configured to send a random access response message to the first terminal device, where the random access response message is used to schedule the first resource.
  • the sending module 520 is further configured to send first configuration information to the first terminal device;
  • the first configuration information is used to configure N random access opportunities, and the bandwidth of the resource for sending the first random access message corresponding to each of the N random access opportunities is less than or Equal to the channel bandwidth of the first terminal device; or,
  • the first configuration information is used to configure M random access resources, and the bandwidth of the resource for sending the first random access message corresponding to each of the M random access resources is less than or equal to The channel bandwidth of the first terminal device; or,
  • the first configuration information is used to configure K random access resources corresponding to H random access opportunities, the H random access opportunities belong to P random access opportunities, and among the K random access resources
  • the bandwidth of the resource for sending the first random access message corresponding to each random access resource is less than or equal to the channel bandwidth of the first terminal device;
  • N, M, K, H, and P are all integers greater than or equal to 1, and H is less than or equal to P.
  • the sending module 520 is further configured to send second configuration information to the first terminal device, where the second configuration information is used to configure a second resource, and the second resource is used for Sending a random access first message at the second terminal device, the bandwidth of the second resource is less than or equal to the first bandwidth, and the first resource is a part of the second resource.
  • FIG. 6 is a schematic block diagram of a communication device 600 according to an embodiment of the application.
  • the communication device 600 is a terminal device 600, for example.
  • the terminal device 600 includes a processing module 610 and a transceiver module 620.
  • the terminal device 600 may be a terminal device, or may be a chip applied in the terminal device or other combination devices, components, etc. having the above-mentioned terminal device functions.
  • the transceiver module 620 may be a transceiver.
  • the transceiver may include an antenna and a radio frequency circuit.
  • the processing module 610 may be a processor, such as a baseband processor.
  • the baseband processor may include one or more CPU.
  • the transceiver module 620 may be a radio frequency unit, and the processing module 610 may be a processor, such as a baseband processor.
  • the transceiver module 620 may be an input/output interface of a chip (such as a baseband chip), and the processing module 610 may be a processor of the chip system, and may include one or more central processing units.
  • the processing module 610 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component, and the transceiver module 620 may be implemented by a transceiver or a transceiver-related circuit component.
  • the processing module 610 may be used to perform all operations performed by the terminal device in the embodiment shown in FIG. 3 except for the transceiving operations, such as S301 and S302, and/or other operations used to support the technology described herein. process.
  • the transceiving module 620 may be used to perform all the transceiving operations performed by the terminal device in the embodiment shown in FIG. 3, such as S303, and/or other processes used to support the technology described herein.
  • transceiver module 620 for the implementation of the transceiver module 620, reference may be made to the introduction of the implementation of the sending module 420 and the receiving module 420.
  • the transceiver module 620 is used to communicate with other devices;
  • the processing module 610 is configured to determine that the uplink channel bandwidth of the terminal device 600 is greater than or equal to the third bandwidth, and/or the downlink channel bandwidth of the terminal device 600 is greater than or equal to the second bandwidth, where the third bandwidth is used for The bandwidth of the random access request message sent by the first cell, where the second bandwidth is the bandwidth of the control resource set 0;
  • the processing module 610 is further configured to determine that the terminal device 600 can access the first cell.
  • the transceiver module 620 is configured to receive system messages in the first cell
  • the processing module 610 is further configured to determine the third bandwidth and the second bandwidth according to the system message.
  • the bandwidth of the control resource set 0 is less than or equal to the bandwidth of the initial BWP.
  • the embodiment of the present application also provides a communication device, and the communication device may be a terminal device or a circuit.
  • the communication device can be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 7 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 7 only one memory and processor are shown in FIG. 7. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with transceiving functions can be regarded as the transceiving unit of the terminal device (the transceiving unit can be a functional unit that can realize the sending and receiving functions; or the transceiving unit can also be It includes two functional units, namely a receiving unit capable of realizing the receiving function and a transmitting unit capable of realizing the transmitting function), and the processor with the processing function is regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiving unit 710 and a processing unit 720.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiving unit 710 can be regarded as the receiving unit
  • the device for implementing the sending function in the transceiving unit 710 can be regarded as the sending unit, that is, the transceiving unit 710 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 710 is configured to perform the sending and receiving operations on the terminal device side in the foregoing method embodiment
  • processing unit 720 is configured to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • the processing unit 720 may be used to perform all operations performed by the first terminal device in the embodiment shown in FIG. 2 except for receiving and sending operations, such as S201, and/or for supporting Other processes of the technique described in this article.
  • the transceiving unit 710 may be used to perform all the transceiving operations performed by the first terminal device in the embodiment shown in FIG. 2, such as S202 to S209, and/or other processes used to support the technology described herein.
  • the processing unit 720 may be used to perform all operations performed by the terminal device in the embodiment shown in FIG. 3 except for the receiving and sending operations, such as S301 and S302, and/or for Other processes that support the technology described in this article.
  • the transceiving unit 710 may be used to perform all the transceiving operations performed by the terminal device in the embodiment shown in FIG. 3, such as S303, and/or other processes used to support the technology described herein.
  • the device may include a transceiver unit and a processing unit.
  • the transceiving unit may be an input/output circuit and/or a communication interface;
  • the processing unit is an integrated processor or microprocessor or integrated circuit.
  • the device shown in FIG. 8 can be referred to.
  • the device can perform functions similar to the processing module 410 in FIG. 4.
  • the device can perform functions similar to the processing module 610 in FIG. 6.
  • the device includes a processor 810, a data sending processor 820, and a data receiving processor 830.
  • the processing module 410 in the foregoing embodiment may be the processor 810 in FIG. 8 and complete corresponding functions; the sending module 420 in the foregoing embodiment may be the sending data processor 820 in FIG.
  • the receiving module 430 may be the receiving data processor 830 in FIG. 8 and completes corresponding functions.
  • the processing module 610 in the foregoing embodiment may be the processor 810 in FIG.
  • the transceiving module 620 in the foregoing embodiment may be the sending data processor 820 in FIG. 8, and/or Receive data processor 830 and complete corresponding functions.
  • the channel encoder and the channel decoder are shown in FIG. 8, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
  • the processing device 900 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as the modulation subsystem therein.
  • the modulation subsystem may include a processor 903 and an interface 904.
  • the processor 903 completes the functions of the aforementioned processing module 410
  • the interface 904 completes the aforementioned functions of the sending module 420 and the receiving module 430.
  • the processor 903 completes the function of the aforementioned processing module 610
  • the interface 904 completes the function of the aforementioned transceiver module 620.
  • the modulation subsystem includes a memory 906, a processor 903, and a program stored in the memory 906 and running on the processor.
  • the processor 903 executes the program, the terminal device side in the above method embodiment is implemented.
  • the memory 906 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 900, as long as the memory 906 can be connected to the The processor 903 is sufficient.
  • the device 1000 includes one or more radio frequency units, such as a remote radio unit (RRU) 1010 and one or more baseband units (BBU) (also referred to as a digital unit, digital unit, DU) 1020 .
  • RRU remote radio unit
  • BBU baseband units
  • the RRU 1010 may be referred to as a transceiver module, and the transceiver module may include a sending module and a receiving module, or the transceiver module may be a module capable of implementing the functions of sending and receiving.
  • the transceiver module may correspond to the transceiver module 520 in FIG. 5.
  • the transceiver module may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 1011 and a radio frequency unit 1012.
  • the RRU 1010 part is mainly used for sending and receiving of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the 1020 part of the BBU is mainly used to perform baseband processing, control the base station, and so on.
  • the RRU 1010 and the BBU 1020 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1020 is the control center of the base station, and may also be called a processing module, which may correspond to the processing module 510 in FIG. 5, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing module
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing indication information.
  • the BBU 1020 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network with a single access standard (such as an LTE network), or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1020 also includes a memory 1021 and a processor 1022.
  • the memory 1021 is used to store necessary instructions and data.
  • the processor 1022 is used to control the base station to perform necessary actions, for example, used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 1021 and the processor 1022 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the embodiment of the present application provides a first communication system.
  • the first communication system may include the first terminal device involved in the embodiment shown in FIG. 2 and the network device involved in the embodiment shown in FIG. 2.
  • the first terminal device is, for example, the first terminal device 400 in FIG. 4.
  • the network device is, for example, the network device 500 in FIG. 5.
  • the embodiment of the present application provides a second communication system.
  • the second communication system may include the terminal device involved in the embodiment shown in FIG. 3 described above.
  • the terminal device is, for example, the terminal device 600 in FIG. 6.
  • the terminal device 600 and the first terminal device 400 may be the same terminal device or different terminal devices. If the terminal device 600 and the first terminal device 400 are the same terminal device, the first communication system and the second communication system can be regarded as the same communication system.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a computer, the computer can implement the method shown in FIG. 2 provided by the foregoing method embodiment.
  • the process related to the network device in the embodiment is not limited to a computer-readable storage medium.
  • the embodiments of the present application also provide a computer-readable storage medium for storing a computer program.
  • the computer program When executed by a computer, the computer can implement the method shown in FIG. 2 provided by the above method embodiment. The process related to the first terminal device in the embodiment.
  • An embodiment of the present application also provides a computer-readable storage medium that stores a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the method shown in FIG. 3 provided by the foregoing method embodiment. The process related to the terminal device in the embodiment.
  • the embodiments of the present application also provide a computer program product, which is used to store a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 2 provided by the above method embodiment. Processes related to network equipment.
  • the embodiments of the present application also provide a computer program product, which is used to store a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 2 provided by the above method embodiment. The process related to the first terminal device.
  • the embodiment of the present application also provides a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 3 provided by the above method embodiment Processes related to terminal equipment.
  • processors mentioned in the embodiments of this application may be a CPU, or other general-purpose processors, digital signal processors (digital signal processors, DSP), application specific integrated circuits (ASICs), ready-made Field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned computer-readable storage medium may be any available medium that can be accessed by a computer.
  • computer-readable media can include random access memory (RAM), read-only memory (ROM), and electrically erasable programmable read-only memory (electrically erasable programmable read-only memory).
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • USB flash disk universal serial bus flash disk
  • mobile hard disk or other optical disk storage
  • disk storage A medium or other magnetic storage device, or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种通信方法及装置。第一终端设备确定第一资源。第一终端设备在第一资源发送随机接入第一消息,第一资源的带宽小于或等于第一终端设备的信道带宽,第一终端设备的信道带宽小于或等于第二终端设备的信道带宽,第二终端设备的信道带宽大于或等于第一带宽,第一带宽是网络设备配置的。随机接入第一消息例如为Msg3或MsgA,即使对于能力受限的终端设备,采用本申请实施例提供的技术方案后也能完成对于Msg3或MsgA的发送,因此能够提高终端设备完成随机接入的成功率。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2020年03月13日提交中国国家知识产权局、申请号为202010177768.1、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
终端设备要与网络设备进行通信,需要通过随机接入过程先接入该网络设备。在随机接入过程中,第一终端设备需要向网络设备发送第三消息(Msg3)。按照目前的规定,用于承载Msg3的资源的带可能达到初始BWP的带宽。初始带宽部分(initial bandwidth part,initial BWP)的带宽是通过系统信息块(system information block,SIB)(例如SIB1)配置的,一般来说配置的比较大,例如20M。
而目前除了一些具有正常功能的第一终端设备之外,还存在一些能力受限的终端设备,例如新空口(new radio,NR)轻量(light)终端设备,或者能力降低(redced capability,REDCAP)设备,对于NR light终端设备来说,带宽可能受限,例如支持的最大带宽可能是5M或10M。那么终端设备的信道带宽可能小于初始BWP的带宽,如果用于承载Msg3的资源的带宽大于终端设备的信道带宽,则终端设备无法向网络设备发送Msg3,这会导致该终端设备无法完成随机接入。
发明内容
本申请实施例提供一种通信方法及装置,用于提高第一终端设备随机接入的成功率。
第一方面,提供第一种通信方法,该方法包括:确定第一资源;在所述第一资源发送随机接入第一消息,其中,所述第一资源的带宽小于或等于第一终端设备的信道带宽,所述第一终端设备的信道带宽小于或等于第二终端设备的信道带宽,所述第二终端设备的信道带宽大于或等于第一带宽,所述第一带宽是网络设备配置的。
该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片。示例性地,所述第一通信装置为终端设备,或者为设置在终端设备中的用于实现终端设备的功能的芯片,或者为用于实现终端设备的功能的其他部件。在下文的介绍过程中,以第一通信装置是第一终端设备为例。
在本申请实施例中,第一终端设备在发送随机接入第一消息时,可以确定带宽小于或等于第一终端设备的信道带宽的资源作为第一资源。随机接入第一消息例如为Msg3,或者为MsgA,第一资源的带宽是第一终端设备能够支持的,则第一终端设备就能正常发送Msg3或MsgA。即使对于能力受限的终端设备来说,采用本申请实施例提供的技术方案后也能完成对于Msg3或MsgA的发送,因此采用本申请实施例提供的技术方案能够提高终 端设备完成随机接入的成功率。
在一种可选的实施方式中,所述第一资源是第二资源的一部分,其中,所述第二资源用于所述第二终端设备发送随机接入第一消息,所述第二资源的带宽小于或等于所述第一带宽。
所述的第二资源可以包括一个或多个资源,第二资源的带宽小于或等于第二终端设备的信道带宽是指,这一个或多个资源中的每个资源的带宽小于或等于第二终端设备的信道带宽。例如,可供终端设备发送随机接入第一消息的资源有5个,这5个资源属于第二资源。这5个资源中,有2个资源中的每个资源的带宽小于或等于第一终端设备的信道带宽,那么第一终端设备可以选择这2个资源中的一个作为第一资源。对于第二终端设备来说,可以选择第二资源发送随机接入第一消息,也可以选择第一资源发送随机接入第一消息,例如第二终端设备可以选择这5个资源中的一个发送随机接入第一消息,或者也可以选择这2个资源中的一个发送随机接入第一消息。相当于,虽然设置了能够供第一终端设备所选择的资源,但是并不影响第二终端设备的资源选择,对于第二终端设备来说可选的资源并没有减少,以此可以提高资源的利用率。
在一种可选的实施方式中,所述方法还包括:
在第三资源发送随机接入请求消息,所述第三资源是第四资源的一部分,其中,所述第四资源用于所述第二终端设备发送随机接入请求消息;
接收随机接入响应消息,所述随机接入响应消息用于调度所述第一资源。
如果该随机接入过程的类型为4步RACH,则随机接入第一消息可以是Msg3,第一终端设备在向网络设备发送Msg3之前,可以在第三资源向网络设备发送随机接入请求消息,网络设备在第三资源接收来自第一终端设备的随机接入请求消息。随机接入请求消息例如为Msg1,也就是preamble。另外,如果Msg3为初传,则网络设备在接收随机接入请求消息后,可以向第一终端设备发送随机接入响应消息,第一终端设备接收来自网络设备的随机接入响应消息。该随机接入响应消息可以调度第一资源。这样第一终端设备在接收随机接入响应消息后就可以确定第一资源。随机接入响应消息例如为Msg2,也就是RAR消息。第三资源可以是第四资源的一部分,第四资源可以用于第二终端设备发送Msg1。第四资源的带宽可以小于或等于第二终端设备的信道带宽(这里可以是指第二终端设备的上行信道带宽),另外,第四资源的带宽也可以小于或等于初始BWP的带宽(这里可以是指初始上行BWP的带宽)。
在一种可选的实施方式中,
所述第三资源是第一随机接入机会对应的随机接入资源,所述第一随机接入机会是N个随机接入机会中的一个,所述N个随机接入机会中的每个随机接入机会所对应的用于发送随机接入第一消息的资源的带宽小于或等于所述第一终端设备的信道带宽;或,
所述第三资源是M个随机接入资源中的一个,所述M个随机接入资源中的每个随机接入资源对应的用于发送随机接入第一消息的资源的带宽小于或等于所述第一终端设备的信道带宽;或,
所述第三资源是K个随机接入资源中的一个,所述K个随机接入资源对应于H个随机接入机会,所述H个随机接入机会属于P个随机接入机会,所述K个随机接入资源中的每个随机接入资源对应的用于发送随机接入第一消息的资源的带宽小于或等于所述第一终端设备的信道带宽;
其中,N、M、K、H和P均为大于或等于1的整数,且H小于或等于P。
在本申请实施例中,例如对于4步RACH的情况,可以预先设置相应的用于发送随机接入请求消息的资源(例如将这些预先设置的资源称为预设资源),并规定这些预设资源中的每个资源所对应的用于发送随机接入第一消息的资源的带宽小于或等于第一终端设备的信道带宽(第一终端设备的信道带宽可以包括上行信道带宽和下行信道带宽,这里主要是指第一终端设备的上行信道带宽),也就是说,预设资源中的每个资源对应的用于发送随机接入第一消息(例如Msg3)的资源的带宽小于或等于第一终端设备的信道带宽。网络设备在接收来自第一终端设备的随机接入请求消息后,如果确定用于发送该随机接入请求消息的随机接入资源属于预先设置的预设资源,则网络设备在为第一终端设备分配用于发送随机接入第一消息的资源时就可以选择带宽小于或等于第一终端设备的信道带宽的资源。通过预先设置用于发送随机接入请求消息的资源的方式,可以使得网络设备所调度的用于发送随机接入第一消息的资源能够满足第一终端设备的能力要求,提高终端设备对于随机接入第一消息的发送成功率。
在一种可选的实施方式中,所述方法还包括:
接收来自所述网络设备的第一下行消息,所述第一下行消息包括所述第一终端设备的专用配置信息,所述专用配置信息用于配置专用参数。
第一终端设备在接入网络设备后,需要在该网络设备的覆盖下通信,则网络设备还需要为第一终端设备配置相应的专用参数,从而第一终端设备可以根据这些专用参数在该网络设备的覆盖下通信。例如网络设备可以将用于配置专用参数的专用配置信息包括在第一下行消息中发送给第一终端设备,从而第一终端设备能够获得专用配置信息。
在一种可选的实施方式中,所述专用配置信息包括专用BWP的配置信息,所述专用BWP的带宽小于或等于所述第一终端设备的信道带宽。
专用配置信息可以包括专用BWP的配置信息,例如网络设备为第一终端设备分配的专用BWP的带宽可以小于或等于第一终端设备的带宽,从而可以使得专用BWP的带宽能够满足第一终端设备的能力要求。
在一种可选的实施方式中,
第三资源用于确定所述专用参数,所述第三资源用于发送随机接入请求消息;或,
所述第一资源用于确定所述专用参数;或,
所述随机接入第一消息包括第一信息,所述第一信息用于确定所述专用参数;或,
所述方法还包括:向所述网络设备发送第一上行消息,所述第一上行消息包括第一信息,所述第一信息用于确定所述专用参数;
其中,所述第一信息包括所述第一终端设备的类型信息和/或业务的类型信息,所述业务为所述第一终端设备支持的业务。
例如对于4步RACH,如果预先规定了,所述的预设资源对应的专用参数是受限的配置参数,那么网络设备接收随机接入请求消息后,如果确定用于发送随机接入请求消息的第三资源属于所述的预设资源,则网络设备为第一终端设备分配的专用参数可以是受限的配置参数,例如为第一终端设备分配的专用BWP的带宽可以小于或等于第一终端设备的信道带宽。在这种情况下,可以认为网络设备是根据第三资源确定第一终端设备的专用参数。或者,例如对于2步RACH,如果预先规定了,网络设备预先配置的G个资源对应的专用参数是受限的配置参数,那么网络设备接收随机接入第一消息后,如果确定用于发送 随机接入第一消息的第一资源属于所述的G个资源,则网络设备为第一终端设备分配的专用参数可以是受限的配置参数,例如为第一终端设备分配的专用BWP的带宽可以小于或等于第一终端设备的信道带宽。在这种情况下,可以认为网络设备是根据第一资源确定第一终端设备的专用参数。如上的两种情况,无需第一终端设备向网络设备额外发送信息,网络设备可以根据相应的资源为第一终端设备配置专用参数,有助于节省信令开销。
或者,随机接入第一消息可以包括第一信息,则网络设备可以根据第一信息为第一终端设备配置专用参数。例如第一信息表明该第一终端设备是带宽受限的第一终端设备,则网络设备根据第一信息为第一终端设备配置的专用参数就可以是受限的配置参数,例如专用BWP的带宽可以小于或等于第一终端设备的信道带宽。或者,第一终端设备未通过随机接入第一消息向网络设备发送第一信息,而是通过其他的消息(第一上行消息)向网络设备发送了第一信息,那么网络设备也可以根据第一信息为第一终端设备配置专用参数。如上的两种情况,第一终端设备可以向网络设备发送第一信息,网络设备可以根据第一信息为第一终端设备配置专用参数,可以使得网络设备所配置的专用参数更为符合第一终端设备的能力要求。
在一种可选的实施方式中,所述第三资源是子载波间隔经过调整的随机接入资源,其中,调整子载波间隔之前的所述第三资源的带宽大于所述第一终端设备的信道带宽。
为了可以令带宽受限的终端设备支持更多的随机接入资源,以提高带宽受限的终端设备发起随机接入的成功率,可以调整某些随机接入机会上的随机接入资源的子载波间隔,使得调整后的随机接入资源能够满足带宽受限的终端设备的要求。例如,第三资源可以是子载波间隔未经过调整的随机接入资源,或者也可以是子载波间隔经过调整的随机接入资源。如果第三资源是子载波间隔经过调整的随机接入资源,那么在调整第三资源的子载波间隔之前,第三资源的带宽可以大于第一终端设备的信道带宽。即,在调整子载波间隔之前,带宽受限的终端设备可能并不支持第三资源,但是在调整子载波间隔后,带宽受限的终端设备能够支持第三资源。通过调整子载波间隔,可以使得带宽受限的终端设备能够选择更多的资源发送随机接入请求消息,扩大了带宽受限的终端设备的资源选择范围,也就提高了选择资源的成功率。
在一种可选的实施方式中,所述第一终端设备的信道带宽包括上行信道带宽和下行信道带宽,所述方法还包括:
确定所述第一终端设备的上行信道带宽大于或等于第三带宽,和/或,所述第一终端设备的下行信道带宽大于或等于第二带宽,其中,所述第三带宽为用于在所述网络设备覆盖的第一小区发送随机接入请求消息的带宽,所述第二带宽为控制资源集0的带宽;
确定所述第一终端设备能够接入所述第一小区。
第一终端设备发送随机接入请求消息的随机接入资源的带宽为第三带宽,那么只要第一终端设备的上行信道带宽大于或等于第三带宽,第一终端设备就能够发送随机接入请求消息。第一终端设备接收随机接入响应的带宽为CORESET#0的带宽,因此只要第一终端设备的下行信道带宽大于或等于第二带宽,第一终端设备就能接收随机接入响应消息。第一终端设备只要能在一个小区发送随机接入请求消息,和/或,能够在该小区接收随机接入响应消息,也就是能够接入该小区。因此第一终端设备如果确定第一终端设备的上行信道带宽大于或等于第三带宽,和/或,确定第一终端设备的下行信道带宽大于或等于第二带宽,就可以确定第一终端设备能够接入第一小区。通过这种方式,第一终端设备无需根据初始 BWP的带宽进行判断,增加了带宽受限的终端设备接入小区的成功率。而且也使得带宽受限的终端设备进行小区选择的条件有所降低,使得能够接入的小区的终端设备的数量有所增加。
在一种可选的实施方式中,所述方法还包括:
在所述第一小区接收系统消息;
根据所述系统消息确定所述第二带宽和所述第三带宽。
第二带宽和第三带宽可以是系统消息配置的,或者也可以是通过其他消息配置的。
在一种可选的实施方式中,所述控制资源集0的带宽小于或等于所述第一带宽。
第一带宽例如为初始BWP的带宽,控制资源集0的带宽一般来说可能小于或等于初始BWP的带宽。
第二方面,提供第二种通信方法,该方法包括:在第一资源接收来自第一终端设备的随机接入第一消息,其中,所述第一资源的带宽小于或等于所述第一终端设备的信道带宽,所述第一终端设备的信道带宽小于或等于第二终端设备的信道带宽,所述第二终端设备的信道带宽大于或等于第一带宽,所述第一带宽是网络设备配置的;向所述第一终端设备发送第一下行消息,所述第一下行消息包括专用配置信息,所述专用配置信息用于配置专用参数。
该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片。示例性地,所述第二通信装置为网络设备,或者为设置在网络设备中的用于实现网络设备的功能的芯片,或者为用于实现网络设备的功能的其他部件。在下文的介绍过程中,以第二通信装置是网络设备为例。
在一种可选的实施方式中,所述专用配置信息包括专用BWP的配置信息,所述专用BWP的带宽小于或等于所述第一终端设备的信道带宽。
在一种可选的实施方式中,
所述方法还包括:在第三资源接收来自所述第一终端设备的随机接入请求消息,所述专用参数是根据所述第三资源确定的;或,
所述专用参数是根据所述第一资源确定的;或,
所述随机接入第一消息包括第一信息,所述专用参数是根据所述第一信息确定的;或,
所述方法还包括:接收来自所述第一终端设备的第一上行消息,所述专用参数是根据所述第一上行消息包括的第一信息确定的;
其中,所述第一信息包括所述第一终端设备的类型信息和/或业务的类型信息,所述业务为所述第一终端设备支持的业务。
在一种可选的实施方式中,所述方法还包括:
在第三资源接收来自所述第一终端设备的随机接入请求消息,所述第三资源是第四资源的一部分,其中,所述第四资源用于接收来自所述第二终端设备的随机接入请求消息;
向所述第一终端设备发送随机接入响应消息,所述随机接入响应消息用于调度所述第一资源。
在一种可选的实施方式中,所述方法还包括:
向所述第一终端设备发送第一配置信息;其中,
所述第一配置信息用于配置N个随机接入机会,所述N个随机接入机会中的每个随机接入机会所对应的用于发送随机接入第一消息的资源的带宽小于或等于所述第一终端设 备的信道带宽;或,
所述第一配置信息用于配置M个随机接入资源,所述M个随机接入资源中的每个随机接入资源对应的用于发送随机接入第一消息的资源的带宽小于或等于所述第一终端设备的信道带宽;或,
所述第一配置信息用于配置H个随机接入机会对应的K个随机接入资源,所述H个随机接入机会属于P个随机接入机会,所述K个随机接入资源中的每个随机接入资源对应的用于发送随机接入第一消息的资源的带宽小于或等于所述第一终端设备的信道带宽;
其中,N、M、K、H和P均为大于或等于1的整数,且H小于或等于P。
在本申请实施例中,可以预先设置相应的用于发送随机接入请求消息的资源(例如将这些预先设置的资源称为预设资源),并规定这些预设资源中的每个资源所对应的用于发送随机接入第一消息的资源的带宽小于或等于第一终端设备的信道带宽(第一终端设备的信道带宽可以包括上行信道带宽和下行信道带宽,这里主要是指第一终端设备的上行信道带宽),也就是说,预设资源中的每个资源对应的用于发送随机接入第一消息(例如Msg3)的资源的带宽小于或等于第一终端设备的信道带宽,第一配置信息就可以用于配置预设资源。如果预先设置了相应的预设资源,那么网络设备在接收来自第一终端设备的随机接入请求消息后,如果确定用于发送该随机接入请求消息的随机接入资源属于预先设置的预设资源,则网络设备在为第一终端设备分配用于发送随机接入第一消息的资源时就可以选择带宽小于或等于第一终端设备的信道带宽的资源。通过这种方式,使得网络设备能够为带宽受限的终端设备分配满足该终端设备的能力要求的资源,提高终端设备发送随机接入第一消息的成功率,也是相应提高终端设备随机接入的成功率。
在一种可选的实施方式中,所述方法还包括:
向所述第一终端设备发送第二配置信息,其中,所述第二配置信息用于配置第二资源,所述第二资源用于所述第二终端设备发送随机接入第一消息,所述第二资源的带宽小于或等于所述第一带宽,所述第一资源是所述第二资源的一部分。
例如,网络设备可以预先为第一终端设备配置G个资源,G个资源例如属于第二资源,这G个资源中的每个资源的带宽小于或等于第一终端设备的信道带宽,G为大于或等于1的整数。第一终端设备可以从G个资源中选择一个资源作为第一资源。通过这种方式,网络设备可以预先为第一终端设备配置符合第一终端设备的能力要求的资源,第一终端设备在需要发送随机接入第一消息(例如MsgA)时从已配置的资源中选择资源发送即可,减小第一终端设备发送随机接入第一消息的时延,而且因为预先配置的资源是满足第一终端设备的能力要求的,也能提高第一终端设备发送随机接入第一消息的成功率。
关于第二方面或相应的实施方式所带来的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
第三方面,提供第三种通信方法,该方法包括:确定终端设备的上行信道带宽大于或等于第三带宽,和/或,所述终端设备的下行信道带宽大于或等于第二带宽,其中,所述第三带宽为用于在第一小区发送随机接入请求消息的带宽,所述第二带宽为控制资源集0的带宽;确定所述终端设备能够接入所述第一小区。
该方法可由第三通信装置执行,第三通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片。示例性地,所述第三通信装置为终端设备,或者为设置在终端设备中的用于实现终端设备的功能的芯片,或者为用于实现终端设备的 功能的其他部件。在下文的介绍过程中,以第三通信装置是终端设备为例。
终端设备发送随机接入请求消息的随机接入资源的带宽为第三带宽,那么只要该终端设备的上行信道带宽大于或等于第三带宽,该终端设备就能够发送随机接入请求消息。该终端设备接收随机接入响应的带宽为CORESET#0的带宽,因此只要该终端设备的下行信道带宽大于或等于第二带宽,该终端设备就能接收随机接入响应消息。该终端设备只要能在一个小区发送随机接入请求消息,和/或,能够在该小区接收随机接入响应消息,也就是能够接入该小区。因此该终端设备如果确定该终端设备的上行信道带宽大于或等于第三带宽,和/或,确定该终端设备的下行信道带宽大于或等于第二带宽,就可以确定该终端设备能够接入第一小区。第三带宽一般来说会小于初始上行BWP的带宽,第二带宽一般来说小于初始下行BWP的带宽,因此本申请实施例通过这种规定,增加了带宽受限的终端设备接入小区的成功率。而且也使得带宽受限的终端设备进行小区选择的条件有所降低,使得能够接入的小区的终端设备的数量有所增加。
在一种可选的实施方式中,所述方法还包括:
在所述第一小区接收系统消息;
根据所述系统消息确定所述第三带宽和所述第二带宽。
系统消息可以配置第二带宽,或配置第三带宽,或配置第二带宽和第三带宽。或者,第二带宽和/或第三带宽也可以通过其他消息配置。
在一种可选的实施方式中,所述控制资源集0的带宽小于或等于初始BWP的带宽。
控制资源集0的带宽一般来说可能小于或等于初始BWP的带宽。当然也不限于此。
第四方面,提供一种通信装置,例如该通信装置为如前所述的第一通信装置。所述第一通信装置用于执行上述第一方面或任一可能的实施方式中的方法。具体地,所述第一通信装置可以包括用于执行第一方面或任一可能的实施方式中的方法的模块,例如包括处理模块和收发模块。示例性地,收发模块可以包括发送模块。可选的,收发模块还可以包括接收模块,发送模块和接收模块可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。示例性地,所述第一通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为网络设备。下面以第一通信装置是第一终端设备为例。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器实现。或者,发送模块可以通过发送器实现,接收模块可以通过接收器实现,发送器和接收器可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。如果第一通信装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第一通信装置为设置在通信设备中的芯片,那么收发器(或,发送器和接收器)例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第四方面的介绍过程中,继续以所述第一通信装置是第一终端设备,以及,以所述处理模块、所述发送模块和所述接收模块为例进行介绍。其中,
所述处理模块,用于确定第一资源;
所述发送模块,用于在所述第一资源发送随机接入第一消息,其中,所述第一资源的带宽小于或等于第一终端设备的信道带宽,所述第一终端设备的信道带宽小于或等于第二终端设备的信道带宽,所述第二终端设备的信道带宽大于或等于第一带宽,所述第一带宽是网络设备配置的。
在一种可选的实施方式中,所述第一资源是第二资源的一部分,其中,所述第二资源用于所述第二终端设备发送随机接入第一消息,所述第二资源的带宽小于或等于所述第一带宽。
在一种可选的实施方式中,
所述发送模块,还用于在第三资源发送随机接入请求消息,所述第三资源是第四资源的一部分,其中,所述第四资源用于所述第二终端设备发送随机接入请求消息;
所述接收模块,用于接收随机接入响应消息,所述随机接入响应消息用于调度所述第一资源。
在一种可选的实施方式中,
所述第三资源是第一随机接入机会对应的随机接入资源,所述第一随机接入机会是N个随机接入机会中的一个,所述N个随机接入机会中的每个随机接入机会所对应的用于发送随机接入第一消息的资源的带宽小于或等于所述第一终端设备的信道带宽;或,
所述第三资源是M个随机接入资源中的一个,所述M个随机接入资源中的每个随机接入资源对应的用于发送随机接入第一消息的资源的带宽小于或等于所述第一终端设备的信道带宽;或,
所述第三资源是K个随机接入资源中的一个,所述K个随机接入资源对应于H个随机接入机会,所述H个随机接入机会属于P个随机接入机会,所述K个随机接入资源中的每个随机接入资源对应的用于发送随机接入第一消息的资源的带宽小于或等于所述第一终端设备的信道带宽;
其中,N、M、K、H和P均为大于或等于1的整数,且H小于或等于P。
在一种可选的实施方式中,所述接收模块,还用于接收来自所述网络设备的第一下行消息,所述第一下行消息包括所述第一终端设备的专用配置信息,所述专用配置信息用于配置专用参数。
在一种可选的实施方式中,所述专用配置信息包括专用BWP的配置信息,所述专用BWP的带宽小于或等于所述第一终端设备的信道带宽。
在一种可选的实施方式中,
第三资源用于确定所述专用参数,所述第三资源用于发送随机接入请求消息;或,
所述第一资源用于确定所述专用参数;或,
所述随机接入第一消息包括第一信息,所述第一信息用于确定所述专用参数;或,
所述发送模块,还用于向所述网络设备发送第一上行消息,所述第一上行消息包括第一信息,所述第一信息用于确定所述专用参数;
其中,所述第一信息包括所述第一终端设备的类型信息和/或业务的类型信息,所述业务为所述第一终端设备支持的业务。
在一种可选的实施方式中,所述第三资源是子载波间隔经过调整的随机接入资源,其中,调整子载波间隔之前的所述第三资源的带宽大于所述第一终端设备的信道带宽。
在一种可选的实施方式中,所述第一终端设备的信道带宽包括上行信道带宽和下行信道带宽,所述处理模块还用于:
确定所述第一终端设备的上行信道带宽大于或等于第三带宽,和/或,所述第一终端设备的下行信道带宽大于或等于第二带宽,其中,所述第三带宽为用于在所述网络设备覆盖的第一小区发送随机接入请求消息的带宽,所述第二带宽为控制资源集0的带宽;
确定所述第一终端设备能够接入所述第一小区。
在一种可选的实施方式中,
所述接收模块,还用于在所述第一小区接收系统消息;
所述处理模块,还用于根据所述系统消息确定所述第二带宽和所述第三带宽。
在一种可选的实施方式中,所述控制资源集0的带宽小于或等于所述第一带宽。
关于第四方面或各种可选的实施方式所带来的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
第五方面,提供一种通信装置,例如该通信装置为如前所述的第二通信装置。所述第二通信装置用于执行上述第二方面或任一可能的实施方式中的方法。具体地,所述第二通信装置可以包括用于执行第二方面或任一可能的实施方式中的方法的模块,例如包括收发模块。可选的,第二通信装置还可以包括处理模块。示例性地,收发模块可以包括发送模块和接收模块,发送模块和接收模块可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。示例性地,所述第二通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为网络设备。下面以第二通信装置是网络设备为例。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器实现。或者,发送模块可以通过发送器实现,接收模块可以通过接收器实现,发送器和接收器可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。如果第二通信装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第二通信装置为设置在通信设备中的芯片,那么收发器(或,发送器和接收器)例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第五方面的介绍过程中,继续以所述第二通信装置是网络设备,以及,以所述处理模块、所述发送模块和所述接收模块为例进行介绍。其中,
所述接收模块,用于在第一资源接收来自第一终端设备的随机接入第一消息,其中,所述第一资源的带宽小于或等于所述第一终端设备的信道带宽,所述第一终端设备的信道带宽小于或等于第二终端设备的信道带宽,所述第二终端设备的信道带宽大于或等于第一带宽,所述第一带宽是网络设备配置的;
所述发送模块,还用于向所述第一终端设备发送第一下行消息,所述第一下行消息包括专用配置信息,所述专用配置信息用于配置专用参数。
在一种可选的实施方式中,所述专用配置信息包括专用BWP的配置信息,所述专用BWP的带宽小于或等于所述第一终端设备的信道带宽。
在一种可选的实施方式中,
所述接收模块,还用于在第三资源接收来自所述第一终端设备的随机接入请求消息,所述专用参数是根据所述第三资源确定的;或,
所述专用参数是根据所述第一资源确定的;或,
所述随机接入第一消息包括第一信息,所述专用参数是根据所述第一信息确定的;或,
所述接收模块,还用于接收来自所述第一终端设备的第一上行消息,所述专用参数是根据所述第一上行消息包括的第一信息确定的;
其中,所述第一信息包括所述第一终端设备的类型信息和/或业务的类型信息,所述业务为所述第一终端设备支持的业务。
在一种可选的实施方式中,
所述接收模块,还用于在第三资源接收来自所述第一终端设备的随机接入请求消息,所述第三资源是第四资源的一部分,其中,所述第四资源用于接收来自所述第二终端设备的随机接入请求消息;
所述发送模块,还用于向所述第一终端设备发送随机接入响应消息,所述随机接入响应消息用于调度所述第一资源。
在一种可选的实施方式中,
所述发送模块,还用于向所述第一终端设备发送第一配置信息;其中,
所述第一配置信息用于配置N个随机接入机会,所述N个随机接入机会中的每个随机接入机会所对应的用于发送随机接入第一消息的资源的带宽小于或等于所述第一终端设备的信道带宽;或,
所述第一配置信息用于配置M个随机接入资源,所述M个随机接入资源中的每个随机接入资源对应的用于发送随机接入第一消息的资源的带宽小于或等于所述第一终端设备的信道带宽;或,
所述第一配置信息用于配置H个随机接入机会对应的K个随机接入资源,所述H个随机接入机会属于P个随机接入机会,所述K个随机接入资源中的每个随机接入资源对应的用于发送随机接入第一消息的资源的带宽小于或等于所述第一终端设备的信道带宽;
其中,N、M、K、H和P均为大于或等于1的整数,且H小于或等于P。
在一种可选的实施方式中,所述发送模块,还用于向所述第一终端设备发送第二配置信息,其中,所述第二配置信息用于配置第二资源,所述第二资源用于所述第二终端设备发送随机接入第一消息,所述第二资源的带宽小于或等于所述第一带宽,所述第一资源是所述第二资源的一部分。
关于第五方面或各种可选的实施方式所带来的技术效果,可参考对于第二方面或相应的实施方式的技术效果的介绍。
第六方面,提供一种通信装置,例如该通信装置为如前所述的第三通信装置。所述第三通信装置用于执行上述第三方面或任一可能的实施方式中的方法。具体地,所述第三通信装置可以包括用于执行第三方面或任一可能的实施方式中的方法的模块,例如包括处理模块和收发模块。示例性地,收发模块可以包括发送模块和接收模块,发送模块和接收模块可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。示例性地,所述第三通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为终端设备。下面以第三通信装置是终端设备为例。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器实现。或者,发送模块可以通过发送器实现,接收模块可以通过接收器实现,发送器和接收器可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。如果第三通信装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第三通信装置为设置在通信设备中的芯片,那么收发器(或,发送器和接收器)例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第六方面的介绍过程中,继续以所述第三通信装置是终端设备,以及,以所述处理模块和所述收发模块为例进行介绍。第六方面所述的通信装置与第四方面所述的通信装置可以是同一通信装置,或者也可以是不同的通信装置。其中,
所述收发模块,用于与其他装置通信;
所述处理模块,用于确定终端设备的上行信道带宽大于或等于第三带宽,和/或,所述终端设备的下行信道带宽大于或等于第二带宽,其中,所述第三带宽为用于在第一小区发送随机接入请求消息的带宽,所述第二带宽为控制资源集0的带宽;
所述处理模块,还用于确定所述终端设备能够接入所述第一小区。
在一种可选的实施方式中,
所述收发模块,用于在所述第一小区接收系统消息;
所述处理模块,还用于根据所述系统消息确定所述第三带宽和所述第二带宽。
或者,所述收发模块包括发送模块,则在一种可选的实施方式中,
所述发送模块,用于在所述第一小区接收系统消息;
所述处理模块,还用于根据所述系统消息确定所述第三带宽和所述第二带宽。
在一种可选的实施方式中,所述控制资源集0的带宽小于或等于初始BWP的带宽。
关于第六方面或各种可选的实施方式所带来的技术效果,可参考对于第三方面或相应的实施方式的技术效果的介绍。
第七方面,提供一种通信装置,该通信装置例如为如前所述的第一通信装置。该通信装置包括处理器和通信接口,通信接口可用于与其他装置或设备进行通信。可选的,还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第一方面或各种可能的实施方式所描述的方法。或者,第一通信装置也可以不包括存储器,存储器可以位于第一通信装置外部。处理器、存储器和通信接口相互耦合,用于实现上述第一方面或各种可能的实施方式所描述的方法。例如,当处理器执行所述存储器存储的计算机指令时,使第一通信装置执行上述第一方面或任意一种可能的实施方式中的方法。示例性地,所述第一通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性的,所述通信设备为第一终端设备。
其中,如果第一通信装置为通信设备,通信接口例如通过所述通信设备中的收发器(或者,发送器和接收器)实现,例如所述收发器通过所述通信设备中的天线、馈线和编解码器等实现。或者,如果第一通信装置为设置在通信设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
第八方面,提供一种通信装置,该通信装置例如为如前所述的第二通信装置。该通信装置包括处理器和通信接口,通信接口可用于与其他装置或设备进行通信。可选的,还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第二方面或各种可能的实施方式所描述的方法。或者,第二通信装置也可以不包括存储器,存储器可以位于第二通信装置外部。处理器、存储器和通信接口相互耦合,用于实现上述第二方面或各种可能的实施方式所描述的方法。例如,当处理器执行所述存储器存储的计算机指令时,使第二通信装置执行上述第二方面或任意一种可能的实施方式中的方法。示例性地,所述第二通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性的,所述通信设备为网络设备。
其中,如果第二通信装置为通信设备,通信接口例如通过所述通信设备中的收发器(或者,发送器和接收器)实现,例如所述收发器通过所述通信设备中的天线、馈线和编解码器等实现。或者,如果第二通信装置为设置在通信设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与通信设备中的射频收发组件连 接,以通过射频收发组件实现信息的收发。
第九方面,提供一种通信装置,该通信装置例如为如前所述的第三通信装置。该通信装置包括处理器和通信接口,通信接口可用于与其他装置或设备进行通信。可选的,还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第三方面或各种可能的实施方式所描述的方法。或者,第三通信装置也可以不包括存储器,存储器可以位于第三通信装置外部。处理器、存储器和通信接口相互耦合,用于实现上述第三方面或各种可能的实施方式所描述的方法。例如,当处理器执行所述存储器存储的计算机指令时,使第三通信装置执行上述第三方面或任意一种可能的实施方式中的方法。示例性地,所述第三通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性的,所述通信设备为终端设备。
其中,如果第三通信装置为通信设备,通信接口例如通过所述通信设备中的收发器(或者,发送器和接收器)实现,例如所述收发器通过所述通信设备中的天线、馈线和编解码器等实现。或者,如果第三通信装置为设置在通信设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
第九方面所述的通信装置与第七方面所述的通信装置可以是同一通信装置,或者也可以是不同的通信装置。
第十方面,提供一种芯片,所述芯片包括处理器和通信接口,所述处理器与所述通信接口耦合,用于实现上述第一方面或任一种可选的实施方式所提供的方法。
可选的,所述芯片还可以包括存储器,例如,所述处理器可以读取并执行所述存储器所存储的软件程序,以实现上述第一方面或任一种可选的实施方式所提供的方法。或者,所述存储器也可以不包括在所述芯片内,而是位于所述芯片外部,相当于,所述处理器可以读取并执行外部存储器所存储的软件程序,以实现上述第一方面或任一种可选的实施方式所提供的方法。
第十一方面,提供一种芯片,所述芯片包括处理器和通信接口,所述处理器与所述通信接口耦合,用于实现上述第二方面或任一种可选的实施方式所提供的方法。
可选的,所述芯片还可以包括存储器,例如,所述处理器可以读取并执行所述存储器所存储的软件程序,以实现上述第二方面或任一种可选的实施方式所提供的方法。或者,所述存储器也可以不包括在所述芯片内,而是位于所述芯片外部,相当于,所述处理器可以读取并执行外部存储器所存储的软件程序,以实现上述第二方面或任一种可选的实施方式所提供的方法。
第十二方面,提供一种芯片,所述芯片包括处理器和通信接口,所述处理器与所述通信接口耦合,用于实现上述第三方面或任一种可选的实施方式所提供的方法。
可选的,所述芯片还可以包括存储器,例如,所述处理器可以读取并执行所述存储器所存储的软件程序,以实现上述第三方面或任一种可选的实施方式所提供的方法。或者,所述存储器也可以不包括在所述芯片内,而是位于所述芯片外部,相当于,所述处理器可以读取并执行外部存储器所存储的软件程序,以实现上述第三方面或任一种可选的实施方式所提供的方法。
第十二方面所述的通信装置与第十方面所述的通信装置可以是同一通信装置,或者也可以是不同的通信装置。
第十三方面,提供第一通信系统,该通信系统包括第四方面所述的通信装置、第七方面所述的通信装置或第十方面所述的通信装置,以及包括第五方面所述的通信装置、第八方面所述的通信装置或第十一方面所述的通信装置。
第十四方面,提供第一通信系统,该通信系统包括第六方面所述的通信装置、第九方面所述的通信装置或第十二方面所述的通信装置。
第十五方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第一方面或任意一种可能的实施方式中所述的方法。
第十六方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第二方面或任意一种可能的实施方式中所述的方法。
第十七方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第三方面或任意一种可能的实施方式中所述的方法。
第十八方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第一方面或的任意一种可能的实施方式中所述的方法。
第十九方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第二方面或的任意一种可能的实施方式中所述的方法。
第二十方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第三方面或的任意一种可能的实施方式中所述的方法。
在本申请实施例中,第一终端设备在发送随机接入第一消息时,可以确定带宽小于或等于第一终端设备的信道带宽的资源作为第一资源。随机接入第一消息例如为Msg3或MsgA,即使对于能力受限的终端设备,采用本申请实施例提供的技术方案后也能完成对于Msg3或MsgA的发送,因此能够提高终端设备完成随机接入的成功率。
附图说明
图1为本申请实施例的一种应用场景示意图;
图2为本申请实施例提供的第一种通信方法的流程图;
图3为本申请实施例提供的第二种通信方法的流程图;
图4为本申请实施例提供的第一终端设备的示意性框图;
图5为本申请实施例提供的网络设备的示意性框图;
图6为本申请实施例提供的终端设备的示意性框图;
图7为本申请实施例提供的通信装置的一种示意性框图;
图8为本申请实施例提供的通信装置的另一示意性框图;
图9为本申请实施例提供的通信装置的再一示意性框图;
图10为本申请实施例提供的通信装置的又一示意性框图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,具体的,包括向用户提供语音的设备,或包括向用户提供数据连通性的设备,或包括向用户提供语音和数据连通性的设备。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音或数据,或与RAN交互语音和数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle to everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、签约单元(subscriber unit)、签约站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
本申请实施例中,终端设备还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端设备。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
2)网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种车到一切(vehicle-to-everything,V2X)技术中的网络设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与IP分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括LTE系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation,5G)NR系统(也简称为NR系统)中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
网络设备还可以包括核心网设备,核心网设备例如包括访问和移动管理功能(access and mobility management function,AMF)等。本申请实施例由于不涉及核心网,因此在后文中如无特殊说明,则所述的网络设备均是指接入网设备。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
3)本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一资源和第二资源,只是为了区分不同的资源,而并不是表示这两个资源的大小、优先级或者重要程度等的不同。
前文介绍了本申请实施例所涉及到的一些名词概念,下面介绍本申请实施例涉及的技术特征。
终端设备通过随机接入过程可以实现与网络设备的上行同步。随机接入过程包括基于竞争的随机接入过程和非竞争的随机接入过程。目前,基于竞争的随机接入过程分四步完成:1、终端设备向网络设备发送随机接入请求,该随机接入请求也可称为第一消息(Msg1),其中包含随机接入前导(preamble);2、网络设备向终端设备发送随机接入响应(random access response,RAR)消息,该RAR消息也可称为第二消息(Msg2);3、终端设备在接收到RAR消息后,基于RAR消息携带的调度信息进行消息传输,该消息称为Msg3;4、网络设备向终端设备发送竞争解决信息,承载该竞争解决信息的消息称为第四消息(Msg4)。其中,RAR消息中可以包括随机接入前导标识(random access preamble identifier,RAP ID), 且该RAP ID与终端设备选择的preamble ID相匹配(或相同)时,终端设备认为RAR消息是响应于终端设备发送的preamble的RAR消息。
如上介绍的基于竞争的4步随机接入过程需要较多的交互流程,时延较大,不能很好的应用于对时延要求较高的场景。因此,引入了基于竞争的2步随机接入过程,即:1、终端设备向网络设备发送消息A(MsgA),或者MsgA也可称为第一消息,MsgA包括preamble和可能的上行数据(类似4步随机接入过程中的Msg1和Msg3),上行数据承载在数据信道(例如PUSCH)上;2、终端设备接收来自网络设备的消息B(MsgB),或者MsgB也可称为第二消息(类似4步随机接入过程的Msg2和Msg4),以完成竞争解决,进行上行同步,以及获得小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI)等。显然,2步随机接入过程,由于交互的步骤相对较少,所以,有可能减小网络接入时延,有利于满足时延要求较高的场景。
要完成随机接入,对于终端设备的带宽有一定的要求。但目前除了一些具有正常功能的终端设备之外,还存在一些能力受限的终端设备,例如NR light终端设备(redcap,小红帽)、增强机器类型通信(enhance machine type communication,eMTC)终端设备或者窄带物联网(narrow band internet of things,NB-IoT)终端设备等。对于这样的终端设备来说,带宽可能受限,例如NR light终端设备支持的最大带宽可能是5M、10M或者20M。如果按照对普通的终端设备的带宽要求来要求这样的终端设备,可能会导致随机接入失败。
为此,在eMTC或者NB-IoT中,为eMTC终端设备和NB-IoT终端设备预留了专门的随机接入信道(random access channel,RACH)资源。eMTC终端设备或NB-IoT终端设备可以选择预留的RACH资源向网络设备发送Msg1,网络设备可以通过发起随机接入的终端设备所使用的RACH资源确定该终端设备是否是eMTC终端设备或NB-IoT终端设备。如果网络设备确定该终端设备是eMTC终端设备或NB-IoT终端设备,则网络设备从RAR消息开始,就调度该终端设备使用窄带的控制信道或数据信道。
这种做法的问题在于,需要预留专门的RACH资源,而不是与普通的终端设备共享RACH资源,有可能造成一定的资源浪费。例如在某些情况下,发起随机接入的eMTC终端设备或NBIoT终端设备的数量较少,则预留的RACH资源会闲置,而普通的终端设备的RACH资源却可能不够用。
对于NR light终端设备而言,NR light终端设备能够正常接收同步信号和物理广播信道块(synchronization signal and physical broadcast channel block,SSB),而SSB包括主信息块(master information block,MIB),因此NR light终端设备能够正常接收MIB。MIB包括SIB1的控制信道的配置信息,以及包括控制资源集(CORESET)#0的配置信息。NR light终端设备根据CORESET#0的配置信息,监听用于调度SIB1的控制信道,从而接收SIB1。SIB1包括下行配置信息和上行配置信息。其中上行配置信息就包括RACH的配置信息。目前,RACH资源的带宽可以根据表1确定。
表1
Figure PCTCN2021077241-appb-000001
Figure PCTCN2021077241-appb-000002
表1中,L RA是preamble序列的长度。Δf RA表示RACH资源的子载波间隔。Δf表示物理上行共享信道(physical uplink shared channel,PUSCH)的子载波间隔。
Figure PCTCN2021077241-appb-000003
表示RACH资源占用的资源块(resource block,RB)的个数。
Figure PCTCN2021077241-appb-000004
表示调整值。
对于表1中的一行来说,如果第一列与第二列的乘积小于或等于终端设备的带宽,则该终端设备可以支持这一行的配置。例如表1的第二行,第一列与第二列的乘积为839×1.25=1048.75,单位为K,换算成M为1.02M,如果NR light终端设备的带宽为5M,1.02M是小于5M的,因此表1中的第二行所示的配置是NR light终端设备能够支持的。根据这种计算方式可知,如果NR light终端设备的带宽是5M,则NR light终端设备可以支持表1中的第二行至第十三行的配置;如果NR light终端设备的带宽是10M,则NR light终端设备可以支持表1中的第二行至第十五行的配置;如果NR light终端设备的带宽是20M,则NR light终端设备可以支持表1中的第二行至第十七行的配置,即表1中全部的配置。
关于随机接入过程中各个消息及对应的控制信道的发送和接收、系统消息的接收或寻呼(paging)消息的接收等过程的配置,目前的协议规定是,在接收系统消息时,控制信道使用CORESET#0对应的配置,承载SIB1的数据信道的带宽也限制在CORESET#0的带宽范围内。
对于随机接入过程,下行的RAR消息和竞争解决消息Msg4的数据信道的带宽也限制在CORESET#0的带宽范围内。所以,对于NR light UE而言,只要NR light终端设备能够监听CORESET#0,那么,NR light终端设备就能够接收RAR和Msg4。
但是根据如上对于随机接入过程的介绍可知,在随机接入过程中,终端设备还需要向网络设备发送Msg3。按照目前的规定,用于发送Msg3的资源的带宽可能达到初始上行BWP的带宽。初始上行BWP的带宽是通过系统消息配置的,一般来说配置的比较大。对于NR light终端设备来说,上行带宽很可能小于初始上行BWP的带宽。如果Msg3的资源分配是在整个初始上行BWP带宽内,例如达到了初始上行BWP带宽,那么用于发送Msg3的资源带宽就可能大于NR light终端设备的带宽,则NR light终端设备无法向网络设备发送Msg3,这会导致NR light终端设备无法完成随机接入。
鉴于此,提供本申请实施例的技术方案。在本申请实施例中,第一终端设备在发送随机接入第一消息时,可以确定带宽小于或等于第一终端设备的信道带宽的资源作为第一资 源。随机接入第一消息例如为Msg3,或者为MsgA,第一资源的带宽是第一终端设备能够支持的,则第一终端设备就能正常发送Msg3或MsgA。即使对于能力受限的终端设备来说,采用本申请实施例提供的技术方案后也能完成对于Msg3或MsgA的发送,因此采用本申请实施例提供的技术方案能够提高终端设备完成随机接入的成功率。另外,即使对于能力不受限的终端设备,或者说普通的终端设备来说,也能够选择第一资源来发送随机接入第一消息,也就是说,这些资源并不是只预留给带宽受限的终端设备使用的,带宽不受限的终端设备也同样能够使用这些资源。通过这种方式可以提高资源的利用率,减少资源浪费。
本申请实施例提供的技术方案可以应用于第四代移动通信技术(the 4th generation,4G)系统中,例如LTE系统,或可以应用于5G系统中,例如NR系统,或者还可以应用于下一代移动通信系统或其他类似的通信系统,具体的不做限制。
请参见图1,为本申请实施例的一种应用场景。图1包括网络设备、终端设备1和终端设备2。网络设备和终端设备1能够进行通信,例如终端设备1可以向该网络设备发起随机接入。网络设备和终端设备2也能进行通信,例如终端设备2可以向该网络设备发起随机接入。终端设备1可以是带宽受限的终端设备,例如NR light终端设备。终端设备2可以是带宽不受限的终端设备,或者说是普通的终端设备。
网络设备例如工作在演进的通用移动通信系统陆地无线接入(evolved UMTS terrestrial radio access,E-UTRA)系统中,或者工作在NR系统中,或者工作在下一代通信系统或其他通信系统中。
图1中的网络设备例如为基站。其中,网络设备在不同的系统对应不同的设备,例如在4G系统中可以对应eNB,在5G系统中对应5G中的接入网设备,例如gNB。当然本申请实施例所提供的技术方案也可以应用于未来的移动通信系统中,因此图1中的网络设备也可以对应未来的移动通信系统中的网络设备。图1以网络设备是基站为例,实际上参考前文的介绍,网络设备还可以是RSU等设备。另外,图1中的终端设备1和终端设备2均以手机为例,实际上根据前文对于终端设备的介绍可知,本申请实施例的终端设备不限于手机。
下面结合附图介绍本申请实施例提供的方法。
本申请实施例提供第一种通信方法,请参见图2,为该方法的流程图。在下文的介绍过程中,以该方法应用于图1所示的网络架构为例。
为了便于介绍,在下文中,以该方法由网络设备和第一终端设备执行为例。因为本实施例是以应用在图1所示的网络架构为例,因此,下文中所述的网络设备可以是图1所示的网络架构中的网络设备,下文中所述的第一终端设备可以是图1所示的网络架构中的终端设备1,下文中所述的第二终端设备可以是图1所示的网络架构中的终端设备2。
S201、第一终端设备确定第一资源。第一资源的带宽小于或等于第一终端设备的信道带宽(channel bandwidth)。
第一终端设备例如为带宽受限的终端设备。在本申请实施例中,第一终端设备的带宽受限可以是指,第一终端设备的信道带宽小于或等于第二终端设备的信道带宽,第二终端设备是普通的终端设备,例如NR终端设备。第二终端设备的信道带宽可以大于或等于第一带宽,第二终端设备的信道带宽还可以小于或等于载波带宽,载波带宽可以是第一终端设备和第二终端设备所在的载波的带宽。或者,本申请实施例中第一终端设备的带宽受限 可以是指,第一终端设备的信道带宽小于第一带宽。其中,第一带宽可以是网络设备配置的,例如第一带宽为网络设备配置的初始BWP的带宽。当然在实际中,因为第一带宽是网络设备配置的,因此网络设备所配置的第一带宽可能大于或等于第一终端设备的信道带宽,或者也有可能小于第一终端设备的信道带宽。第一终端设备例如为NR light终端设备。当然该第一终端设备也可以是其他类型的带宽受限的终端设备,例如eMTC终端设备或NB-IoT终端设备等。
第一资源用于发送随机接入过程中的随机接入第一消息。需要注意的是,随机接入第一消息并不是指Msg1。如果该随机接入过程的类型为4步RACH,则随机接入第一消息可以是Msg3;或者,如果该随机接入过程的类型为2步RACH,则随机接入第一消息可以是MsgA。
根据前文的分析可知,如果第一终端设备能够驻留在某个小区上,则第一终端设备在进行随机接入时在带宽上的一个风险点是,用于发送Msg3的资源的带宽是以初始BWP的带宽为参考的,用于发送Msg3的资源的带宽可能达到初始BWP的带宽。其中,初始BWP可以包括初始上行BWP和初始下行BWP,初始上行BWP的带宽和初始下行BWP的都是网络设备通过SIB1配置的用于发送Msg3的资源为上行资源,因此,用于发送Msg3的资源的带宽达到初始BWP的带宽,可以是指,用于发送Msg3的资源的带宽在整个初始上行BWP的带宽的带宽范围内分配,例如占满整个初始上行BWP。如果Msg3为初传,则用于发送Msg3的资源可以是网络设备通过RAR消息分配的;或者,如果Msg3为重传,则用于发送Msg3的资源可以是网络设备通过以临时小区(temporary cell)-无线网络临时标识(radio network temporary identifier,RNTI)加扰的物理下行控制信道(physical downlink control channel,PDCCH)分配的。而第一终端设备如果是带宽受限的终端设备,则这样的带宽要求很可能是大于第一终端设备的能力的,会导致随机接入失败。
因此在本申请实施例中,第一终端设备所确定的用于发送随机接入第一消息的第一资源,其带宽小于或等于第一终端设备的信道带宽。其中,第一终端设备的信道带宽可以包括上行信道带宽和下行信道带宽,第一资源的带宽小于或等于第一终端设备的信道带宽可以是,第一资源的带宽小于或等于第一终端设备的上行信道带宽。这样,第一资源的带宽就是第一终端设备所能够支持的,以此提高第一终端设备发送随机接入第一消息的成功率。
如果该随机接入过程的类型为2步RACH,随机接入第一消息为MsgA,那么第一资源可以是网络设备配置的。例如在S201之前,还可以执行S202,网络设备向第一终端设备发送第二配置信息,第一终端设备接收来自网络设备的第二配置信息。第二配置信息可以配置G个资源,这G个资源中的每个资源的带宽小于或等于第一终端设备的信道带宽,G为大于或等于1的整数。其中,S202是可选的步骤,不是必须执行的,因此在图2中用虚线表示。第一终端设备可以从G个资源中选择一个资源作为第一资源。通过这种方式,网络设备可以预先为第一终端设备配置符合第一终端设备的能力要求的资源,第一终端设备在需要发送MsgA时从已配置的资源中选择资源发送即可,减小第一终端设备发送MsgA的时延,而且因为预先配置的资源是满足第一终端设备的能力要求的,也能提高第一终端设备发送MsgA的成功率。
其中,G个资源可以是第二资源的一部分,那么第一资源就是第二资源的一部分,第二资源用于第二终端设备发送MsgA。例如第一终端设备是带宽受限的终端设备,第二终端设备是带宽不受限的终端设备,或者说,第一终端设备的信道带宽小于或等于第二终端 设备的信道带宽。另外,第二终端设备的信道带宽大于或等于第一带宽。由于第二终端设备可以使用第二资源发送MsgA,因此第二资源的带宽小于或等于第二终端设备的信道带宽。
所述的第二资源可以包括一个或多个资源,第二资源的带宽小于或等于第二终端设备的信道带宽是指,这一个或多个资源中的每个资源的带宽小于或等于第二终端设备的信道带宽。例如,可供终端设备发送MsgA的资源有5个,这5个资源属于第二资源。这5个资源中,有2个资源中的每个资源的带宽小于或等于第一终端设备的信道带宽,那么网络设备所配置的G个资源就是这2个资源。第一终端设备可以选择这2个资源中的一个作为第一资源。对于第二终端设备来说,可以选择第二资源发送MsgA,也可以选择第一资源发送MsgA,例如第二终端设备可以选择这5个资源中的一个发送MsgA,或者也可以选择这2个资源中的一个发送MsgA。
或者,该随机接入过程的类型为4步RACH,随机接入第一消息为Msg3,那么第一资源可以是网络设备调度的。该随机接入过程的类型为4步RACH,那么在S201之前,还可以执行S203,第一终端设备在第三资源向网络设备发送随机接入请求消息,网络设备在第三资源接收来自第一终端设备的随机接入请求消息。第三资源的带宽可以小于或等于第一终端设备的信道带宽(这里可以是指第一终端设备的上行信道带宽),另外,第三资源的带宽也可以小于或等于初始BWP的带宽(这里可以是指初始上行BWP的带宽)。随机接入请求消息例如为Msg1,也就是preamble。另外,如果Msg3为初传,则在S203之后以及在S201之前,还可以执行S204,网络设备向第一终端设备发送随机接入响应消息,第一终端设备接收来自网络设备的随机接入响应消息。该随机接入响应消息可以调度第一资源。这样第一终端设备在接收随机接入响应消息后就可以确定第一资源。随机接入响应消息例如为Msg2,也就是RAR消息。或者,如果Msg3为重传,则S204可以是,网络设备向第一终端设备发送以TC-RNTI加扰的PDCCH,第一终端设备接收来自网络设备的该PDCCH。该PDCCH可以调度第一资源。这样第一终端设备在接收该PDCCH后就可以确定第一资源。其中,S203和S204都是可选的步骤,不是必须执行的,因此在图2中用虚线表示。另外图2中的S204以网络设备发送随机接入响应消息为例。
在这种实施方式下,用于发送随机接入请求消息的第三资源可以是网络设备配置的。例如在S203之前,还可以执行S205,网络设备向第一终端设备发送第一配置信息,第一终端设备接收来自网络设备的第一配置信息。为了便于描述,本文将用于发送Msg3的资源统称为调度传输资源。在本申请实施例中,可以预先设置相应的用于发送随机接入请求消息的资源(例如将这些预先设置的资源称为预设资源),并规定这些预设资源中的每个资源所对应的调度传输资源的带宽小于或等于第一终端设备的信道带宽(第一终端设备的信道带宽可以包括上行信道带宽和下行信道带宽,这里主要是指第一终端设备的上行信道带宽),也就是说,预设资源中的每个资源对应的用于发送随机接入第一消息(例如Msg3)的资源的带宽小于或等于第一终端设备的信道带宽,第一配置信息就可以用于配置预设资源。第一终端设备可以是带宽受限的终端设备,例如NR light终端设备等,因此这里所设置的预设资源可以是带宽受限的第一终端设备能够支持的资源。关于带宽受限的终端设备能够支持哪些随机接入资源,可参考表1。如果预先设置了相应的预设资源,那么网络设备在接收来自第一终端设备的随机接入请求消息后,如果确定用于发送该随机接入请求消息的随机接入资源属于预先设置的预设资源,则网络设备在为第一终端设备分配调度传输 资源时就可以选择带宽小于或等于第一终端设备的信道带宽的资源。如果该Msg3为初传,则网络设备可以通过RAR消息为第一终端设备分配用于发送Msg3的资源,或者,如果该Msg3为重传,网络设备可以通过以TC-RNTI加扰的PDCCH为第一终端设备分配用于发送Msg3的资源。
另外,第三资源可以是第四资源的一部分,第四资源可以用于第二终端设备发送Msg1。第四资源的带宽可以小于或等于第二终端设备的信道带宽(这里可以是指第二终端设备的上行信道带宽),另外,第四资源的带宽也可以小于或等于初始BWP的带宽(这里可以是指初始上行BWP的带宽)。例如,可供终端设备发送Msg1的资源有7个,这4个资源属于第四资源。这7个资源中,有3个资源可供第一终端设备发送Msg1,例如这3个资源中的每个资源的带宽小于或等于第一终端设备的信道带宽(这里可以是指第一终端设备的上行信道带宽),那么网络设备所配置的预设资源就包括这3个资源。第一终端设备可以选择这3个资源中的一个作为第三资源。对于第二终端设备来说,可以选择第四资源发送Msg1,也可以选择第三资源发送Msg1,例如第二终端设备可以选择这7个资源中的一个发送Msg1,或者也可以选择这3个资源中的一个发送Msg1。
作为预设资源的一种实施方式,预设资源包括N个随机接入机会(random access occasion,RO),则第一配置信息可以配置N个随机接入机会,这N个随机接入机会中的每个随机接入机会所对应的用于发送随机接入第一消息的资源的带宽小于或等于第一终端设备的信道带宽。随机接入机会可以包括随机接入的时频资源。如果是这种情况,则第三资源可以是N个随机接入机会中的第一随机接入机会所对应的随机接入资源。也就是说,第一终端设备可以从N个随机接入机会中选择第一随机接入机会对应的随机接入资源作为第三资源。第一随机接入机会可以是N个随机接入机会中的任意一个。第一终端设备要发送随机接入请求时,如果选择了这N个随机接入机会中的一个随机接入机会所对应的随机接入资源来发送,则网络设备通过该随机接入资源接收了来自第一终端设备的随机接入请求消息后,在为第一终端设备分配调度传输资源时,所分配的调度传输资源的带宽就可以小于或等于第一终端设备的信道带宽。而这样的带宽是第一终端设备能够支持的,因此可以提高Msg3的发送成功率。而如果第一终端设备用于发送随机接入请求消息的资源不是这N个随机接入机会中的任一个随机接入机会所对应的随机接入资源,则网络设备接收了来自第一终端设备的随机接入请求消息后,在为第一终端设备分配调度传输资源时,所分配的调度传输资源的带宽就可以小于或等于第一终端设备的信道带宽,也可以大于第一终端设备的信道带宽。令随机接入机会与调度传输资源对应,可以使得所设置的随机接入资源较多,而且用于指示这些随机接入资源的信息的信息量较小。本文所述的随机接入资源,是指用于发送随机接入请求消息的资源,一个随机接入机会可以对应一个或多个随机接入资源。本实施方式也可以用于2-step RACH的MsgA资源选择。例如,N个随机接入机会中的每个随机接入机会所对应的用于发送MsgA中的上行数据(承载在PUSCH)的资源的带宽小于或等于第一终端设备的信道带宽。
或者,作为预设资源的另一种实施方式,预设资源包括M个随机接入资源,则第一配置信息可以配置M个随机接入资源,M个随机接入资源中的每个随机接入资源对应的用于发送随机接入第一消息的资源的带宽小于或等于第一终端设备的信道带宽。随机接入资源可以是随机接入前导码,例如preamble。如果是这种情况,则第三资源可以是M个随机接入资源中的任意一个随机接入资源。也就是说,第一终端设备可以从M个随机接入资源 中选择一个随机接入资源作为第三资源。第一终端设备要发送随机接入请求时,如果选择了这M个随机接入资源中的一个随机接入资源来发送,则网络设备通过该随机接入资源接收了来自第一终端设备的随机接入请求消息后,在为第一终端设备分配调度传输资源时,所分配的调度传输资源的带宽就可以小于或等于第一终端设备的信道带宽。而这样的带宽是第一终端设备能够支持的,因此可以提高Msg3的发送成功率。而如果第一终端设备用于发送随机接入请求消息的资源不是这M个随机接入资源中的任一个随机接入资源,则网络设备接收了来自第一终端设备的随机接入请求消息后,在为第一终端设备分配调度传输资源时,所分配的调度传输资源的带宽就可以小于或等于第一终端设备的信道带宽,也可以大于第一终端设备的信道带宽。令随机接入资源与调度传输资源对应,可以使得所设置的随机接入资源的粒度较细,更便于带宽受限的终端设备和普通的终端设备选择随机接入资源。本实施方式也可以用于2-step RACH的MsgA资源选择。例如,M个随机接入资源中的每个随机接入资源对应的用于发送MsgA中的上行数据(承载在PUSCH)的资源的带宽小于或等于第一终端设备的信道带宽。
或者,作为预设资源的又一种实施方式,预设资源包括H个随机接入机会对应的K个随机接入资源,H个随机接入机会属于P个随机接入机会,K个随机接入资源是H个随机接入机会对应的全部的随机接入资源或部分随机接入资源。可以理解为,预设资源是特定的随机接入机会对应的特定的随机接入资源。则第一配置信息可以配置H个随机接入机会对应的K个随机接入资源,K个随机接入资源中的每个随机接入资源对应的用于发送随机接入第一消息的资源的带宽小于或等于第一终端设备的信道带宽。如果是这种情况,则第三资源可以是K个随机接入资源中的任意一个随机接入资源。也就是说,第一终端设备可以从K个随机接入资源中选择一个随机接入资源作为第三资源。第一终端设备要发送随机接入请求时,如果选择了这K个随机接入资源中的一个随机接入资源来发送,则网络设备通过该随机接入资源接收了来自第一终端设备的随机接入请求消息后,在为第一终端设备分配调度传输资源时,所分配的调度传输资源的带宽就可以小于或等于第一终端设备的信道带宽。而这样的带宽是第一终端设备能够支持的,因此可以提高Msg3的发送成功率。而如果第一终端设备用于发送随机接入请求消息的资源不是这K个随机接入资源中的任一个随机接入资源,则网络设备接收了来自第一终端设备的随机接入请求消息后,在为第一终端设备分配调度传输资源时,所分配的调度传输资源的带宽就可以小于或等于第一终端设备的信道带宽,也可以大于第一终端设备的信道带宽。令随机接入机会与调度传输资源对应,有助于减小该对应关系的信息量。令随机接入资源与调度传输资源对应,可以使得所设置的随机接入资源的粒度较细,更便于带宽受限的终端设备和普通终端设备选择随机接入资源。而且对于一个随机接入机会来说,其对应的随机接入资源可以全部与调度传输资源建立对应关系,或者也可以只有其中的部分随机接入资源与调度传输资源建立对应关系,使得对于随机接入机会所对应的随机接入资源的应用更为灵活。本实施方式也可以用于2-step RACH MsgA资源选择。例如,K个随机接入资源是H个随机接入机会对应的用于发送MsgA中的上行数据(承载在PUSCH)的资源的带宽小于或等于第一终端设备的信道带宽。
其中,N、M、K、H和P均为大于或等于1的整数,且H小于或等于P。
当然,除了如上的设置方式之外,还可以通过其他方式设置相应的预设资源,并规定这些预设资源对应的调度传输资源的带宽小于或等于第一终端设备的信道带宽。
或者,第三资源也可以不由网络设备配置,例如可以通过协议规定。例如协议可以规定N个随机接入机会,或者规定M个随机接入资源,或者规定H个随机接入机会对应的K个随机接入资源,等等。如果是这种情况,则无需执行S205。可见,S205是可选的步骤,不是必须执行的,因此在图2中用虚线表示。
如果按照如上的方式,预先设置了相应的预设资源,那么网络设备在接收来自第一终端设备的随机接入请求消息后,还是需要再为第一终端设备分配相应的调度传输资源。即,如上的方式相当于只是设置了相应的预设资源对应的调度传输资源的带宽会小于或等于第一终端设备的信道带宽,但并未规定这些预设资源具体对应哪个或哪些调度传输资源。网络设备还需要按照该要求(即,预设资源对应的调度传输资源的带宽需要小于或等于第一终端设备的信道带宽)再为第一终端设备分配调度传输资源。
为了减轻网络设备的负担,本申请实施例提出,可以直接设置预设资源与调度传输资源之间的对应关系。对于具有对应关系的预设资源和调度传输资源来说,这些调度传输资源的带宽小于或等于第一终端设备的信道带宽。这里主要以第一终端设备是带宽受限的第一终端设备为例。也就是说,不仅设置了预设资源,还设置了这些预设资源具体所对应的调度传输资源。则第一终端设备在选择了预设资源后就可以知晓所对应的调度传输资源,可以在该调度传输资源发送Msg3;而网络设备在接收了来自第一终端设备的随机接入请求消息后,如果确定用于发送该随机接入请求消息的随机接入资源是设置了对应关系的预设资源,则网络设备虽然还是可以向第一终端设备发送RAR消息(或,以TC-RNTI调度的PDCCH),但是无需通过该RAR消息(或,以TC-RNTI调度的PDCCH)为第一终端设备分配调度传输资源,而是根据该对应关系就可以知道该随机接入资源对应的调度传输资源,从而网络设备可以在该调度传输资源接收来自第一终端设备的Msg3。即,在这种方式下,第一资源也是预先配置的。
作为该对应关系的第一种可选的实施方式,预设资源包括N个随机接入机会,也就是说,可以设置N个随机接入机会与调度传输资源之间的对应关系。那么第一配置信息可以配置N个随机接入机会与调度传输资源之间的对应关系,或者该对应关系也可以由协议规定。其中,N个随机接入机会中的每个随机接入机会可以对应一个或多个随机接入资源,而每个随机接入资源可以对应一个或多个调度传输资源,因此,N个随机接入机会中的每个随机接入机会可以对应至少一个调度传输资源。第一终端设备要发送随机接入请求消息时,如果选择了被设置了对应关系的随机接入机会所对应的随机接入资源,则该随机接入资源对应的调度传输资源的带宽小于或等于该第一终端设备的信道带宽,即,第一终端设备可以通过带宽小于或等于该第一终端设备的信道带宽的调度传输资源发送Msg3。而这样的带宽是该第一终端设备能够支持的,因此可以提高Msg3的发送成功率。而且网络设备无需再为第一终端设备分配调度传输资源,第一终端设备根据该对应关系就可以明确所选择的随机接入机会对应的调度传输资源,从而在相应的调度传输资源发送Msg3即可,减轻了网络设备分配资源的负担。令随机接入机会与调度传输资源对应,有助于减小该对应关系的信息量。
作为该对应关系的第二种可选的实施方式,预设资源包括M个随机接入资源,也就是说,可以设置M个随机接入资源与调度传输资源之间的对应关系,那么第一配置信息可以配置M个随机接入资源与调度传输资源之间的对应关系,或者该对应关系也可以由协议规定。M为大于或等于1的整数。一个随机接入资源可以对应一个或多个调度传输资源,因 此,M个随机接入资源可以对应至少一个调度传输资源。第一终端设备要发送随机接入请求时,如果选择了被设置了对应关系的随机接入资源,则该随机接入资源对应的调度传输资源的带宽小于或等于该第一终端设备的信道带宽,即,第一终端设备可以通过带宽小于或等于该第一终端设备的信道带宽的调度传输资源发送Msg3。而这样的带宽是该第一终端设备能够支持的,因此可以提高Msg3的发送成功率。而且网络设备无需再为第一终端设备分配调度传输资源,第一终端设备根据该对应关系就可以明确所选择的随机接入资源对应的调度传输资源,从而在相应的调度传输资源发送Msg3即可,减轻了网络设备分配资源的负担。令随机接入资源与调度传输资源对应,可以使得该对应关系的设置粒度较细,更便于带宽受限的第一终端设备和普通第一终端设备选择随机接入资源。
作为该对应关系的第三种可选的实施方式,预设资源包括H个随机接入机会对应的K个随机接入资源,也就是说,可以设置H个随机接入机会所对应的K个随机接入资源与调度传输资源之间的对应关系,那么第一配置信息可以配置H个随机接入机会对应的K个随机接入资源与调度传输资源之间的对应关系,或者该对应关系也可以由协议规定。其中,H个随机接入机会属于P个随机接入机会。H、K、P均为大于或等于1的整数,H大于K,或H小于K,或H等于K。H小于或等于P。H个随机接入机会中的每个随机接入机会可以对应一个或多个随机接入资源,K个随机接入资源可以是H个随机接入机会所对应的全部的随机接入资源或者部分随机接入资源。一个随机接入资源可以对应一个或多个调度传输资源,因此,K个随机接入资源可以对应至少一个调度传输资源。第一终端设备要发送随机接入请求时,如果选择了被设置了对应关系的随机接入资源,则该随机接入资源对应的调度传输资源的带宽小于或等于第一终端设备的信道带宽,即,第一终端设备可以通过带宽小于或等于第一终端设备的信道带宽的调度传输资源发送Msg3。而这样的带宽是该第一终端设备能够支持的,因此可以提高Msg3的发送成功率。而且网络设备无需再为第一终端设备分配调度传输资源,第一终端设备根据该对应关系就可以明确所选择的随机接入资源对应的调度传输资源,从而在相应的调度传输资源发送Msg3即可,减轻了网络设备分配资源的负担。令随机接入机会和随机接入资源与调度传输资源对应,可以使得该对应关系的设置粒度较细,更便于带宽受限的终端设备和普通终端设备选择随机接入资源。而且对于一个随机接入机会来说,其对应的随机接入资源可以全部与调度传输资源建立对应关系,或者也可以只有其中的部分随机接入资源与调度传输资源建立对应关系,使得对于随机接入机会所对应的随机接入资源的应用更为灵活。
当然,除了如上的对应关系之外,还可以通过其他方式设置预设资源和调度传输资源之间的对应关系。
在前文中,所设置的预设资源需要是带宽受限的终端设备能够支持的资源,在表1中介绍了带宽受限的终端设备可以支持哪些随机接入资源。可选的,为了可以令带宽受限的终端设备支持更多的随机接入资源,以提高带宽受限的终端设备发起随机接入的成功率,可以调整某些随机接入机会上的随机接入资源的子载波间隔,使得调整后的随机接入资源能够满足带宽受限的终端设备的要求。例如带宽受限的终端设备为NR light终端设备,NR light终端设备的带宽例如为5M,那么表1中的第十四行的配置和第十五行的配置是NR light终端设备不支持的。那么,可以将某些随机接入机会上的随机接入资源(或者说,某些随机接入机会上的preamble)的子载波间隔进行临时调整,使得NR light终端设备可以支持该preamble。例如可参考表2,为对表1的第十四行和第十五行的子载波间隔进行调 整后的结果。
表2
Figure PCTCN2021077241-appb-000005
表2相对于表1来说,是将第十四行和第十五行的preamble对应的子载波间隔从60KHz调整为了30KHz。在调整后,带宽为5M的NR light终端设备就能够支持这两行的配置,例如带宽为5M的NR light终端设备在发送随机接入请求消息时可以选择这两行中的任一行对应的preamble。
例如,第三资源可以是子载波间隔未经过调整的随机接入资源,或者也可以是子载波间隔经过调整的随机接入资源。如果第三资源是子载波间隔经过调整的随机接入资源,那么在调整第三资源的子载波间隔之前,第三资源的带宽可以大于第一终端设备的信道带宽。即,在调整子载波间隔之前,带宽受限的终端设备可能并不支持第三资源,但是在调整子载波间隔后,带宽受限的终端设备能够支持第三资源。
S206、第一终端设备在第一资源向网络设备发送随机接入第一消息,网络设备在第一资源接收来自第一终端设备的随机接入第一消息。
在确定第一资源后,第一终端设备可以在第一资源上发送随机接入第一消息。关于随机接入第一消息的介绍,可参考前文。
另外,如果第一终端设备随机接入成功,则第一终端设备需要在该网络设备覆盖下工作。一般来说,网络设备会为第一终端设备配置专用参数,以供第一终端设备使用该专用参数在该网络设备的覆盖下行工作。专用参数例如包括专用(specific)的带宽部分(band width part,BWP)的参数,专用BWP的参数例如包括专用BWP的带宽等参数。专用参数还可以包括其他的一些配置参数。而对于带宽受限的第一终端设备来说,最好能够使得网络设备所分配的专用参数能够符合第一终端设备的能力要求,以使得第一终端设备能够 正常工作。例如,第一终端设备的专用BWP的带宽符合第一终端设备的能力要求,例如一种实现方式为,第一终端设备的专用BWP的带宽小于或等于第一终端设备的信道带宽。第一终端设备的工作带宽可以包括上行信道带宽和下行信道带宽,第一终端设备的专用BWP也可以包括上行专用BWP和下行专用BWP,那么第一终端设备的专用BWP的带宽小于或等于第一终端设备的信道带宽可以包括,第一终端设备的上行专用BWP的带宽小于或等于第一终端设备的上行信道带宽,以及,第一终端设备的下行专用BWP的带宽小于或等于第一终端设备的下行信道带宽。
因此,作为一种可选的实施方式,无论随机接入第一消息是Msg3还是MsgA,随机接入第一消息可以包括第一信息,第一信息可以包括终端设备的类型信息,或包括终端设备支持的业务的类型信息,或包括终端设备的类型信息和终端设备支持的业务的类型信息。其中,终端设备的类型信息可以用于确定该终端设备是否是带宽受限的终端设备,也就是说,网络设备根据终端设备的类型信息就可以确定该终端设备是否是带宽受限的终端设备。例如,如果随机接入第一消息包括第一信息,可以指示发送随机接入的第一消息的是带宽受限的终端设备;而如果随机接入第一消息未包括第一信息,可以指示发送随机接入的第一消息的不是带宽受限的终端设备。其中,终端设备的类型例如包括NR light终端设备类型、eMTC终端设备类型或NB-IoT终端设备类型等,另外在这几种类型中还可以细分,例如NR light终端设备类型中还可以包括模式(type)1终端设备或type2终端设备等。终端设备支持的业务类型例如包括工业传感器业务类型、可穿戴类型或监控业务类型等。在本申请实施例中,因为第一信息是第一终端设备发送给网络设备的,因此第一信息如果包括终端设备的类型信息,则所包括的可以是第一终端设备的类型信息;同理,第一信息如果包括终端设备支持的业务的类型信息,则包括的可以是第一终端设备支持的业务的类型信息。网络设备接收来自第一终端设备的随机接入第一消息后,就可以根据第一信息获得第一终端设备的类型信息和/或第一终端设备支持的业务的类型信息,从而网络设备根据所获得的信息可以确定第一终端设备的专用参数,以使得网络设备所配置的专用参数能够符合第一终端设备的能力要求。
S207、网络设备向第一终端设备发送下行消息A,第一终端设备接收来自网络设备的下行消息A。
例如,如果随机接入第一消息为Msg3,则下行消息A为Msg4,或者是Msg4所包括的无线资源控制(radio resource control,RRC)消息,或者可以是其他消息,例如Msg4以后的RRC消息(例如RRC重配置消息);或者,如果随机接入第一消息为MsgA,则下行消息A为MsgB,或者是MsgB所包括的RRC消息,例如MsgB以后的RRC消息(例如RRC重配置消息),或者可以是其他消息。例如,该随机接入过程用于建立RRC连接,则该RRC消息可以是RRC建立(RRC setup)消息;或者,该随机接入过程用于RRC连接重建立,则该RRC消息可以是RRC重建立(RRC reestablishment)消息或者RRC setup消息。或者,如果第一终端设备在随机接入之前处于RRC非激活(inactive)态,如果该随机接入过程是用于进行RRC连接恢复,则该RRC消息可以是RRC setup消息或RRC恢复(RRC resume)消息。
如果随机接入第一消息包括第一信息,则网络设备可以根据第一信息为发送第一信息的终端设备配置专用参数。例如第一信息表明发送第一信息的终端设备是带宽受限的终端设备,则网络设备根据第一信息为该终端设备配置的专用参数可以是受限的配置参数,例 如所配置的专用BWP的带宽就可以小于或等于第一终端设备的信道带宽;或者,第一信息表明发送第一信息的终端设备是带宽不受限的终端设备,则网络设备根据第一信息为该终端设备配置的专用参数可以是受限的配置参数,例如所配置的专用BWP的带宽可以小于或等于该终端设备的信道带宽,或者根据第一信息为该终端设备配置的专用参数也可以是不受限的配置参数,例如所配置的专用BWP的带宽可以大于该终端设备的信道带宽。在本申请实施例中,第一信息是第一终端设备发送的,第一终端设备是带宽受限的终端设备,因此网络设备根据第一信息为第一终端设备配置的专用参数可以是受限的配置参数,例如所配置的专用BWP的带宽可以小于或等于第一终端设备的信道带宽。
或者,对于4步RACH,如果预先规定了,在S201中所述的预设资源对应的专用参数是受限的配置参数,例如所述的预设资源对应的专用BWP的带宽小于或等于第一终端设备的信道带宽。如果是这种情况,随机接入第一消息可以不包括第一信息。网络设备为第一终端设备分配的专用参数是受限的配置参数,例如为第一终端设备分配的专用BWP的带宽可以小于或等于第一终端设备的信道带宽。在这种情况下,可以认为网络设备是根据第三资源确定第一终端设备的专用参数。
或者,对于2步RACH,如果预先规定了,网络设备所配置的G个资源对应的专用参数是受限的配置参数,例如所述的G个资源中的每个资源对应的专用BWP的带宽小于或等于第一终端设备的信道带宽。如果是这种情况,随机接入第一消息可以不包括第一信息。网络设备为第一终端设备分配的专用参数是受限的配置参数,例如为第一终端设备分配的专用BWP的带宽可以小于或等于第一终端设备的信道带宽。在这种情况下,可以认为网络设备是根据第一资源确定第一终端设备的专用参数。
对于如上的三种情况,网络设备在为终端设备分配专用参数后,可以通过下行消息A将为第一终端设备分配的专用参数的配置信息(例如,称为专用配置信息)发送给第一终端设备。此时的下行消息A也可以称为第一下行消息。第一终端设备接收第一下行消息后,根据第一下行消息就可以获得第一终端设备的专用配置信息。此时的第一下行消息为Msg4,或者是Msg4所包括的RRC消息,或者Msg4以后的RRC消息(例如RRC重配置消息),或者是MsgB,或者是MsgB所包括的RRC消息,或者MsgB以后的RRC消息(例如RRC重配置消息),等等。
或者,如果预先并未规定S201中所述的预设资源对应的专用参数是受限的配置参数,且随机接入第一消息也不包括第一信息,则网络设备可以正常为第一终端设备分配专用参数。例如网络设备为第一终端设备分配的专用BWP的带宽可以小于或等于第一终端设备的带宽,也可以大于第一终端设备的带宽。或者网络设备也可以不为第一终端设备分配专用参数。在这种情况下,网络设备可以通过下行消息A将为第一终端设备分配的专用参数的配置信息(例如,称为第一专用配置信息)发送给第一终端设备,此时的下行消息A不是所述的第一下行消息。第一终端设备接收下行消息A后,根据下行消息A就可以获得第一终端设备的第一专用配置信息。
S208、第一终端设备向网络设备发送第一上行消息,网络设备接收来自第一终端设备的第一上行消息。
需要注意的是,第一上行消息不是指Msg3。例如对于4步RACH,则第一上行消息例如为第五消息(Msg5),或者也可以是随机接入完毕后的其他消息,例如RRC消息等。或者对于2步RACH,第一上行消息例如为在MsgB之后发送的上行消息,例如RRC消息 等。
如果第一终端设备不在随机接入第一消息中发送第一信息,网络设备就无法通过Msg4或者MsgB等消息为第一终端设备配置符合第一终端设备的能力的专用参数,也就是不能保证通过Msg4或者MsgB等消息所配置的专用参数能够满足第一终端设备的带宽要求,或者网络设备可能不会通过Msg4或者MsgB等消息为第一终端设备分配专用参数。对此采用的一种方式可参考S206中的介绍,即,例如对于4步RACH,可以预先规定,在S201中所述的预设资源对应的专用参数是受限的配置参数,例如所述的预设资源对应的专用BWP的带宽小于或等于第一终端设备的信道带宽。如果是这种情况,随机接入第一消息可以包括第一信息,也可以不包括第一信息。即使随机接入第一消息不包括第一信息,网络设备为第一终端设备分配的专用参数也是受限的配置参数,例如为第一终端设备分配的专用BWP的带宽可以小于或等于第一终端设备的信道带宽。或者,例如对于2步RACH,如果预先规定了,网络设备所配置的G个资源对应的专用参数是受限的配置参数,例如所述的G个资源中的每个资源对应的专用BWP的带宽小于或等于第一终端设备的信道带宽。如果是这种情况,随机接入第一消息可以包括第一信息,也可以不包括第一信息。即使随机接入第一消息不包括第一信息,网络设备为第一终端设备分配的专用参数也是受限的配置参数,例如为第一终端设备分配的专用BWP的带宽可以小于或等于第一终端设备的信道带宽。
或者,还可以采用另一种方式,即,第一终端设备如果不在随机接入第一消息中发送第一信息,则也可以通过后续的第一上行消息向网络设备发送第一信息。网络设备接收来自第一终端设备的第一上行消息后,如果根据第一信息确定第一终端设备为带宽受限的终端设备,而网络设备通过Msg4或MsgA等消息为第一终端设备分配的专用参数不满足第一终端设备的能力(例如分配的专用BWP的带宽大于第一终端设备的信道带宽),或者网络设备并未通过Msg4或MsgA等消息为第一终端设备分配的专用参数,则网络设备可以根据第一信息为第一终端设备分配专用参数,此时网络设备为第一终端设备分配的专用参数能够满足第一终端设备的实际能力要求,例如为第一终端设备分配的专用BWP的带宽可以小于或等于第一终端设备的信道带宽;或者,如果根据第一信息确定第一终端设备为带宽不受限的终端设备,而网络设备通过Msg4或MsgA等消息为第一终端设备分配的专用参数不满足第一终端设备的能力(例如分配的专用BWP的带宽较小),或者网络设备并未通过Msg4或MsgA等消息为第一终端设备分配专用参数,则网络设备可以根据第一信息为第一终端设备分配专用传输,此时网络设备为第一终端设备分配的专用参数能够满足第一终端设备的能力要求,例如为第一终端设备的专用BWP的带宽可以较大,以充分应用第一终端设备的能力。
网络设备可以通过下行消息B向第一终端设备发送专用配置信息,该专用配置信息就用于为第一终端设备配置所述的专用参数。此时的下行消息B可以称为第一下行消息,而在这种情况下的Msg4或MsgB等消息不能称为第一下行消息。例如可参考S209,网络设备向第一终端设备发送下行消息B,第一终端设备接收来自网络设备的下行消息B。第一下行消息可以包括网络设备为第一终端设备分配的专用配置信息。下行消息B例如为RRC消息,或者可以是其他消息。其中,S208~S209均为可选的步骤,不是必须执行的,因此在图3中用虚线表示。
在本申请实施例中,第一终端设备可以将第一终端设备的类型信息和/或第一终端设备 支持的业务的类型信息告知网络设备,从而网络设备可以为该第一终端设备分配与该第一终端设备的能力相匹配的专用参数,使得第一终端设备能够正常工作。而且第一终端设备可以通过Msg3或MsgA等消息将第一终端设备的类型信息和/或第一终端设备支持的业务的类型信息发送给网络设备,或者也可以通过Msg5等其他消息将第一终端设备的类型信息和/或第一终端设备支持的业务的类型信息发送给网络设备,较为灵活。
另外在本申请实施例中,第一终端设备在发送随机接入第一消息时,可以确定带宽小于或等于第一终端设备的信道带宽的资源作为第一资源。随机接入第一消息例如为Msg3,或者为MsgA,第一资源的带宽是第一终端设备能够支持的,则第一终端设备就能正常发送Msg3或MsgA。即使对于能力受限的终端设备来说,采用本申请实施例提供的技术方案后也能完成对于Msg3或MsgA的发送,因此采用本申请实施例提供的技术方案能够提高终端设备完成随机接入的成功率。
而且在本申请实施例中,如果是4步RACH,则虽然设置了预设资源,但是这些预设资源并不是带宽受限的终端设备专用的,即使是带宽不受限的终端设备也可以选择这些预设资源。因为终端设备后续还可以向网络设备发送该终端设备的类型信息和/或该终端设备支持的业务的类型信息,网络设备可以根据这些信息为该终端设备分配专用的BWP,所以即使是带宽不受限的终端设备使用了这些预设资源,也不会使得这些终端设备的能力不能充分利用。而且这些预设资源并不是带宽受限的终端设备专用,这也减少了资源浪费。
接下来,考虑另一个问题。目前对于工作在NR系统中的普通的终端设备来说,如果要接入一个小区,则要求该终端设备的信道带宽(channel bandwidth)大于或者等于初始BWP的带宽。该终端设备的信道带宽包括上行信道带宽和下行信道带宽,目前要求,该终端设备的上行信道带宽大于初始上行BWP的带宽,该终端设备的下行信道带宽(initial downlink BWP)大于初始下行BWP的带宽。其中,初始上行BWP的带宽和初始下行BWP的带宽都是网络设备通过SIB1配置的。
但是对于NR light终端设备来说,实际上没有必要要求信道带宽一定大于初始BWP的带宽,而且这种要求可能导致NR light终端设备接入小区的成功率较低。为此可以考虑一种解决方式,即,限制初始BWP的带宽,例如将初始BWP的带宽设置为小于或等于NR light终端设备的信道带宽。但是对于一个小区来说,该小区覆盖的所有的终端设备都是共用相同的初始BWP,如果限制了初始BWP的带宽,对于普通的终端设备来说能力无法充分利用,造成能力浪费,也会降低整个小区的通信质量。鉴于此,本申请实施例提供第二种通信方法,该方法可以解决该问题,而且无需调整小区的初始BWP的带宽。
请参见图3,为本申请实施例提供的第二种通信方法的流程图。在下文的介绍过程中,以该方法应用于图1所示的网络架构为例。
为了便于介绍,在下文中,以该方法由网络设备和终端设备执行为例。因为本实施例是以应用在图1所示的网络架构为例,因此,下文中所述的网络设备可以是图1所示的网络架构中的网络设备,下文中所述的终端设备可以是图1所示的网络架构中的终端设备1或终端设备2。
S301、确定终端设备的上行信道带宽大于或等于第三带宽,和/或,确定终端设备的下行信道带宽大于或等于第二带宽。
该终端设备例如为带宽受限的终端设备,关于对“带宽受限”的理解,可参考图2所示的实施例的相关介绍。例如该终端设备可以是图2所示的实施例中的第一终端设备,例 如为NR light终端设备等。或者,该终端设备也可以是带宽不受限的终端设备,例如本申请实施例所述的终端设备也可以是图2所示的实施例中的第二终端设备。
该终端设备可以确定该终端设备的上行信道带宽是否大于或等于第三带宽;或者,确定该终端设备的下行信道带宽是否大于或等于第二带宽;或者,确定该终端设备的上行信道带宽是否大于或等于第三带宽,以及确定该终端设备的下行信道带宽是否大于或等于第二带宽。也就是说,对于上行信道带宽的条件和下行信道带宽的条件,终端设备可以只确定其中一种条件,或者也可以确定两种条件。如果只确定一种条件,则终端设备需执行的步骤较少,有助于提高终端设备接入第一小区的效率;如果确定两种条件,则可以使得确定结果更为准确。本申请实施例中,以终端设备确定终端设备的上行信道带宽大于或等于第三带宽,和/或,终端设备的下行信道带宽大于或等于第二带宽,为例。
其中,第三带宽可以是用于该终端设备在第一小区发送随机接入请求消息的带宽,第二带宽可以是CORESET#0的带宽。随机接入请求消息例如为Msg1,或者说是preamble。
S302、终端设备确定该终端设备能够接入第一小区。
如果该终端设备在S301确定的是该终端设备的上行信道带宽是否大于或等于第三带宽,那么如果该终端设备的上行信道带宽大于或等于第三带宽,该终端设备就确定该终端设备能够接入第一小区,而如果该终端设备的上行信道带宽小于第三带宽,该终端设备就确定该终端设备不能接入第一小区;或者,如果该终端设备在S301确定的是该终端设备的下行信道带宽是否大于或等于第二带宽,那么如果该终端设备的下行信道带宽大于或等于第二带宽,该终端设备就确定该终端设备能够接入第一小区,而如果该终端设备的下行信道带宽小于第二带宽,该终端设备就确定该终端设备不能接入第一小区;或者,如果该终端设备在S301确定的是该终端设备的上行信道带宽是否大于或等于第三带宽,以及第该终端设备的下行信道带宽是否大于或等于第二带宽,那么如果该终端设备的上行信道带宽大于或等于第三带宽,且该终端设备的下行信道带宽大于或等于第二带宽,该终端设备就确定第一终端设备能够接入第一小区,而如果该终端设备的上行信道带宽小于第三带宽,且该终端设备的下行信道带宽小于第二带宽,该终端设备就确定该终端设备不能接入第一小区。
该终端设备发送随机接入请求消息的随机接入资源的带宽为第三带宽,那么只要该终端设备的上行信道带宽大于或等于第三带宽,该终端设备就能够发送随机接入请求消息。该终端设备接收随机接入响应的带宽为CORESET#0的带宽,因此只要该终端设备的下行信道带宽大于或等于第二带宽,该终端设备就能接收随机接入响应消息。该终端设备只要能在一个小区发送随机接入请求消息,和/或,能够在该小区接收随机接入响应消息,也就是能够接入该小区。因此该终端设备如果确定该终端设备的上行信道带宽大于或等于第三带宽,和/或,确定该终端设备的下行信道带宽大于或等于第二带宽,就可以确定该终端设备能够接入第一小区。
第三带宽和第二带宽可以通过系统消息配置。例如在S301之前还可以执行S303,网络设备在第一小区发送系统消息,该终端设备在第一小区接收来自网络设备的系统消息,该系统消息可以配置第三带宽,或配置第二带宽,或配置第三带宽和第二带宽。如果该系统消息配置了第三带宽,终端设备根据该系统消息就可以确定第三带宽;或者,如果该系统消息配置了第二带宽,终端设备根据该系统消息就可以确定第二带宽;或者,如果该系统消息配置了第二带宽和第三带宽,终端设备根据该系统消息就可以确定第二带宽和第三 带宽。例如,如果系统消息配置了第二带宽且未配置第三带宽,终端设备在执行S301时,就可以确定终端设备的下行信道带宽是否大于或等于第二带宽;或者,如果系统消息配置了第三带宽且未配置第二带宽,终端设备在执行S301时,就可以确定终端设备的上行信道带宽是否大于或等于第三带宽;或者,如果系统消息配置了第二带宽和第三带宽,终端设备在执行S301时,就可以确定终端设备的下行信道带宽是否大于或等于第二带宽,或者,确定终端设备的上行信道带宽是否大于或等于第三带宽,或者,确定终端设备的下行信道带宽是否大于或等于第二带宽,以及确定终端设备的上行信道带宽是否大于或等于第三带宽。
系统消息例如为SIB1。其中,S303为可选的步骤,不是必须执行的,因此在图3中用虚线表示。
第三带宽一般来说会小于初始上行BWP的带宽,第二带宽一般来说小于初始下行BWP的带宽,因此本申请实施例通过这种规定,增加了带宽受限的终端设备接入小区的成功率。而且也使得带宽受限的终端设备进行小区选择的条件有所降低,使得能够接入的小区的终端设备的数量有所增加。
其中,图3所示的实施例与图2所示的实施例可以结合应用,例如终端设备可以通过图3所示的实施例提供的方法确定是否能够接入第一小区,如果能够接入第一小区,则再使用图2所示的实施例提供的方法向网络设备发送随机接入请求消息等。当然图3所示的实施例的方法可以针对第一小区,即,终端设备在第一小区发送随机接入请求消息,后续的步骤也在第一小区进行。那么在S302之后,还可以执行图2所示的实施例中的S201~S208,或者,在图2所示的实施例中的S201之前,还可以执行图3所示的实施例中的S301~S303。
或者,图3所示的实施例和图2所示的实施例也可以分别应用,彼此不影响。
下面结合附图介绍本申请实施例中用来实现上述方法的装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图4为本申请实施例提供的通信装置400的示意性框图。示例性地,通信装置400例如为第一终端设备400。
第一终端设备400包括处理模块410和发送模块420。可选地,还可以包括接收模块430。示例性地,第一终端设备400可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当第一终端设备400是网络设备时,发送模块420可以是发射器,接收模块430可以是接收器,发射器可以包括天线和射频电路等,接收器也可以包括天线和射频电路等,发射器和接收器可以属于一个功能模块,例如称为收发器,或者发射器和接收器也可以是彼此独立的功能模块;处理模块410可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个中央处理单元(central processing unit,CPU)。当第一终端设备400是具有上述网络设备功能的部件时,发送模块420和接收模块430可以是射频单元,处理模块410可以是处理器,例如基带处理器。当第一终端设备400是芯片系统时,发送模块420和接收模块430可以是芯片(例如基带芯片)的输入输出接口(例如发送模块420是输出接口,接收模块430是输入接口,或者输入和输出是同一接口,则发送模块420和接收模块430均是该接口)、处理模块410可以是芯片系统的处理器,可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块410可以由处理器或处理器相关电路组件实现,发送模块420可以由发射器或发射器相关电路组件实现,接收模块430可以由接收器或接收器相关电路组件实现。
例如,处理模块410可以用于执行图2所示的实施例中由第一终端设备所执行的除了收发操作之外的全部操作,例如S201,和/或用于支持本文所描述的技术的其它过程。发送模块420可以用于执行图2所示的实施例中由第一终端设备所执行的全部发送操作,例如S203、S206和S208,和/或用于支持本文所描述的技术的其它过程。接收模块430可以用于执行图2所示的实施例中由第一终端设备所执行的全部接收操作,例如S202、S204、S205、S207和S209,和/或用于支持本文所描述的技术的其它过程。
另外,发送模块420和接收模块430可以是一个功能模块,该功能模块可称为收发模块,收发模块既能完成发送操作也能完成接收操作,例如收发模块可以用于执行图2所示的实施例中由第一终端设备所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块是发送模块,而在执行接收操作时,可以认为收发模块是接收模块;或者,发送模块420和接收模块430也可以是两个功能模块,收发模块可以视为这两个功能模块的统称,发送模块420用于完成发送操作,例如发送模块420可以用于执行图2所示的实施例的任一个实施例中由第一终端设备所执行的全部发送操作,接收模块430用于完成接收操作,例如接收模块430可以用于执行图2所示的实施例由第一终端设备所执行的全部接收操作。
其中,处理模块410,用于确定第一资源;
发送模块420,用于在所述第一资源发送随机接入第一消息,其中,所述第一资源的带宽小于或等于第一终端设备400的信道带宽,第一终端设备400的信道带宽小于或等于第二终端设备的信道带宽,所述第二终端设备的信道带宽大于或等于第一带宽,所述第一带宽是网络设备配置的。
作为一种可选的实施方式,所述第一资源是第二资源的一部分,其中,所述第二资源用于所述第二终端设备发送随机接入第一消息,所述第二资源的带宽小于或等于所述第一带宽。
作为一种可选的实施方式,
发送模块420,还用于在第三资源发送随机接入请求消息,所述第三资源是第四资源的一部分,其中,所述第四资源用于所述第二终端设备发送随机接入请求消息;
接收模块430,用于接收随机接入响应消息,所述随机接入响应消息用于调度所述第一资源。
作为一种可选的实施方式,
所述第三资源是第一随机接入机会对应的随机接入资源,所述第一随机接入机会是N个随机接入机会中的一个,所述N个随机接入机会中的每个随机接入机会所对应的用于发送随机接入第一消息的资源的带宽小于或等于第一终端设备400的信道带宽;或,
所述第三资源是M个随机接入资源中的一个,所述M个随机接入资源中的每个随机接入资源对应的用于发送随机接入第一消息的资源的带宽小于或等于第一终端设备400的信道带宽;或,
所述第三资源是K个随机接入资源中的一个,所述K个随机接入资源对应于H个随机接入机会,所述H个随机接入机会属于P个随机接入机会,所述K个随机接入资源中的每个随机接入资源对应的用于发送随机接入第一消息的资源的带宽小于或等于第一终端设备400的信道带宽;
其中,N、M、K、H和P均为大于或等于1的整数,且H小于或等于P。
作为一种可选的实施方式,接收模块430,还用于接收来自所述网络设备的第一下行消息,所述第一下行消息包括第一终端设备400的专用配置信息,所述专用配置信息用于配置专用参数。
作为一种可选的实施方式,所述专用配置信息包括专用BWP的配置信息,所述专用BWP的带宽小于或等于第一终端设备400的信道带宽。
作为一种可选的实施方式,
第三资源用于确定所述专用参数,所述第三资源用于发送随机接入请求消息;或,
所述第一资源用于确定所述专用参数;或,
所述随机接入第一消息包括第一信息,所述第一信息用于确定所述专用参数;或,
发送模块420,还用于向所述网络设备发送第一上行消息,所述第一上行消息包括第一信息,所述第一信息用于确定所述专用参数;
其中,所述第一信息包括第一终端设备400的类型信息和/或业务的类型信息,所述业务为第一终端设备400支持的业务。
作为一种可选的实施方式,所述第三资源是子载波间隔经过调整的随机接入资源,其中,调整子载波间隔之前的所述第三资源的带宽大于第一终端设备400的信道带宽。
作为一种可选的实施方式,第一终端设备400的信道带宽包括上行信道带宽和下行信道带宽,处理模块410还用于:
确定第一终端设备400的上行信道带宽大于或等于第三带宽,和/或,第一终端设备400的下行信道带宽大于或等于第二带宽,其中,所述第三带宽为用于在所述网络设备覆盖的第一小区发送随机接入请求消息的带宽,所述第二带宽为控制资源集0的带宽;
确定第一终端设备400能够接入所述第一小区。
作为一种可选的实施方式,
接收模块430,还用于在所述第一小区接收系统消息;
处理模块410,还用于根据所述系统消息确定所述第二带宽和所述第三带宽。
作为一种可选的实施方式,所述控制资源集0的带宽小于或等于所述第一带宽。
关于第一终端设备400所能实现的其他功能,可参考图2所示的实施例的相关介绍,不多赘述。
图5为本申请实施例提供的通信装置500的示意性框图。示例性地,通信装置500例如为网络设备500。
网络设备500包括发送模块520和接收模块530。可选地,还可以包括处理模块510。示例性地,网络设备500可以是网络设备,也可以是应用于网络设备中的芯片或者其他具有上述网络设备功能的组合器件、部件等。当网络设备500是网络设备时,发送模块520可以是发射器,接收模块530可以是接收器,发射器可以包括天线和射频电路等,接收器也可以包括天线和射频电路等,发射器和接收器可以属于一个功能模块,例如称为收发器,或者发射器和接收器也可以是彼此独立的功能模块;处理模块510可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个CPU。当网络设备500是具有上述网络设备功能的部件时,发送模块520和接收模块530可以是射频单元,处理模块510可以是处理器,例如基带处理器。当网络设备500是芯片系统时,发送模块520和接收模块530可以是芯片(例如基带芯片)的输入输出接口(例如发送模块520是输出接口,接收模块530是输入接口,或者输入和输出是同一接口,则发送模块520和接收模块530均是该接口)、 处理模块510可以是芯片系统的处理器,可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块510可以由处理器或处理器相关电路组件实现,发送模块520可以由发射器或发射器相关电路组件实现,接收模块530可以由接收器或接收器相关电路组件实现。
例如,处理模块510可以用于执行图2所示的实施例中由网络设备所执行的除了收发操作之外的全部操作,例如为第一终端设备配置专用参数的操作,和/或用于支持本文所描述的技术的其它过程。发送模块520可以用于执行图2所示的实施例中由网络设备所执行的全部发送操作,例如S202、S204、S205、S207和S209,和/或用于支持本文所描述的技术的其它过程。接收模块530可以用于执行图2所示的实施例中由网络设备所执行的全部接收操作,例如S203、S206和S208,和/或用于支持本文所描述的技术的其它过程。
另外,关于发送模块520和接收模块530的实现方式,可参考对于发送模块420和接收模块430的实现方式的介绍。
其中,接收模块530,用于在第一资源接收来自第一终端设备的随机接入第一消息,其中,所述第一资源的带宽小于或等于所述第一终端设备的信道带宽,所述第一终端设备的信道带宽小于或等于第二终端设备的信道带宽,所述第二终端设备的信道带宽大于或等于第一带宽,所述第一带宽是网络设备配置的;
发送模块520,用于向所述第一终端设备发送第一下行消息,所述第一下行消息包括专用配置信息,所述专用配置信息用于配置专用参数。
作为一种可选的实施方式,所述专用配置信息包括专用BWP的配置信息,所述专用BWP的带宽小于或等于所述第一终端设备的信道带宽。
作为一种可选的实施方式,
所述接收模块530,还用于在第三资源接收来自所述第一终端设备的随机接入请求消息,所述专用参数是根据所述第三资源确定的;或,
所述专用参数是根据所述第一资源确定的;或,
所述随机接入第一消息包括第一信息,所述专用参数是根据所述第一信息确定的;或,
所述接收模块530,还用于接收来自所述第一终端设备的第一上行消息,所述专用参数是根据所述第一上行消息包括的第一信息确定的;
其中,所述第一信息包括所述第一终端设备的类型信息和/或业务的类型信息,所述业务为所述第一终端设备支持的业务。
作为一种可选的实施方式,
接收模块530,还用于在第三资源接收来自所述第一终端设备的随机接入请求消息,所述第三资源是第四资源的一部分,其中,所述第四资源用于接收来自所述第二终端设备的随机接入请求消息;
发送模块520,还用于向所述第一终端设备发送随机接入响应消息,所述随机接入响应消息用于调度所述第一资源。
作为一种可选的实施方式,
发送模块520,还用于向所述第一终端设备发送第一配置信息;其中,
所述第一配置信息用于配置N个随机接入机会,所述N个随机接入机会中的每个随机接入机会所对应的用于发送随机接入第一消息的资源的带宽小于或等于所述第一终端设备的信道带宽;或,
所述第一配置信息用于配置M个随机接入资源,所述M个随机接入资源中的每个随机接入资源对应的用于发送随机接入第一消息的资源的带宽小于或等于所述第一终端设备的信道带宽;或,
所述第一配置信息用于配置H个随机接入机会对应的K个随机接入资源,所述H个随机接入机会属于P个随机接入机会,所述K个随机接入资源中的每个随机接入资源对应的用于发送随机接入第一消息的资源的带宽小于或等于所述第一终端设备的信道带宽;
其中,N、M、K、H和P均为大于或等于1的整数,且H小于或等于P。
作为一种可选的实施方式,发送模块520,还用于向所述第一终端设备发送第二配置信息,其中,所述第二配置信息用于配置第二资源,所述第二资源用于所述第二终端设备发送随机接入第一消息,所述第二资源的带宽小于或等于所述第一带宽,所述第一资源是所述第二资源的一部分。
关于网络设备500所能实现的其他功能,可参考图2所示的实施例的相关介绍,不多赘述。
图6为本申请实施例提供的通信装置600的示意性框图。示例性地,通信装置600例如为终端设备600。
终端设备600包括处理模块610和收发模块620。示例性地,终端设备600可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当终端设备600是终端设备时,收发模块620可以是收发器,收发器可以包括天线和射频电路等,处理模块610可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个CPU。当终端设备600是具有上述终端设备功能的部件时,收发模块620可以是射频单元,处理模块610可以是处理器,例如基带处理器。当终端设备600是芯片系统时,收发模块620可以是芯片(例如基带芯片)的输入输出接口、处理模块610可以是芯片系统的处理器,可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块610可以由处理器或处理器相关电路组件实现,收发模块620可以由收发器或收发器相关电路组件实现。
例如,处理模块610可以用于执行图3所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如S301和S302,和/或用于支持本文所描述的技术的其它过程。收发模块620可以用于执行图3所示的实施例中由终端设备所执行的全部收发操作,例如S303,和/或用于支持本文所描述的技术的其它过程。
另外,关于收发模块620的实现方式,可参考对于发送模块420和接收模块420的实现方式的介绍。
其中,收发模块620,用于与其他装置通信;
处理模块610,用于确定终端设备600的上行信道带宽大于或等于第三带宽,和/或,终端设备600的下行信道带宽大于或等于第二带宽,其中,所述第三带宽为用于在第一小区发送随机接入请求消息的带宽,所述第二带宽为控制资源集0的带宽;
处理模块610,还用于确定终端设备600能够接入所述第一小区。
作为一种可选的实施方式,
收发模块620,用于在所述第一小区接收系统消息;
处理模块610,还用于根据所述系统消息确定所述第三带宽和所述第二带宽。
作为一种可选的实施方式,所述控制资源集0的带宽小于或等于初始BWP的带宽。
关于终端设备600所能实现的其他功能,可参考图3所示的实施例的相关介绍,不多赘述。
本申请实施例还提供一种通信装置,该通信装置可以是终端设备也可以是电路。该通信装置可以用于执行上述方法实施例中由终端设备所执行的动作。
当该通信装置为终端设备时,图7示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图7中,终端设备以手机作为例子。如图7所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图7中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元(收发单元可以是一个功能单元,该功能单元能够实现发送功能和接收功能;或者,收发单元也可以包括两个功能单元,分别为能够实现接收功能的接收单元和能够实现发送功能的发送单元),将具有处理功能的处理器视为终端设备的处理单元。如图7所示,终端设备包括收发单元710和处理单元720。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元710中用于实现接收功能的器件视为接收单元,将收发单元710中用于实现发送功能的器件视为发送单元,即收发单元710包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元710用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元720用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,处理单元720可以用于执行图2所示的实施例中由第一终端设备所执行的除了收发操作之外的全部操作,例如S201,和/或用于支持本文所描述的技术的其它过程。收发单元710可以用于执行图2所示的实施例中由第一终端设备所执行的全部收发操作,例如S202~S209,和/或用于支持本文所描述的技术的其它过程。
又例如,在一种实现方式中,处理单元720可以用于执行图3所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如S301和S302,和/或用于支持本文所描述的技术的其它过程。收发单元710可以用于执行图3所示的实施例中由终端设备所执行的全部收发操作,例如S303,和/或用于支持本文所描述的技术的其它过程。
当该通信装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
本实施例中的通信装置为终端设备时,可以参照图8所示的设备。作为一个例子,该设备可以完成类似于图4中处理模块410的功能。作为又一个例子,该设备可以完成类似于图6中处理模块610的功能。在图8中,该设备包括处理器810,发送数据处理器820,接收数据处理器830。上述实施例中的处理模块410可以是图8中的该处理器810,并完成相应的功能;上述实施例中的发送模块420可以是图8中的发送数据处理器820,上述实施例中的接收模块430可以是图8中的接收数据处理器830,并完成相应的功能。或者,上述实施例中的处理模块610可以是图8中的该处理器810,并完成相应的功能;上述实施例中的收发模块620可以是图8中的发送数据处理器820,和/或接收数据处理器830,并完成相应的功能。虽然图8中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图9示出本实施例的另一种形式。处理装置900中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信装置可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器903,接口904。其中,处理器903完成上述处理模块410的功能,接口904完成上述发送模块420和接收模块430的功能。或者,处理器903完成上述处理模块610的功能,接口904完成上述收发模块620的功能。作为另一种变形,该调制子系统包括存储器906、处理器903及存储在存储器906上并可在处理器上运行的程序,该处理器903执行该程序时实现上述方法实施例中终端设备侧的方法。需要注意的是,所述存储器906可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置900中,只要该存储器906可以连接到所述处理器903即可。
本申请实施例中的装置为网络设备时,该装置可以如图10所示。装置1000包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1010和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1020。所述RRU 1010可以称为收发模块,该收发模块可以包括发送模块和接收模块,或者,该收发模块可以是一个能够实现发送和接收功能的模块。该收发模块可以与图5中的收发模块520对应。可选地,该收发模块还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1011和射频单元1012。所述RRU 1010部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU 1020部分主要用于进行基带处理,对基站进行控制等。所述RRU 1010与BBU 1020可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1020为基站的控制中心,也可以称为处理模块,可以与图5中的处理模块510对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 1020可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网络),也可以分别支持不同接入制式的无线接入网(如LTE网络,5G网络或其他网络)。所述BBU 1020还包括存储器1021和处理器1022。所述存储器1021用以存储必要的指令和数据。所述处理器1022用于控制基站进行必要的 动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器1021和处理器1022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本申请实施例提供第一通信系统。第一通信系统可以包括上述的图2所示的实施例所涉及的第一终端设备,以及包括图2所示的实施例所涉及的网络设备。第一终端设备例如为图4中的第一终端设备400。网络设备例如为图5中的网络设备500。
本申请实施例提供第二通信系统。第二通信系统可以包括上述的图3所示的实施例所涉及的终端设备。终端设备例如为图6中的终端设备600。
其中,终端设备600和第一终端设备400可以是同一终端设备,也可以是不同的终端设备。如果终端设备600和第一终端设备400是同一终端设备,则第一通信系统和第二通信系统可以视为同一个通信系统。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图2所示的实施例中与网络设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图2所示的实施例中与第一终端设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图3所示的实施例中与终端设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图2所示的实施例中与网络设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图2所示的实施例中与第一终端设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图3所示的实施例中与终端设备相关的流程。
应理解,本申请实施例中提及的处理器可以是CPU,还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM), 其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的计算机可读存储介质,可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦可编程只读存储器(electrically erasable programmable read only memory,EEPROM)、紧凑型光盘只读存储器(compact disc read-only memory,CD-ROM)、通用串行总线闪存盘(universal serial bus flash disk)、移动硬盘、或其他光盘 存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (29)

  1. 一种通信方法,其特征在于,包括:
    确定第一资源;
    在所述第一资源发送随机接入第一消息,其中,所述第一资源的带宽小于或等于第一终端设备的信道带宽,所述第一终端设备的信道带宽小于或等于第二终端设备的信道带宽,所述第二终端设备的信道带宽大于或等于第一带宽,所述第一带宽是网络设备配置的。
  2. 根据权利要求1所述的方法,其特征在于,所述第一资源是第二资源的一部分,其中,所述第二资源用于所述第二终端设备发送随机接入第一消息,所述第二资源的带宽小于或等于所述第一带宽。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    在第三资源发送随机接入请求消息,所述第三资源是第四资源的一部分,其中,所述第四资源用于所述第二终端设备发送随机接入请求消息;
    接收随机接入响应消息,所述随机接入响应消息用于调度所述第一资源。
  4. 根据权利要求3所述的方法,其特征在于,
    所述第三资源是第一随机接入机会对应的随机接入资源,所述第一随机接入机会是N个随机接入机会中的一个,所述N个随机接入机会中的每个随机接入机会所对应的用于发送随机接入第一消息的资源的带宽小于或等于所述第一终端设备的信道带宽;或,
    所述第三资源是M个随机接入资源中的一个,所述M个随机接入资源中的每个随机接入资源对应的用于发送随机接入第一消息的资源的带宽小于或等于所述第一终端设备的信道带宽;或,
    所述第三资源是K个随机接入资源中的一个,所述K个随机接入资源对应于H个随机接入机会,所述H个随机接入机会属于P个随机接入机会,所述K个随机接入资源中的每个随机接入资源对应的用于发送随机接入第一消息的资源的带宽小于或等于所述第一终端设备的信道带宽;
    其中,N、M、K、H和P均为大于或等于1的整数,且H小于或等于P。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第一下行消息,所述第一下行消息包括所述第一终端设备的专用配置信息,所述专用配置信息用于配置专用参数。
  6. 根据权利要求5所述的方法,其特征在于,所述专用配置信息包括专用BWP的配置信息,所述专用BWP的带宽小于或等于所述第一终端设备的信道带宽。
  7. 根据权利要求5或6所述的方法,其特征在于,
    第三资源用于确定所述专用参数,所述第三资源用于发送随机接入请求消息;或,
    所述第一资源用于确定所述专用参数;或,
    所述随机接入第一消息包括第一信息,所述第一信息用于确定所述专用参数;或,
    所述方法还包括:向所述网络设备发送第一上行消息,所述第一上行消息包括第一信息,所述第一信息用于确定所述专用参数;
    其中,所述第一信息包括所述第一终端设备的类型信息和/或业务的类型信息,所述业务为所述第一终端设备支持的业务。
  8. 一种通信方法,其特征在于,包括:
    在第一资源接收来自第一终端设备的随机接入第一消息,其中,所述第一资源的带宽小于或等于所述第一终端设备的信道带宽,所述第一终端设备的信道带宽小于或等于第二终端设备的信道带宽,所述第二终端设备的信道带宽大于或等于第一带宽,所述第一带宽是网络设备配置的;
    向所述第一终端设备发送第一下行消息,所述第一下行消息包括专用配置信息,所述专用配置信息用于配置专用参数。
  9. 根据权利要求8所述的方法,其特征在于,所述专用配置信息包括专用BWP的配置信息,所述专用BWP的带宽小于或等于所述第一终端设备的信道带宽。
  10. 根据权利要求8或9所述的方法,其特征在于,
    所述方法还包括:在第三资源接收来自所述第一终端设备的随机接入请求消息,所述专用参数是根据所述第三资源确定的;或,
    所述专用参数是根据所述第一资源确定的;或,
    所述随机接入第一消息包括第一信息,所述专用参数是根据所述第一信息确定的;或,
    所述方法还包括:接收来自所述第一终端设备的第一上行消息,所述专用参数是根据所述第一上行消息包括的第一信息确定的;
    其中,所述第一信息包括所述第一终端设备的类型信息和/或业务的类型信息,所述业务为所述第一终端设备支持的业务。
  11. 根据权利要求8~10任一项所述的方法,其特征在于,所述方法还包括:
    在第三资源接收来自所述第一终端设备的随机接入请求消息,所述第三资源是第四资源的一部分,其中,所述第四资源用于接收来自所述第二终端设备的随机接入请求消息;
    向所述第一终端设备发送随机接入响应消息,所述随机接入响应消息用于调度所述第一资源。
  12. 根据权利要求8~11任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一终端设备发送第一配置信息;其中,
    所述第一配置信息用于配置N个随机接入机会,所述N个随机接入机会中的每个随机接入机会所对应的用于发送随机接入第一消息的资源的带宽小于或等于所述第一终端设备的信道带宽;或,
    所述第一配置信息用于配置M个随机接入资源,所述M个随机接入资源中的每个随机接入资源对应的用于发送随机接入第一消息的资源的带宽小于或等于所述第一终端设备的信道带宽;或,
    所述第一配置信息用于配置H个随机接入机会对应的K个随机接入资源,所述H个随机接入机会属于P个随机接入机会,所述K个随机接入资源中的每个随机接入资源对应的用于发送随机接入第一消息的资源的带宽小于或等于所述第一终端设备的信道带宽;
    其中,N、M、K、H和P均为大于或等于1的整数,且H小于或等于P。
  13. 根据权利要求8~11任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一终端设备发送第二配置信息,其中,所述第二配置信息用于配置第二资源,所述第二资源用于所述第二终端设备发送随机接入第一消息,所述第二资源的带宽小于或等于所述第一带宽,所述第一资源是所述第二资源的一部分。
  14. 一种通信装置,其特征在于,包括:
    处理模块,用于确定第一资源;
    发送模块,用于在所述第一资源发送随机接入第一消息,其中,所述第一资源的带宽小于或等于所述通信装置的信道带宽,所述通信装置的信道带宽小于或等于第二终端设备的信道带宽,所述第二终端设备的信道带宽大于或等于第一带宽,所述第一带宽是网络设备配置的。
  15. 根据权利要求14所述的通信装置,其特征在于,所述第一资源是第二资源的一部分,其中,所述第二资源用于所述第二终端设备发送随机接入第一消息,所述第二资源的带宽小于或等于所述第一带宽。
  16. 根据权利要求14或15所述的通信装置,其特征在于,所述通信装置还包括接收模块;
    所述发送模块,还用于在第三资源发送随机接入请求消息,所述第三资源是第四资源的一部分,其中,所述第四资源用于所述第二终端设备发送随机接入请求消息;
    所述接收模块,用于接收随机接入响应消息,所述随机接入响应消息用于调度所述第一资源。
  17. 根据权利要求16所述的通信装置,其特征在于,
    所述第三资源是第一随机接入机会对应的随机接入资源,所述第一随机接入机会是N个随机接入机会中的一个,所述N个随机接入机会中的每个随机接入机会所对应的用于发送随机接入第一消息的资源的带宽小于或等于所述通信装置的信道带宽;或,
    所述第三资源是M个随机接入资源中的一个,所述M个随机接入资源中的每个随机接入资源对应的用于发送随机接入第一消息的资源的带宽小于或等于所述通信装置的信道带宽;或,
    所述第三资源是K个随机接入资源中的一个,所述K个随机接入资源对应于H个随机接入机会,所述H个随机接入机会属于P个随机接入机会,所述K个随机接入资源中的每个随机接入资源对应的用于发送随机接入第一消息的资源的带宽小于或等于所述通信装置的信道带宽;
    其中,N、M、K、H和P均为大于或等于1的整数,且H小于或等于P。
  18. 根据权利要求14~17任一项所述的通信装置,其特征在于,所述通信装置还包括接收模块,用于接收来自所述网络设备的第一下行消息,所述第一下行消息包括所述通信装置的专用配置信息,所述专用配置信息用于配置专用参数。
  19. 根据权利要求18所述的通信装置,其特征在于,所述专用配置信息包括专用BWP的配置信息,所述专用BWP的带宽小于或等于所述通信装置的信道带宽。
  20. 根据权利要求18或19所述的通信装置,其特征在于,
    第三资源用于确定所述专用参数,所述第三资源用于发送随机接入请求消息;或,
    所述第一资源用于确定所述专用参数;或,
    所述随机接入第一消息包括第一信息,所述第一信息用于确定所述专用参数;或,
    所述发送模块,还用于向所述网络设备发送第一上行消息,所述第一上行消息包括第一信息,所述第一信息用于确定所述专用参数;
    其中,所述第一信息包括所述通信装置的类型信息和/或业务的类型信息,所述业务为所述通信装置支持的业务。
  21. 一种通信装置,其特征在于,包括:
    接收模块,用于在第一资源接收来自第一终端设备的随机接入第一消息,其中,所述 第一资源的带宽小于或等于所述第一终端设备的信道带宽,所述第一终端设备的信道带宽小于或等于第二终端设备的信道带宽,所述第二终端设备的信道带宽大于或等于第一带宽,所述第一带宽是网络设备配置的;
    发送模块,用于向所述第一终端设备发送第一下行消息,所述第一下行消息包括专用配置信息,所述专用配置信息用于配置专用参数。
  22. 根据权利要求21所述的通信装置,其特征在于,所述专用配置信息包括专用BWP的配置信息,所述专用BWP的带宽小于或等于所述第一终端设备的信道带宽。
  23. 根据权利要求21或22所述的通信装置,其特征在于,
    所述接收模块,还用于在第三资源接收来自所述第一终端设备的随机接入请求消息,所述专用参数是根据所述第三资源确定的;或,
    所述专用参数是根据所述第一资源确定的;或,
    所述随机接入第一消息包括第一信息,所述专用参数是根据所述第一信息确定的;或,
    所述接收模块,还用于接收来自所述第一终端设备的第一上行消息,所述专用参数是根据所述第一上行消息包括的第一信息确定的;
    其中,所述第一信息包括所述第一终端设备的类型信息和/或业务的类型信息,所述业务为所述第一终端设备支持的业务。
  24. 根据权利要求21~23任一项所述的通信装置,其特征在于,
    所述接收模块,还用于在第三资源接收来自所述第一终端设备的随机接入请求消息,所述第三资源是第四资源的一部分,其中,所述第四资源用于接收来自所述第二终端设备的随机接入请求消息;
    所述发送模块,还用于向所述第一终端设备发送随机接入响应消息,所述随机接入响应消息用于调度所述第一资源。
  25. 根据权利要求21~24任一项所述的通信装置,其特征在于,
    所述发送模块,还用于向所述第一终端设备发送第一配置信息;其中,
    所述第一配置信息用于配置N个随机接入机会,所述N个随机接入机会中的每个随机接入机会所对应的用于发送随机接入第一消息的资源的带宽小于或等于所述第一终端设备的信道带宽;或,
    所述第一配置信息用于配置M个随机接入资源,所述M个随机接入资源中的每个随机接入资源对应的用于发送随机接入第一消息的资源的带宽小于或等于所述第一终端设备的信道带宽;或,
    所述第一配置信息用于配置H个随机接入机会对应的K个随机接入资源,所述H个随机接入机会属于P个随机接入机会,所述K个随机接入资源中的每个随机接入资源对应的用于发送随机接入第一消息的资源的带宽小于或等于所述第一终端设备的信道带宽;
    其中,N、M、K、H和P均为大于或等于1的整数,且H小于或等于P。
  26. 根据权利要求21~24任一项所述的通信装置,其特征在于,所述发送模块,还用于向所述第一终端设备发送第二配置信息,其中,所述第二配置信息用于配置第二资源,所述第二资源用于所述第二终端设备发送随机接入第一消息,所述第二资源的带宽小于或等于所述第一带宽,所述第一资源是所述第二资源的一部分。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~7中任意 一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求8~13中任意一项所述的方法。
  29. 一种通信系统,其特征在于,包括如权利要求14-20任一通信装置,和用于执行如权利要求21-26任一通信装置。
PCT/CN2021/077241 2020-03-13 2021-02-22 一种通信方法及装置 WO2021179895A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21767363.1A EP4114118A4 (en) 2020-03-13 2021-02-22 COMMUNICATION METHOD AND APPARATUS
US17/940,471 US20230007698A1 (en) 2020-03-13 2022-09-08 Communication Method and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010177768.1A CN113395734A (zh) 2020-03-13 2020-03-13 一种通信方法及装置
CN202010177768.1 2020-03-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/940,471 Continuation US20230007698A1 (en) 2020-03-13 2022-09-08 Communication Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2021179895A1 true WO2021179895A1 (zh) 2021-09-16

Family

ID=77616239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077241 WO2021179895A1 (zh) 2020-03-13 2021-02-22 一种通信方法及装置

Country Status (4)

Country Link
US (1) US20230007698A1 (zh)
EP (1) EP4114118A4 (zh)
CN (1) CN113395734A (zh)
WO (1) WO2021179895A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023131245A1 (zh) * 2022-01-10 2023-07-13 大唐移动通信设备有限公司 信息传输方法、配置优化方法、装置、终端及网络设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113784452B (zh) * 2021-09-15 2023-11-03 深圳市佳贤通信科技股份有限公司 一种提升随机接入成功率的方法、系统、设备及存储介质
CN116193595B (zh) * 2021-09-28 2023-11-28 华为技术有限公司 一种信号的发送方法、接收方法及通信装置
CN114175820A (zh) * 2021-11-01 2022-03-11 北京小米移动软件有限公司 资源配置、确定方法和装置、通信装置和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107690173A (zh) * 2016-08-05 2018-02-13 电信科学技术研究院 一种随机接入方法和设备
CN109152083A (zh) * 2017-06-16 2019-01-04 展讯通信(上海)有限公司 随机接入方法、装置及用户设备
CN109565876A (zh) * 2016-08-10 2019-04-02 三星电子株式会社 用于支持下一代通信系统中灵活的ue带宽的方法和装置
CN110495192A (zh) * 2019-06-26 2019-11-22 北京小米移动软件有限公司 随机接入方法、装置及存储介质
WO2020033695A1 (en) * 2018-08-09 2020-02-13 Qualcomm Incorporated Bandwidth configuration techniques in wireless communications
US20200374840A1 (en) * 2018-01-31 2020-11-26 Ntt Docomo, Inc. User terminal and radio communication method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107690173A (zh) * 2016-08-05 2018-02-13 电信科学技术研究院 一种随机接入方法和设备
CN109565876A (zh) * 2016-08-10 2019-04-02 三星电子株式会社 用于支持下一代通信系统中灵活的ue带宽的方法和装置
CN109152083A (zh) * 2017-06-16 2019-01-04 展讯通信(上海)有限公司 随机接入方法、装置及用户设备
US20200374840A1 (en) * 2018-01-31 2020-11-26 Ntt Docomo, Inc. User terminal and radio communication method
WO2020033695A1 (en) * 2018-08-09 2020-02-13 Qualcomm Incorporated Bandwidth configuration techniques in wireless communications
CN110495192A (zh) * 2019-06-26 2019-11-22 北京小米移动软件有限公司 随机接入方法、装置及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4114118A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023131245A1 (zh) * 2022-01-10 2023-07-13 大唐移动通信设备有限公司 信息传输方法、配置优化方法、装置、终端及网络设备

Also Published As

Publication number Publication date
EP4114118A1 (en) 2023-01-04
EP4114118A4 (en) 2023-08-09
CN113395734A (zh) 2021-09-14
US20230007698A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
US10149339B2 (en) Base station, user equipment and methods for random access
WO2021179895A1 (zh) 一种通信方法及装置
CN110583075B (zh) 用于数据传输的方法和设备
WO2018028269A1 (zh) 一种资源调度方法和装置
WO2019104685A1 (zh) 通信方法和通信设备
WO2021175185A1 (zh) 一种通信方法及装置
US20210084615A1 (en) Method and apparatus for mapping beam pattern to paging resources
WO2021170110A1 (zh) 一种通信方法及装置
WO2019237805A1 (zh) 一种随机接入方法及装置、通信设备
WO2022027521A1 (zh) 上行信号的发送和接收方法以及装置
WO2022194151A1 (zh) 一种通信方法及装置
CN111050400A (zh) 信息处理的方法和装置
WO2021012822A1 (zh) 一种通信方法及装置
JP7495505B2 (ja) 無線通信において、低減した能力のデバイスをサポートする方法及び装置
CN113785618B (zh) 一种通信方法及装置
WO2021109039A1 (zh) 一种通信方法、装置及设备
WO2020024611A1 (zh) 一种信息传输的方法、设备及计算机存储介质
US20220159685A1 (en) Data transmission method and apparatus
EP4213556A1 (en) Uplink control information sending method and receiving method, and communication apparatus
WO2021174467A1 (zh) 一种数据传输方法、电子设备及存储介质
WO2022237597A1 (zh) 通信方法和通信装置
WO2024098212A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021208095A1 (zh) 一种配置信息的协商方法及装置、终端设备
WO2021026835A1 (zh) 一种系统信息的获取方法、发送方法及装置
WO2022110245A1 (zh) 一种资源指示方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767363

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021767363

Country of ref document: EP

Effective date: 20220926

NENP Non-entry into the national phase

Ref country code: DE