WO2021109039A1 - 一种通信方法、装置及设备 - Google Patents

一种通信方法、装置及设备 Download PDF

Info

Publication number
WO2021109039A1
WO2021109039A1 PCT/CN2019/123102 CN2019123102W WO2021109039A1 WO 2021109039 A1 WO2021109039 A1 WO 2021109039A1 CN 2019123102 W CN2019123102 W CN 2019123102W WO 2021109039 A1 WO2021109039 A1 WO 2021109039A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
terminal device
message
transmission data
configuration information
Prior art date
Application number
PCT/CN2019/123102
Other languages
English (en)
French (fr)
Inventor
陈磊
李秉肇
王宏
许斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980101717.6A priority Critical patent/CN114642026A/zh
Priority to PCT/CN2019/123102 priority patent/WO2021109039A1/zh
Publication of WO2021109039A1 publication Critical patent/WO2021109039A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]

Definitions

  • This application relates to the field of mobile communication technology, and in particular to a communication method, device and equipment.
  • Radio resource control radio resource control
  • RRC radio resource control
  • the base station may send the downlink early transmission data to the terminal device during the random access process of the terminal device. For this reason, the base station needs to allocate resources for receiving downlink early transmission data to the terminal equipment. At present, there is no mechanism for allocating resources for receiving early downlink data to the terminal device. Therefore, the terminal device cannot realize the early downlink data transmission.
  • the embodiments of the present application provide a communication method, device, and equipment, which are used to enable terminal equipment to receive downlink early transmission data.
  • a first communication method includes: receiving a first message, where the first message is used to indicate downlink resource configuration information, and the downlink resource configuration information is used when a terminal device is in an RRC inactive state or Receive the downlink early transmission data when the RRC is in an idle state; and receive the downlink early transmission data according to the downlink resource configuration information.
  • the method may be executed by a first communication device, and the first communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip.
  • the first communication device is a terminal device, or a chip set in the terminal device for realizing the function of the terminal device, or other component used for realizing the function of the terminal device.
  • the first communication device is a terminal device.
  • early data transmission includes early transmission of uplink data or early transmission of downlink data.
  • Early uplink data transmission is also called mobile originated data early transmission, and downlink data early transmission is also called mobile terminated data early transmission. pass.
  • early data transmission can also be referred to as small packet transmission.
  • a first message may be sent to the terminal device, where the first message indicates downlink resource configuration information, and the terminal device can receive downlink early transmission data according to the downlink resource configuration information. It is equivalent to providing a mechanism for the terminal equipment to allocate resources for receiving downlink early transmission data, so that the downlink early transmission can be realized.
  • the first message may not be a paging message.
  • the first message is dedicated signaling. That is to say, in the embodiment of the present application, the terminal device may be configured to receive downlink early data resources through dedicated signaling, without using a paging message. To configure. Compared with the solution of configuring resources through paging messages, the technical solution provided in the embodiments of the present application improves the security of the resource configuration process. In addition, there is no need to configure resources through paging messages, which also helps to reduce the impact on paging capacity, so that paging messages can have more uses.
  • receiving the downlink early transmission data according to the downlink resource configuration information includes:
  • the network device (the first network device or the second network device) can send scheduling information before sending the downlink early transmission data, and then send the downlink early transmission data according to the scheduling information.
  • the downlink resource configuration information can be used for the terminal device to detect the scheduling information .
  • the network device may send scheduling information according to the downlink resource configuration information, and the scheduling information is used to schedule the downlink early transmission data.
  • the terminal device After the terminal device enters the first state, it can detect scheduling information according to the downlink resource configuration information.
  • the downlink resource configuration information includes USS configuration and C-RNTI.
  • the first message also includes DRX configuration information.
  • the C-RNTI is used to detect scheduling information according to the DRX cycle indicated by the DRX configuration information. After the network device sends the scheduling information, it can send the downlink early transmission data according to the scheduling information. If the terminal device detects the scheduling information, it can receive the downlink early transmission data from the network device according to the scheduling of the scheduling information.
  • the downlink resource configuration information includes an RNTI and/or a time-frequency domain configuration of a downlink transmission resource
  • the RNTI is used to scramble the scheduling information
  • the time-frequency domain configuration of the downlink transmission resource The domain configuration is used to indicate the time domain position and the frequency domain position of the scheduling information.
  • the downlink resource configuration information may include the RNTI, or the time-frequency domain configuration including the downlink transmission resource, or the time-frequency domain configuration including the RNTI and the downlink transmission resource, or may also include other information.
  • the RNTI included in the downlink resource configuration information is, for example, a C-RNTI, or may also be other RNTIs.
  • the RNTI can be used for the terminal equipment to detect scheduling information used for scheduling downlink early transmission data.
  • the RNTI can be used for scrambling the scheduling information, so that the terminal equipment can detect the scheduling information according to the RNTI.
  • the time-frequency domain configuration of the downlink transmission resource may indicate the time-domain position and the frequency-domain position of the scheduling information.
  • the time-frequency domain configuration of the downlink transmission resource may include the configuration of the search space, or the configuration of the control resource set, or the configuration of the search space and the configuration of the control resource set, or may also include other configurations.
  • the search space is, for example, a UE-specific search space.
  • the time-frequency domain configuration of the downstream transmission resources includes the configuration of the UE-specific search space.
  • the configuration of the UE-specific search space can be used when the terminal device is in the first state. Time domain location detection scheduling information.
  • the terminal equipment can detect the scheduling information according to the downlink resource configuration information, so that the downlink early transmission data can be correctly received according to the scheduling of the scheduling information.
  • the downlink resource configuration information and the downlink resource configuration information in the uplink data early transmission are the same configuration information or different configuration information.
  • terminal equipment can also perform early transmission of uplink data. That is to say, the terminal equipment can receive downlink data from the network device or send it to the network device without entering the RRC connection state. Send upstream data.
  • the network device also configures the terminal device with the downlink resource configuration information used for uplink data feedback.
  • the network device can send information such as feedback corresponding to the uplink early transmission data to the terminal device, and the network device will also configure resources for sending the feedback and other information corresponding to the uplink early transmission data.
  • Configuration information for example, the resource configuration information is referred to as downlink resource configuration information in early uplink data transmission.
  • downlink resource configuration information in early uplink data transmission may include RNTI and/or USS. The same configuration can be used in the downlink process of early downlink data transmission and uplink data early transmission to improve resource utilization.
  • the downlink resource configuration information and the downlink resource configuration information in the uplink data early transmission may also be different configuration information, that is, the downlink resource in the uplink data early transmission and the downlink resource in the downlink data early transmission Different configurations can be used to distinguish between upstream and downstream.
  • the first message further includes first indication information, and the first indication information is used to indicate that the downlink resource configuration information is used to receive downlink early transmission data, or to indicate the The downlink resource configuration information of is used for downlink feedback for early transmission of uplink data, or indicates that downlink resource configuration information used for uplink data feedback in early transmission of uplink data is also used for receiving downlink early transmission data.
  • the terminal equipment can detect control information on a set of resources, and the network equipment can use the control information to flexibly schedule the transmission of uplink data
  • the feedback information is also to transmit downlink data, which helps to reduce the energy consumption of terminal equipment.
  • the first message further includes DRX configuration information, and the DRX configuration information is used to indicate a transmission period of the downlink early transmission data.
  • the terminal device After receiving the first message, the terminal device can detect the scheduling information according to the downlink resource configuration information, so as to receive the downlink early transmission data according to the scheduling information. If the terminal device continuously detects the scheduling information, it may need to consume more power. Therefore, in order to save the power of the terminal device, as an optional implementation manner, the network device may also configure DRX configuration information for the terminal device.
  • the first message may include the DRX configuration information in addition to the downlink resource configuration information.
  • Information, or, the downlink resource configuration information may include the DRX configuration information, for example, the time-frequency domain configuration of the downlink transmission resource in the downlink resource configuration information may include the DRX configuration information.
  • the DRX configuration information may be used for the terminal device to detect the downlink early transmission data according to the DRX configuration information, or in other words, the DRX configuration information may indicate the transmission period of the downlink early transmission data.
  • the terminal device detects the downlink early transmission data according to the DRX configuration information. It only needs to be detected during the duration of the DRX cycle. During the sleep period of the DRX cycle, the terminal device does not need to detect, which can complete the detection and also Can achieve the effect of power saving.
  • the DRX configuration information includes a DRX cycle and/or an offset, and the offset is used to indicate the offset of the time domain start position of the DRX cycle.
  • the DRX configuration information includes, for example, the DRX cycle, or includes the offset, or includes the DRX cycle and the offset, or may also include other information related to the DRX configuration.
  • the method after receiving the downlink early transmission data, the method further includes:
  • Downlink early transmission data may be sent by the first network device to the terminal device, or it may be sent by the second network device to the terminal device.
  • the first network device is the anchor network device of the terminal device
  • the second network device is the terminal device.
  • the currently resident network device for example, the terminal device may move to the coverage area of the second network device after being released. If this is the case, the downlink early transmission data can be sent by the second network device to the terminal device .
  • the terminal device After the terminal device receives the downlink early transmission data, it can send a confirmation message to the first network device or the second network device (the terminal device sends the confirmation message to which network device the downlink early transmission data received by the terminal device comes from).
  • the confirmation message indicates that the terminal device receives the downlink early transmission data, but the downlink early transmission data may be received correctly or incorrectly.
  • the confirmation message may indicate that the downlink early transmission data is received correctly or received incorrectly. In this way, the first network device or the second network device can determine whether the terminal device has received the downlink early transmission data, so that the communication process can continue.
  • the confirmation message is a first random access preamble.
  • the confirmation message is, for example, an acknowledgment message, or the confirmation message may also be implemented by a random access preamble.
  • the random access preamble is called the first random access preamble.
  • the confirmation message is realized by the random access preamble.
  • the terminal equipment sending the random access preamble is equivalent to sending the confirmation message.
  • the random access preamble can also be used for the terminal equipment to perform random access, which is equivalent to the random access preamble.
  • the code can also realize the function of confirming the message.
  • the terminal device does not need to send other messages as confirmation messages, which saves signaling overhead and improves the utilization of random access preambles. .
  • the first message is further used to indicate a random access resource for the terminal device to receive the downlink early transmission data, and the random access resource includes the first random access resource. Access the preamble.
  • the first random access preamble is allocated to the terminal device by the first network device, so that the first network device can also recognize that the first random access preamble comes from the terminal device.
  • the concept of beam is introduced in the NR system.
  • the terminal device may send confirmation messages to the first network device through different beams, and different beams can correspond to different random access preambles. Therefore, the random access resource indicated by the first message may include at least one synchronization signal and at least one random access preamble corresponding to a physical broadcast channel block (synchronization signal and physical broadcast channel block, SSB).
  • SSB and beam are one-to-one.
  • the random access preamble corresponding to the SSB that is, the random access preamble corresponding to the beam.
  • the random access resources included in the first message can also be only Including the first random access preamble, but not other random access preambles, that is, the number of at least one random access preamble is 1, and the beam carrying the first random access preamble is corresponding to the terminal device Beam.
  • the random access resource included in the first message may include multiple random access preambles, that is, the number of at least one random access preamble is greater than 1, and the multiple random access preambles may include the first random access preamble. Preamble.
  • the terminal device may send the first random access preamble as a confirmation message to the first network device.
  • the terminal device may determine the first beam (or first SSB) corresponding to the terminal device according to the location of the terminal device , And determine the random access preamble corresponding to the first beam (or first SSB) among the multiple random access preambles, for example, the first random access preamble, the first beam is the beam corresponding to the terminal device, and the first An SSB is the SSB carried by the first beam, so the terminal device can send the first random access preamble as a confirmation message to the first network device.
  • the method before receiving the downlink early transmission data according to the downlink resource configuration information, the method further includes:
  • the second message indicating a random access resource for the terminal device to receive the downlink early transmission data, the random access resource including at least one random access preamble corresponding to at least one SSB,
  • the at least one random access preamble includes the first random access preamble.
  • the first network device does not allocate random access resources to the terminal device through the first message, but allocates random access resources to the terminal device through the second message.
  • the first network device sends a second message to the terminal device.
  • the second message includes the random access resource allocated to the terminal device for receiving the downlink early transmission data.
  • the first network device can allocate random access resources to the terminal device when the downlink data of the terminal device arrives, that is, allocate random access resources to the terminal device when the terminal device needs to use the random access resource, and the terminal device does not need to use it.
  • these random access resources do not have to be allocated to the terminal device, for example, they can be allocated to other terminal devices that need to be used, thereby reducing resource waste and improving resource utilization.
  • the second message may also come from the second network device.
  • the second network device For example, if the terminal device moves after being released and enters the coverage area of the second network device after moving, the second network device is the network device where the terminal device currently resides, or the service network device of the terminal device, then The second network device can directly interact with the terminal device. Then the second network device can allocate random access resources to the terminal device. For example, when downlink early transmission data from a terminal device arrives, the first network device can notify the second network device, so that the second network device can allocate random access resources to the terminal device through the second message.
  • the second network device can allocate random access resources to the terminal device when the downlink data of the terminal device arrives, that is, allocate random access resources to the terminal device when the terminal device needs to use the random access resource, and the terminal device does not need to use it.
  • these random access resources do not have to be allocated to the terminal device, for example, they can be allocated to other terminal devices that need to be used, thereby reducing resource waste and improving resource utilization.
  • the concept of beams is introduced in the NR system.
  • the terminal devices When the terminal devices are in different positions, they may send messages to the first network device through different beams, and different beams can correspond to different random access preambles. Therefore, the random access resource indicated by the second message may include at least one random access preamble corresponding to at least one SSB.
  • the SSB and the beam have a one-to-one correspondence. Therefore, the random access preamble corresponding to the SSB is The random access preamble corresponding to the beam.
  • the random access resource included in the second message can also be only Including the first random access preamble, but not other random access preambles, that is, the number of at least one random access preamble is 1, and the beam carrying the first random access preamble is corresponding to the terminal device Beam.
  • the random access resource included in the second message may include multiple random access preambles, that is, the number of at least one random access preamble is greater than 1, and the multiple random access preambles may include the first random access preamble. Preamble.
  • the second message is a PDCCH order message.
  • a terminal device in a non-RRC connected state can receive a PDCCH order message according to the first downlink configuration information, and the first network device or the second network device can allocate random access resources to the terminal device through the PDCCH order message.
  • the PDCCH order message is dedicated signaling.
  • the PDCCH order message is used to allocate random access resources to the terminal device, which can improve the security of the allocated resources.
  • there is no need to allocate random access resources to terminal devices through paging messages and the capacity of paging messages can also be saved.
  • the communication method provided in the first aspect further includes: the downlink resource configuration information is used to schedule the PDCCH order message Receiving a PDCCH order message according to the downlink resource configuration information, where the PDCCH order message indicates random access resources for the terminal device.
  • the terminal device can receive downlink data based on the random access resources indicated by the PDCCH order message, such as downlink early transmission data; or, after receiving the PDCCH order message, the terminal device can also receive downlink data based on the PDCCH order message.
  • the random access resource indicated by the message initiates random access, but it is not necessary to receive the downlink early transmission data. That is to say, the random access resources indicated by the PDCCH order message can be used for terminal equipment to receive downlink early transmission data, and can also be used for terminal equipment to perform random access, which also improves the utilization of PDCCH order messages.
  • the terminal device in the RRC idle state or the RRC inactive state can receive the PDCCH order message according to the first downlink resource configuration information, and determine the corresponding random access resource.
  • the terminal device The random access resource performs the random access process and enters the RRC connected state.
  • the above downlink early transmission data is not received.
  • the terminal device can send uplink data or receive downlink signaling through the RRC connection, instead of receiving the above downlink Early transmission of data; in the second possible implementation, the terminal device triggers random access according to the random access resource, and then receives downlink early transmission data.
  • the terminal device may send the first random access preamble to the network device, It is used to notify the terminal device that it is within the service range of the network device, and then trigger the network device to send downlink early transmission data to the terminal device.
  • the terminal device can send a random access request message to the base station, and the base station can use the random access request message
  • the information such as the location and resources of the terminal device is determined, and then the downlink early transmission data is sent to the terminal device according to the information.
  • the random access resource indicated by the PDCCH order message can be used for the terminal device to receive downlink early transmission data as an example.
  • the method before receiving the downlink early transmission data, the method further includes:
  • the terminal device can send the first random access preamble to the first network device or the second network device. After the first network device or the second network device receives the first random access preamble, The downlink early transmission data can be sent to the terminal device.
  • a second communication method includes: determining downlink resource configuration information, where the downlink resource configuration information is used to instruct a terminal device to receive downlink early transmission data when it is in a first state, and the first state is RRC inactive state or RRC idle state; sending the downlink early transmission data according to the downlink resource configuration information.
  • the method may be executed by a second communication device, and the second communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip.
  • the second communication device is a first network device, or a chip set in the first network device for realizing the function of the first network device, or a chip for realizing the function of the first network device Other parts.
  • the second communication device is the first network device.
  • the first network device is the anchor network device of the terminal device.
  • sending the downlink early transmission data according to the downlink resource configuration information includes:
  • the downlink resource configuration information includes an RNTI and/or a time-frequency domain configuration of a downlink transmission resource
  • the RNTI is used to scramble the scheduling information
  • the time-frequency domain configuration of the downlink transmission resource The domain configuration is used to indicate the time domain position and the frequency domain position of the scheduling information.
  • the downlink resource configuration information and the downlink resource configuration information in the uplink data early transmission are the same configuration information or different configuration information.
  • the first message further includes first indication information, and the first indication information is used to indicate that the downlink resource configuration information is used to receive downlink early transmission data, or to indicate The aforementioned downlink resource configuration information is downlink feedback used for early uplink data transmission, or downlink resource configuration information indicating that uplink data feedback used in uplink data early transmission is also used to receive downlink early transmission data.
  • the first message further includes DRX configuration information, and the DRX configuration information is used to indicate a transmission period of the downlink early transmission data.
  • the DRX configuration information includes a DRX cycle and/or an offset, and the offset is used to indicate the offset of the time domain start position of the DRX cycle.
  • the method further includes:
  • a paging message is sent to the second network device, the paging message is used to indicate the arrival of the downlink early transmission data, and the second network device is where the terminal device resides Internet equipment.
  • the terminal device moves after being released, and the terminal device enters the coverage area of the second network device after the movement, that is, the second network device is the network device where the terminal device currently resides, or It is said that it is the service network device of the terminal device, and the first network device is the anchor network device of the terminal device.
  • the first network device can send a paging message to all network devices in the RNA area.
  • the second network device is a network device in the RNA area. Then the second network device can receive the paging message. Therefore, the second network device can determine that the downlink early transmission data from the terminal device has arrived.
  • the paging message is also used to indicate the downlink resource configuration information.
  • the first network device can indicate the downlink resource configuration information to the second network device through a paging message, so that the second network device can send the downlink early transmission data according to the downlink resource configuration information, or send a message for scheduling downlink early transmission data Scheduling information.
  • the first network device may also send the downlink resource configuration information to the second network device in advance.
  • the first network device may communicate with the second network device through X2 It can be sent via an interface, or can be sent via other air interface messages. If this is the case, the paging message does not need to indicate the downlink resource configuration information, which helps to save the capacity of the paging message.
  • sending the downlink early transmission data according to the downlink resource configuration information includes:
  • the second network device is a network device where the terminal device resides.
  • the terminal device may directly interact with the second network device. Then the first network device may send the downlink early transmission data to the second network device, so that the second network device then sends the downlink early transmission data to the terminal device. If the terminal device does not move after being released, or although the terminal device has moved, but it is still within the coverage of the first network device after the movement, the first network device can send the downlink early transmission data to the terminal device .
  • the multiple processing methods of the first network device are for the terminal device to be able to receive downlink early transmission data.
  • the method further includes:
  • the terminal device may send a confirmation message to the first network device.
  • the confirmation message indicates that the terminal device has received the downlink early transmission data.
  • the downlink early transmission data may be received correctly or incorrectly.
  • the confirmation message may indicate that the downlink early transmission data is received correctly or incorrectly. In this way, the first network device can determine whether the terminal device has received the downlink early transmission data, so that the communication process can continue.
  • the confirmation message is a random access preamble.
  • the first message is further used to indicate a random access resource for the terminal device to receive the downlink early transmission data, and the random access resource includes the random access resource. Preamble.
  • the method before sending the downlink early transmission data to the terminal device according to the downlink resource configuration information, the method further includes:
  • the second message indicating a random access resource for the terminal device to receive the downlink early transmission data
  • the random access resource includes at least one random access resource corresponding to at least one SSB Access the preamble.
  • the second message is a PDCCH order message.
  • the downlink resource configuration information indicated by the first message may be used to schedule the PDCCH order message, and the PDCCH order message is used to indicate Random access resources of the terminal device.
  • a first random access preamble from the terminal device is received, where the first random access preamble belongs to the at least one random access preamble.
  • a third communication method includes: receiving a paging message from a first network device, where the paging message is used to indicate the arrival of downlink early transmission data with a terminal device, and the first network device Is the anchor network device of the terminal device; the second network device sends a second message to the terminal device, the second message indicating random access for the terminal device to receive the downlink early transmission data Resource, the random access resource includes at least one random access preamble corresponding to at least one SSB, and the second message is a PDCCH order message.
  • the method may be executed by a third communication device, and the third communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip.
  • the third communication device is a second network device, or a chip set in the second network device for realizing the function of the second network device, or a chip for realizing the function of the second network device Other parts.
  • the third communication device is the second network device.
  • the second network device is a network device where the terminal device resides, or is a service network device of the terminal device.
  • the terminal device moves after being released, and the terminal device enters the coverage area of the second network device after the movement, that is, the second network device is the network device where the terminal device currently resides, or It is said that it is the service network device of the terminal device, and the first network device is the anchor network device of the terminal device.
  • the first network device can send a paging message to all network devices in the RNA area.
  • the second network device is a network device in the RNA area. Then the second network device can receive the paging message. Therefore, the second network device can determine that the downlink early transmission data from the terminal device has arrived.
  • the second network device can allocate random access resources to the terminal device through the PDCCH order message, and there is no need to allocate random access resources to the terminal device through a paging message.
  • the PDCCH order message is dedicated signaling.
  • the PDCCH order message is used to allocate random access resources to the terminal device, which can improve the security of the allocated resources.
  • there is no need to allocate random access resources to terminal devices through paging messages and the capacity of paging messages can also be saved.
  • the second network device can allocate random access resources to the terminal device when the downlink data of the terminal device arrives, that is, allocate random access resources to the terminal device when the terminal device needs to use the random access resource. When in use, these random access resources do not need to be allocated to the terminal device, for example, they can be allocated to other terminal devices that need to be used, thereby reducing resource waste and improving resource utilization.
  • the concept of beam is introduced in the NR system.
  • the terminal device When the terminal device is in different positions, it may send messages to the first network device through different beams, and different beams can correspond to different random access preambles. Therefore, the random access resource indicated by the second message may include at least one random access preamble corresponding to at least one SSB.
  • the SSB and the beam have a one-to-one correspondence. Therefore, the random access preamble corresponding to the SSB is The random access preamble corresponding to the beam.
  • the random access resource included in the second message can also be only Including the first random access preamble, but not other random access preambles, that is, the number of at least one random access preamble is 1, and the beam carrying the first random access preamble is corresponding to the terminal device Beam.
  • the random access resource included in the second message may include multiple random access preambles, that is, the number of at least one random access preamble is greater than 1, and the multiple random access preambles may include the first random access preamble. Preamble.
  • the downlink resource configuration information indicated by the first message may be used for scheduling the PDCCH order message, and the PDCCH order message is used for Indicates the random access resource used for the terminal device.
  • the method further includes:
  • the terminal device may send the first random access preamble to the second network device.
  • the second network device may send downlink early transmission data to the terminal device.
  • the paging message is also used to indicate downlink resource configuration information, and the downlink resource configuration information is used by the terminal device to receive the Downlink early data transmission.
  • the first network device can indicate the downlink resource configuration information to the second network device through a paging message, so that the second network device can send the downlink early transmission data according to the downlink resource configuration information, or send a message for scheduling downlink early transmission data Scheduling information.
  • the first network device may also send the downlink resource configuration information to the second network device in advance.
  • the first network device may communicate with the second network device through X2 It can be sent via an interface, or can be sent via other air interface messages. If this is the case, the paging message does not need to indicate the downlink resource configuration information, which helps to save the capacity of the paging message.
  • the downlink resource configuration information includes an RNTI and/or a time-frequency domain configuration of a downlink transmission resource
  • the RNTI is used to scramble the scheduling information
  • the time-frequency domain configuration of the downlink transmission resource The domain configuration is used to indicate the time domain position and the frequency domain position of the scheduling information.
  • the downlink resource configuration information and the downlink resource configuration information in the uplink data early transmission are the same configuration information or different configuration information.
  • the first message further includes first indication information, and the first indication information is used to indicate that the downlink resource configuration information is used to receive downlink early transmission data, or to indicate The aforementioned downlink resource configuration information is downlink feedback used for early uplink data transmission, or downlink resource configuration information indicating that uplink data feedback used in uplink data early transmission is also used to receive downlink early transmission data.
  • the method further includes:
  • the downlink early transmission data is stored in the first network device. If the second network device receives the first random access preamble from the terminal device, indicating that the terminal device needs to receive the downlink early transmission data, the second network device can send the The first network device requests to obtain downlink early transmission data. After receiving the request message from the second network device, the first network device may send the downlink early transmission data to the second network device. Therefore, the second network device can send the downlink early transmission data to the terminal device, so that the terminal device obtains the downlink early transmission data.
  • a communication device is provided, for example, the communication device is the first communication device as described above.
  • the first communication device is configured to execute the method in the foregoing first aspect or any possible implementation manner.
  • the first communication device may include a module for executing the method in the first aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the transceiver module may include a sending module and a receiving module.
  • the sending module and the receiving module may be different functional modules, or may be the same functional module, but can implement different functions.
  • the first communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the first communication device is a terminal device.
  • the transceiver module may also be implemented by a transceiver, and the processing module may also be implemented by a processor.
  • the sending module may be implemented by a transmitter
  • the receiving module may be implemented by a receiver.
  • the transmitter and the receiver may be different functional modules, or may be the same functional module, but can implement different functions.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the transceiver (or transmitter and receiver) is, for example, a communication interface in the chip, and the communication interface is connected to the radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • the first communication device is a terminal device, and the processing module and the transceiver module are used as examples for the introduction. among them,
  • the transceiver module is configured to receive a first message, the first message is used to indicate downlink resource configuration information, and the downlink resource configuration information is used to receive downlink when the terminal device is in the RRC inactive state or the RRC idle state Early transmission of data;
  • the transceiver module is further configured to receive the downlink early transmission data according to the downlink resource configuration information.
  • the transceiver module is used to receive the first message
  • the processing module is configured to determine that the first message is used to indicate downlink resource configuration information, and the downlink resource configuration information is used to receive downlink early transmission data when the terminal device is in an RRC inactive state or an RRC idle state;
  • the transceiver module is further configured to receive the downlink early transmission data according to the downlink resource configuration information.
  • the transceiver module is configured to receive the downlink early transmission data according to the downlink resource configuration information in the following manner:
  • the downlink resource configuration information includes an RNTI and/or a time-frequency domain configuration of a downlink transmission resource
  • the RNTI is used to scramble the scheduling information
  • the time-frequency domain configuration of the downlink transmission resource The domain configuration is used to indicate the time domain position and the frequency domain position of the scheduling information.
  • the downlink resource configuration information and the downlink resource configuration information in the uplink data early transmission are the same configuration information or different configuration information.
  • the first message further includes first indication information, and the first indication information is used to indicate that the downlink resource configuration information is used to receive downlink early transmission data, or to indicate The aforementioned downlink resource configuration information is downlink feedback used for early uplink data transmission, or downlink resource configuration information indicating that uplink data feedback used in uplink data early transmission is also used to receive downlink early transmission data.
  • the first message further includes DRX configuration information, and the DRX configuration information is used to indicate a transmission period of the downlink early transmission data.
  • the DRX configuration information includes a DRX cycle and/or an offset, and the offset is used to indicate the offset of the time domain start position of the DRX cycle.
  • the transceiver module is further configured to send a confirmation message after receiving the downlink early transmission data, and the confirmation message is used to indicate that the terminal device has received the downlink early transmission. data.
  • the confirmation message is a first random access preamble.
  • the first message is further used to indicate a random access resource for the terminal device to receive the downlink early transmission data, and the random access resource includes the first random access resource. Access the preamble.
  • the transceiver module is further configured to receive a second message before receiving the downlink early transmission data according to the downlink resource configuration information, where the second message indicates that it is used for all
  • the terminal device receives the random access resource of the downlink early transmission data, where the random access resource includes at least one random access preamble corresponding to at least one SSB, and the at least one random access preamble includes the first Random access preamble.
  • the second message is a PDCCH order message.
  • the downlink resource configuration information indicated by the first message may be used to schedule the PDCCH order message, and the transceiver module is further used to receive the PDCCH according to the downlink resource configuration information order message, the PDCCH order message is used to indicate random access resources for the terminal device.
  • the transceiver module is further configured to send the first random access preamble before receiving the downlink early transmission data.
  • a communication device is provided, for example, the communication device is the second communication device as described above.
  • the second communication device is used to execute the method in the above-mentioned second aspect or any possible implementation manner.
  • the second communication device may include a module for executing the method in the second aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the transceiver module may include a sending module and a receiving module.
  • the sending module and the receiving module may be different functional modules, or may be the same functional module, but can implement different functions.
  • the second communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a first network device.
  • the second communication device is the first network device.
  • the transceiver module may also be implemented by a transceiver, and the processing module may also be implemented by a processor.
  • the sending module may be implemented by a transmitter, and the receiving module may be implemented by a receiver.
  • the transmitter and the receiver may be different functional modules, or may be the same functional module, but can implement different functions.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the transceiver (or, transmitter and receiver) is, for example, a communication interface in the chip, and the communication interface is connected to a radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • the second communication device is the first network device, and the processing module and the transceiver module are used as examples for the introduction. among them,
  • the processing module is configured to determine downlink resource configuration information, where the downlink resource configuration information is used to instruct the terminal device to receive downlink early transmission data when in a first state, and the first state is an RRC inactive state or an RRC idle state ;
  • the transceiver module is configured to send the downlink early transmission data according to the downlink resource configuration information.
  • the transceiver module is configured to send the downlink early transmission data according to the downlink resource configuration information in the following manner:
  • the downlink resource configuration information includes an RNTI and/or a time-frequency domain configuration of a downlink transmission resource
  • the RNTI is used to scramble the scheduling information
  • the time-frequency domain configuration of the downlink transmission resource The domain configuration is used to indicate the time domain position and the frequency domain position of the scheduling information.
  • the downlink resource configuration information and the downlink resource configuration information in the uplink data early transmission are the same configuration information or different configuration information.
  • the first message further includes first indication information, and the first indication information is used to indicate that the downlink resource configuration information is used to receive downlink early transmission data, or to indicate The aforementioned downlink resource configuration information is downlink feedback used for early uplink data transmission, or downlink resource configuration information indicating that uplink data feedback used in uplink data early transmission is also used to receive downlink early transmission data.
  • the first message further includes DRX configuration information, and the DRX configuration information is used to indicate a transmission period of the downlink early transmission data.
  • the DRX configuration information includes a DRX cycle and/or an offset, and the offset is used to indicate the offset of the time domain start position of the DRX cycle.
  • the transceiver module is further configured to send a paging message to the second network device when the downlink early transmission data arrives, where the paging message is used to indicate the downlink early transmission data.
  • the first network device is the anchor network device of the terminal device
  • the second network device is the network device where the terminal device resides.
  • the paging message is also used to indicate the downlink resource configuration information.
  • the transceiver module is configured to send the downlink early transmission data according to the downlink resource configuration information in the following manner:
  • the first network device is an anchor network device of the terminal device
  • the second network device is a network device where the terminal device resides.
  • the transceiver module is further configured to receive a confirmation message from the terminal device after sending the downlink early transmission data to the terminal device according to the downlink resource configuration information, The confirmation message is used to indicate that the terminal device receives the downlink early transmission data.
  • the confirmation message is a random access preamble.
  • the first message is further used to indicate a random access resource for the terminal device to receive the downlink early transmission data, and the random access resource includes the random access resource. Preamble.
  • the transceiver module is further configured to send a second message to the terminal device before sending the downlink early transmission data to the terminal device according to the downlink resource configuration information,
  • the second message indicates a random access resource for the terminal device to receive the downlink early transmission data, and the random access resource includes at least one random access preamble corresponding to at least one SSB.
  • the second message is a PDCCH order message.
  • the downlink resource configuration information indicated by the first message may be used to schedule the PDCCH order message, and the PDCCH order message is used to indicate random access for the terminal device Resources.
  • the transceiver module is further configured to receive a first random access preamble from the terminal device, where the first random access preamble belongs to the at least one random access Preamble.
  • a communication device is provided, for example, the communication device is the third communication device as described above.
  • the third communication device is used to execute the method in the third aspect or any possible implementation manner.
  • the third communication device may include a module for executing the method in the third aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the transceiver module may include a sending module and a receiving module.
  • the sending module and the receiving module may be different functional modules, or may be the same functional module, but can implement different functions.
  • the third communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a second network device.
  • the third communication device is the second network device.
  • the transceiver module may also be implemented by a transceiver, and the processing module may also be implemented by a processor.
  • the sending module may be implemented by a transmitter, and the receiving module may be implemented by a receiver.
  • the transmitter and the receiver may be different functional modules, or may be the same functional module, but can implement different functions.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the transceiver (or, the transmitter and the receiver) is, for example, a communication interface in the chip, and the communication interface is connected to the radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • the third communication device is continued to be the second network device, and the processing module and the transceiver module are used as examples for the introduction. among them,
  • the transceiver module is configured to receive a paging message from a first network device, the paging message is used to indicate the arrival of downlink early transmission data with a terminal device, and the first network device is the anchor point of the terminal device A network device, where the second network device is a network device where the terminal device resides;
  • the transceiver module is further configured to send a second message to the terminal device, the second message indicating a random access resource for the terminal device to receive the downlink early transmission data, and the random access resource includes At least one random access preamble corresponding to at least one SSB, and the second message is a PDCCH order message.
  • the transceiver module is used to receive a paging message from a first network device
  • the processing module is configured to determine that the paging message is used to indicate the arrival of downlink early transmission data with a terminal device, the first network device is an anchor network device of the terminal device, and the second network device is The network device where the terminal device resides;
  • the transceiver module is further configured to send a second message to the terminal device, the second message indicating a random access resource for the terminal device to receive the downlink early transmission data, and the random access resource includes At least one random access preamble corresponding to at least one SSB, and the second message is a PDCCH order message.
  • the downlink resource configuration information indicated by the first message may be used to schedule the PDCCH order message, and the PDCCH order message is used to indicate random access for the terminal device Resources.
  • the transceiver module is further configured to receive a first random access preamble from the terminal device, where the first random access preamble belongs to the at least one random access Preamble.
  • the paging message is also used to indicate downlink resource configuration information, and the downlink resource configuration information is used by the terminal device to receive the Downlink early data transmission.
  • the downlink resource configuration information includes an RNTI and/or a time-frequency domain configuration of a downlink transmission resource
  • the RNTI is used to scramble the scheduling information
  • the time-frequency domain configuration of the downlink transmission resource The domain configuration is used to indicate the time domain position and the frequency domain position of the scheduling information.
  • the downlink resource configuration information and the downlink resource configuration information in the uplink data early transmission are the same configuration information or different configuration information.
  • the first message further includes first indication information, and the first indication information is used to indicate that the downlink resource configuration information is used to receive downlink early transmission data, or to indicate The aforementioned downlink resource configuration information is downlink feedback used for early uplink data transmission, or downlink resource configuration information indicating that uplink data feedback used in uplink data early transmission is also used to receive downlink early transmission data.
  • the transceiver module is further configured to:
  • a communication device is provided.
  • the communication device is, for example, the first communication device as described above.
  • the communication device includes a processor.
  • it may also include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the methods described in the first aspect or various possible implementation manners.
  • the first communication device may not include a memory, and the memory may be located outside the first communication device.
  • the first communication device may further include a communication interface for communicating with other devices or equipment.
  • the processor, the memory, and the communication interface are coupled with each other and are used to implement the methods described in the first aspect or various possible implementation manners.
  • the first communication device when the processor executes the computer instructions stored in the memory, the first communication device is caused to execute the method in the foregoing first aspect or any one of the possible implementation manners.
  • the first communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the communication interface is realized by a transceiver (or a transmitter and a receiver) in the communication device, for example, the transceiver is realized by an antenna, a feeder and a receiver in the communication device. Codec and other implementations.
  • the communication interface is, for example, an input/output interface of the chip, such as input/output pins, etc., and the communication interface is connected to the radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • a communication device is provided.
  • the communication device is, for example, the second communication device as described above.
  • the communication device includes a processor.
  • it may also include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the methods described in the second aspect or various possible implementation manners.
  • the second communication device may not include a memory, and the memory may be located outside the second communication device.
  • the second communication device may further include a communication interface for communicating with other devices or equipment.
  • the processor, the memory, and the communication interface are coupled with each other, and are used to implement the methods described in the second aspect or various possible implementation manners.
  • the second communication device when the processor executes the computer instructions stored in the memory, the second communication device is caused to execute the method in the second aspect or any one of the possible implementation manners.
  • the second communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a first network device.
  • the communication interface is realized by, for example, a transceiver (or transmitter and receiver) in the communication device.
  • the transceiver is realized by the antenna, feeder, and Codec and other implementations.
  • the communication interface is, for example, an input/output interface of the chip, such as an input/output pin, etc., and the communication interface is connected to a radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • a communication device is provided.
  • the communication device is, for example, the third communication device as described above.
  • the communication device includes a processor.
  • it may also include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the methods described in the third aspect or various possible implementation manners.
  • the third communication device may not include a memory, and the memory may be located outside the third communication device.
  • the third communication device may further include a communication interface for communicating with other devices or equipment.
  • the processor, the memory, and the communication interface are coupled with each other to implement the methods described in the third aspect or various possible implementation manners.
  • the third communication device when the processor executes the computer instructions stored in the memory, the third communication device is caused to execute the method in the third aspect or any one of the possible implementation manners.
  • the third communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a second network device.
  • the communication interface is realized by a transceiver (or a transmitter and a receiver) in the communication device, for example, for example, the transceiver is realized by an antenna, a feeder and a receiver in the communication device. Codec and other implementations.
  • the communication interface is, for example, an input/output interface of the chip, such as an input/output pin, etc., and the communication interface is connected to a radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • a communication system which includes the communication device according to the fourth aspect or the communication device according to the seventh aspect.
  • the communication system further includes the communication device according to the fifth aspect or the communication device according to the eighth aspect.
  • the communication system further includes the communication device according to the sixth aspect or the communication device according to the ninth aspect.
  • a computer-readable storage medium is provided.
  • the computer-readable storage medium is used to store computer instructions.
  • the computer instructions When the computer instructions are executed on a computer, the computer executes the first aspect or any one of the foregoing. The method described in one possible implementation.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store computer instructions, and when the computer instructions run on a computer, the computer executes the second aspect or any one of the foregoing.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store computer instructions, and when the computer instructions are run on a computer, the computer can execute the third aspect or any one of the foregoing The methods described in the possible implementations.
  • a computer program product containing instructions is provided, the computer program product is used to store computer instructions, and when the computer instructions run on a computer, the computer executes the first aspect or any one of the above.
  • a computer program product containing instructions is provided, the computer program product is used to store computer instructions, and when the computer instructions run on a computer, the computer executes the second aspect or any one of the above. The method described in one possible implementation.
  • a computer program product containing instructions is provided.
  • the computer program product is used to store computer instructions.
  • the computer instructions run on a computer, the computer executes the third aspect or any one of the foregoing. The method described in one possible implementation.
  • the embodiment of this application does not need to be configured through a paging message. Compared with the solution of configuring resources through paging messages, the technical solution provided in the embodiments of the present application improves the security of the resource configuration process. In addition, there is no need to configure resources through paging messages, which also helps to reduce the impact on paging capacity, so that paging messages can have more uses.
  • Figure 1 is a flow chart of a current method for early downlink data transmission
  • Figure 2 is a schematic diagram of an application scenario of an embodiment of the application
  • FIG. 3 is a schematic diagram of another application scenario of an embodiment of the application.
  • FIG. 4 is a flowchart of the first communication method provided by an embodiment of this application.
  • FIG. 5 is a flowchart of a second communication method provided by an embodiment of this application.
  • FIG. 6 is a flowchart of a third communication method provided by an embodiment of this application.
  • FIG. 7 is a flowchart of a fourth communication method provided by an embodiment of this application.
  • FIG. 8 is a schematic block diagram of a terminal device provided by an embodiment of the application.
  • FIG. 9 is a schematic block diagram of a first network device provided by an embodiment of this application.
  • FIG. 10 is a schematic block diagram of a second network device according to an embodiment of this application.
  • FIG. 11 is a schematic block diagram of a communication device provided by an embodiment of the application.
  • FIG. 12 is another schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 13 is still another schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 14 is another schematic block diagram of a communication device provided by an embodiment of this application.
  • Terminal devices including devices that provide users with voice and/or data connectivity, specifically, include devices that provide users with voice, or include devices that provide users with data connectivity, or include devices that provide users with voice and data connectivity Sexual equipment.
  • it may include a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN), exchange voice or data with the RAN, or exchange voice and data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle to everything (V2X) terminal equipment , Machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit, subscriber station (subscriber) station), mobile station (mobile station), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user Agent (user agent), or user equipment (user device), etc.
  • UE user equipment
  • M2M/MTC Machine-to-machine/machine-type communications
  • IoT Internet of things
  • subscriber unit subscriber station (subscriber) station)
  • mobile station mobile station
  • remote station remote station
  • access point access point
  • AP remote terminal
  • remote terminal remote terminal
  • access terminal access terminal
  • user terminal user terminal
  • user Agent
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket-sized, hand-held, mobile devices with built-in computers, and so on.
  • PCS personal communication service
  • PCS cordless phones
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be regarded as vehicle-mounted terminal equipment, for example, the vehicle-mounted terminal equipment is also called on-board unit (OBU). ).
  • OBU on-board unit
  • the terminal device may also include a relay. Or it can be understood that everything that can communicate with the base station can be regarded as a terminal device.
  • the device used to implement the function of the terminal device may be a terminal device, or a device capable of supporting the terminal device to implement the function, such as a chip system, and the device may be installed in the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device used to implement the functions of the terminal is a terminal device as an example to describe the technical solutions provided in the embodiments of the present application.
  • Network equipment including, for example, access network (AN) equipment, such as a base station (e.g., access point), which may refer to equipment that communicates with wireless terminal equipment through one or more cells on the air interface in the access network
  • AN access network
  • a base station e.g., access point
  • V2X vehicle-to-everything
  • the base station can be used to convert the received air frame and IP packet to each other, as a router between the terminal device and the rest of the access network, where the rest of the access network can include the IP network.
  • the RSU can be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may include a long term evolution (LTE) system or an evolved base station (NodeB or eNB or e-NodeB, evolutional NodeB) in a long term evolution-advanced (LTE-A) system, Or it can also include the next generation node B (gNB) in the new radio (NR) system (also referred to as the NR system) in the 5th generation (5G) mobile communication technology (the 5th generation, 5G), or it can also Including a centralized unit (CU) and a distributed unit (DU) in a cloud radio access network (cloud radio access network, Cloud RAN) system, which is not limited in the embodiment of the present application.
  • LTE long term evolution
  • NodeB or eNB or e-NodeB, evolutional NodeB evolutional NodeB
  • LTE-A long term evolution-advanced
  • gNB next generation node B
  • NR new radio
  • 5G 5th generation
  • 5G 5th generation
  • CU centralized
  • the network equipment may also include core network equipment.
  • the core network equipment includes, for example, access and mobility management functions (AMF). Since the embodiments of the present application do not involve the core network, unless otherwise specified in the following text, the network devices mentioned all refer to the access network devices.
  • AMF access and mobility management functions
  • the device used to implement the function of the network device may be a network device, or a device capable of supporting the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the device used to implement the functions of the network equipment is a network device as an example to describe the technical solutions provided in the embodiments of the present application.
  • RRC state terminal equipment has 3 RRC states: RRC connected state, RRC idle state and RRC inactive state.
  • RRC connected state (or, can also be referred to as connected state for short.
  • connected state and “RRC connected state” are the same concept, and the two terms can be interchanged): the terminal device establishes an RRC connection with the network, and it can Perform data transfer.
  • RRC idle state (or, can also be referred to as idle state for short.
  • idle state and “RRC idle state” are the same concept, and the two terms can be interchanged): the terminal device does not establish an RRC connection with the network, and the base station The context of the terminal device is not stored. If the terminal device needs to enter the RRC connected state from the RRC idle state, it needs to initiate an RRC connection establishment process.
  • RRC inactive state (or, can also be referred to as inactive state for short.
  • inactive state “inactive state”, “deactivated state”, “inactive state”, “RRC inactive state” or “RRC deactivated state” Etc. are the same concept, and these names can be interchanged): the terminal device entered the RRC connection state at the anchor base station before, and then the anchor base station released the RRC connection, but the anchor base station saved the context of the terminal device. If the terminal device needs to enter the RRC connected state again from the RRC inactive state, it needs to initiate the RRC connection recovery process (or called the RRC connection re-establishment process) at the base station where it currently resides.
  • RRC connection recovery process or called the RRC connection re-establishment process
  • the base station where the terminal device currently resides and the anchor base station of the terminal device may be the same base station or different base stations.
  • the RRC recovery process has shorter time delay and lower signaling overhead.
  • the base station needs to save the context of the terminal device, which will occupy the storage overhead of the base station.
  • At least one means one or more, and “plurality” means two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the size, content, order, and timing of multiple objects. , Priority or importance, etc.
  • the first network device and the second network device are only used to distinguish different network devices, but do not indicate the difference in priority or importance of the two pieces of information.
  • LTE system LTE-A system
  • NR system NR system
  • possible future communication system and there is no specific limitation.
  • the terminal device is in the RRC connected state at the base station. If there is no data transmission between the base station and the terminal device temporarily, or for other reasons, the base station can control the terminal device to enter the RRC inactive state, and assign a context ID (context ID) to the terminal device, such as an inactive cell wireless network Temporary identification (inactive radio network temprory identifier, I-RNTI), and allocation of radio access network notification area (RAN notification area, RNA).
  • a context ID such as an inactive cell wireless network Temporary identification (inactive radio network temprory identifier, I-RNTI), and allocation of radio access network notification area (RAN notification area, RNA).
  • RNAU radio access network notification area update
  • a terminal device in the RRC inactive state needs to perform uplink transmission or downlink transmission, it needs to initiate an RRC resume process to enter the RRC connected state, and then perform transmission after entering the RRC connected state.
  • the signaling overhead consumed to enter the RRC connected state may be greater than the amount of data to be transmitted, which is very inefficient. Therefore, many studies are now beginning to pay attention to early data transmission.
  • Early data transmission means that terminal equipment can perform data transmission without entering the RRC connection state, which can effectively improve the efficiency of data transmission and reduce the power consumption of the terminal equipment.
  • the anchor base station sends a paging message (represented as the first paging message in FIG. 1) to all base stations in the RNA, and the base station in the RNA receives the first paging message from the anchor base station.
  • the first paging message indicates that the downlink data of the terminal device has arrived, and indicates that the downlink data is mobile terminated-early data transmission (MT-EDT).
  • MT-EDT mobile terminated-early data transmission
  • the early data transmission is also called early data transmission.
  • the anchor base station is the anchor base station of the terminal device, for example, the anchor base station stores the context of the terminal device.
  • the number of terminal devices here is one or more.
  • the first paging message may include the identification number (ID) of the terminal device where the downlink data arrives.
  • the base station 1 sends a paging message (represented as a second paging message in FIG. 1), and the terminal device receives the second paging message from the base station 1.
  • a paging message represented as a second paging message in FIG. 1
  • base station 1 After receiving the first paging message from the anchor base station, base station 1 may decide to initiate this MT-EDT random access.
  • Base station 1 in S12 is any base station that has received the first paging message.
  • the second paging message may include the ID of the terminal device where the downlink data arrives.
  • the ID of the terminal device included in the second paging message may be the same as the ID of the terminal device included in the first paging message.
  • the second paging message is also used to configure random access resources for the terminal device.
  • the random access resource includes, for example, one or more of a random access preamble (preamble) or other resources used for random access.
  • the terminal device sends a preamble to the base station 1, and the base station 1 receives the preamble from the terminal device.
  • the terminal device After receiving the second paging message, the terminal device can determine whether there is the ID of the terminal device in the ID of the terminal device included in the second paging message. If so, it indicates that there is MT-EDT data for the terminal device, that is, There is downlink early transmission data for this terminal device. Then the terminal device can initiate random access to the base station 1 using the random access resource configured by the second paging message.
  • the preamble is the actual content sent by the terminal device in the physical random access channel (physical random access channel, PRACH), and is composed of a cyclic prefix (CP) and a sequence (sequence).
  • PRACH physical random access channel
  • the base station 1 sends a downlink data request (DL data request) message to the anchor base station, and the anchor base station receives the downlink data request message from the base station 1.
  • DL data request downlink data request
  • the base station 1 After the base station 1 receives the preamble from the terminal device, since the downlink early transmission data is stored in the anchor base station, the base station 1 requests the anchor base station for the downlink early transmission data of the terminal device.
  • the anchor base station sends the downlink early transmission data of the terminal device to the base station 1, and the base station 1 receives the downlink early transmission data from the anchor base station.
  • the base station 1 sends a random access response (RAR) to the terminal device, and the terminal device receives the RAR from the base station 1.
  • RAR random access response
  • the base station 1 may send the RAR to the terminal device.
  • the RAR may include the uplink time advance (TA), uplink (uplink)-grant, and temporary cell (temporary) of the terminal device.
  • TC-RNTI is an RNTI used to scramble the downlink early transmission data.
  • S16 can occur after S14, or S16 can occur before S14, or S16 and S14 can also occur at the same time.
  • the terminal device starts to use the TC-RNTI to blindly check the physical downlink control channel (PDCCH).
  • PDCH physical downlink control channel
  • the base station 1 uses the TC-RNTI to schedule downlink early transmission data for the terminal equipment, and the terminal equipment receives the downlink early transmission data from the base station 1.
  • the terminal device uses the uplink TA indicated by the RAR to send an acknowledgement (ACK) to the base station 1 on the UL-grant indicated by the RAR, and the base station 1 receives the ACK from the terminal device.
  • ACK is used to indicate that the terminal device has received the downlink early transmission data.
  • the base station 1 sends an ACK to the anchor base station, and the anchor base station receives the ACK from the base station 1.
  • the ACK is used to indicate that the terminal device has received the downlink early transmission data.
  • the base station allocates resources to the terminal device through a paging message. Since the paging channel is receivable for all terminal devices, the use of paging messages to configure resources for the terminal devices results in poor security in the resource configuration process. Moreover, the use of paging messages to allocate resources has a greater impact on paging capacity.
  • the first message may not be a paging message.
  • the first message is dedicated signaling. That is to say, the embodiment of the present application may configure resources for receiving downlink early transmission data for the terminal device through dedicated signaling. No need to configure via paging message.
  • the technical solution provided in the embodiments of the present application improves the security of the resource configuration process.
  • there is no need to configure resources through paging messages which also helps to reduce the impact on paging capacity, so that paging messages can have more uses.
  • the technical solutions provided by the embodiments of this application can be applied to the 4th generation (4G) mobile communication technology (the 4th generation, 4G) system, such as the LTE system, or can be applied to the 5G system, such as the NR system, or can also be applied to the next generation of mobile communications.
  • 4G 4th generation
  • 5G such as the NR system
  • System or other similar communication systems there are no specific restrictions.
  • FIG. 2 is an application scenario of an embodiment of this application.
  • Figure 2 includes network equipment 1, network equipment 2, and terminal equipment.
  • the terminal device is initially in the RRC connection state in the network device 1, and then the terminal device is released by the network device 1, but the context of the terminal device is stored in the network device 1, that is, the network device 1 is the anchor base station of the terminal device. Later, the terminal device moves within the coverage area of the network device 2 due to movement, and the terminal device resides in the network device 2. That is, the network device 2 is a network device where the terminal device currently resides, or is a serving network device of the terminal device.
  • the network device 1 works, for example, in an evolved UMTS terrestrial radio access (E-UTRA) system, or works in an NR system, or works in a next-generation communication system or other communication systems.
  • the network device 2 works, for example, in the E-UTRA system, or in the NR system, or in the next-generation communication system or other communication systems.
  • Network device 1 and network device 2 can work in the same communication system, for example, both work in the E-UTRA system, or network device 1 and network device 2 can also work in different communication systems, for example, network device 1 works In the E-UTRA system, the network device 2 works in the NR system.
  • Figure 3 includes network equipment and terminal equipment.
  • the terminal device is initially in the RRC connection state when the network device is connected, and later the terminal device is released by the network device, but the context of the terminal device is stored in the network device, that is, the network device is the anchor base station of the terminal device. Later, the terminal device did not move, or although the terminal device moved, it was still within the coverage of the network device. That is, the anchor network device of the terminal device is also the network device where the terminal device currently resides.
  • the network device for example, works in the E-UTRA system, or works in the NR system, or works in the next-generation communication system or other communication systems.
  • the network device in FIG. 2 or FIG. 3 is, for example, a base station.
  • network devices correspond to different devices in different systems.
  • they can correspond to an eNB
  • 5G system they correspond to an access network device in 5G, such as gNB.
  • the technical solutions provided by the embodiments of the present application can also be applied to future mobile communication systems.
  • the network equipment in FIG. 3 can also correspond to the network equipment in the future mobile communication system.
  • Figure 2 or Figure 3 takes the network device as a base station as an example.
  • the network device may also be a device such as an RSU.
  • the terminal device in FIG. 2 or FIG. 3 uses a mobile phone as an example.
  • the terminal device in the embodiment of the present application is not limited to the mobile phone.
  • early data transmission includes early transmission of uplink data or early transmission of downlink data.
  • Early uplink data transmission is also called mobile originated data early transmission
  • downlink data early transmission is also called mobile terminated data early transmission. pass.
  • early data transmission can also be referred to as small packet transmission.
  • the embodiment of the present application provides a first communication method. Please refer to FIG. 4, which is a flowchart of this method. In the following introduction process, the application of this method to the network architecture shown in FIG. 3 is taken as an example.
  • the method executed by the network device and the terminal device is taken as an example. Because this embodiment is applied to the network architecture shown in FIG. 3 as an example, the first network device described below may be a network device in the network architecture shown in FIG. 3, and the terminal device described below It may be a terminal device in the network architecture shown in FIG. 3.
  • the first network device determines downlink resource configuration information, where the downlink resource configuration information is used by the terminal device to receive downlink early transmission data when it is in the first state.
  • the first state may be the RRC inactive state or the RRC idle state.
  • the first network device may be an anchor network device of the terminal device.
  • Downlink early data transmission is actually downlink data, also known as early data transmission (EDT). It is called “early data transmission” because the terminal device can receive the data without being in the RRC connection state. .
  • the downlink resource configuration information may include the RNTI, or the time-frequency domain configuration including the downlink transmission resource, or the time-frequency domain configuration including the RNTI and the downlink transmission resource, or may also include other information.
  • the RNTI included in the downlink resource configuration information is, for example, a C-RNTI, or may also be other RNTIs.
  • the RNTI may be owned by the terminal device alone, or shared with other terminal devices.
  • the RNTI can be used for terminal equipment to detect scheduling information for scheduling downlink early transmission data.
  • the RNTI can be used to scramble scheduling information, so that the terminal equipment can use the RNTI to detect scheduling information, and then collect the downlink early transmission according to the scheduling information. data.
  • the time-frequency domain configuration of the downlink transmission resource may indicate the time-domain position and the frequency-domain position of the scheduling information.
  • the time-frequency domain configuration of the downlink transmission resource may include the configuration of the search space, or the configuration of the control resource set (CORESET), or the configuration of the search space and the configuration of the CORESET, or may also include other configurations.
  • the search space is, for example, a UE-specific search space (ue-specific search space, uss).
  • the time-frequency domain configuration of the downstream transmission resources includes the configuration of the USS.
  • the USS configuration can be used to detect scheduling information at the time domain position and frequency domain position indicated by the USS and CORESET when the terminal device is in the first state. .
  • the scheduling information can be used to schedule downlink early transmission data.
  • the first network device first sends the scheduling information to the terminal device, and then sends the downlink early transmission data to the terminal device.
  • the terminal device can detect the scheduling information according to the downlink resource configuration information, and after detecting the scheduling information, it can receive the downlink early transmission data according to the scheduling of the scheduling information.
  • the scheduling information is carried by, for example, the PDCCH.
  • terminal equipment can also perform early transmission of uplink data. That is to say, the terminal equipment can receive downlink data from the network device or send it to the network device without entering the RRC connection state. Send upstream data.
  • the network device also configures the terminal device with uplink resource configuration information used for uplink data feedback.
  • the network device can send information such as feedback corresponding to the uplink early transmission data to the terminal device, and the network device will also configure resources for sending the feedback and other information corresponding to the uplink early transmission data.
  • Configuration information for example, the resource configuration information is referred to as downlink resource configuration information in early uplink data transmission.
  • downlink resource configuration information in early uplink data transmission may include RNTI and/or USS.
  • the downlink resource configuration information is also used for sending uplink data early transmission when the terminal device is in the first state.
  • the downlink resource configuration information and the downlink resource configuration information in the uplink data early transmission may be the same configuration information, that is, the downlink process in the early downlink data transmission and the uplink data early transmission, The same configuration can be used to improve resource utilization. If this is the case, for the terminal device, it may be necessary to distinguish whether the resource configuration information from the network device is used for the early transmission of downlink data or the early transmission of uplink data.
  • the first message may also include first indication information, and the first indication information is used to indicate that the downlink resource configuration information is used to receive downlink early transmission data, or to indicate the downlink
  • the resource configuration information is downlink feedback used for early uplink data transmission, or downlink resource configuration information indicating that uplink data feedback used in uplink data early transmission is also used to receive downlink early transmission data.
  • the terminal device can determine whether the downlink resource configuration information is used for early transmission of downlink data or for early transmission of uplink data according to the first indication information, so that uplink and downlink transmissions can be distinguished.
  • the downlink resource configuration information and the downlink resource configuration information in the early uplink data transmission may also be different configuration information, that is, the downlink resource in the early uplink data transmission and the downlink resource in the early downlink data transmission.
  • Different configurations can be used for downlink resources to differentiate between uplink and downlink.
  • the embodiment of the application receives downlink early transmission data by reusing the downlink resource configuration information used for uplink data feedback in the uplink data early transmission, so that the terminal device can detect control information on a set of resources, and the network device can flexibly schedule through the control information. Whether to transmit the feedback information of the uplink data or the downlink data helps to reduce the energy consumption of the terminal equipment.
  • a terminal device in an RRC inactive state or an RRC idle state needs to perform downlink transmission, it can be implemented in the form of early data transmission. Because it is a downlink transmission, the transmitted data can be called downlink early transmission data. Through the early transmission of downlink data, the terminal device can perform downlink data transmission without entering the RRC connection state, which can effectively improve the efficiency of data transmission and reduce the power consumption of the terminal device.
  • the first network device sends a first message to the terminal device, and the terminal device receives the first message from the first network device.
  • the first message may be used to indicate the downlink resource configuration information.
  • the first message may be an RRC release (RRC release) message, or may also be other messages. If the first message is an RRC release message, the first message may be used to release the terminal device from the RRC connected state to the first state.
  • RRC release RRC release
  • the first message may be used to release the terminal device from the RRC connected state to the first state.
  • the first network device may configure downlink resource configuration information for the terminal device when the terminal device is released to the first state, and the downlink resource configuration information is used when the terminal device is in the first state.
  • the first state is the RRC inactive state or the RRC idle state.
  • the first network device configures the terminal device with resources for receiving downlink early transmission data when the terminal device is released. That is to say, in the embodiment of the present application, the terminal device can configure the resources for receiving the downlink early transmission data through dedicated signaling (for example, the RRC release message), without the need to configure through the paging message.
  • the technical solution provided in the embodiments of the present application improves the security of the resource configuration process.
  • there is no need to configure resources through paging messages which also helps to reduce the impact on paging capacity, so that paging messages can have more uses.
  • the first message may indicate downlink resource configuration information.
  • the terminal device can immediately detect the scheduling information according to the downlink resource configuration information, so as to receive the downlink early transmission data according to the scheduling information.
  • the scheduling information is carried in the downlink control channel (for example, PDCCH), and after receiving the first message, the terminal device can immediately detect the PDCCH according to the downlink resource configuration information.
  • the network device may also configure discontinnuous reception (DRX) configuration information for the terminal device.
  • the first message includes downlink resource configuration information
  • the DRX configuration information may also be included, or the downlink resource configuration information may include the DRX configuration information, for example, the time-frequency domain configuration of the downlink transmission resource in the downlink resource configuration information may include the DRX configuration information.
  • the DRX configuration information may be used for the terminal device to detect the downlink early transmission data according to the DRX configuration information, or in other words, the DRX configuration information may indicate the transmission period of the downlink early transmission data.
  • the terminal device detects the downlink early transmission data according to the DRX configuration information, and only needs to detect whether there is downlink data transmission in a certain period, and does not need to perform the detection all the time, so that the detection can be completed and the effect of power saving can be achieved.
  • the DRX configuration information includes the DRX cycle, or includes the offset, or includes the DRX cycle and the offset, or may also include other information related to the DRX configuration.
  • the offset may indicate the offset of the time domain start position of the DRX cycle, for example.
  • the terminal device needs to determine the time domain detection position. For example, the terminal device only needs to determine the time domain start detection position, and then the specific time domain detection position can be determined according to the DRX cycle. For example, the terminal device can determine the radio frame and subframe where the time domain start detection position is located, so that the time domain start detection position is determined.
  • the wireless frame of the time domain start detection position determined by the terminal device may satisfy the following relationship:
  • SFN is the system frame number (system frame number, SFN)
  • T represents the DRX cycle indicated by the DRX configuration information
  • offset represents the offset indicated by the DRX configuration information
  • FLOOR(x) represents rounding down to x
  • mod means modulo operation.
  • the terminal device determines the subframe where the time domain start detection position is located. For example, one way is, if T is greater than sf5, where sf5 refers to the length of 5 subframes, the subframes may satisfy the following relationship:
  • subframe represents the subframe number.
  • the subframe can satisfy the following relationship:
  • subframe offset or (offset+5) (formula 3)
  • T in Formula 1 to Formula 3 can satisfy the following relationship:
  • ceil(x) represents the smallest integer greater than or equal to x.
  • the terminal device After the terminal device determines the initial detection position in the time domain, it can detect the downlink early transmission data according to the DRX configuration information. If the downlink resource configuration information indicated by the first message includes the configuration of the USS, the DRX configuration information is, for example, associated with the configuration of the USS. That is, the terminal device can detect the downlink early transmission data in the USS indicated by the configuration of the USS according to the DRX configuration information, or in other words, detect the scheduling information used to schedule the downlink early transmission data.
  • the DRX configuration information includes a paging cycle.
  • the terminal device can calculate the location of the paging occasion according to the paging cycle and the downlink resource configuration information, and monitor at the corresponding paging occasion.
  • the RNTI may be used to monitor at the corresponding paging occasion to determine whether there is downlink data.
  • the first network device sends the downlink early transmission data according to the downlink configuration information, and the terminal device receives the downlink early transmission data according to the downlink configuration information.
  • the terminal device does not move after being released, or although the terminal device has moved, it is still within the coverage of the first network device after the movement. Therefore, it can be regarded that the first network device is The terminal device sends the downlink early transmission data, and the terminal device also receives the downlink early transmission data from the first network device.
  • the first network device may send scheduling information according to the downlink resource configuration information, and the scheduling information is used to schedule the downlink early transmission data.
  • the terminal device After the terminal device enters the first state, it can detect scheduling information according to the downlink resource configuration information.
  • the downlink resource configuration information includes USS configuration and C-RNTI.
  • the first message also includes DRX configuration information.
  • the C-RNTI is used to detect scheduling information according to the DRX cycle indicated by the DRX configuration information.
  • the first network device may send the downlink early transmission data according to the scheduling information. If the terminal device detects the scheduling information, it can receive the downlink early transmission data from the first network device according to the scheduling of the scheduling information.
  • the terminal device sends a confirmation message to the first network device, and the first network device receives the confirmation message from the terminal device.
  • the confirmation message may indicate that the terminal device has received the downlink early transmission data.
  • the terminal device may send a confirmation message to the first network device.
  • the confirmation message is, for example, an acknowledgement (ACK) message, but the ACK message indicates that the terminal device has received the downlink early transmission data, but the downlink Early transmission data may be received correctly or incorrectly.
  • the ACK message may indicate that the downlink early transmission data is received correctly or received incorrectly.
  • the confirmation message may also be implemented by a random access preamble (preamble), for example, the preamble is called the first preamble, and S44 in FIG. 4 is taken as an example.
  • the first message may also include a random access resource for the terminal device to receive downlink early transmission data, and the random access resource may include the first preamble, so that the terminal device can use the first preamble as the confirmation message Sent to the first network device.
  • the concept of beam is introduced in the NR system.
  • the terminal device When the terminal device is in a different position, it may send an acknowledgement message to the first network device through different beams, and different beams may correspond to different preambles. Therefore, the random access resource indicated by the first message may include at least one preamble corresponding to at least one SSB, and the SSB and the beam have a one-to-one correspondence. Therefore, the preamble corresponding to the SSB is the preamble corresponding to the beam.
  • the random access resources included in the first message can also be only The first preamble is included, but other preambles are not included, that is, the number of at least one preamble is 1, and the beam carrying the first preamble is the beam corresponding to the terminal device.
  • the random access resource included in the first message may include multiple preambles, that is, the number of at least one preamble is greater than 1, and the multiple preambles may include the first preamble.
  • the terminal device may send the first preamble as a confirmation message to the first network device.
  • the terminal device can determine the first beam (or first SSB) corresponding to the terminal device according to the location of the terminal device, and determine the number of preambles.
  • the preamble corresponding to the first beam (or the first SSB) in each preamble is, for example, the first preamble, the first beam is the beam corresponding to the terminal device, and the first SSB is the SSB carried by the first beam, so that the terminal device can
  • the first preamble is sent to the first network device as a confirmation message.
  • the terminal device sends an ACK as a confirmation message to the network device, it needs to have a corresponding PUCCH configuration.
  • the terminal device uses the preamble as the confirmation message, there is no need to configure the PUCCH, which is relatively simple to implement, which helps to save the signaling overhead of PUCCH configuration.
  • the terminal device may not send the confirmation message to the first network device. Then, if the first network device does not receive the confirmation message, or the received confirmation message indicates that the downlink early transmission data is received incorrectly, the first network device can retransmit the downlink early transmission data, thereby improving the success of the downlink early transmission data reception. rate.
  • a first message may be sent to the terminal device, where the first message indicates downlink resource configuration information, and the terminal device can receive downlink early transmission data according to the downlink resource configuration information. It is equivalent to providing a mechanism for the terminal equipment to allocate resources for receiving downlink early transmission data, so that the downlink early transmission can be realized.
  • the first message may not be a paging message.
  • the first message is dedicated signaling. That is to say, in the embodiment of the present application, the terminal device may be configured to receive downlink early data resources through dedicated signaling, without using a paging message. To configure. Compared with the solution of configuring resources through paging messages, the technical solution provided in the embodiments of the present application improves the security of the resource configuration process. In addition, there is no need to configure resources through paging messages, which also helps to reduce the impact on paging capacity, so that paging messages can have more uses.
  • the first network device is the anchor network device of the terminal device, and the downlink resource configuration information has been sent to the terminal device in advance, the first network device can directly send the downlink early transmission data to the terminal device when it arrives.
  • the data is transmitted to the terminal device, and there is no need to request other network devices for downlink early transmission data, and there is no need to configure corresponding resources for the terminal device, which reduces the transmission delay of the downlink early transmission data.
  • FIG. 5 is a flowchart of this method.
  • the application of this method to the network architecture shown in FIG. 3 is taken as an example.
  • the method executed by the network device and the terminal device is taken as an example. Because this embodiment is applied to the network architecture shown in FIG. 3 as an example, the first network device described below may be a network device in the network architecture shown in FIG. 3, and the terminal device described below It may be a terminal device in the network architecture shown in FIG. 3.
  • the first network device determines downlink resource configuration information, where the downlink resource configuration information is used by the terminal device to receive downlink early transmission data when it is in the first state.
  • the first state may be the RRC inactive state or the RRC idle state.
  • the first network device may be an anchor network device of the terminal device.
  • the downlink resource configuration information may include the RNTI, or the time-frequency domain configuration including the downlink transmission resource, or the time-frequency domain configuration including the RNTI and the downlink transmission resource, or may also include other information.
  • the downlink resource configuration information may be valid in a radio access network notification area (RAN notification area, RNA), or may be valid only in the current serving cell of the terminal device. If the downlink resource configuration information is valid in RNA, the terminal device can still use the downlink resource configuration information to receive downlink early transmission data after leaving the current serving cell. If the downlink resource configuration information is only valid in the current serving cell of the terminal device, after the terminal device leaves the current serving cell, it cannot use the downlink resource configuration information to receive downlink early transmission data, and the terminal device is in After leaving the current cell, the first network device needs to be notified.
  • RNA radio access network notification area
  • the first network device sends a first message to the terminal device, and the terminal device receives the first message from the first network device.
  • the first message may be used to indicate the downlink resource configuration information.
  • the first message may be an RRC release message, or may also be another message. If the first message is an RRC release message, the first message may be used to release the terminal device from the RRC connected state to the first state.
  • the network device may also configure DRX configuration information for the terminal device.
  • the first message may include the DRX configuration information in addition to the downlink resource configuration information.
  • the downlink resource configuration information may include the DRX configuration information, for example, the time-frequency domain configuration of the downlink transmission resource in the downlink resource configuration information may include the DRX configuration information.
  • the terminal device After receiving the first message, the terminal device can immediately detect the scheduling information according to the downlink resource configuration information, so as to receive the downlink early transmission data according to the scheduling information.
  • the scheduling information is carried in the downlink control channel (for example, PDCCH), and after receiving the first message, the terminal device can immediately detect the PDCCH according to the downlink resource configuration information.
  • the first message may further include second indication information, and the second indication information is used to indicate whether the downlink resource configuration information is valid in RNA or valid only in the current serving cell.
  • the first network device sends a second message to the terminal device, and the terminal device receives the second message from the first network device.
  • the second message may indicate the random access resource of the terminal device in response to the second message, and the random access resource may include the first preamble.
  • the concept of beam is introduced in the NR system.
  • the terminal device When the terminal device is in a different position, it may send a message to the first network device through different beams, and different beams may correspond to different preambles. Therefore, the random access resource indicated by the second message may include at least one preamble corresponding to at least one SSB, and the at least one preamble may include the first preamble.
  • the SSB and the beam have a one-to-one correspondence, so the preamble corresponding to the SSB is the preamble corresponding to the downlink beam.
  • the random access resource included in the first message may only include
  • the first preamble does not include other preambles, that is, the number of at least one preamble is 1, and the beam corresponding to the first preamble is the beam corresponding to the location of the terminal device.
  • the random access resource included in the first message may include multiple preambles, that is, the number of at least one preamble is greater than 1, and the multiple preambles may include the first preamble.
  • the first network device may send the second message to the terminal device when the downlink early transmission data of the terminal device arrives.
  • the first network device can allocate random access resources to the terminal device when the downlink early transmission data of the terminal device arrives, so that the allocated random access resource can correspond to the current location of the terminal device. .
  • the second message is carried by downlink control information (DCI) of the PDCCH, and one implementation manner is that the second message is a PDCCH order (order), or may also be other messages.
  • DCI downlink control information
  • the PDCCH order is a way to carry random access resources through DCI in the PDCCH channel.
  • the downlink resource configuration information indicated by the first message may be used to schedule the PDCCH order message.
  • the terminal device may receive the PDCCH order message according to the downlink resource configuration information, and the PDCCH order message may indicate the random access resource for the terminal device.
  • the terminal device in the RRC idle state and/or the RRC inactive state can receive the PDCCH order message.
  • the terminal device After receiving the PDCCH order message, the terminal device can receive downlink data according to the random access resource indicated by the PDCCH order message, such as downlink early transmission data. Therefore, the random access resource can be considered to be used for the terminal device to receive downlink early transmission data. Random access resources; or, after receiving the PDCCH order message, the terminal device can also initiate random access according to the random access resources indicated by the PDCCH order message, but it does not necessarily have to receive downlink data.
  • the random access resource indicated by the PDCCH order message can be used for the terminal equipment to receive downlink early transmission data, and can also be used for the terminal equipment to perform random access, which also improves the utilization rate of the PDCCH order message.
  • the terminal device in the RRC idle state or the RRC inactive state can receive the PDCCH order message according to the first downlink resource configuration information, and determine the corresponding random access resource.
  • the terminal device The random access resource performs the random access process and enters the RRC connected state. At this time, the above downlink early transmission data is not received.
  • the terminal device can send uplink data or receive downlink signaling through the RRC connection, instead of receiving the above downlink Early transmission of data; in the second possible implementation, the terminal device triggers random access according to the random access resource, and then receives downlink early transmission data.
  • the terminal device may send the first random access preamble to the network device, It is used to notify the terminal device that it is within the service range of the network device, and then trigger the network device to send downlink early transmission data to the terminal device.
  • the terminal device can send a random access request message to the base station, and the base station can use the random access request message
  • the information such as the location and resources of the terminal device is determined, and then the downlink early transmission data is sent to the terminal device according to the information.
  • the random access resource indicated by the PDCCH order message can be used by the terminal device to receive downlink early transmission data.
  • the PDCCH order is used to indicate the random access resources used to receive the downlink early transmission data, and there is no need to allocate random access resources to the terminal equipment through the paging message.
  • the PDCCH order is scrambled by the dedicated RNTI of the terminal equipment Yes, other terminal devices cannot see the content. Compared with the scheme of allocating random access resources through paging messages, it helps to improve the security of the resource allocation process. Moreover, there is no need to allocate random access resources through paging messages, and the capacity of paging messages can also be saved, so that the paging messages can be used for more other purposes.
  • the terminal device sends a first preamble to the first network device, and the first network device receives the first preamble from the terminal device.
  • the terminal device can send a preamble to the first network device. If the random access resource included in the second message only includes the first preamble, the terminal device may send the first preamble to the first network device. Or, if the random access resource included in the second message includes multiple preambles, the terminal device can determine the first beam (or first SSB) corresponding to the terminal device according to the location of the terminal device, and determine the number of preambles.
  • the preamble corresponding to the first beam (or the first SSB) in each preamble is, for example, the first preamble
  • the first beam is the beam corresponding to the terminal device
  • the first SSB is the SSB carried by the first beam, so that the terminal device can
  • the first preamble is sent to the first network device.
  • the first preamble can be used to respond to the second message. It can also be considered that the first preamble is used to notify the first network device that the terminal device is within the service range of the first network device, thereby triggering the first network device to send to the terminal device Downlink early data transmission.
  • the terminal device can also restore the context of the terminal device.
  • the first message is an RRC release message.
  • the context of the terminal device can be suspended or deactivated.
  • the terminal device subsequently needs to receive the downlink early transmission data.
  • the downlink early transmission data may have undergone processing such as encryption and integrity protection. If the terminal device needs to decrypt the downlink early transmission data and perform integrity protection verification, it must Need to use the key and other information included in the context of the terminal device. Therefore, the terminal device can restore the context of the terminal device.
  • the first network device sends the downlink early transmission data according to the downlink resource configuration information, and the terminal device receives the downlink early transmission data according to the downlink configuration information.
  • the terminal device does not move after being released, or although the terminal device has moved, it is still within the coverage of the first network device after the movement. Therefore, it can be regarded that the first network device is The terminal device sends the downlink early transmission data, and the terminal device also receives the downlink early transmission data from the first network device.
  • the first network device may send scheduling information according to the downlink resource configuration information, where the scheduling information is used to schedule downlink early transmission data.
  • the terminal device After the terminal device enters the first state, it can detect scheduling information according to the downlink resource configuration information.
  • the downlink resource configuration information includes USS configuration and C-RNTI.
  • the first message also includes DRX configuration information.
  • the C-RNTI is used to detect scheduling information according to the DRX cycle indicated by the DRX configuration information.
  • the first network device may send the downlink early transmission data according to the scheduling information. If the terminal device detects the scheduling information, it can receive the downlink early transmission data from the first network device according to the scheduling of the scheduling information.
  • the downlink early transmission data sent by the first network device in S55 may be data that has undergone processing such as encryption and integrity protection.
  • the terminal device After receiving the downlink early transmission data, the terminal device can perform processing such as decryption and integrity protection verification on the downlink early transmission data to obtain the original data.
  • the first network device may also send an uplink time advance (TA) to the terminal device.
  • TA uplink time advance
  • the first network device may send the uplink TA along with the downlink early transmission data, or the first network device may send the uplink TA along with the downlink early transmission data.
  • a network device can also send uplink TA separately.
  • the uplink TA may be used for the terminal device to send the confirmation message corresponding to the downlink early transmission data to the first network device.
  • the terminal device sends a confirmation message to the first network device, and the first network device receives the confirmation message from the terminal device.
  • the confirmation message may indicate that the terminal device has received the downlink early transmission data.
  • the terminal device may send a confirmation message to the first network device. If the first network device also sends an uplink TA to the terminal device, the terminal device may send the confirmation message to the first network device according to the uplink TA.
  • the confirmation message is, for example, an acknowledgment (ACK) message, but the ACK message indicates that the terminal device has received the downlink early transmission data, but the downlink early transmission data may be received correctly or incorrectly. For example, the ACK message may indicate the downlink Early transmission data is received correctly or incorrectly.
  • ACK acknowledgment
  • the terminal device may not send the confirmation message to the first network device. Then, if the first network device does not receive the confirmation message, or the received confirmation message indicates that the downlink early transmission data is received incorrectly, the first network device can retransmit the downlink early transmission data, thereby improving the success of the downlink early transmission data reception. rate.
  • the first message may not be a paging message.
  • the first message is dedicated signaling. That is to say, the embodiment of the present application may configure resources for receiving downlink early transmission data for the terminal device through dedicated signaling. No need to configure via paging message.
  • the technical solution provided in the embodiments of the present application improves the security of the resource configuration process.
  • there is no need to configure resources through paging messages which also helps to reduce the impact on paging capacity, so that paging messages can have more uses.
  • the first network device may send the second message to the terminal device when the downlink early transmission data of the terminal device arrives.
  • the first network device can allocate random access resources to the terminal device when the downlink early transmission data of the terminal device arrives, so that the allocated random access resource can correspond to the current location of the terminal device. .
  • FIG. 4 and the embodiment shown in FIG. 5 both take the terminal device not moving out of the range of the anchor network device as an example.
  • an embodiment of the present application provides a third communication method to introduce a scenario in which a terminal device moves out of the range of an anchor network device. Please refer to Figure 6, which is a flowchart of this method. In the following introduction process, the application of this method to the network architecture shown in FIG. 2 is taken as an example.
  • the method executed by the network device and the terminal device is taken as an example. Because this embodiment is applied to the network architecture shown in FIG. 2 as an example, the first network device described in the following may be the network device 1 in the network architecture shown in FIG. 2, and the first network device described in the following The second network device may be the network device 2 in the network architecture shown in FIG. 2, and the terminal device described below may be the terminal device in the network architecture shown in FIG. 2.
  • the first network device determines downlink resource configuration information, where the downlink resource configuration information is used by the terminal device to receive downlink early transmission data when it is in the first state.
  • the first state may be the RRC inactive state or the RRC idle state.
  • the first network device may be an anchor network device of the terminal device.
  • the downlink resource configuration information may include the RNTI, or the time-frequency domain configuration including the downlink transmission resource, or the time-frequency domain configuration including the RNTI and the downlink transmission resource, or may also include other information.
  • the downlink resource configuration information may be valid in the RAN notification area (RNA), or may be valid only in the current serving cell of the terminal device. If the downlink resource configuration information is valid in RNA, the terminal device can still use the downlink resource configuration information to receive downlink early transmission data after leaving the current serving cell. If the downlink resource configuration information is only valid in the current serving cell of the terminal device, after the terminal device leaves the current serving cell, it cannot use the downlink resource configuration information to receive downlink early transmission data, and the terminal device is in After leaving the current cell, the first network device needs to be notified.
  • RNA RAN notification area
  • the first network device sends a first message to the terminal device, and the terminal device receives the first message from the first network device.
  • the first message may be used to indicate the downlink resource configuration information.
  • the first message may be an RRC release message, or may also be another message. If the first message is an RRC release message, the first message may be used to release the terminal device from the RRC connected state to the first state.
  • the network device may also configure DRX configuration information for the terminal device.
  • the first message may include the DRX configuration information in addition to the downlink resource configuration information.
  • the downlink resource configuration information may include the DRX configuration information, for example, the time-frequency domain configuration of the downlink transmission resource in the downlink resource configuration information may include the DRX configuration information.
  • the terminal device After receiving the first message, the terminal device can immediately detect the scheduling information according to the downlink resource configuration information, so as to receive the downlink early transmission data according to the scheduling information.
  • the scheduling information is carried in the downlink control channel (for example, PDCCH), and after receiving the first message, the terminal device can immediately detect the PDCCH according to the downlink resource configuration information.
  • the first message may further include second indication information, and the second indication information is used to indicate whether the downlink resource configuration information is valid in RNA or valid only in the current serving cell.
  • the first network device sends a paging message
  • the second network device receives the paging message from the first network device.
  • the paging message may indicate the arrival of the downlink early transmission data.
  • the paging message may include the identification of the terminal device where the downlink early transmission data arrives, and the identification of the terminal device is, for example, the identification number (ID) of the terminal device.
  • the first network device can send a paging message to all network devices in the RNA area. For example, if the second network device is a network device in the RNA area, the second network device can Receive the paging message.
  • the paging message may also indicate the downlink resource configuration information. That is, the first network device can indicate the downlink resource configuration information to the second network device through a paging message, so that the second network device can send the downlink early transmission data according to the downlink resource configuration information, or send it for scheduling downlink early transmission. Data scheduling information.
  • the first network device may also send the downlink resource configuration information to the second network device in advance.
  • the first network device may communicate with the second network device through X2 It can be sent via an interface, or can be sent via other air interface messages. If this is the case, the paging message does not need to indicate the downlink resource configuration information, which helps to save the capacity of the paging message.
  • the second network device sends a second message to the terminal device, and the terminal device receives the second message from the second network device.
  • the terminal device moves after being released, and the terminal device enters the coverage area of the second network device after the movement, so the second network device can interact with the terminal device.
  • the second network device may send the second message to the terminal device.
  • the second message may indicate a random access resource for the terminal device to receive downlink early transmission data, and the random access resource may include the first preamble.
  • the terminal device sends the first preamble to the second network device, and the second network device receives the first preamble from the terminal device.
  • the terminal device can send a preamble to the first network device. If the random access resource included in the second message only includes the first preamble, the terminal device can send the first preamble to the first network device. Or, if the random access resource included in the second message includes multiple preambles, the terminal device can determine the first beam (or first SSB) corresponding to the terminal device according to the location of the terminal device, and determine the number of preambles.
  • the preamble corresponding to the first beam (or the first SSB) in each preamble is, for example, the first preamble
  • the first beam is the beam corresponding to the terminal device
  • the first SSB is the SSB carried by the first beam, so that the terminal device can
  • the first preamble is sent to the first network device.
  • the terminal device can also restore the context of the terminal device.
  • the first message is an RRC release message.
  • the context of the terminal device can be suspended or deactivated.
  • the terminal device subsequently needs to receive the downlink early transmission data.
  • the downlink early transmission data may have undergone processing such as encryption and integrity protection. If the terminal device needs to decrypt the downlink early transmission data and perform integrity protection verification, it must Need to use the key and other information included in the context of the terminal device. Therefore, the terminal device can restore the context of the terminal device.
  • the second network device sends a request message to the first network device, and the first network device receives the request message from the second network device.
  • the request message can be used to request the downlink early transmission data.
  • the downlink early transmission data is stored in the first network device. If the second network device receives the first preamble from the terminal device, indicating that the terminal device needs to receive the downlink early transmission data, the second network device can send the data to the first network device. Request for downlink early transmission data.
  • the first network device sends the downlink early transmission data to the second network device, and the second network device receives the downlink early transmission data from the first network device.
  • the first network device After the first network device receives the request message from the second network device, it can send the downlink early transmission data to the second network device.
  • the downlink early transmission data sent by the first network device in S67 may be data processed by the PDCP layer, for example, data that has been encrypted and integrity protected.
  • the first network device may also send configuration information of the RLC layer included in the context of the terminal device to the second network device. Therefore, if the terminal device needs to exchange RLC layer information with the network device, it can interact with the second network device, and there is no need to forward the terminal device and the first network device through the second network device.
  • the second network device sends the downlink early transmission data according to the downlink resource configuration information, and the terminal device receives the downlink early transmission data according to the downlink configuration information.
  • the terminal device moves after being released, and the terminal device enters the coverage area of the second network device after the movement. Therefore, it can be regarded that the first network device sends a downlink early message to the second network device.
  • the second network device When transmitting data, the second network device then sends the downlink early transmission data to the terminal device, and the terminal device receives the downlink early transmission data from the second network device.
  • the second network device may send scheduling information according to the downlink resource configuration information, where the scheduling information is used to schedule the downlink early transmission data.
  • the terminal device After the terminal device enters the first state, it can detect scheduling information according to the downlink resource configuration information.
  • the downlink resource configuration information includes USS configuration and C-RNTI.
  • the first message also includes DRX configuration information.
  • the C-RNTI is used to detect scheduling information according to the DRX cycle indicated by the DRX configuration information.
  • the second network device may send the downlink early transmission data according to the scheduling information. If the terminal device detects the scheduling information, it can receive the downlink early transmission data from the second network device according to the scheduling of the scheduling information.
  • the second network device may forward the downlink early transmission data from the first network device, so the downlink early transmission data sent by the second network device may be data that has undergone encryption and integrity protection processing.
  • the terminal device After receiving the downlink early transmission data, the terminal device can perform processing such as decryption and integrity protection verification on the downlink early transmission data to obtain the original data.
  • the first network device may also send the uplink TA to the terminal device.
  • the first network device may send the uplink TA together with the downlink early transmission data, or the first network device may also send the uplink TA separately.
  • the uplink TA may be used for the terminal device to send the confirmation message corresponding to the downlink early transmission data to the first network device.
  • the terminal device sends a confirmation message to the first network device, and the first network device receives the confirmation message from the terminal device.
  • the confirmation message may indicate that the terminal device has received the downlink early transmission data.
  • the terminal device may send a confirmation message to the first network device. If the first network device also sends an uplink TA to the terminal device, the terminal device may send the confirmation message to the first network device according to the uplink TA.
  • the confirmation message is, for example, an ACK message, but the ACK message indicates that the terminal device has received downlink early transmission data, but the downlink early transmission data may be received correctly or incorrectly. For example, the ACK message may indicate the reception of downlink early transmission data. Correct or receiving error.
  • the terminal device may not send the confirmation message to the first network device. Then, if the first network device does not receive the confirmation message, or the received confirmation message indicates that the downlink early transmission data is received incorrectly, the first network device can retransmit the downlink early transmission data, thereby improving the success of the downlink early transmission data reception. rate.
  • the first message may not be a paging message.
  • the first message is dedicated signaling.
  • the second network device may configure random access resources for the terminal device through the second message.
  • the second message is, for example, PDCCH order.
  • the downlink resource configuration information indicated by the first message may be used to schedule the PDCCH order message.
  • the terminal device may receive the PDCCH order message according to the downlink resource configuration information, and the PDCCH order message may indicate the random access resource for the terminal device.
  • the terminal device After receiving the PDCCH order message, the terminal device can receive downlink data according to the random access resource indicated by the PDCCH order message, such as downlink early transmission data; or, after receiving the PDCCH order message, the terminal device can also follow the indication indicated by the PDCCH order message
  • the random access resource initiates random access, but it does not necessarily receive downlink data. That is to say, the random access resource indicated by the PDCCH order message can be used for the terminal equipment to receive downlink early transmission data, and can also be used for the terminal equipment to perform random access, which also improves the utilization rate of the PDCCH order message.
  • the terminal device in the RRC idle state or the RRC inactive state can receive the PDCCH order message according to the first downlink resource configuration information, and determine the corresponding random access resource.
  • the terminal device The random access resource performs the random access process and enters the RRC connected state.
  • the above downlink early transmission data is not received.
  • the terminal device can send uplink data or receive downlink signaling through the RRC connection, instead of receiving the above downlink Early transmission of data; in the second possible implementation, the terminal device triggers random access according to the random access resource, and then receives downlink early transmission data.
  • the terminal device may send the first random access preamble to the network device, It is used to notify the terminal device that it is within the service range of the network device, and then trigger the network device to send downlink early transmission data to the terminal device.
  • the terminal device can send a random access request message to the base station, and the base station can use the random access request message
  • the information such as the location and resources of the terminal device is determined, and then the downlink early transmission data is sent to the terminal device according to the information.
  • the random access resource indicated by the PDCCH order message can be used by the terminal device to receive downlink early transmission data.
  • the PDCCH order is scrambled by the dedicated RNTI of the terminal device, and other terminal devices cannot see the content. Compared with the scheme of allocating random access resources through paging messages, it helps to improve the security of the resource allocation process. Sex. In addition, there is no need to configure resources through paging messages, which also helps to reduce the impact on paging capacity, so that paging messages can have more uses.
  • the terminal device may not know whether the terminal device is under the first network device. Therefore, when the first network device sends downlink data, it can only send it through beam scanning, which will waste transmission resources. For this reason, the embodiment of the present application proposes that for a terminal device in a stationary state or a low-movement state, the first network device may configure a beam area for the terminal device.
  • the beam area is just a name, which refers to an area defined by the beams of several downlink reference signals, and this area is usually relatively small. If the terminal device stays in the beam area, the first network device can only send downlink data or paging or other downlink messages to the terminal device on the beam corresponding to the beam area, and the terminal device is only in the beam area. At the downlink transmission timing corresponding to the beam, the control information is detected, and once the terminal device moves out of the beam area, the first network device can be notified to prevent the first network device from still sending downlink data or searching to the terminal device in the beam area. Call messages or other downlink messages.
  • the embodiment of the present application introduces the solution through the fourth communication method. Please refer to Figure 7 for a flowchart of this method. In the following introduction process, the application of this method to the network architecture shown in FIG. 3 is taken as an example.
  • the method executed by the network device and the terminal device is taken as an example. Because this embodiment is applied to the network architecture shown in FIG. 3 as an example, the first network device described below may be a network device in the network architecture shown in FIG. 3, and the terminal device described below It may be a terminal device in the network architecture shown in FIG. 3.
  • the terminal device sends a first message to the first network device, and the first network device receives the first message from the terminal device.
  • the first message is used to indicate the mobile state of the terminal device.
  • the first message may indicate that the terminal device is in a static state or a low moving speed state.
  • the low moving speed state means that the moving speed of the terminal device is low.
  • the terminal device is considered to be in a low moving speed state.
  • the first threshold is, for example, configured by the first network device, or pre-configured in the terminal device, or determined by the terminal device itself, or may be specified through a protocol.
  • the first message may be sent by the terminal device to the first network device when it is in the RRC connected state.
  • the first message may be an RRC message or other messages.
  • the first network device may also measure the uplink signal from the terminal device, and the mobile state of the terminal device may also be determined according to the measurement result. Therefore, sending the first message to the first network device by the terminal device to indicate the mobile state of the terminal device is only an optional step.
  • the first network device sends a second message to the terminal device, and the terminal device receives the second message from the first network device.
  • the second message may indicate the first beam area.
  • the first network device may determine the first beam area according to the location of the terminal device.
  • the second message may be an RRC release message, or may also be another message.
  • the first network device when the first network device releases the terminal device to the RRC inactive state or the RRC idle state, it may indicate the first beam area to the terminal device, and the first beam area may include one Or multiple beams. If the terminal device is in the first beam area, the first network device only needs to send downlink data to the terminal device through the beam included in the first beam area, and does not need to send the downlink data to the terminal device through the beam outside the first beam area, which is helpful In order to save transmission resources, and because the terminal device is within the range of the first beam area, it is also possible to ensure that the terminal device can correctly receive downlink data or paging messages or other downlink messages.
  • the network device can specify a beam area for the terminal device through the second message, and then the subsequent network device can send early transmission to the terminal device in the RRC idle state and/or RRC inactive state more quickly data.
  • the downlink data described in the embodiments of this application may be downlink early transmission data (for the introduction of downlink early transmission data, please refer to the foregoing embodiments), or it may be sent to other RRC inactive state or RRC idle state.
  • the downlink data of the terminal equipment such as paging messages or system messages.
  • the second message may include one or more indexes of downlink reference signals, that is, the second message may include one or more indexes, and each index may correspond to one reference signal.
  • the reference signal here is, for example, SSB, or channel state information-reference signal (CSI-RS), or other reference signals.
  • the reference signal and the beam may have a one-to-one correspondence, and the one or more indexes included in the second message correspond to one or more beams belonging to the first beam area.
  • the second message indicates the first beam area through one or more indexes.
  • the second message may also indicate the first beam area in other ways.
  • multiple beam areas may be divided in advance, and each beam area may correspond to a serial number.
  • multiple beam areas may be divided by the first network device, or may also be stipulated by agreement. The correspondence between the beam area and the serial number is known by both the first network device and the terminal device, so the second message only needs to include the serial number of the first beam area to indicate the first beam area.
  • the second message may further include one or more thresholds, and the thresholds are, for example, a reference signal receiving power (RSRP) threshold or a reference signal receiving quality (RSRQ) threshold.
  • RSRP reference signal receiving power
  • RSS reference signal receiving quality
  • the second message includes only one threshold, it means that the threshold can be shared by all reference signals corresponding to the first beam area.
  • the second message includes multiple thresholds, for example, the number of thresholds included in the second message can be the same as the number of thresholds included in the first beam.
  • the number of reference signals corresponding to the beam area is equal, that is, the reference signal and the threshold may have a one-to-one correspondence.
  • the threshold included in the second message can be used by the terminal device to determine whether the terminal device has moved out of the first beam area. This part of the content will be introduced in the following steps.
  • the first network device sends first downlink data to the terminal device through the beam included in the first beam area, and the terminal device receives the first downlink data from the beam included in the first beam area.
  • the first network device indicates the first beam area to the terminal device through the second message, and when the first network device sends the first downlink data to the terminal device, it can pass through some or all of the beams included in the first beam area.
  • Each beam is sent to the terminal device, so that the terminal device can correctly receive downlink data or paging messages or other downlink messages, and the first network device does not need to send the first network device to the terminal device through the beam outside the first beam area.
  • Downlink data helps save transmission resources.
  • the terminal device may receive the first downlink data according to the first search space configuration.
  • the first search space configuration is indicated by a second message, or the first search space configuration is sent by the network device before the second message.
  • the first search space configuration is used to schedule the first downlink data
  • the first search space configuration can be a common search space configuration, such as search space configuration for paging, search for system messages (SIB1, or other system message blocks) Space configuration; it can also be a search space configuration unique to terminal equipment.
  • SIB1 system messages
  • the network device can dynamically schedule the first downlink data.
  • the terminal device when the terminal device receives the first downlink data, it may detect the control information of the first downlink data according to the first search space configuration. According to the first search space configuration, the terminal device may determine the detection occasion (monitor occasion) corresponding to the first downlink reference signal number, where the first downlink reference signal number is the number of the downlink reference signal corresponding to the first beam region One or more of. Since the first network device sends the first downlink data in the downlink reference signal direction corresponding to the first beam area, the terminal device only needs to detect the control information of the first downlink data on the first downlink reference signal number, Furthermore, it is possible to reduce the number of terminal device detections and save energy consumption of the terminal device.
  • first downlink data may be downlink data or a paging message or other downlink messages.
  • the terminal device sends a third message to the first network device, and the first network device receives the third message from the terminal device.
  • the third message may indicate that the terminal device has moved out of the first beam area.
  • the terminal device may not need to inform the first network device. However, if the terminal device moves out of the first beam area, the terminal device can notify the first network device so that the first network device knows that the terminal device has moved out of the first beam area. If it sends downlink data to the terminal device again, it will not It is suitable for sending through the beams included in the first beam area to avoid waste of transmission resources.
  • the terminal device may determine whether the terminal device has moved out of the first beam area according to the threshold, which is described below with an example.
  • the terminal device can determine whether the terminal device has moved out of the first beam area according to a preset threshold.
  • the preset threshold is, for example, configured by the first network device, or pre-configured in the terminal device, or specified through a protocol.
  • the first network device may send the reference signal through each beam of all the beams in the first beam area, and the terminal device may measure the reference signal of each beam from all the beams in the first beam area to obtain the measurement result.
  • the terminal device may measure the reference signal of each beam in the partial beams from the first beam area to obtain the measurement result, and the measurement result is, for example, RSRP or RSRQ.
  • the measurement result needs to match the preset threshold.
  • the measurement result may be RSRP, or, if the preset threshold is an RSRQ threshold, the measurement result may be RSRQ. If the terminal device determines that each obtained measurement result is less than the preset threshold, it can be determined that the terminal device has moved out of the first beam area. Otherwise, as long as there is a measurement result greater than the preset threshold, it cannot be determined that the terminal device has moved out of the first beam area.
  • the second message includes a threshold
  • the threshold is an RSRP threshold or an RSRQ threshold
  • the terminal device can determine whether the terminal device has moved out of the first beam area according to the threshold.
  • the first network device may send the reference signal through each beam of all the beams in the first beam area, and the terminal device may measure the reference signal of each beam from all the beams in the first beam area to obtain the measurement result.
  • the terminal device may measure the reference signal of each beam in the partial beams from the first beam area to obtain the measurement result, and the measurement result is, for example, RSRP or RSRQ.
  • the measurement result needs to match the preset threshold.
  • the measurement result may be RSRP, or if the threshold included in the second message is an RSRQ threshold, the measurement result may be RSRQ. If the terminal device determines that each obtained measurement result is less than the threshold included in the second message, it can be determined that the terminal device has moved out of the first beam area. Otherwise, as long as there is a measurement result greater than the threshold included in the second message, it cannot be determined that the terminal device has moved out of the first beam area.
  • the second message includes multiple thresholds, for example, the beam (or reference signal) included in the first beam region has a one-to-one correspondence with the threshold included in the second message.
  • the multiple thresholds included in the second message may all be RSRP thresholds, or all RSRQ thresholds, or part of the thresholds may be RSRP thresholds, and the remaining thresholds may be RSRQ thresholds.
  • the terminal device can determine whether the terminal device has moved out of the first beam area according to the multiple thresholds.
  • the first network device may send the reference signal through each beam of all the beams in the first beam area, and the terminal device may measure the reference signal of each beam from all the beams in the first beam area to obtain the measurement result.
  • the terminal device may measure the reference signal of each beam in the partial beams from the first beam area to obtain the measurement result, and the measurement result is, for example, RSRP or RSRQ.
  • the measurement result needs to match the preset threshold.
  • the threshold corresponding to the beam included in the second message is the RSRP threshold
  • the measurement result of the reference signal from the beam by the terminal device may be RSRP
  • the threshold corresponding to the beam included in the second message is the RSRQ threshold
  • the measurement result of the reference signal from the beam by the terminal device may be the RSRQ.
  • the terminal device determines that each obtained measurement result is less than the threshold corresponding to each measurement result, it can be determined that the terminal device has moved out of the first beam area. Otherwise, as long as there is a measurement result greater than the threshold corresponding to the measurement result, it cannot be determined that the terminal device has moved out of the first beam area.
  • the first beam area includes beam 1 and beam 2, beam 1 corresponds to reference signal 1, and beam 2 corresponds to reference signal 2.
  • the second message includes threshold 1 and threshold 2, threshold 1 corresponds to beam 1, and threshold 2 corresponds to beam 2.
  • threshold 1 and threshold 2 are both RSRP thresholds.
  • the first network device sends the reference signal 1 to the terminal device through the beam 1, and sends the reference signal 2 to the terminal device through the beam 2.
  • the terminal device receives reference signal 1 from beam 1 and receives reference signal 2 from beam 2.
  • the terminal device measures the reference signal 1 to obtain RSRP 1, and measures the reference signal 2 to obtain RSRP 2.
  • the terminal device determines the relationship between RSRP 1 and threshold 1, and determines the relationship between RSRP 2 and threshold 2. For example, if the terminal device determines that RSRP 1 is less than threshold 1, and that RSRP 2 is less than threshold 2, the terminal device can determine that the terminal device has moved out of the first beam area.
  • the first network device sends a fourth message to the terminal device, and the terminal device receives the fourth message from the first network device.
  • the fourth message may indicate the second beam area.
  • the first network device may determine the second beam area according to the new location where the terminal device is located.
  • the first network device may re-allocate the beam area for the terminal device according to the new position of the terminal device, for example, the second beam area. Therefore, when the first network device subsequently sends downlink data to the terminal device, it can send it through all the beams or part of the beams included in the second beam area, and does not need to be sent through other beams outside the second beam area. Save transmission resources.
  • the first network device indicates the second beam area to the terminal device.
  • the first network device indicates the first beam area to the terminal device in S72, which will not be repeated.
  • the first network device sends second downlink data to the terminal device through the beam included in the second beam area, and the terminal device receives the second downlink data from the beam included in the second beam area.
  • the first network device re-indicated the second beam area to the terminal device through the fourth message.
  • the first network device sends downlink data to the terminal device (for example, the downlink data sent at this time is the second downlink data)
  • it can pass the first
  • Each of the partial beams or all the beams included in the two beam areas is sent to the terminal device, instead of being sent through the beams included in the first beam area, so that the terminal device can correctly receive downlink data or paging messages Or other downstream messages.
  • the first network device does not need to send the second downlink data to the terminal device through a beam outside the second beam area, which helps to save transmission resources.
  • the terminal device can also determine whether it has moved out of the second beam area. If it is determined that it has moved out of the second beam area, the terminal device can continue to notify the first network device, so that the first network device can again determine a new one for the terminal device. Beam area, and so on.
  • the beam area can be indicated for the terminal device, so that the first network device only needs to send downlink data to the terminal device through the beam in the beam area corresponding to the terminal device, and does not need to pass outside the beam area.
  • the beams that transmit downlink data to the terminal device help save transmission resources and increase the success rate of data transmission.
  • FIG. 8 is a schematic block diagram of a communication device 800 provided by an embodiment of the application.
  • the communication device 800 is a terminal device 800, for example.
  • the terminal device 800 includes a processing module 810 and a transceiver module 820.
  • the terminal device 800 may be a network device, or may be a chip applied in a terminal device or other combination devices, components, etc. having the above-mentioned terminal device functions.
  • the transceiver module 820 may be a transceiver
  • the transceiver may include an antenna and a radio frequency circuit, etc.
  • the processing module 810 may be a processor, such as a baseband processor.
  • the baseband processor may include one or more Central processing unit (central processing unit, CPU).
  • the transceiver module 820 may be a radio frequency unit, and the processing module 810 may be a processor, such as a baseband processor.
  • the transceiver module 820 may be an input/output interface of a chip (such as a baseband chip), and the processing module 810 may be a processor of the chip system, and may include one or more central processing units.
  • the processing module 810 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component, and the transceiver module 820 may be implemented by a transceiver or a transceiver-related circuit component.
  • the processing module 810 may be used to perform all operations performed by the terminal device in the embodiment shown in FIG. 4 except for the transceiving operation, such as the operation of determining downlink resource configuration information according to the first message, and/or for Other processes that support the technology described in this article.
  • the transceiver module 820 may be used to perform all the receiving operations performed by the terminal device in the embodiment shown in FIG. 4, such as S42-S44, and/or other processes used to support the technology described herein.
  • the processing module 810 may be used to perform all operations performed by the terminal device in the embodiment shown in FIG. 5 except for the transceiving operation, such as the operation of determining downlink resource configuration information according to the first message, and/or use To support other processes of the technology described in this article.
  • the transceiver module 820 may be used to perform all the receiving operations performed by the terminal device in the embodiment shown in FIG. 5, such as S52 to S56, and/or other processes used to support the technology described herein.
  • the processing module 810 may be used to perform all operations performed by the terminal device in the embodiment shown in FIG. 6 except for the transceiving operations, such as the operation of determining downlink resource configuration information according to the first message, and/or use To support other processes of the technology described in this article.
  • the transceiver module 820 can be used to perform all the receiving operations performed by the terminal device in the embodiment shown in FIG. 6, such as S62, S64, S65, S68, and S69, and/or other processes used to support the technology described herein .
  • the processing module 810 may be used to perform all operations performed by the terminal device in the embodiment shown in FIG. 7 except for the transceiving operation, such as the operation of determining the mobile state of the terminal device, and/or to support the text Other processes of the described technique.
  • the transceiver module 820 may be used to perform all receiving operations performed by the terminal device in the embodiment shown in FIG. 7, such as S71 to S76, and/or other processes used to support the technology described herein.
  • the transceiver module 820 can be a functional module that can complete both sending and receiving operations.
  • the transceiver module 820 can be used to perform the steps in the embodiment shown in FIG. 4 to the embodiment shown in FIG. 7 All sending operations and receiving operations performed by the terminal device in any embodiment.
  • the transceiver module 820 when performing a sending operation, can be considered as a sending module, and when performing a receiving operation, the transceiver module 820 can be considered as a receiving module.
  • the transceiver module 820 can also be two functional modules, the transceiver module can be regarded as a collective term for these two functional modules, the two functional modules are respectively a sending module and a receiving module, the sending module is used to complete the sending operation, such as sending
  • the module can be used to perform all the sending operations performed by the terminal device in any one of the embodiments shown in FIG. 4 to the embodiment shown in FIG. 7, and the receiving module is used to complete the receiving operation.
  • the receiving module can be used All the receiving operations performed by the terminal device in any one of the embodiments shown in FIG. 4 to the embodiment shown in FIG. 7 are performed.
  • the transceiver module 820 is configured to receive a first message, the first message is used to indicate downlink resource configuration information, and the downlink resource configuration information is used for the terminal device 800 to receive the downlink when it is in the RRC inactive state or the RRC idle state.
  • the first message is used to indicate downlink resource configuration information
  • the downlink resource configuration information is used for the terminal device 800 to receive the downlink when it is in the RRC inactive state or the RRC idle state.
  • the transceiver module 820 is further configured to receive the downlink early transmission data according to the downlink resource configuration information.
  • the transceiver module 820 is configured to receive the first message
  • the processing module 810 is configured to determine that the first message is used to indicate downlink resource configuration information, and the downlink resource configuration information is used by the terminal device 800 to receive downlink early transmission data when in the RRC inactive state or the RRC idle state;
  • the transceiver module 820 is further configured to receive the downlink early transmission data according to the downlink resource configuration information.
  • the transceiver module 820 is configured to receive the downlink early transmission data according to the downlink resource configuration information in the following manner:
  • the downlink resource configuration information includes the RNTI and/or the time-frequency domain configuration of the downlink transmission resource
  • the RNTI is used to scramble the scheduling information
  • the time-frequency domain configuration of the downlink transmission resource The configuration is used to indicate the time domain position and the frequency domain position of the scheduling information.
  • the downlink resource configuration information and the downlink resource configuration information in the uplink data early transmission are the same configuration information or different configuration information.
  • the first message further includes first indication information, and the first indication information is used to indicate that the downlink resource configuration information is used to receive downlink early transmission data, or to indicate the The downlink resource configuration information of is used for downlink feedback for early transmission of uplink data, or indicates that downlink resource configuration information used for uplink data feedback in early transmission of uplink data is also used for receiving downlink early transmission data.
  • the first message further includes DRX configuration information, and the DRX configuration information is used to indicate a transmission period of the downlink early transmission data.
  • the DRX configuration information includes a DRX cycle and/or an offset, and the offset is used to indicate the offset of the time domain start position of the DRX cycle.
  • the transceiver module 820 is further configured to send a confirmation message after receiving the downlink early transmission data, where the confirmation message is used to indicate that the terminal device 800 has received the downlink early transmission data.
  • the confirmation message is a first random access preamble.
  • the first message is also used to indicate a random access resource for the terminal device 800 to receive the downlink early transmission data, and the random access resource includes the first random access Preamble.
  • the transceiver module 820 is further configured to receive a second message before receiving the downlink early transmission data according to the downlink resource configuration information, where the second message indicates that it is used for the terminal device 800 Receive a random access resource for the downlink early transmission data, where the random access resource includes at least one random access preamble corresponding to at least one SSB, and the at least one random access preamble includes the first random access Preamble.
  • the second message is a PDCCH order message.
  • the downlink resource configuration information indicated by the first message may be used to schedule the PDCCH order message, and the transceiver module 820 is also used to The downlink resource configuration information receives the PDCCH order message, and the PDCCH order message may indicate random access resources for the terminal device 800.
  • the transceiver module 820 is further configured to send the first random access preamble before receiving the downlink early transmission data.
  • FIG. 9 is a schematic block diagram of a communication device 900 according to an embodiment of the application.
  • the communication apparatus 900 is, for example, the first network device 900.
  • the first network device 900 includes a processing module 910 and a transceiver module 920.
  • the first network device 900 may be the first network device, or may be a chip applied in the first network device or other combination devices, components, etc. having the function of the first network device.
  • the transceiver module 920 may be a transceiver, the transceiver may include an antenna and a radio frequency circuit, etc.
  • the processing module 910 may be a processor, and the processor may include one or more CPUs.
  • the transceiver module 920 may be a radio frequency unit, and the processing module 910 may be a processor, such as a baseband processor.
  • the transceiver module 920 may be an input/output interface of a chip (such as a baseband chip), and the processing module 910 may be a processor of the chip system, and may include one or more central processing units.
  • the processing module 910 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component, and the transceiver module 920 may be implemented by a transceiver or a transceiver-related circuit component.
  • the processing module 910 may be used to perform all operations other than the transceiving operation performed by the first network device in the embodiment shown in FIG. 4, such as S41, and/or other operations used to support the technology described herein. process.
  • the transceiver module 920 may be used to perform all the receiving operations performed by the first network device in the embodiment shown in FIG. 4, such as S42-S44, and/or other processes used to support the technology described herein.
  • the processing module 910 may be used to perform all operations other than the transceiving operation performed by the first network device in the embodiment shown in FIG. 5, such as S51, and/or to support the technology described herein.
  • the transceiver module 920 may be used to perform all the receiving operations performed by the first network device in the embodiment shown in FIG. 5, such as S52 to S56, and/or other processes used to support the technology described herein.
  • the processing module 910 may be used to perform all operations other than the transceiving operation performed by the first network device in the embodiment shown in FIG. 6, such as S61, and/or to support the technology described herein.
  • the transceiver module 920 can be used to perform all the receiving operations performed by the first network device in the embodiment shown in FIG. 6, such as S62, S63, S66, and S67, and/or other processes used to support the technology described herein .
  • the processing module 910 may be used to perform all operations performed by the first network device in the embodiment shown in FIG. 7 except for the transceiving operation, for example, the operation of determining the beam area for the terminal device according to the position of the terminal device, And/or other processes used to support the technology described herein.
  • the transceiver module 920 may be used to perform all the receiving operations performed by the first network device in the embodiment shown in FIG. 7, such as S71 to S76, and/or other processes used to support the technology described herein.
  • the transceiver module 920 may be a functional module that can perform both sending and receiving operations.
  • the transceiver module 920 may be used to perform the steps in the embodiment shown in FIG. 4 to the embodiment shown in FIG. 7 In any embodiment, all sending operations and receiving operations performed by the first network device.
  • the transceiver module 920 when performing a sending operation, can be considered as a sending module, and when performing a receiving operation, the transceiver module 920 can be considered as Receiving module; or, the transceiver module 920 can also be two functional modules, the transceiver module can be regarded as a collective term for these two functional modules, the two functional modules are respectively a sending module and a receiving module, the sending module is used to complete the sending operation,
  • the sending module can be used to perform all the sending operations performed by the first network device in any one of the embodiments shown in FIG. 4 to the embodiment shown in FIG. 7, and the receiving module is used to complete receiving operations, for example
  • the receiving module may be used to perform all the receiving operations performed by the first network device in any one of the embodiments shown in FIG. 4 to the embodiment shown in FIG. 7.
  • the processing module 910 is configured to determine downlink resource configuration information, where the downlink resource configuration information is used to instruct the terminal device to receive downlink early transmission data when it is in the first state, and the first state is the RRC inactive state or the RRC idle state. state;
  • the transceiver module 920 is configured to send the downlink early transmission data according to the downlink resource configuration information.
  • the transceiver module 920 is configured to send the downlink early transmission data according to the downlink resource configuration information in the following manner:
  • the downlink resource configuration information includes the RNTI and/or the time-frequency domain configuration of the downlink transmission resource
  • the RNTI is used to scramble the scheduling information
  • the time-frequency domain configuration of the downlink transmission resource The configuration is used to indicate the time domain position and the frequency domain position of the scheduling information.
  • the downlink resource configuration information and the downlink resource configuration information in the uplink data early transmission are the same configuration information or different configuration information.
  • the first message further includes first indication information, and the first indication information is used to indicate that the downlink resource configuration information is used to receive downlink early transmission data, or to indicate the The downlink resource configuration information of is used for downlink feedback for early transmission of uplink data, or indicates that downlink resource configuration information used for uplink data feedback in early transmission of uplink data is also used for receiving downlink early transmission data.
  • the first message further includes DRX configuration information, and the DRX configuration information is used to indicate a transmission period of the downlink early transmission data.
  • the DRX configuration information includes a DRX cycle and/or an offset, and the offset is used to indicate the offset of the time domain start position of the DRX cycle.
  • the transceiver module 920 is further configured to send a paging message to the second network device when the downlink early transmission data arrives, where the paging message is used to indicate the downlink early transmission data
  • the first network device 900 is the anchor network device of the terminal device
  • the second network device is the network device where the terminal device resides.
  • the paging message is also used to indicate the downlink resource configuration information.
  • the transceiver module 920 is configured to send the downlink early transmission data according to the downlink resource configuration information in the following manner:
  • the first network device 900 is an anchor network device of the terminal device
  • the second network device is a network device where the terminal device resides.
  • the transceiver module 920 is configured to send the downlink early transmission data according to the downlink resource configuration information in the following manner:
  • the first network device 900 is an anchor network device of the terminal device
  • the second network device is a network device where the terminal device resides.
  • the transceiver module 920 is further configured to receive a confirmation message from the terminal device after sending the downlink early transmission data to the terminal device according to the downlink resource configuration information.
  • the confirmation message is used to indicate that the terminal device has received the downlink early transmission data.
  • the confirmation message is a random access preamble.
  • the first message is also used to indicate a random access resource for the terminal device to receive the downlink early transmission data, and the random access resource includes the random access preamble code.
  • the transceiver module 920 is further configured to send a second message to the terminal device before sending the downlink early transmission data to the terminal device according to the downlink resource configuration information.
  • the second message indicates a random access resource for the terminal device to receive the downlink early transmission data, and the random access resource includes at least one random access preamble corresponding to at least one SSB.
  • the second message is a PDCCH order message.
  • the downlink resource configuration information indicated by the first message may be used to schedule the PDCCH order message, and the PDCCH order message may indicate Random access resources for the terminal device.
  • the transceiver module 920 is further configured to receive a first random access preamble from the terminal device, where the first random access preamble belongs to the at least one random access preamble .
  • FIG. 10 is a schematic block diagram of a communication device 1000 according to an embodiment of the application.
  • the communication apparatus 1000 is, for example, the second network device 1000.
  • the second network device 1000 includes a processing module 1010 and a transceiver module 1020.
  • the second network device 1000 may be a network device, or may be a chip applied in the second network device or other combination devices, components, etc. having the function of the second network device.
  • the transceiver module 1020 may be a transceiver, the transceiver may include an antenna and a radio frequency circuit, etc.
  • the processing module 1010 may be a processor, such as a baseband processor, which may include One or more CPUs.
  • the transceiver module 1020 may be a radio frequency unit, and the processing module 1010 may be a processor, such as a baseband processor.
  • the transceiver module 1020 may be an input/output interface of a chip (such as a baseband chip), and the processing module 1010 may be a processor of the chip system, and may include one or more central processing units.
  • the processing module 1010 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component, and the transceiver module 1020 may be implemented by a transceiver or a transceiver-related circuit component.
  • the processing module 1010 can be used to perform all operations performed by the second network device in the embodiment shown in FIG. 6 except for receiving and sending operations, for example, it is determined that there is a terminal device according to a paging message from the first network device.
  • the transceiver module 1020 may be used to perform all the receiving operations performed by the second network device in the embodiment shown in FIG. 6, such as S63-S69, and/or other processes used to support the technology described herein.
  • the transceiver module 1020 can be a functional module that can complete both sending and receiving operations.
  • the transceiver module 1020 can be used to perform all the operations performed by the second network device in the embodiment shown in FIG. 6 Sending operation and receiving operation.
  • the transceiver module 1020 when performing a sending operation, can be considered as a sending module, and when performing a receiving operation, the transceiver module 1020 can be considered as a receiving module; or, the transceiver module 1020 can also have two functions.
  • Module, transceiver module can be regarded as the collective name of these two functional modules, these two functional modules are sending module and receiving module respectively.
  • the sending module is used to complete the sending operation.
  • the sending module can be used to execute the embodiment shown in Figure 6.
  • the receiving module is used to complete the receiving operation.
  • the receiving module may be used to perform all the receiving operations performed by the second network device in the embodiment shown in FIG. 6.
  • the transceiver module 1020 is configured to receive a paging message from a first network device, the paging message is used to indicate the arrival of downlink early transmission data with a terminal device, and the first network device is the anchor of the terminal device. Click the network device, the second network device 1000 is the network device where the terminal device resides;
  • the transceiver module 1020 is further configured to send a second message to the terminal device, the second message indicating a random access resource for the terminal device to receive the downlink early transmission data, and the random access resource includes at least At least one random access preamble corresponding to one SSB, and the second message is a PDCCH order message.
  • the transceiver module 1020 is configured to receive a paging message from the first network device
  • the processing module 1010 is configured to determine that the paging message is used to indicate the arrival of downlink early transmission data with a terminal device, the first network device is the anchor network device of the terminal device, and the second network device 1000 is the The network equipment where the terminal equipment resides;
  • the transceiver module 1020 is further configured to send a second message to the terminal device, the second message indicating a random access resource for the terminal device to receive the downlink early transmission data, and the random access resource includes at least At least one random access preamble corresponding to one SSB, and the second message is a PDCCH order message.
  • the downlink resource configuration information indicated by the first message may be used to schedule the PDCCH order message, and the PDCCH order message may indicate Random access resources for the terminal device.
  • the transceiver module 1020 is further configured to receive a first random access preamble from the terminal device, where the first random access preamble belongs to the at least one random access preamble .
  • the paging message is also used to indicate downlink resource configuration information, and the downlink resource configuration information is used by the terminal device to receive the downlink resource configuration information when the terminal device is in the RRC inactive state or the RRC idle state. Early transmission of data.
  • the downlink resource configuration information includes the RNTI and/or the time-frequency domain configuration of the downlink transmission resource
  • the RNTI is used to scramble the scheduling information
  • the time-frequency domain configuration of the downlink transmission resource The configuration is used to indicate the time domain position and the frequency domain position of the scheduling information.
  • the downlink resource configuration information and the downlink resource configuration information in the uplink data early transmission are the same configuration information or different configuration information.
  • the first message further includes first indication information, and the first indication information is used to indicate that the downlink resource configuration information is used to receive downlink early transmission data, or to indicate the The downlink resource configuration information of is used for downlink feedback for early transmission of uplink data, or indicates that downlink resource configuration information used for uplink data feedback in early transmission of uplink data is also used for receiving downlink early transmission data.
  • the transceiver module 1020 is also used to:
  • the embodiment of the present application also provides a communication device, and the communication device may be a terminal device or a circuit.
  • the communication device can be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 11 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 11 In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with transceiving functions can be regarded as the transceiving unit of the terminal device (the transceiving unit can be a functional unit that can realize the sending and receiving functions; or the transceiving unit can also be It includes two functional units, namely a receiving unit capable of realizing the receiving function and a transmitting unit capable of realizing the transmitting function), and the processor with the processing function is regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1110 and a processing unit 1120.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiving unit 1110 can be regarded as the receiving unit
  • the device for implementing the sending function in the transceiving unit 1110 can be regarded as the sending unit, that is, the transceiving unit 1110 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1110 is used to perform the sending and receiving operations on the terminal device side in the foregoing method embodiment, and the processing unit 1120 is used to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • the processing unit 1120 may be used to perform all operations performed by the terminal device in the embodiment shown in FIG. 4 except for the transceiving operations, such as determining the downlink resource configuration information according to the first message. Operations, and/or other processes used to support the techniques described herein.
  • the transceiver unit 1110 may be used to perform all the receiving operations performed by the terminal device in the embodiment shown in FIG. 4, such as S42-S44, and/or other processes used to support the technology described herein.
  • the processing unit 1120 may be configured to perform all operations performed by the terminal device in the embodiment shown in FIG. 5 except for the receiving and sending operations, for example, determining the downlink resource configuration information according to the first message. And/or other processes used to support the techniques described herein.
  • the transceiver unit 1110 may be used to perform all the receiving operations performed by the terminal device in the embodiment shown in FIG. 5, such as S52 to S56, and/or other processes used to support the technology described herein.
  • the processing unit 1120 may be configured to perform all operations performed by the terminal device in the embodiment shown in FIG. 6 except for receiving and sending operations, such as determining downlink resource configuration information according to the first message. And/or other processes used to support the techniques described herein.
  • the transceiver unit 1110 may be used to perform all the receiving operations performed by the terminal device in the embodiment shown in FIG. 6, such as S62, S64, S65, S68, and S69, and/or other processes used to support the technology described herein .
  • the processing unit 1120 may be used to perform all operations performed by the terminal device in the embodiment shown in FIG. 7 except for the transceiving operation, such as the operation of determining the mobile state of the terminal device, And/or other processes used to support the technology described herein.
  • the transceiver unit 1110 may be used to perform all the receiving operations performed by the terminal device in the embodiment shown in FIG. 7, such as S71 to S76, and/or other processes used to support the technology described herein.
  • the device may include a transceiver unit and a processing unit.
  • the transceiving unit may be an input/output circuit and/or a communication interface;
  • the processing unit is an integrated processor or microprocessor or integrated circuit.
  • the device shown in FIG. 12 can be referred to.
  • the device can perform functions similar to the processing module 810 in FIG. 8.
  • the device includes a processor 1210, a data sending processor 1220, and a data receiving processor 1230.
  • the processing module 810 in the foregoing embodiment may be the processor 1210 in FIG. 12 and complete corresponding functions;
  • the transceiver module 820 in the foregoing embodiment may be the sending data processor 1220 in FIG. 12, and/or receiving data Processor 1230, and complete the corresponding functions.
  • the channel encoder and the channel decoder are shown in FIG. 12, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
  • the processing device 1300 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as the modulation subsystem therein.
  • the modulation subsystem may include a processor 1303 and an interface 1304.
  • the processor 1303 completes the function of the aforementioned processing module 810
  • the interface 1304 completes the function of the aforementioned transceiver module 820.
  • the modulation subsystem includes a memory 1306, a processor 1303, and a program stored in the memory 1306 and running on the processor. When the processor 1303 executes the program, the terminal device side in the above method embodiment is implemented. Methods.
  • the memory 1306 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 1300, as long as the memory 1306 can be connected to the The processor 1303 is fine.
  • the device 1400 includes one or more radio frequency units, such as a remote radio unit (RRU) 1410 and one or more baseband units (BBU) (also referred to as digital units, digital units, DU) 1420 .
  • the RRU 1410 may be called a transceiver module, and the transceiver module may include a sending module and a receiving module, or the transceiver module may be a module capable of implementing sending and receiving functions.
  • the transceiver module may correspond to the transceiver module 920 in FIG. 9; or, the transceiver module may correspond to the transceiver module 1020 in FIG. 10.
  • the transceiver module may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 1411 and a radio frequency unit 1412.
  • the RRU 1410 part is mainly used for the transmission and reception of radio frequency signals and the conversion between radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the BBU 1410 part is mainly used for baseband processing, control of the base station, and so on.
  • the RRU 1410 and the BBU 1420 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1420 is the control center of the base station, and may also be called a processing module. It may correspond to the processing module 910 in FIG. 9 or may correspond to the processing module 1010 in FIG. 10, and is mainly used to complete baseband processing functions, such as channel Encoding, multiplexing, modulation, spread spectrum, etc.
  • the BBU processing module
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing indication information.
  • the BBU 1420 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network with a single access standard (such as an LTE network), or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1420 also includes a memory 1421 and a processor 1422.
  • the memory 1421 is used to store necessary instructions and data.
  • the processor 1422 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 1421 and the processor 1422 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the embodiment of the present application provides a communication system.
  • the communication system may include the terminal device involved in any one of the above-mentioned embodiment shown in FIG. 4 to the embodiment shown in FIG. 7.
  • the terminal device is, for example, the terminal device 800 in FIG. 8.
  • the communication system may further include the first network device involved in any one of the foregoing embodiment shown in FIG. 4 to the embodiment shown in FIG. 7.
  • the first network device is, for example, the first network device 900 in FIG. 9.
  • the communication system may further include the second network device involved in the embodiment shown in 6 above.
  • the second network device is, for example, the second network device 1000 in FIG. 10.
  • the embodiments of the present application also provide a computer-readable storage medium that stores a computer program.
  • the computer program When executed by a computer, the computer can implement the method shown in FIG. 4 provided by the foregoing method embodiment. The process related to the first network device in the embodiment.
  • the embodiments of the present application also provide a computer-readable storage medium, the computer-readable storage medium is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the method shown in FIG. 4 provided by the foregoing method embodiment.
  • the process related to the terminal device in the embodiment is not limited to a computer-readable storage medium.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a computer, the computer can implement the method shown in FIG. 5 provided by the foregoing method embodiment.
  • the process related to the first network device in the embodiment is not limited to a computer-readable storage medium.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the method shown in FIG. 5 provided by the foregoing method embodiment.
  • the process related to the terminal device in the embodiment is not limited to a computer-readable storage medium, the computer-readable storage medium is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the method shown in FIG. 5 provided by the foregoing method embodiment. The process related to the terminal device in the embodiment.
  • the embodiments of the present application also provide a computer-readable storage medium that stores a computer program.
  • the computer program When executed by a computer, the computer can implement the method shown in FIG. 6 provided by the above-mentioned method embodiment. The process related to the first network device in the embodiment.
  • the embodiments of the present application also provide a computer-readable storage medium that stores a computer program.
  • the computer program When executed by a computer, the computer can implement the method shown in FIG. 6 provided by the above-mentioned method embodiment. The process related to the second network device in the embodiment.
  • the embodiments of the present application also provide a computer-readable storage medium, the computer-readable storage medium is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the method shown in FIG. 6 provided by the foregoing method embodiment.
  • the process related to the terminal device in the embodiment is not limited to a computer-readable storage medium.
  • the embodiments of the present application also provide a computer-readable storage medium that stores a computer program.
  • the computer program When executed by a computer, the computer can implement the method shown in FIG. 7 provided by the foregoing method embodiment. The process related to the first network device in the embodiment.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the method shown in FIG. 7 provided by the foregoing method embodiment.
  • the process related to the terminal device in the embodiment is not limited to a computer-readable storage medium.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 4 provided by the above method embodiment The process related to the first network device.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 4 provided by the above method embodiment Processes related to terminal equipment.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 5 provided by the above method embodiment The process related to the first network device.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 5 provided by the above method embodiment Processes related to terminal equipment.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 6 provided by the above method embodiment The process related to the first network device.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 6 provided by the above method embodiment The process related to the second network device.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 6 provided by the above method embodiment Processes related to terminal equipment.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 7 provided by the above method embodiment The process related to the first network device.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 7 provided by the above method embodiment Processes related to terminal equipment.
  • processors mentioned in the embodiments of this application may be a CPU, other general-purpose processors, digital signal processors (digital signal processors, DSP), application specific integrated circuits (ASICs), ready-made Field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned computer-readable storage medium may be any available medium that can be accessed by a computer.
  • computer-readable media can include random access memory (RAM), read-only memory (ROM), and electrically erasable programmable read-only memory (electrically erasable programmable read-only memory).
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • USB flash disk universal serial bus flash disk
  • mobile hard disk or other optical disk storage
  • disk storage A medium or other magnetic storage device, or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种通信方法、装置及设备。接收第一消息,第一消息用于指示下行资源配置信息,所述下行资源配置信息用于终端设备在处于RRC非激活态或RRC空闲态时接收下行早传数据。根据所述下行资源配置信息,接收所述下行早传数据。通过专用信令为终端设备配置接收下行早传数据的资源,无需通过寻呼消息来配置。相对于通过寻呼消息来配置资源的方案来说,本申请实施例提供的技术方案提高了资源配置过程的安全性。

Description

一种通信方法、装置及设备 技术领域
本申请涉及移动通信技术领域,尤其涉及一种通信方法、装置及设备。
背景技术
处于无线资源控制(radio resource control,RRC)非激活态(inactive)的终端设备,如果要进行上行传输或者下行传输,需要先发起RRC恢复(resume)过程以进入RRC连接态,在进入RRC连接态之后再进行传输。但是当终端设备需要传输的数据包较小时,进入RRC连接态所耗费的信令开销可能大于需要传输的数据量,非常低效。因此,现在很多研究开始关注数据早传,数据早传是指终端设备不进入RRC连接态即可进行数据传输,可以有效提高数据传输效率,降低终端设备的功耗。
如果终端设备要进行下行数据早传,则基站可以在终端设备进行随机接入的过程中向终端设备发送下行早传数据。为此,基站需要为终端设备分配用于接收下行早传数据的资源。目前,尚且没有为终端设备分配用于接收下行早传数据的资源的机制,因此,终端设备无法实现下行数据早传。
发明内容
本申请实施例提供一种通信方法、装置及设备,用于使得终端设备能够接收下行早传数据。
第一方面,提供第一种通信方法,该方法包括:接收第一消息,所述第一消息用于指示下行资源配置信息,所述下行资源配置信息用于终端设备在处于RRC非激活态或RRC空闲态时接收下行早传数据;根据所述下行资源配置信息,接收所述下行早传数据。
该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片。示例性地,所述第一通信装置为终端设备,或者为设置在终端设备中的用于实现终端设备的功能的芯片,或者为用于实现终端设备的功能的其他部件。在下文的介绍过程中,以第一通信装置是终端设备为例。
本申请实施例涉及的“数据早传”这个概念,可以理解为泛称,终端设备的任何在进入RRC连接态之前所进行的数据传输,均可以称为数据早传。数据早传所需要的配置可以称为数据早传配置。其中,数据早传包括上行数据早传或下行数据早传,上行数据早传也称为移动初始(mobile originate)的数据早传,下行数据早传也称为移动终止(mobile terminated)的数据早传。在某些场景中,数据早传也可以称为小包传输。
在本申请实施例中,可以向终端设备发送第一消息,第一消息指示下行资源配置信息,终端设备根据下行资源配置信息就能接收下行早传数据。相当于提供了一种为终端设备分配用于接收下行早传数据的资源的机制,使得下行早传能够得以实现。另外,第一消息可以不是寻呼消息,例如第一消息是专用信令,也就是说,本申请实施例可以通过专用信令为终端设备配置接收下行早传数据的资源,无需通过寻呼消息来配置。相对于通过寻呼消息来配置资源的方案来说,本申请实施例提供的技术方案提高了资源配置过程的安全性。 并且,无需通过寻呼消息来配置资源,也有助于减小对寻呼容量的影响,使得寻呼消息能够有更多的用途。
在一种可选的实施方式中,根据所述下行资源配置信息,接收所述下行早传数据,包括:
根据所述下行资源配置信息,检测调度信息,所述调度信息用于调度所述下行早传数据;
根据所述调度信息,接收所述下行早传数据。
网络设备(第一网络设备或第二网络设备)在发送下行早传数据之前,可以先发送调度信息,之后再根据调度信息发送下行早传数据,下行资源配置信息可以用于终端设备检测调度信息。在有终端设备的下行早传数据到达时,网络设备可以根据该下行资源配置信息发送调度信息,该调度信息用于调度下行早传数据。终端设备在进入第一状态后,可以根据下行资源配置信息检测调度信息,例如下行资源配置信息包括USS的配置、C-RNTI,另外第一消息还包括DRX配置信息,则终端设备可以在该USS的配置所指示的USS内,按照DRX配置信息所指示的DRX周期,使用该C-RNTI检测调度信息。网络设备在发送调度信息后,可以根据该调度信息,发送下行早传数据。而终端设备如果检测到了调度信息,也就可以根据该调度信息的调度,接收来自网络设备的下行早传数据。
在一种可选的实施方式中,所述下行资源配置信息包括RNTI和/或下行传输资源的时频域配置,所述RNTI用于加扰所述调度信息,所述下行传输资源的时频域配置用于指示所述调度信息的时域位置和频域位置。
下行资源配置信息可以包括RNTI,或包括下行传输资源的时频域配置,或包括RNTI和下行传输资源的时频域配置,或者还可以包括其他的信息。
下行资源配置信息所包括的RNTI,例如为C-RNTI,或者也可以是其他的RNTI。该RNTI可以用于终端设备检测用于调度下行早传数据的调度信息,例如,该RNTI可用于加扰调度信息,从而终端设备根据该RNTI就可以检测调度信息。
下行传输资源的时频域配置,可以指示调度信息的时域位置和频域位置。例如,下行传输资源的时频域配置可以包括搜索空间的配置,或包括控制资源集的配置,或包括搜索空间的配置和控制资源集的配置,或者还可以包括其他的配置。搜索空间例如为UE特定的搜索空间。以下行传输资源的时频域配置包括UE特定的搜索空间的配置为例,该UE特定的搜索空间的配置可以用于终端设备在处于第一状态时,在该UE特定的搜索空间所指示的时域位置检测调度信息。
终端设备根据下行资源配置信息,就可以检测调度信息,从而可以根据调度信息的调度正确接收下行早传数据。
在一种可选的实施方式中,所述的下行资源配置信息与上行数据早传中的下行资源配置信息,是相同的配置信息,或者是不同的配置信息。
终端设备除了可以进行下行数据早传之外,还可以进行上行数据早传,也就是说,终端设备在无需进入RRC连接态的情况下,可以接收来自网络设备的下行数据,也可以向网络设备发送上行数据。在终端设备进行上行数据早传时,网络设备也会为终端设备配置用于进行上行数据反馈的所述的下行资源配置信息。而终端设备在进行上行数据早传后,网络设备可以向终端设备发送对应于上行早传数据的反馈等信息,而网络设备也会配置用于发送对应于上行早传数据的反馈等信息的资源配置信息,例如该资源配置信息称为上行 数据早传中的下行资源配置信息,例如上行数据早传中的下行资源配置信息可以包括RNTI和/或USS等。下行数据早传和上行数据早传中的下行过程,可以使用相同的配置,以提高资源的利用率。
或者,所述的下行资源配置信息与所述的上行数据早传中的下行资源配置信息也可以是不同的配置信息,即,上行数据早传中的下行资源和下行数据早传中的下行资源可以使用不同的配置,使得上下行有所区分。
作为一种可选的实施方式,所述第一消息还包括第一指示信息,所述第一指示信息用于指示所述的下行资源配置信息是用于接收下行早传数据,或者指示所述的下行资源配置信息是用于上行数据早传的下行反馈,或者指示用于上行数据早传中的上行数据反馈的下行资源配置信息也用于接收下行早传数据。
通过重用用于上行数据早传中的上行数据反馈的下行资源配置信息接收下行早传数据,可以使得终端设备在一套资源上检测控制信息,网络设备可以通过控制信息来灵活调度是传输上行数据的反馈信息还是传输下行数据,有助于降低终端设备的能耗。
在一种可选的实施方式中,所述第一消息还包括DRX配置信息,所述DRX配置信息用于指示所述下行早传数据的传输时段。
终端设备接收第一消息后,就可以按照该下行资源配置信息来检测调度信息,从而根据调度信息接收下行早传数据。终端设备如果持续检测调度信息,可能需要耗费的电量较多。因此,为了节省终端设备的电量,作为一种可选的实施方式,网络设备还可以为终端设备配置DRX配置信息,例如,第一消息除了包括下行资源配置信息之外,还可以包括该DRX配置信息,或者,所述的下行资源配置信息可以包括该DRX配置信息,例如下行资源配置信息中的下行传输资源的时频域配置中可以包括该DRX配置信息。该DRX配置信息可以用于终端设备按照该DRX配置信息检测下行早传数据,或者说,该DRX配置信息可以指示下行早传数据的传输时段。终端设备按照DRX配置信息来检测下行早传数据,只需在DRX周期的持续时间段内检测即可,而在DRX周期的休眠时间段内,终端设备可以不必检测,这样既可以完成检测,又可以达到节电的效果。
在一种可选的实施方式中,所述DRX配置信息包括DRX周期和/或偏移量,所述偏移量用于指示所述DRX周期的时域起始位置的偏移。
DRX配置信息例如包括DRX周期,或包括偏移量,或包括DRX周期和偏移量,或者还可以包括与DRX配置相关的其他的信息。
在一种可选的实施方式中,在接收所述下行早传数据之后,还包括:
发送确认消息,所述确认消息用于指示所述终端设备接收到所述下行早传数据。
下行早传数据有可能是第一网络设备发送给终端设备的,也有可能是第二网络设备发送给终端设备的,第一网络设备是终端设备的锚点网络设备,第二网络设备是终端设备当前驻留的网络设备,例如终端设备在被释放后可能会移动到第二网络设备的覆盖范围内,如果是这种情况,则下行早传数据就可以是第二网络设备发送给终端设备的。终端设备接收下行早传数据之后,可以向第一网络设备或第二网络设备发送确认消息(终端设备接收的下行早传数据来自哪个网络设备,终端设备就向哪个网络设备发送确认消息),该确认消息是指示终端设备接收到下行早传数据,但该下行早传数据有可能接收正确,也有可能接收错误,例如该确认消息可以指示下行早传数据接收正确或接收错误。这样可以使得第一网络设备或第二网络设备能够明确终端设备是否接收了下行早传数据,使得通信过程得 以继续。
在一种可选的实施方式中,所述确认消息为第一随机接入前导码。
该确认消息例如为肯定应答消息,或者,该确认消息也可以通过随机接入前导码实现,例如将该随机接入前导码称为第一随机接入前导码。确认消息通过随机接入前导码实现,终端设备发送随机接入前导码就相当于发送了确认消息,例如该随机接入前导码还可以用于终端设备进行随机接入,相当于随机接入前导码除了可以实现随机接入的功能之外,还能实现确认消息的功能,终端设备无需再发送其他的消息作为确认消息,节省了信令开销,而且也提高了随机接入前导码的利用率。
在一种可选的实施方式中,所述第一消息还用于指示用于所述终端设备接收所述下行早传数据的随机接入资源,所述随机接入资源包括所述第一随机接入前导码。
例如,第一随机接入前导码是第一网络设备分配给终端设备的,从而第一网络设备也能识别第一随机接入前导码是来自该终端设备。
其中,在NR系统中引入了波束的概念,终端设备处于不同的位置时,可能通过不同的波束向第一网络设备发送确认消息,而不同的波束可以对应不同的随机接入前导码。因此,第一消息所指示的随机接入资源可以包括至少一个同步信号和物理广播信道块(synchronization signal and physical broadcast channel block,SSB)对应的至少一个随机接入前导码,SSB和波束是一一对应的关系,因此与SSB对应的随机接入前导码,也就是与波束对应的随机接入前导码。其中,如果第一网络设备可以确定终端设备并未移动,或者确定终端设备的移动量较小(例如终端设备只在预设范围内移动),则第一消息包括的随机接入资源也可以只包括第一随机接入前导码,而不包括其他的随机接入前导码,即,至少一个随机接入前导码的个数为1,承载第一随机接入前导码的波束就是终端设备对应的波束。或者,如果第一网络设备确定终端设备发生了移动,或者确定终端设备的移动量较大(例如终端设备移动出了预设范围),或者第一网络设备无法确定终端设备是否发生了移动,则第一消息包括的随机接入资源可以包括多个随机接入前导码,即,至少一个随机接入前导码的个数大于1,这多个随机接入前导码中可以包括第一随机接入前导码。
如果第一消息所包括的随机接入资源只包括第一随机接入前导码,则终端设备可以将第一随机接入前导码作为确认消息发送给第一网络设备。或者,如果第一消息所包括的随机接入资源包括了多个随机接入前导码,则终端设备可以根据该终端设备所在的位置确定该终端设备对应的第一波束(或者说第一SSB),并确定多个随机接入前导码中与第一波束(或者第一SSB)对应的随机接入前导码,例如为第一随机接入前导码,第一波束是终端设备对应的波束,第一SSB是第一波束所承载的SSB,从而终端设备可以将第一随机接入前导码作为确认消息发送给第一网络设备。
在一种可选的实施方式中,在根据所述下行资源配置信息,接收所述下行早传数据之前,还包括:
接收第二消息,所述第二消息指示用于所述终端设备接收所述下行早传数据的随机接入资源,所述随机接入资源包括至少一个SSB对应的至少一个随机接入前导码,所述至少一个随机接入前导码包括所述第一随机接入前导码。
例如,第一网络设备并不通过第一消息为终端设备分配随机接入资源,而是通过第二消息为终端设备分配随机接入资源。例如,在有终端设备的下行早传数据到达时,第一网络设备向终端设备发送第二消息,第二消息包括为该终端设备分配的用于接收下行早传数 据的随机接入资源。这样第一网络设备可以在有终端设备的下行数据到达时再为终端设备分配随机接入资源,也就是在终端设备需要使用随机接入资源时再为终端设备分配,而在终端设备不需要使用时,这些随机接入资源不必分配给该终端设备,例如可以分配给其他需要使用的终端设备,从而减少资源浪费,提高资源的利用率。
或者,第二消息也可以来自第二网络设备。例如终端设备在被释放后发生了移动,移动后进入了第二网络设备的覆盖范围内,则第二网络设备就是终端设备当前驻留的网络设备,或者说是终端设备的服务网络设备,那么第二网络设备可以直接与终端设备进行交互。则第二网络设备可以为终端设备分配随机接入资源。例如,在有终端设备的下行早传数据到达时,第一网络设备可以通知第二网络设备,从而第二网络设备可以通过第二消息为终端设备分配随机接入资源。这样第二网络设备可以在有终端设备的下行数据到达时再为终端设备分配随机接入资源,也就是在终端设备需要使用随机接入资源时再为终端设备分配,而在终端设备不需要使用时,这些随机接入资源不必分配给该终端设备,例如可以分配给其他需要使用的终端设备,从而减少资源浪费,提高资源的利用率。
在NR系统中引入了波束的概念,终端设备处于不同的位置时,可能通过不同的波束向第一网络设备发送消息,而不同的波束可以对应不同的随机接入前导码。因此,第二消息所指示的随机接入资源可以包括至少一个SSB对应的至少一个随机接入前导码,SSB和波束是一一对应的关系,因此与SSB对应的随机接入前导码,也就是与波束对应的随机接入前导码。其中,如果第一网络设备可以确定终端设备并未移动,或者确定终端设备的移动量较小(例如终端设备只在预设范围内移动),则第二消息包括的随机接入资源也可以只包括第一随机接入前导码,而不包括其他的随机接入前导码,即,至少一个随机接入前导码的个数为1,承载第一随机接入前导码的波束就是终端设备对应的波束。或者,如果第一网络设备确定终端设备发生了移动,或者确定终端设备的移动量较大(例如终端设备移动出了预设范围),或者第一网络设备无法确定终端设备是否发生了移动,则第二消息包括的随机接入资源可以包括多个随机接入前导码,即,至少一个随机接入前导码的个数大于1,这多个随机接入前导码中可以包括第一随机接入前导码。
在一种可选的实施方式中,所述第二消息为PDCCH order消息。
在本申请实施例中,非RRC连接态的终端设备可以根据第一下行配置信息接收PDCCH order消息,第一网络设备或第二网络设备可以通过PDCCH order消息为终端设备分配随机接入资源,无需通过寻呼消息来为终端设备分配随机接入资源。PDCCH order消息是专用信令,通过PDCCH order消息为终端设备分配随机接入资源,可以提高所分配的资源的安全性。而且无需通过寻呼消息来为终端设备分配随机接入资源,也可以节省寻呼消息的容量。
在一种可选的实施方式中,当所述第二消息为PDCCH order消息时,以终端设备为例,第一方面提供的通信方法还包括:所述下行资源配置信息用于调度PDCCH order消息;根据所述下行资源配置信息接收PDCCH order消息,所述PDCCH order消息指示用于所述终端设备的随机接入资源。
实际上,终端设备在接收PDCCH order消息后,可以根据PDCCH order消息所指示的随机接入资源接收下行数据,例如下行早传数据;或者,终端设备在接收PDCCH order消息后,也可以根据PDCCH order消息所指示的随机接入资源发起随机接入,但并不一定要接收所述下行早传数据。也就是说,PDCCH order消息所指示的随机接入资源可以用于终 端设备接收下行早传数据,也可以用于终端设备进行随机接入,这样也提高了PDCCH order消息的利用率。具体的,RRC空闲态或者RRC非激活态的终端设备可以根据第一下行资源配置信息接收PDCCH order消息,并确定对应的随机接入资源,在第一种可能的实现中,终端设备根据所述随机接入资源进行随机接入过程,并进入RRC连接态,此时不接收上述的下行早传数据,例如终端设备可以通过RRC连接发送上行数据或者接收下行信令,而不是接收上述的下行早传数据;在第二种可能的实现中,终端设备根据所述随机接入资源触发随机接入,进而接收下行早传数据,例如终端设备可以向网络设备发送第一随机接入前导码,用于通知该终端设备在该网络设备的服务范围内,进而触发网络设备向终端设备发送下行早传数据,又例如终端设备可以向基站发送随机接入请求消息,基站可以通过随机接入请求消息确定所述终端设备的位置以及资源等信息,进而根据所述信息向终端设备发送下行早传数据。当然本申请实施例中,是以PDCCH order消息所指示的随机接入资源可以用于终端设备接收下行早传数据为例。
在一种可选的实施方式中,在接收所述下行早传数据之前,还包括:
发送所述第一随机接入前导码。
终端设备在接收第二消息后,可以向第一网络设备或第二网络设备发送第一随机接入前导码,第一网络设备或第二网络设备在接收第一随机接入前导码后,就可以向终端设备发送下行早传数据。
第二方面,提供第二种通信方法,该方法包括:确定下行资源配置信息,所述下行资源配置信息用于指示终端设备在处于第一状态时接收下行早传数据,所述第一状态为RRC非激活态或RRC空闲态;根据所述下行资源配置信息,发送所述下行早传数据。
该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片。示例性地,所述第二通信装置为第一网络设备,或者为设置在第一网络设备中的用于实现第一网络设备的功能的芯片,或者为用于实现第一网络设备的功能的其他部件。在下文的介绍过程中,以第二通信装置是第一网络设备为例。第一网络设备是终端设备的锚点网络设备。
在一种可选的实施方式中,根据所述下行资源配置信息,发送所述下行早传数据,包括:
根据所述下行资源配置信息,发送调度信息,所述调度信息用于调度所述下行早传数据;
根据所述调度信息,发送所述下行早传数据。
在一种可选的实施方式中,所述下行资源配置信息包括RNTI和/或下行传输资源的时频域配置,所述RNTI用于加扰所述调度信息,所述下行传输资源的时频域配置用于指示所述调度信息的时域位置和频域位置。
在一种可选的实施方式中,所述的下行资源配置信息与上行数据早传中的下行资源配置信息,是相同的配置信息,或者是不同的配置信息。
在一种可选的实施方式中,所述第一消息还包括第一指示信息,所述第一指示信息用于指示所述的下行资源配置信息是用于接收下行早传数据,或者指示所述的下行资源配置信息是用于上行数据早传的下行反馈,或者指示用于上行数据早传中的上行数据反馈的下行资源配置信息也用于接收下行早传数据。
在一种可选的实施方式中,所述第一消息还包括DRX配置信息,所述DRX配置信息 用于指示所述下行早传数据的传输时段。
在一种可选的实施方式中,所述DRX配置信息包括DRX周期和/或偏移量,所述偏移量用于指示所述DRX周期的时域起始位置的偏移。
在一种可选的实施方式中,所述方法还包括:
当所述下行早传数据到达时,向第二网络设备发送寻呼消息,所述寻呼消息用于指示所述下行早传数据到达,所述第二网络设备是所述终端设备驻留的网络设备。
在本申请实施例中,例如终端设备在被释放后发生了移动,移动后终端设备进入了第二网络设备的覆盖范围内,即,第二网络设备是终端设备当前驻留的网络设备,或者说是终端设备的服务网络设备,第一网络设备是终端设备的锚点网络设备。在这种情况下,当有终端设备的下行早传数据到达时,第一网络设备可以向RNA区域内的所有网络设备发送寻呼消息,例如第二网络设备是RNA区域内的一个网络设备,则第二网络设备可以接收该寻呼消息。从而第二网络设备就可以明确,有终端设备的下行早传数据到达。
在一种可选的实施方式中,所述寻呼消息还用于指示所述下行资源配置信息。
第一网络设备可以通过寻呼消息将下行资源配置信息指示给第二网络设备,从而第二网络设备可以根据该下行资源配置信息发送下行早传数据,或者说发送用于调度下行早传数据的调度信息。或者,作为另一种可选的实施方式,第一网络设备也可以提前将所述的下行资源配置信息发送给第二网络设备,例如第一网络设备可以通过与第二网络设备之间的X2接口发送,或者可以通过其他的空口消息发送。如果是这种情况,则寻呼消息也可以不必指示所述的下行资源配置信息,有助于节省寻呼消息的容量。
在一种可选的实施方式中,根据所述下行资源配置信息,发送所述下行早传数据,包括:
根据所述下行资源配置信息向所述终端设备发送所述下行早传数据;或,
根据所述下行资源配置信息向第二网络设备发送所述下行早传数据;
其中,所述第二网络设备是所述终端设备驻留的网络设备。
如果终端设备在被释放后发生了移动,移动后终端设备进入了第二网络设备的覆盖范围内,那么终端设备直接交互的可能是第二网络设备。那么第一网络设备可以将下行早传数据发送给第二网络设备,从而第二网络设备再将下行早传数据发送给终端设备。而如果终端设备在被释放后未发生移动,或者终端设备虽然发生了移动,但移动后仍然处于第一网络设备的覆盖范围内,则第一网络设备就可以将下行早传数据发送给终端设备。第一网络设备的多种处理方式,就是为了终端设备能够接收下行早传数据。
在一种可选的实施方式中,在根据所述下行资源配置信息向所述终端设备发送所述下行早传数据之后,还包括:
接收来自所述终端设备的确认消息,所述确认消息用于指示所述终端设备接收到所述下行早传数据。
如果第一网络设备是将下行早传数据发给了终端设备,则终端设备接收下行早传数据之后,可以向第一网络设备发送确认消息,该确认消息是指示终端设备接收到下行早传数据,但该下行早传数据有可能接收正确,也有可能接收错误,例如该确认消息可以指示下行早传数据接收正确或接收错误。这样可以使得第一网络设备能够明确终端设备是否接收了下行早传数据,使得通信过程得以继续。
在一种可选的实施方式中,所述确认消息为随机接入前导码。
在一种可选的实施方式中,所述第一消息还用于指示用于所述终端设备接收所述下行早传数据的随机接入资源,所述随机接入资源包括所述随机接入前导码。
在一种可选的实施方式中,在根据所述下行资源配置信息向所述终端设备发送所述下行早传数据之前,还包括:
向所述终端设备发送第二消息,所述第二消息指示用于所述终端设备接收所述下行早传数据的随机接入资源,所述随机接入资源包括至少一个SSB对应的至少一个随机接入前导码。
在一种可选的实施方式中,所述第二消息为PDCCH order消息。
如果第二消息是PDCCH order消息,那么在一种可选的实施方式中,第一消息指示的下行资源配置信息可以用于调度所述的PDCCH order消息,所述PDCCH order消息用于指示用于所述终端设备的随机接入资源。
在一种可选的实施方式中,接收来自所述终端设备的第一随机接入前导码,所述第一随机接入前导码属于所述至少一个随机接入前导码。
关于第二方面或各种可能的实施方式所带来的技术效果,可参考对第一方面或相应的实施方式的技术效果的介绍。
第三方面,提供第三种通信方法,该方法包括:接收来自第一网络设备的寻呼消息,所述寻呼消息用于指示有终端设备的下行早传数据到达,所述第一网络设备是所述终端设备的锚点网络设备;所述第二网络设备向所述终端设备发送第二消息,所述第二消息指示用于所述终端设备接收所述下行早传数据的随机接入资源,所述随机接入资源包括至少一个SSB对应的至少一个随机接入前导码,所述第二消息为PDCCH order消息。
该方法可由第三通信装置执行,第三通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片。示例性地,所述第三通信装置为第二网络设备,或者为设置在第二网络设备中的用于实现第二网络设备的功能的芯片,或者为用于实现第二网络设备的功能的其他部件。在下文的介绍过程中,以第三通信装置是第二网络设备为例。第二网络设备是终端设备驻留的网络设备,或者说是终端设备的服务网络设备。
在本申请实施例中,例如终端设备在被释放后发生了移动,移动后终端设备进入了第二网络设备的覆盖范围内,即,第二网络设备是终端设备当前驻留的网络设备,或者说是终端设备的服务网络设备,第一网络设备是终端设备的锚点网络设备。在这种情况下,当有终端设备的下行早传数据到达时,第一网络设备可以向RNA区域内的所有网络设备发送寻呼消息,例如第二网络设备是RNA区域内的一个网络设备,则第二网络设备可以接收该寻呼消息。从而第二网络设备就可以明确,有终端设备的下行早传数据到达。且,第二网络设备可以通过PDCCH order消息为终端设备分配随机接入资源,无需通过寻呼消息来为终端设备分配随机接入资源。PDCCH order消息是专用信令,通过PDCCH order消息为终端设备分配随机接入资源,可以提高所分配的资源的安全性。而且无需通过寻呼消息来为终端设备分配随机接入资源,也可以节省寻呼消息的容量。另外,第二网络设备可以在有终端设备的下行数据到达时再为终端设备分配随机接入资源,也就是在终端设备需要使用随机接入资源时再为终端设备分配,而在终端设备不需要使用时,这些随机接入资源不必分配给该终端设备,例如可以分配给其他需要使用的终端设备,从而减少资源浪费,提高资源的利用率。
在NR系统中引入了波束的概念,终端设备处于不同的位置时,可能通过不同的波束 向第一网络设备发送消息,而不同的波束可以对应不同的随机接入前导码。因此,第二消息所指示的随机接入资源可以包括至少一个SSB对应的至少一个随机接入前导码,SSB和波束是一一对应的关系,因此与SSB对应的随机接入前导码,也就是与波束对应的随机接入前导码。其中,如果第一网络设备可以确定终端设备并未移动,或者确定终端设备的移动量较小(例如终端设备只在预设范围内移动),则第二消息包括的随机接入资源也可以只包括第一随机接入前导码,而不包括其他的随机接入前导码,即,至少一个随机接入前导码的个数为1,承载第一随机接入前导码的波束就是终端设备对应的波束。或者,如果第一网络设备确定终端设备发生了移动,或者确定终端设备的移动量较大(例如终端设备移动出了预设范围),或者第一网络设备无法确定终端设备是否发生了移动,则第二消息包括的随机接入资源可以包括多个随机接入前导码,即,至少一个随机接入前导码的个数大于1,这多个随机接入前导码中可以包括第一随机接入前导码。
在一种可选的实施方式中,若所述第二消息为PDCCH order消息,所述第一消息指示的下行资源配置信息可以用于调度所述的PDCCH order消息,所述PDCCH order消息用于指示用于终端设备的随机接入资源。
在一种可选的实施方式中,所述方法还包括:
接收来自所述终端设备的第一随机接入前导码,所述第一随机接入前导码属于所述至少一个随机接入前导码。
终端设备在接收第二消息后,可以向第二网络设备发送第一随机接入前导码,第二网络设备在接收第一随机接入前导码后,就可以向终端设备发送下行早传数据。
在一种可选的实施方式中,所述寻呼消息还用于指示下行资源配置信息,所述下行资源配置信息用于所述终端设备在处于RRC非激活态或RRC空闲态时接收所述下行早传数据。
第一网络设备可以通过寻呼消息将下行资源配置信息指示给第二网络设备,从而第二网络设备可以根据该下行资源配置信息发送下行早传数据,或者说发送用于调度下行早传数据的调度信息。或者,作为另一种可选的实施方式,第一网络设备也可以提前将所述的下行资源配置信息发送给第二网络设备,例如第一网络设备可以通过与第二网络设备之间的X2接口发送,或者可以通过其他的空口消息发送。如果是这种情况,则寻呼消息也可以不必指示所述的下行资源配置信息,有助于节省寻呼消息的容量。
在一种可选的实施方式中,所述下行资源配置信息包括RNTI和/或下行传输资源的时频域配置,所述RNTI用于加扰所述调度信息,所述下行传输资源的时频域配置用于指示所述调度信息的时域位置和频域位置。
在一种可选的实施方式中,所述的下行资源配置信息与上行数据早传中的下行资源配置信息,是相同的配置信息,或者是不同的配置信息。
在一种可选的实施方式中,所述第一消息还包括第一指示信息,所述第一指示信息用于指示所述的下行资源配置信息是用于接收下行早传数据,或者指示所述的下行资源配置信息是用于上行数据早传的下行反馈,或者指示用于上行数据早传中的上行数据反馈的下行资源配置信息也用于接收下行早传数据。
在一种可选的实施方式中,所述方法还包括:
向第一网络设备发送请求消息,所述请求消息用于请求所述下行早传数据;
接收来自所述第一网络设备的所述下行早传数据;
将所述下行早传数据发送给所述终端设备。
下行早传数据是存储在第一网络设备,如果第二网络设备接收了来自终端设备的第一随机接入前导码,表明该终端设备需要接收下行早传数据,则第二网络设备就可以向第一网络设备请求获得下行早传数据。第一网络设备接收来自第二网络设备的请求消息后,可以将下行早传数据发送给第二网络设备。从而第二网络设备可以将下行早传数据发送给终端设备,使得终端设备获得下行早传数据。
关于第三方面或各种可能的实施方式所带来的技术效果的介绍,可参考对第一方面或相应的实施方式的技术效果的介绍,或参考对第二方面或相应的实施方式的技术效果的介绍。
第四方面,提供一种通信装置,例如该通信装置为如前所述的第一通信装置。所述第一通信装置用于执行上述第一方面或任一可能的实施方式中的方法。具体地,所述第一通信装置可以包括用于执行第一方面或任一可能的实施方式中的方法的模块,例如包括处理模块和收发模块。示例性地,收发模块可以包括发送模块和接收模块,发送模块和接收模块可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。示例性地,所述第一通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为终端设备。下面以第一通信装置是终端设备为例。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器实现。或者,发送模块可以通过发送器实现,接收模块可以通过接收器实现,发送器和接收器可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。如果第一通信装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第一通信装置为设置在通信设备中的芯片,那么收发器(或,发送器和接收器)例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第四方面的介绍过程中,继续以所述第一通信装置是终端设备,以及,以所述处理模块和所述收发模块为例进行介绍。其中,
所述收发模块,用于接收第一消息,所述第一消息用于指示下行资源配置信息,所述下行资源配置信息用于所述终端设备在处于RRC非激活态或RRC空闲态时接收下行早传数据;
所述收发模块,还用于根据所述下行资源配置信息,接收所述下行早传数据。
或者,
所述收发模块,用于接收第一消息;
所述处理模块,用于确定所述第一消息用于指示下行资源配置信息,所述下行资源配置信息用于所述终端设备在处于RRC非激活态或RRC空闲态时接收下行早传数据;
所述收发模块,还用于根据所述下行资源配置信息,接收所述下行早传数据。
在一种可选的实施方式中,所述收发模块用于通过如下方式根据所述下行资源配置信息,接收所述下行早传数据:
根据所述下行资源配置信息,检测调度信息,所述调度信息用于调度所述下行早传数据;
根据所述调度信息,接收所述下行早传数据。
在一种可选的实施方式中,所述下行资源配置信息包括RNTI和/或下行传输资源的时频域配置,所述RNTI用于加扰所述调度信息,所述下行传输资源的时频域配置用于指示 所述调度信息的时域位置和频域位置。
在一种可选的实施方式中,所述的下行资源配置信息与上行数据早传中的下行资源配置信息,是相同的配置信息,或者是不同的配置信息。
在一种可选的实施方式中,所述第一消息还包括第一指示信息,所述第一指示信息用于指示所述的下行资源配置信息是用于接收下行早传数据,或者指示所述的下行资源配置信息是用于上行数据早传的下行反馈,或者指示用于上行数据早传中的上行数据反馈的下行资源配置信息也用于接收下行早传数据。
在一种可选的实施方式中,所述第一消息还包括DRX配置信息,所述DRX配置信息用于指示所述下行早传数据的传输时段。
在一种可选的实施方式中,所述DRX配置信息包括DRX周期和/或偏移量,所述偏移量用于指示所述DRX周期的时域起始位置的偏移。
在一种可选的实施方式中,所述收发模块,还用于在接收所述下行早传数据之后,发送确认消息,所述确认消息用于指示所述终端设备接收到所述下行早传数据。
在一种可选的实施方式中,所述确认消息为第一随机接入前导码。
在一种可选的实施方式中,所述第一消息还用于指示用于所述终端设备接收所述下行早传数据的随机接入资源,所述随机接入资源包括所述第一随机接入前导码。
在一种可选的实施方式中,所述收发模块,还用于在根据所述下行资源配置信息,接收所述下行早传数据之前,接收第二消息,所述第二消息指示用于所述终端设备接收所述下行早传数据的随机接入资源,所述随机接入资源包括至少一个SSB对应的至少一个随机接入前导码,所述至少一个随机接入前导码包括所述第一随机接入前导码。
在一种可选的实施方式中,所述第二消息为PDCCH order消息。
在一种可选的实施方式中,第一消息指示的下行资源配置信息可以用于调度所述的PDCCH order消息,所述收发模块,还用于根据所述的下行资源配置信息接收所述PDCCH order消息,所述PDCCH order消息用于指示用于所述终端设备的随机接入资源。
在一种可选的实施方式中,所述收发模块,还用于在接收所述下行早传数据之前,发送所述第一随机接入前导码。
关于第四方面或各种可能的实施方式所带来的技术效果的介绍,可参考对第一方面或相应的实施方式的技术效果的介绍。
第五方面,提供一种通信装置,例如该通信装置为如前所述的第二通信装置。所述第二通信装置用于执行上述第二方面或任一可能的实施方式中的方法。具体地,所述第二通信装置可以包括用于执行第二方面或任一可能的实施方式中的方法的模块,例如包括处理模块和收发模块。示例性地,收发模块可以包括发送模块和接收模块,发送模块和接收模块可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。示例性地,所述第二通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为第一网络设备。下面以第二通信装置是第一网络设备为例。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器实现。或者,发送模块可以通过发送器实现,接收模块可以通过接收器实现,发送器和接收器可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。如果第二通信装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第二通信装置为设置在通信设备中的芯片,那么收发器(或,发送器和接收器)例如为芯片中 的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第五方面的介绍过程中,继续以所述第二通信装置是第一网络设备,以及,以所述处理模块和所述收发模块为例进行介绍。其中,
所述处理模块,用于确定下行资源配置信息,所述下行资源配置信息用于指示终端设备在处于第一状态时接收下行早传数据,所述第一状态为RRC非激活态或RRC空闲态;
所述收发模块,用于根据所述下行资源配置信息,发送所述下行早传数据。
在一种可选的实施方式中,所述收发模块用于通过如下方式根据所述下行资源配置信息,发送所述下行早传数据:
根据所述下行资源配置信息,发送调度信息,所述调度信息用于调度所述下行早传数据;
根据所述调度信息,发送所述下行早传数据。
在一种可选的实施方式中,所述下行资源配置信息包括RNTI和/或下行传输资源的时频域配置,所述RNTI用于加扰所述调度信息,所述下行传输资源的时频域配置用于指示所述调度信息的时域位置和频域位置。
在一种可选的实施方式中,所述的下行资源配置信息与上行数据早传中的下行资源配置信息,是相同的配置信息,或者是不同的配置信息。
在一种可选的实施方式中,所述第一消息还包括第一指示信息,所述第一指示信息用于指示所述的下行资源配置信息是用于接收下行早传数据,或者指示所述的下行资源配置信息是用于上行数据早传的下行反馈,或者指示用于上行数据早传中的上行数据反馈的下行资源配置信息也用于接收下行早传数据。
在一种可选的实施方式中,所述第一消息还包括DRX配置信息,所述DRX配置信息用于指示所述下行早传数据的传输时段。
在一种可选的实施方式中,所述DRX配置信息包括DRX周期和/或偏移量,所述偏移量用于指示所述DRX周期的时域起始位置的偏移。
在一种可选的实施方式中,所述收发模块,还用于当所述下行早传数据到达时,向第二网络设备发送寻呼消息,所述寻呼消息用于指示所述下行早传数据到达,所述第一网络设备是所述终端设备的锚点网络设备,所述第二网络设备是所述终端设备驻留的网络设备。
在一种可选的实施方式中,所述寻呼消息还用于指示所述下行资源配置信息。
在一种可选的实施方式中,所述收发模块用于通过如下方式根据所述下行资源配置信息,发送所述下行早传数据:
根据所述下行资源配置信息向所述终端设备发送所述下行早传数据;或,
根据所述下行资源配置信息向第二网络设备发送所述下行早传数据(或,向第二网络设备发送所述下行早传数据);
其中,所述第一网络设备是所述终端设备的锚点网络设备,所述第二网络设备是所述终端设备驻留的网络设备。
在一种可选的实施方式中,所述收发模块,还用于在根据所述下行资源配置信息向所述终端设备发送所述下行早传数据之后,接收来自所述终端设备的确认消息,所述确认消息用于指示所述终端设备接收到所述下行早传数据。
在一种可选的实施方式中,所述确认消息为随机接入前导码。
在一种可选的实施方式中,所述第一消息还用于指示用于所述终端设备接收所述下行 早传数据的随机接入资源,所述随机接入资源包括所述随机接入前导码。
在一种可选的实施方式中,所述收发模块,还用于在根据所述下行资源配置信息向所述终端设备发送所述下行早传数据之前,向所述终端设备发送第二消息,所述第二消息指示用于所述终端设备接收所述下行早传数据的随机接入资源,所述随机接入资源包括至少一个SSB对应的至少一个随机接入前导码。
在一种可选的实施方式中,所述第二消息为PDCCH order消息。
在一种可选的实施方式中,所述第一消息指示的下行资源配置信息可以用于调度所述的PDCCH order消息,所述PDCCH order消息用于指示用于所述终端设备的随机接入资源。
在一种可选的实施方式中,所述收发模块,还用于接收来自所述终端设备的第一随机接入前导码,所述第一随机接入前导码属于所述至少一个随机接入前导码。
关于第五方面或各种可能的实施方式所带来的技术效果的介绍,可参考对第二方面或相应的实施方式的技术效果的介绍。
第六方面,提供一种通信装置,例如该通信装置为如前所述的第三通信装置。所述第三通信装置用于执行上述第三方面或任一可能的实施方式中的方法。具体地,所述第三通信装置可以包括用于执行第三方面或任一可能的实施方式中的方法的模块,例如包括处理模块和收发模块。示例性地,收发模块可以包括发送模块和接收模块,发送模块和接收模块可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。示例性地,所述第三通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为第二网络设备。下面以第三通信装置是第二网络设备为例。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器实现。或者,发送模块可以通过发送器实现,接收模块可以通过接收器实现,发送器和接收器可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。如果第三通信装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第三通信装置为设置在通信设备中的芯片,那么收发器(或,发送器和接收器)例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第六方面的介绍过程中,继续以所述第三通信装置是第二网络设备,以及,以所述处理模块和所述收发模块为例进行介绍。其中,
所述收发模块,用于接收来自第一网络设备的寻呼消息,所述寻呼消息用于指示有终端设备的下行早传数据到达,所述第一网络设备是所述终端设备的锚点网络设备,所述第二网络设备是所述终端设备驻留的网络设备;
所述收发模块,还用于向所述终端设备发送第二消息,所述第二消息指示用于所述终端设备接收所述下行早传数据的随机接入资源,所述随机接入资源包括至少一个SSB对应的至少一个随机接入前导码,所述第二消息为PDCCH order消息。
或者,
所述收发模块,用于接收来自第一网络设备的寻呼消息;
所述处理模块,用于确定所述寻呼消息用于指示有终端设备的下行早传数据到达,所述第一网络设备是所述终端设备的锚点网络设备,所述第二网络设备是所述终端设备驻留的网络设备;
所述收发模块,还用于向所述终端设备发送第二消息,所述第二消息指示用于所述终端设备接收所述下行早传数据的随机接入资源,所述随机接入资源包括至少一个SSB对应 的至少一个随机接入前导码,所述第二消息为PDCCH order消息。
在一种可选的实施方式中,所述第一消息指示的下行资源配置信息可以用于调度所述的PDCCH order消息,所述PDCCH order消息用于指示用于所述终端设备的随机接入资源。
在一种可选的实施方式中,所述收发模块,还用于接收来自所述终端设备的第一随机接入前导码,所述第一随机接入前导码属于所述至少一个随机接入前导码。
在一种可选的实施方式中,所述寻呼消息还用于指示下行资源配置信息,所述下行资源配置信息用于所述终端设备在处于RRC非激活态或RRC空闲态时接收所述下行早传数据。
在一种可选的实施方式中,所述下行资源配置信息包括RNTI和/或下行传输资源的时频域配置,所述RNTI用于加扰所述调度信息,所述下行传输资源的时频域配置用于指示所述调度信息的时域位置和频域位置。
在一种可选的实施方式中,所述的下行资源配置信息与上行数据早传中的下行资源配置信息,是相同的配置信息,或者是不同的配置信息。
在一种可选的实施方式中,所述第一消息还包括第一指示信息,所述第一指示信息用于指示所述的下行资源配置信息是用于接收下行早传数据,或者指示所述的下行资源配置信息是用于上行数据早传的下行反馈,或者指示用于上行数据早传中的上行数据反馈的下行资源配置信息也用于接收下行早传数据。
在一种可选的实施方式中,所述收发模块还用于:
向第一网络设备发送请求消息,所述请求消息用于请求所述下行早传数据;
接收来自所述第一网络设备的所述下行早传数据;
将所述下行早传数据发送给所述终端设备。
关于第六方面或各种可能的实施方式所带来的技术效果的介绍,可参考对第三方面或相应的实施方式的技术效果的介绍。
第七方面,提供一种通信装置,该通信装置例如为如前所述的第一通信装置。该通信装置包括处理器。可选的,还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第一方面或各种可能的实施方式所描述的方法。或者,第一通信装置也可以不包括存储器,存储器可以位于第一通信装置外部。可选的,第一通信装置还可以包括通信接口,用于与其他装置或设备进行通信。处理器、存储器和通信接口相互耦合,用于实现上述第一方面或各种可能的实施方式所描述的方法。例如,当处理器执行所述存储器存储的计算机指令时,使第一通信装置执行上述第一方面或任意一种可能的实施方式中的方法。示例性地,所述第一通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性的,所述通信设备为终端设备。
其中,如果第一通信装置为通信设备,通信接口例如通过所述通信设备中的收发器(或者,发送器和接收器)实现,例如所述收发器通过所述通信设备中的天线、馈线和编解码器等实现。或者,如果第一通信装置为设置在通信设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
第八方面,提供一种通信装置,该通信装置例如为如前所述的第二通信装置。该通信装置包括处理器。可选的,还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第二方面或各种可能的实施方式所描述的方法。或者,第二通信装 置也可以不包括存储器,存储器可以位于第二通信装置外部。可选的,第二通信装置还可以包括通信接口,用于与其他装置或设备进行通信。处理器、存储器和通信接口相互耦合,用于实现上述第二方面或各种可能的实施方式所描述的方法。例如,当处理器执行所述存储器存储的计算机指令时,使第二通信装置执行上述第二方面或任意一种可能的实施方式中的方法。示例性地,所述第二通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性的,所述通信设备为第一网络设备。
其中,如果第二通信装置为通信设备,通信接口例如通过所述通信设备中的收发器(或者,发送器和接收器)实现,例如所述收发器通过所述通信设备中的天线、馈线和编解码器等实现。或者,如果第二通信装置为设置在通信设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
第九方面,提供一种通信装置,该通信装置例如为如前所述的第三通信装置。该通信装置包括处理器。可选的,还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第三方面或各种可能的实施方式所描述的方法。或者,第三通信装置也可以不包括存储器,存储器可以位于第三通信装置外部。可选的,第三通信装置还可以包括通信接口,用于与其他装置或设备进行通信。处理器、存储器和通信接口相互耦合,用于实现上述第三方面或各种可能的实施方式所描述的方法。例如,当处理器执行所述存储器存储的计算机指令时,使第三通信装置执行上述第三方面或任意一种可能的实施方式中的方法。示例性地,所述第三通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性的,所述通信设备为第二网络设备。
其中,如果第三通信装置为通信设备,通信接口例如通过所述通信设备中的收发器(或者,发送器和接收器)实现,例如所述收发器通过所述通信设备中的天线、馈线和编解码器等实现。或者,如果第三通信装置为设置在通信设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
第十方面,提供一种通信系统,该通信系统包括第四方面所述的通信装置或第七方面所述的通信装置。
在一种可选的实施方式中,该通信系统还包括第五方面所述的通信装置或第八方面所述的通信装置。
在一种可选的实施方式中,该通信系统还包括第六方面所述的通信装置或第九方面所述的通信装置。
第十一方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第一方面或任意一种可能的实施方式中所述的方法。
第十二方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第二方面或任意一种可能的实施方式中所述的方法。
十三方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第三方面或任意一种可能的实施方式中所述的方法。
第十四方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第一方面或的任意一种可能的实施方式中所述的方法。
第十五方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第二方面或的任意一种可能的实施方式中所述的方法。
第十六方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第三方面或的任意一种可能的实施方式中所述的方法。
本申请实施例无需通过寻呼消息来配置。相对于通过寻呼消息来配置资源的方案来说,本申请实施例提供的技术方案提高了资源配置过程的安全性。并且,无需通过寻呼消息来配置资源,也有助于减小对寻呼容量的影响,使得寻呼消息能够有更多的用途。
附图说明
图1为目前的一种下行数据早传方法的流程图;
图2为本申请实施例的一种应用场景示意图;
图3为本申请实施例的另一种应用场景示意图;
图4为本申请实施例提供的第一种通信方法的流程图;
图5为本申请实施例提供的第二种通信方法的流程图;
图6为本申请实施例提供的第三种通信方法的流程图;
图7为本申请实施例提供的第四种通信方法的流程图;
图8为本申请实施例提供的终端设备的示意性框图;
图9为本申请实施例提供的第一网络设备的示意性框图;
图10为本申请实施例提供的第二网络设备的示意性框图;
图11为本申请实施例提供的通信装置的示意性框图;
图12为本申请实施例提供的通信装置的另一示意性框图;
图13为本申请实施例提供的通信装置的再一示意性框图;
图14为本申请实施例提供的通信装置的又一示意性框图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,具体的,包括向用户提供语音的设备,或包括向用户提供数据连通性的设备,或包括向用户提供语音和数据连通性的设备。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音或数据,或与RAN交互语音和数据。该终端设备可以包括用户设备(user  equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle to everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
本申请实施例中,终端设备还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端设备。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
2)网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种车到一切(vehicle-to-everything,V2X)技术中的网络设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与IP分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation, 5G)新空口(new radio,NR)系统(也简称为NR系统)中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
网络设备还可以包括核心网设备,核心网设备例如包括访问和移动管理功能(access and mobility management function,AMF)等。本申请实施例由于不涉及核心网,因此在后文中如无特殊说明,则所述的网络设备均是指接入网设备。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
3)RRC状态,终端设备有3种RRC状态:RRC连接态、RRC空闲态和RRC非激活态。
RRC连接态(或,也可以简称为连接态。在本文中,“连接态”和“RRC连接态”,是同一概念,两种称呼可以互换):终端设备与网络建立了RRC连接,可以进行数据传输。
RRC空闲态(或,也可以简称为空闲态。在本文中,“空闲态”和“RRC空闲态”,是同一概念,两种称呼可以互换):终端设备没有与网络建立RRC连接,基站没有存储该终端设备的上下文。如果终端设备需要从RRC空闲态进入RRC连接态,则需要发起RRC连接建立过程。
RRC非激活态(或,也可以简称为非激活态。在本文中,“去活动态”、“去激活态”、“非激活态”、“RRC非激活态”或“RRC去激活态”等,是同一概念,这几种称呼可以互换):终端设备之前在锚点基站进入了RRC连接态,然后锚点基站释放了该RRC连接,但是锚点基站保存了该终端设备的上下文。如果该终端设备需要从RRC非激活态再次进入RRC连接态,则需要在当前驻留的基站发起RRC连接恢复过程(或者称为RRC连接重建立过程)。因为终端设备可能处于移动状态,因此终端设备当前驻留的基站与终端设备的锚点基站可能是同一基站,也可能是不同的基站。RRC恢复过程相对于RRC建立过程来说,时延更短,信令开销更小。但是基站需要保存终端设备的上下文,会占用基站的存储开销。
4)本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一网络设备和第二网络设备,只是为了区分不同的网络设备,而并不是表示这两个信息的优先级或者重要程度等的不同。
本申请实施例可以应用于各种通信系统,例如:LTE系统、LTE-A系统、NR系统或 未来可能的通信系统,具体不做限制。
前文介绍了本申请实施例所涉及到的一些名词概念,下面介绍本申请实施例涉及的技术特征。
在5G标准的讨论中,同意为终端设备引入一种RRC非激活态。相比较于RRC连接态来说,非激活态更加节能;相比较于RRC空闲态来说,从非激活态接入网络的时延更低。
例如,终端设备在基站处于RRC连接态。如果基站和终端设备之间暂时没有数据传输,或者因为其他的原因,基站可以控制该终端设备进入RRC非激活态,并且为该终端设备分配上下文ID(context ID),例如为非激活小区无线网络临时标识(inactive radio network temprory identifier,I-RNTI),以及分配无线接入网通知区域(RAN notification area,RNA)。该终端设备在分配的RNA内移动时,一种方式是可以不必将该终端设备的位置通知基站,只有在移动出RNA后才需通知基站;另一种方式是,即使该终端设备在分配的RNA内移动,该终端设备也需周期性将该终端设备的位置通知基站,这种方式也称为无线接入网通知区域更新(RNA update,RNAU)。
处于RRC非激活态的终端设备,如果要进行上行传输或者下行传输,需要先发起RRC resume过程以进入RRC连接态,在进入RRC连接态之后再进行传输。但是当终端设备需要传输的数据包较小时,进入RRC连接态所耗费的信令开销可能大于需要传输的数据量,非常低效。因此,现在很多研究开始关注数据早传,数据早传是指终端设备不进入RRC连接态即可进行数据传输,可以有效提高数据传输效率,降低终端设备的功耗。
下面介绍在NR系统中进行下行数据早传的过程,请参考图1。
S11、锚点基站向RNA内所有的基站发送寻呼消息(图1中表示为第一寻呼消息),RNA内的基站接收来自锚点基站的第一寻呼消息。第一寻呼消息指示有终端设备的下行数据到达,且指示该下行数据为移动终止数据早传(mobile terminated–early data transmission,MT-EDT),数据早传也称提前数据发送。
其中,该锚点基站为终端设备的锚点基站,例如该锚点基站存储了终端设备的上下文。这里的终端设备的个数为一个或多个。例如第一寻呼消息可以包括有下行数据到达的终端设备的身份号(ID)。
S12、基站1发送寻呼消息(图1中表示为第二寻呼消息),终端设备接收来自基站1的第二寻呼消息。
接收了来自锚点基站的第一寻呼消息后,基站1可以决定发起此次MT-EDT的随机接入。S12中的基站1为接收了第一寻呼消息的任意一个基站。在第二寻呼消息中可以包括下行数据到达的终端设备的ID。例如第二寻呼消息所包括的终端设备的ID与第一寻呼消息所包括的终端设备的ID可以是相同的。
另外,第二寻呼消息还用于为终端设备配置随机接入资源。随机接入资源例如包括随机接入前导码(preamble)或其他的用于随机接入的资源中的一个或多个。
S13、终端设备向基站1发送preamble,基站1接收来自终端设备的preamble。
终端设备接收第二寻呼消息后,可以确定第二寻呼消息包括的终端设备的ID中是否有该终端设备的ID,如果有,则表明有针对该终端设备的MT-EDT数据,即,有针对该终端设备的下行早传数据。则终端设备可以使用第二寻呼消息所配置的随机接入资源向基站1发起随机接入。
例如,preamble是终端设备在物理随机接入信道(physical random access channel,PRACH)中发送的实际内容,由循环前缀(cyclic prefix,CP)和序列(sequence)构成。
S14、基站1向锚点基站发送下行数据请求(DL data request)消息,锚点基站接收来自基站1的下行数据请求消息。
基站1接收来自终端设备的preamble后,由于下行早传数据存储在锚点基站,因此基站1向锚点基站请求该终端设备的下行早传数据。
S15、锚点基站向基站1发送该终端设备的下行早传数据,基站1接收来自锚点基站的下行早传数据。
S16、基站1向终端设备发送随机接入响应(random access response,RAR),终端设备接收来自基站1的RAR。
基站1接收来自终端设备的preamble后,可以向终端设备发送RAR,RAR可以包括该终端设备的上行时间提前量(time advance,TA)、上行(uplink)-授权(grant)、以及临时小区(temporary cell,TC)-无线网络临时指示(radio-network temporary identifier,RNTI)。其中,TC-RNTI是用于对下行早传数据进行加扰的RNTI。
其中,S16可以发生在S14之后,或者S16可以发生在S14之前,或者S16和S14也可以同时发生。
S17、终端设备开始使用TC-RNTI盲检物理下行控制信道(physical downlink control channel,PDCCH)。
S18、基站1使用TC-RNTI为终端设备调度下行早传数据,终端设备接收来自基站1的下行早传数据。
S19a、终端设备利用RAR所指示的上行TA,在RAR所指示的UL-grant上向基站1发送肯定应答(ACK),基站1接收来自终端设备的ACK。该ACK用于指示终端设备接收了下行早传数据。
S19b、基站1向锚点基站发送ACK,锚点基站接收来自基站1的ACK。该ACK用于指示终端设备接收了下行早传数据。
可以看到,在图1所示的下行数据早传过程中,基站是通过寻呼消息向终端设备分配资源。由于寻呼信道对于所有的终端设备来说都是能接收的,使用寻呼消息为终端设备配置资源,导致资源配置过程的安全性较差。而且使用寻呼消息来分配资源,对寻呼容量的影响较大。
鉴于此,提供本申请实施例的技术方案。在本申请实施例中,第一消息可以不是寻呼消息,例如第一消息是专用信令,也就是说,本申请实施例可以通过专用信令为终端设备配置接收下行早传数据的资源,无需通过寻呼消息来配置。相对于通过寻呼消息来配置资源的方案来说,本申请实施例提供的技术方案提高了资源配置过程的安全性。并且,无需通过寻呼消息来配置资源,也有助于减小对寻呼容量的影响,使得寻呼消息能够有更多的用途。
本申请实施例提供的技术方案可以应用于第四代移动通信技术(the 4th generation,4G)系统中,例如LTE系统,或可以5G系统中,例如NR系统,或者还可以应用于下一代移动通信系统或其他类似的通信系统,具体的不做限制。
请参见图2,为本申请实施例的一种应用场景。在图2中包括网络设备1、网络设备2和终端设备。例如,终端设备初始时在网络设备1处于RRC连接态,后来终端设备被网 络设备1释放,但终端设备的上下文保存在网络设备1中,即,网络设备1是终端设备的锚点基站。后来终端设备由于移动,移动到了网络设备2的覆盖范围内,则终端设备驻留在网络设备2。即,网络设备2是终端设备当前驻留的网络设备,或者说是终端设备的服务(serving)网络设备。
网络设备1例如工作在演进的通用移动通信系统陆地无线接入(evolved UMTS terrestrial radio access,E-UTRA)系统中,或者工作在NR系统中,或者工作在下一代通信系统或其他通信系统中。网络设备2例如工作在E-UTRA系统中,或者工作在NR系统中,或者工作在下一代通信系统或其他通信系统中。网络设备1和网络设备2可以工作在相同的通信系统中,例如均工作在E-UTRA系统中,或者,网络设备1和网络设备2也可以工作在不同的通信系统中,例如网络设备1工作在E-UTRA系统中,网络设备2工作在NR系统中。
请再参见图3,为本申请实施例的另一种应用场景。在图3中包括网络设备和终端设备。例如,终端设备初始时在网络设备处于RRC连接态,后来终端设备被网络设备释放,但终端设备的上下文保存在网络设备中,即,网络设备是终端设备的锚点基站。后来终端设备并未移动,或者终端设备虽然有所移动,但仍然处于该网络设备的覆盖范围内。即,终端设备的锚点网络设备也就是该终端设备当前所驻留的网络设备。
该网络设备例如工作在E-UTRA系统中,或者工作在NR系统中,或者工作在下一代通信系统或其他通信系统中。
图2或图3中的网络设备例如为基站。其中,网络设备在不同的系统对应不同的设备,例如在4G系统中可以对应eNB,在5G系统中对应5G中的接入网设备,例如gNB。当然本申请实施例所提供的技术方案也可以应用于未来的移动通信系统中,因此图3中的网络设备也可以对应未来的移动通信系统中的网络设备。图2或图3以网络设备是基站为例,实际上参考前文的介绍,网络设备还可以是RSU等设备。另外,图2或图3中的终端设备以手机为例,实际上根据前文对于终端设备的介绍可知,本申请实施例的终端设备不限于手机。
下面结合附图介绍本申请实施例所提供的方法。需要注意的是,本申请的各个实施例涉及的“数据早传”这个概念,可以理解为泛称,终端设备的任何在进入RRC连接态之前所进行的数据传输,均可以称为数据早传。数据早传所需要的配置可以称为数据早传配置。其中,数据早传包括上行数据早传或下行数据早传,上行数据早传也称为移动初始(mobile originate)的数据早传,下行数据早传也称为移动终止(mobile terminated)的数据早传。在某些场景中,数据早传也可以称为小包传输。
本申请实施例提供第一种通信方法,请参见图4,为该方法的流程图。在下文的介绍过程中,以该方法应用于图3所示的网络架构为例。
为了便于介绍,在下文中,以该方法由网络设备和终端设备执行为例。因为本实施例是以应用在图3所示的网络架构为例,因此,下文中所述的第一网络设备可以是图3所示的网络架构中的网络设备,下文中所述的终端设备可以是图3所示的网络架构中的终端设备。
S41、第一网络设备确定下行资源配置信息,所述下行资源配置信息用于终端设备在处于第一状态时接收下行早传数据。第一状态可以是RRC非激活态或RRC空闲态。
例如第一网络设备可以是终端设备的锚点网络设备。下行早传数据,实际上也就是下 行数据,又称为提前数据发送(early data transmission,EDT),之所以称为“早传数据”,是因为终端设备无需处于RRC连接态就能接收该数据。
下行资源配置信息可以包括RNTI,或包括下行传输资源的时频域配置,或包括RNTI和下行传输资源的时频域配置,或者还可以包括其他的信息。
下行资源配置信息所包括的RNTI,例如为C-RNTI,或者也可以是其他的RNTI。该RNTI可以是所述终端设备独自拥有的,也可以和其他终端设备共有。该RNTI可以用于终端设备检测用于调度下行早传数据的调度信息,例如,该RNTI可用于加扰调度信息,从而终端设备使用该RNTI就可以检测调度信息,进而根据调度信息收取下行早传数据。
下行传输资源的时频域配置,可以指示调度信息的时域位置和频域位置。例如,下行传输资源的时频域配置可以包括搜索空间的配置,或包括控制资源集(CORESET)的配置,或包括搜索空间的配置和CORESET的配置,或者还可以包括其他的配置。搜索空间例如为UE特定的搜索空间(ue-specific search space,uss)。以下行传输资源的时频域配置包括USS的配置为例,该USS的配置可以用于终端设备在处于第一状态时,在该USS和CORESET所指示的时域位置、频域位置检测调度信息。
其中,所述的调度信息可以用于调度下行早传数据。例如第一网络设备先向终端设备发送调度信息,之后再向终端设备发送下行早传数据。终端设备可以根据下行资源配置信息检测调度信息,在检测到调度信息后,就可以根据该调度信息的调度接收下行早传数据。调度信息例如通过PDCCH承载。
终端设备除了可以进行下行数据早传之外,还可以进行上行数据早传,也就是说,终端设备在无需进入RRC连接态的情况下,可以接收来自网络设备的下行数据,也可以向网络设备发送上行数据。在终端设备进行上行数据早传时,网络设备也会为终端设备配置用于进行上行数据反馈的上行资源配置信息。而终端设备在进行上行数据早传后,网络设备可以向终端设备发送对应于上行早传数据的反馈等信息,而网络设备也会配置用于发送对应于上行早传数据的反馈等信息的资源配置信息,例如该资源配置信息称为上行数据早传中的下行资源配置信息,例如上行数据早传中的下行资源配置信息可以包括RNTI和/或USS等。
例如,所述下行资源配置信息还用于终端设备在处于第一状态时发送上行数据早传。具体的,所述的下行资源配置信息与所述的上行数据早传中的下行资源配置信息,可以是相同的配置信息,也就是说,下行数据早传和上行数据早传中的下行过程,可以使用相同的配置,以提高资源的利用率。如果是这种情况,那么对于终端设备来说,可能需要区分来自网络设备的资源配置信息究竟是用于下行数据早传还是用于上行数据早传。因此作为一种可选的实施方式,第一消息还可以包括第一指示信息,第一指示信息用于指示所述的下行资源配置信息是用于接收下行早传数据,或者指示所述的下行资源配置信息是用于上行数据早传的下行反馈,或者指示用于上行数据早传中的上行数据反馈的下行资源配置信息也用于接收下行早传数据。这样终端设备根据第一指示信息就可以确定所述的下行资源配置信息是用于下行数据早传还是用于上行数据早传,从而能够将上下行传输区分开。
又例如,所述的下行资源配置信息与所述的上行数据早传中的下行资源配置信息,也可以是不同的配置信息,即,上行数据早传中的下行资源和下行数据早传中的下行资源可以使用不同的配置,使得上下行有所区分。
本申请实施例通过重用用于上行数据早传中的上行数据反馈的下行资源配置信息接 收下行早传数据,可以使得终端设备在一套资源上检测控制信息,网络设备可以通过控制信息来灵活调度是传输上行数据的反馈信息还是传输下行数据,有助于降低终端设备的能耗。
处于RRC非激活态或RRC空闲态的终端设备,如果要进行下行传输,则可以通过数据早传的形式来实现,因为是下行传输,因此所传输的数据可以称为下行早传数据。通过下行数据早传,终端设备无需进入RRC连接态就可进行下行数据传输,可以有效提高数据传输效率,降低终端设备的功耗。
S42、第一网络设备向终端设备发送第一消息,终端设备接收来自第一网络设备的第一消息。第一消息可以用于指示所述的下行资源配置信息。
例如,第一消息可以是RRC释放(RRC release)消息,或者也可以是其他的消息。如果第一消息是RRC释放消息,则第一消息可以用于将终端设备从RRC连接态释放到第一状态。
也就是说,在本申请实施例中,第一网络设备可以在将终端设备释放到第一状态时为终端设备配置下行资源配置信息,该下行资源配置信息就用于终端设备在处于第一状态时接收下行早传数据,第一状态为RRC非激活态或RRC空闲态。相当于,第一网络设备是在释放终端设备时为终端设备配置接收下行早传数据的资源。也就是说,本申请实施例可以通过专用信令(例如RRC释放消息)为终端设备配置接收下行早传数据的资源,无需通过寻呼消息来配置。相对于通过寻呼消息来配置资源的方案来说,本申请实施例提供的技术方案提高了资源配置过程的安全性。并且,无需通过寻呼消息来配置资源,也有助于减小对寻呼容量的影响,使得寻呼消息能够有更多的用途。
第一消息可以指示下行资源配置信息。终端设备接收第一消息后,可以立即根据该下行资源配置信息检测调度信息,从而根据调度信息接收下行早传数据。例如调度信息承载在下行控制信道(例如PDCCH)中,则终端设备接收第一消息后,就可以立即根据该下行资源配置信息检测PDCCH。
为了节省终端设备的电量,作为一种可选的实施方式,网络设备还可以为终端设备配置非连续接收(discontinnuous reception,DRX)配置信息,例如,第一消息除了包括下行资源配置信息之外,还可以包括该DRX配置信息,或者,所述的下行资源配置信息可以包括该DRX配置信息,例如下行资源配置信息中的下行传输资源的时频域配置中可以包括该DRX配置信息。该DRX配置信息可以用于终端设备按照该DRX配置信息检测下行早传数据,或者说,该DRX配置信息可以指示下行早传数据的传输时段。终端设备按照DRX配置信息来检测下行早传数据,只需在以一定周期进行检测是否有下行数据传输,而不需要一直进行检测,这样既可以完成检测,又可以达到节电的效果。
DRX配置信息的一种实现方式为,DRX配置信息包括DRX周期,或包括偏移量,或包括DRX周期和偏移量,或者还可以包括与DRX配置相关的其他的信息。其中,偏移量例如可以指示DRX周期的时域起始位置的偏移。终端设备要按照DRX配置信息来进行检测,就需要确定时域检测位置,例如终端设备只需确定时域起始检测位置即可,再根据DRX周期就可以确定具体的时域检测位置。例如终端设备可以确定时域起始检测位置所在的无线帧和子帧,这样就确定了时域起始检测位置。例如,终端设备所确定的时域起始检测位置所在的无线帧,可以满足如下关系:
SFN mod T=FLOOR(offset/10)       (公式1)
其中,SFN为系统帧号(system frame number,SFN),T表示DRX配置信息所指示的DRX周期,offset表示DRX配置信息所指示的偏移量,FLOOR(x)表示对x向下取整,mod表示取模运算。
终端设备确定时域起始检测位置所在的子帧,例如一种方式为,如果T大于sf5,其中sf5是指5个子帧的长度,则子帧可以满足如下关系:
subframe=offset mod 10          (公式2)
其中,subframe表示子帧号。
如果T小于或等于sf5,则子帧可以满足如下关系:
subframe=offset或(offset+5)       (公式3)
另外,公式1~公式3中的T,可以满足如下关系:
T=CEIL(T/10)             (公式4)
其中,ceil(x)表示取大于或等于x的最小整数。
终端设备确定时域起始检测位置后,就可以按照DRX配置信息来检测下行早传数据。如果第一消息所指示的下行资源配置信息包括USS的配置,那么该DRX配置信息例如是与该USS的配置相关联的。也就是说,终端设备可以按照该DRX配置信息,在该USS的配置所指示的USS内检测下行早传数据,或者说,检测用于调度下行早传数据的调度信息。
DRX配置信息的另一种可能的实现方式为,DRX配置信息包括一个寻呼周期。终端设备可以根据该寻呼周期以及下行资源配置信息计算寻呼时机的位置,在对应的寻呼时机进行监听,例如可以在对应的寻呼时机使用RNTI进行监听,以确定是否有下行数据。
S43、第一网络设备根据所述下行配置信息,发送所述下行早传数据,终端设备根据所述下行配置信息,接收所述下行早传数据。
在本申请实施例中,例如终端设备在被释放后并未移动,或者终端设备虽然有所移动,但移动后仍然处于第一网络设备的覆盖范围内,因此可以视为第一网络设备是向终端设备发送下行早传数据,终端设备也是接收来自第一网络设备的下行早传数据。
具体的,在有终端设备的下行早传数据到达时,第一网络设备可以根据该下行资源配置信息发送调度信息,该调度信息用于调度下行早传数据。终端设备在进入第一状态后,可以根据下行资源配置信息检测调度信息,例如下行资源配置信息包括USS的配置、C-RNTI,另外第一消息还包括DRX配置信息,则终端设备可以在该USS的配置所指示的USS内,按照DRX配置信息所指示的DRX周期,使用该C-RNTI检测调度信息。第一网络设备在发送调度信息后,可以根据该调度信息,发送下行早传数据。而终端设备如果检测到了调度信息,也就可以根据该调度信息的调度,接收来自第一网络设备的下行早传数据。
S44、终端设备向第一网络设备发送确认消息,第一网络设备接收来自终端设备的确认消息。该确认消息可以指示终端设备接收到下行早传数据。
终端设备在接收下行早传数据后,可以向第一网络设备发送确认消息,该确认消息例如为肯定应答(ACK)消息,但该ACK消息是指示终端设备接收到下行早传数据,但该下行早传数据有可能接收正确,也有可能接收错误,例如该ACK消息可以指示下行早传数据接收正确或接收错误。
或者,该确认消息也可以通过随机接入前导码(preamble)实现,例如将该preamble称为第一preamble,图4中的S44以此为例。如果是这种情况,那么第一消息还可以包括 用于终端设备接收下行早传数据的随机接入资源,该随机接入资源可以包括第一preamble,从而终端设备可以将第一preamble作为确认消息发送给第一网络设备。
其中,在NR系统中引入了波束(beam)的概念,终端设备处于不同的位置时,可能通过不同的波束向第一网络设备发送确认消息,而不同的波束可以对应不同的preamble。因此,第一消息所指示的随机接入资源可以包括至少一个SSB对应的至少一个preamble,SSB和波束是一一对应的关系,因此与SSB对应的preamble,也就是与波束对应的preamble。其中,如果第一网络设备可以确定终端设备并未移动,或者确定终端设备的移动量较小(例如终端设备只在预设范围内移动),则第一消息包括的随机接入资源也可以只包括第一preamble,而不包括其他的preamble,即,至少一个preamble的个数为1,承载第一preamble的波束就是终端设备对应的波束。或者,如果第一网络设备确定终端设备发生了移动,或者确定终端设备的移动量较大(例如终端设备移动出了预设范围),或者第一网络设备无法确定终端设备是否发生了移动,则第一消息包括的随机接入资源可以包括多个preamble,即,至少一个preamble的个数大于1,这多个preamble中可以包括第一preamble。
如果第一消息所包括的随机接入资源只包括第一preamble,则终端设备可以将第一preamble作为确认消息发送给第一网络设备。或者,如果第一消息所包括的随机接入资源包括了多个preamble,则终端设备可以根据该终端设备所在的位置确定该终端设备对应的第一波束(或者说第一SSB),并确定多个preamble中与第一波束(或者第一SSB)对应的preamble,例如为第一preamble,第一波束是终端设备对应的波束,第一SSB是第一波束所承载的SSB,从而终端设备可以将第一preamble作为确认消息发送给第一网络设备。
如果终端设备向网络设备发送ACK作为确认消息,则需要有对应的PUCCH配置。但如果终端设备使用preamble作为确认消息,就不需要配置PUCCH,实现较为简单,有助于节省PUCCH配置的信令开销。
如果终端设备未接收下行早传数据,则终端设备也可以不向第一网络设备发送该确认消息。那么,如果第一网络设备未接收该确认消息,或者接收的确认消息指示下行早传数据接收错误,则第一网络设备都可以重传该下行早传数据,从而提高下行早传数据的接收成功率。
在本申请实施例中,可以向终端设备发送第一消息,第一消息指示下行资源配置信息,终端设备根据下行资源配置信息就能接收下行早传数据。相当于提供了一种为终端设备分配用于接收下行早传数据的资源的机制,使得下行早传能够得以实现。另外,第一消息可以不是寻呼消息,例如第一消息是专用信令,也就是说,本申请实施例可以通过专用信令为终端设备配置接收下行早传数据的资源,无需通过寻呼消息来配置。相对于通过寻呼消息来配置资源的方案来说,本申请实施例提供的技术方案提高了资源配置过程的安全性。并且,无需通过寻呼消息来配置资源,也有助于减小对寻呼容量的影响,使得寻呼消息能够有更多的用途。
另外,由于第一网络设备就是终端设备的锚点网络设备,而且下行资源配置信息已提前发送给终端设备,因此在有终端设备的下行早传数据到达时,第一网络设备可以直接将下行早传数据发送给终端设备,无需再向其他网络设备请求下行早传数据,也无需再为终端设备配置相应的资源,减小了下行早传数据的传输时延。
为了解决相同的技术问题,本申请实施例提供第二种通信方法,请参见图5,为该方法的流程图。在下文的介绍过程中,以该方法应用于图3所示的网络架构为例。
为了便于介绍,在下文中,以该方法由网络设备和终端设备执行为例。因为本实施例是以应用在图3所示的网络架构为例,因此,下文中所述的第一网络设备可以是图3所示的网络架构中的网络设备,下文中所述的终端设备可以是图3所示的网络架构中的终端设备。
S51、第一网络设备确定下行资源配置信息,所述下行资源配置信息用于终端设备在处于第一状态时接收下行早传数据。第一状态可以是RRC非激活态或RRC空闲态。
例如第一网络设备可以是终端设备的锚点网络设备。
下行资源配置信息可以包括RNTI,或包括下行传输资源的时频域配置,或包括RNTI和下行传输资源的时频域配置,或者还可以包括其他的信息。
需要说明的是,所述下行资源配置信息可以是在无线接入网通知区域(RAN notification area,RNA)内有效,也可以是仅在终端设备当前的服务小区内有效。如果所述下行资源配置信息是在RNA内有效,所述终端设备在离开当前服务小区后,依然可以使用所述下行资源配置信息,接收下行早传数据。如果所述下行资源配置信息是仅在终端设备的当前服务小区内有效,所述终端设备离开当前服务小区之后,不能再使用所述下行资源配置信息接收下行早传数据,并且所述终端设备在离开当前小区后,需要通知第一网络设备。
关于S51的更多内容,例如对于下行资源配置信息的介绍等,均可参考图4所示的实施例中的S41的相关内容。
S52、第一网络设备向终端设备发送第一消息,终端设备接收来自第一网络设备的第一消息。第一消息可以用于指示所述的下行资源配置信息。
例如,第一消息可以是RRC释放消息,或者也可以是其他的消息。如果第一消息是RRC释放消息,则第一消息可以用于将终端设备从RRC连接态释放到第一状态。
为了节省终端设备的电量,作为一种可选的实施方式,网络设备还可以为终端设备配置DRX配置信息,例如,第一消息除了包括下行资源配置信息之外,还可以包括该DRX配置信息,或者,所述的下行资源配置信息可以包括该DRX配置信息,例如下行资源配置信息中的下行传输资源的时频域配置中可以包括该DRX配置信息。
终端设备接收第一消息后,可以立即根据该下行资源配置信息检测调度信息,从而根据调度信息接收下行早传数据。例如调度信息承载在下行控制信道(例如PDCCH)中,则终端设备接收第一消息后,就可以立即根据该下行资源配置信息检测PDCCH。
可选的,所述第一消息还可包括第二指示信息,所述第二指示信息用于指示所述下行资源配置信息是在RNA内有效,还是仅在当前服务小区有效。
关于S52的更多内容,例如对于DRX配置信息的介绍等,均可参考图4所示的实施例中的S42的相关内容。
S53、第一网络设备向终端设备发送第二消息,终端设备接收来自第一网络设备的第二消息。
第二消息可以指示终端设备响应第二消息的随机接入资源,随机接入资源可以包括第一preamble。其中,在NR系统中引入了波束的概念,终端设备处于不同的位置时,可能通过不同的波束向第一网络设备发送消息,而不同的波束可以对应不同的preamble。因此,第二消息所指示的随机接入资源可以包括至少一个SSB对应的至少一个preamble,至少一个preamble可以包括第一preamble。SSB和波束是一一对应的关系,因此与SSB对应的preamble,也就是与下行波束对应的preamble。其中,如果第一网络设备可以确定终端设 备并未移动,或者确定终端设备的移动量较小(例如终端设备只在预设范围内移动),则第一消息包括的随机接入资源可以只包括第一preamble,而不包括其他的preamble,即,至少一个preamble的个数为1,第一preamble所对应的波束就是终端设备所在位置对应的波束。或者,如果第一网络设备确定终端设备发生了移动,或者确定终端设备的移动量较大(例如终端设备移动出了预设范围),或者第一网络设备无法确定终端设备是否发生了移动,则第一消息包括的随机接入资源可以包括多个preamble,即,至少一个preamble的个数大于1,这多个preamble中可以包括第一preamble。
例如,第一网络设备可以在终端设备的下行早传数据到达时,向终端设备发送第二消息。也就是说,第一网络设备可以在终端设备的下行早传数据到达时,再为终端设备分配随机接入资源,这样可以使得所分配的随机接入资源能够与终端设备当前所在的位置相对应。
第二消息通过PDCCH的下行控制信息(downlink control information,DCI)承载,一种实现方式为第二消息为PDCCH命令(order),或者也可以是其他的消息。PDCCH order是通过PDCCH信道中的DCI携带随机接入资源的一种方式。
如果第二消息是PDCCH order消息,那么在一种可选的实施方式中,所述第一消息指示的下行资源配置信息可以用于调度所述的PDCCH order消息。终端设备根据所述的下行资源配置信息可以接收该PDCCH order消息,PDCCH order消息可以指示用于终端设备的随机接入资源。
通过本申请实施例提供的通信方法,RRC空闲态和/或RRC非激活态的终端设备可以接收PDCCH order消息。终端设备在接收PDCCH order消息后,可以根据PDCCH order消息所指示的随机接入资源接收下行数据,例如下行早传数据,因此该随机接入资源可以认为是用于终端设备接收下行早传数据的随机接入资源;或者,终端设备在接收PDCCH order消息后,也可以根据PDCCH order消息所指示的随机接入资源发起随机接入,但并不一定要接收下行数据。也就是说,PDCCH order消息所指示的随机接入资源可以用于终端设备接收下行早传数据,也可以用于终端设备进行随机接入,这样也提高了PDCCH order消息的利用率。具体的,RRC空闲态或者RRC非激活态的终端设备可以根据第一下行资源配置信息接收PDCCH order消息,并确定对应的随机接入资源,在第一种可能的实现中,终端设备根据所述随机接入资源进行随机接入过程,并进入RRC连接态,此时不接收上述的下行早传数据,例如终端设备可以通过RRC连接发送上行数据或者接收下行信令,而不是接收上述的下行早传数据;在第二种可能的实现中,终端设备根据所述随机接入资源触发随机接入,进而接收下行早传数据,例如终端设备可以向网络设备发送第一随机接入前导码,用于通知该终端设备在该网络设备的服务范围内,进而触发网络设备向终端设备发送下行早传数据,又例如终端设备可以向基站发送随机接入请求消息,基站可以通过随机接入请求消息确定所述终端设备的位置以及资源等信息,进而根据所述信息向终端设备发送下行早传数据。当然在本申请实施例中,是以PDCCH order消息所指示的随机接入资源可以用于终端设备接收下行早传数据为例。
在本申请实施例中,通过PDCCH命令来指示用于接收下行早传数据的随机接入资源,无需通过寻呼消息为终端设备分配随机接入资源,PDCCH order是通过终端设备的专用RNTI加扰的,其他的终端设备看不到其中的内容,相对于通过寻呼消息来分配随机接入资源的方案来说,有助于提高资源分配过程的安全性。而且无需通过寻呼消息分配随机接 入资源,也可以节省寻呼消息的容量,使得寻呼消息能够用于更多的其他用途。
S54、终端设备向第一网络设备发送第一preamble,第一网络设备接收来自终端设备的第一preamble。
终端设备接收第二消息后,可以向第一网络设备发送preamble。如果第二消息所包括的随机接入资源只包括第一preamble,则终端设备可以将第一preamble发送给第一网络设备。或者,如果第二消息所包括的随机接入资源包括了多个preamble,则终端设备可以根据该终端设备所在的位置确定该终端设备对应的第一波束(或者说第一SSB),并确定多个preamble中与第一波束(或者第一SSB)对应的preamble,例如为第一preamble,第一波束是终端设备对应的波束,第一SSB是第一波束所承载的SSB,从而终端设备可以将第一preamble发送给第一网络设备。
第一preamble可以用于响应第二消息,也可以认为,第一preamble是用于通知第一网络设备,该终端设备在第一网络设备的服务范围内,进而触发第一网络设备向终端设备发送下行早传数据。
另外,终端设备还可以恢复终端设备的上下文。例如第一消息为RRC释放消息,终端设备在被释放后,可以将终端设备的上下文挂起,或者去激活。而此时,终端设备后续需要接收下行早传数据,下行早传数据可能经过了加密和完整性保护等处理,终端设备如果要对下行早传数据进行解密及完整性保护校验等处理,就需要使用终端设备的上下文所包括的密钥等信息。因此终端设备可以恢复终端设备的上下文。
S55、第一网络设备根据下行资源配置信息,发送所述下行早传数据,终端设备根据所述下行配置信息,接收所述下行早传数据。
在本申请实施例中,例如终端设备在被释放后并未移动,或者终端设备虽然有所移动,但移动后仍然处于第一网络设备的覆盖范围内,因此可以视为第一网络设备是向终端设备发送下行早传数据,终端设备也是接收来自第一网络设备的下行早传数据。
具体的,第一网络设备在接收第一preamble后,可以是根据该下行资源配置信息发送调度信息,该调度信息用于调度下行早传数据。终端设备在进入第一状态后,可以根据下行资源配置信息检测调度信息,例如下行资源配置信息包括USS的配置、C-RNTI,另外第一消息还包括DRX配置信息,则终端设备可以在该USS的配置所指示的USS内,按照DRX配置信息所指示的DRX周期,使用该C-RNTI检测调度信息。第一网络设备在发送调度信息后,可以根据该调度信息,发送下行早传数据。而终端设备如果检测到了调度信息,也就可以根据该调度信息的调度,接收来自第一网络设备的下行早传数据。
其中,S55中第一网络设备所发送的下行早传数据可以是经过了加密以及完整性保护等处理的数据。终端设备接收该下行早传数据后,可以对该下行早传数据进行解密及完整性保护校验等处理,以得到原始数据。
作为一种可选的实施方式,第一网络设备还可以向终端设备发送上行时间提前量(time advance,TA),例如第一网络设备可以将上行TA随下行早传数据一并发送,或者第一网络设备也可以单独发送上行TA。该上行TA可以用于终端设备向第一网络设备发送对应于下行早传数据的确认消息。
S56、终端设备向第一网络设备发送确认消息,第一网络设备接收来自终端设备的确认消息。该确认消息可以指示终端设备接收到下行早传数据。
终端设备在接收下行早传数据后,可以向第一网络设备发送确认消息。如果第一网络 设备还向终端设备发送了上行TA,则终端设备可以根据该上行TA向第一网络设备发送该确认消息。该确认消息例如为肯定应答(ACK)消息,但该ACK消息是指示终端设备接收到下行早传数据,但该下行早传数据有可能接收正确,也有可能接收错误,例如该ACK消息可以指示下行早传数据接收正确或接收错误。
如果终端设备未接收下行早传数据,则终端设备也可以不向第一网络设备发送该确认消息。那么,如果第一网络设备未接收该确认消息,或者接收的确认消息指示下行早传数据接收错误,则第一网络设备都可以重传该下行早传数据,从而提高下行早传数据的接收成功率。
在本申请实施例中,第一消息可以不是寻呼消息,例如第一消息是专用信令,也就是说,本申请实施例可以通过专用信令为终端设备配置接收下行早传数据的资源,无需通过寻呼消息来配置。相对于通过寻呼消息来配置资源的方案来说,本申请实施例提供的技术方案提高了资源配置过程的安全性。并且,无需通过寻呼消息来配置资源,也有助于减小对寻呼容量的影响,使得寻呼消息能够有更多的用途。
另外,第一网络设备可以在终端设备的下行早传数据到达时,向终端设备发送第二消息。也就是说,第一网络设备可以在终端设备的下行早传数据到达时,再为终端设备分配随机接入资源,这样可以使得所分配的随机接入资源能够与终端设备当前所在的位置相对应。
图4所示的实施例和图5所示的实施例,都是以终端设备未移动出锚点网络设备的范围为例。下面,本申请实施例提供第三种通信方法,介绍终端设备移动出锚点网络设备的范围的场景。请参见图6,为该方法的流程图。在下文的介绍过程中,以该方法应用于图2所示的网络架构为例。
为了便于介绍,在下文中,以该方法由网络设备和终端设备执行为例。因为本实施例是以应用在图2所示的网络架构为例,因此,下文中所述的第一网络设备可以是图2所示的网络架构中的网络设备1,下文中所述的第二网络设备可以是图2所示的网络架构中的网络设备2,下文中所述的终端设备可以是图2所示的网络架构中的终端设备。
S61、第一网络设备确定下行资源配置信息,所述下行资源配置信息用于终端设备在处于第一状态时接收下行早传数据。第一状态可以是RRC非激活态或RRC空闲态。
例如第一网络设备可以是终端设备的锚点网络设备。
下行资源配置信息可以包括RNTI,或包括下行传输资源的时频域配置,或包括RNTI和下行传输资源的时频域配置,或者还可以包括其他的信息。
需要说明的是,所述下行资源配置信息可以是RAN notification area(RNA)内有效,也可以是仅在所述终端设备当前的服务小区内有效。如果所述下行资源配置信息是RNA内有效,所述终端设备在离开当前服务小区后,依然可以使用所述下行资源配置信息,接收下行早传数据。如果所述下行资源配置信息是仅在终端设备的当前服务小区内有效,所述终端设备离开当前服务小区之后,不能再使用所述下行资源配置信息接收下行早传数据,并且所述终端设备在离开当前小区后,需要通知第一网络设备。
关于S61的更多内容,例如对于下行资源配置信息的介绍等,均可参考图4所示的实施例中的S51的相关内容。
S62、第一网络设备向终端设备发送第一消息,终端设备接收来自第一网络设备的第一消息。第一消息可以用于指示所述的下行资源配置信息。
例如,第一消息可以是RRC释放消息,或者也可以是其他的消息。如果第一消息是RRC释放消息,则第一消息可以用于将终端设备从RRC连接态释放到第一状态。
为了节省终端设备的电量,作为一种可选的实施方式,网络设备还可以为终端设备配置DRX配置信息,例如,第一消息除了包括下行资源配置信息之外,还可以包括该DRX配置信息,或者,所述的下行资源配置信息可以包括该DRX配置信息,例如下行资源配置信息中的下行传输资源的时频域配置中可以包括该DRX配置信息。
终端设备接收第一消息后,可以立即根据该下行资源配置信息检测调度信息,从而根据调度信息接收下行早传数据。例如调度信息承载在下行控制信道(例如PDCCH)中,则终端设备接收第一消息后,就可以立即根据该下行资源配置信息检测PDCCH。
可选的,所述第一消息还可包括第二指示信息,所述第二指示信息用于指示所述下行资源配置信息是在RNA内有效,还是仅在当前服务小区有效。
关于S62的更多内容,例如对于DRX配置信息的介绍等,均可参考图4所示的实施例中的S52的相关内容。
S63、当终端设备的下行早传数据到达时,第一网络设备发送寻呼消息,第二网络设备接收来自第一网络设备的寻呼消息。该寻呼消息可以指示所述的下行早传数据到达。例如,该寻呼消息可以包括有下行早传数据到达的终端设备的标识,终端设备的标识例如为终端设备的身份号(ID)。
当有终端设备的下行早传数据到达时,第一网络设备可以向RNA区域内的所有网络设备发送寻呼消息,例如第二网络设备是RNA区域内的一个网络设备,则第二网络设备可以接收该寻呼消息。
作为一种可选的实施方式,寻呼消息还可以指示所述的下行资源配置信息。即,第一网络设备可以通过寻呼消息将下行资源配置信息指示给第二网络设备,从而第二网络设备可以根据该下行资源配置信息发送下行早传数据,或者说发送用于调度下行早传数据的调度信息。
或者,作为另一种可选的实施方式,第一网络设备也可以提前将所述的下行资源配置信息发送给第二网络设备,例如第一网络设备可以通过与第二网络设备之间的X2接口发送,或者可以通过其他的空口消息发送。如果是这种情况,则寻呼消息也可以不必指示所述的下行资源配置信息,有助于节省寻呼消息的容量。
S64、第二网络设备向终端设备发送第二消息,终端设备接收来自第二网络设备的第二消息。
在本申请实施例中,例如终端设备在被释放后发生了移动,移动后终端设备进入了第二网络设备的覆盖范围内,因此第二网络设备可以与终端设备进行交互。第二网络设备接收寻呼消息后,可以向终端设备发送第二消息。第二消息可以指示用于终端设备接收下行早传数据的随机接入资源,随机接入资源可以包括第一preamble。
关于S64的更多内容,例如对于第二消息的介绍等,均可参考图5所示的实施例中的S53的相关内容。
S65、终端设备向第二网络设备发送第一preamble,第二网络设备接收来自终端设备的第一preamble。
终端设备接收第二消息后,可以向第一网络设备发送preamble。如果第二消息所包括的随机接入资源只包括第一preamble,则终端设备可以将第一preamble发送给第一网络设 备。或者,如果第二消息所包括的随机接入资源包括了多个preamble,则终端设备可以根据该终端设备所在的位置确定该终端设备对应的第一波束(或者说第一SSB),并确定多个preamble中与第一波束(或者第一SSB)对应的preamble,例如为第一preamble,第一波束是终端设备对应的波束,第一SSB是第一波束所承载的SSB,从而终端设备可以将第一preamble发送给第一网络设备。
另外,终端设备还可以恢复终端设备的上下文。例如第一消息为RRC释放消息,终端设备在被释放后,可以将终端设备的上下文挂起,或者去激活。而此时,终端设备后续需要接收下行早传数据,下行早传数据可能经过了加密和完整性保护等处理,终端设备如果要对下行早传数据进行解密及完整性保护校验等处理,就需要使用终端设备的上下文所包括的密钥等信息。因此终端设备可以恢复终端设备的上下文。
S66、第二网络设备向第一网络设备发送请求消息,第一网络设备接收来自第二网络设备的请求消息。该请求消息可以用于请求所述的下行早传数据。
下行早传数据是存储在第一网络设备,如果第二网络设备接收了来自终端设备的第一preamble,表明该终端设备需要接收下行早传数据,则第二网络设备就可以向第一网络设备请求获得下行早传数据。
S67、第一网络设备向第二网络设备发送下行早传数据,第二网络设备接收来自第一网络设备的下行早传数据。
第一网络设备接收来自第二网络设备的请求消息后,就可以将下行早传数据发送给第二网络设备。其中,第一网络设备在S67中所发送的下行早传数据,可以是经过PDCP层处理后的数据,例如,是经过加密和完整性保护的数据。
可选的,第一网络设备还可以将终端设备的上下文所包括的RLC层的配置信息发送给第二网络设备。从而,如果终端设备需要与网络设备交互RLC层的信息,则可以与第二网络设备交互即可,无需再通过第二网络设备在终端设备和第一网络设备之间转发。
S68、第二网络设备根据下行资源配置信息,发送所述下行早传数据,终端设备根据所述下行配置信息,接收所述下行早传数据。
在本申请实施例中,例如终端设备在被释放后发生了移动,移动后终端设备进入了第二网络设备的覆盖范围内,因此可以视为第一网络设备是向第二网络设备发送下行早传数据,第二网络设备再将下行早传数据发送给终端设备,终端设备是接收来自第二网络设备的下行早传数据。
具体的,第二网络设备在接收来自第一网络设备的下行早传数据后,可以根据下行资源配置信息发送调度信息,该调度信息用于调度下行早传数据。终端设备在进入第一状态后,可以根据下行资源配置信息检测调度信息,例如下行资源配置信息包括USS的配置、C-RNTI,另外第一消息还包括DRX配置信息,则终端设备可以在该USS的配置所指示的USS内,按照DRX配置信息所指示的DRX周期,使用该C-RNTI检测调度信息。第二网络设备在发送调度信息后,可以根据该调度信息,发送下行早传数据。而终端设备如果检测到了调度信息,也就可以根据该调度信息的调度,接收来自第二网络设备的下行早传数据。
其中,S68中,第二网络设备可以转发来自第一网络设备的下行早传数据,因此第二网络设备所发送的下行早传数据可以是经过了加密以及完整性保护等处理的数据。终端设备接收该下行早传数据后,可以对该下行早传数据进行解密及完整性保护校验等处理,以 得到原始数据。
作为一种可选的实施方式,第一网络设备还可以向终端设备发送上行TA,例如第一网络设备可以将上行TA随下行早传数据一并发送,或者第一网络设备也可以单独发送上行TA。该上行TA可以用于终端设备向第一网络设备发送对应于下行早传数据的确认消息。
S69、终端设备向第一网络设备发送确认消息,第一网络设备接收来自终端设备的确认消息。该确认消息可以指示终端设备接收到下行早传数据。
终端设备在接收下行早传数据后,可以向第一网络设备发送确认消息。如果第一网络设备还向终端设备发送了上行TA,则终端设备可以根据该上行TA向第一网络设备发送该确认消息。该确认消息例如为ACK消息,但该ACK消息是指示终端设备接收到下行早传数据,但该下行早传数据有可能接收正确,也有可能接收错误,例如该ACK消息可以指示下行早传数据接收正确或接收错误。
如果终端设备未接收下行早传数据,则终端设备也可以不向第一网络设备发送该确认消息。那么,如果第一网络设备未接收该确认消息,或者接收的确认消息指示下行早传数据接收错误,则第一网络设备都可以重传该下行早传数据,从而提高下行早传数据的接收成功率。
在本申请实施例中,第一消息可以不是寻呼消息,例如第一消息是专用信令,另外,第二网络设备可以通过第二消息为终端设备配置随机接入资源,第二消息例如为PDCCH order。
如果第二消息是PDCCH order消息,那么作为一种可选的实施方式,第一消息指示的下行资源配置信息可以用于调度所述的PDCCH order消息。终端设备根据所述的下行资源配置信息可以接收该PDCCH order消息,PDCCH order消息可以指示用于终端设备的随机接入资源。
终端设备在接收PDCCH order消息后,可以根据PDCCH order消息所指示的随机接入资源接收下行数据,例如下行早传数据;或者,终端设备在接收PDCCH order消息后,也可以根据PDCCH order消息所指示的随机接入资源发起随机接入,但并不一定要接收下行数据。也就是说,PDCCH order消息所指示的随机接入资源可以用于终端设备接收下行早传数据,也可以用于终端设备进行随机接入,这样也提高了PDCCH order消息的利用率。具体的,RRC空闲态或者RRC非激活态的终端设备可以根据第一下行资源配置信息接收PDCCH order消息,并确定对应的随机接入资源,在第一种可能的实现中,终端设备根据所述随机接入资源进行随机接入过程,并进入RRC连接态,此时不接收上述的下行早传数据,例如终端设备可以通过RRC连接发送上行数据或者接收下行信令,而不是接收上述的下行早传数据;在第二种可能的实现中,终端设备根据所述随机接入资源触发随机接入,进而接收下行早传数据,例如终端设备可以向网络设备发送第一随机接入前导码,用于通知该终端设备在该网络设备的服务范围内,进而触发网络设备向终端设备发送下行早传数据,又例如终端设备可以向基站发送随机接入请求消息,基站可以通过随机接入请求消息确定所述终端设备的位置以及资源等信息,进而根据所述信息向终端设备发送下行早传数据。当然在本申请实施例中,是以PDCCH order消息所指示的随机接入资源可以用于终端设备接收下行早传数据为例。
PDCCH order是通过终端设备的专用RNTI加扰的,其他的终端设备看不到其中的内容,相对于通过寻呼消息来分配随机接入资源的方案来说,有助于提高资源分配过程的安 全性。并且,无需通过寻呼消息来配置资源,也有助于减小对寻呼容量的影响,使得寻呼消息能够有更多的用途。
另外,如果终端设备在被释放后并未移动,或者终端设备虽然有所移动,但移动后仍然处于第一网络设备的覆盖范围内,那么再考虑一个问题。在发送下行数据或者寻呼消息或者其他下行消息时,终端设备虽然是在第一网络设备下没有移动,或者移动范围较小,但是第一网络设备可能不知道终端设备究竟处于第一网络设备下的哪个波束方向,因此,第一网络设备在发送下行数据时候,只能通过波束扫描的方式发送,这样会较为浪费传输资源。为此,本申请实施例提出,对于处于静止状态或者低移动状态的终端设备,第一网络设备可以为该终端设备配置波束区域。需要说明的是,波束区域只是一个名称,它是指通过几个下行参考信号的波束定义的一块区域,这个区域通常比较小。如果终端设备一直停留在该波束区域,第一网络设备就可以只在该波束区域对应的波束上向该终端设备发送下行数据或者寻呼或者其他下行消息,终端设备只在所述波束区域内的波束对应的下行传输时机上,检测控制信息,而一旦该终端设备移动出该波束区域,就可以通知第一网络设备,避免第一网络设备仍然在该波束区域向该终端设备发送下行数据或者寻呼消息或者其他下行消息。本申请实施例通过第四种通信方法来介绍该方案。请参考图7,为该方法的流程图。在下文的介绍过程中,以该方法应用于图3所示的网络架构为例。
为了便于介绍,在下文中,以该方法由网络设备和终端设备执行为例。因为本实施例是以应用在图3所示的网络架构为例,因此,下文中所述的第一网络设备可以是图3所示的网络架构中的网络设备,下文中所述的终端设备可以是图3所示的网络架构中的终端设备。
S71、终端设备向第一网络设备发送第一消息,第一网络设备接收来自终端设备的第一消息。第一消息用于指示终端设备的移动状态。
例如第一消息可以指示该终端设备处于静止状态或低移动速度状态。低移动速度状态,即终端设备的移动速度较低,例如终端设备的移动速度小于或等于第一阈值,则认为终端设备处于低移动速度状态。第一阈值例如由第一网络设备配置,或者预配置在终端设备中,或者由终端设备自行确定,或者可以通过协议规定等。例如,第一消息可以是终端设备在处于RRC连接态时向第一网络设备发送的,例如第一消息可以是RRC消息,或者也可以是其他消息。
或者,第一网络设备也可以对来自终端设备的上行信号进行测量,根据测量结果也可以确定终端设备的移动状态。因此,通过终端设备向第一网络设备发送第一消息来指示终端设备的移动状态,只是可选的步骤。
S72、第一网络设备向终端设备发送第二消息,终端设备接收来自第一网络设备的第二消息。第二消息可以指示第一波束区域(beam area)。例如第一网络设备可以根据终端设备所在的位置确定第一波束区域。
例如,第二消息可以是RRC释放消息,或者也可以是其他消息。
以第二消息是RRC释放消息为例,则第一网络设备在将该终端设备释放到RRC非激活态或者RRC空闲态时,可以向终端设备指示第一波束区域,第一波束区域可以包括一个或多个波束。如果终端设备处于第一波束区域内,第一网络设备就只需通过第一波束区域包括的波束向终端设备发送下行数据即可,无需通过第一波束区域外的波束向终端设备发送,有助于节省传输资源,且因为终端设备处于第一波束区域的范围内,也可以尽量保 证终端设备能够正确接收下行数据或者寻呼消息或者其他下行消息。在终端设备的RRC连接释放时,网络设备可以通过第二消息为终端设备指定一个波束区域,进而,后续网络设备可以更快速地向RRC空闲态和/或RRC非激活态的终端设备发送早传数据。
例如,本申请实施例所述的下行数据可以是下行早传数据(关于下行早传数据的介绍可参考前述的各个实施例),或者也可以是其他的发送给RRC非激活态或RRC空闲态的终端设备的下行数据,例如寻呼消息或系统消息等。
例如,第二消息可以包括一个或多个下行参考信号的索引(index),即,第二消息可以包括一个或多个索引,其中的每个索引可以对应一个参考信号。这里的参考信号例如为SSB,或者为信道状态信息参考信号(channel state information-reference signal,CSI-RS),或者也可以是其他的参考信号。参考信号与波束可以是一一对应的关系,第二消息包括的一个或多个索引,就对应了属于第一波束区域的一个或多个波束。也就是说,第二消息通过一个或多个索引,就指示了第一波束区域。
当然,第二消息也可以通过其他方式指示第一波束区域。例如可以事先划分多个波束区域,每个波束区域可以对应一个序列号。例如可以由第一网络设备划分多个波束区域,或者也可以通过协议规定等。波束区域与序列号之间的对应关系是第一网络设备和终端设备都已知的,那么第二消息只需包括第一波束区域的序列号,就可以指示第一波束区域。
可选地,第二消息还可以包括一个或多个门限,所述的门限例如为参考信号接收功率(reference signal receiving power,RSRP)门限或参考信号接收质量(reference signal receiving quality,RSRQ)门限。如果第二消息只包括一个门限,代表该门限可供第一波束区域所对应的所有的参考信号共用,如果第二消息包括多个门限,例如第二消息包括的门限的个数可以与第一波束区域所对应的参考信号的个数相等,即,参考信号与门限可以是一一对应的关系。第二消息所包括的门限可以用于终端设备确定终端设备是否移动出了第一波束区域,关于这部分内容,将在后文的步骤中予以介绍。
S73、第一网络设备通过第一波束区域包括的波束向终端设备发送第一下行数据,终端设备接收来自第一波束区域所包括的波束的第一下行数据。
第一网络设备通过第二消息向终端设备指示了第一波束区域,则第一网络设备在向终端设备发送第一下行数据时,可以通过第一波束区域所包括的部分波束或全部波束中的每个波束来向终端设备发送,从而可以使得终端设备能够正确接收下行数据或者寻呼消息或者其他下行消息,而且第一网络设备无需通过第一波束区域之外的波束向终端设备发送第一下行数据,有助于节省传输资源。
在一种可能的实现中,终端设备可以根据第一搜索空间配置接收所述第一下行数据。所述第一搜索空间配置是通过第二消息指示的,或者所述第一搜索空间配置是在第二消息之前由网络设备发送的。
其中,第一搜索空间配置用于调度第一下行数据,第一搜索空间配置可以为公共的搜索空间配置,例如寻呼的搜索空间配置,系统消息(SIB1,或者其他系统消息块)的搜索空间配置;也可以为终端设备特有的搜索空间配置。通过第一搜索空间配置,网络设备可以动态地调度第一下行数据。
具体的,所述终端设备在接收第一下行数据时,可以根据第一搜索空间配置检测第一下行数据的控制信息。所述终端设备根据第一搜索空间配置可以确定第一下行参考信号编号对应的检测时机(monitor occasion),所述第一下行参考信号编号为第一波束区域所对应 的下行参考信号编号中的一个或多个。由于第一网络设备是在第一波束区域对应的下行参考信号方向上发送第一下行数据,所述终端设备只需要在第一下行参考信号编号上检测第一下行数据的控制信息,进而,可以降低终端设备检测次数,节省终端设备能耗。
需要说明的是,上述的第一下行数据可以是下行数据或者寻呼消息或者其他下行消息。
S74、终端设备向第一网络设备发送第三消息,第一网络设备接收来自终端设备的第三消息。第三消息可以指示终端设备移动出了第一波束区域。
如果终端设备在第一波束区域的范围内移动,则终端设备可以无需告知第一网络设备。但如果终端设备移动出了第一波束区域,则终端设备可以通知第一网络设备,从而使得第一网络设备明确终端设备已经移动出了第一波束区域,如果再向终端设备发送下行数据,不适合再通过第一波束区域所包括的波束来发送,避免传输资源的浪费。
例如,终端设备可以根据门限确定该终端设备是否移动出了第一波束区域,下面举例介绍。
例如,如果第二消息未包括门限,那么终端设备可以根据预设的门限确定该终端设备是否移动出了第一波束区域。预设的门限例如是第一网络设备配置的,或者预配置在终端设备中,或者通过协议规定等。例如,第一网络设备可以通过第一波束区域的全部波束中的每个波束发送参考信号,终端设备可以对来自第一波束区域的全部波束中的每个波束的参考信号进行测量,得到测量结果,或者,终端设备可以对来自第一波束区域的部分波束中的每个波束的参考信号进行测量,得到测量结果,测量结果例如为RSRP或RSRQ等。其中,测量结果需要与预设的门限匹配,例如,预设的门限为RSRP门限,则测量结果可以是RSRP,或者,预设的门限为RSRQ门限,则测量结果可以是RSRQ。如果终端设备确定所得到的每个测量结果均小于预设的门限,则可以确定终端设备移动出了第一波束区域。否则,只要有一个测量结果大于预设的门限,就不能确定终端设备移动出了第一波束区域。
或者,第二消息包括一个门限,该门限为RSRP门限或RSRQ门限,那么终端设备可以根据该门限确定该终端设备是否移动出了第一波束区域。例如,第一网络设备可以通过第一波束区域的全部波束中的每个波束发送参考信号,终端设备可以对来自第一波束区域的全部波束中的每个波束的参考信号进行测量,得到测量结果,或者,终端设备可以对来自第一波束区域的部分波束中的每个波束的参考信号进行测量,得到测量结果,测量结果例如为RSRP或RSRQ等。其中,测量结果需要与预设的门限匹配,例如,第二消息包括的门限为RSRP门限,则测量结果可以是RSRP,或者,第二消息包括的门限为RSRQ门限,则测量结果可以是RSRQ。如果终端设备确定所得到的每个测量结果均小于第二消息包括的门限,则可以确定终端设备移动出了第一波束区域。否则,只要有一个测量结果大于第二消息包括的门限,就不能确定终端设备移动出了第一波束区域。
或者,第二消息包括多个门限,例如第一波束区域包括的波束(或者说,参考信号)与第二消息包括的门限是一一对应的关系。第二消息包括的多个门限可以均为RSRP门限,或者均为RSRQ门限,或者部分门限是RSRP门限,剩余的门限是RSRQ门限。那么终端设备可以根据这多个门限确定该终端设备是否移动出了第一波束区域。例如,第一网络设备可以通过第一波束区域的全部波束中的每个波束发送参考信号,终端设备可以对来自第一波束区域的全部波束中的每个波束的参考信号进行测量,得到测量结果,或者,终端设备可以对来自第一波束区域的部分波束中的每个波束的参考信号进行测量,得到测量结果, 测量结果例如为RSRP或RSRQ等。其中,测量结果需要与预设的门限匹配,例如对于一个波束来说,第二消息包括的该波束对应的门限为RSRP门限,则终端设备对来自该波束的参考信号的测量结果可以是RSRP,或者,对于一个波束来说,第二消息包括的该波束对应的门限为RSRQ门限,则终端设备对来自该波束的参考信号的测量结果可以是RSRQ。如果终端设备确定所得到的每个测量结果均小于所述的每个测量结果所对应的门限,则可以确定终端设备移动出了第一波束区域。否则,只要有一个测量结果大于该测量结果对应的门限,就不能确定终端设备移动出了第一波束区域。
例如,第一波束区域包括波束1和波束2,波束1对应于参考信号1,波束2对应于参考信号2。第二消息包括门限1和门限2,门限1对应于波束1,门限2对应于波束2。例如门限1和门限2均为RSRP门限。第一网络设备通过波束1向终端设备发送参考信号1,以及通过波束2向终端设备发送参考信号2。终端设备接收来自波束1的参考信号1,以及接收来自波束2的参考信号2。终端设备对参考信号1进行测量,得到RSRP 1,以及对参考信号2进行测量,得到RSRP 2。终端设备确定RSRP 1与门限1的大小关系,以及确定RSRP 2与门限2的大小关系。例如,终端设备确定RSRP 1小于门限1,以及确定RSRP 2小于门限2,则终端设备可以确定终端设备移动出了第一波束区域。
上述的确定终端设备是否移动出了第一波束区域的几种方式只是举例,本申请实施例不限制终端设备如何确定该终端设备是否移动出了第一波束区域。
S75、第一网络设备向终端设备发送第四消息,终端设备接收来自第一网络设备的第四消息。第四消息可以指示第二波束区域。例如第一网络设备可以根据终端设备所在的新的位置确定第二波束区域。
第一网络设备确定终端设备移动出第一波束区域后,可以根据终端设备的新的位置,为终端设备重新分配波束区域,例如为第二波束区域。从而第一网络设备后续向终端设备发送下行数据时可以通过第二波束区域所包括的全部波束或部分波束中的每个波束来发送,而无需通过第二波束区域外的其他波束来发送,以节省传输资源。
第一网络设备向终端设备指示第二波束区域的方式,可参考S72中第一网络设备向终端设备指示第一波束区域的方式,不多赘述。
S76、第一网络设备通过第二波束区域包括的波束向终端设备发送第二下行数据,终端设备接收来自第二波束区域所包括的波束的第二下行数据。
第一网络设备通过第四消息向终端设备重新指示了第二波束区域,则第一网络设备在向终端设备发送下行数据(例如此时发送的下行数据是第二下行数据)时,可以通过第二波束区域所包括的部分波束或全部波束中的每个波束来向终端设备发送,而不再通过第一波束区域所包括的波束发送,从而可以使得终端设备能够正确接收下行数据或者寻呼消息或者其他下行消息。而且第一网络设备无需通过第二波束区域之外的波束向终端设备发送第二下行数据,有助于节省传输资源。
后续,终端设备还可以确定是否移动出了第二波束区域,如果确定移动出了第二波束区域,则终端设备可以继续通知第一网络设备,从而第一网络设备可以再次为终端设备确定新的波束区域,以此类推。
通过本申请实施例所提供的方法,可以为终端设备指示波束区域,从而第一网络设备只需通过终端设备对应的波束区域内的波束向终端设备发送下行数据即可,无需通过该波束区域外的波束向终端设备发送下行数据,有助于节省传输资源,也提高数据发送的成功 率。
下面结合附图介绍本申请实施例中用来实现上述方法的装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图8为本申请实施例提供的通信装置800的示意性框图。示例性地,通信装置800例如为终端设备800。
终端设备800包括处理模块810和收发模块820。示例性地,终端设备800可以是网络设备,也可以是应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当终端设备800是终端设备时,收发模块820可以是收发器,收发器可以包括天线和射频电路等,处理模块810可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个中央处理单元(central processing unit,CPU)。当终端设备800是具有上述终端设备功能的部件时,收发模块820可以是射频单元,处理模块810可以是处理器,例如基带处理器。当终端设备800是芯片系统时,收发模块820可以是芯片(例如基带芯片)的输入输出接口、处理模块810可以是芯片系统的处理器,可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块810可以由处理器或处理器相关电路组件实现,收发模块820可以由收发器或收发器相关电路组件实现。
例如,处理模块810可以用于执行图4所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如根据第一消息确定下行资源配置信息的操作,和/或用于支持本文所描述的技术的其它过程。收发模块820可以用于执行图4所示的实施例中由终端设备所执行的全部接收操作,例如S42~S44,和/或用于支持本文所描述的技术的其它过程。
又例如,处理模块810可以用于执行图5所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如根据第一消息确定下行资源配置信息的操作,和/或用于支持本文所描述的技术的其它过程。收发模块820可以用于执行图5所示的实施例中由终端设备所执行的全部接收操作,例如S52~S56,和/或用于支持本文所描述的技术的其它过程。
再例如,处理模块810可以用于执行图6所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如根据第一消息确定下行资源配置信息的操作,和/或用于支持本文所描述的技术的其它过程。收发模块820可以用于执行图6所示的实施例中由终端设备所执行的全部接收操作,例如S62、S64、S65、S68和S69,和/或用于支持本文所描述的技术的其它过程。
再例如,处理模块810可以用于执行图7所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如确定终端设备的移动状态的操作,和/或用于支持本文所描述的技术的其它过程。收发模块820可以用于执行图7所示的实施例中由终端设备所执行的全部接收操作,例如S71~S76,和/或用于支持本文所描述的技术的其它过程。
另外,收发模块820可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块820可以用于执行图4所示的实施例至图7所示的实施例中的任一个实施例中由终端设备所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块820是发送模块,而在执行接收操作时,可以认为收发模块820是接收模块;或者,收发模块820也可以是两个功能模块,收发模块可以视为这两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行图4所示的实施例至图7所示的实施例中的任一个实施例中由终端设备所执行的全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行图4所 示的实施例至图7所示的实施例中的任一个实施例中由终端设备所执行的全部接收操作。
其中,收发模块820,用于接收第一消息,所述第一消息用于指示下行资源配置信息,所述下行资源配置信息用于终端设备800在处于RRC非激活态或RRC空闲态时接收下行早传数据;
收发模块820,还用于根据所述下行资源配置信息,接收所述下行早传数据。
或者,
收发模块820,用于接收第一消息;
处理模块810,用于确定所述第一消息用于指示下行资源配置信息,所述下行资源配置信息用于终端设备800在处于RRC非激活态或RRC空闲态时接收下行早传数据;
收发模块820,还用于根据所述下行资源配置信息,接收所述下行早传数据。
作为一种可选的实施方式,收发模块820用于通过如下方式根据所述下行资源配置信息,接收所述下行早传数据:
根据所述下行资源配置信息,检测调度信息,所述调度信息用于调度所述下行早传数据;
根据所述调度信息,接收所述下行早传数据。
作为一种可选的实施方式,所述下行资源配置信息包括RNTI和/或下行传输资源的时频域配置,所述RNTI用于加扰所述调度信息,所述下行传输资源的时频域配置用于指示所述调度信息的时域位置和频域位置。
作为一种可选的实施方式,所述的下行资源配置信息与上行数据早传中的下行资源配置信息,是相同的配置信息,或者是不同的配置信息。
作为一种可选的实施方式,所述第一消息还包括第一指示信息,所述第一指示信息用于指示所述的下行资源配置信息是用于接收下行早传数据,或者指示所述的下行资源配置信息是用于上行数据早传的下行反馈,或者指示用于上行数据早传中的上行数据反馈的下行资源配置信息也用于接收下行早传数据。
作为一种可选的实施方式,所述第一消息还包括DRX配置信息,所述DRX配置信息用于指示所述下行早传数据的传输时段。
作为一种可选的实施方式,所述DRX配置信息包括DRX周期和/或偏移量,所述偏移量用于指示所述DRX周期的时域起始位置的偏移。
作为一种可选的实施方式,收发模块820,还用于在接收所述下行早传数据之后,发送确认消息,所述确认消息用于指示终端设备800接收到所述下行早传数据。
作为一种可选的实施方式,所述确认消息为第一随机接入前导码。
作为一种可选的实施方式,所述第一消息还用于指示用于终端设备800接收所述下行早传数据的随机接入资源,所述随机接入资源包括所述第一随机接入前导码。
作为一种可选的实施方式,收发模块820,还用于在根据所述下行资源配置信息,接收所述下行早传数据之前,接收第二消息,所述第二消息指示用于终端设备800接收所述下行早传数据的随机接入资源,所述随机接入资源包括至少一个SSB对应的至少一个随机接入前导码,所述至少一个随机接入前导码包括所述第一随机接入前导码。
作为一种可选的实施方式,所述第二消息为PDCCH order消息。
作为一种可选的实施方式,若所述第二消息为PDCCH order消息,所述第一消息指示的下行资源配置信息可以用于调度所述的PDCCH order消息,收发模块820,还用于根据 所述的下行资源配置信息接收所述PDCCH order消息,所述PDCCH order消息可以指示用于终端设备800的随机接入资源。
作为一种可选的实施方式,收发模块820,还用于在接收所述下行早传数据之前,发送所述第一随机接入前导码。
图9为本申请实施例提供的通信装置900的示意性框图。示例性地,通信装置900例如为第一网络设备900。
第一网络设备900包括处理模块910和收发模块920。示例性地,第一网络设备900可以是第一网络设备,也可以是应用于第一网络设备中的芯片或者其他具有上述第一网络设备功能的组合器件、部件等。当第一网络设备900是第一网络设备时,收发模块920可以是收发器,收发器可以包括天线和射频电路等,处理模块910可以是处理器,处理器中可以包括一个或多个CPU。当第一网络设备900是具有上述第一网络设备功能的部件时,收发模块920可以是射频单元,处理模块910可以是处理器,例如基带处理器。当第一网络设备900是芯片系统时,收发模块920可以是芯片(例如基带芯片)的输入输出接口、处理模块910可以是芯片系统的处理器,可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块910可以由处理器或处理器相关电路组件实现,收发模块920可以由收发器或收发器相关电路组件实现。
例如,处理模块910可以用于执行图4所示的实施例中由第一网络设备所执行的除了收发操作之外的全部操作,例如S41,和/或用于支持本文所描述的技术的其它过程。收发模块920可以用于执行图4所示的实施例中由第一网络设备所执行的全部接收操作,例如S42~S44,和/或用于支持本文所描述的技术的其它过程。
又例如,处理模块910可以用于执行图5所示的实施例中由第一网络设备所执行的除了收发操作之外的全部操作,例如S51,和/或用于支持本文所描述的技术的其它过程。收发模块920可以用于执行图5所示的实施例中由第一网络设备所执行的全部接收操作,例如S52~S56,和/或用于支持本文所描述的技术的其它过程。
再例如,处理模块910可以用于执行图6所示的实施例中由第一网络设备所执行的除了收发操作之外的全部操作,例如S61,和/或用于支持本文所描述的技术的其它过程。收发模块920可以用于执行图6所示的实施例中由第一网络设备所执行的全部接收操作,例如S62、S63、S66和S67,和/或用于支持本文所描述的技术的其它过程。
再例如,处理模块910可以用于执行图7所示的实施例中由第一网络设备所执行的除了收发操作之外的全部操作,例如根据终端设备的位置为终端设备确定波束区域的操作,和/或用于支持本文所描述的技术的其它过程。收发模块920可以用于执行图7所示的实施例中由第一网络设备所执行的全部接收操作,例如S71~S76,和/或用于支持本文所描述的技术的其它过程。
另外,收发模块920可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块920可以用于执行图4所示的实施例至图7所示的实施例中的任一个实施例中由第一网络设备所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块920是发送模块,而在执行接收操作时,可以认为收发模块920是接收模块;或者,收发模块920也可以是两个功能模块,收发模块可以视为这两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行图4所示的实施例至图7所示的实施例中的任一个实施例中由第一网 络设备所执行的全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行图4所示的实施例至图7所示的实施例中的任一个实施例中由第一网络设备所执行的全部接收操作。
其中,处理模块910,用于确定下行资源配置信息,所述下行资源配置信息用于指示终端设备在处于第一状态时接收下行早传数据,所述第一状态为RRC非激活态或RRC空闲态;
收发模块920,用于根据所述下行资源配置信息,发送所述下行早传数据。
作为一种可选的实施方式,收发模块920用于通过如下方式根据所述下行资源配置信息,发送所述下行早传数据:
根据所述下行资源配置信息,发送调度信息,所述调度信息用于调度所述下行早传数据;
根据所述调度信息,发送所述下行早传数据。
作为一种可选的实施方式,所述下行资源配置信息包括RNTI和/或下行传输资源的时频域配置,所述RNTI用于加扰所述调度信息,所述下行传输资源的时频域配置用于指示所述调度信息的时域位置和频域位置。
作为一种可选的实施方式,所述的下行资源配置信息与上行数据早传中的下行资源配置信息,是相同的配置信息,或者是不同的配置信息。
作为一种可选的实施方式,所述第一消息还包括第一指示信息,所述第一指示信息用于指示所述的下行资源配置信息是用于接收下行早传数据,或者指示所述的下行资源配置信息是用于上行数据早传的下行反馈,或者指示用于上行数据早传中的上行数据反馈的下行资源配置信息也用于接收下行早传数据。
作为一种可选的实施方式,所述第一消息还包括DRX配置信息,所述DRX配置信息用于指示所述下行早传数据的传输时段。
作为一种可选的实施方式,所述DRX配置信息包括DRX周期和/或偏移量,所述偏移量用于指示所述DRX周期的时域起始位置的偏移。
作为一种可选的实施方式,收发模块920,还用于当所述下行早传数据到达时,向第二网络设备发送寻呼消息,所述寻呼消息用于指示所述下行早传数据到达,第一网络设备900是所述终端设备的锚点网络设备,所述第二网络设备是所述终端设备驻留的网络设备。
作为一种可选的实施方式,所述寻呼消息还用于指示所述下行资源配置信息。
作为一种可选的实施方式,收发模块920用于通过如下方式根据所述下行资源配置信息,发送所述下行早传数据:
根据所述下行资源配置信息向所述终端设备发送所述下行早传数据;或,
根据所述下行资源配置信息向第二网络设备发送所述下行早传数据;
其中,第一网络设备900是所述终端设备的锚点网络设备,所述第二网络设备是所述终端设备驻留的网络设备。
或者,作为一种可选的实施方式,收发模块920用于通过如下方式根据所述下行资源配置信息,发送所述下行早传数据:
根据所述下行资源配置信息向所述终端设备发送所述下行早传数据;或,
向第二网络设备发送所述下行早传数据;
其中,第一网络设备900是所述终端设备的锚点网络设备,所述第二网络设备是所述 终端设备驻留的网络设备。
作为一种可选的实施方式,收发模块920,还用于在根据所述下行资源配置信息向所述终端设备发送所述下行早传数据之后,接收来自所述终端设备的确认消息,所述确认消息用于指示所述终端设备接收到所述下行早传数据。
作为一种可选的实施方式,所述确认消息为随机接入前导码。
作为一种可选的实施方式,所述第一消息还用于指示用于所述终端设备接收所述下行早传数据的随机接入资源,所述随机接入资源包括所述随机接入前导码。
作为一种可选的实施方式,收发模块920,还用于在根据所述下行资源配置信息向所述终端设备发送所述下行早传数据之前,向所述终端设备发送第二消息,所述第二消息指示用于所述终端设备接收所述下行早传数据的随机接入资源,所述随机接入资源包括至少一个SSB对应的至少一个随机接入前导码。
作为一种可选的实施方式,所述第二消息为PDCCH order消息。
作为一种可选的实施方式,若所述第二消息为PDCCH order消息,所述第一消息指示的下行资源配置信息可以用于调度所述的PDCCH order消息,所述PDCCH order消息可以指示用于所述终端设备的随机接入资源。
作为一种可选的实施方式,收发模块920,还用于接收来自所述终端设备的第一随机接入前导码,所述第一随机接入前导码属于所述至少一个随机接入前导码。
图10为本申请实施例提供的通信装置1000的示意性框图。示例性地,通信装置1000例如为第二网络设备1000。
第二网络设备1000包括处理模块1010和收发模块1020。示例性地,第二网络设备1000可以是网络设备,也可以是应用于第二网络设备中的芯片或者其他具有上述第二网络设备功能的组合器件、部件等。当第二网络设备1000是第二网络设备时,收发模块1020可以是收发器,收发器可以包括天线和射频电路等,处理模块1010可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个CPU。当第二网络设备1000是具有上述第二网络设备功能的部件时,收发模块1020可以是射频单元,处理模块1010可以是处理器,例如基带处理器。当第二网络设备1000是芯片系统时,收发模块1020可以是芯片(例如基带芯片)的输入输出接口、处理模块1010可以是芯片系统的处理器,可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块1010可以由处理器或处理器相关电路组件实现,收发模块1020可以由收发器或收发器相关电路组件实现。
其中,处理模块1010可以用于执行图6所示的实施例中由第二网络设备所执行的除了收发操作之外的全部操作,例如根据来自第一网络设备的寻呼消息确定有终端设备的下行早传数据到达的操作,和/或用于支持本文所描述的技术的其它过程。收发模块1020可以用于执行图6所示的实施例中由第二网络设备所执行的全部接收操作,例如S63~S69,和/或用于支持本文所描述的技术的其它过程。
另外,收发模块1020可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块1020可以用于执行图6所示的实施例中由第二网络设备所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块1020是发送模块,而在执行接收操作时,可以认为收发模块1020是接收模块;或者,收发模块1020也可以是两个功能模块,收发模块可以视为这两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行图6所 示的实施例中由第二网络设备所执行的全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行图6所示的实施例中由第二网络设备所执行的全部接收操作。
其中,收发模块1020,用于接收来自第一网络设备的寻呼消息,所述寻呼消息用于指示有终端设备的下行早传数据到达,所述第一网络设备是所述终端设备的锚点网络设备,第二网络设备1000是所述终端设备驻留的网络设备;
收发模块1020,还用于向所述终端设备发送第二消息,所述第二消息指示用于所述终端设备接收所述下行早传数据的随机接入资源,所述随机接入资源包括至少一个SSB对应的至少一个随机接入前导码,所述第二消息为PDCCH order消息。
或者,
收发模块1020,用于接收来自第一网络设备的寻呼消息;
处理模块1010,用于确定所述寻呼消息用于指示有终端设备的下行早传数据到达,所述第一网络设备是所述终端设备的锚点网络设备,第二网络设备1000是所述终端设备驻留的网络设备;
收发模块1020,还用于向所述终端设备发送第二消息,所述第二消息指示用于所述终端设备接收所述下行早传数据的随机接入资源,所述随机接入资源包括至少一个SSB对应的至少一个随机接入前导码,所述第二消息为PDCCH order消息。
作为一种可选的实施方式,若所述第二消息为PDCCH order消息,所述第一消息指示的下行资源配置信息可以用于调度所述的PDCCH order消息,所述PDCCH order消息可以指示用于所述终端设备的随机接入资源。
作为一种可选的实施方式,收发模块1020,还用于接收来自所述终端设备的第一随机接入前导码,所述第一随机接入前导码属于所述至少一个随机接入前导码。
作为一种可选的实施方式,所述寻呼消息还用于指示下行资源配置信息,所述下行资源配置信息用于所述终端设备在处于RRC非激活态或RRC空闲态时接收所述下行早传数据。
作为一种可选的实施方式,所述下行资源配置信息包括RNTI和/或下行传输资源的时频域配置,所述RNTI用于加扰所述调度信息,所述下行传输资源的时频域配置用于指示所述调度信息的时域位置和频域位置。
作为一种可选的实施方式,所述的下行资源配置信息与上行数据早传中的下行资源配置信息,是相同的配置信息,或者是不同的配置信息。
作为一种可选的实施方式,所述第一消息还包括第一指示信息,所述第一指示信息用于指示所述的下行资源配置信息是用于接收下行早传数据,或者指示所述的下行资源配置信息是用于上行数据早传的下行反馈,或者指示用于上行数据早传中的上行数据反馈的下行资源配置信息也用于接收下行早传数据。
作为一种可选的实施方式,收发模块1020还用于:
向第一网络设备发送请求消息,所述请求消息用于请求所述下行早传数据;
接收来自所述第一网络设备的所述下行早传数据;
将所述下行早传数据发送给所述终端设备。
本申请实施例还提供一种通信装置,该通信装置可以是终端设备也可以是电路。该通信装置可以用于执行上述方法实施例中由终端设备所执行的动作。
当该通信装置为终端设备时,图11示出了一种简化的终端设备的结构示意图。便于理 解和图示方便,图11中,终端设备以手机作为例子。如图11所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图11中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元(收发单元可以是一个功能单元,该功能单元能够实现发送功能和接收功能;或者,收发单元也可以包括两个功能单元,分别为能够实现接收功能的接收单元和能够实现发送功能的发送单元),将具有处理功能的处理器视为终端设备的处理单元。如图11所示,终端设备包括收发单元1110和处理单元1120。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1110中用于实现接收功能的器件视为接收单元,将收发单元1110中用于实现发送功能的器件视为发送单元,即收发单元1110包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1110用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1120用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,处理单元1120可以用于执行图4所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如根据第一消息确定下行资源配置信息的操作,和/或用于支持本文所描述的技术的其它过程。收发单元1110可以用于执行图4所示的实施例中由终端设备所执行的全部接收操作,例如S42~S44,和/或用于支持本文所描述的技术的其它过程。
又例如,在一种实现方式中,处理单元1120可以用于执行图5所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如根据第一消息确定下行资源配置信息的操作,和/或用于支持本文所描述的技术的其它过程。收发单元1110可以用于执行图5所示的实施例中由终端设备所执行的全部接收操作,例如S52~S56,和/或用于支持本文所描述的技术的其它过程。
再例如,在一种实现方式中,处理单元1120可以用于执行图6所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如根据第一消息确定下行资源配置信息的操作,和/或用于支持本文所描述的技术的其它过程。收发单元1110可以用于执行图6所 示的实施例中由终端设备所执行的全部接收操作,例如S62、S64、S65、S68和S69,和/或用于支持本文所描述的技术的其它过程。
再例如,在一种实现方式中,处理单元1120可以用于执行图7所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如确定终端设备的移动状态的操作,和/或用于支持本文所描述的技术的其它过程。收发单元1110可以用于执行图7所示的实施例中由终端设备所执行的全部接收操作,例如S71~S76,和/或用于支持本文所描述的技术的其它过程。
当该通信装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
本实施例中的通信装置为终端设备时,可以参照图12所示的设备。作为一个例子,该设备可以完成类似于图8中处理模块810的功能。在图12中,该设备包括处理器1210,发送数据处理器1220,接收数据处理器1230。上述实施例中的处理模块810可以是图12中的该处理器1210,并完成相应的功能;上述实施例中的收发模块820可以是图12中的发送数据处理器1220,和/或接收数据处理器1230,并完成相应的功能。虽然图12中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图13示出本实施例的另一种形式。处理装置1300中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信装置可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器1303,接口1304。其中,处理器1303完成上述处理模块810的功能,接口1304完成上述收发模块820的功能。作为另一种变形,该调制子系统包括存储器1306、处理器1303及存储在存储器1306上并可在处理器上运行的程序,该处理器1303执行该程序时实现上述方法实施例中终端设备侧的方法。需要注意的是,所述存储器1306可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置1300中,只要该存储器1306可以连接到所述处理器1303即可。
本申请实施例中的装置为第一网络设备或第二网络设备时,该装置可以如图14所示。装置1400包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1410和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1420。所述RRU1410可以称为收发模块,该收发模块可以包括发送模块和接收模块,或者,该收发模块可以是一个能够实现发送和接收功能的模块。该收发模块可以与图9中的收发模块920对应;或者,该收发模块与图10中的收发模块1020对应。可选地,该收发模块还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1411和射频单元1412。所述RRU 1410部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU1410部分主要用于进行基带处理,对基站进行控制等。所述RRU 1410与BBU1420可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1420为基站的控制中心,也可以称为处理模块,可以与图9中的处理模块910对应,或者可以与图10中的处理模块1010对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 1420可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网络),也可以分别支持不同接入制式的无线接入网(如LTE网络,5G网络或其他网络)。所述BBU 1420还包括存储器1421和处理器1422。所述存储器1421用以存储必要的指令和数据。所述处理器1422用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器1421和处理器1422可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本申请实施例提供一种通信系统。该通信系统可以包括上述的图4所示的实施例至图7所示的实施例中的任一个实施例所涉及的终端设备。终端设备例如为图8中的终端设备800。
作为一种可选的实施方式,该通信系统还可以包括上述的图4所示的实施例至图7所示的实施例中的任一个实施例所涉及的第一网络设备。第一网络设备例如为图9中的第一网络设备900。
作为一种可选的实施方式,该通信系统还可以包括上述的6所示的实施例所涉及的第二网络设备。第二网络设备例如为图10中的第二网络设备1000。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图4所示的实施例中与第一网络设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图4所示的实施例中与终端设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图5所示的实施例中与第一网络设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图5所示的实施例中与终端设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图6所示的实施例中与第一网络设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图6所示的实施例中与第二网络设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图6所示的实施例中与终端设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图7所示的实施例中与第一网络设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图7所示的实施例中与终端设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图4所示的实施例中与第一网络设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图4所示的实施例中与终端设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图5所示的实施例中与第一网络设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图5所示的实施例中与终端设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图6所示的实施例中与第一网络设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图6所示的实施例中与第二网络设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图6所示的实施例中与终端设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图7所示的实施例中与第一网络设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图7所示的实施例中与终端设备相关的流程。
应理解,本申请实施例中提及的处理器可以是CPU,还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM), 其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的计算机可读存储介质,可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦可编程只读存储器(electrically erasable programmable read only memory,EEPROM)、紧凑型光盘只读存储器(compact disc read-only memory,CD-ROM)、通用串行总线闪存盘(universal serial bus flash disk)、移动硬盘、或其他光盘 存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (48)

  1. 一种通信方法,其特征在于,包括:
    接收第一消息,所述第一消息用于指示下行资源配置信息,所述下行资源配置信息用于终端设备在处于无线资源控制RRC非激活态或RRC空闲态时接收下行早传数据;
    根据所述下行资源配置信息,接收所述下行早传数据。
  2. 根据权利要求1所述的方法,其特征在于,根据所述下行资源配置信息,接收所述下行早传数据,包括:
    根据所述下行资源配置信息,检测调度信息,所述调度信息用于调度所述下行早传数据;
    根据所述调度信息,接收所述下行早传数据。
  3. 根据权利要求2所述的方法,其特征在于,所述下行资源配置信息包括无线网络临时标识RNTI和/或下行传输资源的时频域配置,所述RNTI用于加扰所述调度信息,所述下行传输资源的时频域配置用于指示所述调度信息的时域位置和频域位置。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述第一消息还包括非连续接收DRX配置信息,所述DRX配置信息用于指示所述下行早传数据的传输时段。
  5. 根据权利要求4所述的方法,其特征在于,所述DRX配置信息包括DRX周期和/或偏移量,所述偏移量用于指示所述DRX周期的时域起始位置的偏移。
  6. 根据权利要求1~5任一项所述的方法,其特征在于,在接收所述下行早传数据之后,还包括:
    发送第一随机接入前导码,所述第一随机接入前导码用于指示接收到所述下行早传数据。
  7. 根据权利要求6所述的方法,其特征在于,所述第一消息还用于指示用于接收所述下行早传数据的随机接入资源,所述随机接入资源包括所述第一随机接入前导码。
  8. 根据权利要求1~5任一项所述的方法,其特征在于,在根据所述下行资源配置信息,接收所述下行早传数据之前,还包括:
    接收第二消息,所述第二消息指示用于接收所述下行早传数据的随机接入资源,所述随机接入资源包括至少一个同步信号和物理广播信道块SSB对应的至少一个随机接入前导码,所述至少一个随机接入前导码包括所述第一随机接入前导码。
  9. 根据权利要求8所述的方法,其特征在于,所述第二消息为物理下行控制信道命令PDCCH order消息。
  10. 根据权利要求8或9所述的方法,其特征在于,在接收所述下行早传数据之前,还包括:
    发送所述第一随机接入前导码。
  11. 一种通信方法,其特征在于,包括:
    确定下行资源配置信息,所述下行资源配置信息用于指示终端设备在处于第一状态时接收下行早传数据,所述第一状态为RRC非激活态或RRC空闲态;
    根据所述下行资源配置信息,发送所述下行早传数据。
  12. 根据权利要求11所述的方法,其特征在于,根据所述下行资源配置信息,发送所述下行早传数据,包括:
    根据所述下行资源配置信息,发送调度信息,所述调度信息用于调度所述下行早传数 据;
    根据所述调度信息,发送所述下行早传数据。
  13. 根据权利要求12所述的方法,其特征在于,所述下行资源配置信息包括RNTI和/或下行传输资源的时频域配置,所述RNTI用于加扰所述调度信息,所述下行传输资源的时频域配置用于指示所述调度信息的时域位置和频域位置。
  14. 根据权利要求11~13任一项所述的方法,其特征在于,所述第一消息还包括非连续接收DRX配置信息,所述DRX配置信息用于指示所述下行早传数据的传输时段。
  15. 根据权利要求14所述的方法,其特征在于,所述DRX配置信息包括DRX周期和/或偏移量,所述偏移量用于指示所述DRX周期的时域起始位置的偏移。
  16. 根据权利要求11~15任一项所述的方法,其特征在于,所述方法还包括:
    当所述下行早传数据到达时,向第二网络设备发送寻呼消息,所述寻呼消息用于指示所述下行早传数据到达,所述第二网络设备是所述终端设备驻留的网络设备。
  17. 根据权利要求16所述的方法,其特征在于,所述寻呼消息还用于指示所述下行资源配置信息。
  18. 根据权利要求11~17任一项所述的方法,其特征在于,根据所述下行资源配置信息,发送所述下行早传数据,包括:
    根据所述下行资源配置信息向所述终端设备发送所述下行早传数据;或,
    根据所述下行资源配置信息向第二网络设备发送所述下行早传数据;
    其中,所述第二网络设备是所述终端设备驻留的网络设备。
  19. 根据权利要求18所述的方法,其特征在于,在根据所述下行资源配置信息向所述终端设备发送所述下行早传数据之后,还包括:
    接收来自所述终端设备的第一随机接入前导码,所述第一随机接入前导码用于指示所述终端设备接收到所述下行早传数据。
  20. 根据权利要求19所述的方法,其特征在于,所述第一消息还用于指示用于所述终端设备接收所述下行早传数据的随机接入资源,所述随机接入资源包括所述第一随机接入前导码。
  21. 根据权利要求18所述的方法,其特征在于,在根据所述下行资源配置信息向所述终端设备发送所述下行早传数据之前,还包括:
    向所述终端设备发送第二消息,所述第二消息指示用于所述终端设备接收所述下行早传数据的随机接入资源,所述随机接入资源包括至少一个SSB对应的至少一个随机接入前导码。
  22. 根据权利要求21所述的方法,其特征在于,所述第二消息为PDCCH order消息。
  23. 根据权利要求21或22所述的方法,其特征在于,所述方法还包括:
    接收来自所述终端设备的第一随机接入前导码,所述第一随机接入前导码属于所述至少一个随机接入前导码。
  24. 一种通信方法,其特征在于,包括:
    接收来自第一网络设备的寻呼消息,所述寻呼消息用于指示有终端设备的下行早传数据到达,所述第一网络设备是所述终端设备的锚点网络设备;
    向所述终端设备发送第二消息,所述第二消息指示用于所述终端设备接收所述下行早传数据的随机接入资源,所述随机接入资源包括至少一个SSB对应的至少一个随机接入前 导码,所述第二消息为PDCCH order消息。
  25. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    接收来自所述终端设备的第一随机接入前导码,所述第一随机接入前导码属于所述至少一个随机接入前导码。
  26. 根据权利要求24或25所述的方法,其特征在于,所述寻呼消息还用于指示下行资源配置信息,所述下行资源配置信息用于所述终端设备在处于RRC非激活态或RRC空闲态时接收所述下行早传数据。
  27. 根据权利要求26所述的方法,其特征在于,所述下行资源配置信息包括RNTI和/或下行传输资源的时频域配置,所述RNTI用于加扰所述调度信息,所述下行传输资源的时频域配置用于指示所述调度信息的时域位置和频域位置。
  28. 根据权利要求24~27任一项所述的方法,其特征在于,所述方法还包括:
    向第一网络设备发送请求消息,所述请求消息用于请求所述下行早传数据;
    接收来自所述第一网络设备的所述下行早传数据;
    将所述下行早传数据发送给所述终端设备。
  29. 一种通信装置,其特征在于,包括:
    收发模块,用于接收第一消息;
    处理模块,用于确定所述第一消息用于指示下行资源配置信息,所述下行资源配置信息用于所述通信装置在处于RRC非激活态或RRC空闲态时接收下行早传数据;
    所述收发模块,还用于根据所述下行资源配置信息,接收所述下行早传数据。
  30. 根据权利要求29所述的通信装置,其特征在于,所述第一消息还包括非连续接收DRX配置信息,所述DRX配置信息用于指示所述下行早传数据的传输时段。
  31. 根据权利要求30所述的通信装置,其特征在于,所述DRX配置信息包括DRX周期和/或偏移量,所述偏移量用于指示所述DRX周期的时域起始位置的偏移。
  32. 根据权利要求29~31任一项所述的通信装置,其特征在于,所述收发模块,还用于在接收所述下行早传数据之后,发送第一随机接入前导码,所述第一随机接入前导码用于指示所述通信装置接收到所述下行早传数据。
  33. 根据权利要求32所述的通信装置,其特征在于,所述第一消息还用于指示用于所述通信装置接收所述下行早传数据的随机接入资源,所述随机接入资源包括所述第一随机接入前导码。
  34. 根据权利要求29~33任一项所述的通信装置,其特征在于,所述收发模块,还用于在根据所述下行资源配置信息,接收所述下行早传数据之前,接收第二消息,所述第二消息指示用于所述通信装置接收所述下行早传数据的随机接入资源,所述随机接入资源包括至少一个SSB对应的至少一个随机接入前导码,所述至少一个随机接入前导码包括所述第一随机接入前导码。
  35. 根据权利要求34所述的通信装置,其特征在于,所述第二消息为PDCCH order消息。
  36. 一种网络设备,其特征在于,包括:
    处理模块,用于确定下行资源配置信息,所述下行资源配置信息用于指示通信装置在处于第一状态时接收下行早传数据,所述第一状态为RRC非激活态或RRC空闲态;
    收发模块,用于根据所述下行资源配置信息,发送所述下行早传数据。
  37. 根据权利要求36所述的网络设备,其特征在于,所述第一消息还包括非连续接收DRX配置信息,所述DRX配置信息用于指示所述下行早传数据的传输时段。
  38. 根据权利要求37所述的网络设备,其特征在于,所述DRX配置信息包括DRX周期和/或偏移量,所述偏移量用于指示所述DRX周期的时域起始位置的偏移。
  39. 根据权利要求36~38任一项所述的网络设备,其特征在于,所述收发模块,还用于当所述下行早传数据到达时,向第二网络设备发送寻呼消息,所述寻呼消息用于指示所述下行早传数据到达,所述第二网络设备是所述通信装置驻留的网络设备。
  40. 根据权利要求39所述的网络设备,其特征在于,所述寻呼消息还用于指示所述下行资源配置信息。
  41. 根据权利要求36~40任一项所述的网络设备,其特征在于,所述收发模块用于通过如下方式根据所述下行资源配置信息,发送所述下行早传数据:
    根据所述下行资源配置信息向所述通信装置发送所述下行早传数据;或,
    根据所述下行资源配置信息向第二网络设备发送所述下行早传数据;
    其中,所述第二网络设备是所述通信装置驻留的网络设备。
  42. 根据权利要求41所述的网络设备,其特征在于,所述收发模块,还用于在根据所述下行资源配置信息向所述通信装置发送所述下行早传数据之后,接收来自所述通信装置的第一随机接入前导码,所述第一随机接入前导码用于指示所述通信装置接收到所述下行早传数据。
  43. 根据权利要求42所述的网络设备,其特征在于,所述第一消息还用于指示用于所述通信装置接收所述下行早传数据的随机接入资源,所述随机接入资源包括所述第一随机接入前导码。
  44. 根据权利要求41所述的网络设备,其特征在于,所述收发模块,还用于在根据所述下行资源配置信息向所述通信装置发送所述下行早传数据之前,向所述通信装置发送第二消息,所述第二消息指示用于所述通信装置接收所述下行早传数据的随机接入资源,所述随机接入资源包括至少一个SSB对应的至少一个随机接入前导码。
  45. 根据权利要求44所述的网络设备,其特征在于,所述第二消息为PDCCH order消息。
  46. 一种网络设备,其特征在于,包括:
    收发模块,用于接收来自第一网络设备的寻呼消息;
    处理模块,用于确定所述寻呼消息用于指示有通信装置的下行早传数据到达,所述第一网络设备是所述通信装置的锚点网络设备;
    所述收发模块,还用于向所述通信装置发送第二消息,所述第二消息指示用于所述通信装置接收所述下行早传数据的随机接入资源,所述随机接入资源包括至少一个SSB对应的至少一个随机接入前导码,所述第二消息为PDCCH order消息。
  47. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~10中任意一项所述的方法,或者使得所述计算机执行如权利要求11~23中任意一项所述的方法,或者使得所述计算机执行如权利要求24~28中任意一项所述的方法。
  48. 一种芯片,其特征在于,包括处理器和接口,所述处理器用于读取指令以执行权利要求1~10中任意一项所述的方法,或者执行权利要求11~23中任意一项所述的方法, 或者执行权利要求24~28中任意一项所述的方法。
PCT/CN2019/123102 2019-12-04 2019-12-04 一种通信方法、装置及设备 WO2021109039A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980101717.6A CN114642026A (zh) 2019-12-04 2019-12-04 一种通信方法、装置及设备
PCT/CN2019/123102 WO2021109039A1 (zh) 2019-12-04 2019-12-04 一种通信方法、装置及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/123102 WO2021109039A1 (zh) 2019-12-04 2019-12-04 一种通信方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2021109039A1 true WO2021109039A1 (zh) 2021-06-10

Family

ID=76221252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123102 WO2021109039A1 (zh) 2019-12-04 2019-12-04 一种通信方法、装置及设备

Country Status (2)

Country Link
CN (1) CN114642026A (zh)
WO (1) WO2021109039A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021231066A1 (en) * 2020-05-13 2021-11-18 Qualcomm Incorporated Paging procedures with increased granularities
WO2022063077A1 (zh) * 2020-09-27 2022-03-31 展讯半导体(南京)有限公司 数据传输方法及装置、存储介质、终端、基站

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031427A1 (ja) * 2017-08-10 2019-02-14 京セラ株式会社 通信制御方法
CN110050502A (zh) * 2017-09-29 2019-07-23 联发科技股份有限公司 高可靠性和数据提前传送
CN110366208A (zh) * 2018-03-26 2019-10-22 华为技术有限公司 一种信息处理方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031427A1 (ja) * 2017-08-10 2019-02-14 京セラ株式会社 通信制御方法
CN110050502A (zh) * 2017-09-29 2019-07-23 联发科技股份有限公司 高可靠性和数据提前传送
CN110366208A (zh) * 2018-03-26 2019-10-22 华为技术有限公司 一种信息处理方法和设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Analysis of Downlink EDT options", 3GPP DRAFT; R2-1817045-DOWLINK-EDT-V4, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Spokane, USA; 20181112 - 20181116, 12 November 2018 (2018-11-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051556594 *
QUALCOMM INCORPORATED: "DL early data transmission", 3GPP DRAFT; R2-1708234 DL EARLY DATA TRANSMISSION_NB-IOT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Berlin, Germany; 20170821 - 20170825, 20 August 2017 (2017-08-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051318136 *
QUALCOMM INCORPORATED: "DL early data transmission", 3GPP DRAFT; R2-1708240 DL EARLY DATA TRANSMISSION_EMTC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Berlin, Germany; 20170821 - 20170825, 20 August 2017 (2017-08-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051318142 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021231066A1 (en) * 2020-05-13 2021-11-18 Qualcomm Incorporated Paging procedures with increased granularities
US11659518B2 (en) 2020-05-13 2023-05-23 Qualcomm Incorporated Paging procedures with increased granularities
WO2022063077A1 (zh) * 2020-09-27 2022-03-31 展讯半导体(南京)有限公司 数据传输方法及装置、存储介质、终端、基站

Also Published As

Publication number Publication date
CN114642026A (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
WO2018196520A1 (zh) 一种波束管理方法及终端设备、网络设备
WO2021259129A1 (zh) 一种通信方法及通信装置
WO2018166331A1 (zh) 一种资源分配方法和装置以及终端设备
JP2022536152A (ja) デュアルsim・ueデータ送信方法およびデバイス、記憶媒体、ならびにユーザ機器
TWI812691B (zh) 信號傳輸的方法、網路設備和終端設備
WO2017193766A1 (zh) 一种下行数据传输的方法及设备
WO2021175185A1 (zh) 一种通信方法及装置
US20220225425A1 (en) Random Access Method And Apparatus
WO2021179895A1 (zh) 一种通信方法及装置
WO2021051364A1 (zh) 一种通信方法、装置及设备
WO2021026738A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020191679A1 (zh) 随机接入方法、终端设备和网络设备
CN115885575A (zh) 无线通信方法和通信装置
WO2021109039A1 (zh) 一种通信方法、装置及设备
WO2021134577A1 (zh) 一种数据传输方法及装置
US20210321437A1 (en) Method, apparatus and computer program product
WO2021197233A1 (zh) 一种通信方法及设备
WO2021012822A1 (zh) 一种通信方法及装置
WO2020181943A1 (zh) 一种请求系统信息的方法及设备
US20220150869A1 (en) Assignment of a second ue identity to adjust paging timing for ue for wireless network
WO2021087888A1 (zh) 一种rrc连接恢复方法及设备
WO2021026929A1 (zh) 一种通信方法及装置
WO2021228192A1 (zh) 一种通信方法及装置
WO2020253849A1 (zh) 一种通信方法及设备
WO2021212510A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954925

Country of ref document: EP

Kind code of ref document: A1