WO2022237597A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2022237597A1
WO2022237597A1 PCT/CN2022/090548 CN2022090548W WO2022237597A1 WO 2022237597 A1 WO2022237597 A1 WO 2022237597A1 CN 2022090548 W CN2022090548 W CN 2022090548W WO 2022237597 A1 WO2022237597 A1 WO 2022237597A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
time
information
time unit
random access
Prior art date
Application number
PCT/CN2022/090548
Other languages
English (en)
French (fr)
Inventor
温容慧
余政
金哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022237597A1 publication Critical patent/WO2022237597A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present application relates to the communication field, and more specifically, to a communication method and a communication device.
  • the International Telecommunication Union has defined three types of application scenarios for the fifth generation (5G) and future mobile communication systems: the first type is enhanced mobile broadband (eMBB) , the second type is ultra reliable and low latency communications (URLLC), and the third type is massive machine type communications (mMTC).
  • eMBB enhanced mobile broadband
  • URLLC ultra reliable and low latency communications
  • mMTC massive machine type communications
  • Typical eMBB services include: ultra-high-definition video, augmented reality (augmented reality, AR), virtual reality (virtual reality, VR), etc., eMBB services are characterized by a large amount of transmitted data and a high transmission rate.
  • Typical URLLC services include: wireless control in industrial manufacturing or production processes, unmanned motion control, remote repair, remote surgery and other tactile interaction applications. URLLC services are characterized by high reliability, low delay, and large amount of transmitted data. Fewer and sudden.
  • Typical mMTC services include: smart grid power distribution automation, smart city, etc. mMTC services are characterized by a large number of networked devices, a small amount of transmitted data, and data that is not sensitive to transmission delays. The demand for mMTC terminals is low cost and long Standby time.
  • the present application provides a communication method and a communication device to improve system performance.
  • a communication method is provided, and the method may be executed by a terminal device, or may also be executed by a chip or a circuit configured in the terminal device, which is not limited in the present application.
  • the method includes: a terminal device sends first uplink information, the terminal device obtains configuration information of the first downlink information, determines a first time period according to the last time unit carrying the first uplink information and the configuration information, and in the Monitor the first downlink information within the first time period.
  • the starting time unit of the first time period is the starting time unit of the first control resource set after K time units, and the K time units are after the last time unit carrying the first uplink information
  • the N+Q time unit of a time period is used to monitor the first downlink information, N is a positive integer, and Q is greater than or equal to 1; or the starting time unit of the first time period is the first time unit after K time units
  • a start time unit of a set of control resources the K time units are time units after the last time unit carrying the first uplink information, and the K is greater than 1; or the start time of the first time period
  • the terminal device can monitor the downlink information in the effective time unit in the first time period according to the time of frequency tuning, so as to avoid the problem of missing the reception of downlink information caused by frequency tuning.
  • the first uplink information is the first random access preamble
  • the first downlink information is the first downlink of the cyclic redundancy check scrambled by the random access radio network temporary identifier RA-RNTI
  • the physical downlink shared channel PDSCH scrambled by the uplink control information DCI and/or RA-RNTI; or the first uplink information is the first message 3
  • the first downlink information is a cyclic redundancy check temporarily identified by the wireless network of the temporary cell TC-RNTI scrambled second DCI and/or contention resolution message.
  • the terminal device can monitor the response message of the random access preamble or message 3 on the effective time unit in the first time period according to the time of frequency tuning, so as to avoid the missed reception of the terminal device due to frequency tuning problem of downlink information, thereby improving system performance.
  • N is predefined; or determined according to a first preset rule; or indicated by the first indication information.
  • K is predefined; or determined according to a second preset rule; or indicated by the second indication information.
  • the network device and the first terminal device can determine the number of invalid time units according to the predefined N value, which saves signaling overhead, thereby avoiding the problem of inconsistent understanding between the network device and the first terminal device. If N is determined according to preset rules, signaling overhead can be saved, and at the same time, the value of N can be dynamically adjusted according to parameters involved in the preset rules, so as to further rationally utilize time domain resources. If N is indicated by signaling, the network device can dynamically consider the value of N from the aspect of overall network resource allocation according to actual conditions in the network, such as load and service characteristics.
  • the network device and the first terminal device can determine the position of the first time period in the time domain according to the predefined K value, and try to avoid that the first time period includes invalid time units caused by frequency tuning, The signaling overhead is saved, thereby avoiding the problem of inconsistent understanding between the network device and the first terminal device. If K is determined according to preset rules, signaling overhead can be saved, and at the same time, the value of K can be dynamically adjusted according to parameters involved in the preset rules, so as to further rationally utilize time domain resources. If K is indicated by signaling, the network device can flexibly set the value of K in terms of overall network resource allocation according to actual network conditions (such as load, business characteristics, etc.).
  • the first preset rule includes: according to at least one of frequency tuning time, subcarrier spacing, the last time unit carrying the first uplink information or the start time unit of the first time period One item determines N.
  • the second preset rule includes: determining K according to at least one of frequency tuning time, subcarrier spacing, or a last time unit carrying the first uplink information.
  • the first terminal device can determine N according to the first preset rule, that is, determine the invalid time unit (time unit that cannot be used for downlink information transmission) in the first time period, so that it can The first downlink information is monitored in effective time units, so as to avoid missing the opportunity of receiving the first downlink information and improve communication efficiency.
  • the first terminal device can determine K according to the second preset rule, that is, the starting time unit of the first time period can be the effective time unit, so that the first downlink information will not be missed when monitoring the first time period.
  • the timing of the first downlink information causes a delay in random access and improves communication efficiency.
  • the terminal device when K is greater than 1, the terminal device is a first terminal device, and the first terminal device sends the first random access preamble according to a first random access channel configuration, where the first random access preamble
  • the access channel configuration is not used for random access of the second terminal device, and the capability of the first terminal device is lower than that of the second terminal device.
  • the random access preamble includes identification information and/or capability information of the terminal device, that is, the network device can determine the type of the terminal device that initiates the random access after receiving the random access preamble. If the starting time unit of the first time period determined by the first terminal device is a valid time unit, the random access channel configurations according to which the first terminal device and the second terminal device send the random access preamble are different.
  • the terminal device sends the first random access preamble according to the second random access channel configuration; where the second random access channel configuration is used for the first terminal device or random access of a second terminal device, where the capability of the first terminal device is lower than that of the second terminal device; the first terminal device sends a first message 3, and the first message 3 includes the identification information of the first terminal device and the first message 3 / or capability information.
  • message 3 includes identification information and/or capability information of the terminal device, that is, the network device cannot determine the type of the terminal device that initiates the random access after receiving the random access preamble.
  • the random access channel configurations according to which the first terminal device and the second terminal device send the random access preamble may be the same.
  • the K 0
  • the first message 3 includes the identification information and/or capability information of the terminal device, and if the terminal device is a first terminal device, the first terminal device 3
  • the configuration information sends the first message 3
  • the configuration information of the first message 3 is not used by the second terminal device to send the second message 3
  • the capability of the first terminal device is lower than that of the second terminal device.
  • the message 3 includes the identification information and/or capability information of the terminal device, that is, the message 3 sent by the first terminal device is different from the message 3 sent by the second terminal device, so the first terminal device and the second terminal device The terminal device cannot send message 3 according to the same configuration information, and the second message 3 in the above solution is the message 3 sent by the second terminal device during the random access process.
  • a communication method is provided, and the method may be executed by a network device, or may also be executed by a chip or a circuit configured in the network device, which is not limited in the present application.
  • the method includes: the network device receives the first uplink information, determines the configuration information of the first downlink information, and determines the first time period according to the last time unit carrying the first uplink information and the configuration information, and the network device is in the first uplink information. Send the first downlink information within a period of time.
  • the starting time unit of the first time period is the starting time unit of the first control resource set after K time units, and the K time units are after the last time unit carrying the first uplink information
  • the N+Q time unit of a time period is used to monitor the first downlink information, N is a positive integer, and Q is greater than or equal to 1; or the starting time unit of the first time period is the first time unit after K time units
  • a start time unit of a set of control resources the K time units are time units after the last time unit carrying the first uplink information, and the K is greater than 1; or the start time of the first time period
  • the network device can send downlink information in the effective time unit of the first time period according to the time of frequency tuning, thereby avoiding the problem of missing downlink information due to frequency tuning.
  • the first uplink information is a first random access preamble
  • the first downlink information is first downlink control information DCI and/or cyclic redundancy check scrambled by RA-RNTI
  • the physical downlink shared channel PDSCH scrambled by RA-RNTI; or the first uplink information is the first message 3
  • the first downlink information is the second DCI and/or contention scrambled by TC-RNTI for cyclic redundancy check Address the message.
  • the terminal device can monitor the response message of the random access preamble or message 3 on the effective time unit in the first time period according to the time of frequency tuning, so as to avoid the missed reception of the terminal device due to frequency tuning problem of downlink information, thereby improving system performance.
  • N is predefined, or determined according to a first preset rule.
  • the network device sends first indication information, where the first indication information indicates N.
  • K is predefined, or determined according to a second preset rule.
  • the network device sends first indication information, where the first indication information indicates K.
  • the network device and the first terminal device can determine the number of invalid time units according to the predefined N value, which saves signaling overhead, thereby avoiding the problem of inconsistent understanding between the network device and the first terminal device. If N is determined according to preset rules, signaling overhead can be saved, and at the same time, the value of N can be dynamically adjusted according to parameters involved in the preset rules, so as to further rationally utilize time domain resources. If N is indicated by signaling, the network device can dynamically consider the value of N from the aspect of overall network resource allocation according to actual conditions in the network, such as load and service characteristics.
  • the network device and the first terminal device can determine the position of the first time period in the time domain according to the predefined K value, and try to avoid that the first time period includes invalid time units caused by frequency tuning, The signaling overhead is saved, thereby avoiding the problem of inconsistent understanding between the network device and the first terminal device. If K is determined according to preset rules, signaling overhead can be saved, and at the same time, the value of K can be dynamically adjusted according to parameters involved in the preset rules, so as to further rationally utilize time domain resources. If K is indicated by signaling, the network device can dynamically consider the value of K from the aspect of overall network resource allocation according to the actual situation in the network, such as characteristics such as load and business.
  • the first preset rule includes: according to at least one of frequency tuning time, subcarrier spacing, the last time unit carrying the first uplink information or the start time unit of the first time period One item determines the N.
  • the second preset rule includes: determining the K according to at least one of frequency tuning time, subcarrier spacing, or a last time unit carrying the first uplink information.
  • the network device can determine N according to the first preset rule, that is, determine the invalid time unit (the time unit that cannot be used for downlink information transmission) in the first time period, so that the effective time in the first time period can be The unit sends the first downlink information, avoiding missing an opportunity for the first terminal device to receive the first downlink information, and improving communication efficiency.
  • the network device may determine K according to the second preset rule, that is, the starting time unit of the first time period may be a valid time unit, so that the first terminal device will not cause Missing the opportunity to receive the first downlink information causes a delay in the random access of the first terminal device, thereby improving communication efficiency.
  • K is greater than 1
  • the network device sends a first random access channel configuration to the first terminal device, and the first random access channel configuration is used for random access of the first terminal device, and The first random access channel configuration is not used for random access of the second terminal device, and the capability of the first terminal device is lower than that of the second terminal device.
  • the random access preamble includes identification information and/or capability information of the terminal device, that is, the network device can determine the type of the terminal device that initiates the random access after receiving the random access preamble. At this time, the network device configures different random access channel configurations for the first terminal device and/or the second terminal device.
  • K 1
  • the network device sends a second random access channel configuration to the first terminal device, and the second random access channel configuration is used for random access of the first terminal device or the second terminal device access, the capability of the first terminal device is lower than that of the second terminal device, and the network device receives a first message 3, where the first message 3 includes identification information and/or capability information of the first terminal device.
  • message 3 includes the identification information and/or capability information of the terminal device, that is, after the network device receives the random access preamble, it cannot determine the type of the terminal device that initiated the random access. At this time, the network device may configure the same random access channel configuration for the first terminal device and the second terminal device.
  • the K 0
  • the first message 3 includes the identification information and/or capability information of the terminal device
  • the network device sends The configuration information of the first message 3 is not used for the second terminal device to send the second message 3, and the capability of the first terminal device is lower than that of the second terminal device.
  • the message 3 includes identification information and/or capability information of the terminal device, that is, the first message 3 sent by the first terminal device is different from the second message 3 sent by the second terminal device. Therefore, the configuration information of the message 3 configured by the network device for the first terminal device and the second terminal device is different.
  • a communication device in the third aspect, and the beneficial effects may refer to the description of the first aspect, which will not be repeated here.
  • the communication device has the function of implementing the actions in the method example of the first aspect above.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a transceiver module and a processing module. These modules can perform the corresponding functions in the method example of the first aspect above. For details, refer to the detailed description in the method example, and details are not repeated here.
  • a communication device in a fourth aspect, is provided, and the beneficial effects may refer to the description of the second aspect, which will not be repeated here.
  • the communication device has the function of implementing the actions in the method example of the second aspect above.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a transceiver module and a processing module. These modules can perform the corresponding functions in the method example of the second aspect above. For details, refer to the detailed description in the method example, and details are not repeated here.
  • a communication device is provided, and the communication device may be the terminal device in the foregoing method embodiment, or a chip provided in the terminal device.
  • the communication device includes a communication interface and a processor, and optionally, a memory.
  • the memory is used to store computer programs or instructions
  • the processor is coupled to the memory and the communication interface.
  • the communication device executes the method performed by the terminal device in the above method embodiments.
  • a communication device is provided, and the communication device may be the network device in the foregoing method embodiment, or a chip provided in the network device.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store computer programs or instructions
  • the processor is coupled to the memory and the communication interface.
  • the communication device executes the method performed by the network device in the above method embodiments.
  • a computer program product includes: computer program code, when the computer program code is executed, the method performed by the terminal device in the above aspects is executed.
  • a computer program product includes: computer program code, when the computer program code is executed, the method performed by the network device in the above aspects is executed.
  • the present application provides a system-on-a-chip, where the system-on-a-chip includes a processor, configured to implement functions of the terminal device in the methods in the foregoing aspects.
  • the chip system further includes a memory, configured to store program instructions and/or data.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application provides a system-on-a-chip, where the system-on-a-chip includes a processor, configured to implement the functions of the network device in the methods of the foregoing aspects.
  • the chip system further includes a memory, configured to store program instructions and/or data.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is run, the methods performed by the terminal device in the above aspects are implemented.
  • the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed, the method performed by the network device in the above-mentioned aspects is realized
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a communication network architecture in the communication system 100 provided in this application.
  • Fig. 3 is a schematic diagram of uplink and downlink frequency domain resources of a terminal device in an initial access phase provided by this application.
  • Fig. 4 is a schematic diagram of positions of frequency domain resources of different uplink and downlink messages of a terminal device provided in the present application.
  • Fig. 5 is an interaction flow diagram of the initial access phase provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of a time unit location for determining downlink information provided by an embodiment of the present application.
  • Fig. 7 is a schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 8 to FIG. 13 are schematic diagrams of time unit positions for determining downlink information provided by an embodiment of the present application.
  • Fig. 14 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to an embodiment of the present application.
  • the communication system 100 may include a core network device 110 , a network device 120 and at least one terminal device 130 , for example, the communication system may also include a terminal device 140 .
  • the terminal equipment is connected to the network equipment in a wireless manner, and the network equipment is connected to the core network equipment in a wireless or wired manner.
  • Core network equipment and network equipment can be independent and different physical equipment, or the functions of the core network equipment and the logical functions of the network equipment can be integrated on the same physical equipment, or a physical equipment can integrate part of the core network equipment. device functions and functions of some network devices.
  • Terminal equipment can be fixed or mobile.
  • the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the embodiments of the present application do not limit the number of core network devices, network devices and terminal devices included in the mobile communication system.
  • the terminal equipment in the embodiment of the present application may refer to user equipment, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device .
  • the terminal in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, an industrial Wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety Wireless terminals in smart cities, wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop ( wireless local loop (WLL) station, personal digital assistant (personal digital assistant, PDA), handheld device with wireless communication function, computing device or other processing device connected to a wireless modem, vehicle-mounted device, wearable device, 5G network A terminal or
  • wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal device may also be a terminal device in an Internet of Things (internet of things, IoT) system.
  • IoT Internet of things
  • Its main technical feature is to connect objects to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and object interconnection.
  • the present application does not limit the specific form of the terminal device.
  • the terminal device may be a device for realizing the function of the terminal device, or may be a device capable of supporting the terminal device to realize the function, such as a chip system, and the device may be installed in the terminal.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the network device in this embodiment of the present application may be any device with a wireless transceiver function.
  • the equipment includes but is not limited to: evolved Node B (evolved Node B, eNB), Radio Network Controller (Radio Network Controller, RNC), Node B (Node B, NB), Base Station Controller (Base Station Controller, BSC) , base transceiver station (Base Transceiver Station, BTS), home base station (for example, Home evolved NodeB, or Home Node B, HNB), base band unit (Base Band Unit, BBU), wireless fidelity (Wireless Fidelity, WIFI) system
  • the access point (Access Point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc. can also be 5G, such as, NR, a gNB in the system, or, a transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (active antenna unit, AAU for short).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and realizing the functions of radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer.
  • the DU is responsible for processing physical layer protocols and real-time services, realizing the functions of the radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer and physical (physical, PHY) layer.
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , or, sent by DU+AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • the network device may be a device for realizing the function of the network device, or may be a device capable of supporting the network device to realize the function, such as a chip system, and the device may be installed in the network device.
  • the network devices and terminal devices in the embodiments of the present application can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; or deployed on water; or deployed on airplanes, balloons and satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of the network device and the terminal device.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE LTE frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G Fifth Generation
  • 5G Fifth Generation
  • 5G Fifth Generation
  • 5G Fifth Generation
  • 5G Fifth Generation
  • V2V vehicle to infrastructure
  • V2I vehicle to pedestrian
  • V2P vehicle to pedestrian
  • FIG. 2( a ) shows a communication network architecture in the communication system 100 provided in this application, and the embodiments provided later can all be applicable to this architecture.
  • the first network device is a source network device (or called, a working network device, or a serving network device) of a terminal device (subsequently described with UE as an example), and the second network device is a target network device (or called, Standby network device), that is, a network device that provides services for the UE after handover.
  • target network device or called, Standby network device
  • failure can be understood as failure of a network device, and/or failure to provide services for one or more UEs due to other reasons, referred to as failure for short.
  • the "handover” mentioned in this application refers to the handover of the network device providing service for the UE, and is not limited to "cell handover".
  • a network device is used as an example for description.
  • the "handover” may refer to a handover caused by a change in the base station serving the UE. For example, when the source base station of the UE fails, the standby base station provides services for the UE. For another example, during the handover process of the UE from the source base station to communicating with another base station, the handover target base station provides services for the UE.
  • the cell accessed by the UE before and after the handover may be changed or not changed.
  • the backup network device is a relative concept, for example, with respect to one UE, base station 2 is the backup network device of base station 1, and with respect to another UE, base station 1 is the backup network device of base station 2.
  • the first network device and the second network device may be two different devices, for example, the first network device and the second network device are two different base stations.
  • the first network device and the second network device may also be two sets of functional modules in the same device.
  • the functional modules may be hardware modules, or software modules, or hardware modules and software modules.
  • the first network device and the second network device are located in the same base station, and are two different functional modules in the base station.
  • the first network device and the second network device are not transparent to the UE. When the UE interacts with the corresponding network device, it can know which network device it is interacting with. In another implementation manner, the first network device and the second network device are transparent to the UE.
  • the UE is able to communicate with network devices, but does not know which of the two network devices it is interacting with. In other words, for the UE, it may be considered that there is only one network device.
  • the first network device and the second network device may not be transparent to the UE, or may be transparent.
  • the first network device, the second network device, and the terminal device may be respectively the first network device and the second network device in the network architecture shown in (a) in FIG. 2
  • the steps indicated by dotted lines are optional steps, which will not be described in detail in the following.
  • FIG. 2(b) shows another communication network architecture in the communication system 100 provided by the present application.
  • the communication system includes a core network (new core, CN) and a radio access network (radio access network, RAN).
  • the network equipment (for example, base station) in the RAN includes a baseband device and a radio frequency device.
  • the baseband device can be implemented by one or more nodes, and the radio frequency device can be remote from the baseband device and implemented independently, or can be integrated into the baseband device, or partly remote and partly integrated into the baseband device.
  • Network devices in the RAN may include a centralized unit (CU) and a distributed unit (DU), and multiple DUs may be centrally controlled by one CU.
  • CU centralized unit
  • DU distributed unit
  • CU and DU can be divided according to their wireless network protocol layer functions.
  • the functions of the PDCP layer and above protocol layers are set in the CU, and the protocol layers below PDCP, such as the functions of the RLC layer and MAC layer, are set in the DU.
  • the division of such protocol layers is only an example, and may also be divided in other protocol layers.
  • the radio frequency device can be remote, not placed in the DU, or integrated in the DU, or partially remote and partially integrated in the DU, which is not limited in this application.
  • FIG. 2(c) shows another communication network architecture in the communication system 100 provided by the present application.
  • the control plane (CP) and user plane (UP) of the CU can also be separated into different entities for implementation, namely the control plane CU entity (CU-CP entity) and the user plane CU entity (CU-UP entity).
  • the signaling generated by the CU can be sent to the UE through the DU, or the signaling generated by the UE can be sent to the CU through the DU.
  • the DU can directly transmit the signaling to the UE or CU through protocol layer encapsulation without parsing the signaling.
  • a CU is classified as a network device on the RAN side.
  • a CU may also be classified as a network device on the CN side, which is not limited in this application.
  • the difference between the first terminal device and the second terminal device may include at least one of the following:
  • the carrier bandwidth of the first terminal device is not greater than 50 MHz, such as at least one of 50 MHz, 40 MHz, 20 MHz, 15 MHz, 10 MHz or 5 MHz, and the carrier bandwidth of the second terminal device is greater than 50 MHz.
  • the number of transceiver antennas is different.
  • the first terminal device may support 2 receiving and 1 transmitting (2 receiving antennas and 1 transmitting antenna), or 1 receiving and 1 transmitting (1 receiving antenna and 1 transmitting antenna).
  • the second terminal device may support 4 receptions and 2 transmissions (4 receiving antennas and 2 transmitting antennas). It can be understood that, under the condition of achieving the same data transmission rate, since the number of transceiver antennas of the first terminal device is less than the number of transceiver antennas of the second terminal device, the data transmission between the first terminal device and the base station The maximum coverage that can be achieved is smaller than the maximum coverage that can be achieved by data transmission between the second terminal device and the base station.
  • the maximum uplink transmit power is different.
  • the maximum uplink transmit power of the first terminal device may be a value from 4 decibel milliwatts (dBm) to 20 dBm.
  • the maximum uplink transmit power of the second terminal device may be 23dBm or 26dBm.
  • the protocol version is different.
  • the first terminal device may be NR version 17 (release-17, Rel-17) or a terminal device in a version later than NR Rel-17.
  • the second terminal device may be, for example, a terminal device in NR release 15 (release-15, Rel-15) or NR release 16 (release-16, Rel-16).
  • the second terminal device may also be called an NR legacy (NR legacy) terminal device.
  • the first terminal device does not support carrier aggregation
  • the second terminal device may support carrier aggregation.
  • both the first terminal device and the second terminal device may support carrier aggregation, but the maximum number of carrier aggregations supported by the first terminal device at the same time is smaller than the maximum number of carrier aggregations supported by the second terminal device at the same time, for example, the first The terminal device supports aggregation of at most 2 carriers at the same time, and the second terminal device can support aggregation of at most 5 carriers or 32 carriers at the same time.
  • the first terminal device supports half-duplex frequency division duplexing (frequency division duplexing, FDD).
  • the second terminal device supports full-duplex FDD.
  • Data processing time capabilities are different.
  • the minimum time delay between the first terminal device receiving the downlink data and sending the feedback on the downlink data is greater than the minimum time delay between the second terminal device receiving the downlink data and sending the feedback on the downlink data; and/or, The minimum time delay between the first terminal device sending the uplink data and receiving the feedback on the uplink data is greater than the minimum time delay between the second terminal device sending the uplink data and receiving the feedback on the uplink data.
  • the baseband processing capability of the first terminal device is lower than the baseband processing capability of the second terminal device.
  • the baseband processing capability may include at least one of the following: the maximum number of MIMO layers supported by the terminal device for data transmission, the number of HARQ processes supported by the terminal device, and the maximum transmission block size (transmission block size, TBS) supported by the terminal device.
  • the transmission peak rates of uplink and/or downlink are different.
  • the transmission peak rate refers to the maximum data transmission rate that a terminal device can achieve within a unit time (for example, per second).
  • the uplink peak rate supported by the first terminal device may be lower than the uplink peak rate supported by the second terminal device, and/or the downlink peak rate supported by the first terminal device may be lower than the downlink peak rate supported by the second terminal device.
  • the peak uplink rate of the first terminal device is less than or equal to 50 Mbps
  • the peak downlink rate is less than or equal to 150 Mbps
  • the peak uplink rate of the second terminal device is greater than or equal to 50 Mbps
  • the peak downlink rate is greater than or equal to 150 Mbps.
  • the peak uplink rate or downlink rate of the first terminal device is on the order of hundreds of Mbps
  • the peak uplink rate or peak downlink rate of the second terminal device is on the order of Gbps.
  • the buffer size is different.
  • the cache buffer can be understood as the total size of the Layer 2 (Layer 2, L2) cache, which is defined as the word buffered by the terminal device in the radio link control (radio link control, RLC) transmission window and reception and reordering window for all radio bearers. The sum of the number of sections and the number of bytes buffered in the Packet Data Convergence Protocol (PDCP) reordering window.
  • the cache buffer can also be understood as the total number of soft channel bits that can be used for Hybrid Automatic Repeat reQuest (HARQ) processing.
  • HARQ Hybrid Automatic Repeat reQuest
  • the first terminal device may be a REDCAP terminal device in the NR system, or the first terminal device may also be called a low-capability terminal device, a reduced-capability terminal device, REDCAP UE, or Reduced Capacity UE, mMTC UE, etc.
  • the NR system may also include other terminal devices, such as a second terminal device.
  • the second terminal device may be a traditional capability or/normal capability/high capability terminal device, and may also be called a traditional terminal device or Legacy UE.
  • the second terminal device It has the above-mentioned distinguishing features from the first terminal device.
  • the range of optional resources for the base station during scheduling is small, and the obtainable frequency domain diversity gain is small; because the bandwidth of the first terminal equipment The number of antennas is small, and the received signal cannot obtain space diversity gain.
  • Coverage enhancement or performance loss caused by frequency tuning needs to be considered, and repeated transmission is required to improve transmission performance; and, due to the slow processing speed of the first terminal equipment, the base station is A greater time delay needs to be considered during scheduling to ensure that the first terminal device can complete data processing. For example, repeated transmission of the PUCCH can be used to enhance coverage, however, currently there is no relevant information indicating the repeated transmission of the PUCCH.
  • the embodiments of the present application may be applicable to downlink signal transmission, uplink signal transmission, or device-to-device (device to device, D2D) signal transmission.
  • the sending device is a wireless access network device, and the corresponding receiving device is a terminal device.
  • the sending device is a terminal device, and the corresponding receiving device is a network device.
  • the sending device is a terminal device, and the corresponding receiving device is also a terminal device.
  • the embodiment of the present application does not limit the transmission direction of the signal. That is, transmission can be sent or received.
  • Communication between network devices and terminal devices and between terminal devices can be performed through licensed spectrum, or through unlicensed spectrum, or through both licensed spectrum and unlicensed spectrum communication.
  • Communication between network devices and terminal devices and between terminal devices can be performed through spectrum below 6G, or through spectrum above 6G, and can also use spectrum below 6G and spectrum above 6G for communication at the same time.
  • the embodiments of the present application do not limit the frequency spectrum resources used between the network device and the terminal device.
  • the 5G standard refers to the terminal equipment in the mMTC service as a reduced capability terminal equipment (reduced capability, REDCAP), that is, a terminal equipment with low complexity or reduced capability, such as the terminal equipment 130 shown in Figure 1, in the embodiment of this application is referred to as the first terminal device.
  • REDCAP reduced capability terminal equipment
  • the first terminal device Compared with other terminal devices (traditional terminal devices, such as eMBB, terminal devices in URLLC services, such as terminal device 140 shown in FIG. 1 , referred to as second terminal devices in this embodiment of the application), low-capability terminal devices Lower complexity, such as narrower bandwidth, lower power consumption, fewer antennas, etc.
  • a low-capability terminal device may also be called a lightweight (NR light, NRL) terminal device.
  • the network device configures the initial uplink bandwidth part (bandwidth part, BWP) and the initial downlink BWP for the terminal device in the system message, such as the system information block (SIB).
  • the initial uplink BWP of the second terminal device takes effect, the downlink BWP of the second terminal device is within the control resource set CORESET#0 (control resource set#0), and the initial downlink BWP remains at CORESET#0 until the second terminal device
  • the device enters the connected state. That is, in the access phase of the initial access phase, the second terminal device performs downlink transmission in CORESET#0, and performs uplink transmission in the initial uplink BWP.
  • the current protocol requires that the initial uplink BWP and the initial downlink BWP have the same central frequency point (dot in the figure), and the initial downlink BWP includes CORESET#0, as shown in FIG. 3 .
  • RedCap UE Due to the bandwidth limitation of the first terminal device. For example, RedCap UE can only transmit information within a bandwidth less than or equal to 20MHz.
  • the first terminal device also transmits downlink at CORESET#0 during the initial access phase.
  • CORESET#0 is determined according to the position of the synchronization signal of the system, and may be in the middle of the carrier. Due to the narrow bandwidth of the first terminal device, in order to avoid the fragmentation of system frequency domain resources caused by the first terminal device during uplink transmission and affect the continuous resource allocation of the second terminal device, the initial uplink BWP of the first terminal device may be allocated in edge of the carrier.
  • the first terminal device needs to perform frequency tuning between uplink sending and downlink receiving, or between downlink receiving and uplink sending. For example, frequency tuning is performed between Msg1 and Msg2, or frequency tuning is performed between Msg3 and Msg4. It should be understood that when the first terminal device performs frequency tuning, it cannot send and receive information, which will result in interruption of transmission.
  • the radio frequency (radio frequency, RF) device When the two ends of the transceiver are communicating, the radio frequency (radio frequency, RF) device will work in a certain frequency range, which is the bandwidth.
  • the working center frequency of a radio frequency device can determine the location of its working frequency resource.
  • Frequency tuning is to adjust the center frequency of the receiving or sending signal at both ends of the transceiver. Since the operation of radio frequency devices such as phase-locked loops (phase-locked loops, PLL) is required during frequency tuning, the sending and receiving ends cannot transmit and receive information during the frequency tuning process. That is, communication cannot be performed between the receiving end and the sending end during the frequency tuning process.
  • the frequency tuning time may be 140 ⁇ s or the like.
  • 140 ⁇ s corresponds to a different number of time units under different subcarrier spacing (SCS), which are 2 time units (subcarrier spacing is 15kHz) and 4 time units (subcarrier spacing is 30kHz) , 8 time units (subcarrier spacing is 60kHz).
  • SCS subcarrier spacing
  • FIG. 5 is an interactive flowchart of the initial access phase provided by the embodiment of the present application.
  • the random access methods shown in Figure 5 include:
  • Step S510 the terminal device sends a random access preamble to the network device, and correspondingly, the network device receives the random access preamble.
  • the terminal device initiates a random access process. For example, the terminal device randomly selects one of several preamble sequences according to the broadcast message, and sends the preamble sequence in the preconfigured RACH occasion (RO) resource. .
  • RO RACH occasion
  • multiple terminal devices send a random access preamble in the same RO resource, and the random access preamble is also called a random access request, and multiple terminal devices can be distinguished according to different preamble sequences.
  • multiple terminal devices may also select the same preamble sequence, and this process is a contention access process.
  • Step S520 the network device sends a random access response to the terminal device, and correspondingly, the terminal device receives the random access response.
  • RAR random access response
  • the network device If the network device successfully receives the preamble sequence and allows the terminal device to access, within the time window (window) of the preconfigured random access response (random access response, RAR) message, the network device sends feedback information to the terminal device, For example RAR messages.
  • RAR includes RAR downlink control information (downlink control information, DCI), the DCI is the scheduling information for the RAR message, and the RAR DCI is random access radio network temporary identity (random access radio network temporary identity, RA-RNTI) scrambled DCI.
  • DCI downlink control information
  • RA-RNTI random access radio network temporary identity
  • the RAR further includes a RAR message, such as a media access control protocol data unit (media access control protocol data unit, MAC PDU).
  • the RAR message is a physical downlink shared channel (PDSCH) scrambled by the RA-RNTI.
  • the RAR message is a physical uplink shared channel (PUSCH) carrying the first uplink information.
  • the terminal device monitors DCI on a physical downlink control channel (physical downlink control channel, PDCCH) within the time window of the RAR.
  • the DCI is a MAC message for scheduling the RAR, and the MAC message is transmitted on the PDSCH.
  • the terminal device receives the MAC RAR according to the scheduling information of the DCI, so as to obtain the access information.
  • each random access sequence has a corresponding identification (ID).
  • ID a corresponding identification
  • One RAR message may include sub-PDUs (subPDUs) fed back to multiple terminal devices, and one PDU includes at least one subPDU.
  • the terminal device can determine whether the PDU is its own random access response message according to the identification information corresponding to the random access sequence, and the random access response message is also called Msg2.
  • step S530 the terminal device sends a Msg3 to the network device, and correspondingly, the network device receives the Msg3.
  • Msg3 includes the identifier of the terminal device, which is used for contention resolution in step S540.
  • Step S540 the network device sends msg4 to the terminal device, and correspondingly, the terminal device receives the msg4.
  • step S510 different terminal devices select the same preamble sequence to send to the network device, that is, the preamble index (preamble index) selected between different terminal devices conflicts, then the Msg4 sent by the network device in step S540 indicates that the access is successful The terminal device that has not received the Msg4 message fails to access.
  • the first terminal device will miss the opportunity to receive Msg2 and Msg4.
  • the frequency tuning time of the first terminal device is 4 time units (symbols n+1 to n+4).
  • the first terminal device can complete the tuning at symbol n+5, and start to receive normally. If the network device does not recognize that the terminal device is the first terminal device or does not consider the frequency tuning time of the first terminal device, it is still on the first CORESET after symbol n+1 (symbols n+3 and n+4) Send RAR and/or DCI.
  • the first terminal device will miss the RAR and/or on time domain symbols n+3 and n+4. or reception of DCI.
  • the terminal device sends Msg3
  • the MAC layer starts a timer (ra-ContentionResolutionTimer).
  • the terminal device monitors the PDCCH and prepares to receive Msg4 until the timer expires or Msg4 is received.
  • the time length of the timer is configured in advance for the network device.
  • the network device believes that the first terminal device has started to detect the DCI and/or Msg4 of Msg4, so the first terminal device may be on the frequency During the tuning process, the opportunity to receive Msg4 is missed.
  • Fig. 7 is a schematic diagram of a communication method provided by an embodiment of the present application. The methods shown in Figure 7 include:
  • Step S710 the terminal device sends the first uplink information to the network device, and correspondingly, the network device receives the first uplink information.
  • step S720 the terminal device acquires configuration information of the first downlink information, and correspondingly, the network device determines the configuration information of the first downlink information.
  • step S710 comes before step S720.
  • the configuration information is the length of the time unit occupied by the first time period, or the position of the starting time unit of the first time period, or the position of the last time unit of the first time period, or the subcarrier of the time unit interval.
  • the configuration information is the configuration information of the RAR window (ra-ResponseWindow) (including duration, start time unit position), or when the first downlink information is Msg4, the configuration information It is the configuration information of the random access contention resolution timer (ra-contentionResolutionTimer) (including duration, starting time unit position).
  • the length of the time unit may be the number of the time unit, or may be the absolute time occupied by the time unit. Such as 10 time slots.
  • the length of the time unit can be configured through higher layer signaling.
  • the high-level configuration parameter of the RAR window is ra-ResponseWindow.
  • Step S730 the terminal device determines the first time period according to the location of the last time unit carrying the first uplink information and the configuration information.
  • the network device determines the first time period according to the location of the last time unit bearing the first uplink information and the configuration information.
  • the configuration information includes the length of the first time period
  • the terminal device can determine the start time unit of the first time period and the duration of the first time period according to the last time unit carrying the first uplink information and the configuration information. The number of time units occupied.
  • Step S740 the terminal device monitors the first downlink information within the first time period.
  • the network device sends the first downlink information within the first time period.
  • the first uplink information is the first random access preamble
  • the first downlink information is the first downlink control information DCI and/or RA scrambled by the cyclic redundancy check and RA-RNTI - Physical downlink shared channel PDSCH scrambled by RNTI.
  • the starting time unit of the first time period is the starting time unit of the first control resource set after K time units, and the K time units are time units after the last time unit carrying the first random access preamble .
  • K 1
  • the N+Qth time unit in the first time period is used to monitor the first downlink information
  • N is a positive integer
  • Q is greater than or equal to 1.
  • the first time period may be the RAR window or the Msg2 window, and the first time period is used for monitoring the RAR and/or monitoring the first DCI.
  • the first DCI is downlink control information for scheduling RAR.
  • the first uplink information is the first message 3, and the first downlink information is a cyclic redundancy check and is temporarily identified by a temporary cell radio network temporary identity (TC-RNTI) Scrambled second DCI and/or contention resolution messages.
  • TC-RNTI temporary cell radio network temporary identity
  • the N+Qth time unit of the time period is used to monitor the first downlink information, N is a positive integer, and Q is greater than or equal to 1.
  • the first time period may be a random access contention resolution timer
  • the terminal device monitors Msg4 and/or monitors the second DCI within the first time period.
  • the second DCI is downlink control information for scheduling Msg4.
  • N is predefined, or N is determined according to a first preset rule, or N is indicated by the first indication information.
  • N can be equal to zero, but N will not always be equal to zero. For example, in the case of some configuration information, N is greater than 0. But in the existing protocol, N is always equal to 0.
  • the first N symbols in the first time period are not used to monitor the first downlink information, or the terminal device does not expect to monitor the first downlink information in the first N time units in the first time period.
  • N is the number of invalid time units
  • the terminal device monitors the first downlink information at a time unit after the Nth time unit of the first time period.
  • N when N is predefined, N may be determined according to subcarrier spacing.
  • N is the number of time units corresponding to the frequency tuning time.
  • the frequency tuning time is 140 ⁇ s (the frequency tuning time can be predefined, or reported by the terminal equipment, or indicated by the network equipment.
  • the method further includes step S721, the network device sends the first indication information to the terminal device, where the first indication information indicates N.
  • the first indication information may be a system message, or the first indication information may be a system information block, or the first indication information may be a system information block 1 (SIB1).
  • the following uses an example to introduce the manner in which the network device or the terminal device determines the first time period according to N, and sends or monitors the first downlink information within the first time period.
  • the start time unit of the first time period is the starting time unit of the first control resource set after symbol n or symbol n+1, that is, symbol n+3, the last time unit of the first time period is symbol n+M, and M is based on the first time period
  • the length is determined (the M in the following text is similar).
  • the number of invalid time units that cannot be used to transmit downlink information within the first time period N 3 (invalid time units are symbols n+3 to n+5, wherein the invalid time unit determined according to the time of frequency tuning is symbol n+3 and symbol n+4)
  • the network device or terminal device sends or monitors Msg2 in the available time unit (ie symbols n+6 to n+M) after the Nth time unit of the first time period, the first time period
  • the Nth time unit is symbol n+4.
  • the time unit after the N+1th time unit of the network device or terminal device in the first time period that is, symbol n+ Valid symbols after 6 and symbol n+6 transmit Msg2.
  • the starting time unit of the first time period is symbol n+1
  • the network device or the terminal device sends or monitors the Msg4 and/or schedules the DCI of the Msg4 in a valid symbol after the Nth time unit in the first time period.
  • effective symbols are symbols that can be used to transmit the first downlink information (such as Msg2 and Msg4 ), may be symbols occupied by the control resource set, or may be symbols occupied by the search space.
  • the starting positions and numbers of the time units bearing Msg2 and Msg4 in FIG. 6 are only examples. It should be noted that the positions of the time units bearing the random access preamble and Msg3 in the time domain are different. In FIG. 6 The symbol n for is just an example. And the length of the first time period for monitoring Msg2 and the first time period for monitoring Msg4 may be the same or different, and this application does not impose any limitation on this.
  • the terminal device or the network device determines N according to a first preset rule.
  • the first preset rule includes determining N according to at least one of frequency tuning time, subcarrier spacing, the last time unit carrying the first uplink information, or the start time unit of the first time period.
  • N may be determined according to the frequency tuning time of the terminal device, or N may be determined according to the frequency tuning time of the terminal device and the subcarrier interval. It should be understood that under different subcarrier intervals, the same frequency tuning time corresponds to different N.
  • the frequency tuning time is 140 ⁇ s
  • the subcarrier interval is 15 kHz
  • the number of invalid time units N 2.
  • the frequency tuning time is 140 ⁇ s
  • the subcarrier interval is 30 kHz
  • the number of invalid time units N 4.
  • the following uses an example to illustrate that the terminal device or the network device determines N according to the frequency tuning time, the subcarrier spacing, the last time unit bearing the first random access preamble, and the start time unit of the first time period.
  • the last time unit carrying the random access preamble is symbol n.
  • the frequency tuning time is determined according to the frequency tuning time and the subcarrier spacing to occupy j time units (symbols n+1 to n+4 in FIG. 8 ).
  • One time unit after symbol n is symbol n+1.
  • the initial time unit of the earliest CORESET after the n+1th symbol is symbol n+m, where m>1.
  • the formula for calculating the initial time unit symbol n+6 of the earliest CORESET after the n+j symbol is n+m+a*p, where p is the period of the CORESET (the time interval between the initial time units of adjacent CORESETs), and a is the symbol
  • the number of cycles between the earliest CORESET after n+1 and the earliest CORESET after symbol n+j (that is, the time interval between symbol n+m and symbol n+6 is a times the cycle)
  • the time unit length of CORESET is q, where j/m/p/a/q are all integers.
  • the time units before the initial time unit of the earliest CORESET after the n+jth symbol are all invalid time units.
  • N 3 in the first time period.
  • the last time unit bearing the random access preamble is symbol n
  • the frequency tuning time occupies 4 time units.
  • the 5 symbols after symbol n are all invalid time units (symbol n+1 is used to prepare for RAR and/or DCI transmission, symbols n+2 to n+5 are used for frequency tuning), at the first time
  • the number of invalid time units in the segment N 3; or considering that the time for frequency tuning and preparing for RAR and/or DCI transmission can be performed simultaneously (that is, symbols n+1 to n+4 are used for frequency tuning), at this time in symbol n
  • N 3 in the first time period (the number of invalid time units used for frequency tuning in the first time period is 2, That is, symbols n+3 and n+4, and symbol n+5 are not used to transmit downlink information).
  • the time unit included in the CORESET is also an invalid time unit.
  • the time unit before the start time unit of the first CORESET after the invalid time unit is also an invalid time unit.
  • N is determined according to the last time unit n+e of the last CORESET before the n+jth symbol of the start time unit of the first time period, and j is the number of invalid time units determined according to the frequency tuning time, N is the number of invalid time units in the first time period.
  • N is determined from the maximum value of e and j+1.
  • control resource set is a periodic resource set.
  • the period of the control resource set in the above example, the occupied time unit length and the starting position are only examples, and the number of time units used for frequency tuning is also only an example. The application does not impose any restrictions on this.
  • the foregoing terminal device may be a first terminal device, or may be a second terminal device.
  • the first terminal device or the second terminal device may send the first random access preamble according to the second random access channel configuration.
  • the second random access channel is configured for random access of the first terminal device or the second terminal device.
  • the network device may determine the type of the terminal device according to the identification information and/or capability information included in Msg3.
  • the value of N is determined according to the frequency tuning time.
  • the first time interval is the time interval between the last time unit bearing the first random access preamble and the start time unit (first start time unit) of the first time period. If the frequency tuning time is longer than the first time interval, then N time units within the first time period are invalid time units. If the frequency tuning time is less than or equal to the first time interval, then there is no invalid time unit in the first time period or all time units in the first time period are valid time units.
  • the value of N is determined according to the frequency tuning time.
  • the second time interval is a time interval between the last time unit bearing the first random access preamble and the second start time unit.
  • the second start time unit is the start time unit of the first control resource set after (K+frequency tuning time) time units after the last time unit bearing the first random access preamble.
  • the frequency tuning time is longer than the second time interval, then N symbols in the first time period are invalid time units. If the frequency tuning time is less than or equal to the second time interval, there is no invalid time unit in the first time period or all valid time units in the first time period.
  • the first message 3 above is the Msg 3 sent by the first terminal device during the random access process initiated by the first terminal device
  • the second message 3 is sent by the second terminal device during the random access process initiated by the second terminal device Msg 3
  • the first message 3 configuration information refers to the configuration information configured by the network device for the first terminal device for the first terminal device to send Msg 3
  • the first message 3 configuration information cannot be used for the second terminal device to send Msg3.
  • the first uplink information is a random access preamble
  • the random access preamble includes identification information and/or capability information of the terminal device.
  • the network device can judge whether it is the first terminal device or the second terminal device that initiates the random access according to the identification information and/or capability information in the random access preamble, if it is determined that the terminal device that initiates the random access includes the first terminal device and the The second terminal device, and determining that the downlink information sent to the first terminal device and the second terminal device is the same DCI and/or in the same PDU.
  • the first uplink information is a random access preamble, and the random access preamble does not include the identification information and/or capability information of the terminal device, and the terminal device reports the identification information and/or capability information of the terminal device in message 3 information.
  • the length of the first time period of the first terminal device is the same as the length of the second time period of the second terminal device, and the start time unit of the first time period of the first terminal device is the same as that of the second terminal device
  • the start time unit (for example, symbol n+3 shown in FIG. 8 ) of the second time period is the same.
  • the network device sends the first downlink information or the second downlink information at the N+Qth time unit in the first time period or the second time period, where N is a positive integer and Q is greater than or equal to 1.
  • N the number of invalid time units in the first time period
  • the effective length in the first time period is T-N.
  • the effective length is the number of time units available for receiving downlink information.
  • the first terminal device determines the first time period, and monitors the first downlink information (such as Msg 2) in the N+Qth time unit in the first time period, as shown in FIG. 9, the first terminal device The first downlink information is monitored on symbol n+6 to symbol n+M in the first time period.
  • the first downlink information such as Msg 2
  • the second terminal device does not need to consider the frequency tuning time, determines the second time period, and starts monitoring the first downlink information (such as Msg 2) in the initial time unit of the second time period, as shown in FIG. 9, the first The second terminal device monitors the first downlink information on symbol n+3 to symbol n+M in the second time period.
  • the first downlink information such as Msg 2
  • the foregoing first time period is a time period during which the first terminal device monitors the first downlink information
  • the second time period is a time period during which the second terminal device monitors the first downlink information.
  • the first downlink information is downlink information received by the first terminal device and the second terminal device during the random access process.
  • the first downlink information includes at least one of the DCI scrambled by the RA-RNTI and the physical downlink shared channel PDSCH scrambled by the RA-RNTI.
  • the random access preamble when the first uplink information is a random access preamble, the random access preamble includes identification information and/or capability information of the terminal device.
  • the network device can determine whether the random access is initiated by the first terminal device or the second terminal device according to the random access preamble, if the network device determines that the terminal device that initiates the random access includes the first terminal device and the second terminal device, and determines that The downlink information sent to the first terminal device and the second terminal device is in different DCIs and/or in the same PDU.
  • the network device sends the first downlink information (such as Msg 2) in N+Q time units in the first time period, as shown in Figure 9, the symbol n+6 to symbol n+ of the network device in the first time period
  • the first downlink information is sent on valid symbols in M.
  • N is a positive integer
  • Q is greater than or equal to 1.
  • the first terminal device determines the first time period, and monitors the first downlink information (for example, Msg 2) in the N+Qth time unit in the first time period. As shown in FIG. 9 , the first terminal device monitors first downlink information on symbol n+6 to symbol n+M in the first time period.
  • the first downlink information for example, Msg 2
  • the first terminal device monitors first downlink information on symbol n+6 to symbol n+M in the first time period.
  • the network device starts to send the second downlink information (for example, Msg 2 ) on valid symbols at the start time unit in the second time period. As shown in FIG. 9 , the network device sends the second downlink information on valid symbols from symbol n+3 to symbol n+M in the second time period.
  • the second terminal device determines the second time period without considering the frequency tuning time of the first terminal device, and starts monitoring the second downlink information (such as Msg 2) at the start time unit of the second time period. As shown in FIG. 9 , the second terminal device monitors second downlink information on symbol n+3 to symbol n+M in the second time period.
  • the second downlink information such as Msg 2
  • the length of the first time period of the first terminal device is the same as the length of the second time period of the second terminal device.
  • the start time unit of the first time period of the first terminal device is the same as the start time unit of the second time period of the second terminal device.
  • the starting time unit of the first time period or the second time period is the time unit after K time units, and the K time units are the first message 3 or the second message 3 (Msg sent by the second terminal device) 3)
  • K 0.
  • the network device sends the first downlink information (such as Msg 4) in N+Q time units in the first time period, where N is a positive integer and Q is greater than or equal to 1.
  • the network device sends the first downlink information on valid symbols from symbol n+5 to symbol n+M in the first time period.
  • the valid time unit of the network device in the second time period sends the second downlink information (such as Msg 4) to the second terminal device, as shown in Figure 10, the symbol n+1 to symbol n of the network device in the second time period
  • the second downlink information is sent on valid symbols in +M.
  • the first downlink information and the second downlink information include at least one of a DCI scrambled by a cyclic redundancy check and a TC-RNTI or a contention resolution message.
  • the first terminal device monitors the first downlink information (for example, Msg 4 ), as shown in Figure 9, the first terminal device starts the timer at symbol n+1, monitors the first downlink information from symbol n+5 to symbol n+M, until the last timer, if until the last timer If the first downlink information has not been received, the random access fails.
  • the first downlink information for example, Msg 4
  • the second terminal device starts to start the timer at the start time unit of the second time period, and monitors or receives the second downlink information (such as Msg4), as shown in the figure As shown in 10, the second terminal device starts the timer at symbol n+1, and monitors the second downlink information from symbol n+1 to symbol n+M until the last one of the timer, if the timer has not received the last For the second downlink information, the random access fails.
  • the second downlink information such as Msg4
  • the first uplink information is the first random access preamble
  • the first downlink information is the first DCI and/or RA-RNTI scrambled by the cyclic redundancy check
  • the starting time unit of the first time period is the starting time unit of the first control resource set after K time units
  • the K time units are used to carry the first random access Enter the time unit after the last time unit of the leading edge
  • the K is an integer greater than 1.
  • the first time period may be the RAR window or the Msg2 window, and the first time period is used for monitoring the RAR and/or monitoring the first DCI.
  • the first DCI is downlink control information for scheduling RAR.
  • the first uplink information is the first message 3, and the first downlink information is the second DCI and/or contention resolution message scrambled by the cyclic redundancy check and TC-RNTI
  • the starting time unit of the first time period is the time unit after K time units
  • the K time units are the time units after the last time unit carrying the first message 3
  • the K is greater than or an integer equal to 1.
  • the first time period may be a random access contention resolution timer, and the first time period is used for monitoring Msg4 and/or monitoring the second DCI.
  • the second DCI is downlink control information for scheduling Msg4.
  • K is predefined; or K is determined according to a second preset rule; or K is indicated by the second indication information.
  • the second preset rule includes determining K according to at least one of frequency tuning time, subcarrier spacing, or the last time unit carrying the first uplink information.
  • the second indication information may be a system message, or the second indication information may be a system information block, or the second indication information may be a system information block 1 (SIB1).
  • this further includes step S722, the network device sends second indication information to the terminal device, where the second indication information indicates K.
  • the start time unit of the first time period is the start time unit of the first control resource set after K time units after symbol n.
  • the start time unit of the first time period is a time unit after K time units after the last time unit carrying the first message 3.
  • the terminal device or the network device determines the number of invalid time units according to at least one of the frequency tuning time, the subcarrier spacing, the last time unit carrying the first uplink information, and the start time unit of the first time period, K is determined according to the number of invalid time units.
  • the manner in which the terminal device or network device determines the number of invalid time units according to the frequency tuning time and the subcarrier interval can refer to the above, and details are not described here.
  • the terminal device is the first terminal device, and the first terminal device sends the first random access preamble according to the first random access channel configuration.
  • the configuration of the first random access channel is not used for random access of the second terminal device.
  • the lengths of the first time period of the first terminal device and the second time period of the second terminal device are different, and the second time period is used for the second terminal
  • the device monitors downlink information during the random access process.
  • the first terminal device can determine the first time period by the following method:
  • the first terminal device acquires the length of the second time period, and the first terminal device determines the length of the first time period according to the length of the second time period.
  • the method further includes step S711, the first terminal device receives third indication information, the third indication information is used to indicate the length of the second time period, and the first terminal device determines the length of the first time period according to the third indication information.
  • the length of the first time period the length of the second time period ⁇ frequency tuning time.
  • the length of the first time period the length of the second time period-N.
  • N can be determined according to the foregoing manner, and details are not repeated here.
  • the first time period is a time period for the first terminal device to monitor the first downlink information
  • the second time period is a time period for the second terminal device to monitor the second downlink information.
  • the first downlink information is the downlink information received by the first terminal device during the random access process
  • the second downlink information is the downlink information received by the second terminal device during the random access process.
  • the first downlink information and the second downlink information include cyclic redundancy check DCI scrambled by RA-RNTI, RA-RNTI scrambled physical downlink shared channel PDSCH, cyclic redundancy check DCI scrambled by TC-RNTI or at least one of contention resolution messages.
  • the configuration information of the first downlink information acquired by the first terminal device may also indicate that the length of the first time period is shorter than the length of the second time period.
  • the time unit for carrying the first message 3 is symbol n
  • the first uplink information is a random access preamble
  • the random access preamble includes identification information and/or capability information of the terminal device.
  • the network device can judge whether it is the first terminal device or the second terminal device that initiates the random access according to the identification information and/or capability information in the first random access preamble, if the network device determines that the terminal device that initiates the random access.
  • the downlink information for example, Msg2 sent to the first terminal device and the second terminal device is determined to be the same DCI and/or in the same PDU.
  • the first uplink information is a random access preamble, and the random access preamble does not include the identification information and/or capability information of the terminal device, and the terminal device reports the identification information and/or capability information of the terminal device in message 3 information.
  • the length of the first time period of the first terminal device is different from the length of the second time period of the second terminal device, and the start time unit of the first time period of the first terminal device is different from that of the second terminal device.
  • the start time unit of the second time period is different.
  • the last time unit of the first time period of the first terminal device is the same as the last time unit of the second time period of the second terminal device.
  • the starting time unit of the first time period is the starting time unit of the first control resource set after K time units, and the K time units are time units after the last time unit carrying the first uplink information, K If it is greater than 1, refer to the above description for the specific determination of K;
  • the length of the first time period is T1
  • the start time unit is symbol n+6
  • the length of the second time period is T2
  • the start time unit is symbol n+3, T1 ⁇ T2.
  • the network device sends Msg2 to the first terminal device and the second terminal device at the same time, that is, the downlink information sent by the network device to the second terminal device needs to consider the frequency tuning time of the first terminal device. Therefore, the network device sends downlink information to the second terminal device at the N+Qth time unit in the second time period.
  • the specific values of N and Q can refer to the above description, and will not be repeated here.
  • the network device sends the first downlink information or the second downlink information on the effective symbols in symbol n+6 to symbol n+M.
  • the network device may send downlink information to the first terminal device starting from the start time unit (symbol n+6 shown in FIG. 12 ) of the first time period.
  • the first terminal device determines the first time period, and starts to monitor the first downlink information at the start time unit (symbol n+6 shown in FIG. 12 ) of the first time period.
  • the second terminal device determines the second time period, and starts monitoring the second downlink information at the start time unit (symbol n+3 shown in FIG. 12 ) of the second time period.
  • the first uplink information is a random access preamble
  • the random access preamble includes identification information and/or capability information of the terminal device.
  • the network device judges according to the random access preamble whether it is the first terminal device or the second terminal device that initiates the random access, if it is determined that the terminal device that initiates the random access includes the first terminal device and the second terminal device, and it is determined to send to The Msg2 of the first terminal device and the second terminal device are in different PDUs.
  • the network device determines the first time period, the start time unit of the first time period is the start time unit of the first control resource set after K time units, and the K time units The time unit is the time unit after the last time unit that carries the first uplink information, K is greater than 1, and the specific determination of K refers to the above description.
  • the network device starts to send the first downlink information (such as Msg2) at the start time unit of the first time period. As shown in FIG. 12, the network device sends the first downlink information.
  • the first terminal device starts to monitor or receive the first downlink information (for example, Msg2) at the start time unit (symbol n+6 shown in FIG. 12 ) of the first time period.
  • the network device determines the second time period, and the start time unit of the second time period is the start time unit of the earliest CORESET one time unit after the last time unit carrying the first random access preamble .
  • the network device sends the second downlink information to the second terminal device, it does not need to consider the frequency tuning time of the first terminal device, that is, the network device starts sending the second downlink information to the second terminal device at the start time unit of the second time period ( For example Msg2).
  • the network device sends the second downlink information on valid symbols in symbol n+3 to symbol n+M.
  • the second terminal device determines the second time period, and starts monitoring or receiving the second downlink information (such as Msg2) from the start time unit (symbol n+3 shown in FIG. 12 ) of the second time period until the second The last time unit of the time period.
  • the second downlink information such as Msg2
  • the network device starts to send the first downlink at the start time unit of the first time period
  • the network device sends the first downlink information on valid symbols from symbol n+5 to symbol n+M in the first time period.
  • the first terminal device starts to start the timer at the start time unit (symbol n+5 shown in FIG. 13 ) of the first time period, and monitors or receives the first downlink information (such as Msg4) until the timer ends , if the first downlink information is not received until the timer expires, the random access fails.
  • the start time unit of the second time period is the time unit after K time units, and the K time units are the last time for carrying the second message 3
  • the time unit after the unit, K 0.
  • the network device sends the second downlink information (such as Msg4) on the time unit after the start time unit of the second time period, as shown in Figure 13, the symbol n+1 to symbol n+ of the network device in the second time period
  • the first downlink information is sent on valid symbols in M.
  • the second terminal device starts to start the timer at the start time unit (symbol n+1 shown in FIG. 13 ) of the second time period, and monitors or receives the second downlink information (such as Msg4) until the timer ends, If the second downlink information is not received until the timer expires, random access fails.
  • the length of the first time period is shorter than the length of the second time period.
  • the terminal device and the network device may also consider adopting different implementation manners according to different scenarios.
  • Scenario 1 When the first terminal device reports terminal device identification information and/or capability information through the random access preamble, it is determined according to yet another implementable manner and yet another implementable manner described above first time period. That is, the lengths of the first time period of the first terminal device and the second time period of the second terminal device are different, and the starting time unit of the first time period of the first terminal device is the first time unit after K time units The start time unit of the control resource set, the K time units are time units after the last time unit carrying the first uplink information, and K is greater than 1; or the start time unit of the first time period is K A time unit after the time unit, the K time units are time units after the last time unit carrying the first uplink information, and K is greater than or equal to 1.
  • the start time unit of the second time period of the second terminal device is the start time unit of the first control resource set after K time units, and the K time units are the last one carrying the first uplink information
  • the time unit after the unit, K 0.
  • Scenario 2 When the first terminal device reports terminal device identification information and/or capability information through Msg3, the first time period is determined according to one implementable manner and another implementable manner described above. That is, the length of the first time period of the first terminal device and the first time period of the second terminal device are the same, and the starting time unit of the first time period of the first terminal device and the first time period of the second terminal device same.
  • the network device sends downlink information to the first terminal device or the second terminal device at the N+Q time unit in the first time period, and the first terminal device monitors the downlink at the N+Q time unit in the first time period information, the second terminal device starts to monitor the downlink information at the start time unit of the first time period.
  • the network device When determining the first time period (the first time period is used to receive Msg2 or Msg4) according to the method provided by the embodiment of this application, the network device needs to consider the frequency tuning of the first terminal device and cannot time units to send the first downlink information (Msg2 or Msg4), resulting in waste of resources. Or the network device needs to reselect available time domain resources (the duration of the first time period of the first terminal device is shorter than the duration of the second time period of the second terminal device), which causes an increase in the delay of the second terminal device's scheduling. Therefore, the network device may choose which method to use to determine the first time period according to actual conditions in the network.
  • the first uplink information is the first message 3
  • the starting time unit of the first time period is the time unit after K time units
  • the network device monitors the first downlink information in the N+Qth time unit of the first time period.
  • the first uplink information is the first random access preamble
  • the starting time unit of the first time period is the starting time unit of the first control resource set after K time units
  • the K time units is a time unit after the last time unit bearing the first random access preamble
  • K is an integer greater than 1.
  • the first uplink information is the first message 3, the time unit after the start time unit K time units of the first time period, and the K time units are after the last time unit carrying the first message 3
  • the time unit of , K is an integer greater than or equal to 1.
  • the first uplink information is the first random access preamble
  • the starting time unit of the first time period is the starting time unit of the first control resource set after K time units
  • the network device sends the first downlink information in the time unit of the first time period, correspondingly, the terminal device All time units in the first time period monitor the first downlink information.
  • mode 3 is stipulated in the existing protocol.
  • the network device determines which method to use to determine the first time period based on at least one of the following: time information, load conditions in the network, the ratio of the first terminal device to the second terminal device in the network, terminal The latency requirement of the device.
  • the network device determines which method to use to determine the first time period according to the time information. Specifically, the network device determines the first time period according to manner 1 within the first time range, and the network device determines the first time period according to manner 3 within the second time range.
  • the first time range or the second time range includes at least one time unit.
  • the time unit may be any one of time slot, subframe, frame, superframe, second, minute, hour or day.
  • the network device can adopt different methods according to the change of load and traffic in the network over time.
  • the network device determines which method to use to determine the first time period according to the load condition in the network. Specifically, when the load in the network is heavy and resources are congested, the network device determines the first time period according to mode 3, so that some first terminal devices fail to access. Alternatively, when the load on the network is small and the resources are relatively idle, the network device determines the first time period according to mode 1. Although this method affects the access delay of the second terminal device, it can enable the first terminal device to access the network.
  • the network device determines which method to use to determine the first time period according to the ratio of the first terminal device to the second terminal device.
  • the network device determines the first time period according to mode 1. Therefore, a greater number of first terminal devices in the network can better access the network.
  • the network device determines the first time period according to manner 3. Therefore, a greater number of second terminal devices in the network can be better considered, and delays in accessing the network by the second terminal devices can be avoided.
  • the network device determines which method to use to determine the first time period according to the delay requirement of the UE. Specifically, if the terminal device has a high latency requirement, or the terminal device is a low-latency UE, the network device determines the first time period according to mode 3. Alternatively, the terminal device has a low delay requirement, or the terminal device is a UE that is not sensitive to delay, and the network device determines the first time period according to mode 2.
  • the network device when the network device configures the time domain resources of the first uplink information and the first set of control resources, the last time unit carrying the first uplink information and the start time of the first set of control resources The interval between units is greater than or equal to the frequency tuning time.
  • the first set of control resources may be resources in a search space for detecting or monitoring the first downlink information.
  • the terminal device does not expect that the interval between the last time unit carrying the first uplink information and the start time unit of the first control resource set is shorter than the frequency tuning time.
  • the terminal device may notify the network device by sending information, so that when the network device configures the time-domain resources of the first uplink information and the first control resource set, the last time unit carrying the first uplink information and the start of the first control resource set
  • the interval between the start time units is greater than or equal to the frequency tuning time.
  • the frequency tuning time occupies 4 symbols, and the interval between the last time unit carrying the first uplink information and the start time unit of the first control resource set is 4 symbols or greater than 4 symbols .
  • the first terminal device can determine the first time period according to manner 3, without causing the problem that the downlink signal cannot be received due to frequency tuning.
  • resource configurations of the uplink information of the first terminal device and the second terminal device are different.
  • the first terminal device and the second terminal device monitor the first downlink information in the first set of control resources.
  • the last time unit of the first terminal device carrying the first uplink information is earlier than the last time unit of the second terminal device carrying the second uplink information.
  • execution subject illustrated in FIG. 5 and FIG. 7 is only an example, and the execution subject may also be a chip, a chip system, or a processor that supports the execution subject to implement the methods shown in FIG. 5 and FIG. 7 . There is no limit to this.
  • the methods and operations implemented by the network device may also be implemented by components (such as chips or circuits) that can be used in the network device, and the methods and operations implemented by the terminal device may also be implemented by A component (such as a chip or a circuit) implementation that can be used in a terminal device.
  • components such as chips or circuits
  • a component such as a chip or a circuit
  • each network element such as a transmitting end device or a receiving end device, includes a corresponding hardware structure and/or software module for performing each function in order to realize the above functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the embodiment of the present application can divide the functional modules of the transmitting end device or the receiving end device according to the above method example, for example, each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation. In the following, description will be made by taking the division of each functional module corresponding to each function as an example.
  • FIG. 14 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 800 may be the terminal device in FIG. 1, or the terminal device in FIG. 2(a), 2(b), or 2(c), and is used to realize the method.
  • the communication device may also be the first network device or the second network device in Fig. 2(a), or Fig. 2(b), the network device in the RAN in Fig. 2(c), such as CU, DU, CU - CP, or CU-UP, configured to implement the method corresponding to the first network device or the second network device in the foregoing method embodiments.
  • CU DU
  • CU - CP CU-UP
  • the communication device 800 includes one or more processors 801 .
  • the processor 801 may also be referred to as a processing unit, and may implement certain control functions.
  • the processor 801 may be a general-purpose processor or a special-purpose processor. For example, including: baseband processor, central processing unit, application processor, modem processor, graphics processor, image signal processor, digital signal processor, video codec processor, controller, memory, and/or Neural Network Processor, etc.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processing unit can be used to control the communication device 800, execute software programs and/or process data. Different processors may be independent devices, or may be integrated in one or more processors, for example, integrated in one or more application-specific integrated circuits.
  • the communication device 800 includes one or more memories 802 for storing instructions 804, and the instructions can be executed on the processor, so that the communication device 800 executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory 802 .
  • the processor and memory can be set separately or integrated together.
  • the communication device 800 may include instructions 803 (sometimes also referred to as codes or programs), and the instructions 803 may be executed on the processor, so that the communication device 800 executes the methods described in the above embodiments .
  • Data may be stored in the processor 801 .
  • the communication device 800 may further include a transceiver 805 and an antenna 806 .
  • the transceiver 805 may be called a transceiver unit, a transceiver, a transceiver circuit, a transceiver, an input/output interface, etc., and is used to realize the transceiver function of the communication device 800 through the antenna 806 .
  • the communication device 800 may further include one or more of the following components: a wireless communication module, an audio module, an external memory interface, an internal memory, a universal serial bus (universal serial bus, USB) interface, a power management module, an antenna, Speakers, microphones, I/O modules, sensor modules, motors, cameras, or displays, etc. It can be understood that, in some embodiments, the communication device 800 may include more or fewer components, or some components may be integrated, or some components may be separated. These components may be realized by hardware, software, or a combination of software and hardware.
  • the processor 801 and transceiver 805 described in this application can be implemented in integrated circuit (integrated circuit, IC), analog IC, radio frequency integrated circuit (radio frequency identification, RFID), mixed signal IC, application specific integrated circuit (application specific integrated circuit) , ASIC), printed circuit board (printed circuit board, PCB), or electronic equipment, etc.
  • the communication device described herein can be an independent device (for example, an independent integrated circuit, a mobile phone, etc.), or it can be a part of a larger device (for example, a module that can be embedded in other devices).
  • a module for example, a module that can be embedded in other devices.
  • An embodiment of the present application provides a terminal device, and the terminal device (referred to as UE for convenience of description) may be used in the foregoing embodiments.
  • the terminal device includes corresponding means for realizing the UE functions described in the embodiments shown in FIG. 1, FIG. 2(a), 2(b), 2(c), FIG. 5, and/or FIG. 7 (means), unit and/or circuit.
  • the terminal device includes a transceiver module, configured to support the terminal device to implement a transceiver function, and a processing module, configured to support the terminal device to process signals.
  • FIG. 15 shows a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 900 may be applicable to the system shown in FIG. 1, FIG. 2(a), 2(b), or 2(c).
  • FIG. 15 only shows main components of the terminal device 900 .
  • the terminal device 900 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control the entire terminal device 900, execute software programs, and process data of the software programs.
  • Memory is primarily used to store software programs and data.
  • the control circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, microphones, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the control circuit, and the control circuit performs radio frequency processing on the baseband signal, and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the control circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data .
  • FIG. 15 only shows a memory and a processor.
  • terminal device 900 may include multiple processors and memories.
  • a storage may also be called a storage medium or a storage device, which is not limited in this embodiment of the present invention.
  • the processor may include a baseband processor and a central processing unit, the baseband processor is mainly used to process communication protocols and communication data, and the central processor is mainly used to control the entire terminal device 900, Executing the software program, processing the data of the software program.
  • the processor in FIG. 15 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors, interconnected through technologies such as a bus.
  • the terminal device 900 may include multiple baseband processors to adapt to different network standards, the terminal device 900 may include multiple central processors to enhance its processing capability, and various components of the terminal device 900 may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • a terminal device 900 includes a transceiver unit 910 and a processing unit 920 .
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • the device in the transceiver unit 910 for realizing the receiving function may be regarded as a receiving unit
  • the device in the transceiver unit 910 for realizing the sending function may be regarded as a sending unit, that is, the transceiver unit 910 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, receiver, receiving circuit, etc.
  • the sending unit may be called a transmitter, transmitter, or transmitting circuit, etc.
  • the embodiment of the present application also provides a network device, which can be used in the foregoing embodiments.
  • the network device includes the first network device or the second network device described in the embodiment shown in Fig. 2(a), 2(b), or 2(c), Fig. 5, and/or Fig. 7 Means, units and/or circuits of the function of a device.
  • the network device includes a transceiver module, configured to support the terminal device to implement the transceiver function, and a processing module, configured to support the network device to process signals.
  • the first network device and the second network device are relative to one or some UEs, and relative to some other UEs, the role of the first online course device and the second network device can be exchange.
  • FIG. 16 shows a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device 20 can be applied in the system shown in FIG. 1 , FIG. 2( a ), 2( b ), or 2( c ).
  • the network device 20 is, for example, the network device 120 shown in FIG. 1 .
  • the network device 20 may have the function of the first network device as the first network device for some or some UEs, or may have the function of the second network device as the second network device for some or some UEs.
  • the network device includes: a baseband device 201 , a radio frequency device 202 , and an antenna 203 .
  • the radio frequency device 202 receives the information sent by the terminal device through the antenna 203, and sends the information sent by the terminal device to the baseband device 201 for processing.
  • the baseband device 201 processes the information of the terminal device and sends it to the radio frequency device 202
  • the radio frequency device 202 processes the information of the terminal device and sends it to the terminal device through the antenna 203 .
  • the baseband device 201 includes one or more processing units 2011 , a storage unit 2012 and an interface 2013 .
  • the processing unit 2011 is configured to support the network device to execute the functions of the network device in the foregoing method embodiments.
  • the storage unit 2012 is used to store software programs and/or data.
  • the interface 2013 is used for exchanging information with the radio frequency device 202, and the interface includes an interface circuit for input and output of information.
  • the processing unit is an integrated circuit, such as one or more ASICs, or one or more DSPs, or one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the storage unit 2012 and the processing unit 2011 may be located in the same chip, that is, an on-chip storage element. Alternatively, the storage unit 2012 and the processing unit 2011 may also be located on different chips from the processing unit 2011, that is, an off-chip storage unit.
  • the storage unit 2012 may be one memory, or a general term for multiple memories or storage elements.
  • a network device may implement part or all of the steps in the foregoing method embodiments in the form of one or more processing unit schedulers.
  • the one or more processing units may support wireless access technologies of the same standard, or may support wireless access technologies of different standards.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division.
  • the units described as separate components may or may not be physically separated.
  • the components shown may or may not be physical units, that is, they may be located in one place, or they may be distributed over multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned computer-readable storage medium may be any available medium that can be accessed by a computer.
  • the computer readable medium may include random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), Erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically erasable programmable read only memory, EEPROM), compact disc read-only memory (compact disc read-only memory, CD- ROM), universal serial bus flash disk (universal serial bus flash disk), removable hard disk, or other optical disk storage, magnetic disk storage medium, or other magnetic storage device, or can be used to carry or store desired data in the form of instructions or data structures program code and any other medium that can be accessed by a computer.
  • RAM random access memory
  • read-only memory read-only memory
  • ROM programmable read-only memory
  • PROM programmable read-only memory
  • Erasable programmable read-only memory Erasable programmable read-only memory
  • EPROM Er
  • RAM static random access memory
  • dynamic RAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • direct rambus RAM direct rambus RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法和通信装置,该方法包括:终端设备发送第一上行信息,获取第一下行信息的配置信息,根据承载该第一上行信息的最后一个时间单元和该配置信息确定第一时间段,该终端设备在第一时间段内监测该第一下行信息。本申请提供的通信方法和装置能够减少第一终端设备随机接入的时延,从而提高系统性能。

Description

通信方法和通信装置
本申请要求于2021年05月10日提交中国专利局、申请号为202110506696.5、申请名称为“通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法和通信装置。
背景技术
随着移动通信技术的进步,业务类型在不断增加,不同业务类型对应的应用场景不同。国际电信联盟(international telecommunication union,ITU)为第五代(the fifth generation,5G)以及未来的移动通信系统定义了三大类应用场景:第一类为增强型移动宽带(enhanced mobile broadband,eMBB),第二类为高可靠低时延通信(ultra reliable and low latency communications,URLLC),第三类为海量机器类通信(massive machine type communications,mMTC)。
典型的eMBB业务有:超高清视频、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)等,eMBB业务的特点为传输数据量大、传输速率较高。典型的URLLC业务有:工业制造或生产流程中的无线控制、无人驾驶的运动控制以及远程修理、远程手术等触觉交互类应用,URLLC业务的特点为高可靠性、低延时,传输数据量较少并且具有突发性。典型的mMTC业务有:智能电网配电自动化、智慧城市等,mMTC业务的特点是联网设备数量巨大、传输数据量较小、数据对传输时延不敏感,mMTC终端的需求为低成本和超长待机时间。
上述不同业务对移动通信系统的需求不同,如何更好地同时支持多种不同业务的数据传输需求,是当前5G移动通信系统以及未来的移动通信系统所需要解决的问题。
发明内容
本申请提供一种通信方法和通信装置,用以提高系统性能。
第一方面,提供了一种通信方法,该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路执行,本申请对此不作限定。该方法包括:终端设备发送第一上行信息,该终端设备获取第一下行信息的配置信息,根据承载所述第一上行信息的最后一个时间单元和该配置信息确定第一时间段,在所述第一时间段内监测该第一下行信息。
其中,第一时间段的起始时间单元为K个时间单元后的第一个控制资源集合的起始时间单元,所述K个时间单元为承载所述第一上行信息的最后一个时间单元之后的时间单元,所述K=1,且所述第一时间段的第N+Q个时间单元用于监测所述第一下行信息,N为正整数,Q大于等于1;或者第一时间段的起始时间单元为K个时间单元之后的时间单元,所 述K个时间单元为承载所述第一上行信息的最后一个时间单元之后的时间单元,所述K=0,且所述第一时间段的第N+Q个时间单元用于监测所述第一下行信息,N为正整数,Q大于等于1;或者第一时间段的起始时间单元为K个时间单元后的第一个控制资源集合的起始时间单元,所述K个时间单元为承载所述第一上行信息的最后一个时间单元之后的时间单元,所述K大于1;或者第一时间段的起始时间单元为K个时间单元之后的时间单元,所述K个时间单元为承载所述第一上行信息的最后一个时间单元之后的时间单元,所述K大于等于1。
由于终端设备在频率调谐时,不能与网络设备进行通信,在频率调谐之后,存在错过接收下行信息的问题。因此采用本申请提供的技术方案,终端设备可根据频率调谐的时间,在第一时间段内的有效时间单元上监测下行信息,从而可以避免因频率调谐引起的错过接收下行信息的问题。
在一种可能的方式中,该第一上行信息为第一随机接入前导,该第一下行信息为循环冗余校验被随机接入无线网络临时标识RA-RNTI加扰的第一下行控制信息DCI和/或RA-RNTI加扰的物理下行共享信道PDSCH;或者该第一上行信息为第一消息3,该第一下行信息为循环冗余校验被临时小区无线网络临时标识TC-RNTI加扰的第二DCI和/或竞争解决消息。
采用本申请提供的技术方案,终端设备可根据频率调谐的时间,在第一时间段内的有效时间单元上监测随机接入前导或消息3的响应消息,避免终端设备因频率调谐引起的错过接收下行信息的问题,从而提高系统性能。
示例性的,N为预定义的;或根据第一预设规则确定的;或者第一指示信息指示的。
示例性的,K为预定义的;或根据第二预设规则确定的;或者第二指示信息指示的。
若N是预定义的,网络设备和第一终端设备可以根据预定义的N值确定无效时间单元个数,节省了信令开销,从而避免网络设备和第一终端设备理解不一致的问题。若N是按照预设规则确定的,可以节省信令开销,同时可根据预设规则涉及的参数动态调整N的取值,进一步合理的利用时域资源。若N是信令指示的,网络设备可以根据网络中的实际情况,如负载、业务等特性,动态地从网络整体资源分配方面考虑N的取值。
若K是预定义的,网络设备和第一终端设备可以根据预定义的K值确定第一时间段在时域上的位置,尽量避免该第一时间段包括因频率调谐造成的无效时间单元,节省了信令开销,从而避免网络设备和第一终端设备理解不一致的问题。若K是按照预设规则确定的,可以节省信令开销,同时可根据预设规则涉及的参数动态调整K的取值,进一步合理的利用时域资源。若K是信令指示的,网络设备可以根据网络的实际情况(如负载、业务等特性),从网络整体资源分配方面灵活的设置K的取值。
在一种可能的方式中,第一预设规则包括:根据频率调谐的时间、子载波间隔、承载该第一上行信息的最后一个时间单元或该第一时间段的起始时间单元中的至少一项确定N。
在一种可能的方式中,该第二预设规则包括:根据频率调谐的时间、子载波间隔或承载该第一上行信息的最后一个时间单元中的至少一项确定K。
基于上述方案,第一终端设备可根据第一预设规则确定N,即确定第一时间段中的无效时间单元(不能用于下行信息传输的时间单元),从而可在第一时间段内的有效时间单元上监测第一下行信息,避免错过接收第一下行信息的时机,以及提高通信效率。第一终 端设备可根据第二预设规则确定K,即可以使得第一时间段的起始时间单元为有效时间单元,从而在第一时间段内监测第一下行信息时不会造成错过接收第一下行信息的时机,造成随机接入的延时,提高通信效率。
在一种可能的方式中,当K大于1,该终端设备为第一终端设备,该第一终端设备根据第一随机接入信道配置发送该第一随机接入前导,其中,该第一随机接入信道配置不用于第二终端设备的随机接入,该第一终端设备的能力低于该第二终端设备。
应理解,上述方案中,随机接入前导中包括终端设备的标识信息和/或能力信息,即网络设备接收到随机接入前导后可判断发起随机接入的终端设备的类型。若第一终端设备确定的第一时间段的起始时间单元为有效时间单元时,第一终端设备和第二终端设备发送随机接入前导所依据的随机接入信道配置是不同的。
在一种可能的方式中,该K=1,该终端设备根据第二随机接入信道配置发送该第一随机接入前导;其中,该第二随机接入信道配置用于第一终端设备或第二终端设备的随机接入,该第一终端设备的能力低于该第二终端设备;该第一终端设备发送第一消息3,该第一消息3包括该第一终端设备的标识信息和/或能力信息。
应理解,上述方案中,消息3中包括终端设备的标识信息和/或能力信息,即网络设备接收到随机接入前导后不能判断发起随机接入的终端设备的类型。此时第一终端设备和第二终端设备发送随机接入前导所依据的随机接入信道配置可以相同。
在一种可能的方式中,该第一上行信息为第一随机接入前导,该K=1;该终端设备根据关系式N=max{频率调谐的时间-第一时间间隔,0}确定N,该第一时间间隔为承载该第一随机接入前导的最后一个时间单元和该第一时间段的起始时间单元之间的时间间隔。
在一种可能的方式中,该K=0,该第一消息3包括该终端设备的标识信息和/或能力信息,若该终端设备为第一终端设备,该第一终端设备根据第一消息3配置信息发送第一消息3,该第一消息3配置信息不用于第二终端设备发送第二消息3,该第一终端设备的能力低于该第二终端设备。
应理解,上述方案中,消息3中包括终端设备的标识信息和/或能力信息,即第一终端设备发送的消息3和第二终端设备发送的消息3不同,因此第一终端设备和第二终端设备不能依据相同的配置信息发送消息3,上述方案中的第二消息3为第二终端设备在随机接入过程中发送的消息3。
第二方面,提供了一种通信方法,该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或电路执行,本申请对此不作限定。该方法包括:网络设备接收第一上行信息,确定第一下行信息的配置信息,根据承载该第一上行信息的最后一个时间单元和该配置信息确定第一时间段,该网络设备在该第一时间段内发送该第一下行信息。
其中,第一时间段的起始时间单元为K个时间单元后的第一个控制资源集合的起始时间单元,所述K个时间单元为承载所述第一上行信息的最后一个时间单元之后的时间单元,所述K=1,且所述第一时间段的第N+Q个时间单元用于监测所述第一下行信息,N为正整数,Q大于等于1;或者第一时间段的起始时间单元为K个时间单元之后的时间单元,所述K个时间单元为承载所述第一上行信息的最后一个时间单元之后的时间单元,所述K=0,且所述第一时间段的第N+Q个时间单元用于监测所述第一下行信息,N为正整数,Q大于等于1;或者第一时间段的起始时间单元为K个时间单元后的第一个控制资源集合的起始 时间单元,所述K个时间单元为承载所述第一上行信息的最后一个时间单元之后的时间单元,所述K大于1;或者第一时间段的起始时间单元为K个时间单元之后的时间单元,所述K个时间单元为承载所述第一上行信息的最后一个时间单元之后的时间单元,所述K大于等于1。
由于终端设备在频率调谐时,不能与网络设备进行通信,在频率调谐之后,存在错过接收下行信息的问题。因此采用本申请提供的技术方案,网络设备可根据频率调谐的时间,在第一时间段的有效时间单元上发送下行信息,从而可以避免因频率调谐引起的错过接收下行信息的问题。
在一种可能的方式中,该第一上行信息为第一随机接入前导,该第一下行信息为循环冗余校验被RA-RNTI加扰的第一下行控制信息DCI和/或RA-RNTI加扰的物理下行共享信道PDSCH;或者该第一上行信息为第一消息3,该第一下行信息为循环冗余校验被TC-RNTI加扰的第二DCI和/或竞争解决消息。
采用本申请提供的技术方案,终端设备可根据频率调谐的时间,在第一时间段内的有效时间单元上监测随机接入前导或消息3的响应消息,避免终端设备因频率调谐引起的错过接收下行信息的问题,从而提高系统性能。。
示例性的,N为预定义的,或根据第一预设规则确定的。
示例性的,该网络设备发送第一指示信息,该第一指示信息指示N。
示例性的,K为预定义的,或根据第二预设规则确定的。
示例性的,该网络设备发送第一指示信息,该第一指示信息指示K。
若N是预定义的,网络设备和第一终端设备可以根据预定义的N值确定无效时间单元个数,节省了信令开销,从而避免网络设备和第一终端设备理解不一致的问题。若N是按照预设规则确定的,可以节省信令开销,同时可根据预设规则涉及的参数动态调整N的取值,进一步合理的利用时域资源。若N是信令指示的,网络设备可以根据网络中的实际情况,如负载、业务等特性,动态地从网络整体资源分配方面考虑N的取值。
若K是预定义的,网络设备和第一终端设备可以根据预定义的K值确定第一时间段在时域上的位置,尽量避免该第一时间段包括因频率调谐造成的无效时间单元,节省了信令开销,从而避免网络设备和第一终端设备理解不一致的问题。若K是按照预设规则确定的,可以节省信令开销,同时可根据预设规则涉及的参数动态调整K的取值,进一步合理的利用时域资源。若K是信令指示的,网络设备可以根据网络中的实际情况,如负载、业务等特性,动态地从网络整体资源分配方面考虑K的取值。
在一种可能的方式中,第一预设规则包括:根据频率调谐的时间、子载波间隔、承载该第一上行信息的最后一个时间单元或该第一时间段的起始时间单元中的至少一项确定该N。
在一种可能的方式中,该第二预设规则包括:根据频率调谐的时间、子载波间隔或承载该第一上行信息的最后一个时间单元中的至少一项确定该K。
基于上述方案,网络设备可根据第一预设规则确定N,即确定第一时间段中的无效时间单元(不能用于下行信息传输的时间单元),从而可在第一时间段内的有效时间单元上发送第一下行信息,避免错过第一终端设备接收第一下行信息的时机,以及提高通信效率。网络设备可根据第二预设规则确定K,即可以使得第一时间段的起始时间单元为有效时间 单元,从而第一终端设备在第一时间段内监测第一下行信息时不会造成错过接收第一下行信息的时机,造成第一终端设备随机接入的延时,提高通信效率。
在一种可能的方式中,K大于1,该网络设备向第一终端设备发送第一随机接入信道配置,该第一随机接入信道配置用于该第一终端设备的随机接入,且该第一随机接入信道配置不用于第二终端设备的随机接入,该第一终端设备的能力低于该第二终端设备。
应理解,上述方案中,随机接入前导中包括终端设备的标识信息和/或能力信息,即网络设备接收到随机接入前导后可判断发起随机接入的终端设备的类型。此时网络设备为第一终端设备和/或第二终端设备配置不同的随机接入信道配置。
在一种可能的方式中,K=1,该网络设备向第一终端设备发送第二随机接入信道配置,该第二随机接入信道配置用于第一终端设备或第二终端设备的随机接入,该第一终端设备的能力低于该第二终端设备,该网络设备接收第一消息3,该第一消息3包括第一终端设备的标识信息和/或能力信息。
应理解,上述方案中,消息3中包括终端设备的标识信息和/或能力信息,即网络设备接收到随机接入前导后,不能判断发起随机接入的终端设备的类型。此时网络设备为第一终端设备和第二终端设备可以配置相同的随机接入信道配置。
在一种可能的方式中,该第一上行信息为第一随机接入前导,该K=1,该网络设备根据关系式N=max{频率调谐的时间-第一时间间隔,0}确定N,该第一时间间隔为承载该第一随机接入前导的最后一位时间单元和该第一时间段的起始时间单元之间的时间间隔。
在一种可能的方式中,该K=0,该第一消息3包括终端设备的标识信息和/或能力信息,若该终端设备为第一终端设备,该网络设备向该第一终端设备发送第一消息3配置信息,该第一消息3配置信息不用于第二终端设备发送第二消息3,该第一终端设备的能力低于该第二终端设备。
应理解,上述方案中,消息3包括终端设备的标识信息和/或能力信息,即第一终端设备发送的第一消息3和第二终端设备发送的第二消息3不同。因此网络设备为第一终端设备和第二终端设备配置的消息3配置信息不同。
第三方面,提供一种通信装置,有益效果可以参见第一方面的描述此处不再赘述。所述通信装置具有实现上述第一方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:收发模块与处理模块。这些模块可以执行上述第一方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第四方面,提供一种通信装置,有益效果可以参见第二方面的描述此处不再赘述。所述通信装置具有实现上述第二方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:收发模块与处理模块。这些模块可以执行上述第二方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第五方面,提供了一种通信装置,该通信装置可以为上述方法实施例中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括 存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由终端设备所执行的方法。
第六方面,提供了一种通信装置,该通信装置可以为上述方法实施例中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由网络设备所执行的方法。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码并运行时,使得上述各方面中由终端设备执行的方法被执行。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述各方面中由网络设备执行的方法被执行。
第九方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中终端设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中网络设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十一方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由终端设备执行的方法。
第十二方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由网络设备执行的方法
附图说明
图1是适用于本申请实施例的通信系统100的示意图。
图2是本申请提供的通信系统100中的一种通信网络架构示意图。
图3是本申请提供的终端设备在初始接入阶段的上下行频域资源的示意图。
图4是本申请提供的终端设备的不同上下行消息的频域资源的位置示意图。
图5是本申请实施例提供的初始接入阶段的流程交互图。
图6是本申请实施例提供的一种确定下行信息的时间单元位置示意图。
图7是本申请实施例提供的一种通信方法的示意图。
图8-图13是本申请实施例提供的一种确定下行信息的时间单元位置示意图。
图14是本申请实施例提供的一种通信装置的示意性框图。
图15是本申请实施例提供的一种终端设备的结构示意图。
图16是本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是适用于本申请实施例的通信系统100的示意图。
如图1所示,该通信系统100可以包括核心网设备110,网络设备120和至少一个终端设备130,示例的,该通信系统还可以包括终端设备140。终端设备通过无线的方式与网络设备相连,网络设备通过无线或有线方式与核心网设备连接。核心网设备与网络设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与网络设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的网络设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,例如还可以包括无线中继设备和无线回传设备,在图1中未示出。本申请的实施例对该移动通信系统中包括的核心网设备、网络设备和终端设备的数量不做限定。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端或者未来演进网络中的终端等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。本申请对于终端设备的具体形式不作限定。
应理解,本申请实施例中,终端设备可以是用于实现终端设备功能的装置,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(Base Band Unit,BBU),无线保真(Wireless Fidelity,WIFI) 系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,简称AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
应理解,本申请实施例中,网络设备可以是用于实现网络设备功能的装置,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。
还应理解本申请实施例中的网络设备和终端设备可以部署在陆地上,包括室内或室外,手持或车载;或者部署在水面上;或者部署在空中的飞机、气球和卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system formobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、LTE系统、LTE频分双工(freq终端ncy division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或未来演进的通信系统,车到其它设备(vehicle-to-X V2X),其中V2X可以包括车到互联网(vehicle to network,V2N)、车到车(vehicle to vehicle,V2V)、车到基础设施(vehicle to infrastructure,V2I)、车到行人(vehicle to pedestrian,V2P)等、车间通信长期演进技术(long term evolution-vehicle,LTE-V)、车联网、机器类通信(machine type communication,MTC)、物联网(Internet of things,IoT)、机器间通信长期演进技术(long term evolution-machine,LTE-M),机器到机器(machine to machine,M2M),设备到设备(device to device,D2D)等。
图2(a)示出了本申请提供的通信系统100中的一种通信网络架构,后续提供的实施例均可适用于该架构。第一网络设备是终端设备(后续以UE为例进行说明)的源网络设备(或称为,工作网络设备,或服务网络设备),第二网络设备为UE的目标网络设备(或 称为,备用网络设备),即切换后为UE提供服务的网络设备。需要说明的是,本申请中,“故障”可以理解为网络设备出现故障,和/或因其他原因不能再为某个或多个UE提供服务,简称为故障。本申请中所述的“切换”,是指为UE提供服务的网络设备发生切换,并不限于“小区切换”。为方便描述,以网络设备为基站为例进行描述。所述“切换”可以指,由于为UE提供服务的基站发生变化而造成的切换。例如,当UE的源基站发生故障时,由备用基站为UE提供服务。又例如,UE从源基站切换到与另一个基站通信的过程中,由切换后的目标基站为UE提供服务。UE切换前与切换后的接入的小区可以变化,也可以不变。可以理解的是,所述备用网络设备是相对的概念,例如,相对于一个UE,基站2是基站1的备用网络设备,而相对于另一个UE,基站1是基站2的备用网络设备。
所述第一网络设备和所述第二网络设备可以是两个不同的设备,例如,第一网络设备和第二网络设备是两个不同的基站。可选的,所述第一网络设备和第二网络设备也可以是同一个设备中的两套功能模块。所述功能模块可以是硬件模块,或软件模块,或者硬件模块与软件模块。例如,所述第一网络设备和所述第二网络设备位于同一个基站中,是该基站中的两个不同的功能模块。一种实现方式中,所述第一网络设备和所述第二网络设备对于UE来说不是透明的。UE在与相应的网络设备交互时,能够知道究竟是在与哪个网络设备交互。另一种实现方式中,所述第一网络设备和所述第二网络设备对于UE来说是透明的。UE能够与网络设备通信,但并不知道是在与这两个网络设备中的哪个网络设备交互。或者说,对于UE来说,可能认为只有一个网络设备。所述第一网络设备和所述第二网络设备对于UE来说可以不是透明的,也可以是透明的。在后续描述中,第一网络设备、第二网络设备、以及终端设备(以UE为例)可以分别为图2中的(a)中所示网络架构中的第一网络设备,第二网络设备以及UE在本申请的各个实施例所对应的附图中,用虚线表示的步骤,是可选的步骤,在后文中不多赘述。
图2(b)示出了本申请提供的通信系统100中的另一种通信网络架构。如图2B所示,通信系统包括核心网(new core,CN)和无线接入网(radio access network,RAN)。其中RAN中的网络设备(例如,基站)包括基带装置和射频装置。基带装置可以由一个或多个节点实现,射频装置可以从基带装置拉远独立实现,也可以集成基带装置中,或者部分拉远部分集成在基带装置中。RAN中的网络设备可以包括集中单元(CU)和分布单元(DU),多个DU可以由一个CU集中控制。CU和DU可以根据其具备的无线网络的协议层功能进行划分,例如PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,例如RLC层和MAC层等的功能设置在DU。需要说明的是,这种协议层的划分仅仅是一种举例,还可以在其它协议层划分。射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,本申请不作任何限制。
图2(c)示出了本申请提供的通信系统100中的另一种通信网络架构。相对于图2B所示的架构,还可以将CU的控制面(CP)和用户面(UP)分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。在该网络架构中,CU产生的信令可以通过DU发送给UE,或者UE产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装而透传给UE或CU。在该网络架构中,将CU划分为作为RAN侧的网络设备,此外,也可以将CU划分作为CN侧的网络设备,本申请对此不做限制。
在本申请实施例中,第一终端设备与第二终端设备之间的区别可能包括如下至少一项:
1、带宽能力不同。例如,第一终端设备的载波带宽不大于50MHz,例如为50MHz、40MHz、20MHz、15MHz、10MHz或者5MHz中的至少一种,第二终端设备的载波带宽大于50MHz。
2、收发天线数不同。例如,第一终端设备可以支持2收1发(2个接收天线和1个发送天线),或者1收1发(1个接收天线和1个发送天线)。第二终端设备可以支持4收2发(4个接收天线和2个发送天线)。可以理解的是,在实现相同的数据传输速率的条件下,由于第一终端设备的收发天线个数少于第二终端设备的收发天线个数,因此第一终端设备与基站之间的数据传输所能实现的最大覆盖范围小于第二终端设备与基站之间的数据传输所能实现的最大覆盖范围。
3、上行最大发射功率不同。例如,第一终端设备的上行最大发射功率可以为4分贝毫瓦(dBm)~20dBm中的一个值。第二终端设备的上行最大发射功率可以为23dBm或者26dBm。
4、协议版本不同。第一终端设备可以是NR版本17(release-17,Rel-17)或者NR Rel-17以后版本中的终端设备。第二终端设备例如可以是NR版本15(release-15,Rel-15)或NR版本16(release-16,Rel-16)中的终端设备。第二终端设备也可以称为NR传统(NR legacy)终端设备。
5、载波聚合能力不同。例如,第一终端设备不支持载波聚合,第二终端设备可以支持载波聚合。又例如,第一终端设备和第二终端设备都可以支持载波聚合,但是第一终端设备同时支持的载波聚合的最大个数小于第二终端设备同时支持的载波聚合的最大个数,例如第一终端设备最多同时支持2个载波的聚合,第二终端设备可以最多同时支持5个载波或者32个载波的聚合。
6、双工能力不同。例如,第一终端设备支持半双工频分双工(frequency division duplexing,FDD)。第二终端设备支持全双工FDD。
7、数据的处理时间能力不同。例如,第一终端设备接收下行数据与发送对该下行数据的反馈之间的最小时延大于第二终端设备接收下行数据与发送对该下行数据的反馈之间的最小时延;和/或,第一终端设备发送上行数据与接收对该上行数据的反馈之间的最小时延大于第二终端设备发送上行数据与接收对该上行数据的反馈之间的最小时延。
8、处理能力(ability/capability)不同。例如,第一终端设备的基带处理能力低于第二终端设备的基带处理能力。其中,基带处理能力可以包括以下至少一项:终端设备进行数据传输时支持的最大MIMO层数,终端设备支持的HARQ进程数目,终端设备支持的最大传输块大小(transmission block size,TBS)。
9、上行和/或下行的传输峰值速率不同。传输峰值速率是指终端设备在单位时间内(例如每秒)能够达到的最大数据传输速率。第一终端设备支持的上行峰值速率可以低于第二终端设备支持的上行峰值速率,和/或第一终端设备支持的下行峰值速率可以低于第二终端设备支持的下行峰值速率。例如,第一终端设备的上行峰值速率小于或等于50Mbps,下行峰值速率小于或等于150Mbps,第二终端设备的上行峰值速率大于或等于50Mbps,下行峰值速率大于或等于150Mbps。又例如,第一终端设备的上行峰值速率或下行为百Mbps量级,第二终端设备的上行峰值速率或下行峰值速率为Gbps量级。
10、缓存(buffer)大小不同。缓存buffer可以理解为层2(Layer 2,L2)缓存总大小,其定义为终端设备对于所有无线承载,在无线链接控制(radio link control,RLC)发送窗和接收以及重排序窗中缓存的字节数与在数据包汇聚协议(Packet Data Convergence Protocol,PDCP)重排序窗中缓存的字节数之和。或者,缓存buffer也可以理解为混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)处理所能使用的软信道比特总数。
可选的,在本申请实施例中,第一终端设备可以是NR系统中的REDCAP终端设备,或者,第一终端设备还可以称为低能力终端设备、降低能力终端设备、REDCAP UE、Reduced Capacity UE、mMTC UE等。NR系统中还可以包括其他终端设备,例如第二终端设备,第二终端设备可以是传统能力或/正常能力/高能力的终端设备,也可以称为传统终端设备或者Legacy UE,第二终端设备与第一终端设备具有上述区别特征。
当然,以上只是示例,REDCAP终端设备与传统终端设备之间还可能存在其他区别,在此不再逐一举例说明。
目前,相比于第二终端设备,由于第一终端设备支持的带宽较窄,如20Mhz,基站在调度时的可选资源范围小,可获取的频域分集增益小;由于第一终端设备的天线数较少,接收信号无法获得空间分集增益,需要考虑覆盖增强,或考虑频率调谐导致的性能损失,需要进行重复传输以提高传输性能;并且,由于第一终端设备的处理速度慢,基站在调度时需要考虑更大的时延以保证第一终端设备能够完成数据的处理。例如,可以通过PUCCH进行重复传输来增强覆盖,然而,当前尚不存在指示PUCCH的重复传输的相关信息。
本申请的实施例可以适用于下行信号传输,也可以适用于上行信号传输,还可以适用于设备到设备(device to device,D2D)的信号传输。对于下行信号传输,发送设备是无线接入网设备,对应的接收设备是终端设备。对于上行信号传输,发送设备是终端设备,对应的接收设备是网络设备。对于D2D的信号传输,发送设备是终端设备,对应的接收设备也是终端设备。本申请的实施例对信号的传输方向不做限定。即传输可以为发送,或为接收。
网络设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间以及终端设备和终端设备之间可以通过6G以下的频谱进行通信,也可以通过6G以上的频谱进行通信,还可以同时使用6G以下的频谱和6G以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
ITU为5G以及未来的移动通信系统定义了三大类应用场景eMBB,URLLC,mMTC中的。目前,5G标准对于mMTC业务中的终端设备称为低能力终端设备(reduced capability,REDCAP),即低复杂度或能力降低的终端设备,如图1所示的终端设备130,在本申请实施例中称之为第一终端设备。低能力终端设备相对于其他终端设备(传统终端设备,例如eMBB,URLLC业务中的终端设备,如图1所示的终端设备140,在本申请实施例中称之为第二终端设备)而言复杂度低一些,例如带宽更窄、功耗更低、天线数更少等。低能力终端设备也可以称为轻量版(NR light,NRL)终端设备。
网络设备在系统消息中,例如系统消息块(system information block,SIB)为终端设 备配置初始上行部分带宽(bandwidth part,BWP)和初始下行BWP。初始接入阶段第二终端设备的初始上行BWP生效,第二终端设备的下行BWP在控制资源集合CORESET#0(control resource set#0)内,初始下行BWP还保持在CORESET#0直到第二终端设备进入连接态。即初始接入阶段的接入阶段,第二终端设备在CORESET#0进行下行传输,在初始上行BWP进行上行传输。目前协议要求初始上行BWP和初始下行BWP的中心频点(图中圆点)一致,初始下行BWP包括CORESET#0,如图3所示。
由于第一终端设备的带宽限制。例如,RedCap UE只能在小于等于20MHz的带宽内进行信息传输。并且,协议为了兼容第一终端设备和第二终端设备,初始接入阶段,第一终端设备也在CORESET#0下行传输。而且CORESET#0是根据系统的同步信号位置确定的,可能在载波的中间。由于第一终端设备的带宽窄,为了避免第一终端设备在上行传输时造成系统频域资源的碎片化,影响第二终端设备的连续资源分配,因此第一终端设备的初始上行BWP可能分配在载波的边缘。此时,会出现第一终端设备的CORESET#0和初始上行BWP在不同的20MHz带宽内,如图4所示。在此场景下,第一终端设备需要上行发送和下行接收之间,或者在下行接收和上行发送之间进行频率调谐。例如,Msg1到Msg2之间进行频率调谐,或Msg3到Msg4之间进行频率调谐等。应理解第一终端设备在进行频率调谐时,不能进行信息的收发,会导致传输中断。
收发两端在通信时,射频(radio frequency,RF)器件会工作在一定的频率范围内,该频率范围为带宽。射频器件工作的中心频率可以确定其工作的频率资源位置。频率调谐为调整收发两端的接收或发送信号的中心频率。由于频率调谐时需要射频器件如锁相环(phase-locked loops,PLL)的操作,所以在频率调谐过程中收发两端无法进行信息的收发。即,在频率调谐过程中接收端和发送端之间无法进行通信。频率调谐的时间可以为140μs等。在NR系统中,140μs对应到不同子载波间隔(subcarrier spacing,SCS)下的时间单元数不同,分别为2个时间单元(子载波间隔为15kHz)、4个时间单元(子载波间隔为30kHz)、8个时间单元(子载波间隔为60kHz)。
图5为本申请实施例提供的初始接入阶段的流程交互图。图5所示的随机接入方法包括:
步骤S510,终端设备向网络设备发送随机接入前导,对应的,网络设备接收该随机接入前导。
终端设备发起随机接入过程,例如终端设备根据广播消息,随机从若干个前导码(preamble)序列中选取一个,在预配置的随机接入信道时机(RACH occasion,RO)资源中发送该preamble序列。
示例的,多个终端设备在相同的RO资源中发送随机接入前导,随机接入前导也称之为随机接入请求,多个终端设备可以根据不同的preamble序列区分。
示例的,多个终端设备也有可能选择相同的preamble序列,这个过程为竞争接入过程。
步骤S520,网络设备向终端设备发送随机接入响应,对应的,终端设备接收该随机接入响应。
如果网络设备成功接收到了preamble序列并且允许该终端设备接入,则在预配置的随机接入响应(random access response,RAR)消息的时间窗口(window)内,网络设备向终端设备发送反馈信息,例如RAR消息。对应的,终端设备在该段时间内接收该RAR消息。 RAR包括RAR下行控制信息(downlink control information,DCI),该DCI为用于RAR消息的调度信息,RAR DCI为随机接入无线网络临时标识(random access radio network tempory identity,RA-RNTI)加扰的DCI。
示例的,RAR还包括RAR消息,例如媒体接入控制协议数据单元(media access control protocol data unit,MAC PDU)。RAR消息为RA-RNTI加扰的物理下行共享信道(physical downlink shared channel,PDSCH)。RAR消息为承载了第一上行信息的物理上行共享信道(physical uplink shared channel,PUSCH)。
具体的,终端设备在RAR的时间窗口内,在物理下行控制信道(physical downlink control channel,PDCCH)上监听DCI,该DCI为用于调度RAR的MAC消息,该MAC消息在PDSCH上传输。终端设备根据DCI的调度信息等接收MAC RAR,从而获取接入信息。
应理解,终端设备在步骤S510发送随机接入序列时,每个随机接入序列有对应的标识(ID)。一个RAR消息中可包括给多个终端设备反馈的子PDU(subPDU),一个PDU包括至少一个subPDU。终端设备可以根据随机接入序列对应的标识信息确定该PDU是否是自己的随机接入响应消息,另随机接入响应消息也叫做Msg2。
步骤S530,终端设备向网络设备发送Msg3,对应的,网络设备接收该Msg3。
Msg3中包括终端设备的标识,用于步骤S540的竞争解决。
步骤S540,网络设备向终端设备发送msg4,对应的,终端设备接收该msg4。
由于步骤S510中,不同的终端设备选择相同的preamble序列发送至网络设备,即不同终端设备之间选择的前导码索引(preamble index)冲突,则网络设备在步骤S540中发送的Msg4指示接入成功的终端设备,没有接收到该Msg4消息的终端设备接入失败。
如果网络设备在发送Msg2和Msg4时不考虑第一终端设备的频率调谐的时间,第一终端设备会错过接收Msg2和Msg4的时机。例如,图6所示,第一终端设备的频率调谐的时间为4个时间单元(符号n+1至n+4)。第一终端设备在符号n+5才能调谐完成,开始正常接收。如果网络设备没有识别出该终端设备是第一终端设备或未考虑第一终端设备的频率调谐的时间,仍然在符号n+1后的第一个CORESET(符号n+3和n+4)上发送RAR和/或DCI,此时,由于第一终端设备还没有完成频率调谐,无法接收信息,因此该场景下第一终端设备会错过时域符号n+3和n+4上的RAR和/或DCI的接收。再例如,终端设备在发送Msg3之后,MAC层会启动定时器(ra-ContentionResolutionTimer),终端设备在定时器启动后监测PDCCH,准备接收Msg4,直至定时器到期或收到Msg4为止。定时器的时间长度为网络设备提前配置的。同上,如果第一终端设备会在发送Msg3后进行频率调谐,此时定时器已经启动,网络设备认为第一终端设备已经开始检测Msg4的DCI和/或Msg4,因此第一终端设备可能会在频率调谐的过程中错过接收Msg4的时机。
图7是本申请实施例提供的一种通信方法的示意图。图7所示的方法包括:
步骤S710,终端设备向网络设备发送第一上行信息,对应的,网络设备接收该第一上行信息。
步骤S720,终端设备获取第一下行信息的配置信息,对应的,网络设备确定第一下行信息的配置信息。
应注意,本申请对步骤S710和S720的先后顺序不做任何限定,可以是步骤S710在 前,也可以是步骤S720在前。
示例地,该配置信息为第一时间段所占时间单元的长度,或第一时间段的起始时间单元的位置,或第一时间段的最后一个时间单元的位置,或时间单元的子载波间隔。或者当第一下行信息为RAR时,该配置信息为RAR窗(ra-ResponseWindow)的配置信息(包括时长、起始时间单元位置),或当第一下行信息为Msg4时,该配置信息为随机接入竞争解决计时器(ra-contentionResolutionTimer)的配置信息(包括时长、起始时间单元位置)。
应理解,时间单元的长度可以是时间单元的个数,也可以是时间单元占用的绝对时间。如10个时隙。时间单元的长度可通过高层信令配置。如,RAR窗的高层配置参数为ra-ResponseWindow。
步骤S730,终端设备根据承载该第一上行信息的最后一个时间单元的位置和该配置信息确定第一时间段。对应的,网络设备根据承载该第一上行信息的最后一个时间单元的位置和该配置信息确定第一时间段。
示例地,该配置信息包括第一时间段的长度,终端设备可根据承载该第一上行信息的最后一个时间单元和该配置信息确定第一时间段的起始时间单元和该第一时间段所占的时间单元数目。
步骤S740,终端设备在该第一时间段内监测该第一下行信息。对应的,网络设备在该第一时间段内发送该第一下行信息。
其中,监测可以理解为检测/接收/监听,本申请对此不做任何限制。一种可实施的方式,该第一上行信息为第一随机接入前导,该第一下行信息为循环冗余校验被RA-RNTI加扰的第一下行控制信息DCI和/或RA-RNTI加扰的物理下行共享信道PDSCH。该第一时间段的起始时间单元为K个时间单元后第一个控制资源集合的起始时间单元,该K个时间单元为承载第一随机接入前导的最后一个时间单元之后的时间单元。K=1,且该第一时间段中的第N+Q个时间单元用于监测所述第一下行信息,N为正整数,Q大于等于1。
示例的,上述一种实施方式中,第一时间段可以为RAR窗,或Msg2窗,第一时间段用于监测RAR,和/或监测第一DCI。其中,第一DCI为调度RAR的下行控制信息。
另一种可实施的方式,该第一上行信息为第一消息3,该第一下行信息为循环冗余校验被临时小区无线网络临时标识(temporary cell radio network tempory identity,TC-RNTI)加扰的第二DCI和/或竞争解决消息。该第一时间段的起始时间单元为K个时间单元之后的时间单元,所述K个时间单元为承载第一消息3的最后一个时间单元之后的时间单元,K=0,且该第一时间段的第N+Q个时间单元用于监测所述第一下行信息,N为正整数,Q大于等于1。
示例的,上述另一种实施方式中,第一时间段可以为随机接入竞争解决计时器,终端设备在该第一时间段内监测Msg4,和/或监测第二DCI。其中,第二DCI为调度Msg4的下行控制信息。
示例的,N为预定义的,或N为根据第一预设规则确定,或N为第一指示信息指示的。
应理解,N可以等于0,但N不总是等于0。例如,某些配置信息情况下,N大于0。但在现有协议中,N始终等于0。
应理解,第一时间段内的前N个符号不用于监测第一下行信息,或终端设备不期望在 第一时间段内的前N个时间单元监测第一下行信息。N为无效时间单元数目,无效时间单元为网络设备不能用于信息传输的时间单元,或为终端设备不能用于信息传输的时间单元,或为终端设备不期望进行信息传输的时间单元。也就是说在一种可实施的方式中,当K=1时或当K=0时,网络设备在该第一时间段的第N个时间单元后的时间单元发送该第一下行信息。对应的,终端设备在该第一时间段的第N个时间单元后的时间单元监测该第一下行信息。
示例的,当N为预定义时,N可根据子载波间隔确定。
示例地,N为频率调谐的时间对应的时间单元数目。例如,当频率调谐的时间为140μs时(频率调谐的时间可以是预定义的,或是终端设备上报的,或是网络设备指示的。频率调谐的时间可以为70μs,140μs,或280μs,本申请对此不做任何限制),不同子载波间隔对应的N的取值不同。具体地,当子载波间隔参数μ=0时,N=2;或,当子载波间隔参数μ=1时,N=4;或,当子载波间隔参数μ=2时,N=8;或,当子载波间隔参数μ=3时,N=16。
示例的,当N为第一指示信息指示时,该方法还包括步骤S721,该网络设备向终端设备发送第一指示信息,该第一指示信息指示N。例如,第一指示信息可以为系统消息,或第一指示信息可以为系统消息块,或第一指示信息可以为系统消息块1(SIB1)。
下面通过举例介绍网络设备或终端设备根据N确定第一时间段,并在第一时间段内发送或监测第一下行信息的方式。
示例地,如图6所示,网络设备或终端设备确定该第一时间段的起始时间单元时,假设符号n为承载随机接入前导的最后一个符号,第一时间段的起始时间单元为符号n或者符号n+1后的第一个控制资源集合的起始时间单元,即符号n+3,第一时间段的最后一个时间单元为符号n+M,M根据第一时间段的长度确定(后文中的M类似)。第一时间段内不能用于传输下行信息的的无效时间单元数目N=3(无效时间单元为符号n+3至n+5,其中根据频率调谐的时间确定的无效时间单元为符号n+3和符号n+4),网络设备或终端设备在第一时间段的第N个时间单元后的可用的时间单元(即符号n+6至n+M)发送或监测Msg2,第一时间段的第N个时间单元为符号n+4,考虑到符号n+5上无信息传输,因此网络设备或终端设备在第一时间段的第N+1个时间单元后的时间单元,即符号n+6以及符号n+6之后的有效符号传输Msg2。假设符号n承载Msg3,第一时间段的起始时间单元为符号n+1,第一时间段内的无效时间单元数目N=4(无效时间单元为符号n+1至n+4,其中符号n+1至n+4皆为根据频率调谐的时间确定的无效时间单元)。网络设备或终端设备在第一时间段的第N个时间单元后的有效符号发送或监测Msg4和/或调度Msg4的DCI。
应理解,有效符号为可用于传输第一下行信息(例如Msg2和Msg4)的符号,可以为控制资源集合占用的符号,也可以为搜索空间占用的符号。
还应理解,图6中对承载Msg2和Msg4的时间单元的起始位置和数目仅为举例,应注意承载随机接入前导和Msg3的时间单元在时域上的位置是不同的,图6中的符号n仅为示例。并且监测Msg2的第一时间段和监测Msg4的第一时间段的长度可以相同,也可以不同,本申请对此不做任何限制。
示例的,终端设备或网络设备根据第一预设规则确定N。
第一预设规则包括根据频率调谐的时间、子载波间隔、承载第一上行信息的最后一个 时间单元或该第一时间段的起始时间单元中的至少一项确定N。
示例的,N可根据终端设备频率调谐的时间,或N可根据终端设备频率调谐的时间和子载波间隔确定。应理解不同子载波间隔下,相同的频率调谐的时间对应的N不同。
例如,频率调谐的时间为140μs,子载波间隔为15kHz,无效时间单元数目N=2。频率调谐的时间为140μs,子载波间隔为30kHz,无效时间单元数目N=4。
以下通过举例说明终端设备或网络设备根据频率调谐的时间、子载波间隔、承载第一随机接入前导的最后一个时间单元和第一时间段的起始时间单元确定N。
例如,承载随机接入前导的最后一个时间单元为符号n。根据频率调谐的时间和子载波间隔确定频率调谐的时间占j个时间单元(图8中符号n+1至n+4)。符号n之后1个时间单元为符号n+1。第n+1符号之后的最早的CORESET的初始时间单元为符号n+m,m>1。第n+j符号之后最早的CORESET的初始时间单元符号n+6的计算公式为n+m+a*p,p为CORESET的周期(相邻CORESET的初始时间单元的时间间隔),a为符号n+1之后最早的CORESET与符号n+j之后最早的CORESET之间的周期个数(即符号n+m与符号n+6之间的时间间隔是周期的a倍),CORESET的时间单元长度为q,其中j/m/p/a/q均为整数。在此例中,在第一时间段内,第n+j符号之后最早的CORESET的初始时间单元之前的时间单元皆为无效时间单元。如图8所示,其中m=3,j=4,a=1,p=3,q=2,第一时间段内的N=3。
再例如,如图8所示,承载随机接入前导的最后一个时间单元为符号n,频率调谐的时间占4个时间单元。按照现有协议,符号n后的5个符号皆为无效时间单元(符号n+1用于准备RAR和/或DCI传输,符号n+2至n+5用于频率调谐),在第一时间段内的无效时间单元数目N=3;或者考虑到频率调谐的时间和准备RAR和/或DCI传输可以同时进行(即符号n+1至n+4用于频率调谐),此时在符号n后的第6个符号,即符号n+6可开始监测RAR和/或DCI,在第一时间段内的N=3(在第一时间段内用于频率调谐的无效时间单元数目为2,即符号n+3和n+4,符号n+5不用于传输下行信息)。
应理解,如果监测RAR和/或DCI的CORESET和无效时间单元重合,该CORESET包括的时间单元也为无效时间单元。或,无效时间单元之后的第一个CORESET的起始时间单元之前的时间单元也为无效时间单元。
再例如,N是根据第一时间段的起始时间单元在第n+j符号之前的最后一个CORESET的最后一个时间单元n+e确定,j为根据频率调谐的时间确定的无效时间单元数目,N为第一时间段内的无效时间单元数目。N是根据e和j+1中的最大值确定的。如图8所示,第一时间段的起始时间单元(符号n+3)在符号n+4之前的最后一个CORESET的最后一个时间单元为符号n+4,e=4,j+1=5,因此根据e和j+1中的最大值确定的第一时间段内N=3。
应理解,控制资源集合是周期性的资源集合,上述举例中关于控制资源集合的周期,占用的时间单元长度和起始位置仅为示例,用于频率调谐的时间单元数目也仅为示例,本申请对此不做任何限定。
示例的,上述终端设备可以是第一终端设备,也可以是第二终端设备。当第一上行信息为第一随机接入前导,且K=1时,第一终端设备或第二终端设备可根据第二随机接入信道配置发送第一随机接入前导。其中,该第二随机接入信道配置用于第一终端设备或第 二终端设备的随机接入。
应理解,上述方式网络设备可根据Msg3中包括的标识信息和/或能力信息确定终端设备的类型。
示例的,当第一上行信息为第一随机接入前导,且K=1时,根据频率调谐的时间确定N的取值。例如,网络设备或终端设备根据关系式N=max{频率调谐的时间-第一时间间隔,0}确定N。或,网络设备或终端设备根据关系式N=max{频率调谐的时间+1-第一时间间隔,0}确定N。该第一时间间隔为承载该第一随机接入前导的最后一个时间单元和第一时间段的起始时间单元(第一起始时间单元)之间的时间间隔。若频率调谐的时间大于第一时间间隔,则第一时间段内有N个时间单元为无效时间单元。若频率调谐的时间小于或等于第一时间间隔,则第一时间段内没有无效时间单元或第一时间段内的时间单元均为有效时间单元。
示例的,当第一上行信息为第一随机接入前导,且K=1时,根据频率调谐的时间确定N的取值。例如,网络设备或终端设备根据关系式N=max{频率调谐的时间-第二时间间隔,0}确定N。或,网络设备或终端设备根据关系式N=max{频率调谐的时间+1-第二时间间隔,0}确定N。该第二时间间隔为承载该第一随机接入前导的最后一个时间单元和第二起始时间单元之间的时间间隔。第二起始时间单元为承载第一随机接入前导的最后一个时间单元之后(K+频率调谐的时间)个时间单元后的第一个控制资源集合的起始时间单元。若频率调谐的时间大于第二时间间隔,则第一时间段内有N个符号为无效时间单元。若频率调谐的时间小于或等于第二时间间隔,则第一时间段内没有无效时间单元或第一时间段内均为有效时间单元。示例的,当第一上行信息为第一消息3,K=0,且第一消息3包括终端设备的标识信息和/或能力信息,若该终端设备为第一终端设备,该第一终端设备根据第一消息3配置信息发送第一消息3,该第一消息3配置信息不用于第二终端设备发送第二消息3。
应理解,上述第一消息3为第一终端设备发起随机接入过程中的第一终端设备发送的Msg 3,第二消息3为第二终端设备发起随机接入过程中的第二终端设备发送的Msg 3,此处第一消息3配置信息指网络设备为第一终端设备配置的用于第一终端设备发送Msg 3的配置信息,该第一消息3配置信息不能用于第二终端设备发送Msg 3。
示例的,当第一上行信息为第一消息3,K=0,第一终端设备根据频率调谐的时间确定N。如,N=频率调谐的时间。
示例的,第一种情况:第一上行信息为随机接入前导,该随机接入前导中包括终端设备的标识信息和/或能力信息。网络设备可根据随机接入前导中的标识信息和/或能力信息判断发起随机接入的是第一终端设备还是第二终端设备时,如果确定发起随机接入的终端设备包括第一终端设备和第二终端设备,并且确定发送至第一终端设备和第二终端设备的下行信息为相同的DCI和/或在相同的PDU中。第二种情况:第一上行信息为随机接入前导,该随机接入前导中不包括终端设备的标识信息和/或能力信息,终端设备在消息3中上报终端设备的标识信息和/或能力信息。这两种情况下第一终端设备的第一时间段的长度和第二终端设备的第二时间段的长度相同,且第一终端设备的第一时间段的起始时间单元和第二终端设备的第二时间段的起始时间单元(例如图8所示的符号n+3)相同。第一时间段或第二时间段的起始时间单元为K个时间单元后的第一个控制资源集合的起始时 间单元,该K个时间单元为承载第一随机接入前导或第二随机接入前导的最后一个时间单元之后的时间单元,K=1。网络设备在第一时间段或第二时间段中的第N+Q个时间单元发送第一下行信息或第二下行信息,N为正整数,Q大于等于1。如图9所示,第一时间段内的无效时间单元数目N=2,网络设备在符号n+6至符号n+M中的有效符号上发送第一下行信息,其中,符号n+M为第一时间段或第二时间段的最后一个时间单元,T为第一时间段或第二时间段的长度。N的具体确定参考上文描述,在此不做赘述。
对于第一终端设备,第一时间段内的有效长度为T-N。有效长度为可用于接收下行信息的时间单元个数。
对应的,第一终端设备确定第一时间段,并在第一时间段中的第N+Q个时间单元监测第一下行信息(例如Msg 2),如图9所示,第一终端设备在第一时间段中的符号n+6至符号n+M上监测第一下行信息。
对应的,第二终端设备无需考虑频率调谐的时间,确定第二时间段,并在第二时间段的初始时间单元开始监测第一下行信息(例如Msg 2),如图9所示,第二终端设备在第二时间段中的符号n+3至符号n+M上监测第一下行信息。
应理解,上述第一时间段为第一终端设备监测第一下行信息的时间段,第二时间段为第二终端设备监测第一下行信息的时间段。第一下行信息为第一终端设备和第二终端设备在随机接入过程中接收的下行信息。第一下行信息包括循环冗余校验被RA-RNTI加扰的DCI和RA-RNTI加扰的物理下行共享信道PDSCH中的至少一种。
示例的,当第一上行信息为随机接入前导,该随机接入前导中包括终端设备的标识信息和/或能力信息。网络设备可根据随机接入前导判断发起随机接入的是第一终端设备还是第二终端设备时,如果网络设备确定发起随机接入的终端设备包括第一终端设备和第二终端设备,并且确定发送至第一终端设备和第二终端设备的下行信息为不同的DCI和/或在相同的PDU中。
在此场景下,对于第一终端设备,可确定第一时间段的起始时间单元为K个时间单元后的第一个控制资源集合的起始时间单元,该K个时间单元为承载第一随机接入前导的最后一个时间单元之后的时间单元,K=1。网络设备在第一时间段中的N+Q个时间单元发送第一下行信息(例如Msg 2),如图9所示,网络设备在第一时间段中的符号n+6至符号n+M中的有效符号上发送第一下行信息。N为正整数,Q大于等于1。对应的,第一终端设备确定第一时间段,并在第一时间段中的第N+Q个时间单元监测第一下行信息(例如Msg 2)。如图9所示,第一终端设备在第一时间段中的符号n+6至符号n+M上监测第一下行信息。N的具体确定参考上文描述,在此不做赘述。
对于第二终端设备,可确定第二时间段的起始时间单元为K个时间单元后的第一个控制资源集合的起始时间单元,该K个时间单元为承载第二上行信息(例如,第二终端设备发送的随机接入前导)的最后一个时间单元之后的时间单元,K=1。网络设备在第二时间段中的起始时间单元开始在有效符号上发送该第二下行信息(例如Msg 2)。如图9所示,网络设备在第二时间段中的符号n+3至符号n+M中的有效符号上发送第二下行信息。对应的,第二终端设备无需考虑第一终端设备的频率调谐的时间,确定第二时间段,并在第二时间段的起始时间单元开始监测第二下行信息(例如Msg 2)。如图9所示,第二终端设备在第二时间段中的符号n+3至符号n+M上监测第二下行信息。
示例的,当第一上行信息为消息3时,第一终端设备的第一时间段的长度和第二终端设备的第二时间段的长度相同。第一终端设备的第一时间段的起始时间单元和第二终端设备的第二时间段的起始时间单元相同。第一时间段或第二时间段的起始时间单元为为K个时间单元之后的时间单元,所述K个时间单元为承载第一消息3或第二消息3(第二终端设备发送的Msg 3)的最后一个时间单元之后的时间单元,K=0。网络设备在第一时间段中的N+Q个时间单元发送第一下行信息(例如Msg 4),N为正整数,Q大于等于1。N的具体确定参考上文描述,在此不做赘述。如图10所示,网络设备在第一时间段中的符号n+5至符号n+M中的有效符号上发送第一下行信息。网络设备在第二时间段中的有效时间单元向第二终端设备发送第二下行信息(例如Msg 4),如图10所示,网络设备在第二时间段中的符号n+1至符号n+M中的有效符号上发送第二下行信息。
该方案中,第一下行信息和第二下行信息包括循环冗余校验被TC-RNTI加扰的DCI或竞争解决消息中的至少一种。
对应的,对于第一终端设备确定第一时间段,因需考虑频率调谐的时间,第一终端设备在第一时间段中的第N+Q个时间单元监测第一下行信息(例如Msg 4),如图9所示,第一终端设备在符号n+1开启定时器,在符号n+5至符号n+M监测第一下行信息,直至定时器最后一个,若直至定时器最后一个还没有接收到该第一下行信息,则随机接入失败。
对应的,对于第二终端设备,无需考虑频率调谐的时间,第二终端设备在第二时间段的起始时间单元开始开启定时器,并监测或接收第二下行信息(例如Msg4),如图10所示,第二终端设备在符号n+1开启定时器,在符号n+1至符号n+M监测第二下行信息,直至定时器最后一个,若直至定时器最后一个还没有接收到该第二下行信息,则随机接入失败。
又一种可实施的方式,所述第一上行信息为第一随机接入前导,所述第一下行信息为循环冗余校验被RA-RNTI加扰的第一DCI和/或RA-RNTI加扰的PDSCH,所述第一时间段的起始时间单元为K个时间单元后的第一个控制资源集合的起始时间单元,所述K个时间单元为承载所述第一随机接入前导的最后一个时间单元之后的时间单元,所述K为大于1的整数。
示例的,上述又一种可实施的方式中,第一时间段可以为RAR窗,或Msg2窗,第一时间段用于监测RAR,和/或监测第一DCI。其中,第一DCI为调度RAR的下行控制信息。
再一种可实施的方式,所述第一上行信息为第一消息3,所述第一下行信息为循环冗余校验被TC-RNTI加扰的第二DCI和/或竞争解决消息,所述第一时间段的起始时间单元为K个时间单元之后的时间单元,所述K个时间单元为承载所述第一消息3的最后一个时间单元之后的时间单元,所述K为大于或等于1的整数。
示例的,上述再一种可实施的方式中,第一时间段可以为随机接入竞争解决计时器,该第一时间段用于监测Msg4,和/或监测第二DCI。其中,第二DCI为调度Msg4的下行控制信息。
示例的,K为预定义的;或K为根据第二预设规则确定;或者K为第二指示信息指示的。第二预设规则包括根据频率调谐的时间、子载波间隔或承载第一上行信息的最后一个时间单元中的至少一项确定K。例如,第二指示信息可以为系统消息,或第二指示信息 为系统消息块,或第二指示信息为系统消息块1(SIB1)。
示例地,该还包括步骤S722,该网络设备向终端设备发送第二指示信息,该第二指示信息指示K。
示例地,如图11所示,网络设备或终端设备确定该第一时间段的起始时间单元时,假设符号n承载第一随机接入前导或第一消息3,用于频率调谐的时间单元为符号n+1~符号n+4。则当符号n承载第一随机接入前导时,第一时间段的起始时间单元为符号n之后的K个时间单元后的第一个控制资源集合的起始时间单元。如在图11中K=5,第一时间段的起始时间单元为符号n+6。当符号n承载第一消息3时,所述第一时间段的起始时间单元是承载所述第一消息3的最后一个时间单元之后的K个时间单元之后的时间单元。如在图11中K=4,第一时间段的起始时间单元为符号n+5。
示例的,终端设备或网络设备根据频率调谐的时间,子载波间隔,承载第一上行信息的最后一个时间单元,该第一时间段的起始时间单元中的至少一项确定无效时间单元数目,根据无效时间单元数目确定K。
具体地,终端设备或网络设备根据频率调谐的时间,子载波间隔确定无效时间单元数目的方式可参考上文,在此不做赘述。
示例的,当第一上行信息为第一随机接入前导,K为大于1的整数时,该终端设备为第一终端设备,该第一终端设备根据第一随机接入信道配置发送第一随机接入前导,该第一随机接入信道配置不用于第二终端设备的随机接入。
应理解,对于上述又一种和再一种可实施的方式,第一终端设备的第一时间段和第二终端设备的第二时间段的长度不同,该第二时间段用于第二终端设备监测随机接入过程中的下行信息。
示例的,第一随机接入前导中包括终端设备的标识信息,或者第一终端设备和第二终端设备发送的随机接入前导不同,则第一终端设备和第二终端设备的用于接收下行信息的时间段的长度不同,若该终端设备为第一终端设备,该第一终端设备确定第一时间段可通过以下方法:
示例的,第一终端设备获取第二时间段的长度,该第一终端设备根据第二时间段的长度确定第一时间段的长度。
或者,该方法还包括步骤S711,第一终端设备接收第三指示信息,第三指示信息用于指示第二时间段的长度,第一终端设备根据第三指示信息确定第一时间段的长度。例如,第一时间段的长度=第二时间段的长度-频率调谐的时间。或,第一时间段的长度=第二时间段的长度-N。其中,N可以根据前述方式确定,这里不再赘述。
示例的,上述第一时间段为第一终端设备监测第一下行信息的时间段,第二时间段为第二终端设备监测第二下行信息的时间段。第一下行信息为第一终端设备在随机接入过程中接收的下行信息,第二下行信息为第二终端设备在随机接入过程中接收的下行信息。第一下行信息和第二下行信息包括循环冗余校验被RA-RNTI加扰的DCI、RA-RNTI加扰的物理下行共享信道PDSCH、循环冗余校验被TC-RNTI加扰的DCI或竞争解决消息中的至少一种。
示例的,在步骤S720中,第一终端设备获取的第一下行信息的配置信息还可以指示第一时间段的长度小于第二时间段的长度。
一种示例,对于第一终端设备,第一终端设备可根据该配置信息确定第一时间段的长度为T1小于第二时间段的长度T2(T1、T2表示时间单元的数目),如图12所示,承载第一随机接入前导的时间单元为符号n,第一终端设备根据频率调谐的时间确定K=5,即确定第一时间段的起始时间单元为符号n+6,第一时间段的长度为T1。
或者,如图13所示,承载第一消息3的时间单元为符号n,第一终端设备根据频率调谐的时间确定K=4,即确定第一时间段的起始时间单元为符号n+5,第一时间段的长度为T1。
示例的,第一种情况:第一上行信息为随机接入前导,该随机接入前导中包括终端设备的标识信息和/或能力信息。当网络设备可根据第一随机接入前导中的标识信息和/或能力信息判断发起随机接入的是第一终端设备还是第二终端设备时,如果该网络设备确定发起随机接入的终端设备包括第一终端设备和第二终端设备,并且确定发送至第一终端设备和第二终端设备的下行信息(例如Msg2)为相同的DCI和/或在相同的PDU中。第二种情况:第一上行信息为随机接入前导,该随机接入前导中不包括终端设备的标识信息和/或能力信息,终端设备在消息3中上报终端设备的标识信息和/或能力信息。这两种情况下第一终端设备的第一时间段的长度和第二终端设备的第二时间段长度不同,且第一终端设备的第一时间段的起始时间单元和第二终端设备的第二时间段的起始时间单元不同。第一终端设备的第一时间段的最后一个时间单元和第二终端设备的第二时间段的最后一个时间单元相同。第一时间段的起始时间单元为K个时间单元后的第一个控制资源集合的起始时间单元,该K个时间单元为承载第一上行信息的最后一个时间单元之后的时间单元,K大于1,K的具体确定参考上文描述;第二时间段的起始时间单元为K个时间单元后的第一个控制资源集合的起始时间单元,该K个时间单元为承载第一随机接入前导的最后一个时间单元之后时间单元,K=1。如图12所示第一时间段的长度为T1,起始时间单元为符号n+6,第二时间段的长度为T2,起始时间单元为符号n+3,T1<T2。
此场景下,网络设备向第一终端设备和第二终端设备发送Msg2的时机相同,即网络设备发送至第二终端设备的下行信息需考虑第一终端设备的频率调谐的时间。因此网络设备在第二时间段中的第N+Q个时间单元向第二终端设备发送下行信息,N和Q的具体取值可参考上文描述,在此不做赘述。如图12所示,网络设备在符号n+6至符号n+M中的有效符号上发送第一下行信息或第二下行信息。
网络设备在第一时间段的起始时间单元(图12所示的符号n+6)开始可以向第一终端设备发送下行信息。对应的,第一终端设备确定第一时间段,并在第一时间段的起始时间单元(图12所示的符号n+6)开始监测第一下行信息。第二终端设备确定第二时间段,并在第二时间段的起始时间单元(图12所示的符号n+3)开始监测第二下行信息。
示例的,第一上行信息为随机接入前导,该随机接入前导中包括终端设备的标识信息和/或能力信息。当网络设备根据随机接入前导判断发起随机接入的是第一终端设备还是第二终端设备时,如果确定发起随机接入的终端设备包括第一终端设备和第二终端设备,并且确定发送至第一终端设备和第二终端设备的Msg2在不同的PDU中。
在此情况下,对于第一终端设备,网络设备确定第一时间段,第一时间段的起始时间单元为K个时间单元后的第一个控制资源集合的起始时间单元,该K个时间单元为承载第一上行信息的最后一个时间单元之后的时间单元,K大于1,K的具体确定参考上文描 述。网络设备在第一时间段的起始时间单元开始发送第一下行信息(例如Msg2),如图12所示,网络设备在符号n+6至符号n+M中的有效符号上发送第一下行信息。对应的,第一终端设备在第一时间段的起始时间单元(图12所示的符号n+6)开始监测或接收该第一下行信息(例如Msg2)。
对于第二终端设备,网络设备确定第二时间段,第二时间段的起始时间单元为承载第一随机接入前导的最后一个时间单元后一个时间单元之后的最早的CORESET的起始时间单元。网络设备向第二终端设备发送第二下行信息时无需考虑第一终端设备的频率调谐的时间,即网络设备在第二时间段的起始时间单元开始向第二终端设备发送第二下行信息(例如Msg2)。如图12所示,网络设备在符号n+3至符号n+M中的有效符号上发送第二下行信息。对应的,第二终端设备确定第二时间段,从第二时间段的起始时间单元(图12所示的符号n+3)开始监测或接收第二下行信息(例如Msg2),直至第二时间段的最后一个时间单元。
示例的,当第一上行信息为消息3时,对于第一终端设备,第一时间段(定时器)的起始时间单元为K个时间单元之后的时间单元,所述K个时间单元为承载第一消息3的最后一个时间单元之后的时间单元,K为大于或等于1的整数,K的具体确定可参考上文,网络设备在第一时间段的起始时间单元开始发送第一下行信息(例如Msg4),如图13所示,网络设备在第一时间段中的符号n+5至符号n+M中的有效符号上发送第一下行信息。对应的,第一终端设备在第一时间段的起始时间单元(图13所示符号n+5)开始开启定时器,并监测或接收该第一下行信息(例如Msg4)直至定时器结束,若直至定时器结束还没有接收到该第一下行信息,则随机接入失败。
对于第二终端设备,无需考虑频率调谐的无效时间单元,第二时间段的起始时间单元为K个时间单元之后的时间单元,所述K个时间单元为承载第二消息3的最后一个时间单元之后的时间单元,K=0。网络设备在第二时间段的起始时间单元后的时间单元上发送第二下行信息(例如Msg4),如图13所示,网络设备在第二时间段中的符号n+1至符号n+M中的有效符号上发送第一下行信息。对应的,第二终端设备在第二时间段的起始时间单元(图13所示符号n+1)开始开启定时器,并监测或接收该第二下行信息(例如Msg4)直至定时器结束,若直至定时器结束还没有接收到该第二下行信息,则随机接入失败。
应理解,上述第一上行信息为随机接入前导或消息3场景下,第一时间段的长度小于第二时间段的长度。
可选的,终端设备和网络设备还可以考虑根据不同的场景采用不同的实施方式。
例如,场景1:当第一终端设备通过随机接入前导进行终端设备标识信息和/或能力信息的上报时,根据前文所述的又一种可实施的方式和再一种可实施的方式确定第一时间段。即,第一终端设备的第一时间段和第二终端设备的第二时间段的长度不相同,第一终端设备的第一时间段的起始时间单元为K个时间单元后的第一个控制资源集合的起始时间单元,所述K个时间单元为承载所述第一上行信息的最后一个时间单元之后的时间单元,K大于1;或者第一时间段的起始时间单元为K个时间单元之后的时间单元,所述K个时间单元为承载所述第一上行信息的最后一个时间单元之后的时间单元,K大于等于1。
第二终端设备的第二时间段的起始时间单元为K个时间单元后的第一个控制资源集合的起始时间单元,所述K个时间单元为承载所述第一上行信息的最后一个时间单元之 后的时间单元,K=1,或者,第二时间段的起始时间单元为K个时间单元之后的时间单元,所述K个时间单元为承载所述第一上行信息的最后一个时间单元之后的时间单元,K=0。具体地,可参考前文描述,在此不做赘述。
场景2:当第一终端设备通过Msg3进行终端设备标识信息和/或能力信息的上报时,根据前文所述的一种可实施的方式和另一种可实施的方式确定第一时间段。即,第一终端设备的第一时间段和第二终端设备的第一时间段的长度相同,且第一终端设备的第一时间段和第二终端设备的第一时间段的起始时间单元相同。第一时间段的起始时间单元为K个时间单元后的第一个控制资源集合的起始时间单元,所述K个时间单元为承载所述第一上行信息的最后一个时间单元之后的时间单元,K=1,或者,第一时间段的起始时间单元为K个时间单元之后的时间单元,所述K个时间单元为承载所述第一上行信息的最后一个时间单元之后的时间单元,K=0。网络设备在第一时间段内的第N+Q个时间单元向第一终端设备或第二终端设备发送下行信息,第一终端设备在第一时间段内的第N+Q个时间单元监测下行信息,第二终端设备在第一时间段的起始时间单元开始监测下行信息。具体地,可参考前文描述,在此不做赘述。
应理解,图5和图7所示的方法中步骤的执行顺序依方法的内在逻辑和具体实施情况而定,图中所示的顺序仅为一种举例,本申请对此不做任何限制。
根据本申请实施例提供的的方式确定第一时间段(该第一时间段用于接收Msg2或Msg4)时,网络设备需要考虑第一终端设备的频率调谐而不能在第一时间段的前N个时间单元发送第一下行信息(Msg2或Msg4),导致资源浪费。或网络设备需要重新选择可用的时域资源(第一终端设备的第一时间段的时长小于第二终端设备的第二时间段的时长),造成第二终端设备调度的时延增加。因而,网络设备可根据网络中的实际情况选择使用哪种方式确定第一时间段。
方式1:例如,第一上行信息为第一随机接入前导,则第一时间段的起始时间单元为K个时间单元后的第一个控制资源集合的起始时间单元,该K个时间单元为承载该第一随机接入前导的最后一个时间单元之后的时间单元,K=1,且网络设备在所述第一时间段的第N+Q个时间单元发送该第一下行信息。或者,第一上行信息为第一消息3,该第一时间段的起始时间单元为K个时间单元之后的时间单元,该K个时间单元为承载第一消息3的最后一个时间单元之后时间单元,K=0,且网络设备在该第一时间段的第N+Q个时间单元监测该第一下行信息。
方式2:例如,第一上行信息为第一随机接入前导,第一时间段的起始时间单元为K个时间单元后的第一个控制资源集合的起始时间单元,该K个时间单元为承载该第一随机接入前导的最后一个时间单元之后的时间单元,K为大于1的整数。或者,第一上行信息为第一消息3,该第一时间段的起始时间单元K个时间单元之后的时间单元,所述K个时间单元为承载该第一消息3的最后一个时间单元之后的时间单元,K为大于等于1的整数。
方式3:例如,第一上行信息为第一随机接入前导,该第一时间段的起始时间单元为K个时间单元后的第一个控制资源集合的起始时间单元,该K个时间单元为承载该第一随机接入前导的最后一个时间单元之后的时间单元,K=1,且网络设备在该第一时间段的时间单元发送第一下行信息,对应的,终端设备在该第一时间段的所有时间单元监测该第一下行信息。或者,第一上行信息为第一消息3,该第一时间段的起始时间单元为K个时间 单元之后的时间单元,该K个时间单元为承载第一消息3的最后一个时间单元之后的时间单元,K=0,且网络设备在该第一时间段的时间单元发送第一下行信息,对应的,终端设备在该第一时间段的所有时间单元监测第一下行信息。
应理解,方式3为现有协议规定。
作为本申请的一个实施例,网络设备根据以下至少一项确定采用哪种方式确定第一时间段:时间信息、网络中的负载情况、网络中第一终端设备和第二终端设备的比例、终端设备的时延要求。
例如,网络设备根据时间信息确定采用哪种方式确定第一时间段。具体地,网络设备在第一时间范围内按照方式1确定第一时间段,网络设备在第二时间范围内按照方式3确定第一时间段。应理解,第一时间范围或第二时间范围包括至少一个时间单位。该时间单位可以为时隙,子帧,帧,超帧,秒,分钟,小时或天中的任一种。该例中网络设备可根据网络中负载、流量随时间的变化,采用不同的方式。
例如,网络设备根据网络中的负载情况确定采用哪种方式确定第一时间段。具体地,当网络中负载较大,资源拥塞时,网络设备按照方式3确定第一时间段,从而使一部分第一终端设备接入失败。或者,当网络中负载较小,资源空闲较多时,网络设备按照方式1确定第一时间段。此方法虽然影响了第二终端设备的接入时延,但可以使第一终端设备都能接入网络。
例如,网络设备根据第一终端设备和第二终端设备的比例确定采用哪种方式确定第一时间段。当网络中第一终端设备较多时,网络设备按照方式1确定第一时间段。从而更好的使网络中数量更多的第一终端设备能够接入网络。或者,当网络中第二终端设备较多时,网络设备按照方式3确定第一时间段。从而更好的兼顾网络中数量更多的第二终端设备,避免第二终端设备接入网络的延时。
例如,网络设备根据UE的时延要求确定采用哪种方式确定第一时间段。具体地,若终端设备的时延要求高,或终端设备为低时延UE,网络设备按照方式3确定第一时间段。或者,终端设备的时延要求低,或终端设备为对时延不敏感的UE,网络设备按照方式2确定第一时间段。
作为本申请的另一个实施例,网络设备在配置第一上行信息的时域资源和第一控制资源集合时,使得承载第一上行信息的最后一个时间单元和第一控制资源集合的起始时间单元之间的间隔大于或等于频率调谐的时间。第一控制资源集合可以为检测或监测第一下行信息的搜索空间的资源。
示例的,终端设备不期望承载第一上行信息的最后一个时间单元和第一控制资源集合的起始时间单元之间间隔小于频率调谐的时间。终端设备可通过发送信息告知网络设备,从而网络设备在配置第一上行信息的时域资源和第一控制资源集合时,使得承载第一上行信息的最后一个时间单元和第一控制资源集合的起始时间单元之间的间隔大于或等于频率调谐的时间。
例如,频率调谐的时间为所占的时间单元为4个符号,承载第一上行信息的最后一个时间单元和第一控制资源集合的起始时间单元之间间隔为4个符号或大于4个符号。这样,第一终端设备可以按照方式3确定第一时间段,不会造成因为频率调谐而无法接收下行信号的问题。
示例的,第一终端设备和第二终端设备的上行信息的资源配置不同。第一终端设备和第二终端设备在第一控制资源集合监测第一下行信息。第一终端设备的承载第一上行信息的最后一个时间单元早于第二终端设备的承载第二上行信息的最后一个时间单元。
需注意的是,图5和图7中示意的执行主体仅为示例,该执行主体也可以是支持该执行主体实现图5和图7所示方法的芯片、芯片系统、或处理器,本申请对此不作限制。
上文结合附图描述了本申请实施例的方法实施例,下面描述本申请实施例的装置实施例。可以理解,方法实施例的描述与装置实施例的描述可以相互对应,因此,未描述的部分可以参见前面方法实施例。
可以理解的是,上述各个方法实施例中,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图14给出了本申请实施例提供的一种通信装置的结构示意图。所述通信装置800可以是图1中的终端设备,也可以是图2(a),2(b),或2(c)中的终端设备,用于实现上述方法实施例中对于终端设备的方法。所述通信装置也可以是图2(a)中的第一网络设备或第二网络设备,或图2(b),图2(c)中的RAN中的网络设备,如CU,DU,CU-CP,或CU-UP,用于实现上述方法实施例中对应于第一网络设备或第二网络设备的方法。具体的功能可以参见上述方法实施例中的说明。
通信装置800包括一个或多个处理器801。处理器801也可以称为处理单元,可以实现一定的控制功能。所述处理器801可以是通用处理器或者专用处理器等。例如,包括:基带处理器,中央处理器,应用处理器,调制解调处理器,图形处理器,图像信号处理器,数字信号处理器,视频编解码处理器,控制器,存储器,和/或神经网络处理器等。所述基带处理器可以用于对通信协议以及通信数据进行处理。所述中央处理器可以用于对通信装置800进行控制,执行软件程序和/或处理数据。不同的处理器可以是独立的器件,也可以是集成在一个或多个处理器中,例如,集成在一个或多个专用集成电路上。
可选的,通信装置800中包括一个或多个存储器802,用以存储指令804,所述指令可在所述处理器上被运行,使得通信装置800执行上述方法实施例中描述的方法。可选的, 所述存储器802中还可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。
可选的,通信装置800可以包括指令803(有时也可以称为代码或程序),所述指令803可以在所述处理器上被运行,使得所述通信装置800执行上述实施例中描述的方法。处理器801中可以存储数据。
可选的,通信装置800还可以包括收发器805以及天线806。所述收发器805可以称为收发单元、收发机、收发电路、收发器,输入输出接口等,用于通过天线806实现通信装置800的收发功能。
可选的,通信装置800还可以包括以下一个或多个部件:无线通信模块,音频模块,外部存储器接口,内部存储器,通用串行总线(universal serial bus,USB)接口,电源管理模块,天线,扬声器,麦克风,输入输出模块,传感器模块,马达,摄像头,或显示屏等等。可以理解,在一些实施例中,通信装置800可以包括更多或更少部件,或者某些部件集成,或者某些部件拆分。这些部件可以是硬件,软件,或者软件和硬件的组合实现。
本申请中描述的处理器801和收发器805可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路(radio frequency identification,RFID)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、或电子设备等上。实现本文描述的通信装置,可以是独立设备(例如,独立的集成电路,手机等),或者可以是较大设备中的一部分(例如,可嵌入在其他设备内的模块),具体可以参照前述关于终端设备,以及网络设备的说明,在此不再赘述。
本申请实施例提供了一种终端设备,该终端设备(为描述方便,称为UE)可用于前述各个实施例中。所述终端设备包括用以实现图1,图2(a),2(b),2(c),图5,和/或图7所示的实施例中所述的UE功能的相应的手段(means)、单元和/或电路。例如,终端设备,包括收发模块,用以支持终端设备实现收发功能,和,处理模块,用以支持终端设备对信号进行处理。
图15给出了本申请实施例提供的一种终端设备的结构示意图。
该终端设备900可适用于图1,图2(a),2(b),或2(c)所示的系统中。为了便于说明,图15仅示出了终端设备900的主要部件。如图15所示,终端设备900包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备900进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏,显示屏,麦克风,键盘等主要用于接收用户输入的数据以及对用户输出数据。
以终端设备900为手机为例,当终端设备900开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至控制电路,控制电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备900时,控制电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图15仅示出了一个存储器和处理器。在 一些实施例中,终端设备900可以包括多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备900进行控制,执行软件程序,处理软件程序的数据。图15中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。终端设备900可以包括多个基带处理器以适应不同的网络制式,终端设备900可以包括多个中央处理器以增强其处理能力,终端设备900的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备900的收发单元910,将具有处理功能的处理器视为终端设备900的处理单元920。如图15所示,终端设备900包括收发单元910和处理单元920。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元910中用于实现接收功能的器件视为接收单元,将收发单元910中用于实现发送功能的器件视为发送单元,即收发单元910包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
本申请实施例还提供了一种网络设备,该网络设备可用于前述各个实施例中。所述网络设备包括用以实现图2(a),2(b),或2(c),图5,和/或图7所示的实施例中所述的第一网络设备或第二网络设备的功能的手段(means)、单元和/或电路。例如,网络设备包括收发模块,用以支持终端设备实现收发功能,和,处理模块,用以支持网络设备对信号进行处理。所述可以理解的是,所述第一网络设备与第二网络设备是相对于某个或某些UE而言,相对于其他一些UE,第一网课设备可以与第二网络设备的作用可以互换。
图16给出了本申请实施例提供的一种网络设备的结构示意图。如图16所示,网络设备20可适用于图1,图2(a),2(b),或2(c)所示的系统中。网络设备20例如为图1所示的网络设备120。网络设备20可以相对于某个或某些UE而言,作为第一网络设备具备第一网路设备的功能,也可以相对于某个或某些UE而言,作为第二网络设备具备第二网络设备的功能。该网络设备包括:基带装置201,射频装置202、天线203。在上行方向上,射频装置202通过天线203接收终端设备发送的信息,将终端设备发送的信息发送给基带装置201进行处理。在下行方向上,基带装置201对终端设备的信息进行处理,并发送给射频装置202,射频装置202对终端设备的信息进行处理后经过天线203发送给终端设备。
基带装置201包括一个或多个处理单元2011,存储单元2012和接口2013。其中处理单元2011用于支持网络设备执行上述方法实施例中网络设备的功能。存储单元2012用于存储软件程序和/或数据。接口2013用于与射频装置202交互信息,该接口包括接口电路,用于信息的输入和输出。在一种实现中,所述处理单元为集成电路,例如一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成 电路可以集成在一起,构成芯片。存储单元2012与处理单元2011可以位于同一个芯片中,即片内存储元件。或者存储单元2012与处理单元2011也可以为与处理元件2011处于不同芯片上,即片外存储元件。所述存储单元2012可以是一个存储器,也可以是多个存储器或存储元件的统称。
网络设备可以通过一个或多个处理单元调度程序的形式实现上述方法实施例中的部分或全部步骤。例如实现图2(a),图5,和/或图7中网络设备的相应的功能。所述一个或多个处理单元可以支持同一种制式的无线接入技术,也可以支持不同种制式的无线接入制式。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的计算机可读存储介质,可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦可编程只读存储器(electrically erasable programmable read only memory,EEPROM)、紧凑型光盘只读存储器(compact disc read-only memory,CD-ROM)、通用串行总线闪存盘(universal serial bus flash disk)、移动硬盘、或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。另外,通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)或直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此, 任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (22)

  1. 一种通信方法,其特征在于,包括:
    终端设备发送第一上行信息;
    所述终端设备获取第一下行信息的配置信息;
    所述终端设备根据承载所述第一上行信息的最后一个时间单元和所述配置信息确定第一时间段;
    所述终端设备在所述第一时间段内监测所述第一下行信息;
    其中,
    第一时间段的起始时间单元为K个时间单元后的第一个控制资源集合的起始时间单元,所述K个时间单元为承载所述第一上行信息的最后一个时间单元之后的时间单元,所述K=1,且所述第一时间段的第N+Q个时间单元用于监测所述第一下行信息,N为正整数,Q大于等于1;或者
    第一时间段的起始时间单元为K个时间单元之后的时间单元,所述K个时间单元为承载所述第一上行信息的最后一个时间单元之后的时间单元,所述K=0,且所述第一时间段的第N+Q个时间单元用于监测所述第一下行信息,N为正整数,Q大于等于1;或者
    第一时间段的起始时间单元为K个时间单元后的第一个控制资源集合的起始时间单元,所述K个时间单元为承载所述第一上行信息的最后一个时间单元之后的时间单元,所述K大于1;或者
    第一时间段的起始时间单元为K个时间单元之后的时间单元,所述K个时间单元为承载所述第一上行信息的最后一个时间单元之后的时间单元,所述K大于等于1。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一上行信息为第一随机接入前导,所述第一下行信息为循环冗余校验被随机接入无线网络临时标识RA-RNTI加扰的第一下行控制信息DCI和/或RA-RNTI加扰的物理下行共享信道PDSCH;或者
    所述第一上行信息为第一消息3,所述第一下行信息为循环冗余校验被临时小区无线网络临时标识TC-RNTI加扰的第二DCI和/或竞争解决消息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述N为:
    预定义的;或
    根据第一预设规则确定的;或者
    第一指示信息指示的。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述K为:
    预定义的;或
    根据第二预设规则确定的;或者
    第二指示信息指示的。
  5. 根据权利要求3或4所述的方法,其特征在于,第一预设规则包括:
    根据频率调谐的时间、子载波间隔、承载所述第一上行信息的最后一个时间单元或所述第一时间段的起始时间单元中的至少一项确定所述N;和/或
    所述第二预设规则包括:
    根据频率调谐的时间、子载波间隔或承载所述第一上行信息的最后一个时间单元中的至少一项确定所述K。
  6. 根据权利要求2至5中任一项所述的方法,其特征在于,所述K大于1,所述终端设备为第一终端设备,所述终端设备发送第一上行信息包括:
    所述第一终端设备根据第一随机接入信道配置发送所述第一随机接入前导;
    其中,所述第一随机接入信道配置不用于第二终端设备的随机接入,所述第一终端设备的能力低于所述第二终端设备。
  7. 根据权利要求2所述的方法,其特征在于,所述K=1,所述终端设备发送第一上行信息包括:
    所述终端设备根据第二随机接入信道配置发送所述第一随机接入前导;
    其中,所述第二随机接入信道配置用于第一终端设备或第二终端设备的随机接入,所述第一终端设备的能力低于所述第二终端设备;
    所述方法还包括:
    所述第一终端设备发送第一消息3,所述第一消息3包括所述第一终端设备的标识信息和/或能力信息。
  8. 根据权利要求2或7所述的方法,其特征在于,所述第一上行信息为第一随机接入前导,所述K=1;
    所述终端设备根据关系式N=max{频率调谐的时间-第一时间间隔,0}确定所述N,所述第一时间间隔为承载所述第一随机接入前导的最后一个时间单元和所述第一时间段的起始时间单元之间的时间间隔。
  9. 根据权利要求2所述的方法,其特征在于,所述K=0,所述第一消息3包括所述终端设备的标识信息和/或能力信息,若所述终端设备为第一终端设备,所述终端设备发送第一上行信息包括:
    所述第一终端设备根据第一消息3配置信息发送第一消息3,所述第一消息3配置信息不用于第二终端设备发送第二消息3,所述第一终端设备的能力低于所述第二终端设备。
  10. 一种通信方法,其特征在于,包括:
    网络设备接收第一上行信息;
    所述网络设备确定第一下行信息的配置信息;
    所述网络设备根据承载所述第一上行信息的最后一个时间单元和所述配置信息确定第一时间段;
    所述网络设备在所述第一时间段内发送所述第一下行信息;
    其中,
    第一时间段的起始时间单元为K个时间单元后的第一个控制资源集合的起始时间单元,所述K个时间单元为承载所述第一上行信息的最后一个时间单元之后的时间单元,所述K=1,所述第一时间段中的第N+Q个时间单元用于监测所述第一下行信息,N为正整数,Q大于等于1;或者
    第一时间段的起始时间单元为K个时间单元之后的时间单元,所述K个时间单元为承载所述第一上行信息的最后一个时间单元之后的时间单元,所述K=0,且所述第一时间 段的第N+Q个时间单元用于监测所述第一下行信息,N为正整数,Q大于等于1;或者
    第一时间段的起始时间单元为K个时间单元后的第一个控制资源集合的起始时间单元,所述K个时间单元为承载所述第一上行信息的最后一个时间单元之后的时间单元,所述K大于1;或者
    第一时间段的起始时间单元为K个时间单元之后的时间单元,所述K个时间单元为承载所述第一上行信息的最后一个时间单元之后的时间单元,所述K大于等于1。
  11. 根据权利要求10所述的方法,其特征在于,
    所述第一上行信息为第一随机接入前导,所述第一下行信息为循环冗余校验被RA-RNTI加扰的第一下行控制信息DCI和/或RA-RNTI加扰的物理下行共享信道PDSCH;或者
    所述第一上行信息为第一消息3,所述第一下行信息为循环冗余校验被TC-RNTI加扰的第二DCI和/或竞争解决消息。
  12. 根据权利要求10或11所述的方法,其特征在于,所述N为:
    预定义的;或
    根据第一预设规则确定的;
    所述方法还包括:
    所述网络设备向终端设备发送第一指示信息,所述第一指示信息指示所述N。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述K为:
    预定义的;或
    根据第二预设规则确定的;
    所述方法还包括:
    所述网络设备向终端设备发送第二指示信息,所述第二指示信息指示所述K。
  14. 根据权利要求12或13所述的方法,其特征在于,第一预设规则包括:
    根据频率调谐的时间、子载波间隔、承载所述第一上行信息的最后一个时间单元或所述第一时间段的起始时间单元中的至少一项确定所述N;和/或
    所述第二预设规则包括:
    根据频率调谐的时间、子载波间隔或承载所述第一上行信息的最后一个时间单元中的至少一项确定所述K。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述K大于1,所述方法还包括:
    所述网络设备向第一终端设备发送第一随机接入信道配置,所述第一随机接入信道配置用于所述第一终端设备的随机接入,且所述第一随机接入信道配置不用于第二终端设备的随机接入,所述第一终端设备的能力低于所述第二终端设备。
  16. 根据权利要求11所述的方法,其特征在于,所述K=1,所述方法还包括:
    所述网络设备向第一终端设备发送第二随机接入信道配置,所述第二随机接入信道配置用于第一终端设备或第二终端设备的随机接入,所述第一终端设备的能力低于所述第二终端设备;
    所述网络设备接收第一消息3,所述第一消息3包括第一终端设备的标识信息和/或能力信息。
  17. 根据权利要求11或16所述的方法,其特征在于,所述第一上行信息为第一随机接入前导,所述K=1;
    所述网络设备根据关系式N=max{频率调谐的时间-第一时间间隔,0}确定所述N,所述第一时间间隔为承载所述第一随机接入前导的最后一位时间单元和所述第一时间段的起始时间单元之间的时间间隔。
  18. 根据权利要求11所述的方法,其特征在于,所述K=0,所述第一消息3包括终端设备的标识信息和/或能力信息,若所述终端设备为第一终端设备,所述方法还包括:
    所述网络设备向所述第一终端设备发送第一消息3配置信息,所述第一消息3配置信息不用于第二终端设备发送第二消息3,所述第一终端设备的能力低于所述第二终端设备。
  19. 一种通信装置,其特征在于,包括用于执行如权利要求1~18中任一项所述方法的模块。
  20. 一种通信装置,其特征在于,包括处理器和存储器;所述存储器用于存储一个或多个计算机程序,当所述一个或多个计算机程序被运行时,使得如权利要求1~9中任一项所述的方法被执行,或使得如权利要求10~18中任一项所述的方法被执行。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~9中任一项所述的方法,或使得所述计算机执行如权利要求10~18中任一项所述的方法。
  22. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,实现如权利要求1~9中任一项所述的方法,或实现如权利要求10~18中任一项所述的方法。
PCT/CN2022/090548 2021-05-10 2022-04-29 通信方法和通信装置 WO2022237597A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110506696.5 2021-05-10
CN202110506696.5A CN115334531A (zh) 2021-05-10 2021-05-10 通信方法和通信装置

Publications (1)

Publication Number Publication Date
WO2022237597A1 true WO2022237597A1 (zh) 2022-11-17

Family

ID=83912178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090548 WO2022237597A1 (zh) 2021-05-10 2022-04-29 通信方法和通信装置

Country Status (2)

Country Link
CN (1) CN115334531A (zh)
WO (1) WO2022237597A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097016A1 (en) * 2017-11-16 2019-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Window length of random access response in new radio
CN111586879A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 一种随机接入方法和装置
WO2021062726A1 (zh) * 2019-09-30 2021-04-08 Oppo广东移动通信有限公司 随机接入方法、终端设备、网络设备及存储介质
WO2022067519A1 (zh) * 2020-09-29 2022-04-07 Oppo广东移动通信有限公司 随机接入方法和终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097016A1 (en) * 2017-11-16 2019-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Window length of random access response in new radio
CN111586879A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 一种随机接入方法和装置
WO2021062726A1 (zh) * 2019-09-30 2021-04-08 Oppo广东移动通信有限公司 随机接入方法、终端设备、网络设备及存储介质
WO2022067519A1 (zh) * 2020-09-29 2022-04-07 Oppo广东移动通信有限公司 随机接入方法和终端设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ASIA PACIFIC TELECOM ET AL.: "Discussion on Reduced Maximum UE Bandwidth", 3GPP TSG-RAN WG1 #104B-E R1-2102734, 7 April 2021 (2021-04-07), XP052177727 *
ERICSSON: "FL summary #1 for UE complexity reduction for RedCap", 3GPP TSG-RAN WG1 MEETING #104-E R1-2101849, 29 January 2021 (2021-01-29), XP051975939 *

Also Published As

Publication number Publication date
CN115334531A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
WO2018196520A1 (zh) 一种波束管理方法及终端设备、网络设备
US10172146B2 (en) Wi-Fi and bluetooth coexistence
CN111757459B (zh) 一种通信方法及装置
WO2019104685A1 (zh) 通信方法和通信设备
WO2021179895A1 (zh) 一种通信方法及装置
WO2022152003A1 (zh) 非激活态下数据传输方法及装置
WO2018233709A1 (zh) 一种通信方法及设备
WO2022194151A1 (zh) 一种通信方法及装置
WO2022141184A1 (zh) 一种上行参考信号资源的配置方法及相关装置
JP7495505B2 (ja) 無線通信において、低減した能力のデバイスをサポートする方法及び装置
WO2021259138A1 (zh) 上行信号的发送方法、装置及系统
WO2022237597A1 (zh) 通信方法和通信装置
WO2022082772A1 (zh) 一种数据传输方法和相关装置
WO2022077396A1 (zh) 一种上行控制信息的发送方法、接收方法及通信装置
WO2022027509A1 (zh) 上行数据的发送方法、装置和系统
WO2022257796A1 (zh) 通信方法和通信装置
WO2023241288A1 (zh) 一种唤醒信号传输方法及通信系统
WO2021227052A1 (zh) 一种信息传输方法、通信设备以及计算机可读存储介质
US12035418B2 (en) Methods and apparatus for support of reduced capability devices in wireless communication
WO2021138762A1 (zh) 通知发送时间信息的方法以及装置
WO2022068416A1 (zh) 一种反馈信息的传输方法和通信设备
WO2024032208A1 (zh) 一种通信的方法和装置
WO2023131156A1 (zh) 随机接入的方法和通信装置
WO2024131502A1 (zh) 一种通信方法和装置
WO2024051682A1 (zh) 资源确定的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806565

Country of ref document: EP

Kind code of ref document: A1