WO2022194151A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2022194151A1
WO2022194151A1 PCT/CN2022/080944 CN2022080944W WO2022194151A1 WO 2022194151 A1 WO2022194151 A1 WO 2022194151A1 CN 2022080944 W CN2022080944 W CN 2022080944W WO 2022194151 A1 WO2022194151 A1 WO 2022194151A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
domain resource
frequency
terminal device
resource
Prior art date
Application number
PCT/CN2022/080944
Other languages
English (en)
French (fr)
Inventor
侯海龙
金哲
罗之虎
曲韦霖
余政
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022194151A1 publication Critical patent/WO2022194151A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and device.
  • the International Telecommunication Union has defined massive machine type communications (mMTC) standards.
  • mMTC massive machine type communications
  • UE user equipment
  • REDCAP reduced capability UE
  • the complexity is lower, such as the supported bandwidth is narrower, the power consumption is lower, and the number of antennas is less.
  • the maximum bandwidth of the bandwidth part cannot exceed the maximum bandwidth supported by the terminal device, otherwise the terminal device cannot access the network by default. Therefore, a network device can configure a BWP that does not exceed its maximum bandwidth for a terminal device with a lower bandwidth capability.
  • the bandwidths of the BWPs configured for these terminal devices are relatively small, which reduces the transmission capacity and reduces the gain of frequency hopping transmission, resulting in reduced transmission performance.
  • the physical random access channel (PRACH) resources and the physical uplink control channel (PUCCH) resources in the uplink initial BWP are semi-statically configured. If the frequency domain resources are used, these frequency domain resources can no longer be used for PUSCH transmission. Therefore, the network device configures a narrower BWP for the terminal device, which will lead to resource fragmentation.
  • PRACH physical random access channel
  • PUCCH physical uplink control channel
  • the present application provides a communication method and apparatus, which are used to solve the problems of transmission performance degradation and resource fragmentation caused by network equipment configuring BWP for terminal equipment with low bandwidth capability.
  • the present application provides a communication method, and the execution body of the method may be a terminal device, or a chip or a circuit.
  • the method includes: before the terminal device establishes a radio resource control (RRC) connection with the network device, the terminal device communicates on the first frequency domain resource, and the maximum value of the first frequency domain resource is The bandwidth is greater than the maximum bandwidth supported by the terminal device; after the terminal device and the network device establish an RRC connection, the terminal device communicates on the second frequency domain resource, the second frequency domain resource is configured with user-specific parameters, and the second frequency domain resource The maximum bandwidth is not greater than the maximum bandwidth supported by the terminal device.
  • RRC radio resource control
  • the terminal device in the initial access stage, can work on the frequency domain resources larger than its maximum bandwidth, so that the transmission capacity can be improved, and the frequency hopping transmission efficiency can be improved. gain.
  • a terminal device with low bandwidth capability can reuse the existing initial uplink BWP or initial downlink BWP configuration and use process and some common channel resources, such as PRACH resources or public PUCCH resources, etc., thereby Common channel overhead can be reduced.
  • the initial upstream BWP bandwidth does not exceed the maximum bandwidth supported by the terminal device with lower bandwidth capability, and the initial uplink BWP is only used for processes such as initial access of the terminal device with lower bandwidth capability. It reduces the impact on the NR legacy UE rate, increases the uplink or downlink transmission capacity, and increases frequency diversity or selective scheduling gain. Wait.
  • the terminal device can communicate on the third frequency domain resource, and the third frequency domain resource is not configured with user-specific parameters; wherein, the third frequency domain resource
  • the maximum bandwidth of the terminal device is allowed to be greater than the maximum bandwidth supported by the terminal device, and the third frequency domain resource is the same as the first frequency domain resource; or, the maximum bandwidth of the third frequency domain resource is not allowed to be greater than the maximum bandwidth supported by the terminal device, and the third frequency domain resource Different from the first frequency domain resource.
  • the first frequency domain resources can be reused, so that the common channel overhead can be reduced.
  • the first frequency domain resource includes at least one of the following: initial downlink bandwidth part BWP, initial uplink BWP; the second frequency domain resource includes at least one of the following: user-specific downlink BWP, user-specific uplink BWP.
  • the terminal device may receive first configuration information from the network device; wherein the first configuration information is used to configure the first frequency domain resource and indicates the first frequency domain The resource takes effect before establishing an RRC connection with the network device; and/or the first configuration information is used to configure the third frequency domain resource, and indicates that the third frequency domain resource is established with the network device It takes effect after RRC connection.
  • the terminal device performs communication on the first frequency domain resources, including: the terminal device performs the first communication on some frequency domain resources in the first frequency domain resources, and the bandwidth size of the partial frequency domain resources is The maximum bandwidth supported by the terminal device or the bandwidth configured by the network device.
  • the terminal device can work on the frequency domain resources larger than its maximum bandwidth.
  • the terminal device determines, according to the first information from the network device, a frequency range in the first frequency domain resource used for the second communication; the frequency range is in the first part of the frequency domain resource used for the first communication Outside the range of the frequency domain, the terminal device performs the second communication on the second part of the frequency domain resources after the radio frequency readjustment, and the second part of the frequency domain resources is determined according to the frequency range; or, the frequency range is within the range of the first part of the frequency domain resources Inside, the terminal device performs the second communication on the first part of the frequency domain resources.
  • the terminal device can flexibly work in the frequency domain resource larger than its maximum bandwidth.
  • the bandwidth of the radio frequency range of the terminal device is the maximum bandwidth supported by the terminal device or the bandwidth configured by the network device.
  • the terminal equipment performs radio frequency re-tuning, including: the terminal equipment adjusts the center frequency point of the radio frequency to the frequency center of the frequency range; or, the terminal equipment adjusts the starting point of the radio frequency range to the starting point of the frequency range frequency; alternatively, the end device adjusts the end of the RF frequency range to the end frequency of the frequency range.
  • the terminal device can communicate with the current second by adjusting the radio frequency range.
  • the first frequency domain resource includes multiple sub-resource blocks, and the bandwidth size of one sub-resource block is not greater than the maximum bandwidth supported by the terminal device.
  • the method further includes: the terminal device may determine, according to the second information from the network device, a second sub-resource block used for the second communication in the first frequency domain resource; the second sub-resource block and the first sub-resource If the blocks are different, the terminal device performs the second communication on the second sub-resource block after the radio frequency re-adjustment; or, the second sub-resource block is the same as the first sub-resource block, and the terminal device performs the second communication on the first sub-resource block .
  • the terminal device by performing radio frequency re-tuning, other communications whose frequency range is no longer within the current radio frequency frequency range can be performed normally.
  • the terminal device determines a plurality of sub-resource blocks according to third information from the network device, and the third information is used to indicate the number of sub-resource blocks included in the first frequency domain resource;
  • the fourth information of the device determines multiple sub-resource blocks, and the fourth information is used to indicate the respective frequency ranges corresponding to the multiple sub-resource blocks; or, the terminal device determines the multiple sub-resources according to the number of sub-resource blocks corresponding to the bandwidth size of the first frequency domain resource
  • the number of sub-resource blocks corresponding to the bandwidth size of the first frequency domain resource is predefined.
  • the terminal device when the terminal device communicates on the second frequency domain resource, it may use frequency hopping to communicate among multiple frequency domain resources, and the multiple frequency domain resources include the second frequency domain resource.
  • the frequency hopping gain can be improved.
  • the terminal device when the terminal device communicates on the second frequency domain resource, it may use frequency hopping to perform data transmission in the second frequency domain resource.
  • the terminal device receives fifth information from the network device, where the fifth information is used to enable frequency-hopping transmission between frequency domain resources.
  • the terminal device and the network device can align the frequency hopping mode, thereby avoiding communication errors.
  • the fifth information may also be used to enable frequency hopping transmission within frequency domain resources, or the fifth information may also be used to enable frequency hopping transmission within frequency domain resources and frequency hopping between frequency domain resources transmission.
  • the method further includes: the terminal device receives sixth information from the network device, where the sixth information is used to configure a frequency hopping position for frequency hopping transmission between frequency domain resources.
  • the terminal device can obtain the frequency hopping position of frequency hopping between frequency domain resources.
  • the terminal device receives seventh information from the network device, where the seventh information is used to configure a frequency hopping position for frequency hopping transmission in frequency domain resources.
  • the terminal device can obtain the frequency hopping position of the frequency hopping in the frequency domain resource.
  • the seventh information indicates a frequency-domain offset value of frequency-hopping transmission within the frequency-domain resource.
  • the sixth information indicates a frequency-domain offset value of frequency-hopping transmission during frequency-hopping transmission between frequency-domain resources, an identification of the next frequency-domain resource, or an identification sequence.
  • the terminal device can determine the next frequency domain resource for frequency hopping.
  • the present application provides a communication method, and the execution body of the method may be a network device, or a chip or a circuit.
  • the method includes: before the terminal device establishes an RRC connection with the network device, the network device communicates with the terminal device on a first frequency domain resource, and the maximum bandwidth of the first frequency domain resource is greater than that supported by the terminal device. The maximum bandwidth of The bandwidth is not greater than the maximum bandwidth supported by the terminal device.
  • the terminal device in the initial access stage, can work on the frequency domain resources larger than its maximum bandwidth, so that the transmission capacity can be improved, and the frequency hopping transmission efficiency can be improved. gain.
  • a terminal device with low bandwidth capability can reuse the existing initial uplink BWP or initial downlink BWP configuration and use process and some common channel resources, such as PRACH resources or public PUCCH resources, etc., thereby Common channel overhead can be reduced.
  • the initial upstream BWP bandwidth does not exceed the maximum bandwidth supported by the terminal device with lower bandwidth capability, and the initial uplink BWP is only used for processes such as initial access of the terminal device with lower bandwidth capability. It reduces the impact on the NR legacy UE rate, increases the uplink or downlink transmission capacity, and increases frequency diversity or selective scheduling gain. Wait.
  • the network device after the terminal device establishes the RRC connection with the network device, the network device communicates with the terminal device on the third frequency domain resource, and the third frequency domain resource is not configured with user-specific parameters;
  • the maximum bandwidth of the frequency domain resource is allowed to be greater than the maximum bandwidth supported by the terminal device, and the third frequency domain resource is the same as the first frequency domain resource; or, the maximum bandwidth of the third frequency domain resource is not allowed to be greater than the maximum bandwidth supported by the terminal device.
  • the frequency domain resources are different from the first frequency domain resources. In this way, the first frequency domain resources can be reused, so that the common channel overhead can be reduced.
  • the first frequency domain resource includes at least one of the following: initial downlink bandwidth part BWP, initial uplink BWP; the second frequency domain resource includes at least one of the following: user-specific downlink BWP, user-specific uplink BWP.
  • the network device may send first configuration information; wherein the first configuration information is used to configure the first frequency domain resource, and indicates that the first frequency domain resource is in communication with the terminal It takes effect before the device establishes an RRC connection; and/or the first configuration information is used to configure the third frequency domain resource, and indicates that the third frequency domain resource takes effect after the RRC connection is established with the terminal device.
  • the first communication when the network device communicates on the first frequency domain resource, the first communication can be performed on some frequency domain resources in the first frequency domain resource, and the bandwidth of the partial frequency domain resource is equal to the size of the terminal device The maximum bandwidth supported or the bandwidth size configured by the network device.
  • the terminal device can work on the frequency domain resources larger than its maximum bandwidth.
  • the network device sends third information to the terminal device, where the third information is used to indicate the number of sub-resource blocks included in the first frequency domain resource; or, the network device sends fourth information to the terminal device, the first Four pieces of information are used to indicate the respective frequency ranges corresponding to the multiple sub-resource blocks.
  • the terminal device can accurately divide multiple sub-resource blocks, thereby improving the accuracy of communication.
  • the network device sends fifth information to the terminal device, where the fifth information is used to enable frequency hopping transmission between frequency domain resources.
  • the terminal device and the network device can align the frequency hopping mode, thereby avoiding communication errors.
  • the fifth information may also be used to enable frequency hopping transmission within frequency domain resources, or the fifth information may also be used to enable frequency hopping transmission within frequency domain resources and frequency hopping between frequency domain resources transmission.
  • the network device sends sixth information to the terminal device, where the sixth information is used to configure a frequency hopping position for frequency hopping transmission between frequency domain resources.
  • the terminal device can obtain the frequency hopping position of frequency hopping between frequency domain resources.
  • the network device sends seventh information to the terminal device, where the seventh information is used to configure a frequency hopping position for frequency hopping transmission in frequency domain resources.
  • the terminal device can obtain the frequency hopping position of the frequency hopping in the frequency domain resource.
  • the seventh information indicates a frequency-domain offset value of frequency-hopping transmission within the frequency-domain resource.
  • the sixth information indicates a frequency-domain offset value of frequency-hopping transmission during frequency-hopping transmission between frequency-domain resources, an identification of the next frequency-domain resource, or an identification sequence.
  • the terminal equipment can determine the next frequency domain resource for frequency hopping.
  • the minimum time interval between two adjacent random access messages is equal to the sum of the first time and the second time, or equal to the larger value between the first time and the second time, wherein , the first time is equal to the minimum time interval between two adjacent random access messages of the first type of terminal equipment, the second time is the time for the second type of terminal equipment to perform radio frequency re-tuning, the first type of terminal equipment
  • the maximum bandwidth supported is greater than the maximum bandwidth supported by the second type of terminal equipment.
  • the minimum time interval between two adjacent random access messages is equal to the minimum time of the second type of terminal equipment, and the minimum time of the second type of terminal equipment is the second type of terminal equipment.
  • the minimum time interval between two adjacent random access messages, the minimum time of the second type of terminal equipment is predefined, and the maximum bandwidth supported by the second type of terminal equipment is smaller than the first type of terminal equipment. maximum bandwidth.
  • the minimum time of the second type of terminal equipment is equal to the sum of the first time and the second time, or a larger value between the first time and the second time
  • the first time It is equal to the minimum time of the first type of terminal equipment
  • the second time is the time when the second type of terminal equipment performs radio frequency re-tuning
  • the minimum time of the first type of terminal equipment is the time of the first type of terminal equipment. The minimum time interval between two adjacent random access messages.
  • the present application further provides a communication method, the method may include: a terminal device receiving and sending random access messages, wherein the minimum time interval between two adjacent random access messages is based on the first time and the second time interval. The time is determined, or the minimum time interval between two adjacent random access messages is equal to the minimum time of the second type of terminal equipment.
  • the first time is equal to the minimum time interval between two adjacent random access messages of the first type of terminal equipment
  • the second time is the time at which the second type of terminal performs radio frequency re-tuning
  • the second type of terminal equipment The minimum time of the equipment is the minimum time interval between two adjacent random access messages of the second type of terminal equipment, and the maximum bandwidth supported by the first type of terminal equipment is greater than the maximum bandwidth supported by the second type of terminal equipment.
  • time for the terminal equipment to perform radio frequency readjustment can be reserved between two adjacent random access messages, thereby avoiding communication errors caused by communication during the radio frequency readjustment of the terminal equipment, and improving communication accuracy.
  • the minimum time interval between two adjacent random access messages is equal to the sum of the first time and the second time, or equal to the larger value between the first time and the second time.
  • the minimum time of the second type of terminal device is determined according to the first time and the second time.
  • the minimum time of the second type of terminal device is equal to the sum of the first time and the second time, or is the maximum value of the first time and the second time.
  • the present application further provides a communication method, the method may include: a network device receiving and sending random access messages, wherein the minimum time interval between two adjacent random access messages is based on the first time and the second time interval. The time is determined, or the minimum time interval between two adjacent random access messages is equal to the minimum time of the second type of terminal equipment.
  • the first time is equal to the minimum time interval between two adjacent random access messages of the first type of terminal equipment
  • the second time is the time at which the second type of terminal performs radio frequency re-tuning
  • the second type of terminal equipment The minimum time of the equipment is the minimum time interval between two adjacent random access messages of the second type of terminal equipment, and the maximum bandwidth supported by the first type of terminal equipment is greater than the maximum bandwidth supported by the second type of terminal equipment.
  • the time for the terminal equipment to perform radio frequency readjustment can be reserved between two adjacent random access messages, so that communication errors caused by communication during the radio frequency readjustment of the terminal equipment can be avoided, and the network equipment can uniformly schedule different types of The random access process of terminal equipment saves unnecessary configuration information and improves the communication efficiency of the communication system.
  • the minimum time interval between two adjacent random access messages is equal to the sum of the first time and the second time, or equal to the larger value between the first time and the second time.
  • the minimum time of the second type of terminal device is determined according to the first time and the second time.
  • the minimum time of the second type of terminal device is equal to the sum of the first time and the second time, or a larger value between the first time and the second time.
  • the present application further provides a communication device, the communication device having to implement any of the methods provided in the first aspect or the third aspect.
  • the communication device may be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication apparatus includes: a processor, and the processor is configured to support the communication apparatus to perform the corresponding functions of the terminal device in the above-described method.
  • the communication device may also include a memory, which may be coupled to the processor, which holds program instructions and data necessary for the communication device.
  • the communication apparatus further includes an interface circuit, and the interface circuit is used to support communication between the communication apparatus and equipment such as network equipment.
  • the communication device includes corresponding functional modules, which are respectively used to implement the steps in the above method.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication apparatus includes a processing unit and a communication unit, and these units can perform the corresponding functions in the above method examples.
  • these units can perform the corresponding functions in the above method examples.
  • the description of the method provided in the first aspect which is not repeated here.
  • the present application further provides a communication device, the communication device having to implement any of the methods provided in the second aspect or the fourth aspect.
  • the communication device may be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication apparatus includes: a processor configured to support the communication apparatus to perform the corresponding functions of the network device in the method shown above.
  • the communication device may also include a memory, which may be coupled to the processor, which holds program instructions and data necessary for the communication device.
  • the communication apparatus further includes an interface circuit, and the interface circuit is used to support communication between the communication apparatus and equipment such as terminal equipment.
  • the communication device includes corresponding functional modules, which are respectively used to implement the steps in the above method.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a processing unit and a communication unit, and these units can perform the corresponding functions in the above method examples.
  • these units can perform the corresponding functions in the above method examples.
  • the description of the method provided in the second aspect which is not repeated here.
  • a communication device comprising a processor and an interface circuit
  • the interface circuit is configured to receive signals from other communication devices other than the communication device and transmit to the processor or send signals from the processor
  • the processor is used to implement the methods in the foregoing first aspect or second aspect and any possible designs through logic circuits or executing code instructions.
  • a communication device comprising a processor and an interface circuit, the interface circuit is configured to receive signals from other communication devices other than the communication device and transmit to the processor or send signals from the processor
  • the processor is used to implement the functional modules of the aforementioned second aspect or the fourth aspect and the methods in any possible designs through logic circuits or executing code instructions.
  • a computer-readable storage medium is provided, and a computer program or instruction is stored in the computer-readable storage medium.
  • the computer program or instruction is executed by a processor, the aforementioned first to fourth aspects are implemented.
  • a tenth aspect provides a computer program product storing instructions that, when executed by a processor, implement any of the foregoing first to fourth aspects, and any possible designs of any aspect. method.
  • a chip system in an eleventh aspect, includes a processor, and may further include a memory, for implementing any one of the foregoing first to fourth aspects, and any possible design of any aspect. method.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • a twelfth aspect provides a communication system, where the system includes the apparatus (eg, terminal equipment) described in the third aspect and the apparatus (eg, network equipment) described in the fourth aspect.
  • the apparatus eg, terminal equipment
  • the apparatus eg, network equipment
  • FIG. 1 is a schematic flowchart of a 4-step random access according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a 2-step random access according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a network system according to an embodiment of the application.
  • FIG. 4 is a schematic diagram of a connection between a terminal device and a network device according to an embodiment of the application
  • FIG. 5 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of bandwidth comparison of a frequency domain resource according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a radio frequency retuning according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a radio frequency re-tuning according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a radio frequency re-tuning according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a radio frequency re-tuning according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device according to an embodiment of the application.
  • FIG. 12 is a schematic structural diagram of a communication device according to an embodiment of the application.
  • FIG. 13 is a schematic structural diagram of a network device according to an embodiment of the application.
  • FIG. 14 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • Terminal devices including devices that provide users with voice and/or data connectivity, specifically, include devices that provide users with voice, or include devices that provide users with data connectivity, or include devices that provide users with voice and data connectivity sexual equipment.
  • it may include a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal equipment can communicate with the core network via a radio access network (RAN), exchange voice or data with the RAN, or exchange voice and data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device (D2D) terminal equipment, vehicle to everything (V2X) terminal equipment , Machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscription unit (subscriber unit), subscription station (subscriber) station), mobile station (mobile station), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user Agent (user agent), or user equipment (user device), etc.
  • UE user equipment
  • D2D device-to-device
  • V2X vehicle to everything
  • M2M/MTC Machine-to-machine/machine-type communications
  • IoT Internet of things
  • subscription unit subscriber unit
  • subscription station subscriber
  • mobile station mobile station
  • remote station remote station
  • access point access point
  • AP remote terminal
  • remote terminal remote terminal
  • access terminal
  • these may include mobile telephones (or "cellular" telephones), computers with mobile terminal equipment, portable, pocket-sized, hand-held, computer-embedded mobile devices, and the like.
  • mobile telephones or "cellular" telephones
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • constrained devices such as devices with lower power consumption, or devices with limited storage capacity, or devices with limited computing power, etc.
  • it includes information sensing devices such as barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), and laser scanners.
  • RFID radio frequency identification
  • GPS global positioning system
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes. Wait.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be considered as on-board terminal equipment.
  • the on-board terminal equipment is also called on-board unit (OBU). ).
  • the apparatus for implementing the function of the terminal device may be the terminal device, or may be an apparatus capable of supporting the terminal device to implement the function, such as a chip system, and the apparatus may be installed in the terminal device.
  • a terminal device is used as an example to describe the technical solutions provided by the embodiments of the present application.
  • Network equipment including, for example, access network (AN) equipment, such as a base station (for example, an access point), which may refer to a device in the access network that communicates with wireless terminal equipment over the air interface through one or more cells , or, for example, a network device in a vehicle-to-everything (V2X) technology is a roadside unit (RSU).
  • the base station can be used to convert received air frames to and from internet protocol (IP) packets and act as a router between the terminal device and the rest of the access network, which can include the IP network.
  • IP internet protocol
  • the RSU can be a fixed infrastructure entity supporting V2X applications and can exchange messages with other entities supporting V2X applications.
  • the network device can also coordinate the attribute management of the air interface.
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in the LTE system or long term evolution-advanced (LTE-A), or may also include fifth generation mobile
  • NodeB or eNB or e-NodeB, evolutional Node B in the LTE system or long term evolution-advanced (LTE-A)
  • LTE-A long term evolution-advanced
  • the next generation node B (gNB) in the communication technology (the 5th generation, 5G) NR system (also referred to as the NR system) may also include a cloud radio access network (Cloud RAN) system
  • a centralized unit (centralized unit, CU) and a distributed unit (distributed unit, DU) in the embodiments of the present application are not limited.
  • the network equipment may also include core network equipment, and the core network equipment includes, for example, an access and mobility management function (AMF) or a user plane function (UPF), and the like. Since the embodiments of the present application mainly relate to the access network, in the following description, unless otherwise specified, the network equipment refers to the access network equipment.
  • AMF access and mobility management function
  • UPF user plane function
  • the apparatus for implementing the function of the network device may be the network device, or may be an apparatus capable of supporting the network device to implement the function, such as a chip system, and the apparatus may be installed in the network device.
  • a network device is used as an example to describe the technical solutions provided by the embodiments of the present application.
  • RRC state the terminal equipment has three RRC states: RRC connected state, RRC idle state and RRC inactive state.
  • RRC connected (connected) state or, it can also be referred to as connected state.
  • connected state or, it can also be referred to as connected state.
  • connected state and “RRC connected state” are the same concept, and the two terms can be interchanged: the terminal device and the network establish With the RRC connection, data transmission can be performed.
  • the terminal device in this embodiment of the present application may be a first-type terminal device or a second-type terminal device.
  • the difference between the first type of terminal equipment and the second type of terminal equipment includes at least one of the following:
  • the maximum bandwidth supported by the first type of terminal equipment may be greater than the maximum bandwidth supported by the second type of terminal equipment.
  • the first type of terminal equipment can support the simultaneous use of 100MHz frequency domain resources on one carrier to communicate with network equipment, while the second type of terminal equipment can support the maximum use of 20MHz or 10MHz or 5MHz frequency domain resources and network devices to communicate.
  • the number of transceiver antennas is different.
  • the antenna configuration of the terminal device of the first type may be larger than the antenna configuration of the terminal device of the second type.
  • the minimum antenna configuration supported by the first type of terminal device may be greater than the maximum antenna configuration supported by the second type of terminal device.
  • the minimum antenna configuration supported by the first type of terminal equipment can be 4 transmissions and 2 receptions, that is, under the minimum antenna configuration, 4 receiving antennas are used to receive downlink signals, and 2 transmission antennas are used to send uplink signals; while the second type of terminal equipment
  • the maximum antenna configuration supported by the device can be lower than 4 and 2.
  • the second type of terminal device only supports 2 and 1, or can also support 2 and 2.
  • Uplink maximum transmit power is different.
  • the maximum uplink transmit power of the first type of terminal equipment may be greater than the uplink maximum transmit power of the second type of terminal equipment.
  • the maximum uplink transmit power of the first type of terminal equipment may be 23dBm or 26dBm, while the maximum uplink transmit power of the second type of terminal equipment can only be a value between 4dBm and 20dBm.
  • the protocol versions corresponding to the first type of terminal equipment and the second type of terminal equipment are different.
  • NR Rel-15 and NR Rel-16 terminal equipment can be considered as the first type of terminal equipment
  • the second type of terminal equipment can be considered as NR Rel-17 terminal equipment.
  • the first type of terminal equipment and the second type of terminal equipment support different carrier aggregation (CA) capabilities.
  • CA carrier aggregation
  • the first type of terminal equipment may support carrier aggregation, but the second type of terminal equipment does not support carrier aggregation; for another example, both the second type of terminal equipment and the first type of terminal equipment support carrier aggregation, but the first type of terminal equipment supports both.
  • the maximum number of carrier aggregations is greater than the maximum number of carrier aggregations supported by the second type of terminal equipment at the same time.
  • the first type of terminal equipment can support aggregation of up to 5 carriers or 32 carriers at the same time, while the second type of terminal equipment can support up to Aggregation of 2 carriers is supported at the same time.
  • the first type of terminal equipment and the second type of terminal equipment have different frequency division duplex (FDD) capabilities.
  • FDD frequency division duplex
  • a first type of terminal device may support full-duplex FDD, while a second type of terminal device may only support half-duplex FDD.
  • the second type of terminal equipment and the first type of terminal equipment have different data processing time capabilities.
  • the minimum delay between the first type of terminal equipment receiving downlink data and sending the feedback on the downlink data is smaller than that of the second type of terminal equipment.
  • the minimum delay between the device receiving the downlink data and sending the feedback on the downlink data, and/or the minimum delay between the first type of terminal device sending the uplink data and receiving the feedback on the uplink data is smaller than that of the second type of terminal device
  • the uplink and/or downlink corresponding to the first type of terminal equipment and the second type of terminal equipment have different transmission peak rates.
  • the random access procedure includes a contention-based random access (CBRA) procedure and a contention-free random access (CFRA) procedure.
  • CBRA contention-based random access
  • CFRA contention-free random access
  • RACH random access channel
  • the terminal device sends a random access request message to the network device, and the network device receives the random access request message from the terminal device.
  • the random access request message may also be referred to as a first message (Msg1), which includes a random access preamble (preamble).
  • the network device sends a random access response (random access response, RAR) message to the terminal device, and the terminal device receives the RAR message from the network device.
  • RAR random access response
  • the RAR message may also be referred to as the second message (Msg2).
  • the terminal device sends scheduled transmission (scheduled transmission) information to the network device, and the network device receives the scheduled transmission information from the terminal device.
  • the message carrying the scheduled transmission information is called a third message (Msg3).
  • the terminal device After receiving the RAR message, the terminal device performs message transmission based on the scheduling of the RAR message.
  • S14 The network device sends contention resolution (contention resolution) information to the terminal device, and the message carrying the contention resolution information is called a fourth message (Msg4).
  • Msg4 contention resolution
  • the terminal device receives the Msg4 from the network device, it can obtain the contention resolution information.
  • the RAR message may include a random access preamble identifier (RAP ID), and when the RAP ID matches (or is the same as) the preamble ID selected by the terminal device, the terminal device considers that the RAR message is successfully received. After determining that the RAR is successfully received, the terminal device does not monitor subsequent RARs.
  • RAP ID random access preamble identifier
  • the 4-step RACH is described above, and the 2-step RACH is described below.
  • the contention-based random access process corresponding to the 2-step RACH is completed in two steps, as shown in FIG. 2 .
  • the terminal device sends a message A (MsgA) to the network device, and the network device receives the MsgA from the terminal device.
  • MsgA message A
  • the terminal device selects a MsgA resource from the public MsgA resources broadcast by the network device, and sends the MsgA through the MsgA resource.
  • the Msg A resource includes the resource (time-frequency code) used for sending the preamble and the corresponding physical uplink shared channel (physical uplink shared channel, PUSCH) resource.
  • Msg A also includes two parts, one part is the preamble, and the other part is the PUSCH payload (payload).
  • the MsgA message can be considered to include the content included in the preamble and Msg3 in the 4-step RACH.
  • the network device sends a message B (MsgB) to the terminal device, and the terminal device receives the MsgB from the network device.
  • MsgB message B
  • Contention resolution information may be included in the MsgB, and content included in the RAR message in the 4-step RACH may be included.
  • system and “network” in the embodiments of the present application may be used interchangeably.
  • “At least one” means one or more, and “plurality” means two or more.
  • “And/or”, which describes the relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, it can indicate that A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one item (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple .
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the size, content, order, and timing of multiple objects , priority or importance, etc.
  • the first frequency domain resource and the second frequency domain resource are only for distinguishing different frequency domain resources, but do not indicate the difference in size, content, priority or importance of the two frequency domain resources.
  • the technical solutions provided in the embodiments of the present application can be applied to communication between network devices and terminal devices.
  • the term “communication” may also be referred to as “wireless communication”
  • the term “communication” may also be described as “data transmission”, “information transmission” or “transmission”.
  • the network device configures a common BWP of a cell for the terminal device to perform random access, including the initial downlink BWP (initial DL BWP) and the initial uplink BWP (initial UL BWP).
  • the initial downlink BWP is determined by the frequency domain of the control resource set (CORESET) #0 configured by the master information block (master information block, MIB) in the initial access stage, and the maximum bandwidth does not exceed 20MHz.
  • the initial uplink BWP is configured through system information block 1 (SIB1), and in the low frequency band (frequency range 1, FR1) scenario, the initial uplink BWP can reach the maximum bandwidth of NR existing terminal equipment 100MHz.
  • SIB1 system information block 1
  • Some uplink channel transmission parameters in the random access process are configured in the initial uplink BWP, including the first message (PRACH of Msg1) resources, the physical uplink shared channel (physical uplink shared channel, PUSCH) resources of the third message (Msg3), the Four-message (Msg4) hybrid automatic repeat request (HARQ) - positive acknowledgment (acknowledgment, ACK) feedback the public PUCCH resources used, etc.
  • PRACH of Msg1 the physical uplink shared channel
  • PUSCH physical uplink shared channel
  • Msg3 the third message
  • Msg4 the Four-message
  • HARQ hybrid automatic repeat request
  • ACK positive acknowledgment
  • the terminal device After the initial access, the terminal device enters the RRC connection state, and the network device can flexibly configure a user-level BWP for each terminal device according to the bandwidth capability reported by the terminal device.
  • the standard defines that the maximum bandwidth of the BWP cannot exceed the maximum bandwidth supported by the terminal device, otherwise the terminal device cannot access the network by default. Since the terminal device can only perform data transmission within the BWP range, the parameters for the terminal device to perform data transmission are mostly configured based on the BWP, such as physical layer parameters, high layer parameters, and the like.
  • the initial downlink BWP and the initial uplink BWP are both cell-level BWPs.
  • the maximum bandwidth can be 100MHz, so the maximum bandwidth of the initial uplink BWP can be configured as 100MHz.
  • the network device can configure the initial uplink BWP bandwidth not to exceed the maximum bandwidth supported by the second type of terminal device, so that the two All types of terminals can access the network through the existing initial access procedure, but this approach will restrict the flexibility of the access of the first type of terminal equipment.
  • the bandwidth of the initial uplink BWP the capacity of the uplink transmission will be reduced, so that service congestion is likely to occur, and the gain of the terminal equipment uplink frequency hopping transmission will be reduced, and the transmission performance will be degraded.
  • the network device may configure an initial upstream BWP for the second type of terminal equipment separately, the initial uplink BWP bandwidth does not exceed the maximum bandwidth supported by the second type of terminal equipment, and is only used for the second type of terminal equipment to initialize access, etc.
  • this method will not affect the access process of the first type of terminal equipment, for the second type of terminal equipment, the capacity of the uplink transmission will be reduced, service congestion will easily occur, and it will also lead to the uplink frequency hopping of the second type of terminal equipment. The gain of the transmission is reduced, and the transmission performance is degraded.
  • the PRACH resources and PUCCH resources in the uplink initial BWP are semi-statically configured, once configured, even if they are not used, these frequency domain resources can no longer be used for PUSCH transmission. Therefore, the above two methods will lead to uplink Fragmentation of PUSCH resources. For some terminal devices that cannot perform non-consecutive PUSCH resource allocation and transmission, only fragmented PUSCH resources can be used, which reduces the transmission rate of the two types of terminal devices.
  • the embodiments of the present application provide a communication method and apparatus, which are used to solve the problems of transmission performance degradation and resource fragmentation caused by network equipment configuring BWP for terminal equipment with low bandwidth capability.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repeated places will not be repeated.
  • the communication method provided in this application can be applied to various communication systems, for example, the Internet of Things (IoT), the narrowband internet of things (NB-IoT), the long term evolution (long term evolution) , LTE), it can also be a fifth generation (5G) communication system, it can also be a hybrid architecture of LTE and 5G, it can also be a 5G new radio (NR) system, and 6G or new communications emerging in future communication development system, etc.
  • the 5G communication system described in this application may include at least one of a non-standalone (NSA) 5G communication system and an independent (standalone, SA) 5G communication system.
  • the communication system may also be a machine to machine (M2M) network or other network.
  • M2M machine to machine
  • Communication between network equipment and terminal equipment can be performed through licensed spectrum (licensed spectrum), or unlicensed spectrum (unlicensed spectrum), or both licensed spectrum and unlicensed spectrum.
  • the network device and the terminal device can communicate through the spectrum below 6G, can also communicate through the spectrum above 6G, and can also use the spectrum below 6G and the spectrum above 6G for communication at the same time.
  • This embodiment of the present application does not limit the spectrum resources used between the network device and the terminal device.
  • a communication system provided by an embodiment of the present application includes a network device and six terminal devices, that is, UE1 to UE6.
  • UE1-UE6 can send uplink data to network equipment, and the network equipment can receive uplink data sent by UE1-UE6.
  • UE4 to UE6 may also form a sub-communication system.
  • the network device may send downlink information to UE1, UE2, UE3, and UE5, and UE5 may send downlink information to UE4 and UE6 based on a device-to-device (device-to-device, D2D) technology.
  • FIG. 3 is only a schematic diagram, and does not specifically limit the type of the communication system, and the number and type of devices included in the communication system.
  • the network device and the terminal device may be connected through an air interface interface.
  • the connection relationship between the network device and the terminal device may be as shown in FIG. 4 .
  • the embodiments of the present application can be applied to a communication system serving a second type of terminal device, and of course can also be applied to a communication system serving a first type of terminal device, or a communication system serving both the first type of terminal device and the second type of terminal device.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • the method is performed by a network device and a terminal device as an example.
  • FIG. 5 it is a schematic flowchart of a communication method provided by the present application.
  • the method includes:
  • the terminal device and the network device communicate on a first frequency domain resource, and the maximum bandwidth of the first frequency domain resource is greater than the maximum bandwidth supported by the terminal device.
  • the terminal device establishes a radio resource control RRC connection with the network device
  • receive an RRC establishment message such as receiving a random access message Msg4 or MsgB
  • random access phase such as receiving a random access message Msg4 or MsgB
  • initial access phase such as receiving a random access message Msg4 or MsgB
  • the terminal device enters the RRC connection state
  • the maximum bandwidth of the first frequency domain resource is greater than the maximum bandwidth supported by the terminal device, which can mean that the bandwidth size of the first frequency domain resource is allowed to be configured to be greater than the maximum bandwidth supported by the terminal device.
  • the resource support is configured to be a bandwidth size larger than the maximum bandwidth supported by the end device. This embodiment of the present application does not limit the bandwidth size of the first frequency domain resource actually configured by the network device each time, that is, the bandwidth size of the first frequency domain resource actually configured by the network device may be greater than the maximum bandwidth supported by the terminal device, or it may be Less than the maximum bandwidth supported by the end device.
  • the network device when configuring the first frequency domain resource for the terminal device, can configure the bandwidth of the first frequency domain resource to be greater than the maximum bandwidth supported by the terminal device, so that the terminal device can operate on the frequency domain resource with a bandwidth greater than its maximum bandwidth. Therefore, the transmission capacity and frequency hopping gain can be improved.
  • the initial frequency domain resources of the second type of terminal equipment in the initial access phase can reuse the initial frequency domain resources of the first type of terminal equipment in the initial access phase, so that the common channel overhead can be reduced.
  • the maximum bandwidth supported by the terminal equipment can be understood as: the maximum transmission bandwidth of the terminal equipment channel bandwidth, and the terminal equipment channel bandwidth supports a radio frequency (radio frequency, RF) carrier of the terminal equipment side uplink or downlink.
  • RF radio frequency
  • the "frequency domain resources" described in the embodiments of the present application may be BWPs, and may specifically include uplink BWPs and/or downlink BWPs. It should be noted that the embodiments of this application only take the frequency domain resource as BWP as an example for description, and the frequency domain resource can also be represented by other resource blocks, and is not limited to the name BWP. When the frequency domain resource is described by other terms, the term The corresponding frequency domain resources have the same characteristics as the frequency domain resources described in the embodiments of the present application, that is, they are composed of continuous resource blocks (resource blocks, RBs).
  • the maximum bandwidth supported by the terminal device may include the maximum bandwidth supported by the uplink and the maximum bandwidth supported by the downlink.
  • the maximum bandwidth of the uplink BWP is greater than (or not greater than) the maximum bandwidth supported by the terminal device may mean that the maximum bandwidth of the uplink BWP is greater than (or not greater than) the maximum bandwidth supported by the terminal device, and the maximum bandwidth of the downlink BWP is greater than (or not greater than) the maximum bandwidth supported by the terminal device.
  • Greater than) the maximum bandwidth supported by the terminal equipment may refer to that the maximum bandwidth of the downlink BWP is greater than (or not greater than) the maximum bandwidth supported by the terminal equipment downlink.
  • the first frequency domain resource may include at least one of the following: initial downlink BWP, initial uplink BWP, which can be understood as the maximum bandwidth of the initial uplink BWP (and/or initial downlink BWP) configured by the network device may be greater than that supported by the terminal device. maximum bandwidth.
  • the manner in which the terminal device communicates on the initial downlink BWP (and/or the initial downlink BWP) may be the manner in which the terminal device communicates on the first frequency domain resource in this embodiment of the application.
  • the initial uplink BWP (and/or initial downlink BWP) of the second type of terminal equipment can reuse the initial uplink BWP (and/or initial downlink BWP) of the first type of terminal equipment, thereby reducing common channel overhead.
  • At least the maximum bandwidth of the initial uplink BWP may be greater than the maximum bandwidth supported by the terminal device.
  • the configuration method of the first frequency domain resource is described by taking the terminal device as the second type of terminal device and the first frequency domain resource as the initial uplink BWP as an example.
  • the network device Before the terminal device establishes an RRC connection with the network device, the network device can configure an initial uplink BWP for the second type of terminal device through SIB1, and the maximum bandwidth of the initial uplink BWP can be greater than the maximum bandwidth supported by the second type of terminal device.
  • the initial uplink BWP may be the same initial uplink BWP as the initial uplink BWP configured for the first type of terminal equipment, that is, the second type of terminal equipment and the first type of terminal equipment may share an initial uplink BWP. BWP.
  • the second type of terminal equipment can not only reuse the PRACH resources and common PUCCH resources configured in the initial uplink BWP configured for the first type of terminal equipment, but also can configure independent PRACH resources and common PUCCH resources.
  • the initial uplink BWP may be different from the initial uplink BWP configured for the first type of terminal equipment, that is, the network equipment may configure a dedicated initial uplink BWP for the second type of terminal equipment.
  • the second type of terminal equipment can not only reuse the PRACH resources and common PUCCH resources configured in the initial uplink BWP configured for the first type of terminal equipment, but also can configure independent PRACH resources and common PUCCH resources.
  • the second type of terminal device can determine whether to share the initial uplink BWP with the first type of terminal device by any of the following two methods:
  • the network device may indicate whether the second type of terminal device shares the initial uplink BWP with the first type of terminal device through signaling display. For example, a signaling identifier can be introduced. When a message sent by the network device does not carry the signaling identifier, the second type of terminal equipment can reuse the initial uplink BWP of the first type of terminal equipment. Otherwise, the second type of terminal equipment can reuse the initial uplink BWP of the first type of terminal equipment.
  • the initial uplink BWP dedicated to the second type of terminal equipment may be used.
  • the signaling identifier may exist in the SIB1 signaling.
  • the network device implicitly indicates through signaling whether the terminal device of the second type shares the initial uplink BWP with the terminal device of the first type. For example, when the network device is configured with the initial uplink BWP dedicated to the second type of terminal device, the second type of terminal device uses the dedicated initial uplink BWP of the second type of terminal device, otherwise, the second type of terminal device reuses the first type of terminal device. The initial upstream BWP of the device.
  • the configuration method of the initial downlink BWP may refer to the above-mentioned configuration method of the initial uplink BWP.
  • the initial downlink BWP may include the initial downlink BWP determined by CORESET#0, or may include the initial downlink BWP configured in the SIB1 signaling.
  • the network device may indicate the initial downlink BWP used by the terminal device through downlink control information (downlink control information, DCI).
  • DCI downlink control information
  • the DCI may be the DCI scheduling Msg4 in the four-step random access process or the DCI scheduling MsgB in the two-step random access process.
  • the initial downlink BWP configured by SIB1 can be applied to the communication process before the RRC connection is established, such as random access process and paging process.
  • the initial downlink BWP configured by SIB1 takes effect after SIB1, or it can only be applied to In the communication process after the RRC connection is established, the initial downlink BWP configured by SIB1 takes effect after the RRC connection is established. It can be carried in the random access message Msg4. Further extended, for the initial downlink BWP that is only applied to the communication process after the RRC connection is established, in addition to being configured in the SIB1, it can also be configured in the RRC connection establishment message, for example, the random access process Msg4 can also be configured in the RRC connection. After the establishment is completed, it is configured in the user-specific RRC signaling. The above-mentioned implementation method is also applicable to the initial downlink BWP.
  • the terminal device and the network device after the terminal device and the network device establish an RRC connection, the terminal device and the network device communicate on the second frequency domain resource, the second frequency domain resource is configured with user-specific parameters, and the maximum bandwidth of the second frequency domain resource is not greater than The maximum bandwidth supported by the end device.
  • the second frequency domain resource may be a user-level frequency domain resource configured by the network device for the terminal device.
  • the second frequency domain resource may be a user-specific frequency domain resource additionally configured by the network device for the terminal device, or may be a user-specific parameter configured in a cell-level public frequency domain resource.
  • the initial downlink BWP and/or the initial downlink BWP may be included.
  • the second frequency domain resource may include at least one of the following: user-specific downlink BWP, user-specific uplink BWP, which can be understood as the maximum bandwidth of the user-specific uplink BWP (and/or user-specific uplink BWP) configured by the network device is not greater than that supported by the terminal device. maximum bandwidth.
  • the manner in which the terminal equipment communicates on the user-specific uplink BWP (and/or the user-specific uplink BWP) may be the manner in which the terminal equipment communicates on the second frequency domain resource in the embodiment of the present application.
  • neither the user-specific uplink BWP nor the user-specific downlink BWP is greater than the maximum bandwidth supported by the terminal device.
  • the terminal device in the initial access stage, can work on the frequency domain resources larger than its maximum bandwidth, so that the transmission capacity can be improved, and the hops can be improved. frequency transmission gain.
  • a terminal device with low bandwidth capability can reuse the existing initial uplink BWP or initial downlink BWP configuration and use process and some common channel resources, such as PRACH resources or public PUCCH resources, etc., thereby Common channel overhead can be reduced.
  • the initial upstream BWP bandwidth does not exceed the first upstream BWP bandwidth.
  • the maximum bandwidth supported by the second type of terminal equipment, and the initial uplink BWP is only used for the initial access of the second type of terminal equipment.
  • the initial uplink BWP, the user-specific uplink BWP, and the user-specific downlink BWP are supported by the terminal equipment.
  • the maximum bandwidth relationship can be shown in Figure 6. It should be understood that FIG. 6 is only an exemplary illustration of the bandwidth size relationship between the initial uplink BWP, the user-specific uplink BWP, and the user-specific downlink BWP, and does not describe the frequency range relationship between the initial uplink BWP, the user-specific uplink BWP, and the user-specific downlink BWP. limited.
  • the terminal device may also communicate on the third frequency domain resource, and the third frequency domain resource is not configured with user-specific parameters.
  • the maximum bandwidth of the third frequency domain resource may be allowed to be larger than the maximum bandwidth supported by the terminal device, or may not be allowed to be larger than the maximum bandwidth supported by the terminal device.
  • the third frequency domain resource may be a cell-level public resource that is not configured with user-specific parameters.
  • the second frequency domain resources may be user-level frequency domain resources configured with user-specific parameters.
  • the maximum allowed bandwidth of the third frequency domain resource is greater than the maximum bandwidth supported by the terminal device.
  • the third frequency domain resource can be the same as the first frequency domain resource, that is, the terminal device can continue to use the first frequency domain resource for communication after establishing an RRC connection with the network device, and in this way, the first frequency domain resource can be reused , so that the common channel overhead can be reduced.
  • the third frequency domain resource may also be different from the first frequency domain resource, that is, the network device may additionally configure the third frequency domain resource.
  • the maximum bandwidth of the third frequency domain resource is not allowed to be greater than the maximum bandwidth supported by the terminal device, and the third frequency domain resource is different from the first frequency domain resource.
  • the network device may reconfigure the third frequency domain resources.
  • the network device may also allocate a part of the first frequency domain resource as the third frequency domain resource.
  • the maximum bandwidth of the third frequency domain resource is not allowed to be greater than the maximum bandwidth supported by the terminal device, and the network device may configure a frequency domain resource that is not greater than the maximum bandwidth supported by the terminal device as the first frequency domain resource. , so that the third frequency domain resource can reuse the first frequency domain resource.
  • the third frequency domain resource may include at least one of the following: initial downlink BWP and initial uplink BWP.
  • At least the maximum bandwidth of the initial uplink BWP may be greater than the maximum bandwidth supported by the terminal device.
  • the maximum bandwidth of the initial uplink BWP and the initial downlink BWP is not greater than the maximum bandwidth supported by the terminal device.
  • the first frequency domain resource takes effect before the terminal device and the network device establish a radio resource control RRC connection
  • the third frequency domain resource takes effect after the terminal device and the network device establish a radio resource control RRC connection
  • the terminal device communicates with the network device on the first frequency domain resource in the RRC disconnected state; and communicates with the network device on the third frequency domain resource in the RRC connected state.
  • the effective time of the first frequency domain resource and/or the third frequency domain resource may be indicated by the first configuration information, for example, the first configuration information indicates that the first frequency domain resource is established when the terminal device establishes a wireless connection with the network device.
  • the resource control takes effect before the RRC connection
  • the third frequency domain resource takes effect after the terminal device and the network device establish the radio resource control RRC connection.
  • the protocol pre-defines the first frequency domain resources to take effect before the terminal device and the network device establish a radio resource control RRC connection
  • the third frequency domain resources are to establish a radio resource control RRC connection between the terminal device and the network device. effective afterwards.
  • the first configuration information may be carried in a system message, such as SIB1.
  • the following takes an example in which the bandwidth of the first frequency domain resource is greater than the maximum bandwidth supported by the terminal device, to exemplarily describe a communication manner in which the terminal device operates at a bandwidth greater than the maximum bandwidth supported by the terminal device. It should be understood that only the first frequency domain resource is used as an example for description. If the terminal device works on other frequency domain resources, as long as the frequency domain resource is greater than the maximum bandwidth supported by the terminal device, the method described in the embodiments of the present application can be used. method to communicate. For example, if the bandwidth size of the third frequency domain resource is greater than the maximum bandwidth supported by the terminal device, the terminal device may also perform communication on the third frequency domain resource in the following manner.
  • the terminal device when the terminal device communicates on the first frequency domain resource, it can perform a communication on some frequency domain resources in the first frequency domain resource, and the bandwidth of the partial frequency domain resource is the size supported by the terminal device.
  • the maximum bandwidth or the bandwidth size of the network device configuration when the terminal device communicates on the first frequency domain resource, it can perform a communication on some frequency domain resources in the first frequency domain resource, and the bandwidth of the partial frequency domain resource is the size supported by the terminal device.
  • the maximum bandwidth or the bandwidth size of the network device configuration when the terminal device communicates on the first frequency domain resource, it can perform a communication on some frequency domain resources in the first frequency domain resource, and the bandwidth of the partial frequency domain resource is the size supported by the terminal device. The maximum bandwidth or the bandwidth size of the network device configuration.
  • the terminal device may perform the first communication on the first part of the frequency domain resources in the first frequency domain resources.
  • the range of the first part of the frequency domain resources may be the radio frequency range when the terminal device performs the first communication.
  • the terminal device may perform the second communication after performing the first communication.
  • the terminal device may determine whether to perform radio frequency re-tuning according to the range of the partial frequency domain resources (that is, the first partial frequency domain resources) used for the first communication and the frequency range used for the second communication.
  • RF retuning For example, the terminal device may determine a frequency range used for the second communication in the first frequency domain resource according to the first information from the network device. If the frequency range is outside the range of the first part of the frequency domain resources, the terminal device performs radio frequency re-tuning before performing the second communication; if the frequency range is within the range of the first part of the frequency domain resources, the terminal device is performing the second communication. Radio frequency retuning may not be performed before. In the above manner, it can be ensured that the frequency range used for the current communication is within the radio frequency range of the terminal device, so that the normal operation of the current communication can be ensured.
  • the terminal device can perform the second communication on the second part of the frequency domain resources after the radio frequency readjustment, and the second part of the frequency domain resources is determined according to the frequency range of the second communication, wherein the frequency range is in the first part of the frequency domain outside the scope of the resource.
  • the terminal device may perform the second communication on the first part of the frequency domain resources, where the frequency range of the second communication is within the range of the first part of the frequency domain resources.
  • the terminal device may perform radio frequency re-tuning in any of the following three manners:
  • Mode 1 The terminal device adjusts the center frequency point of the radio frequency to the frequency center of the frequency range. In this manner, the center frequency point of the second part of the frequency domain resource is the frequency center of the frequency range.
  • the terminal device adjusts the starting point of the radio frequency range to the starting frequency of the frequency range.
  • the starting frequency of the second part of the frequency domain resources is the starting frequency of the frequency range.
  • the terminal device adjusts the end point of the radio frequency range to the end frequency of the frequency range.
  • the end frequency of the second part of the frequency domain resources is the end frequency of the frequency range.
  • the bandwidth of the radio frequency range of the terminal device may be the maximum bandwidth supported by the terminal device or the bandwidth configured by the network device. That is, the bandwidth size of the second part of the frequency domain resources may be the maximum bandwidth supported by the terminal device or the bandwidth size configured by the network device.
  • the foregoing description may be applied to a random access scenario, for example, may be applied to an uplink transmission process of random access.
  • a random access scenario for example, may be applied to an uplink transmission process of random access.
  • it can also be used in other scenarios, which is not specifically limited here.
  • the uplink transmission process of random access may include PRACH, Msg3, and Msg4 PUCCH.
  • the terminal device may determine a frequency range according to the RO, and the terminal may set the RF frequency range to the frequency range.
  • RACH occasion, RO random access channel opportunity
  • the terminal equipment does not need to perform radio frequency re-tuning, as shown in FIG. 7 .
  • the terminal device needs to perform radio frequency re-tuning, and re-determine the RF range according to the frequency domain resources of Msg3, as shown in FIG. 8 .
  • the terminal does not need to perform radio frequency re-tuning, otherwise, the terminal needs to perform radio frequency re-tuning and re-determine the RF range according to the frequency domain resources of Msg.4PUCCH.
  • the terminal device may also determine whether to perform radio frequency re-tuning before performing the first communication, wherein the manner in which the terminal device determines whether to perform radio frequency re-tuning before performing the first communication is the same as that of the terminal.
  • the manner in which the device determines whether to perform radio frequency re-tuning before performing the second communication is similar. For details, refer to the above solution, which will not be repeated here. If there is no other communication before the terminal device performs the first communication, the frequency domain range of the first communication may also be predefined or configured by the network device.
  • the terminal device can flexibly work in frequency domain resources larger than its maximum bandwidth.
  • the first frequency domain resource includes multiple sub-resource blocks, and the bandwidth size of one sub-resource block is not greater than the maximum bandwidth supported by the terminal device.
  • the terminal device performs the first communication on the first sub-resource block of the plurality of sub-resource blocks.
  • a sub-resource block may also be referred to as "narrow band” or “sub-bandwidth part (sub-BWP)", or may also be referred to as other terms, as long as the frequency domain resource corresponding to the term has sub-resource blocks. can be considered as sub-resource blocks.
  • the terminal device may perform the second communication after performing the first communication.
  • the terminal device may determine whether to perform radio frequency re-tuning according to the first sub-resource block used for the first communication and the second sub-resource block used for the second communication. For example, the terminal device may determine the second sub-resource block used for the second communication in the first frequency domain resource according to the second information from the network device. If the second sub-resource block is different from the first sub-resource block, the terminal device performs radio frequency re-tuning before performing the second communication. If the second sub-resource block is the same as the first sub-resource block, the terminal device may not perform radio frequency re-tuning before performing the second communication.
  • the terminal device can perform the second communication on the second sub-resource block after performing radio frequency re-adjustment, wherein the second sub-resource block is different from the first sub-resource block.
  • the terminal device may perform the second communication on the first sub-resource block, where the second sub-resource block is the same as the first sub-resource block.
  • the terminal device can determine the multiple sub-resource blocks included in the first frequency domain resource in any of the following three ways:
  • the terminal device may determine multiple sub-resource blocks according to third information from the network device, where the third information is used to indicate the number of sub-resource blocks included in the first frequency domain resource.
  • the preset direction may be the RB index ( index) in the order from small to large, or the preset direction can also be the order of RB index from large to small, and so on.
  • the third information may be carried in system broadcast information, RRC signaling, media access control channel element (media access control channel element, MAC CE) or DCI.
  • RRC signaling media access control channel element (media access control channel element, MAC CE) or DCI.
  • media access control channel element media access control channel element, MAC CE
  • the bandwidth of the last sub-resource block may be: the bandwidth of the first frequency domain resource - (H-1)*floor (bandwidth of the first frequency domain resource/H), where floor is a round-down operation.
  • the terminal device may determine multiple sub-resource blocks according to fourth information from the network device, where the fourth information is used to indicate the respective frequency ranges corresponding to the multiple sub-resource blocks.
  • the network device may configure the range of each sub-resource block.
  • the network device can configure the center frequency and bandwidth size of each sub-resource block.
  • the network device may also configure the start frequency and the end frequency of each sub-resource block.
  • the fourth information may be carried in system broadcast information, RRC signaling, MAC CE or DCI.
  • the terminal device may determine a plurality of sub-resource blocks according to the number of sub-resource blocks corresponding to the bandwidth size of the first frequency domain resource.
  • the corresponding relationship between the bandwidth size and the number of sub-resource blocks can be preset (or pre-configured), so that the terminal device can determine the number of sub-resource blocks according to the bandwidth size of the first frequency domain resource, and A plurality of sub-resource blocks are determined according to the number of sub-resource blocks.
  • the corresponding relationship between the bandwidth size and the number of sub-resource blocks may be as follows:
  • the number of sub-resource blocks included in the frequency domain resource may be N1, where T1 may be greater than 0, and N1 may be greater than 1;
  • the number of sub-resource blocks included in the frequency domain resource may be N2, and N2 may be greater than 1.
  • bandwidth size may also be other, which will not be illustrated one by one here.
  • the first communication is performed on sub-resource block 1, and the frequency range used for the second communication is within the range of sub-resource block 1, so the terminal device can perform the second communication on sub-resource block 1, which In this scenario, the terminal device may not perform radio frequency adjustment before performing the second communication.
  • the first communication is performed on sub-resource block 1, the frequency range used for the second communication is within the range of sub-resource block 2, and the terminal device can adjust the radio frequency range to the range of sub-resource block 2, And the second communication is performed on the sub-resource block 2.
  • the terminal device performs the third communication after the second communication, and the terminal device may determine whether to perform radio frequency re-tuning according to the sub-resource block 2 and the sub-resource block used for the third communication.
  • this embodiment of the present application is not limited to performing communication within a sub-resource block, and may also perform communication across sub-resource blocks.
  • the frequency domain resources used for the third communication may include some resources of sub-resource block 1 and sub-resources. Partial resources of block 0.
  • the above-mentioned illustration can be applied to a random access procedure, such as downlink transmission in a random access procedure.
  • a random access procedure such as downlink transmission in a random access procedure.
  • the above communication manner can also be applied to other scenarios, and the embodiments of the present application do not specifically limit the applied scenarios.
  • At least one sub-resource block in the above-mentioned multiple sub-resource blocks may include CORESET#0.
  • the network device can also determine whether the terminal device performs radio frequency re-tuning before communication in the above-mentioned manner.
  • the network device can reserve a period of time, for example, the gap of X1 symbols (symbol) ( GAP), suspend communication, where X1 is an integer greater than 0.
  • GAP the gap of X1 symbols
  • the first communication is performed on sub-resource block 1
  • the frequency range used for the second communication is within the range of sub-resource block 2
  • the sub-resource block corresponding to the first communication is the same as the sub-resource block corresponding to the second communication.
  • the sub-resource blocks are different and meet the conditions for radio frequency readjustment.
  • the network device can reserve a period of time after the first communication to suspend communication, so that the terminal equipment can use this period of time to perform radio frequency readjustment. In this way, it is possible to avoid the problem that the network device and the terminal device have inconsistent understandings on whether radio frequency retuning is required, resulting in transmission errors.
  • it may be preset (or pre-configured) that the next communication starts after X1 valid symbols after the current communication.
  • the terminal device may not receive/send the last X1 symbols of the previous communication.
  • the terminal device may perform frequency hopping transmission in the second frequency domain resource.
  • the terminal device may also use frequency hopping to communicate among multiple frequency domain resources, where the multiple frequency domain resources include the second frequency domain resources.
  • the terminal device may perform frequency hopping transmission in the second frequency domain resource, and use frequency hopping to communicate among multiple frequency domain resources, wherein the multiple frequency domain resources include the second frequency domain resource. resource.
  • the bandwidth size of at least one frequency domain resource in the above-mentioned multiple frequency domain resources is not greater than the maximum bandwidth supported by the terminal device.
  • the bandwidth size of each frequency domain resource in the above-mentioned multiple frequency domain resources is not greater than the maximum bandwidth supported by the terminal device.
  • the bandwidth size of any frequency domain resource in the above-mentioned multiple frequency domain resources is not greater than the maximum bandwidth supported by the terminal device.
  • the terminal device may support repeated transmission when communicating on the second frequency domain resource.
  • the network device may instruct the terminal device to use one of the foregoing three implementation manners to communicate.
  • the network device may send fifth information to the terminal device, where the fifth information may enable frequency hopping transmission within frequency domain resources, or the fifth information may enable frequency hopping transmission between frequency domain resources, or the fifth information may Enable frequency hopping transmission within frequency domain resources and frequency hopping transmission within frequency domain resources.
  • the fifth information may be carried in system broadcast information, RRC signaling, MAC CE or DCI.
  • the frequency hopping transmission within the frequency domain resource and the frequency hopping transmission within the frequency domain resource may also be indicated by different information, which is not specifically limited.
  • the terminal device may perform frequency hopping transmission within the second frequency domain resource. If the fifth information enables frequency-hopping transmission between frequency-domain resources, the terminal device can communicate among multiple frequency-domain resources in a frequency-hopping manner. If the fifth information enables frequency hopping transmission in frequency domain resources and frequency hopping transmission in frequency domain resources, the terminal device can perform frequency hopping transmission in the second frequency domain resource, and use frequency hopping among multiple frequency domain resources. to communicate.
  • the network device may also indicate the frequency hopping location of the terminal device.
  • the network device may send sixth information to the terminal device, and the sixth information may be used to configure the frequency hopping location/pattern of frequency hopping transmission between frequency domain resources. ), wherein the frequency hopping pattern may include at least one frequency hopping position.
  • the network device may also send seventh information to the terminal device, where the seventh information may be used to configure the frequency hopping position/pattern of frequency hopping transmission in the frequency domain resource.
  • frequency hopping pattern of frequency hopping transmission within frequency domain resources and the frequency hopping pattern of frequency hopping transmission between frequency domain resources can also be configured through the same information, which is not specifically limited.
  • the sixth information may include a frequency-domain offset value of frequency-hopping transmission, an identifier of a frequency-domain resource, or an identifier sequence of a frequency-domain resource, and the like.
  • the resource positions for communication within the multiple frequency domain resources may be the same, that is, the frequency hopping patterns within the frequency domain resources may be the same.
  • the seventh information may indicate a frequency domain offset value of frequency hopping transmission within the frequency domain resource.
  • the seventh information may be a frequency-domain offset value of frequency-hopping transmission within the frequency-domain resource.
  • the seventh information may also indicate that the bandwidth size/M frequency hopping is performed in the frequency domain resource, so that the terminal device can determine that the offset value of the frequency hopping transmission in the frequency domain resource is the bandwidth size/M of the frequency domain resource, where M is an integer greater than 1.
  • the network device may configure a frequency hopping pattern for frequency hopping transmission in multiple sets of frequency domain resources, and indicate the frequency hopping pattern used by the terminal device for communication.
  • the network device may indicate the frequency hopping pattern used by the terminal device for communication through DCI signaling.
  • the network device may also configure a frequency hopping pattern for frequency hopping transmission between multiple sets of frequency domain resources, and indicate the frequency hopping pattern used for communication by the terminal device.
  • the network device may indicate the frequency hopping pattern used by the terminal device for communication through DCI signaling.
  • the sixth information and the seventh information may be carried in system broadcast information, RRC signaling, MAC CE or DCI.
  • the configuration method of frequency hopping pattern can be performed in combination with the enabling methods for intra-frequency hopping transmission in frequency domain resources and frequency hopping transmission in frequency domain resources.
  • An implementation method when the frequency hopping transmission in the frequency domain resources and the frequency hopping transmission in the frequency domain resources are enabled at the same time, the relative positions of the resources for communication in different frequency domain resources are the same, that is, the frequency hopping in the frequency domain resources is the same. pattern can be the same. Therefore, the network device can configure a frequency hopping pattern within a frequency domain resource and an identification or identification sequence of the next frequency domain resource during frequency hopping transmission between frequency domain resources.
  • X2 symbols of GAP may be included between adjacent frequency hopping transmissions for radio frequency readjustment, where X2 is an integer greater than 0.
  • it may be preset (or pre-configured) that the next communication starts after X2 valid symbols after the current communication.
  • the terminal device may not receive/send the last X2 symbols of the previous communication.
  • the frequency ranges corresponding to two adjacent communications between the terminal device and the network device may be different, and the terminal device needs to perform radio frequency readjustment between two communications, that is, to adjust the radio frequency during the two communications. range, and during RF retuning, the terminal device cannot transmit and receive. If the network device schedules the end device to communicate during this period, it will result in a transmission error.
  • the embodiment of the present application provides two possible implementation manners to solve the problem that the network device schedules the terminal device to perform communication during the radio frequency retuning of the terminal device, resulting in transmission errors. It should be noted that the two possible implementation manners provided in the embodiments of the present application may be implemented in combination with the above communication method as a solution, or may be implemented separately as a solution with the above communication method.
  • the following two possible implementations are not limited to that the maximum bandwidth of the uplink BWP is greater than the maximum bandwidth supported by the terminal device, the maximum bandwidth of the downlink BWP is not greater than the maximum bandwidth supported by the terminal device, and the frequencies of the uplink BWP and the downlink BWP are Scenarios with different ranges, but are applicable to any two adjacent communication scenarios where the terminal device needs to perform radio frequency re-tuning, such as two adjacent downlink transmissions, two adjacent uplink transmissions, adjacent uplink transmissions and downlink transmissions, Adjacent downstream and upstream transmissions.
  • the embodiments of the present application only take the random access process as an example for description.
  • the minimum time interval between two adjacent random access messages is determined according to the first time and the second time. Specifically, it may be equal to the sum of the first time and the second time, or may be The larger value between the first time and the second time.
  • the first time is equal to the minimum time interval between two adjacent random access messages of the first type of terminal equipment
  • the second time may be determined according to the time when the second type of terminal equipment performs RF retuning, for example, the RF retuning If the required time is X symbols, the second time may be equal to X symbols, or less than X symbols (greater than 0).
  • the terminal device may determine the second time according to its own processing capability, and when the network device determines that the terminal device can perform message parsing and radio frequency retuning at the same time, for example, the terminal device may perform radio frequency reset while parsing msg2 and/or generating msg3 tune, then the network device determines that the second time is Y symbols, where Y is less than X.
  • the network device determines that the terminal device cannot perform message parsing and radio frequency readjustment at the same time, for example, the terminal device cannot perform radio frequency readjustment while parsing msg2 or generating msg3, the network device determines that the second time is X symbols.
  • the network device may determine whether the terminal device can perform message parsing and radio frequency retuning at the same time by receiving the capability information report from the terminal device.
  • the network device may also reserve a certain amount of time on the basis of X symbols, that is to say, the second time may be greater than X symbols.
  • the maximum bandwidth supported by the second type of terminal equipment is smaller than the maximum bandwidth supported by the first type of terminal equipment.
  • the protocol does not define the minimum time interval between two adjacent random access messages of the second type of terminal equipment.
  • the network device may transmit the random access message according to the above implementation manner.
  • the network device may transmit the random access message according to the above-mentioned implementation manner, and for the first type of terminal device, the network device minds transmitting the random access message according to the first time random access message.
  • the minimum time interval between two adjacent random access messages is equal to the minimum time of the second type of terminal equipment, and the minimum time of the second type of terminal equipment is the time of the second type of terminal equipment.
  • the minimum time interval between two adjacent random access messages, the minimum time of the second type of terminal equipment is predefined, and the maximum bandwidth supported by the second type of terminal equipment is smaller than the maximum bandwidth supported by the first type of terminal equipment bandwidth.
  • the minimum time of the second type of terminal equipment may be determined according to the above-mentioned first time and the above-mentioned second time, and specifically, may be the sum of the first time and the second time, or may be the first time and the second time the larger value in between.
  • the protocol defines the minimum time interval between two adjacent random access messages of the second type of terminal equipment.
  • the network device may transmit the random access message according to the above implementation manner.
  • the network device may transmit the random access message according to the above implementation manner, and for the first type of terminal device, the network device may transmit the random access message according to the first time random access message.
  • the above-mentioned second time may also be determined according to the time at which the second type of terminal equipment performs BWP handover, BWP frequency hopping, and BWP readjustment.
  • the second time may also be determined according to the time at which the second type of terminal equipment performs BWP handover, BWP frequency hopping, and BWP readjustment.
  • the terminal device of the second type can also determine the minimum time interval between two adjacent random access messages according to the above two implementation manners.
  • Example 1 takes Msg1 and the DCI used for scheduling Msg2 in the 4-step random access process as an example.
  • the first type of terminal equipment tries to detect the scrambled CRC with the corresponding random access-radio network temporary identifier (RA-RNTI) within the random access response window.
  • RA-RNTI random access-radio network temporary identifier
  • the DCI of cyclic redundancy check (CRC) is used to schedule Msg2.
  • Msg2 carries the request (random access response, RAR) of the network device for the terminal random access response, and the random access response window is used to receive scheduling
  • the DCI of Msg2 starts with the first symbol of the earliest CORESET, and the start time of the random access response window starts at least one symbol after the last symbol of the PRACH time corresponding to the transmitted PRACH, that is, the first type of terminal equipment
  • the minimum time between the DCI of Msg1 and Msg2 is 1 symbol.
  • the protocol in this implementation manner does not define the minimum time interval between two adjacent random access messages of the second type of terminal equipment.
  • the terminal device does not report the type, or, in the scenario where the type reported by the terminal device is the second type of terminal device, the first symbol of the earliest CORESET used to schedule the DCI of Msg2 and the last symbol of the PRACH opportunity corresponding to the sent PRACH
  • the minimum time between a symbol is the sum of the first time and the second time, that is (1+ ⁇ ) symbols, that is, the minimum time between Msg1 and the DCI used to schedule Msg2 is (1+ ⁇ ) symbols, where ⁇ is the second time.
  • the protocol in this implementation manner defines the minimum time interval between two adjacent random access messages of the second type of terminal equipment.
  • the terminal device does not report the type, or, in the scenario where the type reported by the terminal device is the second type of terminal device, the first symbol of the earliest CORESET used to schedule the DCI of Msg2 and the last symbol of the PRACH opportunity corresponding to the sent PRACH
  • the minimum time between one symbol is: the minimum time between the first symbol of the earliest CORESET used for scheduling the DCI of Msg2 of the second type terminal equipment and the last symbol of the PRACH occasion corresponding to the transmitted PRACH.
  • Example 2 takes Msg2 and Msg3 in the 4-step random access process as an example.
  • the first type of terminal device after receiving the corresponding random access response, sends the Msg3 according to the random access response uplink scheduling grant (RAR UL grant), and the Msg3 is transmitted through the PUSCH.
  • RAR UL grant random access response uplink scheduling grant
  • the protocol stipulates that the minimum time between the last symbol of PDSCH reception containing the RAR message and the first symbol of PUSCH transmission scheduled by the RAR UL grant is NT ,1 +NT ,2 +0.5ms, that is, the difference between Msg2 and Msg3.
  • the minimum time is NT ,1 +NT ,2 +0.5ms, where NT ,1 is the duration related to the PDSCH processing time, NT ,2 is the duration related to the PUSCH preparation time, NT ,1 and NT ,2 units can be signed numbers.
  • the protocol in this implementation manner does not define the minimum time interval between two adjacent random access messages of the second type of terminal equipment.
  • the terminal equipment does not report the type, or, in the scenario where the type reported by the terminal equipment is the second type of terminal equipment, the difference between the last symbol received by the PDSCH containing the RAR message and the first symbol of the PUSCH transmission scheduled by the RAR UL grant
  • the minimum time between the first time and the second time is the sum of the first time and the second time, that is, NT ,1 +NT ,2 + ⁇ +0.5ms, that is, the minimum time between Msg2 and Msg3 is NT ,1 +NT ,2 + ⁇ +0.5ms.
  • the protocol in this implementation manner defines the minimum time interval between two adjacent random access messages of the second type of terminal equipment.
  • the terminal device does not report the type, or, in the scenario where the type reported by the terminal device is the second type of terminal device, the difference between the last symbol received by the PDSCH containing the RAR message and the first symbol of the PUSCH transmission scheduled by the RAR UL grant
  • the minimum time between is: the minimum time between the last symbol received by the PDSCH containing the RAR message of the second type of terminal equipment and the first symbol of the PUSCH transmission scheduled by the RAR UL grant.
  • Example 3 takes Msg3 and Msg4 in the 4-step random access process as an example.
  • the first type of terminal device starts a conflict resolution timer after sending Msg3, and receives Msg4 sent by the network device before the conflict resolution timer expires.
  • Msg4 is used to resolve random access conflicts.
  • the second type of terminal device starts the conflict resolution timer ⁇ ms after sending Msg3, and receives Msg4 sent by the network device before the conflict resolution timer expires.
  • Msg4 is used to resolve random access conflicts.
  • Example 4 takes Msg4 and Msg4PUCCH in the 4-step random access process as an example.
  • the first type of terminal device after receiving the Msg4, sends a PUCCH to feed back the hybrid automatic repeat request-acknowledgment (HARQ-ACK) information of the Msg4 to the network device, wherein the protocol stipulates that the PDSCH carrying the Msg4
  • the minimum time between the last symbol received and the first symbol of the PUCCH transmission of the protocol HARQ-ACK information is NT ,1 +0.5ms, where NT ,1 is the duration related to the PDSCH processing time, NT , 1 1 unit can be a number of symbols.
  • the protocol in this implementation manner does not define the minimum time interval between two adjacent random access messages of the second type of terminal equipment.
  • the terminal device does not report the type, or, in the scenario where the type reported by the terminal device is the second type of terminal device, the difference between the last symbol received by the PDSCH carrying Msg4 and the first symbol transmitted by the PUCCH of the protocol HARQ-ACK information
  • the minimum time is the sum of the first time and the second time, that is, NT ,1 +0.5+ ⁇ msec, where NT ,1 is the duration related to the PDSCH processing time, and the unit of NT,1 may be the number of symbols.
  • the protocol in this implementation manner defines the minimum time interval between two adjacent random access messages of the second type of terminal equipment.
  • the terminal device does not report the type, or, in the scenario where the type reported by the terminal device is the second type of terminal device, the difference between the last symbol received by the PDSCH carrying Msg4 and the first symbol transmitted by the PUCCH of the protocol HARQ-ACK information
  • the minimum time is: the minimum time between the last symbol received by the PDSCH carrying Msg4 of the second type of terminal equipment and the first symbol transmitted by the PUCCH of the protocol HARQ-ACK information.
  • Example 5 takes the MsgA PRACH and MsgA PUSCH in the 2-step random access process as an example.
  • the MsgA sent by the first type of terminal equipment includes two channel transmission processes, PRACH and PUSCH.
  • the protocol in this implementation manner does not define the minimum time interval between two adjacent random access messages of the second type of terminal equipment.
  • the protocol in this implementation manner defines the minimum time interval between two adjacent random access messages of the second type of terminal equipment.
  • the minimum time between the MsgA PRACH and the MsgA PUSCH is: between the MsgA PRACH and the MsgA PUSCH of the second type of terminal device minimum time.
  • Example 6 takes MsgA and MsgB in the 2-step random access process as an example.
  • the first type of terminal device attempts to detect the DCI scrambled with the CRC with the corresponding MsgB-RNTI in the random access response window.
  • the access response window starts at the first symbol of the earliest CORESET for receiving the DCI scheduling MsgB, and the random access response window starts at least one symbol after the last symbol of the PUSCH occasion corresponding to the transmitted PRACH Starting after the symbol, that is, the minimum time between the MsgA PUSCH and the DCI of MsgB is 1 symbol.
  • the protocol in this implementation manner does not define the minimum time interval between two adjacent random access messages of the second type of terminal equipment.
  • the minimum time between the MsgA PUSCH and the DCI of MsgB is the sum of the first time and the second time, that is, 1+ ⁇ symbols.
  • the protocol in this implementation manner defines the minimum time interval between two adjacent random access messages of the second type of terminal equipment.
  • the minimum time between the MsgA PUSCH and the DCI of MsgB is: the MsgA PUSCH of the second type of terminal device and the DCI of MsgB minimum time between.
  • Example 7 taking the MsgB and MsgB PUCCH in the 2-step random access process as an example.
  • the first type of terminal equipment after receiving the MsgB, sends a PUCCH to feed back the HARQ-ACK information of the MsgB to the network equipment, wherein the protocol stipulates that the last symbol received on the PDSCH carrying the MsgB is the same as the PUCCH transmitted in the HARQ-ACK information of the protocol.
  • the minimum time between first symbols is NT ,1 +0.5ms, where NT ,1 is the duration related to the PDSCH processing time.
  • the protocol in this implementation manner does not define the minimum time interval between two adjacent random access messages of the second type of terminal equipment.
  • the terminal device does not report the type, or, in the scenario where the type reported by the terminal device is the second type of terminal device, the difference between the last symbol received by the PDSCH carrying MsgB and the first symbol transmitted by the PUCCH of the protocol HARQ-ACK information
  • the minimum time is the sum of the first time and the second time, ie NT ,1 +0.5+ ⁇ ms.
  • the protocol in this implementation manner defines the minimum time interval between two adjacent random access messages of the second type of terminal equipment.
  • the terminal device does not report the type, or, in the scenario where the type reported by the terminal device is the second type of terminal device, the difference between the last symbol received by the PDSCH carrying MsgB and the first symbol transmitted by the PUCCH of the protocol HARQ-ACK information
  • the minimum time is: the minimum time between the last symbol received by the PDSCH carrying MsgB of the second type of terminal equipment and the first symbol transmitted by the PUCCH of the protocol HARQ-ACK information.
  • the terminal device in the initial access stage, can work on the frequency domain resources larger than its maximum bandwidth, so that the terminal device can reuse the existing initial uplink BWP or initial
  • the configuration and use procedures of downlink BWP and some common channel resources, such as PRACH resources or common PUCCH resources, etc., can reduce the common channel overhead.
  • the initial upstream BWP bandwidth does not exceed the first upstream BWP bandwidth.
  • the maximum bandwidth supported by the second type of terminal equipment, and the initial uplink BWP is only used for the initial access of the second type of terminal equipment.
  • the embodiments of the present application can avoid a series of problems caused by the working BWP bandwidth exceeding the maximum bandwidth supported by itself, such as adjustment of the center frequency of the radio frequency link of the terminal device, etc., thereby reducing the processing time of the terminal device and the base station.
  • Complexity avoid the terminal equipment and the network equipment have inconsistent understanding of whether the data transmission of the terminal equipment requires radio frequency retuning and lead to transmission errors.
  • the network equipment can reserve a period of time to suspend communication, so that the terminal device can use this period of time to perform radio frequency readjustment, so as to avoid transmission errors and improve the accuracy of communication.
  • the embodiments of the present application provide a communication device, the structure of which may be as shown in FIG. 11 , including a communication module 1101 and a processing module 1102 .
  • the communication apparatus may be specifically used to implement the method performed by the terminal device in the embodiments of FIG. 5 to FIG. 10 , and the apparatus may be the terminal device itself, or may be a chip or a chipset in the terminal device or the part of the chip used to perform the function of the associated method.
  • the communication module 1101 is used to communicate with the network device; the processing module 1102 is used to communicate through the communication module 1101 on the first frequency domain resource before establishing the RRC connection with the network device.
  • the maximum value of the first frequency domain resource is The bandwidth is greater than the maximum bandwidth supported by the terminal device; and, after the RRC connection is established with the network device, communication is performed through the communication module 1101 on the second frequency domain resource, the second frequency domain resource is configured with user-specific parameters, and the second frequency domain The maximum bandwidth of the resource is not greater than the maximum bandwidth supported by the terminal device.
  • the processing module 1102 is further configured to: after the terminal device and the network device establish an RRC connection, communicate through the communication module 1101 on the third frequency domain resource, and the third frequency domain resource is not configured with user-specific parameters; wherein, The maximum bandwidth of the third frequency domain resource is allowed to be greater than the maximum bandwidth supported by the terminal device, and the third frequency domain resource is the same as the first frequency domain resource; or, the maximum bandwidth of the third frequency domain resource is not allowed to be greater than the maximum bandwidth supported by the terminal device, The third frequency domain resource is different from the first frequency domain resource.
  • the communication module 1101, when performing communication on the first frequency domain resources is specifically configured to: perform the first communication on some frequency domain resources in the first frequency domain resources, and the bandwidth of the partial frequency domain resources is equal to that of the terminal.
  • the communication module 1101 is further configured to receive first configuration information from the network device; wherein the first configuration information is used to configure the first frequency domain resource and indicate the first frequency domain The resource takes effect before establishing an RRC connection with the network device; and/or the first configuration information is used to configure the third frequency domain resource, and indicates that the third frequency domain resource is established with the network device It takes effect after RRC connection.
  • the processing module 1102 is further configured to: determine a frequency range used for the second communication in the first frequency domain resource according to the first information from the network device; the frequency range is in the first part of the frequency domain used for the first communication Outside the range of the resources, after the radio frequency readjustment is performed, the second communication is performed on the second part of the frequency domain resources through the communication module 1101, and the second part of the frequency domain resources is determined according to the frequency range; or, the frequency range is within the first part of the frequency domain resources. Within the range of , the second communication is performed through the communication module 1101 on the first part of the frequency domain resources.
  • the first frequency domain resource includes multiple sub-resource blocks, and the bandwidth size of one sub-resource block is not greater than the maximum bandwidth supported by the terminal device, the communication module 1101 performs the first sub-resource block on the first sub-resource block in the multiple sub-resource blocks.
  • the processing module 1102 is further configured to: determine a second sub-resource block used for the second communication in the first frequency domain resource according to the second information from the network device; the second sub-resource block is different from the first sub-resource block , after the radio frequency readjustment is performed, the second communication is performed on the second sub-resource block through the communication module 1101; 2. Communications.
  • the communication module 1101 when performing communication on the second frequency domain resource, is specifically configured to: perform communication in a frequency hopping manner among multiple frequency domain resources, and the multiple frequency domain resources include the second frequency domain resource.
  • the communication apparatus may be specifically used to implement the method performed by the network device in the embodiments of FIG. 5 to FIG. 10 , and the apparatus may be the network device itself, or may be a chip or a chip in the network device The part of a set or chip that performs the function of the associated method.
  • the communication module 1101 is used to communicate with the terminal device; the processing module 1102 is used to: before establishing an RRC connection with the terminal device, communicate with the terminal device through the communication module 1101 on the first frequency domain resource.
  • the maximum bandwidth of the frequency domain resource is greater than the maximum bandwidth supported by the terminal device; and, after establishing an RRC connection with the terminal device, the second frequency domain resource communicates with the terminal device through the communication module 1101, and the second frequency domain resource is configured with User-specific parameters, and the maximum bandwidth of the second frequency domain resource is not greater than the maximum bandwidth supported by the terminal device.
  • the processing module 1102 is further configured to: after establishing the RRC connection with the terminal device, communicate with the terminal device through the communication module 1101 on the third frequency domain resource, and the third frequency domain resource is not configured with user-specific parameters; wherein , the maximum bandwidth of the third frequency domain resource is allowed to be greater than the maximum bandwidth supported by the terminal device, and the third frequency domain resource is the same as the first frequency domain resource; or, the maximum bandwidth of the third frequency domain resource is not allowed to be greater than the maximum bandwidth supported by the terminal device. , the third frequency domain resource is different from the first frequency domain resource.
  • the communication module 1101 is further configured to: send first configuration information; wherein the first configuration information is used to configure the first frequency domain resource, and indicates that the first frequency domain resource is It takes effect before the terminal device establishes the RRC connection; and/or the first configuration information is used to configure the third frequency domain resource, and indicates that the third frequency domain resource takes effect after the RRC connection is established with the terminal device.
  • the communication module 1101, when performing communication on the first frequency domain resources is specifically configured to: perform the first communication on some frequency domain resources in the first frequency domain resources, and the bandwidth of the partial frequency domain resources is equal to that of the terminal.
  • the division of modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of the present application may be integrated into one processing unit. In the device, it can also exist physically alone, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It can be understood that, for the functions or implementations of each module in the embodiments of the present application, further reference may be made to the related descriptions of the method embodiments.
  • the communication apparatus may be as shown in FIG. 12 , and the apparatus may be a communication device or a chip in the communication device, wherein the communication device may be the terminal device in the above-mentioned embodiment or the above-mentioned embodiment.
  • Network equipment The apparatus includes a processor 1201 and a communication interface 1202 , and may also include a memory 1203 .
  • the processing module 1102 may be the processor 1201 .
  • the communication module 1101 may be the communication interface 1202 .
  • the processor 1201 may be a CPU, or a digital processing unit or the like.
  • the communication interface 1202 may be a transceiver, an interface circuit such as a transceiver circuit, or a transceiver chip or the like.
  • the apparatus further includes: a memory 1203 for storing programs executed by the processor 1201 .
  • the memory 1203 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., and may also be a volatile memory (volatile memory), such as random access memory (random access memory). -access memory, RAM).
  • Memory 1203 is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the processor 1201 is configured to execute the program code stored in the memory 1203, and is specifically configured to execute the actions of the above-mentioned processing module 1102, which will not be repeated in this application.
  • the communication interface 1202 is specifically configured to perform the actions of the above-mentioned communication module 1101, and details are not described herein again in this application.
  • connection medium between the communication interface 1202 , the processor 1201 , and the memory 1203 is not limited in the embodiments of the present application.
  • the memory 1203, the processor 1201, and the communication interface 1202 are connected by a bus 1204 in FIG. 12.
  • the bus is represented by a thick line in FIG. 12, and the connection mode between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is shown in FIG. 12, but it does not mean that there is only one bus or one type of bus.
  • FIG. 13 is a schematic structural diagram of a network device provided by an embodiment of the present application, which may be a schematic structural diagram of a network device.
  • the network device can be applied to the system shown in FIG. 3 , and performs the functions of the network device in the method embodiments described in FIGS. 5 to 10 above.
  • the network device 130 may include one or more distributed units (DUs) 1301 and one or more centralized units (CUs) 1302 .
  • the DU 1301 may include at least one antenna 13011, at least one radio frequency unit 13012, at least one processor 13013 and at least one memory 13014.
  • the DU 1301 part is mainly used for the transmission and reception of radio frequency signals, the conversion of radio frequency signals and baseband signals, and part of baseband processing.
  • the CU 1302 may include at least one processor 13022 and at least one memory 13021 . Communication between the CU1302 and the DU1301 can be performed through an interface, wherein the control plane (Control plan) interface can be Fs-C, such as F1-C, and the user plane (User Plan) interface can be Fs-U, such as F1-U.
  • Control plan Control plan
  • User Plan User Plan
  • the CU 1302 part is mainly used to perform baseband processing, control network equipment, and the like.
  • the DU 1301 and the CU 1302 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the CU1302 is the control center of the network device, which may also be called a processing unit, and is mainly used to complete the baseband processing function.
  • the CU 1302 may be used to control the network device to execute the operation flow of the network device in the method embodiments described in the foregoing FIG. 3 to FIG. 11 .
  • the baseband processing on the CU and DU can be divided according to the protocol layers of the wireless network.
  • the functions of the packet data convergence protocol (PDCP) layer and the above protocol layers are set in the CU and the protocol layers below the PDCP, such as
  • the functions of the radio link control (radio link control, RLC) layer and the medium access control (medium access control, MAC) layer are set in the DU.
  • the CU implements the functions of the RRC and PDCP layers
  • the DU implements the functions of the RLC, MAC, and physical (physical, PHY) layers.
  • the network device 130 may include one or more radio frequency units (RUs), one or more DUs, and one or more CUs.
  • the DU may include at least one processor 13013 and at least one memory 13014
  • the DU may include at least one antenna 13011 and at least one radio frequency unit 13012
  • the CU may include at least one processor 13022 and at least one memory 13021 .
  • the CU1302 may be composed of one or more boards, and the multiple boards may jointly support a wireless access network (such as a 5G network, a 6G network, etc.) with a single access indication, and may also support different access networks respectively.
  • a wireless access network such as a 5G network, a 6G network, etc.
  • Access standard wireless access network such as LTE network, 5G network or 6G network or other networks.
  • the memory 13021 and the processor 13022 may serve one or more single boards. That is to say, the memory and processor can be provided separately on each single board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
  • the DU1301 can be composed of one or more single boards, and multiple single boards can jointly support a wireless access network (such as 5G network, 6G network, etc.) Access to the network (such as LTE network, 5G network or 6G network or other networks).
  • the memory 13014 and processor 13013 may serve one or more single boards. That is to say, the memory and processor can be provided separately on each single board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
  • FIG. 14 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device is applicable to the system shown in FIG. 3 , and performs the functions of the terminal device in the method embodiments described in the foregoing FIGS. 5 to 10 .
  • FIG. 14 only shows the main components of the terminal device.
  • the terminal device 140 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control the entire terminal device, execute software programs, and process data of software programs, for example, to support the terminal device to execute the method embodiments described in FIG. 5 to FIG. 10 above. actions described in .
  • the memory is mainly used to store software programs and data.
  • the control circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • the control circuit together with the antenna can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the memory, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 14 only shows one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be a storage element on the same chip as the processor, that is, an on-chip storage element, or an independent storage element, which is not limited in this embodiment of the present application.
  • the terminal device may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire terminal device. , execute the software program, and process the data of the software program.
  • the processor in FIG. 14 may integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, interconnected by technologies such as a bus.
  • a terminal device may include multiple baseband processors to adapt to different network standards, a terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data may be built in the processor, or may be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • an antenna and a control circuit with a transceiving function may be regarded as a transceiving unit 1401 of the terminal device 140, for example, used to support the terminal device to perform a receiving function and a transmitting function.
  • the processor 1402 having the processing function is regarded as the processing unit 1402 of the terminal device 140 .
  • the terminal device 140 includes a transceiver unit 1401 and a processing unit 1402 .
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, or the like.
  • the device used for realizing the receiving function in the transceiver unit 1401 may be regarded as a receiving unit, and the device used for realizing the sending function in the transceiver unit 1401 may be regarded as a sending unit, that is, the transceiver unit 1401 includes a receiving unit and a sending unit,
  • the receiving unit may also be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter or a transmitting circuit, and the like.
  • the processor 1402 may be configured to execute the instructions stored in the memory to control the transceiver unit 1401 to receive signals and/or send signals, so as to complete the functions of the terminal device in the above method embodiments.
  • the processor 1402 also includes an interface for implementing signal input/output functions.
  • the function of the transceiver unit 1401 can be considered to be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • An embodiment of the present invention further provides a computer-readable storage medium for storing computer software instructions to be executed for executing the above-mentioned processor, which includes a program to be executed for executing the above-mentioned processor.
  • Embodiments of the present application further provide a communication system, including a communication apparatus for implementing the functions of a terminal device in the embodiments of FIGS. 5 to 10 and a communication apparatus for implementing the functions of a network device in the embodiments of FIGS. 5 to 10 .
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,用于解决网络设备为带宽能力较低的终端设备配置带宽部分(BWP)导致的传输性能下降以及资源碎片化的问题。该方法包括:在终端设备与网络设备建立无线资源控制(RRC)连接之前,终端设备与网络设备在第一频域资源上进行通信,第一频域资源的最大带宽大于终端设备支持的最大带宽;在终端设备与网络设备建立RRC连接之后,终端设备与网络设备在第二频域资源上进行通信,第二频域资源配置有用户专属参数,且第二频域资源的最大带宽不大于终端设备支持的最大带宽。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2021年03月17日提交中国专利局、申请号为202110286609.X、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
随着通信的发展,国际电信联盟(international telecommunication union,ITU)定义了海量机器类通信(massive machine type communications,mMTC)标准。目前,标准中将进行mMTC业务的用户设备(user equipment,UE)称为降低能力(reduced capability,REDCAP)UE,即低复杂度或低能力的UE,该类UE可能在带宽、功耗、天线数等方面比新无线(new radio,NR)现有(legacy)UE复杂度低一些,如支持的带宽更窄、功耗更低、天线数更少等。
标准定义,带宽部分(bandwidth part,BWP)的最大带宽不能超过终端设备支持的最大带宽,否则默认终端设备不能接入到网络中。因此,网络设备可以为带宽能力较低的终端设备配置不超过其最大带宽的BWP。但是由于这些终端设备的带宽能力较低,因此为这些终端设备配置的BWP的带宽比较小,使得传输容量降低,且跳频传输的增益也降低,导致传输性能下降。此外,上行初始BWP内的物理随机接入信道(physical random access channel,PRACH)资源和物理上行控制信道(physical uplink control channel,PUCCH)资源,这些资源均为半静态配置,一旦配置,即使没有被使用,则这些频域资源均不能再用于PUSCH传输,因此网络设备为终端设备配置较窄的BWP会导致资源碎片化。
发明内容
本申请提供一种通信方法及装置,用于解决网络设备为带宽能力较低的终端设备配置BWP导致的传输性能下降以及资源碎片化的问题。
第一方面,本申请提供一种通信方法,该方法的执行主体可以是终端设备,也可以是芯片或电路。以终端设备为例,所述方法包括:在终端设备与网络设备建立无线资源控制(radio resource control,RRC)连接之前,终端设备在第一频域资源上进行通信,第一频域资源的最大带宽大于终端设备支持的最大带宽;在终端设备与网络设备建立RRC连接之后,终端设备在第二频域资源上进行通信,第二频域资源配置有用户专属参数,且第二频域资源的最大带宽不大于终端设备支持的最大带宽。
本申请实施例中,在初始接入阶段,终端设备(尤其是带宽能力较低的终端设备)可以工作在大于其最大带宽的频域资源上,从而可以提升传输容量,以及提升跳频传输的增益。并且,通过本申请实施例,使带宽能力较低的终端设备可以复用现有的初始上行BWP 或者初始下行BWP的配置和使用流程以及一些公共信道资源,例如PRACH资源或者公共PUCCH资源等,从而可以减少公共信道开销。
并且,相比于网络配置初始上行BWP带宽不超过带宽能力较低的终端设备支持的最大带宽的方式,或者,网络配置为带宽能力较低的终端设备单独配置一个初始上行BWP,该初始上行BWP带宽不超过带宽能力较低的终端设备支持的最大带宽,且该初始上行BWP仅仅用于带宽能力较低的终端设备初始接入等过程的方式,本申请实施例中可以避免由于缩减初始上行BWP的带宽使得初始上行BWP内的PRACH资源和PUCCH资源造成的PUSCH资源碎片化的问题,降低对NR legacy UE速率的影响,并且可以增大上行或者下行传输容量,以及增加频率分集或者选择性调度增益等。
在一种可能的设计中,在终端设备与网络设备建立RRC连接之后,终端设备可以在第三频域资源上进行通信,第三频域资源未配置用户专属参数;其中,第三频域资源的最大带宽允许大于终端设备支持的最大带宽,第三频域资源与第一频域资源相同;或者,第三频域资源的最大带宽不允许大于终端设备支持的最大带宽,第三频域资源与第一频域资源不同。通过这种方式可以复用第一频域资源,从而可以减少公共信道开销。
在一种可能的设计中,第一频域资源包括如下至少一项:初始下行带宽部分BWP、初始上行BWP;第二频域资源包括如下至少一项:用户专属下行BWP、用户专属上行BWP。
在一种可能的设计中,终端设备可以接收来自所述网络设备的第一配置信息;其中,所述第一配置信息用于配置所述第一频域资源,并指示所述第一频域资源在与所述网络设备建立RRC连接之前生效;和/或,所述第一配置信息用于配置所述第三频域资源,并指示所述第三频域资源在与所述网络设备建立RRC连接之后生效。
在一种可能的设计中,终端设备在第一频域资源上进行通信,包括:终端设备在第一频域资源中的部分频域资源上进行第一通信,部分频域资源的带宽大小为终端设备支持的最大带宽或者网络设备配置的带宽大小。通过上述设计,使得终端设备可以工作在大于其最大带宽的频域资源上。
在一种可能的设计中,终端设备根据来自网络设备的第一信息确定第一频域资源中用于第二通信的频率范围;所述频率范围在用于第一通信的第一部分频域资源的范围之外,终端设备进行射频重调后在第二部分频域资源上进行第二通信,第二部分频域资源根据频率范围确定;或者,所述频率范围在第一部分频域资源的范围之内,终端设备在第一部分频域资源上进行第二通信。通过上述设计,终端设备可以灵活工作在大于其最大带宽的频域资源内。
在一种可能的设计中,终端设备的射频频率范围的带宽大小为终端设备支持的最大带宽或者网络设备配置的带宽大小。
在一种可能的设计中,终端设备进行射频重调,包括:终端设备将射频的中心频点调整为频率范围的频率中心;或者,终端设备将射频频率范围的起点调整为频率范围的起始频率;或者,终端设备将射频频率范围的终点调整为频率范围的结束频率。上述设计中,通过调整射频频率范围使得终端设备可以当前第二通信。
在一种可能的设计中,第一频域资源包括多个子资源块,且一个子资源块的带宽大小不大于终端设备支持的最大带宽,终端设备在多个子资源块中的第一子资源块上进行第一通信;方法还包括:终端设备可以根据来自网络设备的第二信息确定第一频域资源中用于第二通信的第二子资源块;第二子资源块与第一子资源块不同,终端设备进行射频重调后 在第二子资源块上进行第二通信;或者,第二子资源块与第一子资源块相同,终端设备在第一子资源块上进行第二通信。上述设计中,通过进行射频重调,使得频率范围不再当前射频频率范围内的其他通信可以正常进行。
在一种可能的设计中,终端设备根据来自网络设备的第三信息确定多个子资源块,第三信息用于指示第一频域资源包括的子资源块的数量;或者,终端设备根据来自网络设备的第四信息确定多个子资源块,第四信息用于指示多个子资源块各自对应的频率范围;或者,终端设备根据第一频域资源的带宽大小对应的子资源块数确定多个子资源块,所述第一频域资源的带宽大小对应的子资源块数为预定义的。通过上述设计,终端设备可以准确划分多个子资源块,从而可以提高通信的准确性。
在一种可能的设计中,终端设备在第二频域资源上进行通信时,可以在多个频域资源间采用跳频的方式进行通信,多个频域资源包括第二频域资源。通过上述设计,可以提高跳频增益。
在一种可能的设计中,终端设备在第二频域资源上进行通信时,可以在第二频域资源内采用跳频的方式进行数据传输。
在一种可能的设计中,终端设备接收来自网络设备的第五信息,第五信息用于使能频域资源间跳频传输。通过上述设计,终端设备与网络设备可以对齐跳频方式,从而可以避免通信错误。
在一种可能的设计中,第五信息还可以用于使能频域资源内跳频传输,或者,第五信息还可以用于使能频域资源内跳频传输以及频域资源间跳频传输。
在一种可能的设计中,方法还包括:终端设备接收来自网络设备的第六信息,第六信息用于配置频域资源间跳频传输的跳频位置。通过上述设计,终端设备可以获取到频域资源间跳频的跳频位置。
在一种可能的设计中,终端设备接收来自网络设备的第七信息,第七信息用于配置频域资源内跳频传输的跳频位置。通过上述设计,终端设备可以获取到频域资源内跳频的跳频位置。
在一种可能的设计中,所述第七信息指示频域资源内跳频传输的频域偏移值。
在一种可能的设计中,第六信息指示在频域资源间跳频传输时跳频传输的频域偏移值、下一个频域资源的标识或者标识序列。通过上述设计,终端设备可以确定跳频的下一个频域资源。
第二方面,本申请提供一种通信方法,该方法的执行主体可以是网络设备,也可以是芯片或电路。以网络设备为例,所述方法包括:在终端设备与网络设备建立RRC连接之前,网络设备在第一频域资源上与该终端设备进行通信,第一频域资源的最大带宽大于终端设备支持的最大带宽;在终端设备与网络设备建立RRC连接之后,网络设备在第二频域资源上与该终端设备进行通信,第二频域资源配置有用户专属参数,且第二频域资源的最大带宽不大于终端设备支持的最大带宽。
本申请实施例中,在初始接入阶段,终端设备(尤其是带宽能力较低的终端设备)可以工作在大于其最大带宽的频域资源上,从而可以提升传输容量,以及提升跳频传输的增益。并且,通过本申请实施例,使带宽能力较低的终端设备可以复用现有的初始上行BWP或者初始下行BWP的配置和使用流程以及一些公共信道资源,例如PRACH资源或者公共PUCCH资源等,从而可以减少公共信道开销。
并且,相比于网络配置初始上行BWP带宽不超过带宽能力较低的终端设备支持的最大带宽的方式,或者,网络配置为带宽能力较低的终端设备单独配置一个初始上行BWP,该初始上行BWP带宽不超过带宽能力较低的终端设备支持的最大带宽,且该初始上行BWP仅仅用于带宽能力较低的终端设备初始接入等过程的方式,本申请实施例中可以避免由于缩减初始上行BWP的带宽使得初始上行BWP内的PRACH资源和PUCCH资源造成的PUSCH资源碎片化的问题,降低对NR legacy UE速率的影响,并且可以增大上行或者下行传输容量,以及增加频率分集或者选择性调度增益等。
在一种可能的设计中,在终端设备与网络设备建立RRC连接之后,网络设备在第三频域资源上与该终端设备进行通信,第三频域资源未配置用户专属参数;其中,第三频域资源的最大带宽允许大于终端设备支持的最大带宽,第三频域资源与第一频域资源相同;或者,第三频域资源的最大带宽不允许大于终端设备支持的最大带宽,第三频域资源与第一频域资源不同。通过这种方式可以复用第一频域资源,从而可以减少公共信道开销。
在一种可能的设计中,第一频域资源包括如下至少一项:初始下行带宽部分BWP、初始上行BWP;第二频域资源包括如下至少一项:用户专属下行BWP、用户专属上行BWP。
在一种可能的设计中,网络设备可以发送第一配置信息;其中,所述第一配置信息用于配置所述第一频域资源,并指示所述第一频域资源在与所述终端设备建立RRC连接之前生效;和/或,所述第一配置信息用于配置所述第三频域资源,并指示所述第三频域资源在与所述终端设备建立RRC连接之后生效。
在一种可能的设计中,网络设备在第一频域资源上进行通信时,可以在第一频域资源中的部分频域资源上进行第一通信,部分频域资源的带宽大小为终端设备支持的最大带宽或者网络设备配置的带宽大小。通过上述设计,使得终端设备可以工作在大于其最大带宽的频域资源上。
在一种可能的设计中,网络设备向终端设备发送第三信息,第三信息用于指示第一频域资源包括的子资源块的数量;或者,网络设备向终端设备发送第四信息,第四信息用于指示多个子资源块各自对应的频率范围。通过上述设计,使得终端设备可以准确划分多个子资源块,从而可以提高通信的准确性。
在一种可能的设计中,网络设备向终端设备发送第五信息,第五信息用于使能频域资源间跳频传输。通过上述设计,终端设备与网络设备可以对齐跳频方式,从而可以避免通信错误。
在一种可能的设计中,第五信息还可以用于使能频域资源内跳频传输,或者,第五信息还可以用于使能频域资源内跳频传输以及频域资源间跳频传输。
在一种可能的设计中,网络设备向终端设备发送第六信息,第六信息用于配置频域资源间跳频传输的跳频位置。通过上述设计,终端设备可以获取到频域资源间跳频的跳频位置。
在一种可能的设计中,网络设备向终端设备发送第七信息,第七信息用于配置频域资源内跳频传输的跳频位置。通过上述设计,终端设备可以获取到频域资源内跳频的跳频位置。
在一种可能的设计中,所述第七信息指示频域资源内跳频传输的频域偏移值。
在一种可能的设计中,第六信息指示在频域资源间跳频传输时跳频传输的频域偏移值、下一个频域资源的标识或者标识序列。通过上述设计,终端设备可以确定跳频的下一个频 域资源。
在一种可能的设计中,相邻两个随机接入消息之间的最小时间间隔等于第一时间和第二时间之和,或者等于第一时间和第二时间之间的较大值,其中,所述第一时间等于第一类终端设备的相邻两个随机接入消息之间的最小时间间隔,第二时间为第二类终端进行射频重调的时间,所述第一类终端设备支持的最大带宽大于第二类终端设备支持的最大带宽。通过上述设计,相邻两个随机接入消息之间可以预留出终端设备进行射频重调的时间,从而可以避免终端设备射频重调期间进行通信导致出现通信错误。
在一种可能的设计中,相邻两个随机接入消息之间的最小时间间隔等于第二类终端设备的最小时间,所述第二类终端设备的最小时间为所述第二类终端设备的相邻两个随机接入消息之间的最小时间间隔,所述第二类终端设备的最小时间为预定义的,所述第二类终端设备支持的最大带宽小于第一类终端设备支持的最大带宽。通过上述设计,相邻两个随机接入消息之间可以预留出终端设备进行射频重调的时间,从而可以避免终端设备射频重调期间进行通信导致出现通信错误。
在一种可能的设计中,所述第二类终端设备的最小时间等于第一时间和第二时间之和,或者为第一时间和第二时间之间的较大值,所述第一时间等于所述第一类终端设备的最小时间,所述第二时间为所述第二类终端进行射频重调的时间,所述第一类终端设备的最小时间为所述第一类终端设备的相邻两个随机接入消息之间的最小时间间隔。
第三方面,本申请还提供一种通信方法,该方法可以包括:终端设备收发随机接入消息,其中,相邻两个随机接入消息之间的最小时间间隔是根据第一时间和第二时间确定的,或者,相邻两个随机接入消息之间的最小时间间隔等于第二类终端设备的最小时间。其中,所述第一时间等于第一类终端设备的相邻两个随机接入消息之间的最小时间间隔,第二时间为第二类终端进行射频重调的时间,所述第二类终端设备的最小时间为所述第二类终端设备的相邻两个随机接入消息之间的最小时间间隔,所述第一类终端设备支持的最大带宽大于第二类终端设备支持的最大带宽。
通过上述方法,相邻两个随机接入消息之间可以预留出终端设备进行射频重调的时间,从而可以避免终端设备射频重调期间进行通信导致出现通信错误,提高通信准确性。
在一种可能的设计中,相邻两个随机接入消息之间的最小时间间隔等于第一时间和第二时间之和,或者等于第一时间和第二时间之间的较大值。
在一种可能的设计中,所述第二类终端设备的最小时间是根据第一时间和第二时间确定的。
在一种可能的设计中,所述第二类终端设备的最小时间等于第一时间和第二时间之和,或者为第一时间和第二时间的最大值。
第四方面,本申请还提供一种通信方法,该方法可以包括:网络设备收发随机接入消息,其中,相邻两个随机接入消息之间的最小时间间隔是根据第一时间和第二时间确定的,或者,相邻两个随机接入消息之间的最小时间间隔等于第二类终端设备的最小时间。其中,所述第一时间等于第一类终端设备的相邻两个随机接入消息之间的最小时间间隔,第二时间为第二类终端进行射频重调的时间,所述第二类终端设备的最小时间为所述第二类终端设备的相邻两个随机接入消息之间的最小时间间隔,所述第一类终端设备支持的最大带宽大于第二类终端设备支持的最大带宽。
通过上述方法,相邻两个随机接入消息之间可以预留出终端设备进行射频重调的时间, 从而可以避免终端设备射频重调期间进行通信导致出现通信错误,网络设备可以统一调度不同类型终端设备的随机接入流程,节省不必要的配置信息,提升通信系统的通信效率。
在一种可能的设计中,相邻两个随机接入消息之间的最小时间间隔等于第一时间和第二时间之和,或者等于第一时间和第二时间之间的较大值。
在一种可能的设计中,所述第二类终端设备的最小时间是根据第一时间和第二时间确定的。
在一种可能的设计中,所述第二类终端设备的最小时间等于第一时间和第二时间之和,或者为第一时间和第二时间之间的较大值。
第五方面,本申请还提供一种通信装置,该通信装置具有实现上述第一方面或第三方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中终端设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括接口电路,该接口电路用于支持该通信装置与网络设备等设备之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能模块,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第一方面提供的方法中的描述,此处不做赘述。
第六方面,本申请还提供一种通信装置,该通信装置具有实现上述第二方面或第四方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中网络设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括接口电路,该接口电路用于支持该通信装置与终端设备等设备之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能模块,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第二方面提供的方法中的描述,此处不做赘述。
第七方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第一方面或第二方面以及任意可能的设计中的方法。
第八方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第二方面或第四方面以及任意可能的设计中的方法的功能模块。
第九方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被处理器执行时,实现前述第一方面至第四方面中任一方面、以及任一方面的任意可能的设计中的方法。
第十方面,提供了一种存储有指令的计算机程序产品,当该指令被处理器运行时,实现前述第一方面至第四方面中任一方面、以及任一方面的任意可能的设计中的方法。
第十一方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述第一方面至第四方面中任一方面、以及任一方面的任意可能的设计中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十二方面,提供一种通信系统,所述系统包括第三方面所述的装置(如终端设备)以及第四方面所述的装置(如网络设备)。
附图说明
图1为本申请实施例的一种4步随机接入的流程示意图;
图2为本申请实施例的一种2步随机接入的流程示意图;
图3为本申请实施例的一种网络系统的架构示意图;
图4为本申请实施例的一种终端设备与网络设备的连接示意图;
图5为本申请实施例的一种通信方法的流程示意图;
图6为本申请实施例的一种频域资源的带宽比较示意图;
图7为本申请实施例的一种射频重调示意图;
图8为本申请实施例的一种射频重调示意图;
图9为本申请实施例的一种射频重调示意图;
图10为本申请实施例的一种射频重调示意图;
图11为本申请实施例的一种通信装置的结构示意图;
图12为本申请实施例的一种通信装置的结构示意图;
图13为本申请实施例的一种网络设备的结构示意图;
图14为本申请实施例的一种终端设备的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,具体的,包括向用户提供语音的设备,或包括向用户提供数据连通性的设备,或包括向用户提供语音和数据连通性的设备。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音或数据,或与RAN交互语音和数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle to everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet  of things,IoT)终端设备、签约单元(subscriber unit)、签约站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,以终端设备为例描述本申请实施例提供的技术方案。
2)网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种车到一切(vehicle-to-everything,V2X)技术中的网络设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与网络协议(internet protocol,IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括LTE系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation,5G)NR系统(也简称为NR系统)中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
网络设备还可以包括核心网设备,核心网设备例如包括访问和移动管理功能(access and mobility management function,AMF)或用户平面功能(user plane function,UPF)等。本申请实施例由于主要涉及的是接入网,因此在后文中如无特殊说明,则所述的网络设备均是指接入网设备。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例中,以网络设备为例描述本申请实施例提供的技术方案。
3)RRC状态,终端设备有3种RRC状态:RRC连接态、RRC空闲态和RRC非激活态。其中,RRC连接(connected)态(或,也可以简称为连接态。在本文中,“连接态”和“RRC连接态”,是同一概念,两种称呼可以互换):终端设备与网络建立了RRC连接,可以进行数据传输。
4)本申请实施例中的终端设备可以为第一类终端设备或第二类终端设备。第一类终端设备和第二类终端设备之间的区别包括如下至少一项:
1.带宽能力不同。第一类终端设备支持的最大带宽可以大于第二类终端设备支持的最大带宽。例如,第一类终端设备最大可以支持在一个载波上同时使用100MHz频域资源和网络设备进行通信,而第二类终端设备最大可以支持在一个载波上同时使用20MHz或者10MHz或者5MHz频域资源和网络设备进行通信。
2.收发天线个数不同。第一类终端设备的天线配置可以大于第二类终端设备的天线配置。例如,第一类终端设备支持的最小天线配置可以大于第二类终端设备支持的最大天线配置。举例说明,第一类终端设备支持的最小天线配置可以为4发2收,即在最小天线配置下,使用4根接收天线接收下行信号,使用2根发送天线发送上行信号;而第二类终端设备支持的最大天线配置可以低于4发2收,例如第二类终端设备只支持2收1发,或者也可以支持2收2发。
3.上行最大发射功率不同。第一类终端设备的上行最大发射功率可以大于第二类终端设备的上行最大发射功率。例如第一类终端设备的上行最大发射功率可以为23dBm或者26dBm,而第二类终端设备的上行最大发射功率只能为4dBm~20dBm中的一个值。
4.第一类终端设备与第二类终端设备对应的协议版本不同。例如NR Rel-15、NR Rel-16终端设备可以认为是第一类终端设备,第二类终端设备可以认为是NR Rel-17终端设备。
5.第一类终端设备与第二类终端设备支持的载波聚合(carrier aggregation,CA)能力不同。例如,第一类终端设备可以支持载波聚合,而第二类终端设备不支持载波聚合;又例如,第二类终端设备与第一类终端设备都支持载波聚合,但是第一类终端设备同时支持的载波聚合的最大个数大于第二类终端设备同时支持的载波聚合的最大个数,例如第一类终端设备可以最多同时支持5个载波或者32个载波的聚合,而第二类终端设备最多同时支持2个载波的聚合。
6.第一类终端设备与第二类终端设备的频分双工(frequency division duplex,FDD)能力不同。例如,第一类终端设备可以支持全双工FDD,而第二类终端设备可以仅支持半双工FDD。
7.第二类终端设备和第一类终端设备对数据的处理时间能力不同,例如,第一类终端设备接收下行数据与发送对该下行数据的反馈之间的最小时延小于第二类终端设备接收下行数据与发送对该下行数据的反馈之间的最小时延,和/或,第一类终端设备发送上行数据与接收对该上行数据的反馈之间的最小时延小于第二类终端设备发送上行数据与接收对该上行数据的反馈之间的最小时延。
8.第一类终端设备与第二类终端设备对应的上行和/或下行,传输峰值速率不同。
5)随机接入过程包括基于竞争的随机接入(contention-based random access,CBRA)过程和非竞争的随机接入(contention-free random access,CFRA)过程。目前,4步随机接入信道(random access channel,RACH)对应的基于竞争的随机接入过程分四步完成,可参考图1。
S11、终端设备向网络设备发送随机接入请求消息,网络设备接收来自终端设备的随机接入请求消息。该随机接入请求消息也可称为第一消息(Msg1),其中包含随机接入前导(preamble)。
S12、网络设备向终端设备发送随机接入响应(random access response,RAR)消息,终端设备接收来自网络设备的RAR消息。该RAR消息也可称为第二消息(Msg2)。
S13、终端设备向网络设备发送调度传输(scheduled transmission)信息,网络设备接收来自终端设备的调度传输信息。承载该调度传输信息的消息称为第三消息(Msg3)。
终端设备在接收到RAR消息后,基于RAR消息的调度进行消息传输。
S14、网络设备向终端设备发送竞争解决(contention resolution)信息,承载该竞争解决信息的消息称为第四消息(Msg4)。终端设备接收来自网络设备的Msg4,就可以获得该竞争解决信息。
其中,RAR消息可以包括随机接入前导标识(random access preamble identifier,RAP ID),且该RAP ID与终端设备选择的preamble ID相匹配(或相同)时,终端设备认为RAR消息接收成功。在确定RAR接收成功后,终端设备不监听后续的RAR。
如上介绍的是4步RACH,下面介绍2步RACH。2步RACH对应的基于竞争的随机接入过程分两步完成,可参考图2。
S21、终端设备向网络设备发送消息A(MsgA),网络设备接收来自终端设备的MsgA。
终端设备在网络设备广播的公共的MsgA资源中选择一个Msg A资源,并通过该MsgA资源发送Msg A。其中Msg A资源包括用于发送preamble的资源(时频码)以及对应的物理上行共享信道(physical uplink shared channel,PUSCH)资源。Msg A也包括两部分,一部分是preamble,另一部分是PUSCH载荷(payload)。
MsgA消息,可以认为包括了preamble和4步RACH中的Msg3所包括的内容。
S22、网络设备向终端设备发送消息B(MsgB),终端设备接收来自网络设备的MsgB。
在MsgB中可以包括竞争解决信息,以及可以包括4步RACH中的RAR消息所包括的内容。
本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一频域资源和第二频域资源,只是为了区分不同的频域资源,而并不是表示这两个频域资源的大小、内容、优先级或者重要程度等的不同。
本申请实施例提供的技术方案可以应用于网络设备和终端设备间的通信。其中,在本申请实施例中,术语“通信”还可以称为“无线通信”,术语“通信”还可以描述为“数据传输”、“信息传输”或“传输”。
前文介绍了本申请实施例所涉及到的一些名词概念,下面介绍本申请实施例涉及的技术特征。
目前,在初始接入阶段,网络设备配置一个小区公共的BWP用于终端设备进行随机接入,包括初始下行BWP(initial DL BWP)和初始上行BWP(initial UL BWP)。其中,初始下行BWP在初始接入阶段由主信息块(master information block,MIB)配置的控制资源集合(control resource set,CORESET)#0的频域确定,最大带宽不超过20MHz。初始上行BWP通过系统消息块1(system information block 1,SIB1)配置,低频频段(frequency range 1,FR1)场景下,初始上行BWP可以达到NR现有终端设备的最大带宽100MHz。随机接入过程中的一些上行信道传输参数在初始上行BWP配置,包括第一消息(Msg1的PRACH)资源、第三消息(Msg3)的物理上行共享信道(physical uplink shared channel,PUSCH)资源、第四消息(Msg4)的混合自动重传请求(hybrid automatic repeat request,HARQ)-肯定确认(acknowledgment,ACK)反馈使用的公共PUCCH资源等。
在初始接入之后,终端设备进入RRC连接态,网络设备可以根据终端设备上报的带宽能力,灵活地为每个终端设备配置用户级的BWP。
标准定义,BWP的最大带宽不能超过终端设备支持的最大带宽,否则默认终端设备不能接入到网络中。由于终端设备只能在BWP范围内进行数据传输,因此终端设备进行数据传输的参数大都是基于BWP配置的,例如物理层参数、高层参数等。
对于初始接入阶段,初始下行BWP和初始上行BWP均为小区级的BWP,对于第一类终端设备(如NR legacy UE),其最大带宽可以为100MHz,因此初始上行BWP的最大带宽可以配置为100MHz。
当第二终端设备(例如最大带宽为20MHz的NR REDCAP UE)引入到网络中,一种可能的方法,网络设备可以配置初始上行BWP带宽不超过第二类终端设备支持的最大带宽,这样两种类型的终端都可以通过现有初始接入流程接入到网络,但是这种方式将约束第一类终端设备接入的灵活性。同时,通过降低初始上行BWP的带宽的方式,将导致上行传输的容量降低,从而容易发生业务拥塞,并且会导致终端设备上行跳频传输的增益降低,传输性能下降。另一种可能的方式,网络设备可以为第二类终端设备单独配置一个初始上行BWP,该初始上行BWP带宽不超过第二类终端设备支持的最大带宽,并仅仅用于第二类终端设备初始接入等过程。这种方法虽然不会影响第一类终端设备的接入过程,但是对于第二类终端设备,将导致上行传输的容量降低,容易发生业务拥塞,并且同样会导致第二类终端设备上行跳频传输的增益降低,传输性能下降。
此外,由于在上行初始BWP内的PRACH资源和PUCCH资源均为半静态配置,一旦配置,即使没有被使用,则这些频域资源均不能再用于PUSCH传输,因此上述两种方式,会导致上行PUSCH资源的碎片化,对于一些不能进行非连续PUSCH资源分配传输的终端设备,只能使用碎片化的PUSCH资源,使得两种类型终端设备传输速率下降。
基于此,本申请实施例提供一种通信方法及装置,用于解决网络设备为带宽能力较低的终端设备配置BWP导致的传输性能下降以及资源碎片化的问题。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以 相互参见,重复之处不再赘述。
本申请提供的通信方法可以应用于各类通信系统中,例如,可以是物联网(internet of things,IoT)、窄带物联网(narrow band internet of things,NB-IoT)、长期演进(long term evolution,LTE),也可以是第五代(5G)通信系统,还可以是LTE与5G混合架构、也可以是5G新无线(new radio,NR)系统以及6G或者未来通信发展中出现的新的通信系统等。本申请所述的5G通信系统可以包括非独立组网(non-standalone,NSA)的5G通信系统、独立组网(standalone,SA)的5G通信系统中的至少一种。通信系统还可以是机器到机器(machine to machine,M2M)网络或者其他网络。
网络设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间可以通过6G以下的频谱进行通信,也可以通过6G以上的频谱进行通信,还可以同时使用6G以下的频谱和6G以上的频谱进行通信。本申请实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
参阅图3所示,为本申请实施例提供的一种通信系统,该通信系统包括网络设备和六个终端设备,即UE1~UE6。在该通信系统中,UE1~UE6可以发送上行数据给网络设备,网络设备可以接收UE1~UE6发送的上行数据。此外,UE4~UE6也可以组成一个子通信系统。网络设备可以发送下行信息给UE1、UE2、UE3、UE5,UE5可以基于设备到设备(device-to-device,D2D)技术发送下行信息给UE4、UE6。图3仅是一种示意图,并不对通信系统的类型,以及通信系统内包括的设备的数量、类型等进行具体限定。
示例性的,网络设备与终端设备之间可以通过空口接口连接,例如,网络设备与终端设备之间的连接关系可以如图4所示。
本申请实施例可以应用于服务第二类终端设备的通信系统,当然也可以应用于服务第一类终端设备的通信系统,或者同时服务第一类终端设备和第二类终端设备的通信系统。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。为了便于介绍,在下文中,以该方法由网络设备和终端设备执行为例。
参见图5,为本申请提供的一种通信方法的流程示意图。该方法包括:
S301,在终端设备与网络设备建立RRC连接之前,终端设备与网络设备在第一频域资源上进行通信,第一频域资源的最大带宽大于终端设备支持的最大带宽。
本申请实施例中,“终端设备与网络设备建立无线资源控制RRC连接”也可以理解为“接收RRC建立消息,例如接收随机接入消息Msg4或者MsgB”,或者也可以理解为“随机接入阶段”,或者也可以理解为“初始接入阶段”,或者也可以理解为“终端设备进入RRC连接态”,等等。
可以理解的,第一频域资源的最大带宽大于终端设备支持的最大带宽,可以指第一频域资源的带宽大小允许配置为大于终端设备支持的最大带宽,也可以理解为,第一频域资源支持被配置为大于终端设备支持的最大带宽的带宽大小。本申请实施例不限定网络设备每一次实际配置的第一频域资源的带宽大小,也就是说,网络设备实际配置的第一频域资 源的带宽大小可以大于终端设备支持的最大带宽,也可以小于终端设备支持的最大带宽。
通过上述方式,网络设备在为终端设备配置第一频域资源时可以配置第一频域资源的带宽大小大于终端设备支持的最大带宽,使得终端设备可以工作在带宽大于其最大带宽的频域资源上,从而可以提升传输容量以及跳频增益等。并且使得第二类终端设备在初始接入阶段的初始频域资源可以复用第一类终端设备在初始接入阶段的初始频域资源,从而可以降低公共信道开销。
其中,终端设备支持的最大带宽可以理解为:终端设备信道带宽的最大传输带宽,所述终端设备信道带宽支持终端设备侧上行链路或者下行链路的一个无线频率(radio frequency,RF)载波。
本申请实施例中所述的“频域资源”可以为BWP,具体可以包括上行BWP和/或下行BWP。需要说明的是,本申请实施例仅以频域资源为BWP为例进行说明,频域资源也可以用其他资源块表示,不限于BWP这个名称,当频域资源用其他术语描述时,该术语对应的频域资源与本申请实施例所述的频域资源具有相同的特征,即有连续的资源块(resource block,RB)组成。
一种可能的实施方式中,终端设备支持的最大带宽可以包括上行支持的最大带宽和下行支持的最大带宽。基于此,上行BWP的最大带宽大于(或者不大于)终端设备支持的最大带宽可以指上行BWP的最大带宽大于(或者不大于)终端设备上行支持的最大带宽,下行BWP的最大带宽大于(或者不大于)终端设备支持的最大带宽可以指下行BWP的最大带宽大于(或者不大于)终端设备下行支持的最大带宽。
可选的,第一频域资源可以包括如下至少一项:初始下行BWP、初始上行BWP,可以理解为网络设备配置的初始上行BWP(和/或初始下行BWP)的最大带宽可以大于终端设备支持的最大带宽。终端设备在初始下行BWP(和/或初始下行BWP)上进行通信的方式,可以为本申请实施例中终端设备在第一频域资源上进行通信的方式。
通过上述方式中,第二类终端设备的初始上行BWP(和/或初始下行BWP)可以复用第一类终端设备的初始上行BWP(和/或初始下行BWP),从而可以降低公共信道开销。
一种实施方式中,在终端设备与网络设备建立RRC连接之前,至少初始上行BWP的最大带宽可以大于终端设备支持的最大带宽。
示例性的,以终端设备为第二类终端设备、第一频域资源为初始上行BWP为例对第一频域资源的配置方法进行说明。在终端设备与网络设备建立RRC连接之前,网络设备可以通过SIB1给第二类终端设备配置一个初始上行BWP,该初始上行BWP的最大带宽可以大于第二类终端设备所支持的最大带宽。
一种可能的实施方式中,所述初始上行BWP可以与为第一类终端设备配置的初始上行BWP为同一个初始上行BWP,即第二类终端设备和第一类终端设备可以共享一个初始上行BWP。对于PRACH资源和公共PUCCH资源,第二类终端设备既可以复用为第一类终端设备配置的初始上行BWP中配置的PRACH资源和公共PUCCH资源,也可以配置独立的PRACH资源和公共PUCCH资源。
另一可能的实施方式中,所述初始上行BWP可以与为第一类终端设备配置的初始上行BWP不同,即网络设备可以为第二类终端设备配置专属的初始上行BWP。对于PRACH资源和公共PUCCH资源,第二类终端设备既可以复用为第一类终端设备配置的初始上行BWP中配置的PRACH资源和公共PUCCH资源,也可以配置独立的PRACH资源和公共 PUCCH资源。
可选的,第二类终端设备可以通过如下两种方法中的任一种方法确定是否与第一类终端设备共享初始上行BWP:
方法一,网络设备可以通过信令显示指示第二类终端设备是否与第一类终端设备共享初始上行BWP。例如,可以引入一个信令标识,当网络设备发送的一个消息中没有携带该信令标识时,第二类终端设备可以复用第一类终端设备的初始上行BWP,否则,第二类终端设备可以使用第二类终端设备专属的初始上行BWP,示例性的,该信令标识可以存在于SIB1信令中。
方法二,网络设备通过信令隐式指示第二类终端设备是否与第一类终端设备共享初始上行BWP。例如,当网络设备配置了第二类终端设备专属的初始上行BWP时,则第二类终端设备使用第二类终端设备专属的初始上行BWP,否则,第二类终端设备复用第一类终端设备的初始上行BWP。
若第一频域资源为初始下行BWP,初始下行BWP的配置方法可以参阅上述初始上行BWP的配置方法。
可选的,初始下行BWP可以包括通过CORESET#0所确定的初始下行BWP,也可以包括SIB1信令中配置的初始下行BWP。
进一步的,如果SIB1中配置了多个初始下行BWP,网络设备可以通过下行控制信息(downlink control information,DCI)指示终端设备使用的初始下行BWP。示例性的,所述DCI可以是四步随机接入过程中调度Msg4的DCI或者两步随机接入过程中调度MsgB的DCI。另外,对于SIB1配置的初始下行BWP,既可以应用于RRC连接建立完成之前的通信过程,例如随机接入过程、寻呼过程,此时SIB1配置的初始下行BWP在SIB1之后生效,也可以仅应用于RRC连接建立之后的通信过程,此时SIB1配置的初始下行BWP在RRC连接建立完成之后生效,例如在接收到RRC建立/RRC恢复/RRC重建立消息之后,以RRC建立消息为例,该消息可以携带在随机接入消息Msg4中。进一步扩展地,对于仅应用于RRC连接建立之后的通信过程的初始下行BWP,除了可在SIB1中配置以外,也可以在RRC连接建立消息中配置,例如随机接入过程Msg4,还可以在RRC连接建立完成之后,在用户专属的RRC信令中配置。以上所述实施方法同样适用于初始下行BWP。
S302,在终端设备与网络设备建立RRC连接之后,终端设备与网络设备在第二频域资源上进行通信,第二频域资源配置有用户专属参数,且第二频域资源的最大带宽不大于终端设备支持的最大带宽。
第二频域资源可以是网络设备为终端设备配置的用户级的频域资源。其中,第二频域资源可以是网络设备为终端设备额外配置的用户专属频域资源,也可以是在小区级的公共频域资源中配置用户专属的参数,所述小区级的公共频域资源可以包括初始下行BWP和/或初始下行BWP。
第二频域资源可以包括如下至少一项:用户专属下行BWP、用户专属上行BWP,可以理解为网络设备配置的用户专属上行BWP(和/或用户专属上行BWP)的最大带宽不大于终端设备支持的最大带宽。终端设备在用户专属上行BWP(和/或用户专属上行BWP)上进行通信的方式,可以为本申请实施例中终端设备在第二频域资源上进行通信的方式。
一种实施方式中,在终端设备与网络设备建立RRC连接之后,用户专属上行BWP和用户专属下行BWP均不大于终端设备支持的最大带宽。
本申请实施例中,在初始接入阶段,终端设备(尤其是带宽能力较低的第二类终端设备)可以工作在大于其最大带宽的频域资源上,从而可以提升传输容量,以及提升跳频传输的增益。并且,通过本申请实施例,使带宽能力较低的终端设备可以复用现有的初始上行BWP或者初始下行BWP的配置和使用流程以及一些公共信道资源,例如PRACH资源或者公共PUCCH资源等,从而可以减少公共信道开销。
并且,相比于网络配置初始上行BWP带宽不超过第二类终端设备支持的最大带宽的方式,或者,网络配置为第二类终端设备单独配置一个初始上行BWP,该初始上行BWP带宽不超过第二类终端设备支持的最大带宽,且该初始上行BWP仅仅用于第二类终端设备初始接入等过程的方式,本申请实施例中可以避免由于缩减初始上行BWP的带宽使得初始上行BWP内的PRACH资源和PUCCH资源造成的PUSCH资源碎片化的问题,降低对NR legacy UE速率的影响,并且可以增大上行或者下行传输容量,以及增加频率分集或者选择性调度增益等。
示例性的,以第一频域资源为初始上行BWP,第二频域资源包括用户专属上行BWP和用户专属下行BWP为例,初始上行BWP、用户专属上行BWP和用户专属下行BWP与终端设备支持的最大带宽的关系可以如图6所示。应理解,图6仅是对初始上行BWP、用户专属上行BWP和用户专属下行BWP的带宽大小关系进行示例性说明,并不对初始上行BWP、用户专属上行BWP和用户专属下行BWP的频率范围关系进行限定。
可选的,在终端设备与网络设备建立RRC连接之后,终端设备也可以在第三频域资源上进行通信,第三频域资源未配置用户专属参数。其中,第三频域资源的最大带宽可以允许大于终端设备支持的最大带宽,也可以不允许大于终端设备支持的最大带宽。
可以理解的,第三频域资源可以为未配置用户专属参数的小区级公共资源。第二频域资源可以为配置了用户专属参数的用户级频域资源。
一种可能的实施方式中,第三频域资源的最大带宽允许大于终端设备支持的最大带宽。第三频域资源可以与第一频域资源相同,也就是,终端设备在与网络设备建立RRC连接之后可以继续使用第一频域资源进行通信,通过这种方式可以复用第一频域资源,从而可以减少公共信道开销。或者,第三频域资源也可以与第一频域资源不同,即网络设备也可以额外配置第三频域资源。
另一种可能的实施方式中,第三频域资源的最大带宽不允许大于终端设备支持的最大带宽,第三频域资源与第一频域资源不同。一种实现方式中,网络设备可以重新配置第三频域资源。另一种实现方式中,网络设备也可以在第一频域资源中分配一部分作为第三频域资源。又一种可能的实施方式中,第三频域资源的最大带宽不允许大于终端设备支持的最大带宽,网络设备可以配置一个不大于终端设备支持的最大带宽的频域资源作为第一频域资源,从而第三频域资源可以复用第一频域资源。
可选的,第三频域资源可以包括如下至少一项:初始下行BWP、初始上行BWP。
一种实施方式中,在终端设备与网络设备建立RRC连接之后,至少初始上行BWP的最大带宽可以大于终端设备支持的最大带宽。
另一种实施方式中,在终端设备与网络设备建立RRC连接之后,初始上行BWP和初始下行BWP的最大带宽均不大于终端设备支持的最大带宽。
需要说明的是,第一频域资源是在终端设备与网络设备建立无线资源控制RRC连接之前生效,第三频域资源是在终端设备与网络设备建立无线资源控制RRC连接之后生效, 也就是说,终端设备在RRC非连接态时,在第一频域资源上与网络设备通信;在RRC连接态时,在第三频域资源上与网络设备通信。进一步,所述第一频域资源和/或第三频域资源的生效时间可以由第一配置信息指示,例如所述第一配置信息指示第一频域资源是在终端设备与网络设备建立无线资源控制RRC连接之前生效,第三频域资源是在终端设备与网络设备建立无线资源控制RRC连接之后生效。在另一种实施方式中,协议预定义第一频域资源是在终端设备与网络设备建立无线资源控制RRC连接之前生效,第三频域资源是在终端设备与网络设备建立无线资源控制RRC连接之后生效。
在一种可能的实现中,所述第一配置信息可以承载于系统消息,例如SIB1。
下面以第一频域资源的带宽大小大于终端设备支持的最大带宽为例,对终端设备工作在大于其支持的最大带宽上的通信方式进行示例性描述。应理解,这里仅以第一频域资源为例进行说明,若终端设备工作在其他频域资源上,只要该频域资源大于终端设备支持的最大带宽,均可以采用本申请实施例所述的方法进行通信。例如,若第三频域资源的带宽大小大于终端设备支持的最大带宽,终端设备也可以采用如下方式在第三频域资源上进行通信。
一种可能的实施方式中,终端设备在第一频域资源上进行通信时,可以在第一频域资源中的部分频域资源上进行一次通信,部分频域资源的带宽大小为终端设备支持的最大带宽或者网络设备配置的带宽大小。
一种举例说明中,终端设备可以在第一频域资源中的第一部分频域资源上进行第一通信。其中,第一部分频域资源的范围可以为终端设备进行第一通信时的射频频率范围。
进一步的,终端设备在进行第一通信之后可以进行第二通信。可选的,终端设备在进行第二通信之前,可以根据进行第一通信的部分频域资源(即第一部分频域资源)的范围以及用于第二通信的频率范围确定是否进行射频重调(RF retuning)。例如,终端设备可以根据来自网络设备的第一信息确定第一频域资源中用于第二通信的频率范围。若该频率范围在第一部分频域资源的范围之外,终端设备在进行第二通信之前进行射频重调,若该频率范围在第一部分频域资源的范围之内,终端设备在进行第二通信之前可以不进行射频重调。通过上述方式,可以保证用于当前通信的频率范围在终端设备的射频频率范围内,从而可以保证当前通信的正常进行。
因此,终端设备可以进行射频重调后在第二部分频域资源上进行第二通信,第二部分频域资源根据所述第二通信的频率范围确定,其中,该频率范围在第一部分频域资源的范围之外。
或者,终端设备可以在第一部分频域资源上进行第二通信,其中,所述第二通信的频率范围在第一部分频域资源的范围之内。
一种实现方式中,终端设备可以通过如下三种方式中任一种方式进行射频重调:
方式一,终端设备将射频的中心频点调整为频率范围的频率中心。在该方式中,第二部分频域资源的中心频点为该频率范围的频率中心。
方式二,终端设备将射频频率范围的起点调整为频率范围的起始频率。在该方式中,第二部分频域资源的起始频率为该频率范围的起始频率。
方式三,终端设备将射频频率范围的终点调整为频率范围的结束频率。在该方式中,第二部分频域资源的结束频率为该频率范围的结束频率。
可选的,终端设备的射频频率范围的带宽大小可以为终端设备支持的最大带宽或者网 络设备配置的带宽大小。也就是,第二部分频域资源的带宽大小可以为终端设备支持的最大带宽或者网络设备配置的带宽大小。
可选的,上述举例说明可以应用关于随机接入场景中,例如,可以应用于随机接入的上行传输过程中。当然也可以用于其他场景,这里不做具体限定。
为了便于对方案的理解,下面以随机接入的上行传输过程为例,对终端设备在第一频域资源上进行通信的过程进行举例说明,其中,终端设备可以采用方式一进行射频重调方式。示例性的,随机接入的上行传输可以包括PRACH、Msg3、Msg4PUCCH。终端设备在确定PRACH传输所使用的随机接入信道时机(RACH occasion,RO)时,可以根据RO确定一段频率范围,终端可以将RF频率范围设置为所述频率范围。当Msg3的频域资源在Msg1(即PRACH)确定的频率范围内时,终端设备不需要进行射频重调,如图7所示。否则,终端设备需要进行射频重调,并且根据Msg3的频域资源重新确定RF范围,如图8所示。当Msg4PUCCH的频域资源在Msg3确定的频率范围内时,终端不需要进行射频重调,否则,终端需要进行射频重调,并且根据Msg.4PUCCH的频域资源重新确定RF范围。
可以理解的,若第一通信之前存在其他通信,终端设备在进行第一通信之前也可以确定是否进行射频重调,其中,终端设备在进行第一通信之前确定是否进行射频重调的方式与终端设备在进行第二通信之前确定是否进行射频重调的方式类似,具体可以参阅上述方案,这里不再赘述。如果终端设备在进行第一通信之前不存在其他通信,则第一通信的频域范围也可以是预定义或者由网络设备配置的。
通过上述举例说明,终端设备可以灵活工作在大于其最大带宽的频域资源内。
另一种举例说明中,第一频域资源包括多个子资源块,且一个子资源块的带宽大小不大于终端设备支持的最大带宽。终端设备在多个子资源块中的第一子资源块上进行第一通信。示例性的,子资源块也可以称为“窄带(narrow band)”或者“子带宽部分(sub-BWP)”,或者也可以称为其他术语,只要该术语对应的频域资源具有子资源块的特征,均可以认为是子资源块。
进一步的,终端设备在进行第一通信之后可以进行第二通信。可选的,终端设备在进行第二通信之前,可以根据进行第一通信的第一子资源块以及用于第二通信的第二子资源块确定是否进行射频重调。例如,终端设备可以根据来自网络设备的第二信息确定第一频域资源中用于第二通信的第二子资源块。若第二子资源块与第一子资源块不同,终端设备在进行第二通信之前进行射频重调。若第二子资源块与第一子资源块相同,终端设备在进行第二通信之前可以不进行射频重调。
因此,终端设备可以进行射频重调后在第二子资源块上进行第二通信,其中,第二子资源块与第一子资源块不同。
或者,终端设备可以在第一子资源块上进行第二通信,其中,第二子资源块与第一子资源块相同。
在该举例说明中,终端设备可以通过如下三种方式中任一种方式确定第一频域资源包括的多个子资源块:
第一方式,终端设备可以根据来自网络设备的第三信息确定多个子资源块,第三信息用于指示第一频域资源包括的子资源块的数量。
可选的,终端设备可以确定子资源块的带宽大小=第一频域资源的带宽大小/子资源块 的数量,并按照预设方向划分子资源块,其中,预设方向可以为RB索引(index)从小到大的顺序,或者,预设方向也可以为RB index从大到小的顺序等等。
示例性的,所述第三信息可以承载于系统广播信息、RRC信令、媒体访问控制信道单元(media access control channel element,MAC CE)或DCI。
可选的,当第一频域资源的带宽即第一频域资源包含的PRB数不能被子资源块的数量H整除时,最后一个子资源块的带宽可以为:第一频域资源的带宽-(H-1)*floor(第一频域资源的带宽/H),其中floor为下取整运算。
第二方式,终端设备可以根据来自网络设备的第四信息确定多个子资源块,第四信息用于指示多个子资源块各自对应的频率范围。
可选的,在第二方式中,网络设备可以配置每个子资源块的范围。例如,网络设备可以配置每个子资源块的中心频点和带宽大小。又例如,网络设备也可以配置每个子资源块的起始频率和结束频率。
示例性的,所述第四信息可以承载于系统广播信息、RRC信令、MAC CE或DCI。
第三方式,终端设备可以根据第一频域资源的带宽大小对应的子资源块数确定多个子资源块。
可选的,在第三方式中,可以预设(或者预配置)带宽大小与子资源块的数量的对应关系,从而终端设备可以根据第一频域资源的带宽大小确定子资源块数,并根据子资源块数确定多个子资源块。
一种可能的实施方式中,终端设备根据子资源块的数量确定多个子资源块的方式,可以参阅上述第一方式,这里不再重复赘述。
示例性的,带宽大小与子资源块的数量的对应关系可以如下:
若频域资源的带宽大小>T1时,该频域资源包括的子资源块的数量可以为N1,其中,T1可以大于0,N1可以大于1;
若频域资源的带宽大小≤T1时,该频域资源包括的子资源块的数量可以为N2,N2可以大于1。
当然,带宽大小与子资源块的数量的对应关系也可以为其他,这里不再一一举例说明。
为了便于对方案的理解,下面结合具体例子对终端设备进行射频调整的过程进行举例说明。如图9所示,第一通信在子资源块1上进行,用于第二通信的频率范围在子资源块1的范围内,因此终端设备可以在子资源块1上进行第二通信,这种场景中终端设备在进行第二通信之前可以不进行射频调整。如图10所示,第一通信在子资源块1上进行,用于第二通信的频率范围在子资源块2的范围内,终端设备可以将射频频率范围调整为子资源块2的范围,并在子资源块2上进行第二通信。进一步的,终端设备在第二通信之后进行第三通信,终端设备可以根据子资源块2与用于第三通信的子资源块确定是否进行射频重调。
可选的,本申请实施例不限定在子资源块内进行通信,也可以跨子资源块进行通信,例如,用于第三通信的频域资源可以包括子资源块1的部分资源以及子资源块0的部分资源。
一种示例性说明中,上述举例说明可以应用于随机接入过程,例如随机接入过程中的下行传输。当然,上述通信方式也可以应用于其他场景,本申请实施例不对应用的场景进行具体限定。
可选的,当上述通信方式应用于随机接入过程中的下行传输时,上述多个子资源块中至少一个子资源块可以包含CORESET#0。
可以理解的,网络设备也可以通过上述方式确定终端设备在通信之前是否进行射频重调,当满足射频重调的条件时,网络设备可以预留一段时间,例如X1个符号(symbol)的空隙(GAP),暂停通信,其中,X1为大于0的整数。例如,如图8所示,第一通信在子资源块1上进行,用于第二通信的频率范围在子资源块2的范围内,第一通信对应的子资源块与第二通信对应的子资源块不同,满足射频重调的条件,网络设备可以在第一通信之后预留一段时间暂停通信,使得终端设备可以利用该段时间进行射频重调。从而可以避免网络设备与终端设备对于是否需要射频重调的理解不一致,导致传输出现错误的问题。
一种可能的实施方式中,可以预设(或者预配置)下一次通信位于当前通信之后的X1个有效symbol之后开始。
另一种可能的实施方式中,对于相邻的两次通信,终端设备可以不接收/发送前一次通信的最后X1个symbol。
下面以第二频域资源为例,对终端设备工作在不大于其支持的最大带宽上的通信方式进行示例性描述。应理解,这里仅以第二频域资源为例进行说明,若终端设备工作在其他频域资源上,只要该频域资源不大于终端设备支持的最大带宽,均可以采用本申请实施例所述的方法进行通信。例如,若第一频域资源的带宽大小不大于终端设备支持的最大带宽,终端设备也可以采用如下方式在第一频域资源上进行通信。
一种可能的实施方式中,终端设备可以在第二频域资源内进行跳频传输。
另一种实施方式中,终端设备也可以在多个频域资源间采用跳频的方式进行通信,其中,多个频域资源包括第二频域资源。
又一种实施方式中,终端设备可以在第二频域资源内进行跳频传输,并在多个频域资源间采用跳频的方式进行通信,其中,多个频域资源包括第二频域资源。
示例性的,上述多个频域资源中至少一个频域资源的带宽大小不大于终端设备支持的最大带宽。或者,上述多个频域资源中每个频域资源的带宽大小均不大于终端设备支持的最大带宽。或者,上述多个频域资源中任一频域资源的带宽大小不大于终端设备支持的最大带宽。
在一些实施方式中,终端设备在第二频域资源上进行通信时可以支持重复传输。
可选的,网络设备可以指示终端设备采用上述三种实施方式中的一种实施方式进行通信。例如,网络设备可以向终端设备发送第五信息,该第五信息可以使能频域资源内跳频传输,或者,第五信息可以使能频域资源间跳频传输,或者,第五信息可以使能频域资源内跳频传输和频域资源内跳频传输。
示例性的,所述第五信息可以承载于系统广播信息、RRC信令、MAC CE或DCI。
可以理解的,频域资源内跳频传输和频域资源内跳频传输也可以通过不同的信息单独指示,这不做具体限定。
相应的,若第五信息使能频域资源内跳频传输,终端设备可以在第二频域资源内进行跳频传输。若第五信息使能频域资源间跳频传输,终端设备可以在多个频域资源间采用跳频的方式进行通信。若第五信息使能频域资源内跳频传输和频域资源内跳频传输,终端设备可以在第二频域资源内进行跳频传输,并在多个频域资源间采用跳频的方式进行通信。
进一步的,网络设备还可以指示终端设备跳频的位置,例如,网络设备可以向终端设 备发送第六信息,第六信息可以用于配置频域资源间跳频传输的跳频位置/图案(pattern),其中,跳频pattern可以包括至少一个跳频位置。网络设备也可以向终端设备发送第七信息,第七信息可以用于配置频域资源内跳频传输的跳频位置/图案。
可以理解的,频域资源内跳频传输的跳频pattern和频域资源间跳频传输的跳频pattern也可以通过同一个信息进行配置,这不做具体限定。
示例性的,第六信息可以包括跳频传输的频域偏移值,频域资源的标识,或者频域资源的标识序列等。
可选的,多个频域资源内进行通信的资源位置可以相同,即频域资源内的跳频pattern可以是相同的。
第七信息可以指示频域资源内跳频传输的频域偏移值。例如,第七信息可以为频域资源内跳频传输的频域偏移值。又例如,第七信息也可以指示频域资源内进行带宽大小/M跳频,从而终端设备可以确定频域资源内跳频传输的偏移值为频域资源的带宽大小/M,其中,M为大于1的整数。
可选的,网络设备可以配置多套频域资源内跳频传输的跳频pattern,并指示终端设备通信所使用的跳频pattern。例如,网络设备可以通过DCI信令指示终端设备通信所使用的跳频pattern。
网络设备也可以配置多套频域资源间跳频传输的跳频pattern,并指示终端设备通信所使用的跳频pattern。例如,网络设备可以通过DCI信令指示终端设备通信所使用的跳频pattern。
示例性的,所述第六信息、第七信息可以承载于系统广播信息、RRC信令、MAC CE或DCI。
对于频域资源内跳频传输和频域资源内跳频传输同时使能场景,跳频pattern的配置方法可以结合频域资源内跳频传输和频域资源内跳频传输的使能方法进行。一种实施方法,当频域资源内跳频传输和频域资源内跳频传输同时使能时,不同频域资源内的进行通信的资源的相对位置是相同,即频域资源内的跳频pattern可以是相同的。因此网络设备可以配置一个频域资源内的跳频pattern以及频域资源间跳频传输时下一个频域资源的标识或者标识序列。
一种可能的实施方式中,对于频域资源间跳频传输,相邻的跳频传输之间可以包括X2个符号的GAP用于进行射频重调,其中,X2为大于0的整数。
一种可能的实施方式中,可以预设(或者预配置)下一次通信位于当前通信之后的X2个有效symbol之后开始。
另一种可能的实施方式中,对于相邻的两次通信,终端设备可以不接收/发送前一次通信的最后X2个symbol。
在一些可能的实施例中,终端设备与网络设备之间相邻两次通信对应的频率范围可能不同,终端设备在两次通信之间,需要进行射频重调,即调整两次通信时射频频率范围,而在射频重调期间,终端设备不能进行发送和接收。如果网络设备在此期间调度终端设备进行通信,则会导致传输错误。对此,本申请实施例提供两种可能的实现方式,以解决网络设备在终端设备进行射频重调期间调度终端设备进行通信,导致传输错误的问题。需要说明的是,本申请实施例提供这两种可能的实现方式可以与上述通信方法结合起来作为一个方案实施,也可以与上述通信方法分别作为一个方案单独实施。
需要说明的是,如下两种可能的实现方式并不局限于上行BWP的最大带宽大于终端设备支持的最大带宽,下行BWP的最大带宽不大于终端设备支持的最大带宽,上行BWP和下行BWP的频率范围不同的场景,而适用于任何相邻的两次通信,终端设备需要进行射频重调的场景,例如相邻两次下行传输、相邻两次上行传输、相邻的上行传输和下行传输、相邻的下行传输和上行传输。本申请实施例仅以随机接入过程为例进行描述。
一种实现方式中,相邻两个随机接入消息之间的最小时间间隔是根据第一时间和第二时间确定的,具体的,可以等于第一时间和第二时间之和,也可以为第一时间和第二时间之间的较大值。其中,第一时间等于第一类终端设备的相邻两个随机接入消息之间的最小时间间隔,第二时间可以为根据第二类终端设备进行RF retuning的时间确定的,例如RF retuning所需的时间为X个符号,则第二时间可以等于X符号,或者小于X个符号(大于0)。具体的,终端设备可以根据自身的处理能力确定第二时间,当网络设备确定终端设备可以同时进行消息解析和射频重调时,例如终端设备可以在解析msg2和/或生成msg3的同时进行射频重调,那么网络设备确定所述第二时间为Y个符号,其中Y小于X。当网络设备确定终端设备不可以同时进行消息解析和射频重调时,例如终端设备不可以在解析msg2或生成msg3的同时进行射频重调,那么网络设备确定所述第二时间为X个符号。在可能的实现中,网络设备可以通过接收来自终端设备的能力信息上报来确定终端设备是否能够同时进行消息解析和射频重调。可选的,网络设备还可以在X个符号的基础上多预留一定的时间,也就是说第二时间可以大于X个符号。
所述第二类终端设备支持的最大带宽小于第一类终端设备支持的最大带宽。
示例性的,该实现方式中协议未定义第二类终端设备的相邻两个随机接入消息之间的最小时间间隔。当终端设备未上报类型时,对于第一类终端设备和第二类终端设备,网络设备都可以按照以上所述实现方式传输所述随机接入消息。当终端设备上报类型时,对于第二类终端设备,网络设备可以按照以上所述实现方式传输所述随机接入消息,对于第一类终端设备,网络设备介意根据所述第一时间传输所述随机接入消息。
另一种实现方式中,相邻两个随机接入消息之间的最小时间间隔等于第二类终端设备的最小时间,所述第二类终端设备的最小时间为所述第二类终端设备的相邻两个随机接入消息之间的最小时间间隔,所述第二类终端设备的最小时间为预定义的,所述第二类终端设备支持的最大带宽小于第一类终端设备支持的最大带宽。其中,第二类终端设备的最小时间可以是根据上述第一时间和上述第二时间确定的,具体的,可以为第一时间和第二时间之和,也可以为第一时间和第二时间之间的较大值。
示例性的,该实现方式中协议定义了第二类终端设备的相邻两个随机接入消息之间的最小时间间隔。当终端设备未上报类型时,对于第一类终端设备和第二类终端设备,网络设备可以都按照以上所述实现方式传输所述随机接入消息。当终端设备上报类型时,对于第二类终端设备,网络设备可以按照以上所述实现方式传输所述随机接入消息,对于第一类终端设备,网络设备可以根据所述第一时间传输所述随机接入消息。
在另一种可能的设计中,上述第二时间也可以为根据第二类终端设备进行BWP切换、BWP跳频、BWP重调的时间确定的,具体方式可以参见上述关于第二时间的详细说明。
可以理解的是,第二类型的终端设备也可以根据以上两种实现方式来确定相邻两个随机接入消息之间的最小时间间隔。
为了便于对上述两种可能的实现方式的理解,下面结合具体示例对相邻两个随机接入 消息之间的最小时间间隔进行说明。
示例一,以4步随机接入过程中的Msg1与用于调度Msg2的DCI为例。
目前,第一类终端设备在发送PRACH之后,在随机接入响应窗内尝试检测以相应的随机接入无线网络临时标识(random access-radio network temporary identifier,RA-RNTI)加扰循环冗余校验(cyclic redundancy check,CRC)的DCI,该DCI用于调度Msg2,Msg2中承载了网络设备对于终端随机接入响应的请求(random access response,RAR),随机接入响应窗在用于接收调度Msg2的DCI的最早的CORESET的第一个符号开始,随机接入响应窗起始时刻在与所发送PRACH相应的PRACH时刻的最后一个符号之后的至少一个符号之后开始,也即第一类终端设备的Msg1与Msg2的DCI之间的最小时间为1个符号。
因此,若该实现方式中协议未定义第二类终端设备的相邻两个随机接入消息之间的最小时间间隔。当终端设备未上报类型时,或者,终端设备上报的类型为第二类终端设备的场景中,用于调度Msg2的DCI的最早的CORESET的第一个符号与所发送PRACH相应的PRACH时机的最后一个符号之间最小时间为第一时间和第二时间之和,即(1+Δ)个符号,也即Msg1与用于调度Msg2的DCI之间的最小时间为(1+Δ)个符号,其中Δ为第二时间。
若该实现方式中协议定义了第二类终端设备的相邻两个随机接入消息之间的最小时间间隔。当终端设备未上报类型时,或者,终端设备上报的类型为第二类终端设备的场景中,用于调度Msg2的DCI的最早的CORESET的第一个符号与所发送PRACH相应的PRACH时机的最后一个符号之间最小时间为:第二类终端设备的用于调度Msg2的DCI的最早的CORESET的第一个符号与所发送PRACH相应的PRACH时机的最后一个符号之间最小时间。
示例二,以4步随机接入过程中的Msg2与Msg3为例。
目前,第一类终端设备在接收到相应的随机接入响应后,根据随机接入响应上行调度授权(RAR UL grant)发送Msg3,所述Msg3通过PUSCH传输。协议约定包含RAR消息的PDSCH接收的最后一个符号与RAR UL grant所调度的PUSCH传输的第一个符号之间的最小时间为N T,1+N T,2+0.5ms,即Msg2与Msg3之间的最小时间为N T,1+N T,2+0.5ms,其中N T,1为与PDSCH的处理时间相关的持续时间,N T,2为与PUSCH准备时间相关的持续时间,N T,1和N T,2单位可以为符号数。
因此,若该实现方式中协议未定义第二类终端设备的相邻两个随机接入消息之间的最小时间间隔。当终端设备未上报类型时,或者,终端设备上报的类型为第二类终端设备的场景中,包含RAR消息的PDSCH接收的最后一个符号与RAR UL grant所调度的PUSCH传输的第一个符号之间的最小时间为第一时间和第二时间之和,即N T,1+N T,2+Δ+0.5ms,即Msg2与Msg3之间的最小时间为N T,1+N T,2+Δ+0.5ms。
若该实现方式中协议定义了第二类终端设备的相邻两个随机接入消息之间的最小时间间隔。当终端设备未上报类型时,或者,终端设备上报的类型为第二类终端设备的场景中,包含RAR消息的PDSCH接收的最后一个符号与RAR UL grant所调度的PUSCH传输的第一个符号之间的最小时间为:第二类终端设备的包含RAR消息的PDSCH接收的最后一个符号与RAR UL grant所调度的PUSCH传输的第一个符号之间的最小时间。
示例三,以4步随机接入过程中的Msg3与Msg4为例。
目前,第一类终端设备在发送完Msg3之后启动冲突解决定时器,并在冲突解决定时 器未超时之前接收网络设备发送的Msg4,Msg4用于解决随机接入冲突。
因此,第二类终端设备在发送完Msg3之后的Δms后启动冲突解决定时器,并在冲突解决定时器未超时之前接收网络设备发送的Msg4,Msg4用于解决随机接入冲突。
示例四,以4步随机接入过程中的Msg4与Msg4PUCCH为例。
目前,第一类终端设备在接收到Msg4之后,发送PUCCH以向网络设备反馈Msg4的混合自动重传请求确认(hybrid automatic repeat request-acknowledgment,HARQ-ACK)信息,其中协议约定,承载Msg4的PDSCH接收的最后一个符号与协议HARQ-ACK信息的PUCCH传输的第一符号之间的最小时间为N T,1+0.5ms,其中N T,1为与PDSCH处理时间相关的持续时间,N T,1单位可以为符号数。
因此,若该实现方式中协议未定义第二类终端设备的相邻两个随机接入消息之间的最小时间间隔。当终端设备未上报类型时,或者,终端设备上报的类型为第二类终端设备的场景中,承载Msg4的PDSCH接收的最后一个符号与协议HARQ-ACK信息的PUCCH传输的第一符号之间的最小时间为第一时间和第二时间之和,即N T,1+0.5+Δmsec,其中N T,1为与PDSCH处理时间相关的持续时间,N T,1单位可以为符号数。
若该实现方式中协议定义了第二类终端设备的相邻两个随机接入消息之间的最小时间间隔。当终端设备未上报类型时,或者,终端设备上报的类型为第二类终端设备的场景中,承载Msg4的PDSCH接收的最后一个符号与协议HARQ-ACK信息的PUCCH传输的第一符号之间的最小时间为:第二类终端设备的承载Msg4的PDSCH接收的最后一个符号与协议HARQ-ACK信息的PUCCH传输的第一符号之间的最小时间。
示例五,以2步随机接入过程中的MsgA PRACH与MsgA PUSCH为例。
目前,第一类终端设备发送的MsgA中包括PRACH和PUSCH两个信道传输过程。具体地,第一类终端设备首先发送PRACH,在发送PRACH之后的至少N个符号之后再发送PRACH,其中,当子载波间隔配置μ=0orμ=1时,N=2,当子载波间隔配置μ=2orμ=3时,N=4。也就是,当子载波间隔配置μ=0orμ=1时,第一类终端设备的MsgA PRACH与MsgA PUSCH之间的最小时间为2个符号。当子载波间隔配置μ=2orμ=3时,第一类终端设备的MsgA PRACH与MsgA PUSCH之间的最小时间为4个符号。
因此,若该实现方式中协议未定义第二类终端设备的相邻两个随机接入消息之间的最小时间间隔。当终端设备未上报类型时,或者,终端设备上报的类型为第二类终端设备的场景中,当子载波间隔配置μ=0orμ=1时,MsgA PRACH与MsgA PUSCH之间的最小时间为第一时间和第二时间之和,即2+Δ个符号。当子载波间隔配置μ=2orμ=3时,第一类终端设备的MsgA PRACH与MsgA PUSCH之间的最小时间为第一时间和第二时间之和,即4+Δ个符号。
若该实现方式中协议定义了第二类终端设备的相邻两个随机接入消息之间的最小时间间隔。当终端设备未上报类型时,或者,终端设备上报的类型为第二类终端设备的场景中,MsgA PRACH与MsgA PUSCH之间的最小时间为:第二类终端设备的MsgA PRACH与MsgA PUSCH之间的最小时间。
示例六,以2步随机接入过程中的MsgA与MsgB为例。
目前,第一类终端设备在发送完MsgA的PRACH和PUSCH之后,在随机接入响应窗内尝试检测以相应的MsgB-RNTI加扰CRC的DCI,该DCI调度MsgB,MsgB中承载了RAR,随机接入响应窗在用于接收调度MsgB的DCI的最早的CORESET的第一个符号开 始,所述随机接入响应窗起始时刻在与所发送PRACH相应的PUSCH时机的最后一个符号之后的至少一个符号之后开始,也即MsgA PUSCH与MsgB的DCI之间的最小时间为1个符号。
因此,若该实现方式中协议未定义第二类终端设备的相邻两个随机接入消息之间的最小时间间隔。当终端设备未上报类型时,或者,终端设备上报的类型为第二类终端设备的场景中,MsgA PUSCH与MsgB的DCI之间的最小时间为第一时间和第二时间之和,即1+Δ个符号。
若该实现方式中协议定义了第二类终端设备的相邻两个随机接入消息之间的最小时间间隔。当终端设备未上报类型时,或者,终端设备上报的类型为第二类终端设备的场景中,MsgA PUSCH与MsgB的DCI之间的最小时间为:第二类终端设备的MsgA PUSCH与MsgB的DCI之间的最小时间。
示例七,以2步随机接入过程中的MsgB与MsgB PUCCH为例。
目前,第一类终端设备在接收到MsgB之后,发送PUCCH以向网络设备反馈MsgB的HARQ-ACK信息,其中协议约定,承载MsgB的PDSCH接收的最后一个符号与协议HARQ-ACK信息的PUCCH传输的第一符号之间的最小时间为N T,1+0.5ms,其中N T,1为与PDSCH处理时间相关的持续时间。
因此,若该实现方式中协议未定义第二类终端设备的相邻两个随机接入消息之间的最小时间间隔。当终端设备未上报类型时,或者,终端设备上报的类型为第二类终端设备的场景中,承载MsgB的PDSCH接收的最后一个符号与协议HARQ-ACK信息的PUCCH传输的第一符号之间的最小时间为第一时间和第二时间之和,即N T,1+0.5+Δms。
若该实现方式中协议定义了第二类终端设备的相邻两个随机接入消息之间的最小时间间隔。当终端设备未上报类型时,或者,终端设备上报的类型为第二类终端设备的场景中,承载MsgB的PDSCH接收的最后一个符号与协议HARQ-ACK信息的PUCCH传输的第一符号之间的最小时间为:第二类终端设备的承载MsgB的PDSCH接收的最后一个符号与协议HARQ-ACK信息的PUCCH传输的第一符号之间的最小时间。
本申请实施例中,在初始接入阶段,终端设备(尤其是第二类终端设备)可以工作在大于其最大带宽的频域资源上,使终端设备可以复用现有的初始上行BWP或者初始下行BWP的配置和使用流程以及一些公共信道资源,例如PRACH资源或者公共PUCCH资源等,从而可以减少公共信道开销。
并且,相比于网络配置初始上行BWP带宽不超过第二类终端设备支持的最大带宽的方式,或者,网络配置为第二类终端设备单独配置一个初始上行BWP,该初始上行BWP带宽不超过第二类终端设备支持的最大带宽,且该初始上行BWP仅仅用于第二类终端设备初始接入等过程的方式,本申请实施例中可以避免由于缩减初始上行BWP的带宽使得初始上行BWP内的PRACH资源和PUCCH资源造成的PUSCH资源碎片化的问题,降低对NR legacy UE速率的影响,并且可以增大上行或者下行传输容量,以及增加频率分集或者选择性调度增益等。
此外,通过本申请实施例可以避免由于工作的BWP带宽超过自身支持的最大带宽所带来的一系列问题,例如终端设备的射频链路中心频点调整等,从而可以降低终端设备和基站处理的复杂度、避免终端设备和网络设备对于终端设备的数据传输是否需要射频重调理解不一致而导致传输错误,例如,当终端设备在通信之前需要进行射频重调时,网络设 备可以预留一段时间暂停通信,使得终端设备可以利用该段时间进行射频重调,从而可以避免传输出现错误,进而可以提升通信的准确性。
基于与方法实施例的同一发明构思,本申请实施例提供一种通信装置,该通信装置的结构可以如图11所示,包括通信模块1101和处理模块1102。
在一种具体的实施方式中,通信装置具体可以用于实现图5~图10的实施例中终端设备执行的方法,该装置可以是终端设备本身,也可以是终端设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。其中,通信模块1101,用于与网络设备进行通信;处理模块1102,用于在与网络设备建立RRC连接之前,在第一频域资源上通过通信模块1101进行通信,第一频域资源的最大带宽大于终端设备支持的最大带宽;以及,在与网络设备建立RRC连接之后,在第二频域资源上通过通信模块1101进行通信,第二频域资源配置有用户专属参数,且第二频域资源的最大带宽不大于终端设备支持的最大带宽。
可选的,处理模块1102,还用于:在终端设备与网络设备建立RRC连接之后,在第三频域资源上通过通信模块1101进行通信,第三频域资源未配置用户专属参数;其中,第三频域资源的最大带宽允许大于终端设备支持的最大带宽,第三频域资源与第一频域资源相同;或者,第三频域资源的最大带宽不允许大于终端设备支持的最大带宽,第三频域资源与第一频域资源不同。
可选的,通信模块1101,在第一频域资源上进行通信时,具体用于:在第一频域资源中的部分频域资源上进行第一通信,部分频域资源的带宽大小为终端设备支持的最大带宽或者网络设备配置的带宽大小。
可选的,通信模块1101,还用于接收来自所述网络设备的第一配置信息;其中,所述第一配置信息用于配置所述第一频域资源,并指示所述第一频域资源在与所述网络设备建立RRC连接之前生效;和/或,所述第一配置信息用于配置所述第三频域资源,并指示所述第三频域资源在与所述网络设备建立RRC连接之后生效。
可选的,处理模块1102,还用于:根据来自网络设备的第一信息确定第一频域资源中用于第二通信的频率范围;该频率范围在用于第一通信的第一部分频域资源的范围之外,进行射频重调后在第二部分频域资源上通过通信模块1101进行第二通信,第二部分频域资源根据频率范围确定;或者,该频率范围在第一部分频域资源的范围之内,在第一部分频域资源上通过通信模块1101进行第二通信。
示例性的,第一频域资源包括多个子资源块,且一个子资源块的带宽大小不大于终端设备支持的最大带宽,通信模块1101在多个子资源块中的第一子资源块上进行第一通信;处理模块1102,还用于:根据来自网络设备的第二信息确定第一频域资源中用于第二通信的第二子资源块;第二子资源块与第一子资源块不同,进行射频重调后在第二子资源块上通过通信模块1101进行第二通信;或者,第二子资源块与第一子资源块相同,在第一子资源块上通过通信模块1101进行第二通信。
可选的,通信模块1101,在第二频域资源上进行通信时,具体用于:在多个频域资源间采用跳频的方式进行通信,多个频域资源包括第二频域资源。
在另一种具体的实施方式中,通信装置具体可以用于实现图5~图10的实施例中网络设备执行的方法,该装置可以是网络设备本身,也可以是网络设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。其中,通信模块1101,用于与终端设备进行通信;处理模块1102,用于:在与终端设备建立RRC连接之前,在第一频域资源上通过通信模 块1101与该终端设备进行通信,第一频域资源的最大带宽大于该终端设备支持的最大带宽;以及,在与终端设备建立RRC连接之后,在第二频域资源通过通信模块1101与该终端设备进行通信,第二频域资源配置有用户专属参数,且第二频域资源的最大带宽不大于终端设备支持的最大带宽。
可选的,处理模块1102,还用于:在与终端设备建立RRC连接之后,在第三频域资源上通过通信模块1101与终端设备进行通信,第三频域资源未配置用户专属参数;其中,第三频域资源的最大带宽允许大于终端设备支持的最大带宽,第三频域资源与第一频域资源相同;或者,第三频域资源的最大带宽不允许大于终端设备支持的最大带宽,第三频域资源与第一频域资源不同。
可选的,通信模块1101,还用于:发送第一配置信息;其中,所述第一配置信息用于配置所述第一频域资源,并指示所述第一频域资源在与所述终端设备建立RRC连接之前生效;和/或,所述第一配置信息用于配置所述第三频域资源,并指示所述第三频域资源在与所述终端设备建立RRC连接之后生效。
可选的,通信模块1101,在第一频域资源上进行通信时,具体用于:在第一频域资源中的部分频域资源上进行第一通信,部分频域资源的带宽大小为终端设备支持的最大带宽或者网络设备配置的带宽大小。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。可以理解的是,本申请实施例中各个模块的功能或者实现可以进一步参考方法实施例的相关描述。
一种可能的方式中,通信装置可以如图12所示,该装置可以是通信设备或者通信设备中的芯片,其中该通信设备可以为上述实施例中的终端设备也可以是上述实施例中的网络设备。该装置包括处理器1201和通信接口1202,还可以包括存储器1203。其中,处理模块1102可以为处理器1201。通信模块1101可以为通信接口1202。
处理器1201,可以是一个CPU,或者为数字处理单元等等。通信接口1202可以是收发器、也可以为接口电路如收发电路等、也可以为收发芯片等等。该装置还包括:存储器1203,用于存储处理器1201执行的程序。存储器1203可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器1203是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质,但不限于此。
处理器1201用于执行存储器1203存储的程序代码,具体用于执行上述处理模块1102的动作,本申请在此不再赘述。通信接口1202具体用于执行上述通信模块1101的动作,本申请在此不再赘述。
本申请实施例中不限定上述通信接口1202、处理器1201以及存储器1203之间的具体连接介质。本申请实施例在图12中以存储器1203、处理器1201以及通信接口1202之间通过总线1204连接,总线在图12中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图13是本申请实施例提供的一种网络设备的结构示意图,如可以为网络设备的结构示意图。该网络设备可应用于如图3所示的系统中,执行上述图5~图10所述方法实施例中网络设备的功能。网络设备130可包括一个或多个分布单元(distributed unit,DU)1301和一个或多个集中单元(centralized unit,CU)1302。所述DU 1301可以包括至少一个天线13011,至少一个射频单元13012,至少一个处理器13013和至少一个存储器13014。所述DU 1301部分主要用于射频信号的收发以及射频信号与基带信号的转换,以及部分基带处理。CU1302可以包括至少一个处理器13022和至少一个存储器13021。CU1302和DU1301之间可以通过接口进行通信,其中,控制面(Control plan)接口可以为Fs-C,比如F1-C,用户面(User Plan)接口可以为Fs-U,比如F1-U。
所述CU 1302部分主要用于进行基带处理,对网络设备进行控制等。所述DU 1301与CU 1302可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。所述CU1302为网络设备的控制中心,也可以称为处理单元,主要用于完成基带处理功能。例如所述CU 1302可以用于控制网络设备执行上述图3~图11所述方法实施例中关于网络设备的操作流程。
具体的,CU和DU上的基带处理可以根据无线网络的协议层划分,例如分组数据汇聚协议(packet data convergence protocol,PDCP)层及以上协议层的功能设置在CU,PDCP以下的协议层,例如无线链路控制(radio link control,RLC)层和媒体接入控制(medium access control,MAC)层等的功能设置在DU。又例如,CU实现RRC,PDCP层的功能,DU实现RLC、MAC和物理(physical,PHY)层的功能。
此外,可选的,网络设备130可以包括一个或多个射频单元(RU),一个或多个DU和一个或多个CU。其中,DU可以包括至少一个处理器13013和至少一个存储器13014,DU可以包括至少一个天线13011和至少一个射频单元13012,CU可以包括至少一个处理器13022和至少一个存储器13021。
在一个实例中,所述CU1302可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网、6G网等),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或6G网或其他网)。所述存储器13021和处理器13022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。所述DU1301可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网、6G网等),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或6G网或其他网)。所述存储器13014和处理器13013可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
图14是本申请实施例提供的一种终端设备的结构示意图。该终端设备可适用于图3所示出的系统中,执行上述图5~图10所述方法实施例中终端设备的功能。为了便于说明,图14仅示出了终端设备的主要部件。如图14所示,终端设备140包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述图5~图10所述方法实施例中所描述的动作。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路 和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储器的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图14仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以为与处理器处于同一芯片上的存储元件,即片内存储元件,或者为独立的存储元件,本申请实施例对此不做限定。
作为一种可选的实现方式,所述终端设备可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图14中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备140的收发单元1401,例如,用于支持终端设备执行接收功能和发送功能。将具有处理功能的处理器1402视为终端设备140的处理单元1402。如图14所示,终端设备140包括收发单元1401和处理单元1402。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1401中用于实现接收功能的器件视为接收单元,将收发单元1401中用于实现发送功能的器件视为发送单元,即收发单元1401包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理器1402可用于执行该存储器存储的指令,以控制收发单元1401接收信号和/或发送信号,完成上述方法实施例中终端设备的功能。所述处理器1402还包括接口,用以实现信号的输入/输出功能。作为一种实现方式,收发单元1401的功能可以考虑通过收发电路或者收发的专用芯片实现。
本发明实施例还提供了一种计算机可读存储介质,用于存储为执行上述处理器所需执行的计算机软件指令,其包含用于执行上述处理器所需执行的程序。
本申请实施例还提供一种通信系统,包括用于实现图5至图10的实施例中终端设备功能的通信装置和用于实现图5至图10的实施例中网络设备功能的通信装置。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机 可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。

Claims (43)

  1. 一种通信方法,其特征在于,所述方法适用于终端设备,所述方法包括:
    在与网络设备建立无线资源控制RRC连接之前,在第一频域资源上进行通信,所述第一频域资源的最大带宽大于所述终端设备支持的最大带宽;
    在与所述网络设备建立RRC连接之后,在第二频域资源上进行通信,所述第二频域资源配置有用户专属参数,且所述第二频域资源的最大带宽不大于所述终端设备支持的最大带宽。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    在与所述网络设备建立RRC连接之后,在第三频域资源上进行通信,所述第三频域资源未配置用户专属参数;
    其中,所述第三频域资源的最大带宽允许大于所述终端设备支持的最大带宽,所述第三频域资源与所述第一频域资源相同;或者,所述第三频域资源的最大带宽不允许大于所述终端设备支持的最大带宽,所述第三频域资源与所述第一频域资源不同。
  3. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第一配置信息;
    其中,所述第一配置信息用于配置所述第一频域资源,并指示所述第一频域资源在与所述网络设备建立RRC连接之前生效;和/或
    所述第一配置信息用于配置所述第三频域资源,并指示所述第三频域资源在与所述网络设备建立RRC连接之后生效。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述在所述第一频域资源上进行通信,包括:
    在所述第一频域资源中的部分频域资源上进行第一通信,所述部分频域资源的带宽大小为所述终端设备支持的最大带宽或者所述网络设备配置的带宽大小。
  5. 如权利要求4所述的方法,其特征在于,所述方法还包括:
    根据来自所述网络设备的第一信息确定所述第一频域资源中用于第二通信的频率范围;
    所述频率范围在用于所述第一通信的第一部分频域资源的范围之外,进行射频重调后在第二部分频域资源上进行所述第二通信,所述第二部分频域资源根据所述频率范围确定;或者
    所述频率范围在所述第一部分频域资源的范围之内,在所述第一部分频域资源上进行所述第二通信。
  6. 如权利要求5所述的方法,其特征在于,所述进行射频重调,包括:
    将射频的中心频点调整为所述频率范围的频率中心;或者
    将射频频率范围的起点调整为所述频率范围的起始频率;或者
    将射频频率范围的终点调整为所述频率范围的结束频率。
  7. 如权利要求4所述的方法,其特征在于,所述第一频域资源包括多个子资源块,且一个所述子资源块的带宽大小不大于所述终端设备支持的最大带宽,在所述多个子资源块中的第一子资源块上进行所述第一通信;
    所述方法还包括:
    根据来自所述网络设备的第二信息确定所述第一频域资源中用于第二通信的第二子资源块;
    所述第二子资源块与所述第一子资源块不同,进行射频重调后在所述第二子资源块上进行所述第二通信;或者
    所述第二子资源块与所述第一子资源块相同,在所述第一子资源块上进行所述第二通信。
  8. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    根据来自所述网络设备的第三信息确定所述多个子资源块,所述第三信息用于指示所述第一频域资源包括的子资源块的数量;或者
    根据来自所述网络设备的第四信息确定所述多个子资源块,所述第四信息用于指示所述多个子资源块各自对应的频率范围;或者
    根据所述第一频域资源的带宽大小对应的子资源块数确定所述多个子资源块。
  9. 如权利要求1-8任一项所述的方法,其特征在于,所述在第二频域资源上进行通信,包括:
    在多个频域资源间采用跳频的方式进行通信,所述多个频域资源包括所述第二频域资源。
  10. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第五信息,所述第五信息用于使能频域资源间跳频传输。
  11. 如权利要求9或10所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第六信息,所述第六信息用于配置频域资源间跳频传输的跳频位置,其中,所述第六信息包括跳频传输的频域偏移值、频域资源的标识、或者频域资源的标识序列。
  12. 一种通信方法,其特征在于,所述方法适用于网络设备,所述方法包括:
    在与终端设备建立无线资源控制RRC连接之前,在第一频域资源上与所述终端设备进行通信,所述第一频域资源的最大带宽大于所述终端设备支持的最大带宽;
    在与所述终端设备建立RRC连接之后,在第二频域资源上与所述终端设备进行通信,所述第二频域资源配置有用户专属参数,且所述第二频域资源的最大带宽不大于所述终端设备支持的最大带宽。
  13. 如权利要求12所述的方法,其特征在于,所述方法还包括:
    在与所述终端设备建立RRC连接之后,在第三频域资源上与所述终端设备进行通信,所述第三频域资源未配置用户专属参数;
    其中,所述第三频域资源的最大带宽允许大于所述终端设备支持的最大带宽,所述第三频域资源与所述第一频域资源相同;或者,所述第三频域资源的最大带宽不允许大于所述终端设备支持的最大带宽,所述第三频域资源与所述第一频域资源不同。
  14. 如权利要求13所述的方法,其特征在于,所述方法还包括:
    发送第一配置信息;
    其中,所述第一配置信息用于配置所述第一频域资源,并指示所述第一频域资源在与所述终端设备建立RRC连接之前生效;和/或
    所述第一配置信息用于配置所述第三频域资源,并指示所述第三频域资源在与所述终端设备建立RRC连接之后生效。
  15. 如权利要求12-14任一项所述的方法,其特征在于,所述在所述第一频域资源上与所述终端设备进行通信,包括:
    在所述第一频域资源中的部分频域资源上与所述终端设备进行第一通信,所述部分频域资源的带宽大小为所述终端设备支持的最大带宽或者所述网络设备配置的带宽大小。
  16. 如权利要求12-15任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第三信息,所述第三信息用于指示所述第一频域资源包括的子资源块的数量;或者
    向所述终端设备发送第四信息,所述第四信息用于指示所述多个子资源块各自对应的频率范围。
  17. 如权利要求12-16任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第五信息,所述第五信息用于使能频域资源间跳频传输。
  18. 如权利要求17所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第六信息,所述第六信息用于配置频域资源间跳频传输的跳频位置,其中,所述第六信息包括跳频传输的频域偏移值、频域资源的标识、或者频域资源的标识序列。
  19. 如权利要求12-18任一项所述的方法,其特征在于,相邻两个随机接入消息之间的最小时间间隔等于第一时间和第二时间之和,或者等于第一时间和第二时间之间的较大值,其中,所述第一时间等于第一类终端设备的相邻两个随机接入消息之间的最小时间间隔,第二时间为第二类终端进行射频重调的时间,所述第一类终端设备支持的最大带宽大于第二类终端设备支持的最大带宽。
  20. 如权利要求12-18任一项所述的方法,其特征在于,相邻两个随机接入消息之间的最小时间间隔等于第二类终端设备的最小时间,所述第二类终端设备的最小时间为所述第二类终端设备的相邻两个随机接入消息之间的最小时间间隔,所述第二类终端设备的最小时间为预定义的,所述第二类终端设备支持的最大带宽小于第一类终端设备支持的最大带宽。
  21. 如权利要求20所述的方法,其特征在于,所述第二类终端设备的最小时间等于第一时间和第二时间之和,或者为第一时间和第二时间之间的较大值,所述第一时间等于所述第一类终端设备的最小时间,所述第二时间为所述第二类终端进行射频重调的时间,所述第一类终端设备的最小时间为所述第一类终端设备的相邻两个随机接入消息之间的最小时间间隔。
  22. 一种通信装置,其特征在于,所述装置包括:
    通信模块,用于与网络设备进行通信;
    处理模块,用于在与所述网络设备建立无线资源控制RRC连接之前,在第一频域资源上通过所述通信模块进行通信,所述第一频域资源的最大带宽大于终端设备支持的最大带宽;以及
    在与所述网络设备建立RRC连接之后,在第二频域资源上通过所述通信模块进行通信,所述第二频域资源配置有用户专属参数,且所述第二频域资源的最大带宽不大于所述终端设备支持的最大带宽。
  23. 如权利要求22所述的装置,其特征在于,所述处理模块,还用于:
    在所述终端设备与所述网络设备建立RRC连接之后,在第三频域资源上通过所述通 信模块进行通信,所述第三频域资源未配置用户专属参数;
    其中,所述第三频域资源的最大带宽允许大于所述终端设备支持的最大带宽,所述第三频域资源与所述第一频域资源相同;或者,所述第三频域资源的最大带宽不允许大于所述终端设备支持的最大带宽,所述第三频域资源与所述第一频域资源不同。
  24. 如权利要求23所述的装置,其特征在于,所述通信模块,还用于:
    接收来自所述网络设备的第一配置信息;
    其中,所述第一配置信息用于配置所述第一频域资源,并指示所述第一频域资源在与所述网络设备建立RRC连接之前生效;和/或
    所述第一配置信息用于配置所述第三频域资源,并指示所述第三频域资源在与所述网络设备建立RRC连接之后生效。
  25. 如权利要求22-24任一项所述的装置,其特征在于,所述通信模块,在所述第一频域资源上进行通信时,具体用于:
    在所述第一频域资源中的部分频域资源上进行第一通信,所述部分频域资源的带宽大小为所述终端设备支持的最大带宽或者所述网络设备配置的带宽大小。
  26. 如权利要求25所述的装置,其特征在于,所述处理模块,还用于:
    根据来自所述网络设备的第一信息确定所述第一频域资源中用于第二通信的频率范围;
    所述频率范围在用于所述第一通信的第一部分频域资源的范围之外,进行射频重调后在第二部分频域资源上通过所述通信模块进行所述第二通信,所述第二部分频域资源根据所述频率范围确定;或者
    所述频率范围在所述第一部分频域资源的范围之内,在所述第一部分频域资源上通过所述通信模块进行所述第二通信。
  27. 如权利要求26所述的装置,其特征在于,所述处理模块,在进行射频重调时,具体用于:
    将射频的中心频点调整为所述频率范围的频率中心;或者
    将射频频率范围的起点调整为所述频率范围的起始频率;或者
    将射频频率范围的终点调整为所述频率范围的结束频率。
  28. 如权利要求25所述的装置,其特征在于,所述第一频域资源包括多个子资源块,且一个所述子资源块的带宽大小不大于所述终端设备支持的最大带宽,所述通信模块在所述多个子资源块中的第一子资源块上进行所述第一通信;
    所述处理模块,还用于:
    根据来自所述网络设备的第二信息确定所述第一频域资源中用于第二通信的第二子资源块;
    所述第二子资源块与所述第一子资源块不同,进行射频重调后在所述第二子资源块上通过所述通信模块进行所述第二通信;或者
    所述第二子资源块与所述第一子资源块相同,在所述第一子资源块上通过所述通信模块进行所述第二通信。
  29. 如权利要求28所述的装置,其特征在于,所述处理模块,还用于:
    根据来自所述网络设备的第三信息确定所述多个子资源块,所述第三信息用于指示所述第一频域资源包括的子资源块的数量;或者
    根据来自所述网络设备的第四信息确定所述多个子资源块,所述第四信息用于指示所述多个子资源块各自对应的频率范围;或者
    根据所述第一频域资源的带宽大小对应的子资源块数确定所述多个子资源块。
  30. 如权利要求22-29任一项所述的装置,其特征在于,所述通信模块,在第二频域资源上进行通信时,具体用于:
    在多个频域资源间采用跳频的方式进行通信,所述多个频域资源包括所述第二频域资源。
  31. 如权利要求30所述的装置,其特征在于,所述通信模块,还用于:
    接收来自所述网络设备的第五信息,所述第五信息用于使能频域资源间跳频传输。
  32. 如权利要求30或31所述的装置,其特征在于,所述通信模块,还用于:
    接收来自所述网络设备的第六信息,所述第六信息用于配置频域资源间跳频传输的跳频位置,其中,所述第六信息包括跳频传输的频域偏移值、频域资源的标识、或者频域资源的标识序列。
  33. 一种通信装置,其特征在于,所述装置包括:
    通信模块,用于与终端设备进行通信;
    处理模块,用于:在与所述终端设备建立无线资源控制RRC连接之前,在第一频域资源上通过所述通信模块与所述终端设备进行通信,所述第一频域资源的最大带宽大于所述终端设备支持的最大带宽;以及
    在与所述终端设备建立RRC连接之后,在第二频域资源通过所述通信模块与所述终端设备进行通信,所述第二频域资源配置有用户专属参数,且所述第二频域资源的最大带宽不大于所述终端设备支持的最大带宽。
  34. 如权利要求33所述的装置,其特征在于,所述处理模块,还用于:
    在与所述终端设备建立RRC连接之后,在第三频域资源上通过所述通信模块与所述终端设备进行通信,所述第三频域资源未配置用户专属参数;
    其中,所述第三频域资源的最大带宽允许大于所述终端设备支持的最大带宽,所述第三频域资源与所述第一频域资源相同;或者,所述第三频域资源的最大带宽不允许大于所述终端设备支持的最大带宽,所述第三频域资源与所述第一频域资源不同。
  35. 如权利要求34所述的装置,其特征在于,所述通信模块,还用于:
    发送第一配置信息;
    其中,所述第一配置信息用于配置所述第一频域资源,并指示所述第一频域资源在与所述终端设备建立RRC连接之前生效;和/或
    所述第一配置信息用于配置所述第三频域资源,并指示所述第三频域资源在与所述终端设备建立RRC连接之后生效。
  36. 如权利要求33-35任一项所述的装置,其特征在于,所述通信模块,在所述第一频域资源上进行通信时,具体用于:
    在所述第一频域资源中的部分频域资源上进行第一通信,所述部分频域资源的带宽大小为所述终端设备支持的最大带宽或者所述网络设备配置的带宽大小。
  37. 如权利要求33-36任一项所述的装置,其特征在于,所述通信模块,还用于:
    向所述终端设备发送第三信息,所述第三信息用于指示所述第一频域资源包括的子资源块的数量;或者
    向所述终端设备发送第四信息,所述第四信息用于指示所述多个子资源块各自对应的频率范围。
  38. 如权利要求33-37任一项所述的装置,其特征在于,所述通信模块,还用于:
    向所述终端设备发送第五信息,所述第五信息用于使能频域资源间跳频传输。
  39. 如权利要求38所述的装置,其特征在于,所述通信模块,还用于:
    向所述终端设备发送第六信息,所述第六信息用于配置频域资源间跳频传输的跳频位置,其中,所述第六信息包括跳频传输的频域偏移值、频域资源的标识、或者频域资源的标识序列。
  40. 如权利要求33-39任一项所述的装置,其特征在于,相邻两个随机接入消息之间的最小时间间隔等于第一时间和第二时间之和,或者等于第一时间和第二时间之间的较大值,其中,所述第一时间等于第一类终端设备的相邻两个随机接入消息之间的最小时间间隔,第二时间为第二类终端进行射频重调的时间,所述第一类终端设备支持的最大带宽大于第二类终端设备支持的最大带宽。
  41. 如权利要求33-39任一项所述的装置,其特征在于,相邻两个随机接入消息之间的最小时间间隔等于第二类终端设备的最小时间,所述第二类终端设备的最小时间为所述第二类终端设备的相邻两个随机接入消息之间的最小时间间隔,所述第二类终端设备的最小时间为预定义的,所述第二类终端设备支持的最大带宽小于第一类终端设备支持的最大带宽。
  42. 如权利要求41所述的装置,其特征在于,所述第二类终端设备的最小时间等于第一时间和第二时间之和,或者为第一时间和第二时间之间的较大值,所述第一时间等于所述第一类终端设备的最小时间,所述第二时间为所述第二类终端进行射频重调的时间,所述第一类终端设备的最小时间为所述第一类终端设备的相邻两个随机接入消息之间的最小时间间隔。
  43. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~11中任意一项所述的方法,或者使得所述计算机执行如权利要求12~21中任意一项所述的方法。
PCT/CN2022/080944 2021-03-17 2022-03-15 一种通信方法及装置 WO2022194151A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110286609.X 2021-03-17
CN202110286609.XA CN115175143A (zh) 2021-03-17 2021-03-17 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2022194151A1 true WO2022194151A1 (zh) 2022-09-22

Family

ID=83321658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080944 WO2022194151A1 (zh) 2021-03-17 2022-03-15 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN115175143A (zh)
WO (1) WO2022194151A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024096807A1 (en) * 2022-11-04 2024-05-10 Telefonaktiebolaget Lm Ericsson (Publ) Pdsch for reduced capability user equipment
CN117998625A (zh) * 2022-11-04 2024-05-07 华为技术有限公司 一种通信方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108633059A (zh) * 2017-03-25 2018-10-09 华为技术有限公司 资源配置、确定部分带宽及指示部分带宽的方法及设备
CN108696906A (zh) * 2017-03-15 2018-10-23 普天信息技术有限公司 一种物联网中用户终端接入时延优化方法、基站及系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108696906A (zh) * 2017-03-15 2018-10-23 普天信息技术有限公司 一种物联网中用户终端接入时延优化方法、基站及系统
CN108633059A (zh) * 2017-03-25 2018-10-09 华为技术有限公司 资源配置、确定部分带宽及指示部分带宽的方法及设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion on UE complexity reduction features", 3GPP DRAFT; R1-2100389, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970992 *
ERICSSON: "Potential UE complexity reduction features for RedCap", 3GPP DRAFT; R1-2008837, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Online; 20201026 - 20201113, 21 October 2020 (2020-10-21), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051940912 *

Also Published As

Publication number Publication date
CN115175143A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
US11917600B2 (en) Communication system
CN112398888B (zh) 一种通信方法及装置
WO2020143730A1 (zh) 一种通信方法和通信装置
WO2022194151A1 (zh) 一种通信方法及装置
CN111757459A (zh) 一种通信方法及装置
CN114071429A (zh) 一种物理下行控制信道增强方法、通信装置及系统
WO2021179895A1 (zh) 一种通信方法及装置
US20240030964A1 (en) Communication method and apparatus
WO2021088028A1 (zh) 一种资源配置方法及装置
WO2023273743A1 (zh) 一种侧行通信方法及装置
WO2022077396A1 (zh) 一种上行控制信息的发送方法、接收方法及通信装置
WO2022040995A1 (zh) 一种通信方法及装置
WO2020156339A1 (zh) 一种通信方法及装置
WO2020199897A1 (zh) 一种通信方法及设备
WO2022237597A1 (zh) 通信方法和通信装置
WO2023051324A1 (zh) 一种随机接入前导的发送方法、接收方法及通信装置
WO2021008422A1 (zh) 一种通信方法、通信装置、终端设备及网络设备
WO2023044716A1 (zh) 信道接入方法、设备及存储介质
WO2023165468A1 (zh) 一种资源确定方法及装置
US20240188057A1 (en) Communication system
WO2021208981A1 (zh) 一种目标信息发送方法、接收方法和装置
WO2022237468A1 (zh) 一种通信方法及装置
WO2023143269A1 (zh) 一种通信方法及装置
WO2021134620A1 (zh) 一种通信方法、装置及系统
WO2022150990A1 (zh) 一种无线通信的方法及装置、通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770504

Country of ref document: EP

Kind code of ref document: A1