WO2022237468A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2022237468A1
WO2022237468A1 PCT/CN2022/087666 CN2022087666W WO2022237468A1 WO 2022237468 A1 WO2022237468 A1 WO 2022237468A1 CN 2022087666 W CN2022087666 W CN 2022087666W WO 2022237468 A1 WO2022237468 A1 WO 2022237468A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
terminal device
domain resource
initial uplink
information
Prior art date
Application number
PCT/CN2022/087666
Other languages
English (en)
French (fr)
Inventor
侯海龙
金哲
罗之虎
曲韦霖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020237039453A priority Critical patent/KR20230170084A/ko
Priority to EP22806438.2A priority patent/EP4319431A1/en
Priority to BR112023023459A priority patent/BR112023023459A2/pt
Priority to JP2023569608A priority patent/JP2024517913A/ja
Publication of WO2022237468A1 publication Critical patent/WO2022237468A1/zh
Priority to US18/492,805 priority patent/US20240064722A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method and device.
  • the network device configures a common bandwidth part (bandwidth part, BWP) of a cell, including initial downlink BWP (initial DL BWP) and initial uplink BWP (initial UL BWP).
  • BWP bandwidth part
  • some uplink channel transmission parameters in the random access process are configured in the initial uplink BWP, for example, the transmission of the third message (Msg3) in the random access process is performed in the initial uplink BWP.
  • the network device can schedule some uplink channels in the random access process through the uplink grant (RAR UL grant) in the random access response.
  • the frequency domain range of the initial uplink BWP of the legacy (legacy) terminal equipment is different from the frequency domain range of the initial uplink BWP of the terminal equipment with lower capabilities than the legacy terminal equipment , so the network device is prone to transmission errors when scheduling some uplink channels in the random access process without determining the type of the terminal device.
  • the present application provides a communication method and device, which can solve the problem of transmission errors when a network device schedules some uplink channels in a random access process when it is uncertain or does not obtain the type of terminal device.
  • the present application provides a communication method, and the execution subject of the method may be a network device, or may be a chip or a circuit.
  • the method includes: sending configuration information of the first initial uplink BWP to the first terminal device, and sending configuration information of the second initial uplink BWP to the second terminal device, wherein the first terminal device belongs to the first type of terminal device, and the second terminal device The device belongs to the second class of terminal equipment.
  • the same scheduling information (ie, first information) can be sent to two types of terminal equipment, and the scheduling information can indicate that the first terminal equipment is in the initial uplink BWP of the first terminal equipment (ie, the first information).
  • the Msg3 transmission is performed within the range of the initial uplink BWP), and the scheduling information may instruct the second terminal device to perform the Msg3 transmission within the range of the second terminal device's initial uplink BWP (that is, the second initial uplink BWP).
  • the network device when the network device is uncertain about the type of the terminal device, it can use the same indicator value to schedule terminal devices with different BWP ranges to transmit Msg3, thereby avoiding the problem that the scheduling resource of Msg3 is not in the initial uplink BWP range of the terminal device. Transmission errors caused by internal.
  • the first information is a resource indication value (RIV).
  • the resource indication value refers to a resource indication value of frequency domain resources.
  • the network device can indicate the same RIV for the two types of terminal devices.
  • the network device can use the same information (first information) to indicate the frequency domain resources of the two terminal devices within their respective initial uplink BWP ranges, so that the terminal devices can send Msg3 on the corresponding frequency domain resources, thereby improving The success rate of Msg3 transmission.
  • the first information is determined based on the starting position, the length, and the first initial uplink BWP of the second frequency domain resource.
  • the network device can determine the first information according to the first initial uplink BWP for both the first terminal device and the second terminal device, so that the complexity can be reduced, so that the network device can use the same
  • the rules of determine the frequency-domain resource allocation information for Msg3 transmission so that possible transmission errors can be resolved.
  • the first information is determined based on the starting position, the length, and the second initial uplink BWP of the first frequency domain resource.
  • the network device can determine the first information according to the second initial uplink BWP for both the first terminal device and the second terminal device, so that the complexity can be reduced, so that the network device can use the same
  • the rules of determine the frequency-domain resource allocation information for Msg3 transmission so that possible transmission errors can be resolved.
  • the first information is determined based on the starting position, the length, and the first initial uplink BWP of the first frequency domain resource.
  • the first information is determined based on the starting position, the length and the second initial uplink BWP of the second frequency domain resource.
  • the frequency domain range of the first frequency domain resource is the same as the frequency domain range of the second frequency domain resource, that is, the absolute frequency domain position of the first frequency domain resource and the absolute frequency domain position of the second frequency domain resource
  • the frequency domain positions are the same
  • the length of the first frequency domain resource is the same as the length of the second frequency domain resource.
  • the starting position of the first frequency domain resource is the same as the starting position of the second frequency domain resource, and the starting position of the first initial uplink BWP is the same as that of the second initial uplink BWP .
  • the starting position of the first frequency domain resource is the relative frequency domain position of the first frequency domain resource in the first initial uplink BWP, and the starting position of the second frequency domain resource is the second frequency domain resource in the second initial uplink BWP The relative frequency domain position of .
  • the starting position of the first frequency domain resource is the same as that of the second frequency domain resource, that is, the relative frequency domain position of the first frequency domain resource in the first initial uplink BWP is the same as that of the second frequency domain resource.
  • the relative frequency domain positions in the second initial uplink BWP are the same, and the starting position of the first initial uplink BWP is the same as the starting position of the second initial uplink BWP, so that the absolute frequency domain position of the first frequency domain resource is the same as that of the second initial uplink BWP.
  • the absolute frequency domain positions of the frequency domain resources are the same.
  • the starting position of the first frequency domain resource is the same as the starting position of the second frequency domain resource.
  • the starting position of the first frequency domain resource is the relative frequency domain position of the first frequency domain resource in the first initial uplink BWP
  • the starting position of the second frequency domain resource is the second frequency domain resource in the first initial uplink BWP The relative frequency domain position of .
  • the starting position of the first frequency domain resource is the same as the starting position of the second frequency domain resource.
  • the starting position of the first frequency domain resource is the relative frequency domain position of the first frequency domain resource in the first initial uplink BWP
  • the starting position of the second frequency domain resource is according to the position of the second frequency domain resource in the second initial uplink BWP.
  • the first offset value is the frequency domain offset value between the starting position of the first initial uplink BWP and the starting position of the second initial uplink BWP .
  • the starting position of the first frequency domain resource is the same as that of the second frequency domain resource, that is, the relative frequency domain position of the first frequency domain resource in the first initial uplink BWP is the same as that of the second frequency domain resource.
  • the relative frequency domain positions in the second initial uplink BWP are the same, and according to the frequency domain offset value between the starting position of the second initial uplink BWP and the starting position of the first initial uplink BWP, the When the start position of the BWP is not aligned with the start position of the second initial uplink BWP, the absolute frequency domain position of the first frequency domain resource is the same as the absolute frequency domain position of the second frequency domain resource.
  • the frequency domain range of the first frequency domain resource is different from the frequency domain range of the second frequency domain resource.
  • the first terminal device and the second terminal device can determine, according to the same information (first information), frequency domain resources within their initial uplink BWP ranges for sending Msg3.
  • the first frequency domain resource and/or the second frequency domain resource belong to a first frequency domain resource set, and any frequency domain resource in the first frequency domain resource set is for the RIV of the first terminal device and for the The RIV of the second terminal device is the same.
  • the network device allocates the frequency domain resources of Msg3 to the first terminal device and the second terminal device in the first frequency domain resource set, so that the network device can respectively indicate the two terminal devices through a piece of information (first information) frequency domain resources.
  • the first frequency domain resource and the second frequency domain resource belong to a first frequency domain resource subset in the second frequency domain resource set, and at least one frequency domain resource subset in the second frequency domain resource set
  • the set includes at least one frequency domain resource of the first type and at least one frequency domain resource of the second type, wherein, in the same subset of frequency domain resources, the frequency domain resource of the first type is for the RIV of the first terminal device and the frequency domain resource of the second type
  • the domain resources are the same for the RIV of the second terminal device.
  • the network device allocates the frequency domain resources of Msg3 to the first terminal device and the second terminal device in the second frequency domain resource set, so that the network device can respectively indicate the two terminal devices through a piece of information (first information) frequency domain resources.
  • the first information is carried in a random access response uplink grant (RAR UL grant) or downlink control information (DCI) scrambled with a temporary cell radio network temporary identifier (TC-RNTI).
  • RAR UL grant random access response uplink grant
  • DCI downlink control information
  • TC-RNTI temporary cell radio network temporary identifier
  • the first information is carried in the frequency domain resource allocation field in the RAR UL grant or in the frequency domain resource allocation field in the DCI scrambled with TC-RNTI.
  • the present application provides a communication method, and the execution subject of the method may be a terminal device, or may be a chip or a circuit.
  • the method includes: receiving first information from the network device, the first information is used to indicate the first frequency domain resource for sending the third message (Msg3) in the random access process; determining the first frequency domain resource based on the first information and the second initial uplink BWP A frequency domain resource, the first frequency domain resource is within the frequency domain range of the first initial uplink BWP, the first initial uplink BWP is the initial uplink BWP of the first terminal device, and the second initial uplink BWP is the initial uplink BWP of the second terminal device BWP.
  • both the first terminal device and the second terminal device can determine the first information according to the first initial uplink BWP, or both can determine the first information according to the second initial uplink BWP, correspondingly, the network device
  • the first information can be determined according to the first initial uplink BWP (or the second initial uplink BWP), so that the complexity can be reduced, so that the network device can
  • the frequency domain resource allocation information for Msg3 transmission is determined by using the same rule, so that possible transmission errors can be resolved.
  • the first frequency domain resource is within the frequency domain range of the second initial uplink BWP.
  • the first terminal device and the second terminal device can determine the same frequency domain resource for sending Msg3 according to the same information (first information).
  • determining the first frequency domain resource based on the first information and the second initial uplink BWP includes: determining the starting position of the first frequency domain resource based on the first information and the size of the second initial uplink BWP and The length of the first frequency domain resource.
  • the terminal device can determine the resource allocation information of the second frequency domain resource according to the first initial uplink BWP.
  • determining the first frequency domain resource based on the first information and the second initial uplink BWP includes: determining the first frequency domain resource based on the first information, the first initial uplink BWP and the first offset value
  • the starting position and the length of the first frequency domain resource, the first offset value is the frequency domain offset between the starting position of the first initial uplink BWP and the starting position of the second initial uplink BWP value.
  • the first information is carried in RAR UL grant or DCI scrambled with TC-RNTI.
  • the present application further provides a communication device, where the communication device implements any method provided in the first aspect above.
  • the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication device includes: a processor, where the processor is configured to support the communication device to execute corresponding functions of the terminal device in the methods shown above.
  • the communication device may also include a memory, which may be coupled to the processor, which holds program instructions and data necessary for the communication device.
  • the communication device further includes an interface circuit, where the interface circuit is used to support communication between the communication device and equipment such as network equipment.
  • the communication device includes corresponding functional modules, respectively configured to implement the steps in the above method.
  • the functions may be implemented by hardware, or may be implemented by executing corresponding software through hardware.
  • Hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing unit and a communication unit, and these units can perform corresponding functions in the above method examples.
  • these units can perform corresponding functions in the above method examples.
  • the present application further provides a communication device, and the communication device implements any method provided in the second aspect above.
  • the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication device includes: a processor, where the processor is configured to support the communication device to execute corresponding functions of the terminal device in the methods shown above.
  • the communication device may also include a memory, which may be coupled to the processor, which holds program instructions and data necessary for the communication device.
  • the communication device further includes an interface circuit, where the interface circuit is used to support communication between the communication device and equipment such as network equipment.
  • the communication device includes corresponding functional modules, respectively configured to implement the steps in the above method.
  • the functions may be implemented by hardware, or may be implemented by executing corresponding software through hardware.
  • Hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing unit and a communication unit, and these units can perform corresponding functions in the above method examples.
  • these units can perform corresponding functions in the above method examples.
  • a communication device including a processor and an interface circuit, and the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or send signals from the processor
  • the processor is used to implement the method in the aforementioned first aspect and any possible designs through logic circuits or executing code instructions.
  • a communication device including a processor and an interface circuit, and the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or send signals from the processor
  • the processor implements the method in the aforementioned second aspect and any possible design through a logic circuit or executing code instructions.
  • a computer-readable storage medium in which a computer program or instruction is stored, and when the computer program or instruction is executed by a processor, the aforementioned first aspect and any possible design can be realized method in .
  • a computer program product storing instructions, and when the instructions are executed by a processor, the method in the aforementioned first aspect and any possible design is implemented.
  • a chip system in a ninth aspect, includes a processor, and may further include a memory, for implementing the method in the aforementioned first aspect and any possible design.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a communication system includes the device described in the first aspect (such as a network device) and the device described in the second aspect (such as a terminal device).
  • FIG. 1 is a schematic diagram of the architecture of a network system according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of resource allocation according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another resource allocation according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • Terminal equipment which can be a device with a wireless transceiver function or a chip that can be installed in any device, and can also be called user equipment (user equipment, UE), access terminal, subscriber unit, user station, mobile station, Mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, an industrial Wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in video surveillance, and wearable terminal devices, etc.
  • VR virtual reality
  • AR augmented reality
  • a network device may be a device used to realize the functions of an access network device, and an access network device may refer to a device in an access network that communicates with wireless terminal devices through one or more cells through an air interface, for example, it may be a device in an NR system
  • the next-generation base station (next Generation node B, gNB) can be an evolved base station (evolutional node B, eNB) in the LTE system, etc.
  • the network device may also be a device capable of supporting the network device to realize the function of the access network device, such as a chip system, and the device may be installed in the network device.
  • the terminal device in the embodiment of the present application may be a first-type terminal device or a second-type terminal device, or other terminal devices that require enhanced transmission performance, such as NR enhanced mobile broadband (Enhanced Mobile Broadband, eMBB) terminal devices Wait.
  • NR enhanced mobile broadband Enhanced Mobile Broadband, eMBB
  • the distinction between the first category of terminal equipment and the second category of terminal equipment includes at least one of the following:
  • the maximum bandwidth supported by the first type of terminal device may be greater than the maximum bandwidth supported by the second type of terminal device.
  • the first type of terminal equipment can support the use of 100MHz frequency domain resources and network equipment on one carrier at the same time, while the second type of terminal equipment can support the use of 20MHz or 10MHz or 5MHz frequency domain resources and network equipment on one carrier at the same time. Network devices communicate.
  • the number of transmitting and receiving antennas is different.
  • the antenna configuration of the first type of terminal device may be larger than the antenna configuration of the second type of terminal device.
  • the minimum antenna configuration supported by the first type of terminal device may be greater than the maximum antenna configuration supported by the second type of terminal device.
  • the maximum uplink transmit power is different.
  • the maximum uplink transmit power of the first type of terminal device may be greater than the maximum uplink transmit power of the second type of terminal device.
  • the protocol versions corresponding to the first type of terminal equipment and the second type of terminal equipment are different.
  • NR Rel-15 and NR Rel-16 terminal equipment can be considered as the first type of terminal equipment
  • the second type of terminal equipment can be considered as NR Rel-17 terminal equipment.
  • the carrier aggregation (carrier aggregation, CA) capabilities supported by the first type of terminal device and the second type of terminal device are different.
  • the first type of terminal device may support carrier aggregation, but the second type of terminal device does not support carrier aggregation; for another example, both the second type of terminal device and the first type of terminal device support carrier aggregation, but the first type of terminal device supports carrier aggregation at the same time
  • the maximum number of carrier aggregations is greater than the maximum number of carrier aggregations supported by the second type of terminal device at the same time.
  • the frequency division duplex (FDD) capabilities of the first type of terminal equipment and the second type of terminal equipment are different.
  • a first type of terminal device may support full-duplex FDD, while a second type of terminal device may only support half-duplex FDD.
  • the second type of terminal device and the first type of terminal device have different data processing time capabilities. For example, the minimum time delay between the first type of terminal device receiving downlink data and sending the feedback of the downlink data is smaller than that of the second type terminal device The minimum delay between a device receiving downlink data and sending feedback on that downlink data.
  • the uplink and/or downlink corresponding to the first type of terminal device and the second type of terminal device have different transmission peak rates.
  • Resource indication value (resource indication value, RIV): a field used to allocate transmission resources, for example, for Msg3, Msg3 is transmitted through PUSCH, and its initial transmission scheduling information is passed through the random access response carried in the second message (Msg2)
  • the uplink scheduling grant (uplink grant, UL grant) indication in (random access response, RAR), the UL grant in RAR can be referred to as RAR grant for short.
  • the RAR grant includes a physical uplink shared channel (physical uplink shared channel, PUSCH) frequency domain resource indication (PUSCH frequency resource allocation) field, and the PUSCH frequency resource allocation field can indicate the frequency domain resource allocation of Msg3.
  • the PUSCH frequency resource allocation field may include a RIV corresponding to the length of the starting resource and the resource blocks allocated continuously, and the length of the resource blocks in this application may be the number of resource units.
  • “at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • first and second are used to distinguish multiple objects, and are not used to limit the size, content, order, and timing of multiple objects , priority or importance, etc.
  • first frequency domain resource and the second frequency domain resource are only for distinguishing different frequency domain resources, and do not represent the difference in size, location, priority or importance of the two frequency domain resources.
  • the random access process includes 4-step random access channel (random access channel, RACH) and 2-step RACH.
  • RACH random access channel
  • the network device After receiving the random access preamble (random access preamble) sent by the terminal device, the network device sends a random access response (random access response, RAR) to the terminal device, including uplink resource allocation information and other information .
  • RAR random access response
  • the terminal device sends the third message (Msg 3) in the random access process based on the scheduling of the RAR message, and Msg3 is used to send the RRC connection establishment request.
  • the terminal device sends a message A (MsgA) to the network device, and the MsgA includes two parts, one part is a preamble, and the other part is a PUSCH payload (payload).
  • the MsgA message can be considered to include the content included in the preamble and the Msg3 in the 4-step RACH.
  • the network device configures a cell common BWP for terminal devices to perform random access, including initial downlink BWP (initial DL BWP) and initial uplink BWP (initial UL BWP).
  • some uplink channel transmission parameters in the random access process are configured in the initial uplink BWP, including the physical random access channel (physical random access channel, PRACH) resource of the first message (Msg1), the physical uplink shared channel (physical random access channel, PRACH) resource of Msg3 Uplink shared channel (PUSCH) resources, hybrid automatic repeat request (hybrid automatic repeat request, HARQ)-positive acknowledgment (acknowledgment, ACK) feedback of the fourth message (Msg4) public PUCCH resources, etc.
  • the frequency domain range of the initial uplink BWP of the first type of terminal equipment is different from the frequency domain range of the initial uplink BWP of the second type of terminal equipment. In the case of determining the type of terminal equipment, transmission errors are prone to occur when scheduling some uplink channels in the access process.
  • the network equipment needs to identify whether the user currently accessing is the first type of terminal equipment or the second type of terminal equipment device to determine in which initial uplink BWP range to schedule the uplink transmission of the currently accessed terminal device, such as the Msg3 transmission, otherwise a transmission error may occur.
  • the embodiments of the present application provide a communication method and device, which can solve the problem of transmission errors when a network device schedules some uplink channels in a random access process when the type of the terminal device is uncertain.
  • the method and the device are based on the same inventive concept, and since the principles of the method and the device to solve problems are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the communication method provided by this application can be applied to various communication systems, for example, it can be Internet of things (internet of things, IoT), narrowband Internet of things (narrow band internet of things, NB-IoT), long term evolution (long term evolution) , LTE), it can also be the fifth generation (5G) communication system, it can also be a hybrid architecture of LTE and 5G, it can also be a 5G new radio (new radio, NR) system, and new communication emerging in 6G or future communication development system etc.
  • the 5G communication system described in this application may include at least one of a non-standalone (NSA) 5G communication system and a standalone (standalone, SA) 5G communication system.
  • the communication system may also be a machine to machine (machine to machine, M2M) network or other networks.
  • UE1-UE6 it is a communication system provided by the embodiment of the present application, and the communication system includes a network device and six terminal devices, that is, UE1-UE6.
  • UE1-UE6 can send uplink data to the network device, and the network device can receive the uplink data sent by UE1-UE6.
  • UE4-UE6 may also form a sub-communication system.
  • the network device can send downlink information to UE1, UE2, UE3, and UE5, and UE5 can send downlink information to UE4 and UE6 based on a device-to-device (device-to-device, D2D) technology.
  • FIG. 1 is only a schematic diagram, and does not specifically limit the type of the communication system, and the quantity and type of devices included in the communication system.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application. With the evolution of architecture and the emergence of new business scenarios, the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • the embodiments of the present application can be used in a scenario where a network device schedules an uplink channel in a random access process, for example, the network device schedules an uplink channel such as a common PUCCH used for HARQ-ACK feedback of Msg1, Msg3, and Msg4.
  • the method is performed by a network device and a terminal device as an example for description.
  • FIG. 2 it is a schematic flowchart of a communication method provided by the present application.
  • the method includes:
  • the network device sends configuration information of the first initial uplink BWP to the first terminal device.
  • the first terminal device belongs to the first type of terminal device, and the first initial uplink BWP may be an initial uplink BWP corresponding to the first terminal device.
  • the network device sends configuration information of the second initial uplink BWP to the second terminal device.
  • the second terminal device belongs to the second type of terminal device, and the second initial uplink BWP may be an initial uplink BWP corresponding to the second terminal device.
  • the network device may also send configuration information of the second initial uplink BWP to the first terminal device.
  • the network device may also send configuration information of the first initial uplink BWP to the second terminal device.
  • the first type of terminal device may be a legacy (legacy) terminal device in a communication system
  • the second type of terminal device may be a reduced capability (reduced capability, REDCAP) terminal device.
  • a REDCAP terminal device may be a terminal device of lower capability than a conventional terminal device.
  • the REDCAP terminal equipment may have the following characteristics: reduced or limited terminal capability, for example, limited bandwidth capability, compared with legacy terminal equipment, the maximum channel bandwidth will be reduced to 20MHz.
  • the network device sends first information.
  • the first frequency domain resource indicated by the first information is within the frequency domain range of the first initial uplink BWP, and the first frequency domain resource is used for the first terminal device to send Msg3;
  • the second frequency domain resource indicated by the first information is within the frequency range of the first initial uplink BWP.
  • the second frequency domain resource is used for the second terminal device to send Msg3.
  • the first information indicates the transmission resources of Msg3
  • the first information may be carried in Msg2 or other dedicated signaling; when the first information indicates transmission resources of other channels, the first information may be carried in UE-specific signaling or broadcast message.
  • the first information may be a resource indication value (resource indication value, RIV).
  • RIV resource indication value
  • the resource indication value is a resource indication value of frequency domain resources.
  • the first information may be carried in a random access response uplink grant (RAR UL grant) or downlink control information (downlink control information) scrambled with a temporary cell RNTI (TC-RNTI) , DCI).
  • RAR UL grant random access response uplink grant
  • TC-RNTI temporary cell RNTI
  • DCI downlink control information
  • the first information may be carried in the frequency domain resource allocation field in the RAR UL grant or DCI scrambled with TC-RNTI.
  • the network device may send the first information to at least one of the first terminal device and the second terminal device, for example, the network device sends the first information to the first terminal device, or the network device sends the first information to the second terminal device Send the first message.
  • the network device may also send the first information to both the first terminal device and the second terminal device.
  • the first terminal device may determine the first frequency domain resource based on the first information.
  • the first terminal device may send Msg3 on the first frequency domain resource.
  • the second terminal device may determine the second frequency domain resource based on the first information.
  • the second terminal device may send Msg3 on the second frequency domain resource.
  • the same scheduling information (ie, first information) can be sent to two types of terminal equipment, and the scheduling information can indicate that the first terminal equipment is in the initial uplink BWP of the first terminal equipment (ie, the first information).
  • the Msg3 transmission is performed within the range of the initial uplink BWP), and the scheduling information may instruct the second terminal device to perform the Msg3 transmission within the range of the second terminal device's initial uplink BWP (that is, the second initial uplink BWP).
  • the network device when the network device is uncertain about the type of the terminal device, it can use the same indicator value to schedule terminal devices with different BWP ranges to transmit Msg3, thereby avoiding the problem that the scheduling resource of Msg3 is not in the initial uplink BWP range of the terminal device. Transmission errors caused by internal.
  • the network device may allocate the same frequency domain resource to the first terminal device and the second terminal device when scheduling Msg3, that is, the frequency domain range of the first frequency domain resource may be the same as that of the second frequency domain resource.
  • the frequency domain ranges are the same, that is, the absolute frequency domain position of the first frequency domain resource is the same as the absolute frequency domain position of the second frequency domain resource, and the length of the first frequency domain resource is the same as the length of the second frequency domain resource.
  • the network device may allocate the frequency domain resource of Msg3 to the first terminal device and the second terminal device in the first frequency domain resource set, wherein any frequency domain resource in the first frequency domain resource set
  • the RIV for the first terminal device is the same as the RIV for the second terminal device.
  • the first frequency domain resource and the second frequency domain resource are the same.
  • the first frequency domain resource and the second frequency domain resource are collectively referred to as the Msg3 frequency domain resource.
  • the RIV of the frequency domain resource for the first terminal device may be understood as the RIV determined by the network device for the first terminal device (or the second terminal device).
  • the following is an exemplary description of the process for the network device to determine the RIV for the first terminal device and the second terminal device.
  • the network device may determine the RIV based on the starting position and length of the Msg3 frequency domain resource and the size of the first initial uplink BWP.
  • the starting position of the Msg3 frequency domain resource here is Msg3
  • the starting position of the frequency domain resource in the first initial uplink BWP that is, the relative frequency domain position of the Msg3 frequency domain resource in the first initial uplink BWP.
  • the starting position of the Msg3 frequency domain resource here may be in the first RB index in the initial uplink BWP.
  • the network device may determine the RIV based on the starting position and length of the Msg3 frequency domain resource and the size of the second initial uplink BWP.
  • the starting position of the Msg3 frequency domain resource here is the Msg3 frequency domain resource.
  • the starting position in the second initial uplink BWP that is, the relative frequency domain position of the second initial uplink BWP of the Msg3 frequency domain resource, for example, the starting position of the Msg3 frequency domain resource here may be in the second initial uplink BWP RB index.
  • the length of the Msg3 frequency domain resource may be understood as the length or quantity of continuously allocated RBs.
  • the method for determining the RIV of the Msg3 frequency domain resource of the first terminal device and the method for determining the RIV of the Msg3 frequency domain resource of the second terminal device are described below with examples.
  • the method for determining the RIV of the Msg3 frequency domain resource of the first terminal device and the second terminal device may be as follows:
  • RB start is the starting position of the Msg3 frequency domain resource in the first initial uplink BWP
  • L RBs is the length of the Msg3 frequency domain resource
  • L RBs ⁇ 1, and cannot exceed is the rounding down operation.
  • RB start is the starting position of the Msg3 frequency domain resource in the second initial uplink BWP
  • L RBs is the length of the Msg3 frequency domain resource
  • the network device determines the first information it may be determined according to the determination process of the two terminal devices, or may be determined through the determination process of any terminal device.
  • the first terminal device and the second terminal device may determine the Msg3 frequency domain resource according to the reverse process of the above determination process.
  • the first terminal device according to the first information, the above formula and the size of the first initial uplink BWP Determine the starting position RB start of the Msg3 frequency domain resource in the first initial uplink BWP and the length L RBs of the Msg3 frequency domain resource.
  • the second terminal device Determine the starting position RB start of the Msg3 frequency domain resource in the second initial uplink BWP and the length L RBs of the Msg3 frequency domain resource.
  • the method for determining the frequency domain resource of Msg3 by the first terminal device and the method for determining the frequency domain resource of Msg3 by the second terminal device are described below with examples.
  • the method for the first terminal device and the second terminal device to determine the Msg3 frequency domain resource may be as follows:
  • the process of determining Msg3 frequency domain resources according to the RIV contained in the frequency domain resource allocation domain can be:
  • RB start is the starting position of the Msg3 frequency domain resource in the first initial uplink BWP
  • L RBs is the length of the Msg3 frequency domain resource
  • L RBs ⁇ 1 the first terminal device can determine the frequency domain resources of Msg3 in the first initial uplink BWP from the frequency domain resource allocation domain, including the starting position of the frequency domain resources, that is, the starting RB, and the length or number of continuously allocated RBs .
  • RB start is the starting position of the Msg3 frequency domain resource in the second initial uplink BWP
  • L RBs is the length of the Msg3 frequency domain resource
  • L RBs ⁇ 1 L RBs ⁇ 1, and cannot exceed
  • the second terminal device can determine the frequency domain resource of Msg3 in the second initial uplink BWP by the frequency domain resource allocation domain according to the above method, including the starting position of the frequency domain resource, that is, the starting RB, and the length or number of continuously allocated RBs .
  • the network device may determine the RIV based on the starting position and length of the Msg3 frequency domain resource and the size of the first initial uplink BWP.
  • the determination method adopted by the network device to determine the first terminal device and the second terminal device is similar to the method for determining the RIV of the Msg3 frequency domain resource of the first terminal device and the second terminal device in the above embodiment, the difference is that, for example In one, when the network device determines the RIVs of the first terminal device and the second terminal device according to the above determination method, has a different meaning, e.g. when determining the RIV of the first end-device is the size of the first initial uplink BWP, that is, the number of RBs. When determining the RIV of the second terminal device, is the size of the second initial uplink BWP, that is, the number of RBs.
  • Example 2 when the network device determines the RIVs of the first terminal device and the second terminal device according to the above determination method, have the same meaning, Both are the size of the first initial uplink BWP, that is, the number of RBs.
  • the specific process please refer to the related description of Example 1, and the repetition will not be repeated.
  • the first terminal device and the second terminal device may determine the Msg3 frequency domain resource according to the first information and the size of the first initial uplink BWP.
  • the method used by the first terminal device and the second terminal device to determine the Msg3 frequency domain resource is similar to the method used by the first terminal device and the second terminal device to determine the Msg3 frequency domain resource in the above embodiment, the difference is that in the first example , when the first terminal device and the second terminal device determine the Msg3 frequency domain resource, have different meanings.
  • the first terminal device uses the size of the first initial uplink BWP when determining the Msg3 frequency domain resource, that is, is the size of the first initial uplink BWP.
  • the second terminal device uses the size of the second initial uplink BWP when determining the Msg3 frequency domain resource, that is, is the size of the second initial uplink BWP.
  • Example 2 when the first terminal device and the second terminal device determine the Msg3 frequency domain resource have the same meaning, that is, both the first terminal device and the second terminal device use the size of the first initial uplink BWP when determining the Msg3 frequency domain resource, that is, Both are the size of the first initial uplink BWP, that is, the number of RBs.
  • the specific process please refer to the related description of Example 1, and the repetition will not be repeated.
  • the network device may also determine the RIV based on the starting position and length of the Msg3 frequency domain resource and the second initial uplink BWP.
  • the first terminal device and the second terminal device may determine the Msg3 frequency domain resource according to the first information and the size of the second initial uplink BWP.
  • the starting position of the Msg3 frequency domain resource may also be the starting position of the Msg3 frequency domain resource in the second initial uplink BWP.
  • the first terminal device may determine the absolute frequency domain position of the Msg3 frequency domain resource according to the start position of the second initial uplink BWP and the start position of the Msg3 frequency domain resource determined according to the first information.
  • the starting position of the Msg3 frequency domain resource may also be the starting position of the Msg3 frequency domain resource in the first initial uplink BWP.
  • the second terminal device may determine the absolute frequency domain position of the Msg3 frequency domain resource according to the start position of the first initial uplink BWP and the start position of the Msg3 frequency domain resource determined according to the first information.
  • the second terminal device determines the absolute frequency domain position of the Msg3 frequency domain resource according to the starting position of the first initial uplink BWP and the starting position of the Msg3 frequency domain resource determined according to the first information.
  • the method is implemented as follows: the frequency domain resource position of Msg3 is determined by using the starting position of the first initial uplink BWP.
  • the start position of the Msg3 frequency domain resource is jointly determined by using the start position of the second initial uplink BWP and the first offset value, and the first offset value is the difference between the start position of the first initial uplink BWP and the first offset value of the second initial uplink BWP The frequency domain offset value between the starting positions of .
  • the frequency domain offset value between the starting position of the first initial uplink BWP and the starting position of the second initial uplink BWP may be notified by the network device through signaling, or may be the second terminal device according to the first initial
  • the configuration information of the uplink BWP and the configuration information of the second initial uplink BWP are determined.
  • the way that the first terminal device determines the absolute frequency domain position of the Msg3 frequency domain resource according to the starting position of the second initial uplink BWP and the starting position of the Msg3 frequency domain resource determined according to the first information is similar to the above process, and will not be repeated here repeat.
  • the first initial uplink BWP and the second initial uplink BWP may have the same starting position.
  • the same starting position of the first initial uplink BWP and the second initial uplink BWP may be predefined by the protocol.
  • the same starting position of the first initial uplink BWP and the second initial uplink BWP may also be determined by the network device according to the implementation of an algorithm.
  • the Msg3 frequency domain resource scheduled by the network device is located within the frequency domain range of the second initial uplink BWP, which can ensure that the Msg3 frequency domain resource is also within the frequency domain range of the first initial uplink BWP.
  • the frequency domain resource of Msg3 allocated by the network device to the first terminal device and the second terminal device may be as shown in FIG. 3 .
  • the network device may allocate different frequency domain resources to the first terminal device and the second terminal device when scheduling Msg3, that is, the frequency domain range of the first frequency domain resource and the second frequency domain resource
  • the frequency domain range of can be different.
  • the network device may allocate the first frequency domain resource to the first terminal device in the second frequency domain resource set, and allocate the second frequency domain resource to the second terminal device.
  • the second frequency domain resource set includes at least one frequency domain resource subset, wherein any frequency domain resource subset includes the first type of frequency domain resource and the second type of frequency domain resource, and in the same frequency domain resource subset,
  • the RIV of any frequency domain resource of the first type for the first terminal device is the same as the RIV of any frequency domain resource of the second type for the second terminal device.
  • the first frequency domain resource may be a first type of frequency domain resource in the first frequency domain resource subset in the second frequency domain resource set
  • the second frequency domain resource may be the second frequency domain resource set The frequency domain resources of the second type in the first frequency domain resource subset in .
  • the second frequency domain resource includes at least one subset of frequency domain resources, where any subset of frequency domain resources includes frequency domain resource 1 and frequency domain resource 2, and frequency domain resource 1 is for the RIV and frequency domain of the first terminal device.
  • Domain resource 2 is the same as the RIV of the second terminal device.
  • the network device may allocate the first frequency domain resource to the first terminal device in the second frequency domain resource set, and allocate the second frequency domain resource to the second terminal device, for example, the network device may select the frequency domain resource in the second frequency domain resource set Frequency domain resource subset 1 of frequency domain resource subset 1, allocate frequency domain resource 1 in frequency domain resource subset 1 to the first terminal device, and allocate frequency domain resource 2 in frequency domain resource subset 1 to the second terminal device.
  • the frequency domain resource set 1 of the second frequency domain resource set includes an frequency domain resource A, the starting position of the frequency domain resource A is 0, and the length is 2, and also includes a frequency domain resource B scheduled in the second initial uplink BWP, the starting position of the frequency domain resource B is 18, and the length is 6.
  • the network device determines the RIV for the first terminal device, it may use the formula in Embodiment 1 above, where RB start is 0, L RBs is 2, The calculated RIV for 273 is 273.
  • the network device may use the formula in Embodiment 1 above, where RB start is 18, L RBs is 6, The calculated RIV for 51 is 273. Therefore, the network device may allocate the first frequency domain resource with RB start 0 and L RBs 2 for the first terminal device, and allocate the second frequency domain resource with RB start 18 and L RBs 6 for the second terminal device.
  • the process in which the network device determines the RIV for the first terminal device and the second terminal device in Embodiment 2 is similar to the process for the network device in Embodiment 1 to determine the RIV for the first terminal device and the second terminal device, the difference is that , in the first embodiment above, the network device determines the RIV for the first terminal device and the second terminal device based on the same frequency domain resource (that is, the Msg3 frequency domain resource above), while in the second embodiment, the network device determines the RIV for the first terminal device The terminal device and the second terminal device determine the RIV based on different frequency domain resources.
  • the network device determines the RIV for the first terminal device based on the first frequency domain resource, and determines the RIV for the second terminal device based on the It is the second frequency domain resource.
  • the specific process please refer to the related description of Embodiment 1, and the repetition will not be repeated.
  • the manner in which the first terminal device and the second terminal device determine the frequency domain resource of Msg3 in Embodiment 2 is similar to the above Embodiment 1, the difference is that the first terminal device and the second terminal device in the above Embodiment 1 determine It is the same frequency domain resource (that is, the above-mentioned Msg3 frequency domain resource), and in the second embodiment, the first terminal device determines the first frequency domain resource, and the second terminal device determines the second frequency domain resource.
  • the first terminal device determines the first frequency domain resource
  • the second terminal device determines the second frequency domain resource For specific methods, please refer to For the relevant description of the first embodiment above, repeated descriptions will not be repeated here.
  • the frequency domain resource of Msg3 allocated by the network device to the first terminal device and the second terminal device may be as shown in FIG. 4 .
  • the network device may detect Msg3 sent by the first terminal device and/or the second terminal device, for example, the network device may detect Msg3 sent by the first terminal device on the first frequency domain resource , detecting Msg3 sent by the second terminal device on the second frequency domain resource.
  • the network device sends Msg4 to the first terminal device and/or the second terminal device, otherwise it is indicated by downlink control information (DCI) or
  • DCI downlink control information
  • the first terminal device and/or the second terminal device are scheduled to retransmit Msg3, and the DCI is scrambled with CRC through the TC-RNTI.
  • the method for determining the RIV contained in the frequency domain resource allocation domain carried by the DCI refer to the method for determining the first information in S203.
  • the first terminal device and/or the second terminal device detects the DCI of the TC-RNTI scrambled CRC, and if the DCI indicates the retransmission of Msg3, resends Msg3 according to the information in the DCI.
  • the DCI indicates Msg4, receive Msg4 according to information in the DCI.
  • the same scheduling information ie, first information
  • the scheduling information can indicate that the first terminal equipment is in the initial uplink BWP of the first terminal equipment (ie, the first information).
  • the Msg3 transmission is performed within the range of the initial uplink BWP
  • the scheduling information may instruct the second terminal device to perform the Msg3 transmission within the range of the second terminal device's initial uplink BWP (that is, the second initial uplink BWP).
  • different types of terminal devices can allocate the same frequency domain resource for Msg3 transmission, so that the network device does not need to identify the type of the terminal device through Msg1, thereby reducing Msg1 resource overhead, and there is no waste of Msg3 resources.
  • the network device can constrain the starting position of the initial uplink BWP to be the same or consider the offset of the starting positions between different initial uplink BWPs value to ensure that the absolute frequency domain positions of Msg3 transmitted by the two types of terminals are the same to avoid transmission errors.
  • different frequency domain resources can also be allocated to different types of terminal equipment for Msg3 transmission, so that network equipment does not need to identify the type of terminal equipment through Msg1, thereby reducing Msg1 resource overhead, and can pass the same information It enables different types of terminal devices working in different BWP ranges to access successfully, so that the access success rate of terminal devices can be increased without increasing signaling overhead.
  • this embodiment of the present application provides a communication device.
  • the structure of the communication device may be as shown in FIG. 5 , including a communication module 501 and a processing module 502 .
  • the communication device can be specifically used to implement the method performed by the network device in the embodiment of FIG. A part used to perform the function of the associated method.
  • the communication module 501 is used to communicate with the terminal device; the processing module 502 is used to send the configuration information of the first initial uplink BWP to the first terminal device through the communication module 501; Send the configuration information of the second initial uplink BWP; and, send the first information to the first terminal device through the communication module 501 , and/or send the first information to the second terminal device through the communication module 501 .
  • the first frequency domain resource indicated by the first information is within the frequency domain range of the first initial uplink BWP, and the first frequency domain resource is used for the first terminal device to send Msg3; the second frequency domain resource indicated by the first information is within the frequency range of the first initial uplink BWP. 2. Within the frequency domain range of the initial uplink BWP, the second frequency domain resource is used for the second terminal device to send Msg3; wherein, the first terminal device belongs to the first type of terminal device, and the second terminal device belongs to the second type of terminal device.
  • the processing module 502 is further configured to: after sending the first information to the first terminal device through the communication module 501, receive Msg3 from the first terminal device at the first frequency domain resource through the communication module 501; and/or After sending the first information to the second terminal device through the communication module 501, receive Msg3 from the second terminal device through the communication module 501 on the second frequency domain resource.
  • the processing module 502 is further configured to: for the second terminal device, determine the first information based on the start position and length of the second frequency domain resource and the first initial uplink BWP; or, for the first terminal device, based on The starting position and length of the first frequency domain resource and the second initial uplink BWP determine the first information.
  • the communication device can be specifically used to implement the method executed by the terminal device in the embodiment of FIG. A part used to perform the function of the associated method.
  • the communication module 501 is used to receive the first information from the network device, the first information is used to indicate the first frequency domain resource for sending Msg3 in the random access process; the processing module 502 is used to receive the first information based on the first information and the first frequency domain resource 2.
  • the initial uplink BWP determines the first frequency domain resource.
  • the first frequency domain resource is within the frequency domain range of the first initial uplink BWP.
  • the first initial uplink BWP is the initial uplink BWP of the first terminal device, and the second initial uplink BWP is the first uplink BWP. 2.
  • the initial uplink BWP of the terminal device is used to implement the method executed by the terminal device in the embodiment of FIG. A part used to perform the function of the associated method.
  • the communication module 501 is used to receive the first information from the network device, the first information is used to indicate the
  • the processing module 502 may be specifically configured to: determine the starting position of the first frequency domain resource and the length of the first frequency domain resource based on the first information and the size of the second initial uplink BWP.
  • the processing module 502 may also be specifically configured to: determine the starting position of the first frequency domain resource and the length of the first frequency domain resource based on the first information, the first initial uplink BWP, and the first offset value, and the first offset
  • the offset value is a frequency domain offset value between the starting position of the first initial uplink BWP and the starting position of the second initial uplink BWP.
  • each functional module in each embodiment of the present application can be integrated into a processing In the controller, it can also be physically present separately, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It can be understood that, for the function or implementation of each module in the embodiment of the present application, further reference may be made to the relevant description of the method embodiment.
  • the communication device may be as shown in Figure 6, and the device may be a communication device or a chip in a communication device, where the communication device may be the terminal device in the above embodiment or it may be the terminal device in the above embodiment Network equipment.
  • the device includes a processor 601 and a communication interface 602 , and may also include a memory 603 .
  • the processing module 502 may be the processor 601 .
  • the communication module 501 may be a communication interface 602 .
  • the processor 601 may be a CPU, or a digital processing unit or the like.
  • the communication interface 602 may be a transceiver, or an interface circuit such as a transceiver circuit, or a transceiver chip or the like.
  • the device also includes: a memory 603 for storing programs executed by the processor 601 .
  • the memory 603 can be a non-volatile memory, such as a hard disk (hard disk drive, HDD) or a solid-state drive (solid-state drive, SSD), etc., or a volatile memory (volatile memory), such as a random access memory (random -access memory, RAM).
  • the memory 603 is any other medium that can be used to carry or store desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the processor 601 is configured to execute the program codes stored in the memory 603, specifically to execute the actions of the above-mentioned processing module 502, which will not be repeated in this application.
  • the communication interface 602 is specifically used to execute the actions of the communication module 501 described above, which will not be repeated in this application.
  • a specific connection medium among the communication interface 602, the processor 601, and the memory 603 is not limited.
  • the memory 603, the processor 601, and the communication interface 602 are connected through a bus 604.
  • the bus is represented by a thick line in FIG. 6, and the connection mode between other components is only for schematic illustration , is not limited.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 6 , but it does not mean that there is only one bus or one type of bus.
  • FIG. 7 is a schematic structural diagram of a network device provided by an embodiment of the present application, for example, it may be a schematic structural diagram of a network device.
  • the network device can be applied to the system shown in FIG. 1 to execute the function of the network device in the method embodiment described in FIG. 2 above.
  • the network device 70 may include one or more distributed units (distributed unit, DU) 701 and one or more centralized units (centralized unit, CU) 702.
  • the DU 701 may include at least one antenna 705, at least one radio frequency unit 706, at least one processor 707 and at least one memory 708.
  • the DU 701 part is mainly used for transmitting and receiving radio frequency signals, conversion of radio frequency signals and baseband signals, and part of baseband processing.
  • the CU 702 may include at least one processor 7022 and at least one memory 7021 .
  • the CU702 and DU701 can communicate through interfaces, where the control plane (Control plan) interface can be Fs-C, such as F1-C, and the user plane (User Plan) interface can be Fs-U, such as F1-U.
  • control plane Control plan
  • User Plan User Plan
  • the CU 702 is mainly used for baseband processing, controlling network equipment, and the like.
  • the DU 701 and the CU 702 may be physically set together, or physically separated, that is, a distributed base station.
  • the CU 702 is the control center of the network equipment, and can also be called a processing unit, which is mainly used to complete the baseband processing function.
  • the CU 702 can be used to control the network device to execute the operation process related to the network device in the method embodiments described above in FIG. 3 to FIG. 4 .
  • the baseband processing on the CU and the DU can be divided according to the protocol layer of the wireless network, for example, the functions of the packet data convergence protocol (packet data convergence protocol, PDCP) layer and above protocol layers are set in the CU, the protocol layer below the PDCP, for example Functions such as the radio link control (radio link control, RLC) layer and the medium access control (medium access control, MAC) layer are set in the DU.
  • the CU implements RRC and PDCP layer functions, such as the transceiving actions in the embodiment of the present application
  • the DU implements the functions of the RLC, MAC, and physical (physical, PHY) layers, such as the action of determining the transmission mode in the embodiment of the present application.
  • the network device 70 may include one or more radio frequency units (RUs), one or more DUs, and one or more CUs.
  • the DU may include at least one processor 707 and at least one memory 708
  • the DU may include at least one antenna 705 and at least one radio frequency unit 706
  • the CU may include at least one processor 7022 and at least one memory 7021 .
  • the CU702 may be composed of one or more single boards, and multiple single boards may jointly support a wireless access network (such as a 5G network, a 6G network, etc.) Standard wireless access network (such as LTE network, 5G network or 6G network or other networks).
  • the memory 7021 and processor 7022 may serve one or more boards. That is to say, memory and processors can be set independently on each single board. It may also be that multiple single boards share the same memory and processor. In addition, necessary circuits can also be set on each single board.
  • the DU701 can be composed of one or more single boards, and multiple single boards can jointly support a wireless access network (such as a 5G network, a 6G network, etc.) Network access (such as LTE network, 5G network or 6G network or other networks).
  • the memory 708 and the processor 707 may serve one or more boards. That is to say, memory and processors can be set independently on each single board. It may also be that multiple single boards share the same memory and processor. In addition, necessary circuits can also be set on each single board.
  • FIG. 8 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device may be applicable to the system shown in FIG. 1 , and execute the functions of the terminal device in the method embodiment described above in FIG. 2 .
  • FIG. 8 only shows main components of the terminal device.
  • the terminal device 80 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program, for example, to support the terminal device to execute the method embodiments described in FIGS. 3 to 4 above. actions described in .
  • Memory is primarily used to store software programs and data.
  • the control circuit is mainly used for conversion of baseband signal and radio frequency signal and processing of radio frequency signal.
  • the control circuit and the antenna can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the memory, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 8 only shows one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • a memory may also be called a storage medium or a storage device.
  • the memory may be a storage element on the same chip as the processor, that is, an on-chip storage element, or an independent storage element, which is not limited in this embodiment of the present application.
  • the terminal device may include a baseband processor and a central processing unit, the baseband processor is mainly used to process communication protocols and communication data, and the central processor is mainly used to control the entire terminal device , execute the software program, and process the data of the software program.
  • the processor in FIG. 8 can integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors, interconnected through technologies such as a bus.
  • a terminal device may include multiple baseband processors to adapt to different network standards, a terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and the control circuit with the transceiver function can be regarded as the transceiver unit 801 of the terminal device 80, for example, used to support the terminal device to perform the receiving function and the transmitting function.
  • the processor 802 having a processing function is regarded as the processing unit 802 of the terminal device 80 .
  • a terminal device 80 includes a transceiver unit 801 and a processing unit 802 .
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • the device used to realize the receiving function in the transceiver unit 801 can be regarded as a receiving unit, and the device used to realize the sending function in the transceiver unit 801 can be regarded as a sending unit, that is, the transceiver unit 801 includes a receiving unit and a sending unit,
  • the receiving unit can also be called receiver, input port, receiving circuit, etc.
  • the sending unit can be called transmitter, transmitter, or transmitting circuit, etc.
  • the processor 802 can be used to execute the instructions stored in the memory, so as to control the transceiver unit 801 to receive signals and/or send signals, so as to complete the functions of the terminal device in the above method embodiments.
  • the processor 802 also includes an interface for implementing signal input/output functions.
  • the function of the transceiver unit 801 may be realized by a transceiver circuit or a dedicated chip for transceiver.
  • An embodiment of the present invention also provides a computer-readable storage medium for storing computer software instructions to be executed for executing the above-mentioned processor, which includes a program for executing the above-mentioned processor.
  • the embodiment of the present application further provides a communication system, including a communication device for realizing the function of the terminal device in the embodiment of FIG. 2 and a communication device for realizing the function of the network device in the embodiment of FIG. 2 .
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,可以解决网络设备在不确定终端设备的类型的情况下,调度随机接入过程中的一些上行信道时出现传输错误的问题。该方法包括:向第一终端设备发送第一初始上行BWP的配置信息,以及向第二终端设备发送第二初始上行BWP的配置信息,其中,第一终端设备属于第一类终端设备,第二终端设备属于第二类终端设备。向第一终端设备发送第一信息,和/或,向第二终端设备发送第一信息,其中,第一信息指示的第一频域资源在第一初始上行BWP的频域范围内,第一频域资源用于第一终端设备发送Msg3,第一信息指示的第二频域资源在第二初始上行BWP的频域范围内,第二频域资源用于第二终端设备发送Msg3。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2021年05月10日提交中国专利局、申请号为202110506605.8、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在初始接入阶段,网络设备配置一个小区公共的带宽部分(bandwidth part,BWP),其中,包括初始下行BWP(initial DL BWP)和初始上行BWP(initial UL BWP)。其中,随机接入过程中的一些上行信道传输参数在初始上行BWP配置,例如,随机接入过程中的第三消息(Msg3)的传输在初始上行BWP内进行。网络设备可以通过随机接入响应中的上行链路授权(RAR UL grant)调度随机接入过程中的一些上行信道。
由于初始上行BWP的最大带宽不能超过终端设备支持的最大带宽,传统(legacy)终端设备的初始上行BWP的频域范围和比传统终端设备的能力低的终端设备的初始上行BWP的频域范围不同,因此网络设备在不确定终端设备的类型的情况下,调度随机接入过程中的一些上行信道时容易出现传输错误。
发明内容
本申请提供一种通信方法及装置,可以解决网络设备在不确定或者未获得终端设备的类型的情况下,调度随机接入过程中的一些上行信道时出现传输错误的问题。
第一方面,本申请提供一种通信方法,该方法的执行主体可以是网络设备,也可以是芯片或电路。方法包括:向第一终端设备发送第一初始上行BWP的配置信息,以及向第二终端设备发送第二初始上行BWP的配置信息,其中,第一终端设备属于第一类终端设备,第二终端设备属于第二类终端设备。向第一终端设备发送第一信息,和/或,向第二终端设备发送第一信息,其中,第一信息指示的第一频域资源在第一初始上行BWP的频域范围内,第一频域资源用于第一终端设备发送Msg3,第一信息指示的第二频域资源在第二初始上行BWP的频域范围内,第二频域资源用于第二终端设备发送Msg3。
本申请实施例中网络设备调度Msg3时可以针对两类终端设备发送相同的调度信息(即第一信息),该调度信息可以指示第一终端设备在第一终端设备的初始上行BWP(即第一初始上行BWP)范围内进行Msg3传输,并且该调度信息可以指示第二终端设备在第二终端设备的初始上行BWP(即第二初始上行BWP)范围内进行Msg3传输。通过上述方式,网络设备在不确定终端设备的类型的情况下,可以通过相同的指示值调度不同BWP范围的终端设备进行Msg3传输,从而可以避免由于Msg3的调度资源不在终端设备的初始上行BWP范围内导致的传输错误。
在一种可能的设计中,第一信息为资源指示值(RIV)。所述资源指示值是指频域资源的资源指示值。通过上述设计,网络设备可以针对两类终端设备指示相同的RIV。
在一种可能的设计中,在向第一终端设备发送第一信息之后,在第一频域资源接收来自第一终端设备的Msg3;和/或,在向第二终端设备发送第一信息之后,在第二频域资源接收来自第二终端设备的Msg3。通过上述设计,网络设备可以通过同一个信息(第一信息)指示两个终端设备在各自初始上行BWP范围内的频域资源,从而终端设备可以在对应的频域资源上发送Msg3,进而可以提高Msg3传输的成功率。
在一种可能的设计中,针对第二终端设备,基于第二频域资源的起始位置、长度以及第一初始上行BWP确定第一信息。通过上述设计,网络设备针对第一终端设备和第二终端设备均可以根据第一初始上行BWP确定第一信息,从而可以降低复杂度,使网络设备在不确定终端设备类型情况下,可以采用相同的规则确定Msg3传输的频域资源分配信息,从而可以解决可能出现的传输错误。
在一种可能的设计中,针对第一终端设备,基于第一频域资源的起始位置、长度以及第二初始上行BWP确定第一信息。通过上述设计,网络设备针对第一终端设备和第二终端设备均可以根据第二初始上行BWP确定第一信息,从而可以降低复杂度,使网络设备在不确定终端设备类型情况下,可以采用相同的规则确定Msg3传输的频域资源分配信息,从而可以解决可能出现的传输错误。
在一种可能的设计中,针对第一终端设备,基于第一频域资源的起始位置、长度以及第一初始上行BWP确定第一信息。针对第二终端设备,基于第二频域资源的起始位置、长度以及第二初始上行BWP确定第一信息。通过上述设计,可以对协议的改动较小,从而可以提高终端设备的兼容性。
在一种可能的设计中,第一频域资源的频域范围和第二频域资源的频域范围相同,也就是,第一频域资源的绝对频域位置和第二频域资源的绝对频域位置相同,且第一频域资源的长度和第二频域资源的长度相同。通过上述设计,第一终端设备和第二终端设备可以根据同一个信息(第一信息)确定出相同的频域资源用于发送Msg3。
在一种可能的设计中,第一频域资源的起始位置和第二频域资源的起始位置相同,且第一初始上行BWP的起始位置与第二初始上行BWP的起始位置相同。第一频域资源的起始位置为第一频域资源在第一初始上行BWP内的相对频域位置,第二频域资源的起始位置为第二频域资源在第二初始上行BWP内的相对频域位置。
通过上述设计,第一频域资源的起始位置和第二频域资源的起始位置相同,也就是第一频域资源在第一初始上行BWP内的相对频域位置与第二频域资源在第二初始上行BWP内的相对频域位置相同,且第一初始上行BWP的起始位置与第二初始上行BWP的起始位置相同,使得第一频域资源的绝对频域位置和第二频域资源的绝对频域位置相同。
在一种可能的设计中,第一频域资源的起始位置和第二频域资源的起始位置相同。第一频域资源的起始位置为第一频域资源在第一初始上行BWP内的相对频域位置,第二频域资源的起始位置为第二频域资源在第一初始上行BWP内的相对频域位置。
在一种可能的设计中,第一频域资源的起始位置和第二频域资源的起始位置相同。第一频域资源的起始位置为第一频域资源在第一初始上行BWP内的相对频域位置,第二频域资源的起始位置根据第二频域资源在第二初始上行BWP的相对频域位置以及第一偏移值确定的,第一偏移值为所述第一初始上行BWP的起始位置与所述第二初始上行BWP 的起始位置之间的频域偏移值。
通过上述设计,第一频域资源的起始位置和第二频域资源的起始位置相同,也就是第一频域资源在第一初始上行BWP内的相对频域位置与第二频域资源在第二初始上行BWP内的相对频域位置相同,并且根据第二初始上行BWP的起始位置与第一初始上行BWP的起始位置之间的频域偏移值可以实现在第一初始上行BWP的起始位置与第二初始上行BWP的起始位置不对齐的情况下,使得第一频域资源的绝对频域位置和第二频域资源的绝对频域位置相同。
在一种可能的设计中,第一频域资源的频域范围和第二频域资源的频域范围不同。通过上述设计,第一终端设备和第二终端设备可以根据同一个信息(第一信息)确定出各自初始上行BWP范围内的频域资源用于发送Msg3。
在一种可能的设计中,第一频域资源和/或第二频域资源属于第一频域资源集合,第一频域资源集合中任一频域资源对于第一终端设备的RIV和对于第二终端设备的RIV相同。上述设计中,网络设备通过在第一频域资源集合中为第一终端设备和第二终端设备分配Msg3的频域资源,使得网络设备可以通过一个信息(第一信息)分别指示两个终端设备的频域资源。
在一种可能的设计中,第一频域资源和第二频域资源属于第二频域资源集合中的第一频域资源子集合,第二频域资源集合中的至少一个频域资源子集合包括至少一个第一类频域资源和至少一个第二类频域资源,其中,在同一个频域资源子集合内,第一类频域资源对于第一终端设备的RIV和第二类频域资源对于第二终端设备的RIV相同。上述设计中,网络设备通过在第二频域资源集合中为第一终端设备和第二终端设备分配Msg3的频域资源,使得网络设备可以通过一个信息(第一信息)分别指示两个终端设备的频域资源。
在一种可能的设计中,第一信息承载于随机接入响应上行授权(RAR UL grant)或者以临时小区无线网络临时标识(TC-RNTI)加扰的下行控制信息(DCI)中。在一种具体的设计中,第一信息承载于RAR UL grant中的频域资源分配域或者以TC-RNTI加扰的DCI中的频域资源分配域。
第二方面,本申请提供一种通信方法,该方法的执行主体可以是终端设备,也可以是芯片或电路。方法包括:接收来自网络设备的第一信息,第一信息用于指示发送随机接入过程中的第三消息(Msg3)的第一频域资源;基于第一信息以及第二初始上行BWP确定第一频域资源,第一频域资源在第一初始上行BWP的频域范围内,第一初始上行BWP为第一终端设备的初始上行BWP,第二初始上行BWP为第二终端设备的初始上行BWP。
通过本申请实施例提供的方案,第一终端设备和第二终端设备均可以根据第一初始上行BWP确定第一信息,或者均可以根据第二初始上行BWP确定第一信息,相应的,网络设备针对第一终端设备和第二终端设备均可以根据第一初始上行BWP(或者第二初始上行BWP)确定第一信息,从而可以降低复杂度,使网络设备在不确定终端设备类型情况下,可以采用相同的规则确定Msg3传输的频域资源分配信息,从而可以解决可能出现的传输错误。
在一种可能的设计中,第一频域资源在第二初始上行BWP的频域范围内。通过上述设计,第一终端设备和第二终端设备可以根据同一个信息(第一信息)确定出相同的频域资源用于发送Msg3。
在一种可能的设计中,基于第一信息以及第二初始上行BWP确定第一频域资源,包 括:基于第一信息以及第二初始上行BWP的大小确定第一频域资源的起始位置以及第一频域资源的长度。通过上述设计,终端设备可以根据第一初始上行BWP确定第二频域资源的资源分配信息。
在一种可能的设计中,基于第一信息以及第二初始上行BWP确定第一频域资源,包括:基于第一信息以及第一初始上行BWP以及第一偏移值确定第一频域资源的起始位置以及第一频域资源的长度,所述第一偏移值为所述第一初始上行BWP的起始位置与所述第二初始上行BWP的起始位置之间的频域偏移值。通过上述设计,终端设备可以根据第二初始上行BWP的起始位置与第一初始上行BWP的起始位置之间的频域偏移值确定第二频域资源的资源分配信息。
在一种可能的设计中,第一信息承载于RAR UL grant或者以TC-RNTI加扰的DCI中。
第三方面,本申请还提供一种通信装置,该通信装置具有实现上述第一方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中终端设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括接口电路,该接口电路用于支持该通信装置与网络设备等设备之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能模块,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第一方面提供的方法中的描述,此处不做赘述。
第四方面,本申请还提供一种通信装置,该通信装置具有实现上述第二方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中终端设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括接口电路,该接口电路用于支持该通信装置与网络设备等设备之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能模块,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第二方面提供的方法中的描述,此处不做赘述。
第五方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第一方面以及任意可能的设计中的方法。
第六方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该 通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第二方面以及任意可能的设计中的方法。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被处理器执行时,实现前述第一方面以及任意可能的设计中的方法。
第八方面,提供了一种存储有指令的计算机程序产品,当该指令被处理器运行时,实现前述第一方面以及任意可能的设计中的方法。
第九方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述第一方面以及任意可能的设计中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十方面,提供一种通信系统,所述系统包括第一方面所述的装置(如网络设备)以及第二方面所述的装置(如终端设备)。
附图说明
图1为本申请实施例的一种网络系统的架构示意图;
图2为本申请实施例的一种通信方法的流程示意图;
图3为本申请实施例的一种资源分配的示意图;
图4为本申请实施例的另一种资源分配的示意图;
图5为本申请实施例的一种通信装置的结构示意图;
图6为本申请实施例的一种通信装置的结构示意图;
图7为本申请实施例的一种网络设备的结构示意图;
图8为本申请实施例的一种终端设备的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,可以为具有无线收发功能的设备或可设置于任一设备中的芯片,也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、视频监控中的无线终端以及可穿戴终端设备等。
网络设备,可以为用于实现接入网设备的功能的装置,接入网设备可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,例如可以是NR系统中的下一代基站(next Generation node B,gNB),可以是LTE系统中的演进型基站(evolutional node B,eNB)等。网络设备,也可以为能够支持网络设备实现该接入网设备功能的装置,例如芯 片系统,该装置可以被安装在网络设备中。
2)本申请实施例中的终端设备可以为第一类终端设备或第二类终端设备,或者其他需要进行传输性能增强的终端设备,如NR增强型移动宽带(Enhanced Mobile Broadband,eMBB)终端设备等。第一类终端设备和第二类终端设备之间的区别包括如下至少一项:
1.带宽能力不同。第一类终端设备支持的最大带宽可以大于第二类终端设备支持的最大带宽。例如,第一类终端设备最大可以支持在一个载波上同时使用100MHz频域资源和网络设备进行通信,而第二类终端设备最大可以支持在一个载波上同时使用20MHz或者10MHz或者5MHz频域资源和网络设备进行通信。
2.收发天线个数不同。第一类终端设备的天线配置可以大于第二类终端设备的天线配置。例如,第一类终端设备支持的最小天线配置可以大于第二类终端设备支持的最大天线配置。
3.上行最大发射功率不同。第一类终端设备的上行最大发射功率可以大于第二类终端设备的上行最大发射功率。
4.第一类终端设备与第二类终端设备对应的协议版本不同。例如NR Rel-15、NR Rel-16终端设备可以认为是第一类终端设备,第二类终端设备可以认为是NR Rel-17终端设备。
5.第一类终端设备与第二类终端设备支持的载波聚合(carrier aggregation,CA)能力不同。例如,第一类终端设备可以支持载波聚合,而第二类终端设备不支持载波聚合;又例如,第二类终端设备与第一类终端设备都支持载波聚合,但是第一类终端设备同时支持的载波聚合的最大个数大于第二类终端设备同时支持的载波聚合的最大个数。
6.第一类终端设备与第二类终端设备的频分双工(frequency division duplex,FDD)能力不同。例如,第一类终端设备可以支持全双工FDD,而第二类终端设备可以仅支持半双工FDD。
7.第二类终端设备和第一类终端设备对数据的处理时间能力不同,例如,第一类终端设备接收下行数据与发送对该下行数据的反馈之间的最小时延小于第二类终端设备接收下行数据与发送对该下行数据的反馈之间的最小时延。
8.第一类终端设备与第二类终端设备对应的上行和/或下行,传输峰值速率不同。
3)资源指示值(resource indication value,RIV):用于分配传输资源的字段,例如对于Msg3,Msg3通过PUSCH进行传输,其初传调度信息通过第二消息(Msg2)中携带的随机接入响应(random access response,RAR)中的上行调度授权(uplink grant,UL grant)指示,RAR中的UL grant可以简称为RAR grant。RAR grant中包括物理上行共享信道(physical uplink shared channel,PUSCH)频域资源指示(PUSCH frequency resource allocation)域,该PUSCH frequency resource allocation域可以指示Msg3的频域资源分配。该PUSCH frequency resource allocation域可以包括一个与起始资源和连续分配的资源块的长度相应的RIV,在本申请中资源块的长度可以为资源单元的数量。
本申请实施例中“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一 项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一频域资源和第二频域资源,只是为了区分不同的频域资源,而并不是表示这两个频域资源的大小、位置、优先级或者重要程度等的不同。
前文介绍了本申请实施例所涉及到的一些名词概念,下面介绍本申请实施例涉及的技术特征。
随机接入过程包括4步随机接入信道(random access channel,RACH)和2步RACH。在4步RACH中网络设备在接收到终端设备发送的随机接入前导码(random access preamble)之后,向终端设备发送随机接入响应(random access response,RAR),其中包括上行资源分配信息等信息。终端设备基于RAR消息的调度进行发送随机接入过程中的第三消息(Msg 3),Msg3用于发送RRC建立连接请求。在2步RACH中,终端设备向网络设备发送消息A(MsgA),MsgA包括两部分,一部分是preamble,另一部分是PUSCH载荷(payload)。MsgA消息,可以认为包括preamble和4步RACH中的Msg3所包括的内容。
目前,在初始接入阶段,网络设备配置一个小区公共的BWP用于终端设备进行随机接入,包括初始下行BWP(initial DL BWP)和初始上行BWP(initial UL BWP)。其中,随机接入过程中的一些上行信道传输参数在初始上行BWP配置,包括第一消息(Msg1)的物理随机接入信道(physical random access channel,PRACH)资源、Msg3的物理上行共享信道(physical uplink shared channel,PUSCH)资源、第四消息(Msg4)的混合自动重传请求(hybrid automatic repeat request,HARQ)-肯定确认(acknowledgment,ACK)反馈使用的公共PUCCH资源等。
由于初始上行BWP的最大带宽不能超过终端设备支持的最大带宽,第一类终端设备的初始上行BWP的频域范围和第二类终端设备的初始上行BWP的频域范围不同,因此网络设备在不确定终端设备的类型的情况下,调度接入过程中的一些上行信道时容易出现传输错误。例如,由于第一类终端设备的初始上行BWP和第二类终端设备的初始上行BWP的频域范围不同,因此网络设备需要识别出当前接入的用户是第一类终端设备还是第二类终端设备,以确定在哪个初始上行BWP范围内调度当前接入的终端设备的上行传输,例如Msg3传输,否则可能出现传输错误。
基于此,本申请实施例提供一种通信方法及装置,可以解决网络设备在不确定终端设备的类型的情况下,调度随机接入过程中的一些上行信道时出现传输错误的问题。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
本申请提供的通信方法可以应用于各类通信系统中,例如,可以是物联网(internet of things,IoT)、窄带物联网(narrow band internet of things,NB-IoT)、长期演进(long term evolution,LTE),也可以是第五代(5G)通信系统,还可以是LTE与5G混合架构、也可以是5G新无线(new radio,NR)系统以及6G或者未来通信发展中出现的新的通信系统等。本申请所述的5G通信系统可以包括非独立组网(non-standalone,NSA)的5G通信系统、独立组网(standalone,SA)的5G通信系统中的至少一种。通信系统还可以是机器到机器(machine to machine,M2M)网络或者其他网络。
参阅图1所示,为本申请实施例提供的一种通信系统,该通信系统包括网络设备和六 个终端设备,即UE1~UE6。在该通信系统中,UE1~UE6可以发送上行数据给网络设备,网络设备可以接收UE1~UE6发送的上行数据。此外,UE4~UE6也可以组成一个子通信系统。网络设备可以发送下行信息给UE1、UE2、UE3、UE5,UE5可以基于设备到设备(device-to-device,D2D)技术发送下行信息给UE4、UE6。图1仅是一种示意图,并不对通信系统的类型,以及通信系统内包括的设备的数量、类型等进行具体限定。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题同样适用。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。本申请实施例可以用于网络设备调度随机接入过程中的上行信道的场景中,例如,网络设备调度Msg1、Msg3、Msg4的HARQ-ACK反馈使用的公共PUCCH等上行信道。为了便于介绍,在下文中,结合网络设备调度Msg3的场景,以该方法由网络设备和终端设备执行为例进行说明。
参见图2,为本申请提供的一种通信方法的流程示意图。该方法包括:
S201,网络设备向第一终端设备发送第一初始上行BWP的配置信息。
其中,第一终端设备属于第一类终端设备,第一初始上行BWP可以为第一终端设备对应的初始上行BWP。
S202,网络设备向第二终端设备发送第二初始上行BWP的配置信息。
其中,第二终端设备属于第二类终端设备,第二初始上行BWP可以为第二终端设备对应的初始上行BWP。
可选的,网络设备还可以向第一终端设备发送第二初始上行BWP的配置信息。网络设备还可以向第二终端设备发送第一初始上行BWP的配置信息。
一种示例性说明中,第一类终端设备可以为通信系统中的传统(legacy)终端设备,第二类终端设备可以为低能力(reduced capability,REDCAP)终端设备。REDCAP终端设备可以为比传统终端设备的能力低的终端设备。REDCAP终端设备可以具有如下特征:终端能力的降低或受限,例如,带宽能力受限,相比于legacy终端设备,最大信道带宽将降低至20MHz。
需要说明的是,本申请不限定S201和S202的先后顺序。
S203,网络设备发送第一信息。
其中,第一信息指示的第一频域资源在第一初始上行BWP的频域范围内,第一频域资源用于第一终端设备发送Msg3;第一信息指示的第二频域资源在第二初始上行BWP的频域范围内,第二频域资源用于第二终端设备发送Msg3。在第一信息指示Msg3的传输资源时,第一信息可以承载于Msg2或者其他专有信令中,在第一信息指示其他信道的传输资源时,第一信息可以承载于UE专有信令或者广播消息中。
一种示例性说明中,第一信息可以为资源指示值(resource indication value,RIV)。具体地,所述资源指示值为频域资源的资源指示值。下面以第一信息为RIV为例对网络设备调度Msg3的过程进行说明。
一种举例说明中,第一信息可以承载于随机接入响应上行授权(RAR UL grant)或者以临时小区无线网络临时标识(temporary cell RNTI,TC-RNTI)加扰的下行控制信息 (downlink control information,DCI)中。一种具体的实施方式中,第一信息可以承载于RAR UL grant或者以TC-RNTI加扰的DCI中的频域资源分配域。
具体的,网络设备可以向第一终端设备和第二终端设备中的至少一个终端设备发送第一信息,例如,网络设备向第一终端设备发送第一信息,或者,网络设备向第二终端设备发送第一信息。或者,网络设备也可以向第一终端设备和第二终端设备均发送第一信息。
可选的,在网络设备向第一终端设备发送第一信息之后,第一终端设备可以基于第一信息确定第一频域资源。第一终端设备可以在第一频域资源上发送Msg3。
在网络设备向第二终端设备发送第一信息之后,第二终端设备可以基于第一信息确定第二频域资源。第二终端设备可以在第二频域资源上发送Msg3。
本申请实施例中网络设备调度Msg3时可以针对两类终端设备发送相同的调度信息(即第一信息),该调度信息可以指示第一终端设备在第一终端设备的初始上行BWP(即第一初始上行BWP)范围内进行Msg3传输,并且该调度信息可以指示第二终端设备在第二终端设备的初始上行BWP(即第二初始上行BWP)范围内进行Msg3传输。通过上述方式,网络设备在不确定终端设备的类型的情况下,可以通过相同的指示值调度不同BWP范围的终端设备进行Msg3传输,从而可以避免由于Msg3的调度资源不在终端设备的初始上行BWP范围内导致的传输错误。
下面对S203可能的具体实现过程进行示例性描述。
一种可能的实施方式一中,网络设备在调度Msg3时可以为第一终端设备和第二终端设备分配相同的频域资源,即第一频域资源的频域范围可以和第二频域资源的频域范围相同,也就是,第一频域资源的绝对频域位置和第二频域资源的绝对频域位置相同,且第一频域资源的长度和第二频域资源的长度相同。例如,一种实现方式中,网络设备可以在第一频域资源集合中为第一终端设备和第二终端设备分配Msg3的频域资源,其中,第一频域资源集合中任一频域资源对于第一终端设备的RIV和对于第二终端设备的RIV相同。在该实施方式中,第一频域资源和第二频域资源相同,为了便于描述,在该实施方式中,将第一频域资源和第二频域资源统一称为Msg3频域资源。
应理解,“频域资源对于第一终端设备(或者第二终端设备)的RIV”可以理解为网络设备针对第一终端设备(或者第二终端设备)确定的RIV。下面对网络设备针对第一终端设备、第二终端设备确定RIV的过程进行示例性描述。
示例一,针对第一终端设备,网络设备可以基于Msg3频域资源的起始位置、长度以及第一初始上行BWP的大小确定RIV,需要说明的是,这里Msg3频域资源的起始位置为Msg3频域资源在第一初始上行BWP内的起始位置,也就是Msg3频域资源在第一初始上行BWP内的相对频域位置,例如,这里Msg3频域资源的起始位置可以为在第一初始上行BWP内的RB索引。
针对第二终端设备,网络设备可以基于Msg3频域资源的起始位置、长度以及第二初始上行BWP的大小确定RIV,需要说明的是,这里Msg3频域资源的起始位置为Msg3频域资源在第二初始上行BWP内的起始位置,也就是Msg3频域资源第二初始上行BWP的相对频域位置,例如,这里Msg3频域资源的起始位置可以为在第二初始上行BWP内的RB索引。
本申请实施例中,Msg3频域资源的长度可以理解为连续分配的RB的长度或者数量。
下面对第一终端设备的Msg3频域资源的RIV的确定方法以及第二终端设备的Msg3 频域资源的RIV的确定方法进行举例说明。
第一终端设备、第二终端设备的Msg3频域资源的RIV的确定方法可以如下:
如果
Figure PCTCN2022087666-appb-000001
Figure PCTCN2022087666-appb-000002
如果
Figure PCTCN2022087666-appb-000003
Figure PCTCN2022087666-appb-000004
其中,网络设备根据上述确定方法确定第一终端设备的RIV时,RB start为Msg3频域资源在第一初始上行BWP内的起始位置,L RBs为Msg3频域资源的长度,
Figure PCTCN2022087666-appb-000005
为第一初始上行BWP的大小即RB数。其中,L RBs≥1,并且不能超过
Figure PCTCN2022087666-appb-000006
Figure PCTCN2022087666-appb-000007
是向下取整运算。
网络设备根据上述确定方法确定第二终端设备的RIV时,RB start为Msg3频域资源在第二初始上行BWP内的起始位置,L RBs为Msg3频域资源的长度,
Figure PCTCN2022087666-appb-000008
为第二初始上行BWP的大小即RB数。其中,L RBs≥1,并且不能超过
Figure PCTCN2022087666-appb-000009
可选的,网络设备在确定第一信息时可以根据两个终端设备的确定过程确定,也可以通过任一个终端设备的确定过程确定。
相应的,第一终端设备、第二终端设备在接收到第一信息后可以根据上述确定过程的逆过程确定Msg3频域资源。例如,第一终端设备根据第一信息、上述公式以及第一初始上行BWP的大小
Figure PCTCN2022087666-appb-000010
确定Msg3频域资源在第一初始上行BWP内的起始位置RB start和Msg3频域资源的长度L RBs。第二终端设备根据第一信息、上述公式以及第二初始上行BWP的大小
Figure PCTCN2022087666-appb-000011
确定Msg3频域资源在第二初始上行BWP内的起始位置RB start和Msg3频域资源的长度L RBs
下面对第一终端设备确定Msg3频域资源的方法以及第二终端设备确定Msg3频域资源的方法进行举例说明。
第一终端设备、第二终端设备确定Msg3频域资源的方法可以如下:
如果
Figure PCTCN2022087666-appb-000012
或者对于共享频谱信道接入场景,如果
Figure PCTCN2022087666-appb-000013
将频域资源分配域截短到其
Figure PCTCN2022087666-appb-000014
个低位比特,并根据频域资源分配域中包含的RIV确定Msg3频域资源。否则,在N UL,hop比特之后,在频域资源分配域中插入
Figure PCTCN2022087666-appb-000015
个高位比特,或者对于共享频谱信道接入场景,在频域资源分配域中插入
Figure PCTCN2022087666-appb-000016
个高位比特,并且插入的比特值设置为‘0’,其中N UL,hop比特指示Msg3跳频信息,并根据频域资源分配域中包含的RIV确定Msg3频域资源。
根据频域资源分配域中包含的RIV确定Msg3频域资源的过程可以为:
如果
Figure PCTCN2022087666-appb-000017
Figure PCTCN2022087666-appb-000018
如果
Figure PCTCN2022087666-appb-000019
Figure PCTCN2022087666-appb-000020
其中,第一终端设备确定Msg3频域资源时,RB start为Msg3频域资源在第一初始上行BWP内的起始位置,L RBs为Msg3频域资源的长度,
Figure PCTCN2022087666-appb-000021
为第一初始上行BWP的大小即RB数。其中,L RBs≥1,并且不能超过
Figure PCTCN2022087666-appb-000022
第一终端设备可以根据以上方法,由频域资源分配域确定Msg3在第一初始上行BWP内的频域资源,包括频域资源的起始位置即起始RB,连续分配的RB的长度或者数量。
第二终端设备确定Msg3频域资源时,RB start为Msg3频域资源在第二初始上行BWP内的起始位置,L RBs为Msg3频域资源的长度,
Figure PCTCN2022087666-appb-000023
为第二初始上行BWP的大小即RB数。其中,L RBs≥1,并且不能超过
Figure PCTCN2022087666-appb-000024
第二终端设备可以根据以上方法,由 频域资源分配域确定Msg3在第二初始上行BWP内的频域资源,包括频域资源的起始位置即起始RB,连续分配的RB的长度或者数量。
示例二,针对第一终端设备和第二终端设备,网络设备可以基于Msg3频域资源的起始位置、长度以及第一初始上行BWP的大小确定RIV。
其中,网络设备确定第一终端设备和第二终端设备时采用的确定方法,与上述实施例中第一终端设备、第二终端设备的Msg3频域资源的RIV的确定方法类似,区别在于,示例一中,网络设备根据上述确定方法确定第一终端设备和第二终端设备的RIV时,
Figure PCTCN2022087666-appb-000025
的含义不同,例如,在确定第一终端设备的RIV时
Figure PCTCN2022087666-appb-000026
为第一初始上行BWP的大小即RB数。在确定第二终端设备的RIV时,
Figure PCTCN2022087666-appb-000027
为第二初始上行BWP的大小即RB数。而示例二中,网络设备根据上述确定方法确定第一终端设备和第二终端设备的RIV时,
Figure PCTCN2022087666-appb-000028
的含义相同,
Figure PCTCN2022087666-appb-000029
均为第一初始上行BWP的大小即RB数。具体过程可以参阅示例一的相关描述,重复之处不再赘述。
相应的,第一终端设备、第二终端设备在接收到第一信息后可以根据第一信息以及第一初始上行BWP的大小确定Msg3频域资源。其中,第一终端设备、第二终端设备确定Msg3频域资源时采用的方法,与上述实施例中第一终端设备、第二终端设备确定Msg3频域资源的方法类似,区别在于,示例一中,第一终端设备和第二终端设备确定Msg3频域资源时,
Figure PCTCN2022087666-appb-000030
的含义不同,例如,第一终端设备确定Msg3频域资源时采用的是第一初始上行BWP的大小,即
Figure PCTCN2022087666-appb-000031
为第一初始上行BWP的大小。第二终端设备确定Msg3频域资源时采用的是第二初始上行BWP的大小,即
Figure PCTCN2022087666-appb-000032
为第二初始上行BWP的大小。而示例二中,第一终端设备和第二终端设备确定Msg3频域资源时
Figure PCTCN2022087666-appb-000033
的含义相同,即第一终端设备和第二终端设备确定Msg3频域资源时均采用第一初始上行BWP的大小,即
Figure PCTCN2022087666-appb-000034
均为第一初始上行BWP的大小即RB数。具体过程可以参阅示例一的相关描述,重复之处不再赘述。
可以理解的,针对第一终端设备和第二终端设备,网络设备也可以基于Msg3频域资源的起始位置、长度以及第二初始上行BWP确定RIV。相应的,第一终端设备、第二终端设备在接收到第一信息后可以根据第一信息以及第二初始上行BWP的大小确定Msg3频域资源。
可选的,在上述两个示例中,网络设备在确定第一终端设备的RIV时Msg3频域资源的起始位置也可以为Msg3频域资源在第二初始上行BWP内的起始位置。相应的,第一终端设备可以根据第二初始上行BWP的起始位置和根据第一信息确定出来的Msg3频域资源的起始位置确定Msg3频域资源的绝对频域位置。
或者,网络设备在确定第二终端设备的RIV时Msg3频域资源的起始位置也可以为Msg3频域资源在第一初始上行BWP内的起始位置。相应的,第二终端设备可以根据第一初始上行BWP的起始位置和根据第一信息确定出来的Msg3频域资源的起始位置确定Msg3频域资源的绝对频域位置。
以第二终端设备为例,第二终端设备根据第一初始上行BWP的起始位置和根据第一信息确定出来的Msg3频域资源的起始位置确定Msg3频域资源的绝对频域位置可以通过如下方法实现:采用第一初始上行BWP的起始位置确定Msg3的频域资源位置。或者,采用第二初始上行BWP的起始位置和第一偏移值共同确定Msg3频域资源的起始位置,第一偏移值为第一初始上行BWP的起始位置与第二初始上行BWP的起始位置之间的频域偏移值。其中,第一初始上行BWP的起始位置与第二初始上行BWP的起始位置之间的频域偏移值可以是网络设备通过信令通知的,也可以是第二终端设备根据第一初始上行BWP的配置信息和第二初始上行BWP的配置信息确定的。
第一终端设备根据第二初始上行BWP的起始位置和根据第一信息确定出来的Msg3频域资源的起始位置确定Msg3频域资源的绝对频域位置的方式与上述过程类似,这里不在重复赘述。
可选的,在上述实施方式一中,第一初始上行BWP与第二初始上行BWP的起始位置可以相同。例如,第一初始上行BWP与第二初始上行BWP的起始位置相同可以为协议预定义的。又例如,第一初始上行BWP与第二初始上行BWP的起始位置相同也可以为网络设备根据算法实现确定的。通过上述实施方式,网络设备调度的Msg3频域资源位于第二初始上行BWP的频域范围内,可以保证该Msg3频域资源也在第一初始上行BWP的频域范围内。
示例性的,网络设备为第一终端设备和第二终端设备分配的Msg3的频域资源可以如图3所示。
另一种可能的实施方式二中,网络设备在调度Msg3时可以为第一终端设备和第二终端设备分配不同的频域资源,即第一频域资源的频域范围和第二频域资源的频域范围可以不同。
例如,一种实现方式中,网络设备可以在第二频域资源集合中为第一终端设备分配第一频域资源,以及为第二终端设备分配第二频域资源。第二频域资源集合中包括至少一个频域资源子集合,其中,任一频域资源子集合包括第一类频域资源和第二类频域资源,在同一个频域资源子集合中,任一第一类频域资源对于第一终端设备的RIV和任一第二类频域资源对于第二终端设备的RIV相同。
在该实现方式中,第一频域资源可以为第二频域资源集合中的第一频域资源子集合中的第一类频域资源,第二频域资源可以为第二频域资源集合中的第一频域资源子集合中的第二类频域资源。
举例说明,第二频域资源包括至少一个频域资源子集合,其中,任一频域资源子集合包括频域资源1和频域资源2,频域资源1对于第一终端设备的RIV和频域资源2对于第二终端设备的RIV相同。网络设备可以在该第二频域资源集合中为第一终端设备分配第一频域资源,以及为第二终端设备分配第二频域资源,例如,网络设备可以选择第二频域资源集合中的频域资源子集合1,将频域资源子集合1中的频域资源1分配给第一终端设备,将频域资源子集合1中的频域资源2分配给第二终端设备。
一个具体的例子中,以TDD 100MHz&30kHz,第一初始上行BWP大小273PRB,第二初始上行BWP大小51PRB为例,第二频域资源集合的频域资源集合1包括一个在第一初始上行BWP内调度的频域资源A,频域资源A的起始位置为0,长度为2,还包括一个第二初始上行BWP内调度的频域资源B,频域资源B的起始位置为18,长度为6。网络设备针对第一终端设备确定RIV时,可以根据上述实施方式一中的公式,其中,RB start为0,L RBs为2,
Figure PCTCN2022087666-appb-000035
为273计算出来的RIV为273。网络设备针对第二终端设备确定RIV时,可以根据上述实施方式一中的公式,其中,RB start为18,L RBs为6,
Figure PCTCN2022087666-appb-000036
为51计算出来的RIV为273。从而网络设备可以为第一终端设备分配的RB start为0,L RBs为2的第一频域资源,为第二终端设备分配RB start为18,L RBs为6的第二频域资源。
可选的,实施方式二中网络设备针对第一终端设备和第二终端设备确定RIV的过程与上述实施方式一中网络设备针对第一终端设备和第二终端设备确定RIV的过程类似,区别在于,上述实施方式一中,网络设备针对第一终端设备和第二终端设备确定RIV时 基于的是相同的频域资源(即上述Msg3频域资源),而实施方式二中,网络设备针对第一终端设备和第二终端设备确定RIV时基于的是不同的频域资源具体的,网络设备针对第一终端设备确定RIV时基于的是第一频域资源,针对第二终端设备确定RIV时基于的是第二频域资源,具体过程可以参阅实施方式一的相关描述,重复之处不再赘述。
相应的,实施方式二中第一终端设备、第二终端设备确定Msg3的频域资源的方式与上述实施方式一类似,区别在于,上述实施方式一中第一终端设备和第二终端设备确定的是相同的频域资源(即上述Msg3频域资源),而实施方式二中第一终端设备确定的是第一频域资源,第二终端设备确定的是第二频域资源,具体方法可以参阅上述实施方式一的相关描述,重复之处这里不再赘述。
示例性的,网络设备为第一终端设备和第二终端设备分配的Msg3的频域资源可以如图4所示。
在一些实施例中,在步骤S203之后,网络设备可以检测第一终端设备和/或第二终端设备发送的Msg3,例如,网络设备可以在第一频域资源上检测第一终端设备发送的Msg3,在第二频域资源上检测第二终端设备发送的Msg3。
如果检测到第一终端设备和/或第二终端设备发送的Msg3,则网络设备向第一终端设备和/或第二终端设备发送Msg4,否则通过下行控制信息(downlink control information,DCI)指示或者调度第一终端设备和/或第二终端设备重新传输Msg3,该DCI经过TC-RNTI加扰CRC。其中,该DCI携带的频域资源分配域中包含的RIV的确定方法可以参阅S203中第一信息的确定方法。
相应的,第一终端设备和/或第二终端设备检测TC-RNTI加扰CRC的DCI,如果该DCI指示的是Msg3的重传,则根据该DCI中信息重新发送Msg3。
可选的,如果该DCI指示的是Msg4,则根据该DCI中的信息接收Msg4。
本申请实施例中网络设备调度Msg3时可以针对两类终端设备发送相同的调度信息(即第一信息),该调度信息可以指示第一终端设备在第一终端设备的初始上行BWP(即第一初始上行BWP)范围内进行Msg3传输,并且该调度信息可以指示第二终端设备在第二终端设备的初始上行BWP(即第二初始上行BWP)范围内进行Msg3传输。通过上述方式,网络设备在不确定终端设备的类型的情况下,可以通过相同的指示值调度不同BWP范围的终端设备进行Msg3传输,从而可以避免传输错误。
本申请实施例针对不同类型的终端设备可以分配相同的频域资源用于Msg3传输,使得网络设备可以不需要通过Msg1识别终端设备的类型,从而可以减少Msg1资源开销,且不存在Msg3资源浪费。并且,当网络设备针对不同类型的终端设备在不同的BWP范围内分配相同的频域资源时,可以通过约束初始上行BWP的起始位置相同或者考虑不同初始上行BWP间的起始位置的偏移值,来保证两类终端Msg3传输的绝对频域位置相同,避免出现传输错误。
本申请实施例针对不同类型的终端设备也可以分配不同的频域资源用于Msg3传输,使得网络设备可以不需要通过Msg1识别终端设备的类型,从而可以减少Msg1资源开销,且可以通过同一个信息使能工作到不同BWP范围的不同类型终端设备接入成功,从而在不增加信令开销的基础上可以增加终端设备的接入成功率。
基于与方法实施例的同一发明构思,本申请实施例提供一种通信装置,该通信装置的结构可以如图5所示,包括通信模块501和处理模块502。
在一种具体的实施方式中,通信装置具体可以用于实现图2的实施例中网络设备执行的方法,该装置可以是网络设备本身,也可以是网络设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。其中,通信模块501,用于和终端设备进行通信;处理模块502,用于通过通信模块501向第一终端设备发送第一初始上行BWP的配置信息;以及,通过通信模块501向第二终端设备发送第二初始上行BWP的配置信息;以及,通过通信模块501向第一终端设备发送第一信息,和/或,通过通信模块501向第二终端设备发送第一信息。
其中,第一信息指示的第一频域资源在第一初始上行BWP的频域范围内,第一频域资源用于第一终端设备发送Msg3;第一信息指示的第二频域资源在第二初始上行BWP的频域范围内,第二频域资源用于第二终端设备发送Msg3;其中,第一终端设备属于第一类终端设备,第二终端设备属于第二类终端设备。
可选的,处理模块502,还用于:在通过通信模块501向第一终端设备发送第一信息之后,通过通信模块501在第一频域资源接收来自第一终端设备的Msg3;和/或,在通过通信模块501向第二终端设备发送第一信息之后,通过通信模块501在第二频域资源接收来自第二终端设备的Msg3。
可选的,处理模块502,还用于:针对第二终端设备,基于第二频域资源的起始位置、长度以及第一初始上行BWP确定第一信息;或者,针对第一终端设备,基于第一频域资源的起始位置、长度以及第二初始上行BWP确定第一信息。
在一种具体的实施方式中,通信装置具体可以用于实现图2的实施例中终端设备执行的方法,该装置可以是终端设备本身,也可以是终端设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。其中,通信模块501,用于接收来自网络设备的第一信息,第一信息用于指示发送随机接入过程中的Msg3的第一频域资源;处理模块502,用于基于第一信息以及第二初始上行BWP确定第一频域资源,第一频域资源在第一初始上行BWP的频域范围内,第一初始上行BWP为第一终端设备的初始上行BWP,第二初始上行BWP为第二终端设备的初始上行BWP。
可选的,处理模块502,可以具体用于:基于第一信息以及第二初始上行BWP的大小确定第一频域资源的起始位置以及第一频域资源的长度。
或者,处理模块502,也可以具体用于:基于第一信息以及第一初始上行BWP以及第一偏移值确定第一频域资源的起始位置以及第一频域资源的长度,第一偏移值为第一初始上行BWP的起始位置与第二初始上行BWP的起始位置之间的频域偏移值。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。可以理解的是,本申请实施例中各个模块的功能或者实现可以进一步参考方法实施例的相关描述。
一种可能的方式中,通信装置可以如图6所示,该装置可以是通信设备或者通信设备中的芯片,其中该通信设备可以为上述实施例中的终端设备也可以是上述实施例中的网络设备。该装置包括处理器601和通信接口602,还可以包括存储器603。其中,处理模块502可以为处理器601。通信模块501可以为通信接口602。
处理器601,可以是一个CPU,或者为数字处理单元等等。通信接口602可以是收发 器、也可以为接口电路如收发电路等、也可以为收发芯片等等。该装置还包括:存储器603,用于存储处理器601执行的程序。存储器603可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器603是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质,但不限于此。
处理器601用于执行存储器603存储的程序代码,具体用于执行上述处理模块502的动作,本申请在此不再赘述。通信接口602具体用于执行上述通信模块501的动作,本申请在此不再赘述。
本申请实施例中不限定上述通信接口602、处理器601以及存储器603之间的具体连接介质。本申请实施例在图6中以存储器603、处理器601以及通信接口602之间通过总线604连接,总线在图6中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图6中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图7是本申请实施例提供的一种网络设备的结构示意图,如可以为网络设备的结构示意图。该网络设备可应用于如图1所示的系统中,执行上述图2所述方法实施例中网络设备的功能。网络设备70可包括一个或多个分布单元(distributed unit,DU)701和一个或多个集中单元(centralized unit,CU)702。所述DU 701可以包括至少一个天线705,至少一个射频单元706,至少一个处理器707和至少一个存储器708。所述DU 701部分主要用于射频信号的收发以及射频信号与基带信号的转换,以及部分基带处理。CU702可以包括至少一个处理器7022和至少一个存储器7021。CU702和DU701之间可以通过接口进行通信,其中,控制面(Control plan)接口可以为Fs-C,比如F1-C,用户面(User Plan)接口可以为Fs-U,比如F1-U。
所述CU 702部分主要用于进行基带处理,对网络设备进行控制等。所述DU 701与CU 702可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。所述CU 702为网络设备的控制中心,也可以称为处理单元,主要用于完成基带处理功能。例如所述CU 702可以用于控制网络设备执行上述图3~图4所述方法实施例中关于网络设备的操作流程。
具体的,CU和DU上的基带处理可以根据无线网络的协议层划分,例如分组数据汇聚协议(packet data convergence protocol,PDCP)层及以上协议层的功能设置在CU,PDCP以下的协议层,例如无线链路控制(radio link control,RLC)层和媒体接入控制(medium access control,MAC)层等的功能设置在DU。又例如,CU实现RRC,PDCP层的功能,例如本申请实施例中的收发动作,DU实现RLC、MAC和物理(physical,PHY)层的功能,例如本申请实施例中确定传输方式的动作。
此外,可选的,网络设备70可以包括一个或多个射频单元(RU),一个或多个DU和一个或多个CU。其中,DU可以包括至少一个处理器707和至少一个存储器708,DU可以包括至少一个天线705和至少一个射频单元706,CU可以包括至少一个处理器7022和至少一个存储器7021。
在一个实例中,所述CU702可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网、6G网等),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或6G网或其他网)。所述存储器7021和处理器7022可以服务于一 个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。所述DU701可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网、6G网等),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或6G网或其他网)。所述存储器708和处理器707可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
图8是本申请实施例提供的一种终端设备的结构示意图。该终端设备可适用于图1所示出的系统中,执行上述图2所述方法实施例中终端设备的功能。为了便于说明,图8仅示出了终端设备的主要部件。如图8所示,终端设备80包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述图3~图4所述方法实施例中所描述的动作。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储器的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图8仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以为与处理器处于同一芯片上的存储元件,即片内存储元件,或者为独立的存储元件,本申请实施例对此不做限定。
作为一种可选的实现方式,所述终端设备可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图8中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备80的收发单元801,例如,用于支持终端设备执行接收功能和发送功能。将具有处理功能的处理器802视为终端设备80的处理单元802。如图8所示,终端设备80包括收发单元801和处理单元802。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单 元801中用于实现接收功能的器件视为接收单元,将收发单元801中用于实现发送功能的器件视为发送单元,即收发单元801包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理器802可用于执行该存储器存储的指令,以控制收发单元801接收信号和/或发送信号,完成上述方法实施例中终端设备的功能。所述处理器802还包括接口,用以实现信号的输入/输出功能。作为一种实现方式,收发单元801的功能可以考虑通过收发电路或者收发的专用芯片实现。
本发明实施例还提供了一种计算机可读存储介质,用于存储为执行上述处理器所需执行的计算机软件指令,其包含用于执行上述处理器所需执行的程序。
本申请实施例还提供一种通信系统,包括用于实现图2的实施例中终端设备功能的通信装置和用于实现图2的实施例中网络设备功能的通信装置。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。

Claims (34)

  1. 一种通信方法,其特征在于,所述方法包括:
    向第一终端设备发送第一初始上行带宽部分BWP的配置信息;
    向第二终端设备发送第二初始上行BWP的配置信息;
    向所述第一终端设备发送第一信息,和/或,向所述第二终端设备发送所述第一信息;
    所述第一信息指示的第一频域资源在所述第一初始上行BWP的频域范围内,所述第一频域资源用于所述第一终端设备发送Msg3;
    所述第一信息指示的第二频域资源在所述第二初始上行BWP的频域范围内,所述第二频域资源用于所述第二终端设备发送Msg3;
    其中,所述第一终端设备属于第一类终端设备,所述第二终端设备属于第二类终端设备。
  2. 如权利要求1所述的方法,其特征在于,所述第一信息为频域资源的资源指示值RIV。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    在向所述第一终端设备发送第一信息之后,在所述第一频域资源接收来自所述第一终端设备的Msg3;和/或
    在向所述第二终端设备发送所述第一信息之后,在所述第二频域资源接收来自所述第二终端设备的Msg3。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    针对所述第二终端设备,基于所述第二频域资源的起始位置、长度以及所述第一初始上行BWP确定所述第一信息;或者
    针对所述第一终端设备,基于所述第一频域资源的起始位置、长度以及所述第二初始上行BWP确定所述第一信息。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述第一频域资源的频域范围和所述第二频域资源的频域范围相同。
  6. 如权利要求5所述的方法,其特征在于,所述第一初始上行BWP的起始位置与所述第二初始上行BWP的起始位置相同。
  7. 如权利要求5所述的方法,其特征在于,所述第二频域资源的起始位置为根据所述第一初始上行BWP的起始位置确定的;或者
    所述第二频域资源的起始位置为根据所述第二初始上行BWP的起始位置以及第一偏移值确定的,所述第一偏移值为所述第一初始上行BWP的起始位置与所述第二初始上行BWP的起始位置之间的频域偏移值。
  8. 如权利要求1-4任一项所述的方法,其特征在于,所述第一频域资源的频域范围和所述第二频域资源的频域范围不同。
  9. 如权利要求5所述的方法,其特征在于,所述第一频域资源和/或所述第二频域资源属于第一频域资源集合,所述第一频域资源集合中任一频域资源对于所述第一终端设备的RIV和对于所述第二终端设备的RIV相同。
  10. 如权利要求1-9任一项所述的方法,其特征在于,所述第一信息承载于随机接入响应上行授权RAR UL grant或者以临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI中。
  11. 一种通信方法,其特征在于,所述方法适用于第一终端设备或者所述第一终端设备中的芯片,所述方法包括:
    接收来自网络设备的第一信息,所述第一信息用于指示发送随机接入过程中的第三消息Msg3的第一频域资源;
    基于所述第一信息以及第二初始上行带宽部分BWP确定所述第一频域资源,所述第一频域资源在第一初始上行BWP的频域范围内,所述第一初始上行BWP为所述第一终端设备的初始上行BWP,所述第二初始上行BWP为第二终端设备的初始上行BWP。
  12. 如权利要求11所述的方法,其特征在于,所述第一频域资源在所述第二初始上行BWP的频域范围内。
  13. 如权利要求11或12所述的方法,其特征在于,基于所述第一信息以及第二初始上行BWP确定所述第一频域资源,包括:
    基于所述第一信息以及所述第二初始上行BWP的大小确定所述第一频域资源的起始位置以及所述第一频域资源的长度。
  14. 如权利要求11或12所述的方法,其特征在于,基于所述第一信息以及第二初始上行BWP确定所述第一频域资源,包括:
    基于所述第一信息以及所述第一初始上行BWP以及第一偏移值确定所述第一频域资源的起始位置以及所述第一频域资源的长度,所述第一偏移值为所述第一初始上行BWP的起始位置与所述第二初始上行BWP的起始位置之间的频域偏移值。
  15. 如权利要求11-14任一项所述的方法,其特征在于,所述第一信息为频域资源的资源指示值RIV。
  16. 如权利要求11-15任一项所述的方法,其特征在于,所述第一信息包括承载于随机接入响应上行授权RAR UL grant或者以临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI中。
  17. 一种通信装置,其特征在于,所述装置包括:
    通信模块,用于和终端设备进行通信;
    处理模块,用于通过所述通信模块向第一终端设备发送第一初始上行带宽部分BWP的配置信息;
    以及,通过所述通信模块向第二终端设备发送第二初始上行BWP的配置信息;
    以及,通过所述通信模块向所述第一终端设备发送第一信息,和/或,通过所述通信模块向所述第二终端设备发送所述第一信息;
    所述第一信息指示的第一频域资源在所述第一初始上行BWP的频域范围内,所述第一频域资源用于所述第一终端设备发送Msg3;
    所述第一信息指示的第二频域资源在所述第二初始上行BWP的频域范围内,所述第二频域资源用于所述第二终端设备发送Msg3;
    其中,所述第一终端设备属于第一类终端设备,所述第二终端设备属于第二类终端设备。
  18. 如权利要求17所述的装置,其特征在于,所述第一信息为频域资源的资源指示值RIV。
  19. 如权利要求17或18所述的装置,其特征在于,所述处理模块,还用于:
    在通过所述通信模块向所述第一终端设备发送第一信息之后,通过所述通信模块在所 述第一频域资源接收来自所述第一终端设备的Msg3;和/或
    在通过所述通信模块向所述第二终端设备发送所述第一信息之后,通过所述通信模块在所述第二频域资源接收来自所述第二终端设备的Msg3。
  20. 如权利要求17-19任一项所述的装置,其特征在于,所述处理模块,还用于:
    针对所述第二终端设备,基于所述第二频域资源的起始位置、长度以及所述第一初始上行BWP确定所述第一信息;或者
    针对所述第一终端设备,基于所述第一频域资源的起始位置、长度以及所述第二初始上行BWP确定所述第一信息。
  21. 如权利要求17-20任一项所述的装置,其特征在于,所述第一频域资源的频域范围和所述第二频域资源的频域范围相同。
  22. 如权利要求21所述的装置,其特征在于,所述第一初始上行BWP的起始位置与所述第二初始上行BWP的起始位置相同。
  23. 如权利要求21所述的装置,其特征在于,所述第二频域资源的起始位置为根据所述第一初始上行BWP的起始位置确定的;或者
    所述第二频域资源的起始位置为根据所述第二初始上行BWP的起始位置以及第一偏移值确定的,所述第一偏移值为所述第一初始上行BWP的起始位置与所述第二初始上行BWP的起始位置之间的频域偏移值。
  24. 如权利要求17-20任一项所述的装置,其特征在于,所述第一频域资源的频域范围和所述第二频域资源的频域范围不同。
  25. 如权利要求21所述的装置,其特征在于,所述第一频域资源和/或所述第二频域资源属于第一频域资源集合,所述第一频域资源集合中任一频域资源对于所述第一终端设备的RIV和对于所述第二终端设备的RIV相同。
  26. 如权利要求17-25任一项所述的装置,其特征在于,所述第一信息承载于随机接入响应上行授权RAR UL grant或者以临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI中。
  27. 一种通信装置,其特征在于,所述装置为第一终端设备或所述第一终端设备中的芯片,所述装置包括:
    通信模块,用于接收来自网络设备的第一信息,所述第一信息用于指示发送随机接入过程中的第三消息Msg3的第一频域资源;
    处理模块,用于基于所述第一信息以及第二初始上行带宽部分BWP确定所述第一频域资源,所述第一频域资源在第一初始上行BWP的频域范围内,所述第一初始上行BWP为所述第一终端设备的初始上行BWP,所述第二初始上行BWP为第二终端设备的初始上行BWP。
  28. 如权利要求27所述的装置,其特征在于,所述第一频域资源在所述第二初始上行BWP的频域范围内。
  29. 如权利要求27或28所述的装置,其特征在于,所述处理模块,具体用于:
    基于所述第一信息以及所述第二初始上行BWP的大小确定所述第一频域资源的起始位置以及所述第一频域资源的长度。
  30. 如权利要求27或28所述的装置,其特征在于,所述处理模块,具体用于:
    基于所述第一信息以及所述第一初始上行BWP以及第一偏移值确定所述第一频域资 源的起始位置以及所述第一频域资源的长度,所述第一偏移值为所述第一初始上行BWP的起始位置与所述第二初始上行BWP的起始位置之间的频域偏移值。
  31. 如权利要求27-30任一项所述的装置,其特征在于,所述第一信息为频域资源的资源指示值RIV。
  32. 如权利要求27-31任一项所述的装置,其特征在于,所述第一信息包括承载于随机接入响应上行授权RAR UL grant或者以临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI中。
  33. 一种通信系统,其特征在于,所述通信系统包括网络设备、第一终端设备和第二终端设备,其中,所述第一终端设备属于第一类终端设备,所述第二终端设备属于第二类终端设备;
    其中,所述网络设备向所述第一终端设备发送第一初始上行带宽部分BWP的配置信息;以及,向所述第二终端设备发送第二初始上行BWP的配置信息;
    所述网络设备向所述第一终端设备发送第一信息,和/或,向所述第二终端设备发送所述第一信息,其中,所述第一信息指示的第一频域资源在所述第一初始上行BWP的频域范围内,所述第一频域资源用于所述第一终端设备发送Msg3;所述第一信息指示的第二频域资源在所述第二初始上行BWP的频域范围内,所述第二频域资源用于所述第二终端设备发送Msg3;
    所述第一终端设备基于所述第一信息以及所述第一初始上行BWP确定所述第一频域资源,或者基于所述第一信息以及所述第二初始上行BWP确定所述第一频域资源。
  34. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求1~10中任意一项所述的方法,或者使得所述计算机执行如权利要求11~16中任意一项所述的方法。
PCT/CN2022/087666 2021-05-10 2022-04-19 一种通信方法及装置 WO2022237468A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237039453A KR20230170084A (ko) 2021-05-10 2022-04-19 통신 방법 및 장치
EP22806438.2A EP4319431A1 (en) 2021-05-10 2022-04-19 Communication method and apparatus
BR112023023459A BR112023023459A2 (pt) 2021-05-10 2022-04-19 Método de comunicação, aparelho, sistema e meio de armazenamento
JP2023569608A JP2024517913A (ja) 2021-05-10 2022-04-19 通信方法および装置
US18/492,805 US20240064722A1 (en) 2021-05-10 2023-10-24 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110506605.8 2021-05-10
CN202110506605.8A CN115334677A (zh) 2021-05-10 2021-05-10 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/492,805 Continuation US20240064722A1 (en) 2021-05-10 2023-10-24 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2022237468A1 true WO2022237468A1 (zh) 2022-11-17

Family

ID=83912780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087666 WO2022237468A1 (zh) 2021-05-10 2022-04-19 一种通信方法及装置

Country Status (7)

Country Link
US (1) US20240064722A1 (zh)
EP (1) EP4319431A1 (zh)
JP (1) JP2024517913A (zh)
KR (1) KR20230170084A (zh)
CN (1) CN115334677A (zh)
BR (1) BR112023023459A2 (zh)
WO (1) WO2022237468A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024120440A1 (zh) * 2022-12-06 2024-06-13 中国移动通信有限公司研究院 资源配置方法、装置、通信设备及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803396A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 资源分配的方法和装置
US20190261425A1 (en) * 2018-02-17 2019-08-22 Kyungmin Park Bandwidth Part Configuration Information
CN110536387A (zh) * 2019-08-15 2019-12-03 中兴通讯股份有限公司 一种数据传输方法、装置及计算机可读存储介质
CN111492716A (zh) * 2020-03-23 2020-08-04 北京小米移动软件有限公司 用于随机接入的通信方法、装置及计算机可读存储介质
CN111525995A (zh) * 2019-02-03 2020-08-11 华为技术有限公司 一种数据传输方法、网络设备和终端设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803396A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 资源分配的方法和装置
US20190261425A1 (en) * 2018-02-17 2019-08-22 Kyungmin Park Bandwidth Part Configuration Information
CN111525995A (zh) * 2019-02-03 2020-08-11 华为技术有限公司 一种数据传输方法、网络设备和终端设备
CN110536387A (zh) * 2019-08-15 2019-12-03 中兴通讯股份有限公司 一种数据传输方法、装置及计算机可读存储介质
CN111492716A (zh) * 2020-03-23 2020-08-04 北京小米移动软件有限公司 用于随机接入的通信方法、装置及计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Remaining issues of random access for NR-U", 3GPP DRAFT; R1-2008042, vol. RAN WG1, 16 October 2020 (2020-10-16), pages 1 - 8, XP051939444 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024120440A1 (zh) * 2022-12-06 2024-06-13 中国移动通信有限公司研究院 资源配置方法、装置、通信设备及可读存储介质

Also Published As

Publication number Publication date
KR20230170084A (ko) 2023-12-18
JP2024517913A (ja) 2024-04-23
CN115334677A (zh) 2022-11-11
US20240064722A1 (en) 2024-02-22
EP4319431A1 (en) 2024-02-07
BR112023023459A2 (pt) 2024-01-30

Similar Documents

Publication Publication Date Title
WO2021027940A1 (zh) 一种用于指示信号传输的方法及装置
WO2019015590A1 (zh) 一种传输方法及其装置
US20240030964A1 (en) Communication method and apparatus
EP3595384B1 (en) Information transmission method and related device
WO2021204094A1 (zh) 一种通信方法、装置及系统
WO2022028361A1 (zh) 一种无线接入的方法以及装置
WO2021088075A1 (zh) 信息指示方法及装置
WO2022194151A1 (zh) 一种通信方法及装置
US20240064722A1 (en) Communication method and apparatus
WO2021088028A1 (zh) 一种资源配置方法及装置
WO2019129253A1 (zh) 一种通信方法及装置
WO2018076326A1 (zh) 用于上行载波聚合的通信方法和装置
WO2021072610A1 (zh) 一种激活和释放非动态调度传输的方法及装置
WO2023273743A1 (zh) 一种侧行通信方法及装置
WO2022077396A1 (zh) 一种上行控制信息的发送方法、接收方法及通信装置
WO2021004234A1 (zh) 一种数据传输方法及通信装置
WO2019023912A1 (zh) 一种应答反馈方法、终端及网络设备
WO2021056585A1 (zh) 一种混合自动重传请求反馈方法及装置
WO2021087986A1 (zh) 一种调制和编码方案配置方法及装置
WO2021030943A1 (zh) 一种确定重复传输资源的方法及装置
WO2021027603A1 (zh) 一种指示频域资源的方法及装置
KR102287370B1 (ko) 단말 및 그것의 자원 할당 방법
CN112399599B (zh) 一种指示频域资源的方法及装置
US20240097859A1 (en) Communication apparatus and communication method for multi-ap synchronous transmission
EP4383900A1 (en) Resource indication method and communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806438

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022806438

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022806438

Country of ref document: EP

Effective date: 20231025

WWE Wipo information: entry into national phase

Ref document number: 2023569608

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237039453

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237039453

Country of ref document: KR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023023459

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023023459

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231109