WO2021227052A1 - 一种信息传输方法、通信设备以及计算机可读存储介质 - Google Patents

一种信息传输方法、通信设备以及计算机可读存储介质 Download PDF

Info

Publication number
WO2021227052A1
WO2021227052A1 PCT/CN2020/090629 CN2020090629W WO2021227052A1 WO 2021227052 A1 WO2021227052 A1 WO 2021227052A1 CN 2020090629 W CN2020090629 W CN 2020090629W WO 2021227052 A1 WO2021227052 A1 WO 2021227052A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
time domain
domain resource
detection
information
Prior art date
Application number
PCT/CN2020/090629
Other languages
English (en)
French (fr)
Inventor
吴作敏
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080099074.9A priority Critical patent/CN115336306A/zh
Priority to PCT/CN2020/090629 priority patent/WO2021227052A1/zh
Publication of WO2021227052A1 publication Critical patent/WO2021227052A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communication, and in particular to an information transmission method, communication equipment and computer-readable storage medium.
  • FR1 Frequency range 1
  • FR2 Frequency range 2
  • FR1 and FR2 include frequency domain ranges such as Table 1 shows.
  • Frequency band definition Corresponding frequency range FR1 410MHz–7.125GHz FR2 24.25GHz–52.6GHz
  • the embodiments of the present invention provide an information transmission method, a communication device, and a computer-readable storage medium, which are used to transmit information in a time domain resource that is not used for energy detection in a detection time slot, so as to improve the shared frequency spectrum. Utilization rate of spectrum resources.
  • the first aspect of the embodiments of the present invention provides an information transmission method, which may include: a first device acquiring a first detection time slot on a first channel, where the first detection time slot includes the first time Domain resource and the second time domain resource, the first time domain resource is used for channel detection on the first channel, and the second time domain resource is used for information transmission through the first channel.
  • the first time domain resource is used for the first device to perform channel detection on the first channel, and the second time domain resource is used for the first device to perform information transmission through the first channel; or, the first device A time domain resource is used for the first device to perform channel detection on the first channel, and the second time domain resource is used for the second device to perform information transmission through the first channel; or, the first time domain resource is used for the The second device performs channel detection on the first channel, and the second time domain resource is used for the first device to perform information transmission through the first channel.
  • the method further includes: the first device performs channel detection on the first channel on the first time domain resource, and the first device performs information transmission on the second time domain resource through the first channel .
  • the first device includes a first terminal device
  • the second device includes a network device
  • the first device performs channel detection on the first channel on the first time domain resource
  • the first device is in the second 2.
  • Information transmission through the first channel on time domain resources may include:
  • the first terminal device performs channel detection on the first channel on the first time domain resource, and the first terminal device receives the first physical channel sent by the network device through the first channel on the second time domain resource And/or the first physical signal; or, the first terminal device performs channel detection on the first channel on the first time domain resource, and the first terminal device passes the first channel on the second time domain resource Send the first physical channel and/or the first physical signal to the network device.
  • the first device includes a network device
  • the second device includes a first terminal device
  • the first device performs channel detection on the first channel on the first time domain resource
  • the first device is in the second 2.
  • Information transmission through the first channel on time domain resources may include:
  • the network device performs channel detection on the first channel on the first time domain resource, and the network device receives the second physical channel sent by the first terminal device through the first channel on the second time domain resource and/ Or a second physical signal; or, the network device performs channel detection on the first channel on the first time domain resource, and the network device transmits to the first terminal device on the second time domain resource through the first channel Send the second physical channel and/or the second physical signal.
  • the first device includes a first terminal device
  • the second device includes a second terminal device
  • the first device performs channel detection on the first channel on the first time domain resource
  • the first device is Information transmission through the first channel on the second time domain resource may include:
  • the first terminal device performs channel detection on the first channel on the first time domain resource, and the first terminal device receives the third channel sent by the second terminal device on the second time domain resource through the first channel. Physical channel and/or third physical signal; or, the first terminal device performs channel detection on the first channel on the first time domain resource, and the first terminal device passes the first channel on the second time domain resource A channel sends a third physical channel and/or a third physical signal to the second terminal device.
  • the first device acquiring the first detection time slot on the first channel may include: the first device acquiring information of the first detection time slot according to the first target information; information of the first detection time slot Including the position of the first detection time slot, and/or the length of the first detection time slot; wherein the first target information includes a first preset value, the information of the first detection time slot specified by the protocol, or The first instruction information sent by the network device.
  • acquiring the first detection time slot on the first channel by the first device may include: acquiring, by the first device, information about the first time domain resource according to second target information; and acquiring information about the first time domain resource Including the location of the first time domain resource, and/or the length of the first time domain resource; wherein the second target information includes a second preset value, the information of the first time domain resource specified by the agreement, or The second instruction information sent by the network device.
  • acquiring the first detection time slot on the first channel by the first device may include: acquiring, by the first device, information about the first time domain resource according to second target information; and acquiring information about the first time domain resource Including the location of the first time domain resource, and/or the length of the first time domain resource; wherein the second target information includes a second preset value, the information of the first time domain resource specified by the agreement, or The second instruction information sent by the network device.
  • the first time domain resource and the second time domain resource are continuous in the time domain.
  • the first time domain resource and the second time domain resource include an interval of a first duration in the time domain, wherein the length of the first duration is preset or stipulated by an agreement or sent according to a network device
  • the fourth instruction information is obtained.
  • the first duration is determined according to at least one of the cell coverage, the cyclic prefix CP length of the symbol, the timing advance TA, and the transmission and reception conversion time.
  • the first duration is greater than or equal to the transceiver conversion time.
  • the first duration is used for the first device to perform transceiving conversion.
  • the second time domain resource includes an integer number of symbols and/or an integer number of time slots.
  • the first channel is a carrier on the shared spectrum.
  • the second time domain resource is used to transmit a pre-configured signal or channel.
  • the pre-configured signal or channel includes at least one of the following: channel state information reference signal CSI-RS, phase tracking reference signal PT-RS, physical downlink control channel PDCCH, semi-persistent scheduling Physical downlink shared channel SPS PDSCH;
  • the pre-configured signal or channel includes at least one of the following: channel sounding reference signal SRS, phase tracking reference signal PT-RS, physical uplink control channel PUCCH, configuration authorized physical uplink shared channel CG PUSCH, physical Random access channel PRACH;
  • the pre-configured signal or channel includes at least one of the following: semi-persistent scheduling physical direct link shared channel SPS PSSCH, physical direct link control channel PSCCH.
  • the second time domain resource is used to transmit high-priority services.
  • the high-priority service includes at least one of the following: system messages, paging messages, random access responses, services that do not include user data, ultra-high reliability and low-latency URLLC business;
  • the high-priority service includes at least one of the following: uplink control information, services that do not include user data, ultra-high reliability and low-latency URLLC services, MsgA PUSCH, and Msg3 PUSCH.
  • the second aspect of the embodiments of the present invention provides a communication device, which has a function of improving the utilization of spectrum resources on a shared spectrum.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • Another aspect of the embodiments of the present invention provides a communication device, including: a memory storing executable program code; a processor coupled with the memory; the processor calling the executable program code stored in the memory , Used to execute the method described in the first aspect of the embodiment of the present invention.
  • Another aspect of the embodiments of the present invention provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method as described in the first aspect of the present invention.
  • Another aspect of the embodiments of the present invention provides a computer program product containing instructions, which when run on a computer, causes the computer to execute the method as described in the first aspect of the present invention.
  • Another aspect of the embodiments of the present invention provides a chip, the chip is coupled with the memory in the communication device, so that the chip calls the program instructions stored in the memory during operation, so that the communication device executes the same The method described in the first aspect of the invention.
  • the first device acquires the first detection time slot on the first channel, where the first detection time slot includes the first time domain resource and the second time domain resource, and the first time domain resource is used for Channel detection is performed on the first channel, and the second time domain resource is used for information transmission through the first channel.
  • the NR system is a synchronous system, the sub-carrier spacing used for communication transmission at high frequencies is very large, and the length of the corresponding time slot or symbol is very short. Therefore, this application specifies a detection time slot for energy detection.
  • the location of the time domain resource can then use a time domain resource that is not used for energy detection in a detection time slot for information transmission, thereby improving the utilization of spectrum resources on the shared spectrum.
  • FIG. 1 is a system architecture diagram of a communication system applied by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an embodiment of an information transmission method in an embodiment of the present invention.
  • 3A is a schematic diagram of a communication device using a first detection time slot for communication in an embodiment of the present invention
  • 3B is another schematic diagram of the communication device using the first detection time slot to communicate in the embodiment of the present invention.
  • Figure 4 is a schematic diagram of an embodiment of a communication device in an embodiment of the present invention.
  • Figure 5 is a schematic diagram of another embodiment of a communication device in an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of an embodiment of a terminal device in an embodiment of the present invention.
  • FRX is used to represent the new frequency band in this application. It should be understood that the name of the new frequency band should not constitute a limitation of the protection scope of the present invention. This is just an example for illustration. In practice, the name of the new frequency band may also be other names.
  • the new frequency band is FR3.
  • the FRX frequency band includes licensed spectrum as well as unlicensed spectrum. Or it can be understood that the FRX frequency band includes non-shared spectrum as well as shared spectrum.
  • the unlicensed spectrum is the spectrum that can be used for communication equipment communication divided by the country and region.
  • This spectrum is usually considered to be a shared spectrum, that is, the communication equipment in different communication systems only needs to meet the regulatory requirements set by the country or region on the spectrum.
  • the spectrum can be used without the need to apply for a proprietary spectrum authorization from the government.
  • LBT Listen Before Talk
  • the communication equipment needs to perform channel detection before sending signals on channels of unlicensed spectrum, only when the channel detection result is channel When it is idle, the communication device can send signals; if the channel detection result of the communication device on the channel of the unlicensed spectrum is that the channel is busy, the communication device cannot send signals.
  • LBT Listen Before Talk
  • the duration of signal transmission by a communication device using an unlicensed spectrum channel cannot exceed a certain length of time.
  • the communication device needs to follow the maximum power spectrum when using the channel of the unlicensed spectrum for signal transmission. Density limits, and so on.
  • the subcarrier spacing considered in the FRX frequency band is larger than that of FR2.
  • the current candidate subcarrier spacing includes the following: 480kHz, 960kHz, 1.92MHz, 3.84MHz.
  • the corresponding parameter sets (Numerology) under these candidate subcarrier intervals are shown in Table 3 below.
  • MCOT Maximum Channel Occupancy Time
  • COT Channel Occupancy Time
  • the channel occupation time of the base station also known as the COT initiated by the base station, which refers to a channel occupation time obtained after the base station LBT succeeds.
  • the channel occupation time of the base station can be used not only for downlink transmission, but also for user equipment (User Equipment, UE) for uplink transmission under certain conditions.
  • UE-initiated COT also known as UE-initiated COT, which refers to a channel occupation time obtained by the UE after successful LBT.
  • Downlink transmission opportunity (DL burst): a group of downlink transmissions performed by the base station (that is, one or more downlink transmissions), the group of downlink transmissions is continuous transmission (that is, there is no gap between multiple downlink transmissions), or the group There is a gap in the downlink transmission but the gap is less than or equal to 16 ⁇ s. If the gap between two downlink transmissions performed by the base station is greater than 16 ⁇ s, then the two downlink transmissions are considered to be two downlink transmission opportunities.
  • Uplink transmission opportunity A group of uplink transmissions performed by a UE (that is, including one or more uplink transmissions), the group of uplink transmissions is continuous transmission (that is, there is no gap between multiple uplink transmissions), or the There is a gap in the group uplink transmission, but the gap is less than or equal to 16 ⁇ s. If the gap between two uplink transmissions performed by the UE is greater than 16 ⁇ s, then the two uplink transmissions are considered to be two uplink transmission opportunities.
  • the mode in which the communication device obtains the channel occupation can be the channel access mode of load-based equipment (LBE), that is, the communication device can perform LBT on the shared channel after the service arrives, and succeed in the LBT Then, transmission is started on the shared channel; it may also be a channel access mode of frame-based equipment (FBE), that is, the communication device periodically performs LBT on the shared channel.
  • LBE load-based equipment
  • FBE frame-based equipment
  • the FBE-based channel access mode can also be referred to as a semi-static channel access mode.
  • the LBE-based channel access mode can include a variety of different channel access schemes, as shown below:
  • Type1 channel access
  • the channel detection mode of the communication device is multi-detection slot channel detection based on random backoff adjusted by the contention window size.
  • different channel access priority classes may be included according to the priority of the transmission service.
  • Table 4 and Table 5 are two examples of channel access parameters corresponding to different channel access priorities. Among them, the smaller the value of p, the higher the channel access priority.
  • Table 4 is used for Type 1 channel access of network equipment
  • Table 5 is used for Type 1 channel access of terminal equipment.
  • m p refers to the number of back-off detection time slots corresponding to channel access priority p
  • CW p refers to the size of the contention window corresponding to channel access priority p
  • CW min refers to a channel access priority minimum p value of p corresponding to the CW
  • CW max refers to the maximum value of the CW channel access priority value p corresponding to p
  • T mcot refers to Channel access priority p corresponds to the maximum occupation time length of the channel.
  • the size of a detection time slot is 9 microseconds, and the communication device needs to perform energy detection for at least 4 microseconds in a detection time slot when performing detection.
  • Type2A channel access
  • the channel detection method of communication equipment is to perform channel detection with a fixed detection time slot length of 25 microseconds.
  • the communication device can perform channel detection for 25 microseconds before transmission starts, and perform transmission after successful channel detection.
  • Type2B channel access
  • the channel detection method of communication equipment is channel detection with a fixed detection time slot length of 16 microseconds.
  • the communication device can perform 16 microsecond channel detection before transmission starts, and perform transmission after successful channel detection.
  • the size of the gap between the start position of the transmission and the end position of the last transmission is 16 microseconds.
  • Type2C channel access
  • the communication device performs transmission without channel detection. Specifically, under Type2C channel access, the communication device can directly transmit after the gap ends, where the gap size between the start position of the transmission and the end position of the previous transmission is less than or equal to 16 microseconds. Optionally, the length of the transmission does not exceed 584 microseconds.
  • the channel access schemes applied in different transmission scenarios are different, and the channel access schemes applied to different signals or channels are also different.
  • the resources in the COT can be used for the terminal device for uplink transmission.
  • the terminal device can perform Type2C channel access before the uplink transmission ; If the gap between the start position of the uplink transmission opportunity and the end position of the downlink transmission opportunity is 16 ⁇ s, the terminal device can perform Type2B channel access before the uplink transmission; if the start position of the uplink transmission opportunity and the downlink transmission The gap between the end positions of the opportunity is 25 ⁇ s or more than 25 ⁇ s, and the terminal device can perform Type 2A channel access before the uplink transmission.
  • the network device can ensure the size of the gap between the start position of the uplink transmission opportunity and the end position of the
  • the channel detection method of communication equipment that uses high frequency for communication includes multi-slot channel detection with random backoff.
  • the communication device when the communication device generates the number of detection time slots to be detected, the corresponding window ranges from 0 to 127.
  • the communication device Before the communication device performs communication transmission, it needs to perform channel detection and determine that the channel detection idle time length includes 8 ⁇ s+random(0to127) ⁇ 5 ⁇ s.
  • the size of a detection time slot is 5 microseconds, and the communication device needs to perform channel detection on part of the time domain resources in a detection time slot of 5 microseconds when performing detection.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • evolution system of NR system LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) unlicensed spectrum, NR-U) system, non-terrestrial communication network (Non-Terrestrial Networks, NTN) system, Universal Mobile Telecommunication System (UMTS), wireless local area network (Wireless Local Area Networks, WLAN), wireless fidelity (Wireless Fidelity, WiFi), the fifth-generation communication (5th-Generation, 5G) system, or other communication systems, etc.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • V2X vehicle to everything
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (DC) scenario, and can also be applied to a standalone (SA) deployment.
  • CA Carrier Aggregation
  • DC dual connectivity
  • SA standalone
  • the communication system in the embodiment of this application can be applied to unlicensed spectrum, where the unlicensed spectrum can also be considered as a shared spectrum; or, the communication system in the embodiment of this application can also be applied to licensed spectrum, where: Licensed spectrum can also be considered non-shared spectrum.
  • the embodiments of this application describe various embodiments in combination with network equipment and terminal equipment.
  • the terminal equipment may also be referred to as User Equipment (UE), access terminal, subscriber unit, user station, mobile station, mobile station, and remote station. Station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • UE User Equipment
  • the terminal device can be a station (STAION, ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, and personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or in the future Terminal equipment in the evolved Public Land Mobile Network (PLMN) network.
  • STAION, ST station
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites).
  • land including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites).
  • First class can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, and wireless terminal equipment in smart grid , Wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home, etc.
  • Mobile Phone Mobile Phone
  • a tablet computer Pad
  • a computer with wireless transceiver function a virtual reality (VR) terminal device
  • an augmented reality (Augmented Reality, AR) terminal Equipment Wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, and wireless terminal equipment in smart grid , Wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home, etc.
  • AR Augmented Reality
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design everyday wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the network device may be a device used to communicate with mobile devices, the network device may be an access point (AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , It can also be a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or vehicle equipment, wearable devices, and NR networks Network equipment (gNB) or network equipment in the future evolution of the PLMN network or network equipment in the NTN network.
  • AP access point
  • BTS Base Transceiver Station
  • NodeB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • gNB Network Equipment
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • the network equipment can be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, or a high elliptical orbit (High Elliptical Orbit, HEO). ) Satellite etc.
  • the network device may also be a base station installed in a location such as land or water.
  • the network equipment may provide services for the cell, and the terminal equipment communicates with the network equipment through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network equipment ( For example, the cell corresponding to the base station.
  • the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: Metro cell, Micro cell, and Pico cell. Pico cells, femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • the communication system may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or a terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the network equipment may include access network equipment and core network equipment. That is, the wireless communication system also includes multiple core networks for communicating with the access network equipment.
  • the access network equipment can be a long-term evolution (LTE) system, a next-generation (mobile communication system) (next radio, NR) system, or an authorized auxiliary access long-term evolution (LAA- LTE) evolved base station (evolutional node B, abbreviated as eNB or e-NodeB) macro base station, micro base station (also known as "small base station"), pico base station, access point (AP), Transmission point (TP) or new generation Node B (gNodeB), etc.
  • LTE long-term evolution
  • NR next-generation
  • LAA- LTE authorized auxiliary access long-term evolution
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal device 120 with communication functions.
  • the network device 110 and the terminal device 120 may be the specific devices described in the embodiments of the present invention.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, an indirect indication, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B relation.
  • correlate can mean that there is a direct or indirect correspondence between the two, or an association between the two, or indicating and being instructed, configuring and being Configuration and other relationships.
  • This application proposes an information transmission method in the NR evolution system (high frequency). Since the subcarrier spacing used for communication transmission at high frequency is very large, the length of the corresponding time slot or symbol is very short, so in the synchronous system In, the specific location for LBT detection can be specified, so that time domain resources without LBT detection can be used for signal transmission, and resource utilization can be improved.
  • FIG. 2 it is a schematic diagram of an embodiment of an information transmission method in an embodiment of the present invention, which may include:
  • a first device acquires a first detection time slot on a first channel, where the first detection time slot includes a first time domain resource and a second time domain resource, and the first time domain resource is used to channel the first channel It is detected that the second time domain resource is used for information transmission through the first channel.
  • the sub-carrier spacing considered in the FRX frequency band is larger than that of FR2.
  • the current candidate sub-carrier spacing may include but is not limited to the following: 480kHz, 960kHz, 1.92MHz , 3.84MHz.
  • the parameter set (Numerology) corresponding to these candidate subcarrier intervals can refer to the aforementioned Table 3, which will not be repeated here. In the case where the subcarrier spacing used for communication transmission is large, the corresponding time slot length or symbol length is very short.
  • the size of a detection time slot used for channel detection at high frequency includes 5 microseconds or 8 microseconds, etc.; or, similar to the NR-U system, it can also support a fixed type similar to Type 2 at high frequency.
  • a communication device performs channel detection, it needs to perform channel detection on part of the time domain resources in a detection time slot instead of performing channel detection on all time domain resources. Therefore, it is possible to remove all or part of the time domain for channel detection.
  • Information transmission on resources. It is understandable that performing channel detection may generally include performing energy detection and the like.
  • the first time domain resource is used for channel detection on the first channel
  • the second time domain resource is used for information transmission through the first channel, which can be divided into the following situations:
  • the first time domain resource is used for the first device to perform channel detection on the first channel
  • the second time domain resource is used for the first device to perform information transmission through the first channel
  • the first time domain resource is used for the first device to perform channel detection on the first channel
  • the second time domain resource is used for the second device to perform information transmission through the first channel
  • the first time domain resource is used for the second device to perform channel detection on the first channel
  • the second time domain resource is used for the first device to perform information transmission through the first channel
  • the second device is a device that establishes a communication connection with the first device.
  • the acquisition of the first detection time slot on the first channel by the first device may include but is not limited to the following implementation manners:
  • the first device obtains the information of the first detection time slot according to the first target information; the information of the first detection time slot includes the position of the first detection time slot, and/or, the first detection time slot A length of a detection time slot; wherein the first target information includes a first preset value, information of the first detection time slot specified by the protocol, or first indication information sent by a network device.
  • the first device obtains the information of the first time domain resource according to the second target information; the information of the first time domain resource includes the location of the first time domain resource, and/or, the first The length of a time domain resource; wherein, the second target information includes a second preset value, information of the first time domain resource specified by the protocol, or second indication information sent by a network device.
  • the first device obtains the information of the second time domain resource according to the third target information; the information of the second time domain resource includes the location of the second time domain resource, and/or, the first 2.
  • the manner in which the network device obtains the information of the first detection time slot, the information of the first time domain resource, or the information of the second time domain resource may be determined by the network device itself, or Determined according to the agreement.
  • the method for the terminal device to obtain the information of the first detection time slot, the information of the first time domain resource, or the information of the second time domain resource may be according to the instruction information issued by the network device Determined, or determined in accordance with the provisions of the agreement.
  • the manner in which the second device obtains the information of the first detection time slot, the information of the first time domain resource, or the information of the second time domain resource can obtain the information of the first detection time slot, the first The information of the time domain resource or the information of the second time domain resource is in the same manner, and will not be repeated here.
  • the second device is a device that has not established a communication connection with the first device.
  • the network device instructs the first terminal device to perform channel detection through the first time domain resource, and instructs the second terminal device to send information to the network device through the second time domain resource.
  • the first device includes the first terminal device
  • the second device includes the second terminal device.
  • the second terminal device may also obtain the second time domain resource according to a preset value or protocol provisions or instruction information sent by the network device, which will not be repeated here.
  • the indication information in this application includes physical layer signaling such as Downlink Control Information (DCI), Radio Resource Control (RRC) signaling, and Media Access Control Control (Media Access Control).
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • Media Access Control Media Access Control
  • Element MAC CE
  • the first time domain resource and the second time domain resource are continuous in the time domain.
  • the first time domain resource and the second time domain resource include an interval of a first duration in the time domain, wherein the length of the first duration is preset or stipulated by an agreement or according to a fourth instruction sent by the network device Information obtained.
  • the first duration is determined according to at least one of the cell coverage, the cyclic prefix CP length of the symbol, the timing advance (Timing Advance, TA), and the transmission and reception conversion time.
  • the first duration is greater than or equal to the transceiver conversion time.
  • the transmission and reception conversion time includes the length of time required for the first device to switch from the mode of receiving information to the mode of sending information, or the length of time required to switch from the mode of sending information to the mode of receiving information, or, The length of time required to switch from the first signaled state to the second signaled state, or the length of time required to switch from the first signaled state to the second signaled state.
  • the first duration is used for the first device to perform the transceiving conversion.
  • the second time domain resource includes an integer number of symbols and/or an integer number of time slots.
  • the start position and end position of the second time domain resource are symbol boundaries.
  • the start position and the end position of the second time domain resource are the time slot boundaries.
  • the time domain resource on the partial symbol may be used to transmit the extended CP of the signal transmitted on the first symbol after the partial symbol.
  • the time domain resource on the partial symbol is not used for transmitting information.
  • the indexes of the 8 symbols included in the second time domain resource are respectively 2-9, where symbol 2 includes 0.5 symbols, and symbol 9 includes 0.5 symbols, so the time domain resources corresponding to the 0.5 symbols included in symbol 2 can be used
  • the time domain resources corresponding to 0.5 symbols included in symbol 9 are not used for transmission of information.
  • the first channel is a carrier on the shared spectrum.
  • the second time domain resource is used to transmit a pre-configured signal or channel, where the first channel is a carrier on the shared spectrum.
  • the pre-configured signal or channel includes at least one of the following: channel state information reference signal (Channel State Information Reference Signal, CSI Reference Signal, CSI-RS), phase tracking reference signal (Phase-Tracking Reference Signals, PT-RS), Physical Downlink Control Channel (PDCCH), Semi-Persistent Scheduling Physical Downlink Shared Channel (SPS PDSCH).
  • channel state information reference signal Channel State Information Reference Signal, CSI Reference Signal, CSI-RS
  • phase tracking reference signal Phase-Tracking Reference Signals, PT-RS
  • Physical Downlink Control Channel PDCCH
  • SPS PDSCH Semi-Persistent Scheduling Physical Downlink Shared Channel
  • the pre-configured signal or channel includes at least one of the following: channel sounding reference signal (Sounding Reference Signal, SRS), phase tracking reference signal (Phase-Tracking Reference Signals, PT-RS), physical Uplink Control Channel (Physical Uplink Control Channel, PUCCH), Configured Grant Physical Uplink Shared Channel (CG PUSCH), Physical Random Access Channel (Physical Random Access Channel, PRACH).
  • SRS Sounding Reference Signal
  • PT-RS phase tracking reference signal
  • Physical Uplink Control Channel Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • Configured Grant Physical Uplink Shared Channel CG PUSCH
  • Physical Random Access Channel Physical Random Access Channel
  • the pre-configured signal or channel includes at least one of the following: Semi-Persistent Scheduling Physical Sidelink Shared Channel (SPS PSSCH), physical direct link control Channel (Physical Sidelink Control Channel, PSCCH).
  • SPS PSSCH Semi-Persistent Scheduling Physical Sidelink Shared Channel
  • PSCCH Physical Sidelink Control Channel
  • the second time domain resource is used to transmit signals or channels dynamically scheduled by the network equipment.
  • the second time domain resource is used to transmit high-priority services.
  • high-priority services include at least one of the following: system messages, paging messages, random access responses, services that do not include user data, ultra-high reliability and low latency (Ultra Reliable Low Latency Communication, URLLC) business.
  • system messages include at least one of the following: system messages, paging messages, random access responses, services that do not include user data, ultra-high reliability and low latency (Ultra Reliable Low Latency Communication, URLLC) business.
  • URLLC Ultra Reliable Low Latency Communication
  • high-priority services include at least one of the following: uplink control information, services that do not include user data, ultra-high reliability and low-latency URLLC services, MsgA PUSCH, and Msg3 PUSCH.
  • the first device performs channel detection on the first channel on the first time domain resource, and the first device performs information transmission on the second time domain resource through the first channel.
  • the first device performs channel detection on the first channel on the first time domain resource, and the first device performs information transmission on the second time domain resource through the first channel, which may include but is not limited to the following implementations:
  • Implementation manner 1 In the case where the first device includes the first terminal device and the second device includes the network device;
  • the first terminal device performs channel detection on the first channel on the first time domain resource, and the first terminal device receives the first physical channel and/or the first physical channel sent by the network device through the first channel on the second time domain resource.
  • Physical signal or,
  • the first terminal device performs channel detection on the first channel on the first time domain resource, and the first terminal device sends the first physical channel and/or the first physical channel to the network device through the first channel on the second time domain resource. Signal.
  • Implementation manner 2 When the first device includes a network device, and when the second device includes a first terminal device;
  • the network device performs channel detection on the first channel on the first time domain resource, and the network device receives the second physical channel and/or the second physical signal sent by the first terminal device through the first channel on the second time domain resource ;or,
  • the network device performs channel detection on the first channel on the first time domain resource, and the network device sends the second physical channel and/or the second physical signal to the first terminal device through the first channel on the second time domain resource.
  • Implementation manner 3 In the case where the first device includes the first terminal device and the second device includes the second terminal device;
  • the first terminal device performs channel detection on the first channel on the first time domain resource, and the first terminal device receives the third physical channel sent by the second terminal device through the first channel on the second time domain resource and/or The third physical signal; or,
  • the first terminal device performs channel detection on the first channel on the first time domain resource, and the first terminal device sends the third physical channel and/or the first channel to the second terminal device through the first channel on the second time domain resource.
  • Three physical signals are possible.
  • the first detection time slot includes 16 microseconds.
  • the first detection time slot of 16 microseconds includes a detection time slot of 7 microseconds for the first detection sub-slot + 9 microseconds for the second detection sub-slot, and at least 4 microseconds in the energy detection of the 5 microseconds This can happen in the 9 microsecond detection sub-slot.
  • the time domain location for energy detection may be determined by preset or network device configuration.
  • FIG. 3A it is a schematic diagram of a communication device using a first detection time slot to communicate in an embodiment of the present invention.
  • the first detection sub-slot includes 1 microsecond of energy detection time domain resources, and this 1 microsecond is the first microsecond in the first detection sub-slot.
  • the second detection sub-slot includes 4 microseconds of energy detection time domain resources, and the 4 microseconds are the first 4 microseconds in the first detection sub-slot. Therefore, the 2nd to 7th microseconds (total 6 microseconds) and the 12th to 16th microseconds (total 5 microseconds) in the first detection time slot can be used to transmit the first physical channel and/or the first physical signal.
  • the network device instructs the terminal device to use the Type2B channel access method for channel access, where the Type2B channel access corresponds to the first detection time slot.
  • the network device does not perform information transmission on the first microsecond and the 8th to 11th microseconds in the first detection time slot, so that the terminal device can perform energy detection.
  • the network device uses the second detection time slot in the first detection time slot.
  • the first physical channel and/or the first physical signal are sent by the time domain resources in ⁇ 7 microseconds and the 12th to 16th microseconds.
  • the energy detection is performed at the first microsecond and the 8th to 11th microseconds in the first detection time slot, and the energy detection is performed in the first detection time slot.
  • the first physical channel and/or the first physical signal sent by the network device are received at the second to 7 microseconds and the 12th to 16 microseconds in.
  • the maximum number of symbols that can be included in the time domain resources that the network device can use to transmit information under different subcarrier intervals is shown in Table 6 below.
  • Subcarrier spacing 6 microseconds 5 microseconds 480kHz 2 symbols 2 symbols 960kHz 5 symbols 4 symbols 1.92MHz 10 symbols 8 symbols 3.84MHz 21 symbols 17 symbols
  • the first detection time slot includes 16 microseconds.
  • the first detection time slot of 16 microseconds includes a detection time slot of 7 microseconds for the first detection sub-slot + 9 microseconds for the second detection sub-slot, and at least 4 microseconds in the energy detection of the 5 microseconds This can happen in the 9 microsecond detection sub-slot.
  • the time domain location for energy detection may be determined by preset or network device configuration.
  • FIG. 3B it is another schematic diagram of the communication device using the first detection time slot for communication in the embodiment of the present invention.
  • the first detection sub-slot includes 1 microsecond of energy detection time domain resources, and this 1 microsecond is the first microsecond in the first detection sub-slot.
  • the second detection sub-slot includes 4 microseconds of energy detection time domain resources, and the 4 microseconds are the first 4 microseconds in the first detection sub-slot.
  • the time domain resources used for energy detection and the time domain resources used for information transmission include the first interval of 2 microseconds in the time domain, and the terminal equipment can The transmission and reception conversion is performed in the interval of the first duration of 2 microseconds. Therefore, the 4th to 7th microseconds (total of 4 microseconds) and the 14th to 16th microseconds (total of 3 microseconds) in the first detection time slot can be used to transmit the first physical channel and/or the first physical signal.
  • the network device instructs the terminal device to use the Type2B channel access method for channel access, where the Type2B channel access corresponds to the first detection time slot.
  • the terminal device performs energy detection at the first microsecond and the 8th to 11th microseconds in the first detection time slot, and performs energy detection in the first detection time slot. 2 ⁇ 3 microseconds and 12 ⁇ 13 microseconds for receiving and sending conversion, using the 4th to 7th microseconds and 14th to 16th microseconds of the time domain resources in the first detection time slot to send the first physical channel and/ Or the first physical signal.
  • the network device uses the time domain resources in the 4th to 7th microseconds and the 14th to 16th microseconds in the first detection time slot to receive the first physical channel and/or the first physical channel sent by the terminal device.
  • the first physical signal is used to determine whether the first physical channel is mapped to the 4th to 7th microseconds and the 14th to 16th microseconds in the first detection time slot to receive the first physical channel and/or the first physical channel sent by the terminal device.
  • the first physical signal is used to receive the first physical channel and/or the first physical channel sent by the terminal device.
  • the maximum number of symbols that can be included in the time domain resources that the terminal device can use to transmit information under different subcarrier intervals is shown in Table 7 below.
  • Subcarrier spacing 4 microseconds 3 microseconds 480kHz 1 symbol 1 symbol 960kHz 3 symbols 2 symbols 1.92MHz 7 symbols 5 symbols 3.84MHz 14 symbols 10 symbols
  • Step 202 is an optional step.
  • an information transmission method is proposed.
  • a first device acquires a first detection time slot on a first channel, where the first detection time slot includes a first time domain resource and a second time domain resource,
  • the first time domain resource is used for channel detection on the first channel
  • the second time domain resource is used for information transmission through the first channel. Since the NR system is a synchronous system, the sub-carrier spacing used for communication transmission at high frequencies is very large, and the length of the corresponding time slot or symbol is very short. Therefore, this application specifies a detection time slot for energy detection.
  • the location of time domain resources, and then the time domain resources in a detection time slot that are not used for energy detection can be used for information transmission, that is, the specific location for LBT detection can be specified, so that time domain resources that do not perform LBT detection can be used for information transmission.
  • Information transmission can improve the utilization of spectrum resources on the shared spectrum.
  • FIG. 4 it is a schematic diagram of an embodiment of a communication device in an embodiment of the present invention, which may include:
  • the processing module 401 is configured to obtain a first detection time slot on a first channel, where the first detection time slot includes a first time domain resource and a second time domain resource, and the first time domain resource is used to perform a measurement on the first channel. For channel detection, the second time domain resource is used for information transmission through the first channel.
  • the first time domain resource is used for the first device to perform channel detection on the first channel
  • the second time domain resource is used for the first device to transmit information through the first channel
  • the first time domain resource is used for the first channel.
  • One device performs channel detection on the first channel
  • the second time domain resource is used by the second device to transmit information through the first channel
  • the first time domain resource is used by the second device to perform channel detection on the first channel
  • the second The time domain resources are used by the first device to transmit information through the first channel.
  • the processing module 401 is further configured to perform channel detection on the first channel on the first time domain resource, and the first device performs information transmission on the second time domain resource through the first channel.
  • the first device includes a first terminal device
  • the second device includes a network device
  • the processing module 401 is specifically configured to perform channel detection on the first channel on the first time domain resource, and the first terminal device receives the first physical channel and/or the first physical channel sent by the network device through the first channel on the second time domain resource.
  • a physical signal or,
  • the processing module 401 is specifically configured to perform channel detection on the first channel on the first time domain resource, and the first terminal device sends the first physical channel and/or the first channel to the network device through the first channel on the second time domain resource. Physical signal.
  • the first device includes a network device
  • the second device includes a first terminal device
  • the processing module 401 is specifically configured to perform channel detection on the first channel on the first time domain resource, and the network device receives the second physical channel and/or the second physical channel sent by the first terminal device through the first channel on the second time domain resource. 2. Physical signals; or,
  • the processing module 401 is specifically configured to perform channel detection on the first channel on the first time domain resource, and the network device sends the second physical channel and/or the second physical channel to the first terminal device through the first channel on the second time domain resource. Physical signal.
  • the first device includes a first terminal device
  • the second device includes a second terminal device
  • the processing module 401 is specifically configured to perform channel detection on the first channel on the first time domain resource, and the first terminal device receives the third physical channel sent by the second terminal device through the first channel on the second time domain resource and/ Or a third physical signal; or,
  • the processing module 401 is specifically configured to perform channel detection on the first channel on the first time domain resource, and the first terminal device sends the third physical channel and/or to the second terminal device through the first channel on the second time domain resource.
  • the third physical signal is specifically configured to perform channel detection on the first channel on the first time domain resource, and the first terminal device sends the third physical channel and/or to the second terminal device through the first channel on the second time domain resource. The third physical signal.
  • the processing module 401 is specifically configured to obtain the information of the first detection time slot according to the first target information; the information of the first detection time slot includes the position of the first detection time slot, and/or , The length of the first detection time slot; wherein, the first target information includes a first preset value, information of the first detection time slot specified by the protocol, or first indication information sent by a network device.
  • the processing module 401 is specifically configured to obtain information about the first time domain resource according to second target information; the information about the first time domain resource includes the location of the first time domain resource, and/or , The length of the first time domain resource; wherein, the second target information includes a second preset value, information of the first time domain resource specified by the protocol, or second indication information sent by a network device.
  • the processing module 401 is specifically configured to obtain information about the second time domain resource according to third target information; the information about the second time domain resource includes the location of the second time domain resource, and/or , The length of the second time domain resource; wherein the third target information includes a third preset value, the information of the second time domain resource specified by the protocol, or the third indication information sent by the network device.
  • the first time domain resource and the second time domain resource are continuous in the time domain.
  • the first time domain resource and the second time domain resource include an interval of a first duration in the time domain, wherein the length of the first duration is preset or stipulated by an agreement or according to a fourth instruction sent by the network device Information obtained.
  • the first duration is determined according to at least one of the cell coverage, the cyclic prefix CP length of the symbol, the timing advance TA, and the transmission and reception conversion time.
  • the first duration is greater than or equal to the transceiver conversion time.
  • the first duration is used for the first device to perform the transceiving conversion.
  • the second time domain resource includes an integer number of symbols and/or an integer number of time slots.
  • the first channel is a carrier on the shared spectrum.
  • the second time domain resource is used to transmit a pre-configured signal or channel.
  • the pre-configured signal or channel includes at least one of the following: channel state information reference signal CSI-RS, phase tracking reference signal PT-RS, physical downlink control channel PDCCH, semi-persistent scheduling physical Downlink shared channel SPS PDSCH;
  • the pre-configured signal or channel includes at least one of the following: channel sounding reference signal SRS, phase tracking reference signal PT-RS, physical uplink control channel PUCCH, configuration authorized physical uplink shared channel CG PUSCH, physical random Access channel PRACH;
  • the pre-configured signal or channel includes at least one of the following: semi-persistent scheduling physical direct link shared channel SPS PSSCH, physical direct link control channel PSCCH.
  • the second time domain resource is used to transmit high-priority services.
  • high-priority services include at least one of the following: system messages, paging messages, random access responses, services that do not include user data, ultra-high reliability and low-latency URLLC services ;
  • high-priority services include at least one of the following: uplink control information, services that do not include user data, ultra-high-reliability and low-latency URLLC services, MsgA PUSCH, and Msg3 PUSCH.
  • FIG. 5 it is a schematic diagram of another embodiment of a communication device in an embodiment of the present invention, which may include:
  • a memory 501 storing executable program codes
  • a processor 502 coupled to the memory 501;
  • the processor 502 calls the executable program code stored in the memory 501 to obtain the first detection time slot on the first channel, where the first detection time slot includes a first time domain resource and a second time domain resource.
  • the time domain resource is used for channel detection on the first channel, and the second time domain resource is used for information transmission through the first channel.
  • the first time domain resource is used for the first device to perform channel detection on the first channel
  • the second time domain resource is used for the first device to transmit information through the first channel
  • the first time domain resource is used for the first channel.
  • One device performs channel detection on the first channel
  • the second time domain resource is used by the second device to transmit information through the first channel
  • the first time domain resource is used by the second device to perform channel detection on the first channel
  • the second The time domain resources are used by the first device to transmit information through the first channel.
  • the processor 502 is further configured to perform channel detection on the first channel on the first time domain resource, and the first device performs information transmission on the second time domain resource through the first channel.
  • the first device includes a first terminal device
  • the second device includes a network device
  • the processor 502 is specifically configured to perform channel detection on the first channel on the first time domain resource, and the first terminal device receives the first physical channel and/or the first physical channel sent by the network device through the first channel on the second time domain resource.
  • a physical signal or,
  • the processor 502 is specifically configured to perform channel detection on the first channel on the first time domain resource, and the first terminal device transmits the first physical channel and/or the first channel to the network device through the first channel on the second time domain resource. Physical signal.
  • the first device includes a network device
  • the second device includes a first terminal device
  • the processor 502 is specifically configured to perform channel detection on the first channel on the first time domain resource, and the network device receives the second physical channel and/or the second physical channel sent by the first terminal device through the first channel on the second time domain resource. 2. Physical signals; or,
  • the processor 502 is specifically configured to perform channel detection on the first channel on the first time domain resource, and the network device sends the second physical channel and/or the second physical channel to the first terminal device through the first channel on the second time domain resource. Physical signal.
  • the first device includes a first terminal device
  • the second device includes a second terminal device
  • the processor 502 is specifically configured to perform channel detection on the first channel on the first time domain resource, and the first terminal device receives the third physical channel sent by the second terminal device through the first channel on the second time domain resource and/ Or a third physical signal; or,
  • the processor 502 is specifically configured to perform channel detection on the first channel on the first time domain resource, and the first terminal device sends the third physical channel and/or to the second terminal device through the first channel on the second time domain resource.
  • the third physical signal is specifically configured to perform channel detection on the first channel on the first time domain resource, and the first terminal device sends the third physical channel and/or to the second terminal device through the first channel on the second time domain resource. The third physical signal.
  • the processor 502 is specifically configured to obtain information of the first detection time slot according to first target information; the information of the first detection time slot includes the position of the first detection time slot, and/or , The length of the first detection time slot; wherein, the first target information includes a first preset value, information of the first detection time slot specified by the protocol, or first indication information sent by a network device.
  • the processor 502 is specifically configured to obtain information about the first time domain resource according to second target information; the information about the first time domain resource includes the location of the first time domain resource, and/or , The length of the first time domain resource; wherein, the second target information includes a second preset value, information of the first time domain resource specified by the protocol, or second indication information sent by a network device.
  • the processor 502 is specifically configured to obtain information about the second time domain resource according to third target information; the information about the second time domain resource includes the location of the second time domain resource, and/or , The length of the second time domain resource; wherein the third target information includes a third preset value, the information of the second time domain resource specified by the protocol, or the third indication information sent by the network device.
  • the first time domain resource and the second time domain resource are continuous in the time domain.
  • the first time domain resource and the second time domain resource include an interval of a first duration in the time domain, wherein the length of the first duration is preset or stipulated by an agreement or according to a fourth instruction sent by the network device Information obtained.
  • the first duration is determined according to at least one of the cell coverage, the cyclic prefix CP length of the symbol, the timing advance TA, and the transmission and reception conversion time.
  • the first duration is greater than or equal to the transceiver conversion time.
  • the first duration is used for the first device to perform the transceiving conversion.
  • the second time domain resource includes an integer number of symbols and/or an integer number of time slots.
  • the first channel is a carrier on the shared spectrum.
  • the second time domain resource is used to transmit a pre-configured signal or channel.
  • the pre-configured signal or channel includes at least one of the following: channel state information reference signal CSI-RS, phase tracking reference signal PT-RS, physical downlink control channel PDCCH, semi-persistent scheduling physical Downlink shared channel SPS PDSCH;
  • the pre-configured signal or channel includes at least one of the following: channel sounding reference signal SRS, phase tracking reference signal PT-RS, physical uplink control channel PUCCH, configuration authorized physical uplink shared channel CG PUSCH, physical random Access channel PRACH;
  • the pre-configured signal or channel includes at least one of the following: semi-persistent scheduling physical direct link shared channel SPS PSSCH, physical direct link control channel PSCCH.
  • the second time domain resource is used to transmit high-priority services.
  • high-priority services include at least one of the following: system messages, paging messages, random access responses, services that do not include user data, ultra-high reliability and low-latency URLLC services ;
  • high-priority services include at least one of the following: uplink control information, services that do not include user data, ultra-high-reliability and low-latency URLLC services, MsgA PUSCH, and Msg3 PUSCH.
  • the communication device includes a terminal device, as shown in FIG. 6, it is a schematic diagram of an embodiment of the terminal device in the embodiment of the present invention.
  • the terminal device is illustrated by taking a mobile phone as an example, and may include: a radio frequency (RF) circuit 610, a memory 620, an input unit 630, a display unit 640, a sensor 650, an audio circuit 660, a wireless fidelity (WiFi) module 670, a processor 680, a power supply 690 and other components.
  • the radio frequency circuit 610 includes a receiver 614 and a transmitter 612.
  • the RF circuit 610 can be used for receiving and sending signals during information transmission or communication. In particular, after receiving the downlink information of the base station, it is processed by the processor 980; in addition, the designed uplink data is sent to the base station.
  • the RF circuit 910 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • the RF circuit 610 can also communicate with the network and other devices through wireless communication.
  • the above-mentioned wireless communication can use any communication standard or protocol, including but not limited to global system of mobile communication (GSM), general packet radio service (GPRS), code division multiple access (code division multiple access, GSM) multiple access (CDMA), wideband code division multiple access (WCDMA), long term evolution (LTE), email, short messaging service (SMS), etc.
  • GSM global system of mobile communication
  • GPRS general packet radio service
  • code division multiple access code division multiple access
  • GSM code division multiple access
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • email short messaging service
  • SMS short messaging service
  • the memory 620 may be used to store software programs and modules.
  • the processor 680 executes various functional applications and data processing of the mobile phone by running the software programs and modules stored in the memory 620.
  • the memory 620 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 620 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the input unit 630 can be used to receive inputted number or character information, and generate key signal input related to user settings and function control of the mobile phone.
  • the input unit 630 may include a touch panel 631 and other input devices 632.
  • the touch panel 631 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 631 or near the touch panel 631. Operation), and drive the corresponding connection device according to the preset program.
  • the touch panel 631 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 680, and can receive and execute the commands sent by the processor 680.
  • the touch panel 631 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the input unit 630 may also include other input devices 632.
  • the other input device 632 may include, but is not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick.
  • the display unit 640 may be used to display information input by the user or information provided to the user and various menus of the mobile phone.
  • the display unit 640 may include a display panel 641.
  • the display panel 641 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • the touch panel 631 can cover the display panel 641. When the touch panel 631 detects a touch operation on or near it, it is transmitted to the processor 680 to determine the type of the touch event, and then the processor 680 determines the type of the touch event. The type provides corresponding visual output on the display panel 641.
  • the touch panel 631 and the display panel 641 are used as two independent components to implement the input and input functions of the mobile phone, but in some embodiments, the touch panel 631 and the display panel 641 can be integrated. Realize the input and output functions of the mobile phone.
  • the mobile phone may also include at least one sensor 650, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 641 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 641 and/or when the mobile phone is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when it is stationary.
  • the audio circuit 660, the speaker 661, and the microphone 662 can provide an audio interface between the user and the mobile phone.
  • the audio circuit 660 can transmit the electric signal after the conversion of the received audio data to the speaker 661, and the speaker 661 converts it into a sound signal for output; on the other hand, the microphone 662 converts the collected sound signal into an electric signal, and the audio circuit 660 After being received, it is converted into audio data, and then processed by the audio data output processor 680, and sent to, for example, another mobile phone via the RF circuit 610, or the audio data is output to the memory 620 for further processing.
  • WiFi is a short-distance wireless transmission technology.
  • the mobile phone can help users send and receive emails, browse web pages, and access streaming media through the WiFi module 670. It provides users with wireless broadband Internet access.
  • FIG. 6 shows the WiFi module 670, it is understandable that it is not a necessary component of the mobile phone, and can be omitted as needed without changing the essence of the invention.
  • the processor 680 is the control center of the mobile phone. It uses various interfaces and lines to connect various parts of the entire mobile phone. Various functions and processing data of the mobile phone can be used to monitor the mobile phone as a whole.
  • the processor 680 may include one or more processing units; preferably, the processor 680 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and application programs, etc. , The modem processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 680.
  • the mobile phone also includes a power source 690 (such as a battery) for supplying power to various components.
  • a power source 690 such as a battery
  • the power source can be logically connected to the processor 680 through a power management system, so that functions such as charging, discharging, and power management can be managed through the power management system.
  • the mobile phone may also include a camera, a Bluetooth module, etc., which will not be repeated here.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Abstract

一种信息传输方法、通信设备以及计算机可读存储介质,方法包括:第一设备获取第一信道上的第一检测时隙,其中,第一检测时隙包括第一时域资源和第二时域资源,第一时域资源用于对第一信道进行信道检测,第二时域资源用于通过第一信道进行信息传输,从而通过在一个检测时隙中不用于做能量检测的时域资源来进行信息传输,提高共享频谱上的频谱资源利用率。

Description

一种信息传输方法、通信设备以及计算机可读存储介质 技术领域
本发明涉及通信领域,尤其涉及一种信息传输方法、通信设备以及计算机可读存储介质。
背景技术
下一代(移动通信系统)(New radio,NR)系统的研究目前主要考虑两个频段,频段FR1(Frequency range 1)和频段FR2(Frequency range 2),其中,FR1和FR2包括的频域范围如表1所示。
频段定义 对应频段范围
FR1 410MHz–7.125GHz
FR2 24.25GHz–52.6GHz
表1
但是在NR系统的演进中,为了支持高频传输,需要引入比FR2频段支持的子载波间隔更大的子载波间隔。由于高频包括大带宽的共享频谱,如何高效地利用高频中的共享频谱进行无线通信,是亟需解决的问题。
发明内容
本发明实施例提供了一种信息传输方法、通信设备以及计算机可读存储介质,用于在一个检测时隙中不用于做能量检测的时域资源来进行信息传输,从而可以提高共享频谱上的频谱资源利用率。
有鉴于此,本发明实施例的第一方面提供一种信息传输方法,可以包括:第一设备获取第一信道上的第一检测时隙,其中,该第一检测时隙包括该第一时域资源和该第二时域资源,该第一时域资源用于对该第一信道进行信道检测,该第二时域资源用于通过该第一信道进行信息传输。
可选的,该第一时域资源用于该第一设备对该第一信道进行信道检测,该第二时域资源用于该第一设备通过该第一信道进行信息传输;或,该第一时域资源用于该第一设备对该第一信道进行信道检测,该第二时域资源用于第二设备通过该第一信道进行信息传输;或,该第一时域资源用于该第二设备对该第一信道进行信道检测,该第二时域资源用于该第一设备通过该第一信道进行信息传输。
可选的,该方法还包括:该第一设备在该第一时域资源上对该第一信道进行信道检测,该第一设备在该第二时域资源上通过该第一信道进行信息传输。
可选的,该第一设备包括第一终端设备,该第二设备包括网络设备,该第一设备在该第一时域资源上对该第一信道进行信道检测,该第一设备在该第二时域资源上通过该第一信道进行信息传输,可以包括:
该第一终端设备在该第一时域资源上对该第一信道进行信道检测,该第一终端设备在该第二时域资源上通过该第一信道接收该网络设备发送的第一物理信道和/或第一物理信号;或,该第一终端设备在该第一时域资源上对该第一信道进行信道检测,该第一终端设备在该第二时域资源上通过该第一信道向该网络设备发送第一物理信道和/或第一物理信号。
可选的,该第一设备包括网络设备,该第二设备包括第一终端设备,该第一设备在该第一时域资源上对该第一信道进行信道检测,该第一设备在该第二时域资源上通过该第一信道进行信息传输,可以包括:
该网络设备在该第一时域资源上对该第一信道进行信道检测,该网络设备在该第二时域资源上通过该第一信道接收该第一终端设备发送的第二物理信道和/或第二物理信号;或,该网络设备在该第一时域资源上对该第一信道进行信道检测,该网络设备在该第二时域资源上通过该第一信道向该第一终端设备发送第二物理信道和/或第二物理信号。
可选的,该第一设备包括第一终端设备,该第二设备包括第二终端设备,该第一设备在该第一时域资源上对该第一信道进行信道检测,该第一设备在该第二时域资源上通过该第一信道进行信息传输,可以包括:
该第一终端设备在该第一时域资源上对该第一信道进行信道检测,该第一终端设备在该第二时域资源上通过该第一信道接收该第二终端设备发送的第三物理信道和/或第三物理信号;或,该第一终端设备在该第一时域资源上对该第一信道进行信道检测,该第一终端设备在该第二时域资源上通过该第一信道向该第二终端设备发送第三物理信道和/或第三物理信号。
可选的,该第一设备获取第一信道上的第一检测时隙,可以包括:该第一设备根据第一目标信息获取该第一检测时隙的信息;该第一检测时隙的信息包括该第一检测时隙的位置,和/或,该第一检测时隙的长度;其中,该第一目标信息包括第一预设值,协议规定的该第一检测时隙的信息,或网络设备发送的第一指示信息。
可选的,该第一设备获取第一信道上的第一检测时隙,可以包括:该第一设备根据第二目标信息获取该第一时域资源的信息;该第一时域资源的信息包括该第一时域资源的位置,和/或,该第一时域资源的长度;其中,该第二目标信息包括第二预设值,协议规定的该第一时域资源的信息,或网络设备发送的第二指示信息。
可选的,该第一设备获取第一信道上的第一检测时隙,可以包括:该第一设备根据第二目标信息获取该第一时域资源的信息;该第一时域资源的信息包括该第一时域资源的位置,和/或,该第一时域资源的长度;其中,该第二目标信息包括第二预设值,协议规定的该第一时域资源的信息,或网络设备发送的第二指示信息。
可选的,该第一时域资源和该第二时域资源在时域上是连续的。
可选的,该第一时域资源和该第二时域资源在时域上包括第一时长的间隔,其中,该第一时长的长度是预设的或协议规定的或根据网络设备发送的第四指示信息获取的。
可选的,该第一时长是根据小区覆盖范围、符号的循环前缀CP长度、定时提前TA和收发转换时间中的至少一项确定的。
可选的,该第一时长大于或等于收发转换时间。
可选的,该第一时长用于该第一设备进行收发转换。
可选的,该第二时域资源包括整数个符号和/或整数个时隙。
可选的,该第一信道为共享频谱上的载波。
可选的,该第二时域资源用于传输预配置的信号或信道。
可选的,在下行传输的情况下,该预配置的信号或信道包括以下至少一种:信道状态信息参考信号CSI-RS、相位跟踪参考信号PT-RS、物理下行控制信道PDCCH、半持续调度物理下行共享信道SPS PDSCH;
在上行传输的情况下,该预配置的信号或信道包括以下至少一种:信道探测参考信号SRS、相位跟踪参考信号PT-RS、物理上行控制信道PUCCH、配置授权物理上行共享信道CG PUSCH、物理随机接入信道PRACH;
在侧行传输的情况下,该预配置的信号或信道包括以下至少一种:半持续调度物理直通链路共享信道SPS PSSCH、物理直通链路控制信道PSCCH。
可选的,该第二时域资源用于传输高优先级的业务。
可选的,在下行传输的情况下,该高优先级的业务包括以下至少一种:系统消息、寻呼消息、随机接入响应、不包括用户数据的业务、超高可靠性低时延URLLC业务;
在上行传输的情况下,该高优先级的业务包括以下至少一种:上行控制信息、不包括用户数据的业务、超高可靠性低时延URLLC业务、MsgA PUSCH、Msg3PUSCH。
本发明实施例第二方面提供了一种通信设备,具有提高共享频谱上的频谱资源利用率的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
本发明实施例又一方面提供一种通信设备,包括:存储有可执行程序代码的存储器;与所述存储器耦合的处理器;所述处理器调用所述存储器中存储的所述可执行程序代码,用于执行本发明实施例第一方面中所述的方法。
本发明实施例又一方面提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如本发明第一方面中所述的方法。
本发明实施例又一方面提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如本发明第一方面中所述的方法。
本发明实施例又一方面提供一种芯片,所述芯片与所述通信设备中的存储器耦合,使得所述芯片在运行时调用所述存储器中存储的程序指令,使得所述通信设备执行如本发明第一方面中所述的方法。
本发明实施例提供的技术方案中,具有以下有益效果:
第一设备获取第一信道上的第一检测时隙,其中,所述第一检测时隙包括所述第一时域资源和所述第二时域资源,所述第一时域资源用于对所述第一信道进行信道检测,所述第二时域资源用于通过所述第一信道进行信息传输。由于NR系统是同步系统,在高频上用于通信传输的子载波间隔很大,对应的时隙或符号的长度很短,因此本申请通过规定在一个检测时隙中用于做能量检测的时域资源的位置,进而可以利用一个检测时隙中不用于做能量检测的时域资源来进行信息传输,从而可以提高共享频谱上的频谱资源利用率。
附图说明
图1为本发明实施例所应用的通信系统的系统架构图;
图2为本发明实施例中信息传输方法的一个实施例示意图;
图3A为本发明实施例中通信设备使用第一检测时隙进行通信的一个示意图;
图3B为本发明实施例中通信设备使用第一检测时隙进行通信的另一个示意图;
图4为本发明实施例中通信设备的一个实施例示意图;
图5为本发明实施例中通信设备的另一个实施例示意图;
图6为本发明实施例中终端设备的一个实施例示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
1、下面先对本发明中涉及的高频相关背景做一个简要说明,如下所示:
随着NR系统的演进,新频段即高频上的技术也开始进行研究。新频段包括的频域范围如表2所示,为便于描述,本申请中用FRX表示新频段。应理解,该新频段的名称不应构成对本发明的保护范围的限定,这里只是为例进行说明,实际中新频段的名称也可以是其他名称。例如该新频段为FR3。
高频 对应频段范围
FRX 52.6GHz–71GHz
表2
FRX频段中包括授权频谱,也包括非授权频谱。或者可以理解为,FRX频段中包括非共享频谱,也包括共享频谱。
其中,非授权频谱是国家和地区划分的可用于通信设备通信的频谱,该频谱通常被认为是共享频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,不需要向政府申请专有的频谱授权。
为了让使用非授权频谱进行无线通信的各个通信系统在该频谱上能够友好共存,一些国家或地区规定了使用非授权频谱必须满足的一些法规要求。例如,通信设备遵循“先听后说(Listen Before Talk,LBT)”原则,即通信设备在非授权频谱的信道上进行信号发送前,需要先进行信道侦听,只有当信道侦听结果为信道空闲时,该通信设备才能进行信号发送;如果通信设备在非授权频谱的信道上的信道侦听结果为信道忙,那么该通信设备不能进行信号发送。又例如,为了保证公平性,在一次传输中,通信设备使用非授权频谱的信道进行信号传输的时长不能超过一定时间长度。又例如,为了避免在非授权频谱的信道上传输的信号的功率太大,影响该信道上的其他重要信号的传输,通信设备使用非授权频谱的信道进行信号传输时需要遵循不超过最大功率谱密度的限制,等等。
FRX频段考虑的子载波间隔比FR2的子载波间隔更大,目前的候选子载波间隔包括以下几种:480kHz、960kHz、1.92MHz、3.84MHz。对应地,这些候选子载波间隔下对应的参数集(Numerology)如下表3所示。
Figure PCTCN2020090629-appb-000001
表3
2、下面对非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统中的信道接入过程做一个简要说明,因为NR-U系统主要布网在非授权频谱(即共享频谱)上。所以,先对共享频谱上的信号传输包括的基本概念进行简要介绍,如下所示:
1)最大信道占用时间(Maximum Channel Occupancy Time,MCOT):指LBT成功后允许使用非授权频谱的信道进行信号传输的最大时间长度,不同信道接入优先级下有不同的MCOT。当前MCOT的最大取值为10ms。应理解,该MCOT为信号传输占用的时间。
2)信道占用时间(Channel Occupancy Time,COT):指LBT成功后使用非授权频谱的信道进行信号传输的时间长度,该时间长度内信号占用信道可以是不连续的。其中,一次COT最长不能超过20ms,并且,该COT内的信号传输占用的时间长度不超过MCOT。
3)基站的信道占用时间(gNB-initiated COT):也称为基站发起的COT,指基站LBT成功后获得 的一次信道占用时间。基站的信道占用时间内除了可以用于下行传输,也可以在满足一定条件下用于用户设备(User Equipment,UE)进行上行传输。
4)UE的信道占用时间(UE-initiated COT):也称为UE发起的COT,指UE LBT成功后获得的一次信道占用时间。
5)下行传输机会(DL burst):基站进行的一组下行传输(即包括一个或多个下行传输),该组下行传输为连续传输(即多个下行传输之间没有空隙),或该组下行传输中有空隙但空隙小于或等于16μs。如果基站进行的两个下行传输之间的空隙大于16μs,那么认为该两个下行传输属于两次下行传输机会。
6)上行传输机会(UL burst):一个UE进行的一组上行传输(即包括一个或多个上行传输),该组上行传输为连续传输(即多个上行传输之间没有空隙),或该组上行传输中有空隙但空隙小于或等于16μs。如果该UE进行的两个上行传输之间的空隙大于16μs,那么认为该两个上行传输属于两次上行传输机会。
需要说明的是,通信设备获得信道占用的模式可以是基于负载的设备(Load based equipment,LBE)的信道接入模式,即通信设备可以在业务到达后进行共享信道上的LBT,并在LBT成功后在该共享信道上开始传输;也可以是基于帧结构的设备(Frame based equipment,FBE)的信道接入模式,即通信设备周期性地进行共享信道上的LBT。其中,基于FBE的信道接入模式也可以被称为是半静态信道接入模式。基于LBE的信道接入模式可以包括多种不同的信道接入方案,如下所示:
Type1信道接入:
通信设备的信道检测方式为基于竞争窗口大小调整的随机回退的多检测时隙信道检测。具体地,Type1信道接入下,根据传输业务的优先级可以包括不同的信道接入优先级(Channel access priority class,CAPC)。表4和表5为不同信道接入优先级对应的信道接入参数的两个示例。其中,p取值越小,信道接入优先级越高。可选地,表4用于网络设备的Type1信道接入,表5用于终端设备的Type1信道接入。
Figure PCTCN2020090629-appb-000002
表4
Figure PCTCN2020090629-appb-000003
表5
需要说明的是,在上述表4或表5中,m p是指信道接入优先级p对应的回退检测时隙个数,CW p是指信道接入优先级p对应的竞争窗口大小,CW min,p是指信道接入优先级p对应的CW p取值的最小值,CW max,p是指信道接入优先级p对应的CW p取值的最大值,T mcot,p是指信道接入优先级p对应的信道最大占用时间长度。
示例性的,一个检测时隙的大小为9微秒,通信设备在进行检测时,需要对一个检测时隙中的至少4微秒进行能量检测。
Type2A信道接入:
通信设备的信道检测方式为进行25微秒固定检测时隙长度的信道检测。具体地,Type2A信道接入下,通信设备在传输开始前可以进行25微秒的信道检测,并在信道检测成功后进行传输。
Type2B信道接入:
通信设备的信道检测方式为进行16微秒固定检测时隙长度的信道检测。具体地,Type2B信道接入下,通信设备在传输开始前可以进行16微秒的信道检测,并在信道检测成功后进行传输。可选地,该传输的起始位置距离上一次传输的结束位置之间的空隙大小为16微秒。
Type2C信道接入:
通信设备不做信道检测而进行传输。具体地,Type2C信道接入下,通信设备可以在空隙结束后直接进行传输,其中,该传输的起始位置距离上一次传输的结束位置之间的空隙大小为小于或等于16微秒。可选地,该传输的长度不超过584微秒。
需要说明的是,不同传输场景下应用的信道接入方案不同,不同信号或信道应用的信道接入方案也不同。当网络设备发起COT后,可以将该COT内的资源用于终端设备进行上行传输。在网络设备的COT内发生的上行传输机会,如果该上行传输机会的起始位置和下行传输机会的结束位置之间的空隙小于或等于16μs,终端设备可以在该上行传输前进行Type2C信道接入;如果该上行传输机会的起始位置和下行传输机会的结束位置之间的空隙为16μs,终端设备可以在该上行传输前进行Type2B信道接入;如果该上行传输机会的起始位置和下行传输机会的结束位置之间的空隙为25μs或大于25μs,终端设备可以在该上行传输前进行Type2A信道接入。网络设备可以来保证该上行传输机会的起始位置和下行传输机会的结束位置之间的空隙的大小,并将用于确定该空隙大小的信息或对应的LBT方式通知给终端设备。
3、高频信道接入方案
目前在欧洲的法规中,规定了使用高频进行通信的通信设备的信道检测方式包括随机回退的多时隙信道检测。例如,通信设备在生成待检测的检测时隙的个数时,对应的窗口的范围为0到127。通信设备在进行通信传输前,需要进行信道检测并确定信道检测空闲的时间长度包括8μs+random(0to127)×5μs。示例性的,一个检测时隙的大小为5微秒,通信设备在进行检测时,需要对一个5微秒检测时隙中的部分时域资源进行信道检测。
在NR系统的演进中,为了支持高频传输,需要引入比FR2频段支持的子载波间隔更大的子载波间隔。由于高频包括大带宽的共享频谱,如何高效地利用高频中的共享频谱进行无线通信,是本申请主要考虑的问题。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的 其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
如图1所示,为本发明实施例所应用的通信系统的系统架构图。该通信系统可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
其中,网络设备又可以包括接入网设备和核心网设备。即无线通信系统还包括用于与接入网设备进行通信的多个核心网。接入网设备可以是长期演进(long-term evolution,LTE)系统、下一代(移动通信系统)(next radio,NR)系统或者授权辅助接入长期演进(authorized auxiliary access long-term evolution,LAA-LTE)系统中的演进型基站(evolutional node B,简称可以为eNB或e-NodeB)宏基站、微基站(也称为“小基站”)、微微基站、接入站点(access point,AP)、传输站点(transmission point,TP)或新一代基站(new generation Node B,gNodeB)等。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为本发明实施例中所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或” 的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
本申请提出了一种NR演进系统(高频)中的信息传输方法,由于在高频上用于通信传输的子载波间隔很大,对应的时隙或符号的长度很短,因此在同步系统中,可以规定做LBT检测的具体位置,从而可以利用不进行LBT检测的时域资源进行信号传输,提高资源利用率。
下面以实施例的方式对本发明技术方案作进一步的说明。如图2所示,为本发明实施例中信息传输方法的一个实施例示意图,可以包括:
201、第一设备获取第一信道上的第一检测时隙,其中,第一检测时隙包括第一时域资源和第二时域资源,第一时域资源用于对第一信道进行信道检测,第二时域资源用于通过第一信道进行信息传输。
在本发明实施例中,由前面的分析可知,FRX频段考虑的子载波间隔比FR2的子载波间隔更大,目前的候选子载波间隔可以包括但不限于以下几种:480kHz、960kHz、1.92MHz、3.84MHz。对应地,这些候选子载波间隔下对应的参数集(Numerology)可以参考前述表3,此处不再赘述。在用于通信传输的子载波间隔很大的情况下,对应的时隙长度或符号长度很短。
示例性的,在高频上用于信道检测的一个检测时隙的大小包括5微秒或8微秒等;或者,和NR-U系统类似,在高频上也可以支持类似于Type2的固定检测时隙长度的信道接入方式。通信设备在进行信道检测时,需要对一个检测时隙中的部分时域资源进行信道检测而不需要对所有的时域资源进行信道检测,从而,可以在除去进行信道检测的全部或部分时域资源上进行信息传输。可以理解的是,进行信道检测通常可以包括进行能量检测等。
可选的,第一时域资源用于对第一信道进行信道检测,第二时域资源用于通过第一信道进行信息传输,可以分为以下几种情况:
(1)第一时域资源用于第一设备对第一信道进行信道检测,第二时域资源用于第一设备通过第一信道进行信息传输;或,
(2)第一时域资源用于第一设备对第一信道进行信道检测,第二时域资源用于第二设备通过第一信道进行信息传输;或,
(3)第一时域资源用于第二设备对第一信道进行信道检测,第二时域资源用于第一设备通过第一信道进行信息传输。
可选的,第二设备是与第一设备建立通信连接的设备。
可选的,第一设备获取第一信道上的第一检测时隙,可以包括但不限于以下实现方式:
1)所述第一设备根据第一目标信息获取所述第一检测时隙的信息;所述第一检测时隙的信息包括所述第一检测时隙的位置,和/或,所述第一检测时隙的长度;其中,所述第一目标信息包括第一预设值,协议规定的所述第一检测时隙的信息,或网络设备发送的第一指示信息。
2)所述第一设备根据第二目标信息获取所述第一时域资源的信息;所述第一时域资源的信息包括所述第一时域资源的位置,和/或,所述第一时域资源的长度;其中,所述第二目标信息包括第二预设值,协议规定的所述第一时域资源的信息,或网络设备发送的第二指示信息。
3)所述第一设备根据第三目标信息获取所述第二时域资源的信息;所述第二时域资源的信息包括所述第二时域资源的位置,和/或,所述第二时域资源的长度;其中,所述第三目标信息包括第三预设值,协议规定的所述第二时域资源的信息,或网络设备发送的第三指示信息。
可选的,如果第一设备包括网络设备,网络设备获取第一检测时隙的信息、第一时域资源的信息或第二时域资源的信息的方式可以是该网络设备自行确定的,或根据协议规定确定的。
可选的,如果第一设备包括终端设备,终端设备获取第一检测时隙的信息、第一时域资源的信息或第二时域资源的信息的方式可以是根据网络设备下发的指示信息确定的,或根据协议规定确定的。
可选的,第二设备获取第一检测时隙的信息、第一时域资源的信息或第二时域资源的信息的方式,可以和第一设备获取第一检测时隙的信息、第一时域资源的信息或第二时域资源的信息的方式相同,此处不再赘述。
可选的,第二设备是与第一设备未建立通信连接的设备。例如,在网络中,网络设备指示第一终端设备通过第一时域资源进行信道检测,指示第二终端设备通过第二时域资源向该网络设备发送信息。这里可以认为第一设备包括第一终端设备,第二设备包括第二终端设备。第二终端设备也可以根据预设值或协议规定或网络设备发送的指示信息获取第二时域资源,此处不再赘述。
可选的,本申请中的指示信息包括物理层信令例如下行控制信息(Downlink Control Information,DCI)、无线资源控制(Radio Resource Control,RRC)信令和媒体接入控制单元(Media Access Control Control Element,MAC CE)等中的至少一种。
可选的,第一时域资源和第二时域资源在时域上是连续的。
可选的,第一时域资源和第二时域资源在时域上包括第一时长的间隔,其中,第一时长的长度是预设的或协议规定的或根据网络设备发送的第四指示信息获取的。
可选的,第一时长是根据小区覆盖范围、符号的循环前缀CP长度、定时提前(Timing Advance,TA)和收发转换时间中的至少一项确定的。
可选的,第一时长大于或等于收发转换时间。可以理解的是,收发转换时间包括第一设备从接收信息的模式转换为发送信息的模式所需的时间长度,或者,从发送信息的模式转换为接收信息的模式所需的时间长度,或者,从发信号的第一状态转换成发信号的第二状态需要的时间长度,或者,从收信号的第一状态转换成收信号的第二状态需要的时间长度。
可选的,第一时长用于第一设备进行收发转换。
可选的,第二时域资源包括整数个符号和/或整数个时隙。或者,第二时域资源的起始位置和结束位置为符号边界。或者,第二时域资源的起始位置和结束位置为时隙边界。
可选的,若第二时域资源包括的第一个符号是部分符号,则该部分符号上的时域资源可以用于传输该部分符号后的第一个符号上传输的信号的延长CP。
可选的,若第二时域资源包括的最后一个符号是部分符号,则该部分符号上的时域资源不用于传输信息。
例如,第二时域资源包括的8个符号的索引分别为2~9,其中符号2包括0.5个符号,符号9包括0.5个符号,那么符号2包括的0.5个符号对应的时域资源可以用于传输符号3的延长CP,符号9包括的0.5个符号对应的时域资源不用于传输信息。
可选的,第一信道为共享频谱上的载波。
可选的,第二时域资源用于传输预配置的信号或信道,其中,第一信道为共享频谱上的载波。
示例性的,1)在下行传输的情况下,预配置的信号或信道包括以下至少一种:信道状态信息参考信号(Channel State Information Reference Signal,CSI Reference Signal,CSI-RS)、相位跟踪参考信号(Phase-Tracking Reference Signals,PT-RS)、物理下行控制信道(Physical Downlink Control Channel,PDCCH)、半持续调度物理下行共享信道(Semi-Persistent Scheduling Physical Downlink Shared Channel,SPS PDSCH)。
2)在上行传输的情况下,预配置的信号或信道包括以下至少一种:信道探测参考信号(Sounding Reference Signal,SRS)、相位跟踪参考信号(Phase-Tracking Reference Signals,PT-RS)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)、配置授权物理上行共享信道(Configured Grant Physical Uplink Shared Channel,CG PUSCH)、物理随机接入信道(Physical Random Access Channel,PRACH)。
3)在侧行传输的情况下,预配置的信号或信道包括以下至少一种:半持续调度物理直通链路共享信道(Semi-Persistent Scheduling Physical Sidelink Shared Channel,SPS PSSCH)、物理直通链路控制信道(Physical Sidelink Control Channel,PSCCH)。
可选的,第二时域资源用于传输网络设备动态调度的信号或信道。
可选的,第二时域资源用于传输高优先级的业务。
示例性的,1)在下行传输的情况下,高优先级的业务包括以下至少一种:系统消息、寻呼消息、随机接入响应、不包括用户数据的业务、超高可靠性低时延(Ultra Reliable Low Latency Communication,URLLC)业务。
2)在上行传输的情况下,高优先级的业务包括以下至少一种:上行控制信息、不包括用户数据的业务、超高可靠性低时延URLLC业务、MsgA PUSCH、Msg3PUSCH。
202、第一设备在第一时域资源上对第一信道进行信道检测,第一设备在第二时域资源上通过第一信道进行信息传输。
第一设备在第一时域资源上对第一信道进行信道检测,第一设备在第二时域资源上通过第一信道进 行信息传输,可以包括但不限于以下的实现方式:
实现方式一:在第一设备包括第一终端设备,第二设备包括网络设备的情况下;
1)第一终端设备在第一时域资源上对第一信道进行信道检测,第一终端设备在第二时域资源上通过第一信道接收网络设备发送的第一物理信道和/或第一物理信号;或,
2)第一终端设备在第一时域资源上对第一信道进行信道检测,第一终端设备在第二时域资源上通过第一信道向网络设备发送第一物理信道和/或第一物理信号。
实现方式二:在第一设备包括网络设备,在第二设备包括第一终端设备的情况下;
1)网络设备在第一时域资源上对第一信道进行信道检测,网络设备在第二时域资源上通过第一信道接收第一终端设备发送的第二物理信道和/或第二物理信号;或,
2)网络设备在第一时域资源上对第一信道进行信道检测,网络设备在第二时域资源上通过第一信道向第一终端设备发送第二物理信道和/或第二物理信号。
实现方式三:在第一设备包括第一终端设备,第二设备包括第二终端设备的情况下;
1)第一终端设备在第一时域资源上对第一信道进行信道检测,第一终端设备在第二时域资源上通过第一信道接收第二终端设备发送的第三物理信道和/或第三物理信号;或,
2)第一终端设备在第一时域资源上对第一信道进行信道检测,第一终端设备在第二时域资源上通过第一信道向第二终端设备发送第三物理信道和/或第三物理信号。
下面以示例的方式,对本发明技术方案做进一步的说明,如下所示:
示例1:以Type2B信道接入方式为例,第一检测时隙包括16微秒,在进行信道检测时需要对该16微秒检测时隙中的至少5微秒进行能量检测,并且检测到的能量低于门限可以认为是LBT成功。其中,该16微秒的第一检测时隙包括第一检测子时隙7微秒+第二检测子时隙9微秒的检测时隙,该5微秒进行能量检测中的至少4微秒可以发生在9微秒的检测子时隙中。
为了能充分利用第一检测时隙中包括的时域资源进行信息传输,可以通过预设或网络设备配置的方式确定进行能量检测的时域位置。例如,如图3A所示,为本发明实施例中通信设备使用第一检测时隙进行通信的一个示意图。第一检测子时隙中包括1微秒的能量检测时域资源,该1微秒为第一检测子时隙中的第1微秒。第二检测子时隙中包括4微秒的能量检测时域资源,该4微秒为第一检测子时隙中的前4微秒。因此,第一检测时隙中的第2~7微秒(共6微秒)和第12~16微秒(共5微秒)可用于传输第一物理信道和/或第一物理信号。
例如,网络设备指示终端设备使用Type2B信道接入方式进行信道接入,其中Type2B信道接入对应第一检测时隙。网络设备在第一检测时隙中的第1微秒和第8~11微秒上不进行信息传输,以使终端设备可以进行能量检测,另外,网络设备使用第一检测时隙中的第2~7微秒和第12~16微秒中的时域资源发送第一物理信道和/或第一物理信号。
相应地,终端设备在使用Type2B信道接入方式进行信道接入的过程中,在第一检测时隙中的第1微秒和第8~11微秒上进行能量检测,在第一检测时隙中的第2~7微秒和第12~16微秒上接收网络设备发送的第一物理信道和/或第一物理信号。
在该示例中,不同子载波间隔下网络设备可用于传输信息的时域资源内可包括的最大符号个数如下表6所示。
子载波间隔 6微秒 5微秒
480kHz 2个符号 2个符号
960kHz 5个符号 4个符号
1.92MHz 10个符号 8个符号
3.84MHz 21个符号 17个符号
表6
示例2:以Type2B信道接入方式为例,第一检测时隙包括16微秒,在进行信道检测时需要对该16微秒检测时隙中的至少5微秒进行能量检测,并且检测到的能量低于门限可以认为是LBT成功。其中,该16微秒的第一检测时隙包括第一检测子时隙7微秒+第二检测子时隙9微秒的检测时隙,该5微秒进行能量检测中的至少4微秒可以发生在9微秒的检测子时隙中。
为了能充分利用第一检测时隙中包括的时域资源进行信息传输,可以通过预设或网络设备配置的方式确定进行能量检测的时域位置。例如,如图3B所示,为本发明实施例中通信设备使用第一检测时隙 进行通信的另一个示意图。第一检测子时隙中包括1微秒的能量检测时域资源,该1微秒为第一检测子时隙中的第1微秒。第二检测子时隙中包括4微秒的能量检测时域资源,该4微秒为第一检测子时隙中的前4微秒。假设终端设备收发转换需要的时间是2微秒,那么用于能量检测的时域资源和用于信息传输的时域资源在时域上包括第一时长为2微秒的间隔,终端设备可以在该2微秒的第一时长的间隔内进行收发转换。因此,第一检测时隙中的第4~7微秒(共4微秒)和第14~16微秒(共3微秒)可用于传输第一物理信道和/或第一物理信号。
例如,网络设备(或其他终端设备)指示终端设备使用Type2B信道接入方式进行信道接入,其中Type2B信道接入对应第一检测时隙。
终端设备在使用Type2B信道接入方式进行信道接入的过程中,在第一检测时隙中的第1微秒和第8~11微秒上进行能量检测,在第一检测时隙中的第2~3微秒和第12~13微秒上进行收发转换,使用第一检测时隙中的第4~7微秒和第14~16微秒中的时域资源发送第一物理信道和/或第一物理信号。
相应地,网络设备(或其他终端设备)使用第一检测时隙中的第4~7微秒和第14~16微秒中的时域资源接收该终端设备发送的第一物理信道和/或第一物理信号。
在该示例中,不同子载波间隔下该终端设备可用于传输信息的时域资源内可包括的最大符号个数如下表7所示。
子载波间隔 4微秒 3微秒
480kHz 1个符号 1个符号
960kHz 3个符号 2个符号
1.92MHz 7个符号 5个符号
3.84MHz 14个符号 10个符号
表7
可以理解的是,在本发明实施例中,示例中所涉及的一些参数,并不够成对本发明技术方案保护范围的限定。步骤202是可选的步骤。
在本发明实施例中,提出了一种信息传输方法,第一设备获取第一信道上的第一检测时隙,其中,第一检测时隙包括第一时域资源和第二时域资源,第一时域资源用于对第一信道进行信道检测,第二时域资源用于通过第一信道进行信息传输。由于NR系统是同步系统,在高频上用于通信传输的子载波间隔很大,对应的时隙或符号的长度很短,因此本申请通过规定在一个检测时隙中用于做能量检测的时域资源的位置,进而可以利用一个检测时隙中不用于做能量检测的时域资源来进行信息传输,即可以规定做LBT检测的具体位置,从而可以利用不进行LBT检测的时域资源进行信息传输,从而可以提高共享频谱上的频谱资源利用率。
如图4所示,为本发明实施例中通信设备的一个实施例示意图,可以包括:
处理模块401,用于获取第一信道上的第一检测时隙,其中,第一检测时隙包括第一时域资源和第二时域资源,第一时域资源用于对第一信道进行信道检测,第二时域资源用于通过第一信道进行信息传输。
可选的,第一时域资源用于第一设备对第一信道进行信道检测,第二时域资源用于第一设备通过第一信道进行信息传输;或,第一时域资源用于第一设备对第一信道进行信道检测,第二时域资源用于第二设备通过第一信道进行信息传输;或,第一时域资源用于第二设备对第一信道进行信道检测,第二时域资源用于第一设备通过第一信道进行信息传输。
可选的,处理模块401,还用于在第一时域资源上对第一信道进行信道检测,第一设备在第二时域资源上通过第一信道进行信息传输。
可选的,第一设备包括第一终端设备,第二设备包括网络设备,
处理模块401,具体用于在第一时域资源上对第一信道进行信道检测,第一终端设备在第二时域资源上通过第一信道接收网络设备发送的第一物理信道和/或第一物理信号;或,
处理模块401,具体用于在第一时域资源上对第一信道进行信道检测,第一终端设备在第二时域资源上通过第一信道向网络设备发送第一物理信道和/或第一物理信号。
可选的,第一设备包括网络设备,第二设备包括第一终端设备,
处理模块401,具体用于在第一时域资源上对第一信道进行信道检测,网络设备在第二时域资源上通过第一信道接收第一终端设备发送的第二物理信道和/或第二物理信号;或,
处理模块401,具体用于在第一时域资源上对第一信道进行信道检测,网络设备在第二时域资源上通过第一信道向第一终端设备发送第二物理信道和/或第二物理信号。
可选的,第一设备包括第一终端设备,第二设备包括第二终端设备,
处理模块401,具体用于在第一时域资源上对第一信道进行信道检测,第一终端设备在第二时域资源上通过第一信道接收第二终端设备发送的第三物理信道和/或第三物理信号;或,
处理模块401,具体用于在第一时域资源上对第一信道进行信道检测,第一终端设备在第二时域资源上通过第一信道向第二终端设备发送第三物理信道和/或第三物理信号。
可选的,处理模块401,具体用于根据第一目标信息获取所述第一检测时隙的信息;所述第一检测时隙的信息包括所述第一检测时隙的位置,和/或,所述第一检测时隙的长度;其中,所述第一目标信息包括第一预设值,协议规定的所述第一检测时隙的信息,或网络设备发送的第一指示信息。
可选的,处理模块401,具体用于根据第二目标信息获取所述第一时域资源的信息;所述第一时域资源的信息包括所述第一时域资源的位置,和/或,所述第一时域资源的长度;其中,所述第二目标信息包括第二预设值,协议规定的所述第一时域资源的信息,或网络设备发送的第二指示信息。
可选的,处理模块401,具体用于根据第三目标信息获取所述第二时域资源的信息;所述第二时域资源的信息包括所述第二时域资源的位置,和/或,所述第二时域资源的长度;其中,所述第三目标信息包括第三预设值,协议规定的所述第二时域资源的信息,或网络设备发送的第三指示信息。
可选的,第一时域资源和第二时域资源在时域上是连续的。
可选的,第一时域资源和第二时域资源在时域上包括第一时长的间隔,其中,第一时长的长度是预设的或协议规定的或根据网络设备发送的第四指示信息获取的。
可选的,第一时长是根据小区覆盖范围、符号的循环前缀CP长度、定时提前TA和收发转换时间中的至少一项确定的。
可选的,第一时长大于或等于收发转换时间。
可选的,第一时长用于第一设备进行收发转换。
可选的,第二时域资源包括整数个符号和/或整数个时隙。
可选的,第一信道为共享频谱上的载波。
可选的,第二时域资源用于传输预配置的信号或信道。
可选的,在下行传输的情况下,预配置的信号或信道包括以下至少一种:信道状态信息参考信号CSI-RS、相位跟踪参考信号PT-RS、物理下行控制信道PDCCH、半持续调度物理下行共享信道SPS PDSCH;
在上行传输的情况下,预配置的信号或信道包括以下至少一种:信道探测参考信号SRS、相位跟踪参考信号PT-RS、物理上行控制信道PUCCH、配置授权物理上行共享信道CG PUSCH、物理随机接入信道PRACH;
在侧行传输的情况下,预配置的信号或信道包括以下至少一种:半持续调度物理直通链路共享信道SPS PSSCH、物理直通链路控制信道PSCCH。
可选的,第二时域资源用于传输高优先级的业务。
可选的,在下行传输的情况下,高优先级的业务包括以下至少一种:系统消息、寻呼消息、随机接入响应、不包括用户数据的业务、超高可靠性低时延URLLC业务;
在上行传输的情况下,高优先级的业务包括以下至少一种:上行控制信息、不包括用户数据的业务、超高可靠性低时延URLLC业务、MsgA PUSCH、Msg3PUSCH。
如图5所示,为本发明实施例中通信设备的另一个实施例示意图,可以包括:
存储有可执行程序代码的存储器501;
与存储器501耦合的处理器502;
处理器502调用存储器501中存储的可执行程序代码,用于获取第一信道上的第一检测时隙,其中,第一检测时隙包括第一时域资源和第二时域资源,第一时域资源用于对第一信道进行信道检测,第二时域资源用于通过第一信道进行信息传输。
可选的,第一时域资源用于第一设备对第一信道进行信道检测,第二时域资源用于第一设备通过第一信道进行信息传输;或,第一时域资源用于第一设备对第一信道进行信道检测,第二时域资源用于第二设备通过第一信道进行信息传输;或,第一时域资源用于第二设备对第一信道进行信道检测,第二时域资源用于第一设备通过第一信道进行信息传输。
可选的,处理器502,还用于在第一时域资源上对第一信道进行信道检测,第一设备在第二时域资源上通过第一信道进行信息传输。
可选的,第一设备包括第一终端设备,第二设备包括网络设备,
处理器502,具体用于在第一时域资源上对第一信道进行信道检测,第一终端设备在第二时域资源上通过第一信道接收网络设备发送的第一物理信道和/或第一物理信号;或,
处理器502,具体用于在第一时域资源上对第一信道进行信道检测,第一终端设备在第二时域资源上通过第一信道向网络设备发送第一物理信道和/或第一物理信号。
可选的,第一设备包括网络设备,第二设备包括第一终端设备,
处理器502,具体用于在第一时域资源上对第一信道进行信道检测,网络设备在第二时域资源上通过第一信道接收第一终端设备发送的第二物理信道和/或第二物理信号;或,
处理器502,具体用于在第一时域资源上对第一信道进行信道检测,网络设备在第二时域资源上通过第一信道向第一终端设备发送第二物理信道和/或第二物理信号。
可选的,第一设备包括第一终端设备,第二设备包括第二终端设备,
处理器502,具体用于在第一时域资源上对第一信道进行信道检测,第一终端设备在第二时域资源上通过第一信道接收第二终端设备发送的第三物理信道和/或第三物理信号;或,
处理器502,具体用于在第一时域资源上对第一信道进行信道检测,第一终端设备在第二时域资源上通过第一信道向第二终端设备发送第三物理信道和/或第三物理信号。
可选的,处理器502,具体用于根据第一目标信息获取所述第一检测时隙的信息;所述第一检测时隙的信息包括所述第一检测时隙的位置,和/或,所述第一检测时隙的长度;其中,所述第一目标信息包括第一预设值,协议规定的所述第一检测时隙的信息,或网络设备发送的第一指示信息。
可选的,处理器502,具体用于根据第二目标信息获取所述第一时域资源的信息;所述第一时域资源的信息包括所述第一时域资源的位置,和/或,所述第一时域资源的长度;其中,所述第二目标信息包括第二预设值,协议规定的所述第一时域资源的信息,或网络设备发送的第二指示信息。
可选的,处理器502,具体用于根据第三目标信息获取所述第二时域资源的信息;所述第二时域资源的信息包括所述第二时域资源的位置,和/或,所述第二时域资源的长度;其中,所述第三目标信息包括第三预设值,协议规定的所述第二时域资源的信息,或网络设备发送的第三指示信息。
可选的,第一时域资源和第二时域资源在时域上是连续的。
可选的,第一时域资源和第二时域资源在时域上包括第一时长的间隔,其中,第一时长的长度是预设的或协议规定的或根据网络设备发送的第四指示信息获取的。
可选的,第一时长是根据小区覆盖范围、符号的循环前缀CP长度、定时提前TA和收发转换时间中的至少一项确定的。
可选的,第一时长大于或等于收发转换时间。
可选的,第一时长用于第一设备进行收发转换。
可选的,第二时域资源包括整数个符号和/或整数个时隙。
可选的,第一信道为共享频谱上的载波。
可选的,第二时域资源用于传输预配置的信号或信道。
可选的,在下行传输的情况下,预配置的信号或信道包括以下至少一种:信道状态信息参考信号CSI-RS、相位跟踪参考信号PT-RS、物理下行控制信道PDCCH、半持续调度物理下行共享信道SPS PDSCH;
在上行传输的情况下,预配置的信号或信道包括以下至少一种:信道探测参考信号SRS、相位跟踪参考信号PT-RS、物理上行控制信道PUCCH、配置授权物理上行共享信道CG PUSCH、物理随机接入信道PRACH;
在侧行传输的情况下,预配置的信号或信道包括以下至少一种:半持续调度物理直通链路共享信道SPS PSSCH、物理直通链路控制信道PSCCH。
可选的,第二时域资源用于传输高优先级的业务。
可选的,在下行传输的情况下,高优先级的业务包括以下至少一种:系统消息、寻呼消息、随机接入响应、不包括用户数据的业务、超高可靠性低时延URLLC业务;
在上行传输的情况下,高优先级的业务包括以下至少一种:上行控制信息、不包括用户数据的业务、超高可靠性低时延URLLC业务、MsgA PUSCH、Msg3PUSCH。
如果通信设备包括终端设备,如图6所示,为本发明实施例中终端设备的一个实施例示意图,终端设备以手机为例进行说明,可以包括:射频(radio frequency,RF)电路610、存储器620、输入单元630、显示单元640、传感器650、音频电路660、无线保真(wireless fidelity,WiFi)模块670、处理器680、以及电源690等部件。其中,射频电路610包括接收器614和发送器612。本领域技术人员可以理解,图6中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图6对手机的各个构成部件进行具体的介绍:
RF电路610可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器980处理;另外,将设计上行的数据发送给基站。通常,RF电路910包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(low noise amplifier,LNA)、双工器等。此外,RF电路610还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(global system of mobile communication,GSM)、通用分组无线服务(general packet radio service,GPRS)、码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、长期演进(long term evolution,LTE)、电子邮件、短消息服务(short messaging service,SMS)等。
存储器620可用于存储软件程序以及模块,处理器680通过运行存储在存储器620的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器620可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器620可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元630可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元630可包括触控面板631以及其他输入设备632。触控面板631,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板631上或在触控面板631附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板631可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器680,并能接收处理器680发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板631。除了触控面板631,输入单元630还可以包括其他输入设备632。具体地,其他输入设备632可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元640可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元640可包括显示面板641,可选的,可以采用液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light-Emitting diode,OLED)等形式来配置显示面板641。进一步的,触控面板631可覆盖显示面板641,当触控面板631检测到在其上或附近的触摸操作后,传送给处理器680以确定触摸事件的类型,随后处理器680根据触摸事件的类型在显示面板641上提供相应的视觉输出。虽然在图6中,触控面板631与显示面板641是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板631与显示面板641集成而实现手机的输入和输出功能。
手机还可包括至少一种传感器650,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板641的亮度,接近传感器可在手机移动到耳边时,关闭显示面板641和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路660、扬声器661,传声器662可提供用户与手机之间的音频接口。音频电路660可将接收到的音频数据转换后的电信号,传输到扬声器661,由扬声器661转换为声音信号输出;另一方面,传声器662将收集的声音信号转换为电信号,由音频电路660接收后转换为音频数据,再将音频数据输出处理器680处理后,经RF电路610以发送给比如另一手机,或者将音频数据输出至存储器620以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块670可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图6示出了WiFi模块670,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器680是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器620内的软件程序和/或模块,以及调用存储在存储器620内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器680可包括一个或多个处理单元;优选的,处理器680可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用 程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器680中。
手机还包括给各个部件供电的电源690(比如电池),优选的,电源可以通过电源管理系统与处理器680逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。尽管未示出,手机还可以包括摄像头、蓝牙模块等,在此不再赘述。
需要说明的是,图6所示的终端设备的结构,可以用于执行上述方法实施例中所述的具体内容,此处不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。

Claims (61)

  1. 一种信息传输方法,其特征在于,包括:
    第一设备获取第一信道上的第一检测时隙,其中,所述第一检测时隙包括所述第一时域资源和所述第二时域资源,所述第一时域资源用于对所述第一信道进行信道检测,所述第二时域资源用于通过所述第一信道进行信息传输。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一时域资源用于所述第一设备对所述第一信道进行信道检测,所述第二时域资源用于所述第一设备通过所述第一信道进行信息传输;或,
    所述第一时域资源用于所述第一设备对所述第一信道进行信道检测,所述第二时域资源用于第二设备通过所述第一信道进行信息传输;或,
    所述第一时域资源用于所述第二设备对所述第一信道进行信道检测,所述第二时域资源用于所述第一设备通过所述第一信道进行信息传输。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一设备在所述第一时域资源上对所述第一信道进行信道检测,所述第一设备在所述第二时域资源上通过所述第一信道进行信息传输。
  4. 根据权利要求3所述的方法,其特征在于,所述第一设备包括第一终端设备,所述第二设备包括网络设备,所述第一设备在所述第一时域资源上对所述第一信道进行信道检测,所述第一设备在所述第二时域资源上通过所述第一信道进行信息传输,包括:
    所述第一终端设备在所述第一时域资源上对所述第一信道进行信道检测,所述第一终端设备在所述第二时域资源上通过所述第一信道接收所述网络设备发送的第一物理信道和/或第一物理信号;或,
    所述第一终端设备在所述第一时域资源上对所述第一信道进行信道检测,所述第一终端设备在所述第二时域资源上通过所述第一信道向所述网络设备发送第一物理信道和/或第一物理信号。
  5. 根据权利要求3所述的方法,其特征在于,所述第一设备包括网络设备,所述第二设备包括第一终端设备,所述第一设备在所述第一时域资源上对所述第一信道进行信道检测,所述第一设备在所述第二时域资源上通过所述第一信道进行信息传输,包括:
    所述网络设备在所述第一时域资源上对所述第一信道进行信道检测,所述网络设备在所述第二时域资源上通过所述第一信道接收所述第一终端设备发送的第二物理信道和/或第二物理信号;或,
    所述网络设备在所述第一时域资源上对所述第一信道进行信道检测,所述网络设备在所述第二时域资源上通过所述第一信道向所述第一终端设备发送第二物理信道和/或第二物理信号。
  6. 根据权利要求3所述的方法,其特征在于,所述第一设备包括第一终端设备,所述第二设备包括第二终端设备,所述第一设备在所述第一时域资源上对所述第一信道进行信道检测,所述第一设备在所述第二时域资源上通过所述第一信道进行信息传输,包括:
    所述第一终端设备在所述第一时域资源上对所述第一信道进行信道检测,所述第一终端设备在所述第二时域资源上通过所述第一信道接收所述第二终端设备发送的第三物理信道和/或第三物理信号;或,
    所述第一终端设备在所述第一时域资源上对所述第一信道进行信道检测,所述第一终端设备在所述第二时域资源上通过所述第一信道向所述第二终端设备发送第三物理信道和/或第三物理信号。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述第一设备获取第一信道上的第一检测时隙,包括:
    所述第一设备根据第一目标信息获取所述第一检测时隙的信息;所述第一检测时隙的信息包括所述第一检测时隙的位置,和/或,所述第一检测时隙的长度;
    其中,所述第一目标信息包括第一预设值,协议规定的所述第一检测时隙的信息,或网络设备发送的第一指示信息。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述第一设备获取第一信道上的第一检测时隙,包括:
    所述第一设备根据第二目标信息获取所述第一时域资源的信息;所述第一时域资源的信息包括所述第一时域资源的位置,和/或,所述第一时域资源的长度;
    其中,所述第二目标信息包括第二预设值,协议规定的所述第一时域资源的信息,或网络设备发送的第二指示信息。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述第一设备获取第一信道上的第一检测时隙,包括:
    所述第一设备根据第三目标信息获取所述第二时域资源的信息;所述第二时域资源的信息包括所述 第二时域资源的位置,和/或,所述第二时域资源的长度;
    其中,所述第三目标信息包括第三预设值,协议规定的所述第二时域资源的信息,或网络设备发送的第三指示信息。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述第一时域资源和所述第二时域资源在时域上是连续的。
  11. 根据权利要求1-9中任一项所述的方法,其特征在于,所述第一时域资源和所述第二时域资源在时域上包括第一时长的间隔,其中,所述第一时长的长度是预设的或协议规定的或根据网络设备发送的第四指示信息获取的。
  12. 根据权利要求11所述的方法,其特征在于,所述第一时长是根据小区覆盖范围、符号的循环前缀CP长度、定时提前TA和收发转换时间中的至少一项确定的。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第一时长大于或等于收发转换时间。
  14. 根据权利要求11-13中任一项所述的方法,其特征在于,所述第一时长用于所述第一设备进行收发转换。
  15. 根据权利要求1-14中任一项所述的方法,其特征在于,所述第二时域资源包括整数个符号和/或整数个时隙。
  16. 根据权利要求1-15中任一项所述的方法,其特征在于,所述第一信道为共享频谱上的载波。
  17. 根据权利要求16所述的方法,其特征在于,所述第二时域资源用于传输预配置的信号或信道。
  18. 根据权利要求17所述的方法,其特征在于,
    在下行传输的情况下,所述预配置的信号或信道包括以下至少一种:
    信道状态信息参考信号CSI-RS、相位跟踪参考信号PT-RS、物理下行控制信道PDCCH、半持续调度物理下行共享信道SPS PDSCH;
    在上行传输的情况下,所述预配置的信号或信道包括以下至少一种:
    信道探测参考信号SRS、相位跟踪参考信号PT-RS、物理上行控制信道PUCCH、配置授权物理上行共享信道CG PUSCH、物理随机接入信道PRACH;
    在侧行传输的情况下,所述预配置的信号或信道包括以下至少一种:
    半持续调度物理直通链路共享信道SPS PSSCH、物理直通链路控制信道PSCCH。
  19. 根据权利要求1-18中任一项所述的方法,其特征在于,所述第二时域资源用于传输高优先级的业务。
  20. 根据权利要求19所述的方法,其特征在于,
    在下行传输的情况下,所述高优先级的业务包括以下至少一种:
    系统消息、寻呼消息、随机接入响应、不包括用户数据的业务、超高可靠性低时延URLLC业务;
    在上行传输的情况下,所述高优先级的业务包括以下至少一种:
    上行控制信息、不包括用户数据的业务、超高可靠性低时延URLLC业务、MsgA PUSCH、Msg3 PUSCH。
  21. 一种通信设备,其特征在于,包括:
    处理模块,用于获取第一信道上的第一检测时隙,其中,所述第一检测时隙包括所述第一时域资源和所述第二时域资源,所述第一时域资源用于对所述第一信道进行信道检测,所述第二时域资源用于通过所述第一信道进行信息传输。
  22. 根据权利要求21所述的通信设备,其特征在于,
    所述第一时域资源用于所述第一设备对所述第一信道进行信道检测,所述第二时域资源用于所述第一设备通过所述第一信道进行信息传输;或,
    所述第一时域资源用于所述第一设备对所述第一信道进行信道检测,所述第二时域资源用于第二设备通过所述第一信道进行信息传输;或,
    所述第一时域资源用于所述第二设备对所述第一信道进行信道检测,所述第二时域资源用于所述第一设备通过所述第一信道进行信息传输。
  23. 根据权利要求21或22所述的通信设备,其特征在于,
    所述处理模块,还用于在所述第一时域资源上对所述第一信道进行信道检测,所述第一设备在所述第二时域资源上通过所述第一信道进行信息传输。
  24. 根据权利要求23所述的通信设备,其特征在于,所述第一设备包括第一终端设备,所述第二设备包括网络设备,
    所述处理模块,具体用于在所述第一时域资源上对所述第一信道进行信道检测,所述第一终端设备在所述第二时域资源上通过所述第一信道接收所述网络设备发送的第一物理信道和/或第一物理信号; 或,
    所述处理模块,具体用于在所述第一时域资源上对所述第一信道进行信道检测,所述第一终端设备在所述第二时域资源上通过所述第一信道向所述网络设备发送第一物理信道和/或第一物理信号。
  25. 根据权利要求23所述的通信设备,其特征在于,所述第一设备包括网络设备,所述第二设备包括第一终端设备,
    所述处理模块,具体用于在所述第一时域资源上对所述第一信道进行信道检测,所述网络设备在所述第二时域资源上通过所述第一信道接收所述第一终端设备发送的第二物理信道和/或第二物理信号;或,
    所述处理模块,具体用于在所述第一时域资源上对所述第一信道进行信道检测,所述网络设备在所述第二时域资源上通过所述第一信道向所述第一终端设备发送第二物理信道和/或第二物理信号。
  26. 根据权利要求23所述的通信设备,其特征在于,所述第一设备包括第一终端设备,所述第二设备包括第二终端设备,
    所述处理模块,具体用于在所述第一时域资源上对所述第一信道进行信道检测,所述第一终端设备在所述第二时域资源上通过所述第一信道接收所述第二终端设备发送的第三物理信道和/或第三物理信号;或,
    所述处理模块,具体用于在所述第一时域资源上对所述第一信道进行信道检测,所述第一终端设备在所述第二时域资源上通过所述第一信道向所述第二终端设备发送第三物理信道和/或第三物理信号。
  27. 根据权利要求21-26中任一项所述的通信设备,其特征在于,
    所述处理模块,具体用于根据第一目标信息获取所述第一检测时隙的信息;所述第一检测时隙的信息包括所述第一检测时隙的位置,和/或,所述第一检测时隙的长度;
    其中,所述第一目标信息包括第一预设值,协议规定的所述第一检测时隙的信息,或网络设备发送的第一指示信息。
  28. 根据权利要求21-27中任一项所述的通信设备,其特征在于,
    所述处理模块,具体用于根据第二目标信息获取所述第一时域资源的信息;所述第一时域资源的信息包括所述第一时域资源的位置,和/或,所述第一时域资源的长度;
    其中,所述第二目标信息包括第二预设值,协议规定的所述第一时域资源的信息,或网络设备发送的第二指示信息。
  29. 根据权利要求21-28中任一项所述的通信设备,其特征在于,
    所述处理模块,具体用于根据第三目标信息获取所述第二时域资源的信息;所述第二时域资源的信息包括所述第二时域资源的位置,和/或,所述第二时域资源的长度;
    其中,所述第三目标信息包括第三预设值,协议规定的所述第二时域资源的信息,或网络设备发送的第三指示信息。
  30. 根据权利要求21-29中任一项所述的通信设备,其特征在于,所述第一时域资源和所述第二时域资源在时域上是连续的。
  31. 根据权利要求21-29中任一项所述的通信设备,其特征在于,所述第一时域资源和所述第二时域资源在时域上包括第一时长的间隔,其中,所述第一时长的长度是预设的或协议规定的或根据网络设备发送的第四指示信息获取的。
  32. 根据权利要求31所述的通信设备,其特征在于,所述第一时长是根据小区覆盖范围、符号的循环前缀CP长度、定时提前TA和收发转换时间中的至少一项确定的。
  33. 根据权利要求31或32所述的通信设备,其特征在于,所述第一时长大于或等于收发转换时间。
  34. 根据权利要求31-33中任一项所述的通信设备,其特征在于,所述第一时长用于所述第一设备进行收发转换。
  35. 根据权利要求21-34中任一项所述的通信设备,其特征在于,所述第二时域资源包括整数个符号和/或整数个时隙。
  36. 根据权利要求21-35中任一项所述的通信设备,其特征在于,所述第一信道为共享频谱上的载波。
  37. 根据权利要求36所述的通信设备,其特征在于,所述第二时域资源用于传输预配置的信号或信道。
  38. 根据权利要求37所述的通信设备,其特征在于,
    在下行传输的情况下,所述预配置的信号或信道包括以下至少一种:
    信道状态信息参考信号CSI-RS、相位跟踪参考信号PT-RS、物理下行控制信道PDCCH、半持续调度 物理下行共享信道SPS PDSCH;
    在上行传输的情况下,所述预配置的信号或信道包括以下至少一种:
    信道探测参考信号SRS、相位跟踪参考信号PT-RS、物理上行控制信道PUCCH、配置授权物理上行共享信道CG PUSCH、物理随机接入信道PRACH;
    在侧行传输的情况下,所述预配置的信号或信道包括以下至少一种:
    半持续调度物理直通链路共享信道SPS PSSCH、物理直通链路控制信道PSCCH。
  39. 根据权利要求21-38中任一项所述的通信设备,其特征在于,所述第二时域资源用于传输高优先级的业务。
  40. 根据权利要求39所述的通信设备,其特征在于,
    在下行传输的情况下,所述高优先级的业务包括以下至少一种:
    系统消息、寻呼消息、随机接入响应、不包括用户数据的业务、超高可靠性低时延URLLC业务;
    在上行传输的情况下,所述高优先级的业务包括以下至少一种:
    上行控制信息、不包括用户数据的业务、超高可靠性低时延URLLC业务、MsgA PUSCH、Msg3 PUSCH。
  41. 一种通信设备,其特征在于,包括:
    存储有可执行程序代码的存储器;
    与所述存储器耦合的处理器;
    所述处理器调用所述存储器中存储的所述可执行程序代码,用于获取第一信道上的第一检测时隙,其中,所述第一检测时隙包括所述第一时域资源和所述第二时域资源,所述第一时域资源用于对所述第一信道进行信道检测,所述第二时域资源用于通过所述第一信道进行信息传输。
  42. 根据权利要求41所述的通信设备,其特征在于,
    所述第一时域资源用于所述第一设备对所述第一信道进行信道检测,所述第二时域资源用于所述第一设备通过所述第一信道进行信息传输;或,
    所述第一时域资源用于所述第一设备对所述第一信道进行信道检测,所述第二时域资源用于第二设备通过所述第一信道进行信息传输;或,
    所述第一时域资源用于所述第二设备对所述第一信道进行信道检测,所述第二时域资源用于所述第一设备通过所述第一信道进行信息传输。
  43. 根据权利要求41或42所述的通信设备,其特征在于,
    所述处理器,还用于在所述第一时域资源上对所述第一信道进行信道检测,所述第一设备在所述第二时域资源上通过所述第一信道进行信息传输。
  44. 根据权利要求43所述的通信设备,其特征在于,所述第一设备包括第一终端设备,所述第二设备包括网络设备,
    所述处理器,具体用于在所述第一时域资源上对所述第一信道进行信道检测,所述第一终端设备在所述第二时域资源上通过所述第一信道接收所述网络设备发送的第一物理信道和/或第一物理信号;或,
    所述处理器,具体用于在所述第一时域资源上对所述第一信道进行信道检测,所述第一终端设备在所述第二时域资源上通过所述第一信道向所述网络设备发送第一物理信道和/或第一物理信号。
  45. 根据权利要求43所述的通信设备,其特征在于,所述第一设备包括网络设备,所述第二设备包括第一终端设备,
    所述处理器,具体用于在所述第一时域资源上对所述第一信道进行信道检测,所述网络设备在所述第二时域资源上通过所述第一信道接收所述第一终端设备发送的第二物理信道和/或第二物理信号;或,
    所述处理器,具体用于在所述第一时域资源上对所述第一信道进行信道检测,所述网络设备在所述第二时域资源上通过所述第一信道向所述第一终端设备发送第二物理信道和/或第二物理信号。
  46. 根据权利要求43所述的通信设备,其特征在于,所述第一设备包括第一终端设备,所述第二设备包括第二终端设备,
    所述处理器,具体用于在所述第一时域资源上对所述第一信道进行信道检测,所述第一终端设备在所述第二时域资源上通过所述第一信道接收所述第二终端设备发送的第三物理信道和/或第三物理信号;或,
    所述处理器,具体用于在所述第一时域资源上对所述第一信道进行信道检测,所述第一终端设备在所述第二时域资源上通过所述第一信道向所述第二终端设备发送第三物理信道和/或第三物理信号。
  47. 根据权利要求41-46中任一项所述的通信设备,其特征在于,
    所述处理器,具体用于第一目标信息获取所述第一检测时隙的信息;所述第一检测时隙的信息包括所述第一检测时隙的位置,和/或,所述第一检测时隙的长度;
    其中,所述第一目标信息包括第一预设值,协议规定的所述第一检测时隙的信息,或网络设备发送的第一指示信息。
  48. 根据权利要求41-47中任一项所述的通信设备,其特征在于,
    所述处理器,具体用于第二目标信息获取所述第一时域资源的信息;所述第一时域资源的信息包括所述第一时域资源的位置,和/或,所述第一时域资源的长度;
    其中,所述第二目标信息包括第二预设值,协议规定的所述第一时域资源的信息,或网络设备发送的第二指示信息。
  49. 根据权利要求41-48中任一项所述的通信设备,其特征在于,
    所述处理器,具体用于根据第三目标信息获取所述第二时域资源的信息;所述第二时域资源的信息包括所述第二时域资源的位置,和/或,所述第二时域资源的长度;
    其中,所述第三目标信息包括第三预设值,协议规定的所述第二时域资源的信息,或网络设备发送的第三指示信息。
  50. 根据权利要求41-49中任一项所述的通信设备,其特征在于,所述第一时域资源和所述第二时域资源在时域上是连续的。
  51. 根据权利要求41-49中任一项所述的通信设备,其特征在于,所述第一时域资源和所述第二时域资源在时域上包括第一时长的间隔,其中,所述第一时长的长度是预设的或协议规定的或根据网络设备发送的第四指示信息获取的。
  52. 根据权利要求51所述的通信设备,其特征在于,所述第一时长是根据小区覆盖范围、符号的循环前缀CP长度、定时提前TA和收发转换时间中的至少一项确定的。
  53. 根据权利要求51或52所述的通信设备,其特征在于,所述第一时长大于或等于收发转换时间。
  54. 根据权利要求51-53中任一项所述的通信设备,其特征在于,所述第一时长用于所述第一设备进行收发转换。
  55. 根据权利要求41-54中任一项所述的通信设备,其特征在于,所述第二时域资源包括整数个符号和/或整数个时隙。
  56. 根据权利要求41-55中任一项所述的通信设备,其特征在于,所述第一信道为共享频谱上的载波。
  57. 根据权利要求56所述的通信设备,其特征在于,所述第二时域资源用于传输预配置的信号或信道。
  58. 根据权利要求57所述的通信设备,其特征在于,
    在下行传输的情况下,所述预配置的信号或信道包括以下至少一种:
    信道状态信息参考信号CSI-RS、相位跟踪参考信号PT-RS、物理下行控制信道PDCCH、半持续调度物理下行共享信道SPS PDSCH;
    在上行传输的情况下,所述预配置的信号或信道包括以下至少一种:
    信道探测参考信号SRS、相位跟踪参考信号PT-RS、物理上行控制信道PUCCH、配置授权物理上行共享信道CG PUSCH、物理随机接入信道PRACH;
    在侧行传输的情况下,所述预配置的信号或信道包括以下至少一种:
    半持续调度物理直通链路共享信道SPS PSSCH、物理直通链路控制信道PSCCH。
  59. 根据权利要求41-58中任一项所述的通信设备,其特征在于,所述第二时域资源用于传输高优先级的业务。
  60. 根据权利要求59所述的通信设备,其特征在于,
    在下行传输的情况下,所述高优先级的业务包括以下至少一种:
    系统消息、寻呼消息、随机接入响应、不包括用户数据的业务、超高可靠性低时延URLLC业务;
    在上行传输的情况下,所述高优先级的业务包括以下至少一种:
    上行控制信息、不包括用户数据的业务、超高可靠性低时延URLLC业务、MsgA PUSCH、Msg3 PUSCH。
  61. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-20中任意一项所述的方法。
PCT/CN2020/090629 2020-05-15 2020-05-15 一种信息传输方法、通信设备以及计算机可读存储介质 WO2021227052A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080099074.9A CN115336306A (zh) 2020-05-15 2020-05-15 一种信息传输方法、通信设备以及计算机可读存储介质
PCT/CN2020/090629 WO2021227052A1 (zh) 2020-05-15 2020-05-15 一种信息传输方法、通信设备以及计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/090629 WO2021227052A1 (zh) 2020-05-15 2020-05-15 一种信息传输方法、通信设备以及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2021227052A1 true WO2021227052A1 (zh) 2021-11-18

Family

ID=78525926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090629 WO2021227052A1 (zh) 2020-05-15 2020-05-15 一种信息传输方法、通信设备以及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN115336306A (zh)
WO (1) WO2021227052A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109121198A (zh) * 2017-06-23 2019-01-01 维沃移动通信有限公司 一种非授权频段下的信息传输方法及网络设备
CN109565838A (zh) * 2018-11-01 2019-04-02 北京小米移动软件有限公司 传输信息的方法、装置、基站及终端
CN109565686A (zh) * 2018-11-01 2019-04-02 北京小米移动软件有限公司 传输信息的方法、装置、基站及终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109121198A (zh) * 2017-06-23 2019-01-01 维沃移动通信有限公司 一种非授权频段下的信息传输方法及网络设备
CN109565838A (zh) * 2018-11-01 2019-04-02 北京小米移动软件有限公司 传输信息的方法、装置、基站及终端
CN109565686A (zh) * 2018-11-01 2019-04-02 北京小米移动软件有限公司 传输信息的方法、装置、基站及终端

Also Published As

Publication number Publication date
CN115336306A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
US20230121866A1 (en) Synchronization signal block (ssb) transmission method and terminal device
US20230232457A1 (en) Channel Occupancy Time Sharing Method and Device Node
WO2023025016A1 (zh) 传输处理方法、装置及设备
CN108476414A (zh) 无线通信设备和无线通信方法
JP7317719B2 (ja) ミニスロットによる周波数分割複信ハイブリッド自動再送要求
US20230224836A1 (en) Synchronization Signal Block (SSB) Transmission Method, Terminal Device and Network Device
CN113261385A (zh) 无线通信中的灵活下行链路控制信号监测
WO2021227052A1 (zh) 一种信息传输方法、通信设备以及计算机可读存储介质
WO2022151502A1 (zh) 配置srs传输资源的方法、终端设备及网络设备
US20230239923A1 (en) Resource transmission method, terminal device, and network device
WO2021248376A1 (zh) 一种监听物理下行控制信道pdcch的方法及终端设备
WO2022237597A1 (zh) 通信方法和通信装置
WO2022126457A1 (zh) 一种寻呼方法、终端设备及网络设备
EP4192159A1 (en) Data communication method, terminal device and network device
WO2022087849A1 (zh) 一种无线通信方法、终端设备及网络设备
CN113316234B (zh) Srs的发送方法及终端设备
US20230363053A1 (en) Method for sidelink communication, terminal device, non-transitory computer-readable storage medium
WO2023011452A1 (zh) 旁链路反馈信息的信道接入方法、处理方法及相关设备
WO2023066129A1 (zh) 信息上报方法、设备及可读存储介质
WO2022036560A1 (zh) 一种数据传输方法及相关设备
WO2022000146A1 (zh) 通信方法及终端设备
WO2021072608A1 (zh) 最小时间单元偏移的通知方法和装置
CN117678278A (zh) 一种传输指示信息的方法、装置、设备以及可读存储介质
CN117322087A (zh) 资源处理的方法、终端设备、网络设备及存储介质
CN117751644A (zh) 信道接入方法、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935193

Country of ref document: EP

Kind code of ref document: A1