WO2021062726A1 - 随机接入方法、终端设备、网络设备及存储介质 - Google Patents

随机接入方法、终端设备、网络设备及存储介质 Download PDF

Info

Publication number
WO2021062726A1
WO2021062726A1 PCT/CN2019/109636 CN2019109636W WO2021062726A1 WO 2021062726 A1 WO2021062726 A1 WO 2021062726A1 CN 2019109636 W CN2019109636 W CN 2019109636W WO 2021062726 A1 WO2021062726 A1 WO 2021062726A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
offset
terminal device
time
message
Prior art date
Application number
PCT/CN2019/109636
Other languages
English (en)
French (fr)
Inventor
徐伟杰
王淑坤
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP24174532.2A priority Critical patent/EP4387347A3/en
Priority to EP19947778.7A priority patent/EP4012998B1/en
Priority to CN202210832271.8A priority patent/CN115052368B/zh
Priority to CN201980096809.XA priority patent/CN113875203A/zh
Priority to PCT/CN2019/109636 priority patent/WO2021062726A1/zh
Publication of WO2021062726A1 publication Critical patent/WO2021062726A1/zh
Priority to US17/691,550 priority patent/US20220201770A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18504Aircraft used as relay or high altitude atmospheric platform
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/2041Spot beam multiple access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access

Definitions

  • the present invention relates to mobile communication technology, in particular to a random access method, terminal equipment, network equipment and storage medium.
  • Non-terrestrial communication network provides communication services to ground users by means of communication satellite communication.
  • communication satellite communication has many unique advantages, such as: not subject to user geographical restrictions, long communication distance, and high stability.
  • the signal transmission time between the terminal and the base station is relatively short.
  • the signal transmission time between the terminal and the communication satellite is relatively long. Therefore, the random access process in the terrestrial cellular network communication When applied to NTN, there will be situations in which the interactive information between the communication satellite receiving terminals is lost.
  • the embodiment of the present invention provides a random access method, terminal equipment, network equipment and storage medium, which can ensure the normal execution of the random access process in NTN.
  • an embodiment of the present invention provides a random access method, including:
  • the terminal device determines the target time according to the offset, where the offset is a time parameter related to the propagation delay between the terminal device and the network device;
  • the terminal device sends a bearer random access request to the network device based on the target time.
  • an embodiment of the present invention provides a random access method, including:
  • the terminal device determines the start time of a random access response (Random Access Response, RAR) time window according to the offset, where the offset is a time parameter related to the propagation delay between the terminal device and the network device .
  • RAR Random Access Response
  • an embodiment of the present invention provides a random access method, including:
  • the terminal device determines the target time slot according to the offset, where the offset is a time parameter related to the propagation delay between the terminal device and the network device;
  • the terminal device transmits a physical uplink shared channel (PUSCH) used to carry the uplink data of the message 3 based on the target time slot.
  • PUSCH physical uplink shared channel
  • an embodiment of the present invention provides a random access method, including:
  • the terminal device monitors the downlink control channel (Physical Downlink Control Channel, PDCCH) carrying the contention resolution message based on the offset, where the offset is a time parameter related to the propagation delay between the terminal device and the network device.
  • PDCCH Physical Downlink Control Channel
  • an embodiment of the present invention provides a random access method, including:
  • the network device receives the PUSCH carrying the message 3 according to an offset, where the offset is a time parameter related to the propagation delay between the terminal device and the network device.
  • an embodiment of the present invention provides a random access method, including:
  • the network device configures an offset to the terminal device, where the offset is a time parameter related to the propagation delay between the terminal device and the network device, and the offset is used by the terminal device to control random access Incoming request or message 3 is sent, or random access response or contention resolution message is received.
  • an embodiment of the present invention provides a terminal device, including:
  • the first determining unit is configured to determine the target time according to an offset, where the offset is a time parameter related to the propagation delay between the terminal device and the network device;
  • the first sending unit is configured to send a random access request to the network device based on the target time.
  • an embodiment of the present invention provides a terminal device, including:
  • the second determining unit is configured to determine the start time of the RAR time window according to an offset, where the offset is a time parameter related to the propagation delay between the terminal device and the network device.
  • an embodiment of the present invention provides a terminal device, including:
  • a third determining unit configured to determine the target time slot according to an offset, where the offset is a time parameter related to the propagation delay between the terminal device and the network device;
  • the second sending unit is configured to send the PUSCH used to carry the uplink data of the message 3 based on the target time slot.
  • an embodiment of the present invention provides a terminal device, including:
  • the monitoring unit is configured to monitor the PDCCH carrying the contention resolution message based on an offset, where the offset is a time parameter related to the propagation delay between the terminal device and the network device.
  • an embodiment of the present invention provides a network device, including:
  • the receiving unit is configured to receive the PUSCH carrying the message 3 according to an offset, where the offset is a time parameter related to the propagation delay between the terminal device and the network device.
  • an embodiment of the present invention provides a network device, including:
  • the configuration unit is configured to configure an offset to the terminal device, where the offset is a time parameter related to the propagation delay between the terminal device and the network device, and the offset is used for the terminal device Control the sending of random access request or message 3, or the receiving of random access response or contention resolution message.
  • an embodiment of the present invention provides a terminal device, including a processor and a memory for storing a computer program that can run on the processor, where the processor is used to execute the computer program when the computer program is running. The steps of the random access method performed by the terminal device.
  • an embodiment of the present invention provides a network device, including a processor and a memory for storing a computer program that can run on the processor, wherein the processor is used to execute the computer program when the computer program is running. The steps of the random access method performed by the network device.
  • an embodiment of the present invention provides a storage medium storing an executable program, and when the executable program is executed by a processor, the random access method executed by the terminal device described above is implemented.
  • an embodiment of the present invention provides a storage medium storing an executable program, and when the executable program is executed by a processor, the random access method executed by the aforementioned network device is implemented.
  • the random access method provided by the embodiment of the present invention includes: a terminal device determines a target time according to an offset, where the offset is a time parameter related to the propagation delay between the terminal device and the network device; the terminal The device sends a random access request to the network device based on the target time.
  • the transmission of random access requests is controlled by the propagation delay between the terminal device and the network device, and the influence of the propagation delay between the terminal device and the network device on the sending of the random access request will be considered on the sending side, so that the random access
  • the time when the request arrives at the network device is aligned with the random access request received by the network configuration, which can effectively receive the random access request sent by the terminal device to ensure the interaction of the random access request between the terminal device and the network device, and ensure random access.
  • FIG. 1 is a schematic diagram of an optional processing flow of random access according to the present invention
  • FIG. 2 is a schematic diagram of an optional processing flow of random access according to the present invention.
  • Figure 3 is a schematic diagram of the communication link of the NTN of the present invention.
  • FIG. 4 is a schematic diagram of an optional composition structure of a communication system according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an optional composition structure of a communication system according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an optional processing flow of a random access method according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an optional processing flow of a random access method according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an optional processing flow of a random access method according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an optional timing relationship provided by the implementation of the present invention.
  • FIG. 10 is a schematic diagram of an optional timing relationship provided by an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of an optional timing relationship provided by the implementation of the present invention.
  • FIG. 12 is a schematic diagram of an optional structure of a terminal device implemented in the present invention.
  • FIG. 13 is a schematic diagram of an optional structure of a terminal device implemented in the present invention.
  • FIG. 14 is a schematic diagram of an optional structure of a terminal device implemented in the present invention.
  • FIG. 15 is a schematic diagram of an optional structure of a terminal device implemented in the present invention.
  • FIG. 16 is a schematic diagram of an optional structure of a network device implemented in the present invention.
  • FIG. 17 is a schematic diagram of an optional structure of a network device according to an embodiment of the present invention.
  • FIG. 18 is a schematic diagram of an optional structure of an electronic device provided by an embodiment of the present invention.
  • the terminal device After the cell search process, the terminal device has achieved downlink synchronization with the cell, and therefore, the terminal device can receive downlink data. However, the terminal equipment can only perform uplink transmission if it has achieved uplink synchronization with the cell.
  • the terminal device establishes a connection with the cell and obtains uplink synchronization through a random access procedure (Random Access Procedure).
  • the main purpose of random access (1) Obtain uplink synchronization; (2) Assign a unique cell radio network temporary identifier (C-RNTI) to the terminal device.
  • C-RNTI unique cell radio network temporary identifier
  • the random access process can be triggered by the following events:
  • RRC_IDLE state the idle state of Radio Resource Control (RRC)
  • RRC_CONNECTED state the connected state
  • Radio Resource Control (RRC) connection re-establishment procedure RRC Connection Re-establishment procedure: so that the UE can re-establish the wireless connection after the radio link failure (Radio Link Failure);
  • Handover UE needs to establish uplink synchronization with the new cell
  • downlink (Down Link, DL) data arrives, and at this time, the uplink (Up Link, UL) is in an out-of-synchronization state;
  • UL data arrives.
  • the UL is in an out-of-synchronization state or there is no Physical Uplink Control Channel (PUCCH) resource for sending a Scheduling Request (SR);
  • PUCCH Physical Uplink Control Channel
  • the random access process includes the first type of random access and the second type of random access.
  • the first type of random access the terminal device and the network device need to perform 4 information exchanges; therefore, the first type of random access is also called 4-steps RACH.
  • the second type of random access two information exchanges are required between the terminal device and the network device. Therefore, the second type of random access is also called 2-steps RACH.
  • the processing flow of the first type of random access includes the following four steps:
  • Step S101 The terminal device sends a random access preamble to the network device through message 1 (Msg1).
  • the terminal device sends a random access preamble (Random Access Preamble) to the network device to notify the network device that there is a random access request, and at the same time enables the network device to estimate the transmission delay between it and the terminal device and use this to calibrate the uplink timing (Timing), where the random access preamble can also be called Preamble.
  • the preamble is sent in a random access occasion (RACH occasion, RO) configured by the network device.
  • RO is the time-frequency resource of RACH.
  • Step S102 The network device sends a message 2 (message 2, Msg2) to the terminal device.
  • the network device After detecting that a terminal device sends a Preamble, the network device sends a RAR message to the terminal device through Msg2 to inform the terminal device of the uplink resource information that can be used when sending Msg3, and assigns a temporary wireless network temporary identity (Radio Network Tempory Identity) to the terminal device. , RNTI), provide time advance command for terminal equipment, etc.
  • a temporary wireless network temporary identity Radio Network Tempory Identity
  • the terminal device After the terminal device sends the preamble, it will open a RAR time window (RA Response window) and monitor the PDCCH in the RAR time window to receive the corresponding Random Access Radio Network Temporary Identifier (RA-RNTI) RAR message.
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • the window length of the RAR time window is represented by the number of time slots.
  • the number of time slots is configured by the high-level signaling ra-ResponseWindow, and the time slot length is determined for the reference subcarrier based on the subcarrier interval of the PDCCH common search space set configured by the terminal.
  • the RAR time window starts from the PDCCH common search space set configured by the terminal device after sending Msg1, and is at least one symbol after the last symbol of the RACH occasion where the terminal device sends the Physical Random Access Channel (PRACH)
  • the subsequent terminal receives the control resource set (Control Resource Set, CORESET) with the earliest PDCCH time position, and the symbol length of the at least one symbol corresponds to the subcarrier interval of the PDCCH common search space set.
  • the terminal device does not receive the RAR message replies from the network device within the RAR time window, it is considered that the random access procedure this time has failed. If the terminal device successfully receives a RAR message within the RAR time window, and the preamble index (preamble index) in the RAR message is the same as the preamble index sent by the terminal device, it is considered that the RAR message has been successfully received. You can stop listening for RAR messages.
  • One RAR message can include response messages to multiple users who send preambles, and the response message for each user includes the random preamble identifier (Random Access Preamble Identifier, RAPID), message 3 (message 3, Msg3) used by the user. ) Scheduling authorization information, TA adjustment information, temporary C-RNTI (Temporary C-RNTI, TC-RNTI), etc.
  • RAR messages are scheduled using Downlink Control Information (DCI) format 1-0.
  • DCI Downlink Control Information
  • the scheduling authorization information of msg3 contained in the RAR message has a total of 27 bits, as shown in Table 1:
  • Random access response authorization domain Number of bits Frequency hopping flag 1 PUSCH frequency domain resource allocation 14
  • Step S103 The terminal device sends Msg3 to the network device.
  • the terminal device If the terminal device successfully receives the RAR message, the terminal sends Msg3, which is the PUSCH scheduled by the RAR message.
  • the above k2 is based on the "PUSCH time domain resource allocation" domain value indication in Table 1, and is determined from a corresponding value in a default domain resource allocation (TDRA) table or a TDRA table configured by a system message. Take the default TDRA table shown in Table 3 below as an example.
  • TDRA domain resource allocation
  • the subcarrier interval of the PUSCH of Msg3 is equal to the subcarrier interval configured for the initial UL bandwidth part in the system information.
  • Msg3 the information carried by Msg3 is as follows:
  • Msg3 is a human RRC connection request transmitted on a common control channel (CCCH), and at least needs to carry NAS UE flag information.
  • CCCH common control channel
  • Msg3 is the RRC Connection Re-establishment Request transmitted on the CCCH, and does not carry any NAS message.
  • Msg3 is an encrypted and integrity-protected RRC Handover Confirm transmitted on the DCCH, which must include the C-RNTI of the UE and, if possible, a buffer status report (Buffer Status Report, BSR).
  • BSR Buffer Status Report
  • the uplink transmission usually uses UE-specific information, such as C-RNTI, to scramble the data of the UL-Synchronization Channel (SCH).
  • C-RNTI UE-specific information
  • the scrambling cannot be based on the C-RNTI, but can only use the TC-RNTI.
  • Msg3 will only use TC-RNTI for scrambling.
  • the UE will carry its own unique identifier in Msg3: C-RNTI or a UE identifier (S-TMSI or a random number) from the core network.
  • the media access control (MAC) entity of the terminal will initiate the following operations:
  • Step S104 The network device sends Msg4 to the terminal device.
  • Msg4 includes contention resolution (contention resolution) messages, and at the same time allocates uplink transmission resources for terminal devices.
  • the network device will carry the unique mark in Msg4 to specify the winning terminal device. Other terminal devices that did not win in the contention resolution will re-initiate random access.
  • the PDCCH of Msg4 is scrambled using TC-RNTI.
  • the terminal device When the terminal device receives the Msg4 sent by the network device, it will detect whether the terminal device specific temporary identifier sent by the terminal device in Msg3 is included in the conflict resolution message sent by the base station. If it is included, it indicates that the random access process of the terminal device is successful, otherwise it is considered random If the process fails, the terminal device needs to initiate the random access process again from the first step.
  • the second type of random access can increase the delay and reduce the signaling overhead at the same time.
  • the processing flow of the second type of random access is shown in Figure 2, including:
  • Step S201 The terminal device sends MsgA to the network device.
  • MsgA includes preamble and uplink data part (for example, carried by PUSCH).
  • the preamble is the content of the first type of random access Msg1;
  • the uplink data part carries the identification information of the UE and/or the reason for the RRC request, and is the content of the first type of random access Msg3.
  • Step S202 The network device sends MsgB to the terminal device.
  • MsgB includes contention resolution information, TA information, C-RNTI allocation information, etc.
  • MsgB is equivalent to Msg2 and Msg4 including the first type of random access.
  • the terminal device when the terminal device has random access requirements, the terminal device sends the MsgA on the MsgA resource corresponding to the 2-step RACH that appears in the period configured by the network device, that is, RACH Occasion and PUSCH Occasion. Then, the terminal device monitors the RAR message sent by the network device within the RAR time window. It is foreseeable that in 2-step RACH, the method for setting the position of the start time of the RAR time window is similar to that in 4-step RACH, starting with the first PDCCH opportunity configured by the terminal after sending the MsgA.
  • the requirements of terrestrial cellular communication are mainly considered.
  • the cell radius is usually in the range of several hundred meters to several kilometers, and the propagation delay of the uplink and downlink paths is relatively short, ranging from several microseconds (us) to dozens of us. Therefore, the path propagation delay has little effect on the settings of various transmission timings.
  • the link of NTN is shown in Figure 3.
  • the communication satellite sends the satellite beam to the terminal within the coverage of the satellite beam.
  • the equipment exchanges information.
  • both the downlink (the link from the communication satellite to the terminal device) and the uplink (the link from the terminal device to the communication satellite) have significantly longer path propagation delays.
  • Low-Earth Orbit (LEO) communication satellites have a one-way propagation delay of several microseconds
  • Geostationary (Earth Orbit, GEO) communication satellites have a one-way propagation delay of several hundred microseconds. Larger propagation delay will affect the communication efficiency of terminal equipment and network equipment in the random access process.
  • the embodiments of the present invention provide a random access method.
  • the random access method of the embodiments of the present invention can be applied to the NTN system.
  • the NTN system 400 applied in the embodiment of the present invention may be as shown in FIG. 4.
  • the communication system 400 may include a network device 410, and the network device 410 may be a device that communicates with a terminal device 420 (or called a communication terminal or terminal).
  • the network device 410 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area to provide services for the terminal devices in the coverage area.
  • the network device 410 is a communication satellite or a UAS (Unmanned Aircraft System, UAS) platform.
  • Communication satellites are classified into LEO communication satellites, Medium-Earth (Medium-Earth Orbit, MEO) communication satellites, GEO communication satellites, High Elliptical Orbit (HEO) communication satellites, etc. according to different orbital heights.
  • the altitude range of low-orbit communication satellites is 500km to 1500km, and the corresponding orbit period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms.
  • the maximum communication satellite viewing time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the requirement for the transmission power of the user terminal is not high.
  • the geosynchronous orbit communication satellite has an orbital height of 35786km and a rotation period of 24 hours around the earth.
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • communication satellites use multiple beams to cover the ground.
  • a communication satellite can form dozens or even hundreds of beams to cover the ground; a communication satellite beam can cover several beams in diameter. Ten to hundreds of kilometers of ground area.
  • the communication system 400 also includes at least one terminal device 420 located within the coverage area of the network device 410.
  • the "terminal device” used herein includes, but is not limited to, a device configured to receive/send communication signals for a communication satellite network; and/or Internet of Things (IoT) devices.
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a "mobile terminal”.
  • Examples of mobile terminals include, but are not limited to, communication satellite phones; Personal Communications System (PCS) terminals that can combine communication satellite phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, and Internet/Intranet PDA with access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or other electronics including radio telephone transceivers Device.
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), and a handheld with wireless communication function.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device 410 and the terminal device 420 communicate through a service link or a wireless link 440.
  • the network device 410 may communicate with the gateway 430 based on a feeder link or a wireless link 450, and connect to a public data network through the gateway 430.
  • the network device 410 in the communication system 400 includes a network device 410-1 and a network device 410-2, wherein the network device 410-1 and the network device 410-2 communicate with each other through a communication satellite
  • the link (Inter-satellite links, ISL) 460 communicates, and the network device 410-1 is used for transparent transmission of the payload: radio frequency filtering, frequency conversion and amplification. The signal will not be changed through the transparent transmission network device 410-1.
  • the network device 410-2 is used to regenerate the payload: radio frequency filtering, frequency conversion and amplification, as well as demodulation and decoding, conversion and/or routing, encoding and modulation.
  • a device with a communication function in the network/system in the embodiment of the present invention may be referred to as a communication device.
  • the communication device may include a network device 410 and a terminal device 420 with communication functions, and the network device 410 and the terminal device 420 may be the specific devices described above. It is not repeated here; the communication device may also include other devices in the communication system 400, such as other network entities such as UAS, which is not limited in the embodiment of the present invention.
  • An optional processing procedure of the random access method provided by the embodiment of the present invention, as shown in FIG. 6, includes the following steps:
  • Step S601 The terminal device determines the target time according to the offset.
  • the offset K_offset is a time parameter related to the propagation delay between the terminal device and the network device.
  • the representation of the offset includes at least one of the following: the amount of time and the number of time slots.
  • the offset is the amount of time and the unit is ms. In an example, the offset is the number of time slots, and the reference subcarrier interval is predefined or configured. In an example, the offset is a combination of the number of slots and the number of symbols, and the reference subcarrier interval is predefined or configured.
  • the offset is greater than or equal to the propagation delay between the terminal device and the network device.
  • the offset is the propagation delay between the terminal equipment and the network equipment.
  • Another example is the propagation delay between the terminal device and the network device with an offset of 2 times.
  • the offset is predefined by the terminal device; or the offset is configured by the network device.
  • the offset is configured by the network device
  • the offset is configured by the network device through at least one of the following signaling: system broadcast message; physical downlink control channel PDCCH signaling; wireless Resource control signaling; media access control control unit signaling.
  • the method includes:
  • Step S701 The network device configures an offset to the terminal device.
  • the offset is used by the terminal device to control message interaction in the random access process.
  • the offset is used for the terminal device to control the sending of the random access request or the message 3, or the reception of the random access response or the contention resolution message.
  • step S701 includes: the network device sends a configuration message carrying the offset to the terminal device.
  • the configuration message includes at least one of the following: system broadcast message; physical downlink control channel PDCCH signaling; radio resource control signaling; media access control control unit signaling.
  • the target time represents the time configured by the network device to receive the random access request sent by the terminal device.
  • the target time is a PRACH resource configured by the network device to receive the random access request sent by the terminal device.
  • the PRACH resource may be a periodic resource.
  • the random access request is Msg1, and at this time, the random access type is the first type of random access.
  • step S601 may be executed as follows: determine the random access timing according to the offset.
  • the terminal device determines the available random access timing according to the offset, and selects the random access timing from the available random access timings.
  • the determining the random access timing according to the offset includes: determining the random access timing in the PRACH resource after the duration corresponding to the offset after the trigger time of the random access.
  • the PRACH resource after the time length corresponding to the offset after the trigger time of random access is the PRACH resource after the time length corresponding to the K_offset of the random access trigger time.
  • the trigger time of random access is shifted backward by the duration corresponding to K_offset.
  • the trigger time of random access is T1
  • the time obtained after the duration corresponding to K_offset after T1 is T2
  • the terminal device determines the random access opportunity in the PRACH resource after T2.
  • the terminal device determines the available RACH occasion in the PRACH resource after the time period corresponding to the offset K_offset after the trigger time of the high-level trigger random access, and selects the RACH occasion from the available RACH occasion.
  • the next available RACH occasion in the PRACH resource after the duration corresponding to the offset K_offset after the trigger time for triggering random access by the higher layer may be used as the target time.
  • the trigger events for the higher layer to trigger random access include the following types of trigger events:
  • the terminal device determines the random access opportunity in the PRACH resource according to the last symbol of the PDCCH command and the offset, and the last symbol of the PDCCH command and the random access time The time interval between the first symbols of the incoming timing is greater than the duration corresponding to the offset.
  • the terminal device determines the random access opportunity in the PRACH resource after T4.
  • the terminal device determines the available RACH occasion from the PRACH resources after the last symbol of the PDCCH instruction greater than the duration corresponding to the offset K_offset, and selects the RACH occasion as the target time from the available RACH occasion.
  • the time interval between the last symbol of the PDCCH instruction and the last symbol of the RACH occurrence as the target time is greater than or equal to the time interval K, which can be calculated by formula (1),
  • K N T,2 + ⁇ BWPSwitching + ⁇ Delay +K_offset formula (1);
  • N T,2 is the time length of N 2 symbols corresponding to the preparation time of the PUSCH of the rel-15 terminal processing capability 1
  • the PDCCH order triggering random access trigger events include the following trigger events:
  • the random access request is MsgA
  • the random access type is the second type of random access.
  • step S601 may be executed as: determining the random access timing and the PUSCH timing according to the offset.
  • the random access timing and the PUSCH timing are in a time-division multiplexing (TDM) relationship.
  • the PUSCH timing is the time-frequency resource of the PUSCH.
  • the determining the random access timing and the PUSCH timing according to the offset includes: transmitting the random access request after the duration corresponding to the offset after the trigger time of random access In the resource, determine the random access timing and PUSCH timing.
  • the terminal device determines the available RACH occasion and the available PUSCH occasion from the PRACH resources after the offset K_offset after the trigger time of the high-level trigger random access, and Select RACH occasion from the available RACH occasion, and select PUSCH occasion from the available PUSCH occasion.
  • the terminal equipment determines the available RACH occasion and the available PUSCH occasion from the PRACH resources after the last symbol of the PDCCH instruction and greater than the duration corresponding to the offset K_offset, and the available RACH Select the RACH occasion as the target time in the occasion, and select the PUSCH occasion from the available PUSCH occasion.
  • the time interval between the last symbol of the PDCCH instruction and the RACH occurrence as the target time is greater than or equal to K
  • the time interval between the last symbol of the PDCCH instruction and the PUSCH occurrence as the target time is greater than or equal to K.
  • the target time is determined by the terminal device according to the offset, where the offset is a time parameter related to the propagation delay between the terminal device and the network device; the terminal device is based on the target Time to send a bearer random access request to the network device.
  • the transmission of random access requests is controlled by the propagation delay between the terminal device and the network device, and the influence of the propagation delay between the terminal device and the network device on the sending of the random access request will be considered on the sending side, so that the random access
  • the time for the request to reach the network device is aligned with the resource of the network configuration to receive the random access request, which can effectively receive the random access request sent by the terminal device, and ensure the interaction of the random access request between the terminal device and the network device. The normal execution of the random access process.
  • Step S602 The terminal device sends a random access request to the network device based on the target time.
  • the terminal device sends a random access request to the network device based on the target time, so that the network device receives the random access request sent by the terminal device at the target time.
  • the terminal device uses the time after the duration corresponding to the offset before the target time as the sending time, and sends the PRACH for carrying the random access request (Msg1) or sending the PRACH for carrying the random access request (Msg1) to the network device at the sending time.
  • PRACH and PUSCH of random access request (MsgA) are examples of random access request (MsgA).
  • the target time is T5
  • the time obtained by shifting T5 forward by an offset corresponding to the length of time is T6, and the terminal device starts to send the random access request at T6.
  • the terminal device sends the PRACH carrying the random access request at a time after the random access timing is shifted forward by an offset corresponding to the duration.
  • the terminal device selects the earlier random access timing or the PUSCH timing from the random access timing and the PUSCH timing, and the random access timing earlier
  • the PRACH and PUSCH are sent at a time after the access timing or PUSCH timing is shifted forward by an offset corresponding to the duration.
  • the earlier timing of the random access timing and the PUSCH timing is the random access timing
  • the PRACH and PUSCH are transmitted at a time after the random access timing is shifted forward by a period corresponding to an offset.
  • the earlier timing of the random access timing and the PUSCH timing is the PUSCH timing
  • the PRACH and PUSCH are transmitted at a time after the PUSCH timing is shifted forward by a period corresponding to an offset.
  • the terminal device determines the start time of the RAR time window according to the offset.
  • the start time of the RAR time window is: in the PDCCH common search space set configured by the terminal, the terminal receives the time period corresponding to the specific offset after the last symbol of the RACH occasion where the PRACH is located.
  • the duration corresponding to the specific offset is the sum of the specific duration and the duration corresponding to the offset.
  • the specific duration may be the duration corresponding to at least one symbol.
  • step S602 After step S602 is executed, as shown in FIG. 8, the method includes:
  • Step S801 The terminal device determines the start time of the RAR time window according to the offset.
  • the RAR time window is used to monitor RAR messages issued by network devices.
  • the RAR time window is used to monitor the PDCCH carrying the RAR message.
  • Step S802 The network device sends a random access response to the terminal device.
  • the terminal device monitors the random access response issued by the network device based on the RAR time window.
  • the network device After receiving the random access request sent by the terminal device based on step S602, the network device sends a RAR message to the terminal device, and the terminal device monitors the delivery of the RAR message based on the RAR time window.
  • the random access type is the first type of random access, and the RAR message is Msg2.
  • the random access type is the second type of random access, and the RAR message is MsgB.
  • the terminal device determines the target time slot according to the offset; the terminal device sends the data for the target time slot based on the target time slot Carrying the PUSCH of Message 3.
  • the determining the target time slot according to the offset includes: determining the target time slot according to a reference time slot and the offset, and the reference time slot is a received bearer random access response RAR The time slot of the physical downlink shared channel PDSCH of the message.
  • the terminal device receives the PDSCH carrying the RAR message in the reference time slot n, and then sends the PUSCH carrying the message 3 in the target time slot n'.
  • the time slot n' can be calculated by formula (2),
  • n' n+k 2 + ⁇ +K_offset formula (2).
  • step S802 is executed, step S803 and step S804 are included.
  • Step S803 The terminal device determines a target time slot according to the offset.
  • Step S804 The terminal device sends a PUSCH for carrying the message 3 based on the target time slot.
  • the terminal device sends the PUSCH for carrying the message 3 based on the target time slot, so as to send the message 3 to the network device.
  • the network device when the random access type is the first type of random access, after sending the message Msg2, the network device receives the PUSCH carrying the message 3 according to the offset.
  • the monitoring the PUSCH carrying message 3 according to the offset includes:
  • the PUSCH carrying the message 3 is received after the time period corresponding to the offset after the time when the random access response RAR is sent.
  • the network device receives the PUSCH carrying Msg3 after sending the offset after Msg2.
  • the network device sends Msg2 at T5, and the time corresponding to the duration of K_offset after T5 is T6, and the network device starts to receive the PUSCH carrying Msg3 at T6.
  • the terminal device monitors the PDCCH carrying the contention resolution message based on the offset.
  • the network device After receiving Msg3, the network device delivers Msg4, that is, a contention resolution message, to the terminal device, and the network device issues a contention resolution message based on the PDCCH. After sending the Msg3, the terminal device monitors the PDCCH carrying the contention resolution message to monitor the contention resolution message sent by the network device.
  • the terminal device monitors the PDCCH carrying the contention resolution message based on the random access contention resolution timer.
  • the manner in which the terminal device monitors the PDCCH carrying the contention resolution message based on the random access contention resolution timer includes any of the following methods:
  • a random access contention resolution timer is started, and after the time period corresponding to the offset after the retransmission time of message 3 is retransmitted
  • the random access contention resolution timer is restarted at the first symbol of, wherein, during the operation of the random access contention resolution timer, the PDCCH carrying the contention resolution message is monitored.
  • the random access contention resolution timer is started after the time of sending the message 3 is shifted backward by the duration corresponding to K_offset.
  • the random access contention resolution timer is restarted at the first symbol after the time of retransmission of message 3 is shifted backward by the duration corresponding to K_offset, and after the random access contention resolution timer runs, it starts to monitor the PDCCH carrying contention resolution messages. .
  • the random access contention resolution timer is started, and the random access contention resolution timer is restarted after message 3 is retransmitted; wherein, the offset is run on the random access contention resolution timer After the corresponding amount of time is measured, the PDCCH carrying the contention resolution message is monitored.
  • the random access contention resolution timer is started after the time when the message 3 is sent.
  • the random access contention resolution timer is restarted at the first symbol after the time for retransmitting the message 3, and after the random access contention resolution timer runs for a period of time corresponding to K_offset, it starts to monitor the PDCCH carrying the contention resolution message.
  • step S804 the method includes:
  • Step S805 The terminal device monitors the PDCCH carrying the contention resolution message based on the offset.
  • the value of the offset corresponding to different random access messages may be different or the same.
  • the terminal device determines the target time according to the offset K_offset A to send a random access request based on the target time, determines the start time of the RAR time window according to the offset K_offset B, and determines the target of sending Msg3 according to K_offset C Time slot, and control the random access contention resolution timer according to K_offset C, and the sizes of K_offset A, K_offset B, K_offset C, and K_offset D are different.
  • the terminal device determines the target time according to the offset K_offset A to send a random access request based on the target time, determines the start time of the RAR time window according to the offset K_offset A, and determines the target of sending Msg3 according to K_offset A Time slot, and control the random access contention resolution timer according to K_offset A.
  • the sending or receiving of each message in the random access process is controlled by an offset, and the offset is related to the propagation delay between the terminal device and the network device.
  • Time parameter thus the influence of the propagation delay between the terminal equipment and the network equipment on the transmission of the message in the random access process is included in the consideration of the message sending, so that the time when the network equipment receives the message in the random access process and the reception of the network configuration
  • the time alignment of messages, or the alignment of the time when the terminal device monitors the message in the random access process with the time when the message is received can effectively ensure the message interaction between the terminal device and the network device during the random access process, and ensure the random access process. Perform normally.
  • the random access method provided in the embodiment of the present invention will be illustrated through different examples.
  • Step 901 The UE sends Msg1 to the communication satellite.
  • the UE If the UE is triggered by a higher layer or the PDCCH order triggers the 4-step RACH process, the UE sends Msg1.
  • K_offset is the time parameter related to the propagation delay of the communication satellite and the terminal, which is used by the UE to adjust the PRACH transmission timing to deal with The influence of the propagation delay between the communication satellite and the UE.
  • K_offset1 is sent by the communication satellite to the UE through signaling, and the signaling may be a system broadcast message, PDCCH, RRC signaling, MAC CE signaling, and so on.
  • K_offset1 is a predefined value.
  • the methods of selecting the appropriate RACH occasion based on K_offset and determining the transmission time of the PRACH are different.
  • the higher layer triggers the random access process
  • step S8011a the UE determines the next available RACH occasion from the PRACH resource after the time K_offset1 after the random access is triggered by the higher layer.
  • the UE triggers random access by the higher layer at time t1, and the UE determines the available RACH occasion from the PRACH resources after time t2 after the K_offset1 time after t1, and selects the RACH occasion from the available RACH occasions, Select preamble in the selected RACH occasion.
  • the UE selects the RACH occasion from the available RACH occasion based on the measurement result of the reference signal (such as SS/PBCH blocks, CSI-RSs).
  • the PRACH resource is a periodic resource
  • the UE determines the available RACH occasion from the PRACH resource after the time t2 after the K_offset1 time after t1.
  • Step S8012a based on the determined time position of the RACH occasion and K_offset1, the terminal sends a PRACH.
  • the determined start time of the RACH occasion is t4, and the UE starts to send PRACH at time t3 corresponding to time t4-K_offset1.
  • step S8011b the UE determines the next available RACH occasion in the PRACH resource based on K_offset2 and the time of the last symbol of the PDCCH order.
  • the UE sends the PRACH in the RACH occasion determined according to the PDCCH order and K_offset2, where the last symbol of the PDCCH order (timing at the base station side) or the last symbol received by the PDCCH order (terminal The time interval between the timing of the side and the first symbol of the RACH occurrence is greater than or equal to the time interval K.
  • the delay ⁇ Delay 0.5ms
  • FR2 0.25ms.
  • K_offset2 is the propagation delay between the communication satellite and the terminal; for the timing on the satellite side, K_offset2 is twice the propagation delay between the communication satellite and the terminal.
  • Step S8012b based on the determined time position of the RACH occasion and K_offset2, the terminal sends a PRACH.
  • the selection of PRACH resources and the transmission time of PRACH are based on the propagation delay method between the communication satellite and the terminal, so that the PRACH sent by the terminal will be configured with the communication satellite after a long propagation delay.
  • the PRACH resource positions are aligned, so as to ensure the normal execution of the random access process in the NTN.
  • Step 902 msg2 is received.
  • Msg1 After the UE sends the preamble through Msg1, Msg1 needs to experience a propagation delay determined by the distance between the satellite and the UE from the terminal to the satellite. After the communication satellite detects the preamble, it sends a RAR message to the UE. The RAR message to the UE needs to experience the distance between the satellite and the UE. The propagation delay. Therefore, after the UE sends msg1, the terminal may detect the RAR message (Msg2) at the earliest time after K_offset3.
  • the RAR time window in the terminal can be determined by K_offset3.
  • the RAR time window starts from the PDCCH common search space set configured for the terminal, after the terminal sends the last symbol of the RACH occasion where the PRACH is located, the time after a specific duration (t5 in Figure 11) plus the K_offset3 time Later (t6 in FIG. 11) the terminal receives the control resource set with the earliest PDCCH time position, and the specific interval is at least one symbol, and the symbol length of at least one symbol corresponds to the subcarrier interval of Type1-PDCCH CSSset.
  • K_offset3 is determined by the distance between the satellite and the terminal, for example, it is equal to twice the propagation delay between the satellite and the terminal.
  • the UE transmits PRACH at time t3.
  • the RAR time window for the UE to monitor the PDCCH starts from the PDCCH common search space configured for the terminal In the set, the control resource set with the earliest time position of the PDCCH is received by the terminal after time t6 after the last symbol of the RACH occasion where the PRACH is located.
  • the time after t3 is shifted back by the last symbol of the RACH occasion after a specific duration is t5, and the time after t5 plus the K_offset3 duration is t6, that is, the time interval between t3 and t5 is one
  • the time interval between t6 and t5 is K_offset3.
  • the starting position of the RAR window is determined based on the propagation delay between the UE and the communication satellite, so that the terminal does not immediately monitor the PDCCH carrying the RAR message after sending msg1, but waits until the delay of the RAR message arrives at the terminal.
  • Monitoring the PDCCH carrying the RAR message not only ensures the monitoring of the RAR message, but also saves the power consumption of the terminal for monitoring the RAR message.
  • Step 903 the terminal sends Msg3.
  • NTN corresponding to the PUSCH transmission time slot scheduled by the RAR uplink scheduling authorization, if the UE receives the PDCCH carrying the RAR message in the time slot n, the UE sends the bearer to the communication satellite in the time slot n+k 2 + ⁇ +K_offset4 PUSCH of Msg3.
  • K_offset4 is determined by the distance between the communication satellite and the terminal, for example, a propagation delay equal to twice the distance between the communication satellite and the UE.
  • the communication satellite based on the propagation delay between the terminal and the communication satellite, it is ensured that the transmission of Msg3 is combined with the influence of the propagation delay, so that the communication satellite can receive the PUSCH carrying Msg3 at the correct time position.
  • Step 904 The terminal receives the contention resolution message.
  • the terminal sends Msg3, and the MAC entity of the terminal can perform one of the following methods:
  • the terminal After the K_offset5 time, the terminal starts the random access contention resolution timer ra-ContentionResolutionTimer and restarts the ra-ContentionResolutionTimer at the first symbol after the K_offset5 time after each msg3 retransmission;
  • K_offset5 is determined by the distance between the communication satellite and the terminal, such as the propagation delay that is equal to twice the distance between the communication satellite and the terminal.
  • the start time of the terminal monitoring the PDCCH is delayed based on the propagation delay between the terminal and the communication satellite, which ensures the correct reception of the contention resolution message and saves the power consumption of the terminal.
  • Step 1001 The UE sends MsgA to the communication satellite.
  • the transmission of msgA in the 2-step RACH process includes the transmission of PRACH and PUSCH.
  • the UE determines the time to choose to send the PRACH and PUSCH in the following manner.
  • K_offset select the appropriate time and determine the transmission time of PRACH.
  • the higher layer triggers the random access process
  • RACH occurrence and PUSCH occurrence are TDM relationships.
  • the PRACH and PUSCH start to be sent based on the time after the RACH occurrence is shifted forward by the duration corresponding to K_offset1.
  • the PRACH and PUSCH start to be sent based on the time after the PUSCH occurrence is shifted forward by the duration corresponding to K_offset1.
  • the UE determines the next available RACH occasion and PUSCH occasion in the msgA resource based on the time of the last symbol of K_offset2 and PDCCH order.
  • the time interval between the last symbol of the PDCCH order (timing on the communication satellite side) or the last symbol received by the PDCCH order (timing on the terminal side) and the first symbol of the RACH occasion is greater than or equal to the time interval K.
  • the time interval between the last symbol of the PDCCH order (timing on the communication satellite side) or the last symbol received by the PDCCH order (timing on the terminal side) and the first symbol of the PUSCH occasion is greater than or equal to the time interval K.
  • RACH occurrence and PUSCH occurrence are TDM relationships.
  • the selection of the MsgA resource and the determination of the sending time are similar to the process of the 4-step RACH process msg1 of the example 1, and the description of the example 1 may be referred to, and the details will not be repeated.
  • Step 1002 The UE receives the MsgB sent by the communication satellite.
  • the setting method of the position of the start time of the RAR time window is similar to that in the 4-step RACH example. It starts in the PDCCH CSS set configured for the terminal, and at least after the terminal sends the last symbol of the PUSCH occurrence where msgA is located. The terminal after one symbol plus K_offset6 receives the CORESET with the earliest PDCCH time position, and the symbol length of the at least one symbol corresponds to the subcarrier interval of Type1/X-PDCCH CSS set.
  • the terminal monitors the PDCCH within the RAR response window and receives the PDSCH scheduled by the PDCCH and carrying the RAR message.
  • K_offset6 is determined by the distance between the satellite and the terminal, such as the propagation delay that is equal to twice the distance between the satellite and the terminal.
  • K_offset1, K_offset2, K_offset3, K_offset4, K_offset5, and K_offset6 may be the same or different.
  • K_offset1, K_offset2, K_offset3, K_offset4, K_offset5, and K_offset6 are the same, K_offset1, K_offset2, K_offset3, K_offset4, K_offset5, and K_offset6 can be the same K_offset.
  • an embodiment of the present invention also provides a terminal device.
  • the composition structure of the terminal device is shown in FIG. 12, and the terminal device 1200 includes:
  • the first determining unit 1201 is configured to determine the target time according to an offset, where the offset is a time parameter related to the propagation delay between the terminal device and the network device;
  • the first sending unit 1202 is configured to send a random access request to the network device based on the target time.
  • the offset is predefined by the terminal device; or the offset is configured by the network device.
  • the offset when the offset is configured by the network device, the offset is configured by the network device through at least one of the following signaling:
  • the first determining unit 1201 is further configured to determine the random access timing according to the offset when the random access type is the first type of random access.
  • the first determining unit 1201 is further configured to determine the random access timing in the physical random access channel PRACH resource after the time period corresponding to the offset after the trigger time of random access.
  • the first determining unit 1201 is further configured to determine random access in the PRACH resource according to the last symbol of the PDCCH instruction and the offset when the random access trigger mode is triggered by the PDCCH instruction.
  • the time interval between the last symbol of the PDCCH instruction and the first symbol of the random access timing is greater than the duration corresponding to the offset.
  • the first determining unit 1201 is further configured to determine the random access timing and the physical uplink shared channel PUSCH timing according to the offset when the random access type is the second type of random access.
  • the first determining unit 1201 is further configured to:
  • the random access timing and the PUSCH timing are determined.
  • the terminal device 1200 further includes:
  • the second determining unit 1301 is configured to determine the start time of the RAR time window of the random access response according to the offset.
  • the start time of the RAR time window is: in the public PDCCH search space configured by the terminal, after the terminal transmits the duration corresponding to the specific offset after the last symbol of the random access occasion where the PRACH is located.
  • the terminal of receives the control resource set with the earliest PDCCH time position, and the duration corresponding to the specific offset is the sum of the specific duration and the duration corresponding to the offset.
  • the terminal device 1200 further includes:
  • the third determining unit 1401 is configured to determine the target time slot according to the offset
  • the second sending unit 1402 is configured to send the physical uplink shared channel PUSCH used to carry the uplink data of the message 3 based on the target time slot.
  • the third determining unit 1401 is further configured to determine the target time slot according to the reference time slot and the offset, and the reference time slot is the time slot that receives the physical downlink shared channel PDSCH carrying the RAR message. Time slot.
  • the terminal device further includes:
  • the monitoring unit 1501 monitors the PDCCH carrying the contention resolution message based on the offset.
  • the monitoring unit 1501 is further configured to:
  • a random access contention resolution timer is started, and after the time period corresponding to the offset after the retransmission time of message 3 is retransmitted
  • the random access contention resolution timer is restarted at the first symbol of, wherein, during the operation of the random access contention resolution timer, the PDCCH carrying the contention resolution message is monitored.
  • the monitoring unit 1504 is further configured to:
  • the random access contention resolution timer is started, and the random access contention resolution timer is restarted after message 3 is retransmitted; wherein, the offset is run on the random access contention resolution timer After the corresponding amount of time is measured, the PDCCH carrying the contention resolution message is monitored.
  • An embodiment of the present invention also provides a terminal device, including a processor and a memory for storing a computer program that can run on the processor, where the processor is used to execute the above-mentioned terminal device when the computer program is running. Steps of random access method.
  • the embodiment of the present invention also provides a terminal device.
  • the second determining unit 1301 is configured to determine the start time of the random access response RAR time window according to an offset, where the offset is a time parameter related to the propagation delay between the terminal device and the network device.
  • the start time of the RAR time window is: in the public physical downlink control channel PDCCH search space configured by the terminal, after the terminal sends the last symbol of the random access opportunity where the physical random access channel PRACH is located.
  • the terminal after the duration corresponding to the specific offset receives the control resource set with the earliest PDCCH time position, and the duration corresponding to the specific offset is the sum of the specific duration and the duration corresponding to the offset.
  • An embodiment of the present invention also provides a terminal device, including a processor and a memory for storing a computer program that can run on the processor, where the processor is used to execute the above-mentioned terminal device when the computer program is running. Steps of random access method.
  • the embodiment of the present invention also provides a terminal device.
  • the third determining unit 1401 is configured to determine the target time slot according to an offset, where the offset is a time parameter related to the propagation delay between the terminal device and the network device;
  • the second sending unit 1402 is configured to send the physical uplink shared channel PUSCH used to carry the uplink data of the message 3 based on the target time slot.
  • the third configuration unit 1401 is further configured to determine the target time slot according to the reference time slot and the offset, and the reference time slot is the physical downlink that receives the RAR message carrying the random access response.
  • An embodiment of the present invention also provides a terminal device, including a processor and a memory for storing a computer program that can run on the processor, where the processor is used to execute the above-mentioned terminal device when the computer program is running. Steps of random access method.
  • an embodiment of the present invention also provides a terminal device.
  • the composition structure of the terminal device is as shown in FIG. 15.
  • the terminal device 1500 includes:
  • the monitoring unit 1501 is configured to monitor the physical downlink control channel PDCCH carrying contention resolution messages based on an offset, where the offset is a time parameter related to the propagation delay between the terminal device and the network device.
  • the monitoring unit 1501 is further configured to:
  • a random access contention resolution timer is started, and after the time period corresponding to the offset after the retransmission time of message 3 is retransmitted
  • the random access contention resolution timer is restarted at the first symbol of, wherein, during the operation of the random access contention resolution timer, the PDCCH carrying the contention resolution message is monitored.
  • the monitoring unit 1501 is further configured to:
  • the random access contention resolution timer is started, and the random access contention resolution timer is restarted after message 3 is retransmitted; wherein, the fourth random access contention resolution timer is run on the random access contention resolution timer. After the duration corresponding to the offset, the PDCCH carrying the contention resolution message is monitored.
  • An embodiment of the present invention also provides a terminal device, including a processor and a memory for storing a computer program that can run on the processor, where the processor is used to execute the above-mentioned terminal device when the computer program is running. Steps of random access method.
  • the embodiment of the present invention also provides a network device.
  • the receiving unit 1601 is configured to receive the physical uplink shared channel PUSCH carrying the message 3 according to an offset, where the offset is a time parameter related to the propagation delay between the terminal device and the network device.
  • the receiving unit 1601 is further configured to receive the PUSCH carrying the message 3 after a time period corresponding to the offset after the time when the random access response RAR is sent.
  • An embodiment of the present invention also provides a network device, including a processor and a memory for storing a computer program that can run on the processor, where the processor is used to execute the above-mentioned network device when the computer program is running. Steps of random access method.
  • the embodiment of the present invention also provides a network device.
  • the configuration unit 1701 is configured to configure an offset to the terminal device, where the offset is a time parameter related to the propagation delay between the terminal device and the network device, and the offset is used for the terminal
  • the device controls the sending of random access request or message 3, or the receiving of random access response or contention resolution message.
  • the configuration unit 1701 is further configured to send a configuration message carrying the offset to the terminal device.
  • the configuration message includes at least one of the following:
  • the network device 1700 further includes:
  • the receiving unit 1601 is configured to receive the physical uplink shared channel PUSCH carrying the message 3 according to the offset.
  • the receiving unit 1601 is further configured to receive the PUSCH carrying the message 3 after a time period corresponding to the offset after the time when the random access response RAR is sent.
  • An embodiment of the present invention also provides a network device, including a processor and a memory for storing a computer program that can run on the processor, where the processor is used to execute the above-mentioned network device when the computer program is running. Steps of random access method.
  • the electronic device 1800 includes: at least one processor 1801, a memory 1802, and at least one network interface 1804.
  • the various components in the electronic device 1800 are coupled together through the bus system 1805. It can be understood that the bus system 1805 is used to implement connection and communication between these components.
  • the bus system 1805 also includes a power bus, a control bus, and a status signal bus. However, for the sake of clarity, various buses are marked as the bus system 1805 in FIG. 18.
  • the memory 1802 may be a volatile memory or a non-volatile memory, and may also include both volatile and non-volatile memory.
  • the non-volatile memory can be ROM, Programmable Read-Only Memory (PROM), Erasable Programmable Read-Only Memory (EPROM), and electrically erasable Programmable read-only memory (EEPROM, Electrically Erasable Programmable Read-Only Memory), magnetic random access memory (FRAM, ferromagnetic random access memory), flash memory (Flash Memory), magnetic surface memory, optical disk, or CD-ROM -ROM, Compact Disc Read-Only Memory); Magnetic surface memory can be disk storage or tape storage.
  • the volatile memory may be a random access memory (RAM, Random Access Memory), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • SSRAM synchronous static random access memory
  • Synchronous Static Random Access Memory Synchronous Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM synchronous connection dynamic random access memory
  • DRRAM Direct Rambus Random Access Memory
  • the memory 1802 described in the embodiment of the present invention is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 1802 in the embodiment of the present invention is used to store various types of data to support the operation of the electronic device 1800.
  • Examples of such data include: any computer program used to operate on the electronic device 1800, such as an application program 18021.
  • the program for implementing the method of the embodiment of the present invention may be included in the application program 18021.
  • the method disclosed in the foregoing embodiment of the present invention may be applied to the processor 1801 or implemented by the processor 1801.
  • the processor 1801 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 1801 or instructions in the form of software.
  • the aforementioned processor 1801 may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • DSP Digital Signal Processor
  • the processor 1801 may implement or execute various methods, steps, and logical block diagrams disclosed in the embodiments of the present invention.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, and the storage medium is located in the memory 1802.
  • the processor 1801 reads the information in the memory 1802, and completes the steps of the foregoing method in combination with its hardware.
  • the electronic device 1800 may be configured by one or more application specific integrated circuits (ASIC, Application Specific Integrated Circuit), DSP, programmable logic device (PLD, Programmable Logic Device), and complex programmable logic device (CPLD). , Complex Programmable Logic Device), FPGA, general-purpose processor, controller, MCU, MPU, or other electronic components to implement the foregoing method.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processor
  • PLD programmable logic device
  • CPLD complex programmable logic device
  • FPGA field-programmable logic device
  • controller MCU
  • MPU or other electronic components to implement the foregoing method.
  • the embodiment of the present invention also provides a storage medium for storing computer programs.
  • the storage medium can be applied to the terminal device in the embodiment of the present invention, and the computer program causes the computer to execute the corresponding process in each method of the embodiment of the present invention.
  • the computer program causes the computer to execute the corresponding process in each method of the embodiment of the present invention.
  • the storage medium can be applied to the network device in the embodiment of the present invention, and the computer program causes the computer to execute the corresponding process in each method of the embodiment of the present invention.
  • the computer program causes the computer to execute the corresponding process in each method of the embodiment of the present invention.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种随机接入方法,包括:终端设备根据偏移量确定目标时间,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数;所述终端设备基于所述目标时间向所述网络设备发送随机接入请求。本发明还公开了另五种随机接入方法、终端设备、网络设备及存储介质。

Description

随机接入方法、终端设备、网络设备及存储介质 技术领域
本发明涉及移动通信技术,尤其涉及一种随机接入方法、终端设备、网络设备及存储介质。
背景技术
非地面通信网络(Non Terrestrial Network,NTN)采用通信卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,通信卫星通信具有很多独特的优点,比如:不受用户地域限制、通信距离远、稳定性高等。但是,在地面蜂窝网通信中,终端与基站之间的信号传输时间较短,在NTN中,终端与通信卫星之间的信号传输时间较长,因此,地面蜂窝网通信中的随机接入过程应用于NTN中时,会出现通信卫星接收终端之间的交互的信息丢失的情况。
发明内容
本发明实施例提供一种随机接入方法、终端设备、网络设备及存储介质,能够保证NTN中随机接入过程的正常执行。
第一方面,本发明实施例提供一种随机接入方法,包括:
终端设备根据偏移量确定目标时间,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数;
所述终端设备基于所述目标时间向所述网络设备发送承载随机接入请求。
第二方面,本发明实施例提供一种随机接入方法,包括:
所述终端设备根据偏移量确定随机接入响应(Random Access Response,RAR)时间窗的起始时间,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数。
第三方面,本发明实施例提供一种随机接入方法,包括:
终端设备根据偏移量确定目标时隙,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数;
所述终端设备基于所述目标时隙发送用于承载消息3的上行数据的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。
第四方面,本发明实施例提供一种随机接入方法,包括:
终端设备基于偏移量监听承载竞争解决消息的下行控制信道(Physical Downlink Control Channel,PDCCH),所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数。
第五方面,本发明实施例提供一种随机接入方法,包括:
网络设备根据偏移量接收承载消息3的PUSCH,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数。
第六方面,本发明实施例提供一种随机接入方法,包括:
网络设备向终端设备配置偏移量,所述偏移量为所述终端设备与所述网络设备之间的传播时延相关的时间参数,所述偏移量用于所述终端设备控制随机接入请求或消息3的发送,或随机接入响应或竞争解决消息的接收。
第七方面,本发明实施例提供一种终端设备,包括:
第一确定单元,配置为根据偏移量确定目标时间,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数;
第一发送单元,配置为基于所述目标时间向所述网络设备发送随机接入请求。
第八方面,本发明实施例提供一种终端设备,包括:
第二确定单元,配置为根据偏移量确定RAR时间窗的起始时间,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数。
第九方面,本发明实施例提供一种终端设备,包括:
第三确定单元,配置为根据偏移量确定目标时隙,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数;
第二发送单元,配置为基于所述目标时隙发送用于承载消息3的上行数据的PUSCH。
第十方面,本发明实施例提供一种终端设备,包括:
监听单元,配置为基于偏移量监听承载竞争解决消息的PDCCH,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数。
第十一方面,本发明实施例提供一种网络设备,包括:
接收单元,配置为根据偏移量接收承载消息3的PUSCH,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数。
第十二方面,本发明实施例提供一种网络设备,包括:
配置单元,配置为向终端设备配置偏移量,所述偏移量为所述终端设备与所述网络设备之间的传播时延相关的时间参数,所述偏移量用于所述终端设备控制随机接入请求或消息3的发送,或随机接入响应或竞争解决消息的接收。
第十三方面,本发明实施例提供一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述终端设备执行的随机接入方法的步骤。
第十四方面,本发明实施例提供一种网络设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述网络设备执行的随机接入方法的步骤。
第十五方面,本发明实施例提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述终端设备执行的随机接入方法。
第十六方面,本发明实施例提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述网络设备执行的随机接入方法。
本发明实施例提供的随机接入方法,包括:终端设备根据偏移量确定目标时间,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数;所述终端设备基于所述目标时间向所述网络设备发送随机接入请求。通过终端设备与网络设备之间的传播时延控制随机接入请求的发送,将在发送侧考虑终端设备与网络设备之间的传播时延对随机接入请求的发送的影响,使得随机接入请求到达网络设备的时间与网络配置的接收随机接入请求的对齐,能够有效地接收终端设备所发送的随机接入请求,保证随机接入请求在终端设备和网络设备之间的交互,保证随机接入过程的正常执行。
附图说明
图1为本发明随机接入的一种可选的处理流程示意图;
图2为本发明随机接入的一种可选的处理流程示意图;
图3为本发明NTN的通信链路示意图;
图4为本发明实施例通信系统的一种可选的组成结构示意图;
图5为本发明实施例通信系统的一种可选的组成结构示意图;
图6为本发明实施例随机接入方法的一种可选的处理流程示意图;
图7为本发明实施例随机接入方法的一种可选的处理流程示意图;
图8为本发明实施例随机接入方法的一种可选的处理流程示意图;
图9为本发明实施提供的一种可选地时序关系示意图;
图10为本发明实施例提供的一种可选地时序关系示意图;
图11为本发明实施提供的一种可选地时序关系示意图;
图12为本发明实施的终端设备的一个可选的结构示意图;
图13为本发明实施的终端设备的一个可选的结构示意图;
图14为本发明实施的终端设备的一个可选的结构示意图;
图15为本发明实施的终端设备的一个可选的结构示意图;
图16为本发明实施的网络设备的一个可选的结构示意图;
图17是本发明实施例网络设备的一个可选的结构示意图;
图18是本发明实施例提供的电子设备的一个可选的结构示意图。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点和技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
在对本发明实施例提供的随机接入方法进行详细说明之前,先对地面蜂窝网通信中随机接入过程进行简要说明。
在小区搜索过程之后,终端设备已经与小区取得了下行同步,因此,终端设备能够接收下行数据。但终端设备只有与小区取得上行同步,才能进行上行传输。终端设备通过随机接入过程(Random Access Procedure)与小区建立连接并取得上行同步。
随机接入的主要目的:(1)获得上行同步;(2)为终端设备分配一个唯一的小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)。
随机接入过程可由如下事件触发:
1、UE初始接入时建立无线连接:UE从无线资源连控制(Radio Resource Control,RRC)的空闲状态(即RRC_IDLE状态)到连接状态(即RRC_CONNECTED状态);其中,在RRC_IDLE状态下,未建立RRC连接,在RRC_CONNECTED状态下,建立了RRC连接;
2、无线资源连控制(Radio Resource Control,RRC)连接重建过程(RRC Connection Re-establishment procedure):以便UE在无线链路失败(Radio Link Failure)后重建无线连接;
3、切换:UE需要与新的小区建立上行同步;
4、RRC_CONNECTED状态下,下行链路(Down Link,DL)数据到达,此时,上行链路(Up Link,UL)处于失步状态;
5、RRC_CONNECTED状态下,UL数据到达,此时UL处于失步状态或者没有用 于发送调度请求(Scheduling Request,SR)的物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源;
6、RRC_CONNECTED状态下,为了定位终端设备,需要定时提前(timing advance)。
在随机接入过程中,包括第一类随机接入和第二类随机接入。其中,第一类随机接入中,终端设备与网络设备之间需要执行4次信息交互;因此,第一类随机接入也称为四步随机接入(4-steps RACH)。第二类随机接入中,终端设备与网络设备之间需要执行2次信息交互,因此,第二类随机接入也称为两步随机接入(2-steps RACH)。
第一类随机接入的处理流程,如图1所示,包括如下四个步骤:
步骤S101,终端设备通过消息1(message 1,Msg1)向网络设备发送随机接入前导。
终端设备发送随机接入前导(Random Access Preamble),给网络设备,以通知网络设备有一个随机接入请求,同时使得网络设备能估计其与终端设备之间的传输时延并以此校准上行定时(Timing),其中,随机接入前导也可称为Preamble。在新无线(New Radio,NR)系统或NR网络中,Preamble是在网络设备配置的周期性出现的随机接入时机(RACH occasion,RO)中发送的。其中,RO为RACH的时频资源。
步骤S102,网络设备向终端设备发送消息2(message 2,Msg2)。
网络设备检测到有终端设备发送Preamble之后,通过Msg2向终端设备发送RAR消息,以告知终端设备在发送Msg3时可以使用的上行资源信息,为终端设备分配临时的无线网络临时标识(Radio Network Tempory Identity,RNTI),为终端设备提供time advance command等。
终端设备发送了preamble之后,将开启一个RAR时间窗(RA Response window),在RAR时间窗内监听PDCCH,以接收对应随机接入无线网络临时标识(Random Access Radio Network Temporary Identifier,RA-RNTI)的RAR消息。RAR时间窗的窗长以时隙个数表示,时隙个数由高层信令ra-ResponseWindow配置,并基于终端配置的PDCCH公共搜索空间集合的子载波间隔为参考子载波确定时隙长度。RAR时间窗起始于发送Msg1后终端设备配置的PDCCH公共搜索空间集合中,且在终端设备发送物理随机接入信道(Physical Random Access Channel,PRACH)所在的RACH时机的最后一个符号之后至少一个符号之后的终端接收PDCCH时间位置最早的控制资源集合(Control Resource Set,CORESET),且所述至少一个符号的符号长度对应PDCCH公共搜索空间集合的子载波间隔。
如果终端设备在RAR时间窗内没有接收到网络设备回复的RAR消息,则认为此次随机接入过程失败。如果终端设备在RAR时间窗内成功地接收到一个RAR消息,且该RAR消息中的前导索引(preamble index)与终端设备发送的preamble index相同时,则认为成功接收了RAR消息,此时UE就可以停止监听RAR消息了。
一个RAR消息中可以包含对多个发送preamble的用户的响应消息,对每一个用户的响应消息中包含该用户采用的随机前导码标识(Random Access Preamble Identifier,RAPID)、消息3(message 3,Msg3)的调度授权信息、TA调整信息、临时C-RNTI(Temporary C-RNTI,TC-RNTI)等。在NR中,RAR消息采用下行控制信息(Downlink Control Information,DCI)format 1-0进行调度。
RAR消息中包含的msg3的调度授权信息共27比特,如表1所示:
表1随机接入响应消息中的授权内容
随机接入响应授权中的域 比特数目
跳频标识 1
PUSCH频率域资源分配 14
PUSCH时间域资源分配 4
调制与编码策略 4
PUSCH的TPC命令字 3
信道状态信息请求 1
步骤S103,终端设备向网络设备发送Msg3。
如果终端设备成功地收到了RAR消息,则终端发送Msg3,即RAR消息调度的PUSCH。
对应于RAR消息调度的PUSCH传输时隙,如果终端设备在时隙n接收到承载RAR消息的PDSCH,则终端在时隙n″=n+k 2+Δ上发送Msg3的PUSCH,其中,时延Δ由下表2给出,可以看出Δ由Msg3的子载波间隔μPUSCH确定。
表2 Δ取值的定义
μPUSCH Δ
0 2
1 3
2 4
3 6
上述k2基于表1中的“PUSCH时间域资源分配”域值指示,从一个缺省时(default)域资源分配(TDRA)表格中或者由系统消息配置的TDRA表格中的对应数值确定。以如下表3所示的default TDRA表格为例说明,假设域值“PUSCH time resource allocation”取值为0000,则指示表3中的第一行,则k2为j,其中j进一步取决于Msg3中PUSCH的子载波间隔,如果PUSCH子载波间隔为15KHz,则表4中的μPUSCH=0(PUSCH的子载波间隔等于15*2 μPUSCH),则j=1,因此从上述公式可以计算k2等于1。Msg3的PUSCH的子载波间隔等于系统信息中对初始UL带宽部分(bandwidth part)配置的子载波间隔。
表3正常CP情况下PUSCH的缺省时域资源分配表
Figure PCTCN2019109636-appb-000001
其中,表3中的j值由表4所确定。
表4 j的取值定义
μ PUSCH j
0 1
1 1
2 2
3 3
与随机接入的触发事件对应起来,Msg3携带的信息如下:
1、如果是初次接入(initial access),Msg3为在公共控制信道(common control channel,CCCH)上传输的人RRC连接请求,且至少需要携带NAS UE标志信息。
2、如果是RRC连接重建(RRC Connection Re-establishment),Msg3为CCCH上传输的RRC Connection Re-establishment Request,且不携带任何NAS消息。
3、如果是切换(handover),Msg3为在DCCH上传输的经过加密和完整性保护的RRC Handover Confirm,必须包含UE的C-RNTI,且如果可能的话,需要携带缓冲状态报告(Buffer Status Report,BSR)。
4、对于其它触发事件,则至少需要携带C-RNTI。
上行传输通常使用UE特定的信息,如C-RNTI,对UL-同步信道(Synchronization Channel,SCH)的数据进行加扰。但此时冲突还未解决,加扰不能基于C-RNTI,而只能使用TC-RNTI。也就是说,Msg3只会使用TC-RNTI进行加扰。
在S103中UE会在Msg3有携带自己唯一的标志:C-RNTI或来自核心网的UE标志(S-TMSI或一个随机数)。
因此,终端设备发送了Msg3之后,终端的媒体接入控制(Media Access Control,MAC)实体会启动如下操作:
1>、启动随机接入竞争解决定时器(ra-ContentionResolutionTimer)并且在重传每一个Msg3之后的第一个符号重启ra-ContentionResolutionTimer。
2>、在ra-ContentionResolutionTimer运行期间监听PDCCH,即监听网络发送的竞争解决消息。
步骤S104,网络设备向终端设备发送Msg4。
Msg4中包括竞争解决(contention resolution)消息,同时为终端设备分配上行传输资源。
网络设备在竞争解决机制中,会在Msg4中携带该唯一的标志以指定胜出的终端设备。而其它没有在竞争解决中胜出的终端设备将重新发起随机接入。Msg4的PDCCH采用TC-RNTI进行加扰。
终端设备接收到网络设备发送的Msg4时,会检测终端设备在Msg3发送的终端设备特定临时标识是否包含在基站发送的冲决解决消息中,若包含则表明终端设备随机接入过程成功,否则认为随机过程失败,终端设备需要再次从第一步开始发起随机接入过程。
第二类随机接入与第一类轨迹接入相比,第二类随机接入可以提高时延,同时也能降低信令开销。第二类随机接入的处理流程如图2所示,包括:
步骤S201,终端设备向网络设备发送MsgA。
MsgA包含preamble以及上行数据部分(如通过PUSCH承载)。preamble为第一类随机接入的Msg1的内容;上行数据部分承载UE的标识信息和/或RRC请求的原因,为第一类随机接入的Msg3的内容。
步骤S202,网络设备向终端设备发送MsgB。
MsgB包含竞争解决信息以及TA信息、C-RNTI的分配信息等,MsgB等效于包括 第一类随机接入的Msg2和Msg4。
在2-step RACH中,当终端设备有随机接入需求时,终端设备在网络设备配置的周期出现的2-step RACH对应的MsgA资源,即RACH Occasion和PUSCH Occasion上发送MsgA。然后,终端设备在RAR时间窗口内监听网络设备发送的RAR消息。可以预见,在2-step RACH中,RAR时间窗的起始时间的位置的设定方式与4-step RACH中类似,起始为终端配置的发送MsgA后的第一个PDCCH时机。
在NR中,主要考虑陆地蜂窝通信的需求,蜂窝通信中小区半径通常在几百米至几公里的范围,上下行的路径传播时延较短,为数个微妙(us)至几十个us。因此,路径传播时延对各种传输定时的设定影响较小。
与NR采用的蜂窝网络相比,NTN中UE与通信卫星之间的信号传播时延大幅增加,NTN的链路如图3所示,通信卫星下发卫星波束,与卫星波束覆盖范围内的终端设备进行信息交互。此外,由于通信卫星的覆盖范围很大,下行链路(从通信卫星至终端设备的链路)与上行链路(从终端设备至通信卫星的链路)都有明显较长的路径传播时延,低地球轨道(Low-Earth Orbit,LEO)通信卫星单向传播时延为几个微秒,地球同步轨道(Geostationary Earth Orbit,GEO)通信卫星单向传播时延在几百个微秒。较大的传播时延会影响随机接入过程中终端设备和网络设备的通信效率。
基于上述问题,本发明实施例提供一种随机接入方法,本发明实施例的随机接入方法可以应用于NTN系统,
示例性的,本发明实施例应用的NTN系统400,可为如图4所示。该通信系统400可以包括网络设备410,网络设备410可以是与终端设备420(或称为通信终端、终端)通信的设备。网络设备410可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信,为覆盖区域内的终端设备提供服务。
可选地,该网络设备410为通信卫星、无人机(Unmanned Aircraft System,UAS)平台。通信卫星按照轨道高度的不同分为LEO通信卫星、中地球轨道(Medium-Earth Orbit,MEO)通信卫星、GEO通信卫星、高椭圆轨道(High Elliptical Orbit,HEO)通信卫星等等。其中,低轨道通信卫星高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信(什么叫单跳通信)的信号传播延迟一般小于20ms。最大通信卫星可视时间20分钟。信号传播距离短,链路损耗少,对用户终端的发射功率要求不高。地球同步轨道通信卫星,轨道高度为35786km,围绕地球旋转周期为24小时。用户间单跳通信的信号传播延迟一般为250ms。
为了保证通信卫星的覆盖以及提升整个通信卫星通信系统的系统容量,通信卫星采用多波束覆盖地面,一颗通信卫星可以形成几十甚至数百个波束来覆盖地面;一个通信卫星波束可以覆盖直径几十至上百公里的地面区域。
该通信系统400还包括位于网络设备410覆盖范围内的至少一个终端设备420。作为在此使用的“终端设备”包括但不限于针对通信卫星网络的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于通信卫星电话;可以组合通信卫星电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、 终端、无线通信设备、用户代理或用户装置。接入终端可以是无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
网络设备410与终端设备420通过服务链路或无线链路440进行通信。网络设备410可基于馈线链路或无线链路450与网关430进行通信,通过网关430连接到公共数据网络。
在一示例中,如图5所示,该通信系统400中的网络设备410包括网络设备410-1和网络设备410-2,其中,网络设备410-1和网络设备410-2通过通信卫星间链路(Inter-satellite links,ISL)460进行通信,网络设备410-1用于透传payload:射频滤波,频率转换和放大.,信号通过透传网络设备410-1不会被改变。网络设备410-2用于再生payload:射频滤波,频率转换和放大,同时还有解调和解码,转换和/或路由,编码和调制。
应理解,本发明实施例中网络/系统中具有通信功能的设备可称为通信设备。以图4或图5示出的通信系统400为例,通信设备可包括具有通信功能的网络设备410和终端设备420,网络设备410和终端设备420可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统400中的其他设备,例如UAS等其他网络实体,本发明实施例中对此不做限定。
本发明实施例提供的随机接入方法的一种可选处理流程,如图6所示,包括以下步骤:
步骤S601,终端设备根据偏移量确定目标时间。
所述偏移量K_offset为所述终端设备与网络设备之间的传播时延相关的时间参数。
偏移量的表示方式包括以下至少之一:时间量和时隙数量。
在一示例中,偏移量为时间量,单位为ms。在一示例中,偏移量为时隙数目,并预定义或配置参考的子载波间隔。在一示例中,偏移量为时隙数目和符号数目的组合,并预定义或配置参考的子载波间隔。
本发明实施例中,偏移量大于或等于终端设备与网络设备之间的传播时延。比如:偏移量为终端设备与网络设备之间的传播时延。又比如,偏移量为2倍的终端设备与网络设备之间的传播时延。
本发明实施例中,所述偏移量由所述终端设备预定义;或所述偏移量由所述网络设备配置。
在所述偏移量由所述网络设备配置的情况下,所述偏移量由所述网络设备通过以下信令中的至少之一配置:系统广播消息;物理下行控制信道PDCCH信令;无线资源控制信令;媒体接入控制控制单元信令。
在所述偏移量由所述网络设备配置的情况下,在步骤S601之前,如图7所示,包括:
步骤S701,网络设备向终端设备配置偏移量。
所述偏移量用于所述终端设备对随机接入过程中消息的交互进行控制。可选地,所述偏移量用于所述终端设备控制随机接入请求或消息3的发送,或随机接入响应或竞争解决消息的接收。
可选地,步骤S701包括:网络设备向所述终端设备发送携带所述偏移量的配置消息。
所述配置消息包括以下至少之一:系统广播消息;物理下行控制信道PDCCH信令;无线资源控制信令;媒体接入控制控制单元信令。
本发明实施例中,目标时间表征网络设备配置的接收终端设备发送的随机接入请求的时间。可选地,目标时间为网络设备配置的用于接收终端设备发送的随机接入请求的PRACH资源。PRACH资源可为周期性的资源。
可选地,随机接入请求为Msg1,此时,随机接入类型为第一类随机接入。在随机接入类型为第一类随机接入的情况下,步骤S601可以执行为:根据所述偏移量确定随机接入时机。
终端设备根据所述偏移量确定可用的随机接入时机,并在可用的随机接入时机中选取随机接入时机。
可选地,所述根据所述偏移量确定随机接入时机,包括:在随机接入的触发时间之后的所述偏移量对应的时长之后的PRACH资源中确定随机接入时机。
随机接入的触发时间之后的所述偏移量对应的时长之后的PRACH资源为随机接入的触发时间偏移K_offset对应的时长之后的PRACH资源。可选地,在随机接入的触发时间向后偏移K_offset对应的时长。
在一示例中,随机接入的触发时间为T1,在T1之后的K_offset对应的时长之后得到的时间为T2,则终端设备在T2之后的PRACH资源中确定随机接入时机。
以触发方式为高层触发为例,终端设备在高层触发随机接入的触发时间之后的偏移量K_offset对应的时长之后的PRACH资源中确定可用RACH occasion,并在可用RACH occasion中选取RACH occasion。
可选地,可将高层触发随机接入的触发时间之后的偏移量K_offset对应的时长之后的PRACH资源中下一个可用的RACH occasion作为目标时间。
可选地,高层触发随机接入的触发事件包括以下几种触发事件:
1)、RRC_CONNECTED状态下,UL数据到达,此时UL处于失步状态或者没有用于发送SR的PUCCH资源;
2)、UE初始接入时建立无线连接;
3)、RRC连接重建过程;
4)、切换。
以触发方式为PDCCH指令(order)为例,终端设备根据PDCCH指令的最后一个符号和所述偏移量在PRACH资源中确定随机接入时机,所述PDCCH指令的最后一个符号和所述随机接入时机的第一个符号之间的时间间隔大于所述偏移量对应的时长。
在一示例中,PDCCH指令的最后一个符号对应的时间为T3,在T3之后的K_offset对应的时长之后得到的时间为T4,则终端设备在T4之后的PRACH资源中确定随机接入时机。
终端设备在PDCCH指令的最后一个符号之后的大于偏移量K_offset对应的时长之后的PRACH资源中确定可用RACH occasion,并在可用RACH occasion中选取作为目标时间的RACH occasion。
可选地,PDCCH指令的最后一个符号和作为目标时间的RACH occasion的最后一个符号之间的时间间隔大于或等于时间间隔K,时间间隔K可通过公式(1)计算,
K=N T,2BWPSwitchingDelay+K_offset    公式(1);
其中,N T,2是对应rel-15终端处理能力1的PUSCH的准备时间的N 2个符号的时间长度,Δ BWPSwitching为带宽部分(Bandwidth part,BWP)切换时延,如果终端的激活 UL带宽部分(Bandwidth part,BWP)没有变化,则BWP切换时延Δ BWPSwitching=0,否则,BWP切换时延Δ BWPSwitching的值可参考表5的定义。Δ Delay为时延,对于频率范围(Frequency Range,FR)1,时延Δ Delay=0.5ms,对于FR2,时延Δ Delay=0.25ms。
表5 BWP切换时延
Figure PCTCN2019109636-appb-000002
PDCCH order触发随机接入的触发事件包括以下几种触发事件:
1)、RRC_CONNECTED状态下,DL数据到达,此时,UL处于失步状态;
2)、RRC_CONNECTED状态下,为了定位终端设备,需要定时提前(timing advance)。
可选地,随机接入请求为MsgA,此时,随机接入类型为第二类随机接入。在随机接入类型为第二类随机接入的情况下,步骤S601可以执行为:根据所述偏移量确定随机接入时机和PUSCH时机。
随机接入时机和PUSCH时机为时分复用(Time-Division Multiplexing,TDM)关系。其中,PUSCH时机为PUSCH的时频资源。
本发明实施例中,所述根据所述偏移量确定随机接入时机和PUSCH时机,包括:在随机接入的触发时间之后的所述偏移量对应的时长之后的传输随机接入请求的资源中,确定随机接入时机和PUSCH时机。
这里,以随机接入的触发方式为高层触发为例,终端设备在高层触发随机接入的触发时间之后的偏移量K_offset对应的时长之后的PRACH资源中确定可用RACH occasion和可用PUSCH occasion,并在可用RACH occasion中选取RACH occasion,在可用PUSCH occasion中选取PUSCH occasion。
以随机接入的触发方式为PDCCH order为例,终端设备在PDCCH指令的最后一个符号之后的大于偏移量K_offset对应的时长之后的PRACH资源中确定可用RACH occasion和可用PUSCH occasion,并在可用RACH occasion中选取作为目标时间的RACH occasion,在可用PUSCH occasion中选取PUSCH occasion。PDCCH指令的最后一个符号和作为目标时间的RACH occasion之间的时间间隔大于或等于K,且PDCCH指令的最后一个符号和作为目标时间的PUSCH occasion之间的时间间隔大于或等于K。
本发明实施例中,通过与终端设备根据偏移量确定目标时间,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数;所述终端设备基于所述目标时间向所述网络设备发送承载随机接入请求。通过终端设备与网络设备之间的传播时延控制随机接入请求的发送,将在发送侧考虑终端设备与网络设备之间的传播时延对随机接入请求的发送的影响,使得随机接入请求达到网络设备的时间与网络配置的接收 随机接入请求的资源对齐,能够有效地接收终端设备所发送的随机接入请求,保证随机接入请求在终端设备和网络设备之间的交互,保证随机接入过程的正常执行。
步骤S602、所述终端设备基于所述目标时间向所述网络设备发送随机接入请求。
本发明实施例中,终端设备基于所述目标时间向所述网络设备发送随机接入请求,使得网络设备在目标时间接收到终端设备发送的随机接入请求。
所述终端设备将目标时间之前的所述偏移量对应的时长之后的时间作为发送时间,在发送时间向所述网络设备发送用于承载随机接入请求(Msg1)的PRACH或发送用于承载随机接入请求(MsgA)的PRACH和PUSCH。
在一示例中,目标时间为T5,将T5向前偏移一个偏移量对应的时长得到的时间为T6,则终端设备在T6开始发送随机接入请求。
可选地,以随机接入类型为第一类随机接入为例,终端设备在随机接入时机向前偏移一个偏移量对应的时长之后的时间发送承载随机接入请求的PRACH。
可选地,以随机接入类型为第二类随机接入为例,终端设备从随机接入时机和PUSCH时机中选择时间靠前的随机接入时机或PUSCH时机,并在时间靠前的随机接入时机或PUSCH时机向前偏移一个偏移量对应的时长之后的时间发送PRACH和PUSCH。
在一示例中,随机接入时机和PUSCH时机中时间靠前的时机为随机接入时机,则在随机接入时机向前偏移一个偏移量对应的时长之后的时间发送PRACH和PUSCH。
在一示例中,随机接入时机和PUSCH时机中时间靠前的时机为PUSCH时机,则在PUSCH时机向前偏移一个偏移量对应的时长之后的时间发送PRACH和PUSCH。
本发明实施例中,终端设备根据偏移量确定RAR时间窗的起始时间。
可选地,所述RAR时间窗的起始时间为:在终端配置的PDCCH公共搜索空间集合中,终端发送PRACH所在的RACH时机的最后一个符号之后的特定偏移量对应的时长之后的终端接收PDCCH时间位置最早的控制资源集合,所述特定偏移量对应的时长为特定时长与所述偏移量对应的时长之和。
特定时长可为至少一个符号对应的时长。
在执行步骤S602之后,如图8所示,包括:
步骤S801,所述终端设备根据所述偏移量确定RAR时间窗的起始时间。
RAR时间窗用于监听网络设备下发的RAR消息。
可选地,RAR时间窗用于监听承载所述RAR消息的PDCCH。
步骤S802,网络设备向终端设备发送随机接入响应。
此时,所述终端设备基于RAR时间窗监听网络设备下发的随机接入响应。
网络设备接收到终端设备基于步骤S602发送的随机接入请求后,向终端设备发送RAR消息,终端设备基于RAR时间窗监听RAR消息的下发。
可选地,随机接入类型为第一类随机接入,RAR消息为Msg2。可选地,随机接入类型为第二类随机接入,RAR消息为MsgB。
本发明实施例中,在随机接入类型为第一类随机接入的情况下,所述终端设备根据所述偏移量确定目标时隙;所述终端设备基于所述目标时隙发送用于承载消息3的PUSCH。
可选地,所述根据所述偏移量确定目标时隙,包括:根据参考时隙和所述偏移量确定所述目标时隙,所述参考时隙为接收到承载随机接入响应RAR消息的物理下行共享信道PDSCH的时隙。
终端设备在参考时隙时隙n接收到承载RAR消息的PDSCH,则在目标时隙n'发送承载消息3的PUSCH。其中,时隙n'可通过公式(2)计算得到,
n′=n+k 2+Δ+K_offset       公式(2)。
本发明实施例中,如图8所示,在执行步骤S802之后,包括步骤S803和步骤S804。
步骤S803,所述终端设备根据所述偏移量确定目标时隙。
步骤S804,所述终端设备基于所述目标时隙发送用于承载消息3的PUSCH。
这里,所述终端设备基于目标时隙发送用于承载消息3的PUSCH,以向网络设备发送消息3。
本发明实施例中,在随机接入类型为第一类随机接入的情况下,在发送消息Msg2之后,网络设备根据偏移量接收承载消息3的PUSCH。
可选地,所述根据偏移量监听承载消息3的PUSCH,包括:
在发送随机接入响应RAR的时间之后的所述偏移量对应的时长后接收承载消息3的PUSCH。
网络设备在发送Msg2之后的偏移量之后接收承载Msg3的PUSCH。
在一示例中,网络设备在T5发送Msg2,在T5之后的K_offset对应的时长后的时间为T6,网络设备在T6开始接收承载Msg3的PUSCH。
本发明实施例中,在随机接入类型为第一类随机接入的情况下,终端设备基于所述偏移量监听承载竞争解决消息的PDCCH。
网络设备接收到Msg3后,向终端设备下发Msg4即竞争解决消息,且网络设备基于PDCCH下发竞争解决消息。终端设备在发送Msg3后,监听承载竞争解决消息的PDCCH,以监听网络设备下发的竞争解决消息。
可选地,终端设备基于随机接入竞争解决定时器监听承载竞争解决消息的PDCCH。
终端设备基于随机接入竞争解决定时器监听承载竞争解决消息的PDCCH的方式包括以下方式中的任一种:
方式一、
在发送消息3的时间之后的所述偏移量对应的时长之后的时间,启动随机接入竞争解决定时器,并在重传消息3的重传时间之后的所述偏移量对应的时长之后的第一个符号重启所述随机接入竞争解决定时器;其中,在所述随机接入竞争解决定时器运行期间,监听承载竞争解决消息的PDCCH。
在方式一中,在发送消息3的时间向后偏移K_offset对应的时长之后启动随机接入竞争解决定时器。在重传消息3的时间向后偏移K_offset对应的时长之后的第一个符号重启随机接入竞争解决定时器,且在随机接入竞争解决定时器运行后,开始监听承载竞争解决消息的PDCCH。
方式二
在发送消息3之后,启动随机接入竞争解决定时器,并在重传消息3之后重启所述随机接入竞争解决定时器;其中,在所述随机接入竞争解决定时器运行所述偏移量对应的时长后,监听承载竞争解决消息的PDCCH。
在方式一中,在发送消息3的时间之后启动随机接入竞争解决定时器。在重传消息3的时间之后的第一个符号重启随机接入竞争解决定时器,且在随机接入竞争解决定时器运行K_offset对应的时长后,开始监听承载竞争解决消息的PDCCH。
本发明实施例中,如图8所示,在执行步骤S804之后,包括:
步骤S805,所述终端设备基于所述偏移量监听承载竞争解决消息的PDCCH。
需要说明的是,在本发明实施例中,对应不同的随机接入消息的偏移量的值可不同,也可相同。
在一示例中,终端设备根据偏移量K_offset A确定目标时间,以基于目标时间发送随机接入请求,根据偏移量K_offset B确定RAR时间窗的起始时间,根据K_offset C确定发送Msg3的目标时隙,并根据K_offset C控制随机接入竞争解决定时器,且K_offset A、K_offset B、K_offset C和K_offset D的大小不同。
在一示例中,终端设备根据偏移量K_offset A确定目标时间,以基于目标时间发送随机接入请求,根据偏移量K_offset A确定RAR时间窗的起始时间,根据K_offset A确定发送Msg3的目标时隙,并根据K_offset A控制随机接入竞争解决定时器。
本发明实施例中,在随机接入过程,通过偏移量控制随机接入过程中各消息的发送或接收,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数;从而终端设备与网络设备之间的传播时延对随机接入过程的消息的传输影响纳入消息发送的考虑范围,使得网络设备接收随机接入过程中的消息的时间与网络配置的接收消息的时间对齐,或终端设备监听随机接过程中消息的时间与接收消息的时间对齐,能够有效地保证随机接入过程中消息在终端设备和网络设备之间的交互,保证随机接入过程的正常执行。
下面,以网络设备为通信卫星且终端设备为UE为例,通过不同的实例对本发明实施例提供的随机接入方法进行举例说明。
实例一、4-step RACH
步骤901,UE向通信卫星发送Msg1。
如果UE由高层触发或PDCCH order触发4-step RACH过程,UE发送Msg1。
其中,基于PRACH资源的配置,UE基于K_offset选取合适的RACH occasion并确定PRACH的发送时间,K_offset为与通信卫星与终端的传播时延相关的时间参数,用于UE调整PRACH的发送定时,从而应对通信卫星与UE之间的传播时延的影响。
可选地,K_offset1由通信卫星通过信令向UE发送,所述信令可以为系统广播消息、PDCCH、RRC信令、MAC CE信令等。
可选地,K_offset1为预定义的数值。
基于随机接入过程的触发方式不同,基于K_offset选取合适的RACH occasion并确定PRACH的发送时间的方式不同。
a.高层触发随机接入过程
步骤S8011a,UE在高层触发随机接入之后的K_offset1时间之后的PRACH资源中确定下一个可用RACH occasion。
如图9所示,UE在时间t1由高层触发随机接入,则UE在t1之后的K_offset1时间之后的时间t2之后的PRACH资源中确定可用RACH occasion,并在可用的RACH occasion中选择RACH occasion,在选取的RACH occasion中选择preamble。可选地,UE基于参考信号(如SS/PBCH blocks、CSI-RSs)的测量结果从可用的RACH occasion选取RACH occasion。
通过图9可知,PRACH资源为周期性资源,UE在t1之后的K_offset1时间之后的时间t2之后的PRACH资源中确定可用RACH occasion。
步骤S8012a,基于确定的RACH occasion的时间位置和K_offset1,终端发送PRACH。
如图10所示,确定的RACH occasion的起始时间为t4,则UE在时间t4-K_offset1所对应的时间t3开始发送PRACH。
b.PDCCH order触发随机接入过程
步骤S8011b,UE基于K_offset2和PDCCH order的最后一个符号的时间在PRACH 资源中确定下一个可用RACH occasion。
如果随机接入过程由PDCCH order触发,则UE在根据PDCCH order和K_offset2确定的RACH occasion中发送PRACH,其中,PDCCH order的最后一个符号(基站侧的定时)或PDCCH order接收的最后一个符号(终端侧的定时)与RACH occasion的第一个符号之间的时间间隔大于或等于时间间隔K。
时间间隔K=N T,2BWPSwitchingDelay+K_offset2;其中,N T,2是对应rel-15终端处理能力1的PUSCH的准备时间的N 2个符号的时间长度,如果终端的激活UL带宽部分(Bandwidth part,BWP)没有变化,则BWP切换时延Δ BWPSwitching=0,否则,BWP切换时延Δ BWPSwitching的值可参考表5的定义。对于FR1,时延Δ Delay=0.5ms,对于FR2,时延Δ Delay=0.25ms。
对于终端侧的定时,K_offset2为通信卫星与终端之间的传播时延;对于卫星侧的定时,K_offset2为2倍的通信卫星与终端之间的传播时延。
步骤S8012b,基于确定的RACH occasion的时间位置和K_offset2,终端发送PRACH。
在本实施例中,PRACH资源的选取以及PRACH的发送时间基于通信卫星与终端之间的传播时延的方法,使得终端发送的PRACH在经历较长时间的传播时延后,与通信卫星配置的PRACH资源位置对齐,从而保证NTN中随机接入过程的正常执行。
步骤902,msg2的接收。
UE在通过Msg1发送preamble之后,Msg1从终端至卫星需要经历由卫星与UE距离决定的传播时延,通信卫星检测到preamble之后,向UE发送RAR消息,RAR消息至UE需要经历卫星与UE距离决定的传播时延。因此,从UE发送msg1后开始,最早在K_offset3之后的时间,终端才可能会检测到RAR消息(Msg2)。
终端中RAR时间窗可由K_offset3确定。
具体地,RAR时间窗起始于为终端配置的PDCCH公共搜索空间集合中,在终端发送PRACH所在的RACH occasion的最后一个符号之后的特定时长后的时间(如图11中的t5)加K_offset3时间之后(如图11中的t6)的终端接收PDCCH时间位置最早的控制资源集合,且特定间长为至少一个符号,至少一个符号的符号长度对应Type1-PDCCH CSS set的子载波间隔。K_offset3由卫星与终端距离决定,如等于2倍的卫星与终端的传播时延。
在一示例中,如图11所示,基于图10所示的UL中,UE在时间t3发送PRACH,对于DL,用于UE监听PDCCH的RAR时间窗起始于为终端配置的PDCCH公共搜索空间集合中,在终端发送PRACH所在的RACH occasion的最后一个符号之后的时间t6之后的终端接收PDCCH时间位置最早的控制资源集合。其中,如图11所示,t3向后偏移RACH occasion的最后一个符号之后的特定时长后的时间为t5,t5加K_offset3时长之后的时间为t6,即t3和t5之间的时间间隔为一个RACH occasion的时长和特定时长之和,t6和t5之间的时间间隔为K_offset3。
有益效果:基于UE与通信卫星之间的传播时延确定RAR窗口的起始位置,使得终端发送了msg1之后不立即监听承载RAR消息的PDCCH,而是等到RAR消息到达终端的时延之后才开始监听承载RAR消息的PDCCH,即保证了RAR消息的监听,又节省了终端监听RAR消息的电量消耗。
步骤903,终端发送Msg3。
在NTN中,对应于RAR上行调度授权调度的PUSCH传输时隙,如果UE在时隙n接收到承载RAR消息的PDCCH,则UE在时隙n+k 2+Δ+K_offset4上向通信卫星发送承载Msg3的PUSCH。
K_offset4由通信卫星与终端之间的距离决定,比如,等于2倍的通信卫星与UE之间的距离决定的传播时延。
在本发明实施例中,基于终端与通信卫星之间的传播时延,保证了Msg3的发送结合了传播时延的影响,使得通信卫星可以在正确的时间位置接收到承载Msg3的PUSCH。
步骤904,终端接收竞争解决消息。
在NTN中,终端发送了Msg3,终端的MAC实体可以执行如下方式的其中一种:
方式1
1>、在K_offset5时间之后,终端启动随机接入竞争解决定时器ra-ContentionResolutionTimer并且在每一个msg3重传之后的K_offset5时间之后第一个符号重启ra-ContentionResolutionTimer;
2>、在ra-ContentionResolutionTimer运行期间监听PDCCH,即监听卫星发送的竞争解决消息。
方式2
1>、启动ra-ContentionResolutionTimer并且在每一个msg3重传之后的第一个符号重启ra-ContentionResolutionTimer;
2>在ra-ContentionResolutionTimer计时大于K_offset5时间之后的运行期间监听PDCCH,即监听网络发送的竞争解决消息。
K_offset5由通信卫星与终端之间的距离决定,如等于2倍的通信卫星与终端之间的距离决定的传播时延。
本发明实施例中,基于终端与通信卫星的传播时延延迟终端监听PDCCH的起始时间,即保证竞争解决消息的正确接收,又节省终端电量消耗。
实例二、2-step RACH
步骤1001,UE向通信卫星发送MsgA。
2-step RACH过程中msgA的发送包括PRACH和PUSCH的发送。UE通过以下方式确定选取发送PRACH和PUSCH的时间。
根据K_offset选取合适的时机并确定PRACH的发送时间。
a.高层触发随机接入过程
1>、在高层触发随机接入之后的K_offset1时间之后的msgA资源中确定下一个可用RACH occasion和PUSCH occasion。
2>、对于下一个可用RACH occasion和PUSCH occasion中的时间靠前的occasion的时间位置和K_offset1,终端发送PRACH和PUSCH。这里,RACH occasion和PUSCH occasion是TDM关系。
可选地,RACH occasion的时间位置的时间靠前,则基于RACH occasion向前偏移K_offset1所对应的时长之后的时间开始发送PRACH和PUSCH。
可选地,PUSCH occasion的时间位置的时间靠前,则基于PUSCH occasion向前偏移K_offset1所对应的时长之后的时间开始发送PRACH和PUSCH。
b.PDCCH order触发随机接入过程
1>、UE基于K_offset2和PDCCH order的最后一个符号的时间在msgA资源中确定下一个可用RACH occasion和PUSCH occasion。
PDCCH order的最后一个符号(通信卫星侧的定时)或PDCCH order接收的最后一个符号(终端侧的定时)与RACH occasion的第一个符号之间的时间间隔大于或等于时间间隔K。
PDCCH order的最后一个符号(通信卫星侧的定时)或PDCCH order接收的最后一个符号(终端侧的定时)与PUSCH occasion的第一个符号之间的时间间隔大于或等于时间间隔K。
2>、对于下一个可用RACH occasion和PUSCH occasion中的时间靠前的occasion的时间位置和K_offset1,终端发送PRACH和PUSCH。这里,RACH occasion和PUSCH occasion是TDM关系。
MsgA资源的选择与发送时间的确定与实例一4-step RACH过程msg1的过程类似,可参考实例一的描述,不再赘述。
步骤1002,UE接收通信卫星发送的MsgB。
RAR时间窗的起始时间的位置的设定方式与实例一4-step RACH中类似,起始于为终端配置的PDCCH CSS set中,且在终端发送msgA所在的PUSCH occasion的最后一个符号之后至少一个符号加K_offset6之后的终端接收PDCCH时间位置最早的CORESET,且所述至少一个符号的符号长度对应Type1/X-PDCCH CSS set的子载波间隔。
终端在RAR响应窗口内监听PDCCH以及接收PDCCH调度的承载RAR消息的PDSCH。
K_offset6由卫星与终端距离决定,如等于2倍的卫星与终端距离决定的传播时延。
需要说明的是,在上述实例中,K_offset1、K_offset2、K_offset3、K_offset4、K_offset5和K_offset6的大小可相同,也可不同。
在实际应用中,当K_offset1、K_offset2、K_offset3、K_offset4、K_offset5和K_offset6的值相同时,K_offset1、K_offset2、K_offset3、K_offset4、K_offset5和K_offset6可为同一K_offset。
为实现上述随机接入方法,本发明实施例还提供一种终端设备,所述终端设备的组成结构,如图12所示,终端设备1200包括:
第一确定单元1201,配置为根据偏移量确定目标时间,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数;
第一发送单元1202,配置为基于所述目标时间向所述网络设备发送随机接入请求。
本发明实施例中,所述偏移量由所述终端设备预定义;或所述偏移量由所述网络设备配置。
本发明实施例中,在所述偏移量由所述网络设备配置的情况下,所述偏移量由所述网络设备通过以下信令中的至少之一配置:
系统广播消息;
物理下行控制信道PDCCH信令;
无线资源控制信令;
媒体接入控制控制单元信令。
本发明实施例中,第一确定单元1201,还配置为在随机接入类型为第一类随机接入的情况下,根据所述偏移量确定随机接入时机。
本发明实施例中,第一确定单元1201,还配置为在随机接入的触发时间之后的 所述偏移量对应的时长之后的物理随机接入信道PRACH资源中确定所述随机接入时机。
本发明实施例中,第一确定单元1201,还配置为在随机接入触发方式为PDCCH指令触发的情况下,根据PDCCH指令的最后一个符号和所述偏移量在PRACH资源中确定随机接入时机,所述PDCCH指令的最后一个符号和所述随机接入时机的第一个符号之间的时间间隔大于所述偏移量对应的时长。
本发明实施例中,第一确定单元1201,还配置为在随机接入类型为第二类随机接入的情况下,根据所述偏移量确定随机接入时机和物理上行共享信道PUSCH时机。
本发明实施例中,第一确定单元1201,还配置为:
在随机接入的触发时间之后的所述偏移量对应的时长之后的传输随机接入请求的资源中,确定随机接入时机和PUSCH时机。
本发明实施例中,所述终端设备1200还包括:
第二确定单元1301,配置为根据所述偏移量确定随机接入响应RAR时间窗的起始时间。
本发明实施例中,所述RAR时间窗的起始时间为:在终端配置的公共PDCCH搜索空间中,终端发送PRACH所在的随机接入时机的最后一个符号之后的特定偏移量对应的时长之后的终端接收PDCCH时间位置最早的控制资源集合,所述特定偏移量对应的时长为特定时长与所述偏移量对应的时长之和。
本发明实施例中,终端设备1200还包括:
第三确定单元1401,配置为根据所述偏移量确定目标时隙;
第二发送单元1402,配置为基于所述目标时隙发送用于承载消息3的上行数据的物理上行共享信道PUSCH。
本发明实施例中,第三确定单元1401,还配置为根据参考时隙和所述偏移量确定所述目标时隙,所述参考时隙为接收到承载RAR消息的物理下行共享信道PDSCH的时隙。
本发明实施例中,所述终端设备还包括:
监听单元1501,基于所述偏移量监听承载竞争解决消息的PDCCH。
本发明实施例中,监听单元1501,还配置为:
在发送消息3的时间之后的所述偏移量对应的时长之后的时间,启动随机接入竞争解决定时器,并在重传消息3的重传时间之后的所述偏移量对应的时长之后的第一个符号重启所述随机接入竞争解决定时器;其中,在所述随机接入竞争解决定时器运行期间,监听承载竞争解决消息的PDCCH。
本发明实施例中,监听单元1504,还配置为:
在发送消息3之后,启动随机接入竞争解决定时器,并在重传消息3之后重启所述随机接入竞争解决定时器;其中,在所述随机接入竞争解决定时器运行所述偏移量对应的时长后,监听承载竞争解决消息的PDCCH。
本发明实施例还提供一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述终端设备执行的随机接入方法的步骤。
本发明实施例还提供一种终端设备,所述终端设备的组成结构,如图13所示,终端设备1300包括:
第二确定单元1301,配置为根据偏移量确定随机接入响应RAR时间窗的起始时间,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数。
本发明实施例中,所述RAR时间窗的起始时间为:在终端配置的公共物理下行 控制信道PDCCH搜索空间中,终端发送物理随机接入信道PRACH所在的随机接入时机的最后一个符号之后的特定偏移量对应的时长之后的终端接收PDCCH时间位置最早的控制资源集合,所述特定偏移量对应的时长为特定时长与所述偏移量对应的时长之和。
本发明实施例还提供一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述终端设备执行的随机接入方法的步骤。
本发明实施例还提供一种终端设备,所述终端设备的组成结构,如图14所示,终端设备1400包括:
第三确定单元1401,配置为根据偏移量确定目标时隙,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数;
第二发送单元1402,配置为基于所述目标时隙发送用于承载消息3的上行数据的物理上行共享信道PUSCH。
本发明实施例中,第三配置单元1401,还配置为根据参考时隙和所述偏移量确定所述目标时隙,所述参考时隙为接收到承载随机接入响应RAR消息的物理下行共享信道PDSCH的时隙。
本发明实施例还提供一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述终端设备执行的随机接入方法的步骤。
为实现上述随机接入方法,本发明实施例还提供一种终端设备,所述终端设备的组成结构,如图15所示,终端设备1500包括:
监听单元1501,配置为基于偏移量监听承载竞争解决消息的物理下行控制信道PDCCH,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数。
本发明实施例中,监听单元1501还配置为:
在发送消息3的时间之后的所述偏移量对应的时长之后的时间,启动随机接入竞争解决定时器,并在重传消息3的重传时间之后的所述偏移量对应的时长之后的第一个符号重启所述随机接入竞争解决定时器;其中,在所述随机接入竞争解决定时器运行期间,监听承载竞争解决消息的PDCCH。
本发明实施例中,监听单元1501还配置为:
在发送消息3之后,启动随机接入竞争解决定时器,并在重传消息3之后重启所述随机接入竞争解决定时器;其中,在所述随机接入竞争解决定时器运行所述第四偏移量对应的时长后,监听承载竞争解决消息的PDCCH。
本发明实施例还提供一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述终端设备执行的随机接入方法的步骤。
本发明实施例还提供一种网络设备,所述网络设备的组成结构示意图,如图16所示,网络设备1600包括:
接收单元1601,配置为根据偏移量接收承载消息3的物理上行共享信道PUSCH,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数。
本发明实施例中,接收单元1601,还配置为在发送随机接入响应RAR的时间之后的所述偏移量对应的时长后接收承载消息3的PUSCH。
本发明实施例还提供一种网络设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述网 络设备执行的随机接入方法的步骤。
本发明实施例还提供一种网络设备,所述网络设备的组成结构示意图,如图17所示,网络设备1700包括:
配置单元1701,配置为向终端设备配置偏移量,所述偏移量为所述终端设备与所述网络设备之间的传播时延相关的时间参数,所述偏移量用于所述终端设备控制随机接入请求或消息3的发送,或随机接入响应或竞争解决消息的接收。
本发明实施例中,配置单元1701,还配置为向所述终端设备发送携带所述偏移量的配置消息。
本发明实施例中,所述配置消息包括以下至少之一:
系统广播消息;
物理下行控制信道PDCCH信令;
无线资源控制信令;
媒体接入控制控制单元信令。
本发明实施例中,所述网络设备1700还包括:
接收单元1601,配置为根据所述偏移量接收承载消息3的物理上行共享信道PUSCH。
本发明实施例中,接收单元1601,还配置为在发送随机接入响应RAR的时间之后的所述偏移量对应的时长后接收承载消息3的PUSCH。
本发明实施例还提供一种网络设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述网络设备执行的随机接入方法的步骤。
图18是本发明实施例的电子设备(终端设备或网络设备)的硬件组成结构示意图,电子设备1800包括:至少一个处理器1801、存储器1802和至少一个网络接口1804。电子设备1800中的各个组件通过总线系统1805耦合在一起。可理解,总线系统1805用于实现这些组件之间的连接通信。总线系统1805除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图18中将各种总线都标为总线系统1805。
可以理解,存储器1802可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM, SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本发明实施例描述的存储器1802旨在包括但不限于这些和任意其它适合类型的存储器。
本发明实施例中的存储器1802用于存储各种类型的数据以支持电子设备1800的操作。这些数据的示例包括:用于在电子设备1800上操作的任何计算机程序,如应用程序18021。实现本发明实施例方法的程序可以包含在应用程序18021中。
上述本发明实施例揭示的方法可以应用于处理器1801中,或者由处理器1801实现。处理器1801可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1801中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1801可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器1801可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器1802,处理器1801读取存储器1802中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,电子设备1800可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、FPGA、通用处理器、控制器、MCU、MPU、或其他电子元件实现,用于执行前述方法。
本发明实施例还提供了一种存储介质,用于存储计算机程序。
可选的,该存储介质可应用于本发明实施例中的终端设备,并且该计算机程序使得计算机执行本发明实施例的各个方法中的相应流程,为了简洁,在此不再赘述。
可选的,该存储介质可应用于本发明实施例中的网络设备,并且该计算机程序使得计算机执行本发明实施例的各个方法中的相应流程,为了简洁,在此不再赘述。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (62)

  1. 一种随机接入方法,所述方法包括:
    终端设备根据偏移量确定目标时间,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数;
    所述终端设备基于所述目标时间向所述网络设备发送随机接入请求。
  2. 根据权利要求1所述的方法,其中,
    所述偏移量由所述终端设备预定义;或
    所述偏移量由所述网络设备配置。
  3. 根据权利要求2所述的方法,其中,在所述偏移量由所述网络设备配置的情况下,所述偏移量由所述网络设备通过以下信令中的至少之一配置:
    系统广播消息;
    物理下行控制信道PDCCH信令;
    无线资源控制信令;
    媒体接入控制控制单元信令。
  4. 根据权利要求1至3任一项所述的方法,其中,在随机接入类型为第一类随机接入的情况下,所述根据偏移量确定目标时间,包括:
    根据所述偏移量确定随机接入时机。
  5. 根据权利要求4所述的方法,其中,所述根据所述偏移量确定随机接入时机,包括:
    在随机接入的触发时间之后的所述偏移量对应的时长之后的物理随机接入信道PRACH资源中确定所述随机接入时机。
  6. 根据权利要求5所述的方法,其中,在随机接入触发方式为PDCCH指令触发的情况下,所述在随机接入的触发时间之后的所述偏移量对应的时长之后的PRACH资源中确定所述随机接入时机,包括:
    根据PDCCH指令的最后一个符号和所述偏移量在PRACH资源中确定随机接入时机,所述PDCCH指令的最后一个符号和所述随机接入时机的第一个符号之间的时间间隔大于所述偏移量对应的时长。
  7. 根据权利要求1至3任一项所述的方法,其中,在随机接入类型为第二类随机接入的情况下,所述根据偏移量确定目标时间,包括:
    根据所述偏移量确定随机接入时机和物理上行共享信道PUSCH时机。
  8. 根据权利要求7所述的方法,其中,所述根据所述偏移量确定随机接入时机和PUSCH时机,包括:
    在随机接入的触发时间之后的所述偏移量对应的时长之后的传输随机接入请求的资源中,确定随机接入时机和PUSCH时机。
  9. 根据权利要求1至8任一项所述的方法,其中,所述方法还包括:
    所述终端设备根据所述偏移量确定随机接入响应RAR时间窗的起始时间。
  10. 根据权利要求9所述的方法,其中,所述RAR时间窗的起始时间为:在终端配置的PDCCH公共搜索空间集合中,终端发送PRACH所在的随机接入时机的最后一个符号之后的特定偏移量对应的时长之后的终端接收PDCCH时间位置最早的控制资源集合,所述特定偏移量对应的时长为特定时长与所述偏移量对应的时长之和。
  11. 根据权利要求1至10任一项所述的方法,其中,所述方法还包括:
    所述终端设备根据所述偏移量确定目标时隙;
    所述终端设备基于所述目标时隙发送用于承载消息3的物理上行共享信道PUSCH。
  12. 根据权利要求11所述的方法,其中,所述根据所述偏移量确定目标时隙,包括:
    根据参考时隙和所述偏移量确定所述目标时隙,所述参考时隙为接收到承载RAR消息的物理下行共享信道PDSCH的时隙。
  13. 根据权利要求1至12任一项所述的方法,其中,所述方法还包括:
    所述终端设备基于所述偏移量监听承载竞争解决消息的PDCCH。
  14. 根据权利要求13所述的方法,其中,所述基于所述偏移量监听承载竞争解决消息的PDCCH,包括:
    在发送消息3的时间之后的所述偏移量对应的时长之后的时间,启动随机接入竞争解决定时器,并在重传消息3的重传时间之后的所述偏移量对应的时长之后的第一个符号重启所述随机接入竞争解决定时器;其中,在所述随机接入竞争解决定时器运行期间,监听承载竞争解决消息的PDCCH。
  15. 根据权利要求13所述的方法,其中,所述基于所述偏移量监听承载竞争解决消息的PDCCH,包括:
    在发送消息3之后,启动随机接入竞争解决定时器,并在重传消息3之后重启所述随机接入竞争解决定时器;其中,在所述随机接入竞争解决定时器运行所述偏移量对应的时长后,监听承载竞争解决消息的PDCCH。
  16. 一种随机接入方法,所述方法包括:
    所述终端设备根据偏移量确定随机接入响应RAR时间窗的起始时间,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数。
  17. 根据权利要求16所述的方法,其中,所述RAR时间窗的起始时间为:在终端配置的公共物理下行控制信道PDCCH搜索空间中,终端发送物理随机接入信道PRACH所在的随机接入时机的最后一个符号之后的特定偏移量对应的时长之后的终端接收PDCCH时间位置最早的控制资源集合,所述特定偏移量对应的时长为特定时长与所述偏移量对应的时长之和。
  18. 一种随机接入方法,所述方法包括:
    终端设备根据偏移量确定目标时隙,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数;
    所述终端设备基于所述目标时隙发送用于承载消息3的上行数据的物理上行共享信道PUSCH。
  19. 根据权利要求18所述的方法,其中,所述根据偏移量确定目标时隙,包括:
    根据参考时隙和所述偏移量确定所述目标时隙,所述参考时隙为接收到承载随机接入响应RAR消息的物理下行共享信道PDSCH的时隙。
  20. 一种随机接入方法,所述方法包括:
    终端设备基于偏移量监听承载竞争解决消息的物理下行控制信道PDCCH,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数。
  21. 根据权利要求20所述的方法,其中,所述基于偏移量监听承载竞争解决消息的PDCCH,包括:
    在发送消息3的时间之后的所述偏移量对应的时长之后的时间,启动随机接入竞争解决定时器,并在重传消息3的重传时间之后的所述偏移量对应的时长之后的第一个符号重启所述随机接入竞争解决定时器;其中,在所述随机接入竞争解决定时器运行期间,监听承载竞争解决消息的PDCCH。
  22. 根据权利要求20所述的方法,其中,所述基于偏移量监听承载竞争解决消息的PDCCH,包括:
    在发送消息3之后,启动随机接入竞争解决定时器,并在重传消息3之后重启所述随机接入竞争解决定时器;其中,在所述随机接入竞争解决定时器运行所述第四偏移量对应的时长后,监听承载竞争解决消息的PDCCH。
  23. 一种随机接入方法,所述方法包括:
    网络设备根据偏移量接收承载消息3的物理上行共享信道PUSCH,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数。
  24. 根据权利要求23所述的方法,其中,所述根据偏移量监听承载消息3的PUSCH,包括:
    在发送随机接入响应RAR的时间之后的所述偏移量对应的时长后接收承载消息3的PUSCH。
  25. 一种随机接入方法,所述方法包括:
    网络设备向终端设备配置偏移量,所述偏移量为所述终端设备与所述网络设备之间的传播时延相关的时间参数,所述偏移量用于所述终端设备控制随机接入请求或消息3的发送,或随机接入响应或竞争解决消息的接收。
  26. 根据权利要求25所述的方法,其中,向终端设备配置偏移量,包括:
    向所述终端设备发送携带所述偏移量的配置消息。
  27. 根据权利要求26所述的方法,其中,所述配置消息包括以下至少之一:
    系统广播消息;
    物理下行控制信道PDCCH信令;
    无线资源控制信令;
    媒体接入控制控制单元信令。
  28. 根据权利要求25至27任一项所述的方法,其中,所述方法还包括:
    所述网络设备根据所述偏移量接收承载消息3的物理上行共享信道PUSCH。
  29. 根据权利要求28所述的方法,其中,所述根据偏移量接收承载消息3的PUSCH,包括:
    在发送随机接入响应RAR的时间之后的所述偏移量对应的时长后接收承载消息3的PUSCH。
  30. 一种终端设备,所述终端设备包括:
    第一确定单元,配置为根据偏移量确定目标时间,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数;
    第一发送单元,配置为基于所述目标时间向所述网络设备发送随机接入请求。
  31. 根据权利要求30所述的终端设备,其中,
    所述偏移量由所述终端设备预定义;或
    所述偏移量由所述网络设备配置。
  32. 根据权利要求31所述的终端设备,其中,在所述偏移量由所述网络设备配置的情况下,所述偏移量由所述网络设备通过以下信令中的至少之一配置:
    系统广播消息;
    物理下行控制信道PDCCH信令;
    无线资源控制信令;
    媒体接入控制控制单元信令。
  33. 根据权利要求30至32任一项所述的终端设备,其中,
    所述第一确定单元,还配置为在随机接入类型为第一类随机接入的情况下,根据 所述偏移量确定随机接入时机。
  34. 根据权利要求33所述的终端设备,其中,所述第一确定单元,还配置为在随机接入的触发时间之后的所述偏移量对应的时长之后的物理随机接入信道PRACH资源中确定所述随机接入时机。
  35. 根据权利要求34所述的终端设备,其中,
    所述第一确定单元,还配置为在随机接入触发方式为PDCCH指令触发的情况下,根据PDCCH指令的最后一个符号和所述偏移量在PRACH资源中确定随机接入时机,所述PDCCH指令的最后一个符号和所述随机接入时机的最后一个符号之间的时间间隔大于所述偏移量对应的时长。
  36. 根据权利要求30至32任一项所述的终端设备,其中,所述第一确定单元,还配置为在随机接入类型为第二类随机接入的情况下,根据所述偏移量确定随机接入时机和物理上行共享信道PUSCH时机。
  37. 根据权利要求36所述的终端设备,其中,所述第一确定单元,还配置为:
    在随机接入的触发时间之后的所述偏移量对应的时长之后的传输随机接入请求的资源中,确定随机接入时机和PUSCH时机。
  38. 根据权利要求30至37任一项所述的终端设备,其中,所述终端设备还包括:
    第二确定单元,配置为根据所述偏移量确定随机接入响应RAR时间窗的起始时间。
  39. 根据权利要求38所述的终端设备,其中,所述RAR时间窗的起始时间为:在终端配置的公共PDCCH搜索空间中,终端发送PRACH所在的随机接入时机的最后一个符号之后的特定偏移量对应的时长之后的终端接收PDCCH时间位置最早的控制资源集合,所述特定偏移量对应的时长为特定时长与所述偏移量对应的时长之和。
  40. 根据权利要求30至39任一项所述的方法,其中,所述终端设备还包括:
    第三确定单元,配置为根据所述偏移量确定目标时隙;
    第二发送单元,配置为基于所述目标时隙发送用于承载消息3的上行数据的物理上行共享信道PUSCH。
  41. 根据权利要求40所述的终端设备,其中,所述第三确定单元,还配置为根据参考时隙和所述偏移量确定所述目标时隙,所述参考时隙为接收到承载RAR消息的物理下行共享信道PDSCH的时隙。
  42. 根据权利要求30至41任一项所述的终端设备,其中,所述终端设备还包括:
    监听单元,基于所述偏移量监听承载竞争解决消息的PDCCH。
  43. 根据权利要求42所述的终端设备,其中,所述监听单元,还配置为:
    在发送消息3的时间之后的所述偏移量对应的时长之后的时间,启动随机接入竞争解决定时器,并在重传消息3的重传时间之后的所述偏移量对应的时长之后的第一个符号重启所述随机接入竞争解决定时器;其中,在所述随机接入竞争解决定时器运行期间,监听承载竞争解决消息的PDCCH。
  44. 根据权利要求42所述的终端设备,其中,所述监听单元,还配置为:
    在发送消息3之后,启动随机接入竞争解决定时器,并在重传消息3之后重启所述随机接入竞争解决定时器;其中,在所述随机接入竞争解决定时器运行所述偏移量对应的时长后,监听承载竞争解决消息的PDCCH。
  45. 一种终端设备,所述终端设备包括:
    第二确定单元,配置为根据偏移量确定随机接入响应RAR时间窗的起始时间,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数。
  46. 根据权利要求45所述的终端设备,其中,所述RAR时间窗的起始时间为: 在终端配置的公共物理下行控制信道PDCCH搜索空间中,终端发送物理随机接入信道PRACH所在的随机接入时机的最后一个符号之后的特定偏移量对应的时长之后的终端接收PDCCH时间位置最早的控制资源集合,所述特定偏移量对应的时长为特定时长与所述偏移量对应的时长之和。
  47. 一种终端设备,所述终端设备包括:
    第三确定单元,配置为根据偏移量确定目标时隙,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数;
    第二发送单元,配置为基于所述目标时隙发送用于承载消息3的上行数据的物理上行共享信道PUSCH。
  48. 根据权利要求47所述的终端设备,其中,所述第三配置单元,还配置为根据参考时隙和所述偏移量确定所述目标时隙,所述参考时隙为接收到承载随机接入响应RAR消息的物理下行共享信道PDSCH的时隙。
  49. 一种终端设备,所述终端设备包括:
    监听单元,配置为基于偏移量监听承载竞争解决消息的物理下行控制信道PDCCH,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数。
  50. 根据权利要求49所述的终端设备,其中,所述监听单元还配置为:
    在发送消息3的时间之后的所述偏移量对应的时长之后的时间,启动随机接入竞争解决定时器,并在重传消息3的重传时间之后的所述偏移量对应的时长之后的第一个符号重启所述随机接入竞争解决定时器;其中,在所述随机接入竞争解决定时器运行期间,监听承载竞争解决消息的PDCCH。
  51. 根据权利要求49所述的终端设备,其中,所述监听单元还配置为:
    在发送消息3之后,启动随机接入竞争解决定时器,并在重传消息3之后重启所述随机接入竞争解决定时器;其中,在所述随机接入竞争解决定时器运行所述第四偏移量对应的时长后,监听承载竞争解决消息的PDCCH。
  52. 一种网络设备,所述网络设备包括:
    接收单元,配置为根据偏移量接收承载消息3的物理上行共享信道PUSCH,所述偏移量为所述终端设备与网络设备之间的传播时延相关的时间参数。
  53. 根据权利要求52所述的网络设备,其中,所述接收单元,还配置为在发送随机接入响应RAR的时间之后的所述偏移量对应的时长后接收承载消息3的PUSCH。
  54. 一种网络设备,所述网络设备包括:
    配置单元,配置为向终端设备配置偏移量,所述偏移量为所述终端设备与所述网络设备之间的传播时延相关的时间参数,所述偏移量用于所述终端设备控制随机接入请求或消息3的发送,或随机接入响应或竞争解决消息的接收。
  55. 根据权利要求54所述的网络设备,其中,所述配置单元,还配置为向所述终端设备发送携带所述偏移量的配置消息。
  56. 根据权利要求55所述的网络设备,其中,所述配置消息包括以下至少之一:
    系统广播消息;
    物理下行控制信道PDCCH信令;
    无线资源控制信令;
    媒体接入控制控制单元信令。
  57. 根据权利要求54至56任一项所述的网络设备,其中,所述网络设备还包括:
    接收单元,配置为根据所述偏移量接收承载消息3的物理上行共享信道PUSCH。
  58. 根据权利要求57所述的网络设备,其中,所述接收单元,还配置为在发送 随机接入响应RAR的时间之后的所述偏移量对应的时长后接收承载消息3的PUSCH。
  59. 一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述权利要求1至15任一项所述的随机接入方法的步骤,或执行上述权利要求16至17任一项所述的随机接入方法的步骤,或执行上述权利要求18至19任一项所述的随机接入方法的步骤,或执行上述权利要求20至22任一项所述的随机接入方法的步骤。
  60. 一种网络设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述权利要求23至24任一项所述的随机接入方法的步骤,或执行上述权利要求25至29任一项所述的随机接入方法的步骤。
  61. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实实现上述权利要求1至15任一项所述的随机接入方法,或实现上述权利要求16至17任一项所述的随机接入方法,或实现上述权利要求18至19任一项所述的随机接入方法,或实现权利要求20至22任一项所述的随机接入方法。
  62. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述权利要求23至24任一项所述的随机接入方法,或实现上述权利要求25至29任一项所述的随机接入方法。
PCT/CN2019/109636 2019-09-30 2019-09-30 随机接入方法、终端设备、网络设备及存储介质 WO2021062726A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP24174532.2A EP4387347A3 (en) 2019-09-30 2019-09-30 Random access method, terminal device, network device and storage medium
EP19947778.7A EP4012998B1 (en) 2019-09-30 2019-09-30 Random access method, terminal device, network device and storage medium
CN202210832271.8A CN115052368B (zh) 2019-09-30 2019-09-30 随机接入方法、终端设备、网络设备及存储介质
CN201980096809.XA CN113875203A (zh) 2019-09-30 2019-09-30 随机接入方法、终端设备、网络设备及存储介质
PCT/CN2019/109636 WO2021062726A1 (zh) 2019-09-30 2019-09-30 随机接入方法、终端设备、网络设备及存储介质
US17/691,550 US20220201770A1 (en) 2019-09-30 2022-03-10 Random access method, terminal device, network device and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109636 WO2021062726A1 (zh) 2019-09-30 2019-09-30 随机接入方法、终端设备、网络设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/691,550 Continuation US20220201770A1 (en) 2019-09-30 2022-03-10 Random access method, terminal device, network device and storage medium

Publications (1)

Publication Number Publication Date
WO2021062726A1 true WO2021062726A1 (zh) 2021-04-08

Family

ID=75337654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109636 WO2021062726A1 (zh) 2019-09-30 2019-09-30 随机接入方法、终端设备、网络设备及存储介质

Country Status (4)

Country Link
US (1) US20220201770A1 (zh)
EP (2) EP4387347A3 (zh)
CN (2) CN115052368B (zh)
WO (1) WO2021062726A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022214062A1 (zh) * 2021-04-09 2022-10-13 展讯半导体(南京)有限公司 Pdcch监听方法与装置、终端和网络设备
CN115208939A (zh) * 2022-07-14 2022-10-18 Oppo广东移动通信有限公司 访问控制方法、装置、存储介质及电子设备
WO2022237597A1 (zh) * 2021-05-10 2022-11-17 华为技术有限公司 通信方法和通信装置
WO2023010586A1 (zh) * 2021-08-06 2023-02-09 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
WO2023077599A1 (zh) * 2021-11-02 2023-05-11 Oppo广东移动通信有限公司 Ntn系统中的通信方法、设备及计算机可读介质
WO2023205408A1 (en) * 2022-04-22 2023-10-26 Ofinno, Llc Message-3 retransmission scheduling for random access in non-terrestrial networks

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220110116A1 (en) * 2020-10-07 2022-04-07 Qualcomm Incorporated Adaptive processing modes
CN115209561A (zh) * 2021-04-01 2022-10-18 华硕电脑股份有限公司 无线通信系统中用于处理争用解决的方法和设备
WO2023220942A1 (zh) * 2022-05-17 2023-11-23 北京小米移动软件有限公司 随机接入方法及装置
CN116614172A (zh) * 2023-05-26 2023-08-18 中国电信股份有限公司卫星通信分公司 卫星通信方法及非易失性存储介质、电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103348746A (zh) * 2011-02-11 2013-10-09 捷讯研究有限公司 时间提前的随机接入信道发送
CN110098892A (zh) * 2018-01-30 2019-08-06 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346829B (zh) * 2013-07-01 2016-04-20 北京大学 兼容lte模式卫星通信初始随机接入两步时延测量方法
CN117202358A (zh) * 2017-03-22 2023-12-08 苹果公司 用于5g无线接入网小区的定时确定技术
TWI669927B (zh) * 2017-05-25 2019-08-21 華碩電腦股份有限公司 無線通訊系統中實體下行鏈路控制通道監聽的方法和設備
US10805959B2 (en) * 2017-07-18 2020-10-13 Qualcomm Incorporated Beam indication during random access channel (RACH) procedure
EP4329390A3 (en) * 2018-04-03 2024-04-17 InterDigital Patent Holdings, Inc. Timing advance for non-terrestrial network communication
US10554293B1 (en) * 2018-11-15 2020-02-04 Hughes Network Systems, Llc Satellite operation of narrowband internet of things radio protocol
CN109788548B (zh) * 2019-02-19 2020-06-12 上海交通大学 时间提前补偿的卫星移动通信随机接入方法、系统及介质
US11412550B2 (en) * 2019-05-02 2022-08-09 Ofinno, Llc Random access response reception for a two-step random access procedure
BR112022002759A2 (pt) * 2019-08-16 2022-05-10 Ericsson Telefon Ab L M Métodos realizados por um equipamento de usuário e por um nó de rede, dispositivo sem fio, e, nó de rede

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103348746A (zh) * 2011-02-11 2013-10-09 捷讯研究有限公司 时间提前的随机接入信道发送
CN110098892A (zh) * 2018-01-30 2019-08-06 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Physical layer control procedure in NR-NTN", 3GPP DRAFT; R1-1906467-MEDIATEK-PHYSICAL LAYER CONTROL PROCEDURE IN NR NTN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, Nevada, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051727917 *
MEDIATEK INC.: "Views on User Plane Timers in NTN", 3GPP DRAFT; R2-1905705_VIEWS ON USER PLANE TIMERS IN NTN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Xi’an, China; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051729204 *
See also references of EP4012998A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022214062A1 (zh) * 2021-04-09 2022-10-13 展讯半导体(南京)有限公司 Pdcch监听方法与装置、终端和网络设备
WO2022237597A1 (zh) * 2021-05-10 2022-11-17 华为技术有限公司 通信方法和通信装置
WO2023010586A1 (zh) * 2021-08-06 2023-02-09 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
WO2023077599A1 (zh) * 2021-11-02 2023-05-11 Oppo广东移动通信有限公司 Ntn系统中的通信方法、设备及计算机可读介质
WO2023205408A1 (en) * 2022-04-22 2023-10-26 Ofinno, Llc Message-3 retransmission scheduling for random access in non-terrestrial networks
CN115208939A (zh) * 2022-07-14 2022-10-18 Oppo广东移动通信有限公司 访问控制方法、装置、存储介质及电子设备
CN115208939B (zh) * 2022-07-14 2024-03-19 Oppo广东移动通信有限公司 访问控制方法、装置、存储介质及电子设备

Also Published As

Publication number Publication date
CN113875203A (zh) 2021-12-31
CN115052368A (zh) 2022-09-13
EP4012998A4 (en) 2022-10-12
US20220201770A1 (en) 2022-06-23
CN115052368B (zh) 2023-12-12
EP4012998B1 (en) 2024-06-05
EP4387347A3 (en) 2024-07-03
EP4387347A2 (en) 2024-06-19
EP4012998A1 (en) 2022-06-15

Similar Documents

Publication Publication Date Title
WO2021062726A1 (zh) 随机接入方法、终端设备、网络设备及存储介质
WO2023123514A1 (zh) Gnss有效性的处理方法、装置、设备及存储介质
WO2021016773A1 (zh) 监听随机接入响应的方法、终端设备、网络设备及存储介质
US20220353855A1 (en) Random access resource configuration method and apparatus, device, and storage medium
WO2021142807A1 (zh) 两步随机接入msg a资源的配置方法及相关装置
WO2021022496A1 (zh) 随机接入的方法和设备
US20220124824A1 (en) Method for random access and communication device
WO2022141070A1 (zh) 无线通信方法和终端设备
WO2022056854A1 (zh) 无线通信方法和设备
WO2022027628A1 (zh) 上行提前定时的确定方法、装置、设备及存储介质
US20230042104A1 (en) Wireless communication method, terminal device, and network device
WO2023051171A1 (zh) 卫星通信方法及装置
WO2021232434A1 (zh) 基于随机接入流程的波束链路恢复方法、装置和设备
WO2022141414A1 (zh) 公共信息的广播方法、装置、设备及介质
WO2022040867A1 (zh) 随机接入的方法、终端设备和网络设备
WO2021102930A1 (zh) 通信方法、装置及设备
CN116438864A (zh) 定时器启动方法、装置、终端及存储介质
WO2023015406A1 (zh) 通信方法及装置
WO2023097421A1 (zh) 信息上报方法、装置、设备、存储介质及程序产品
WO2023039809A1 (zh) Sr触发方法、随机接入方法、装置、设备及存储介质
WO2023004552A1 (zh) 随机接入方法、装置、设备及存储介质
WO2022120591A1 (zh) 一种随机接入方法、电子设备及存储介质
WO2023097504A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
WO2022160137A1 (zh) 无线通信方法、终端设备和网络设备
EP4093140A1 (en) Random access type selection method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947778

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019947778

Country of ref document: EP

Effective date: 20220309

NENP Non-entry into the national phase

Ref country code: DE