WO2022214062A1 - Pdcch监听方法与装置、终端和网络设备 - Google Patents

Pdcch监听方法与装置、终端和网络设备 Download PDF

Info

Publication number
WO2022214062A1
WO2022214062A1 PCT/CN2022/085743 CN2022085743W WO2022214062A1 WO 2022214062 A1 WO2022214062 A1 WO 2022214062A1 CN 2022085743 W CN2022085743 W CN 2022085743W WO 2022214062 A1 WO2022214062 A1 WO 2022214062A1
Authority
WO
WIPO (PCT)
Prior art keywords
time interval
terminal
pusch
configuration information
time
Prior art date
Application number
PCT/CN2022/085743
Other languages
English (en)
French (fr)
Inventor
雷珍珠
Original Assignee
展讯半导体(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯半导体(南京)有限公司 filed Critical 展讯半导体(南京)有限公司
Publication of WO2022214062A1 publication Critical patent/WO2022214062A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a PDCCH monitoring method and apparatus, a terminal, and a network device.
  • the 3rd Generation Partnership Project (3GPP) has developed protocol standards for terrestrial communications such as cellular mobile communications.
  • NTN non-terrestrial network
  • the uplink and downlink data transmission timing Timing introduces K_offset based on the existing transmission timing Timing.
  • the timing advance (TA) compensation value of the terminal is determined by the TA value at the terminal level and the public TA value broadcast by the network. For the network, the specific value of the TA compensation of the terminal cannot be determined. .
  • the network does not know the specific value of the terminal's TA compensation when scheduling the terminal for uplink physical shared channel (Physical Uplink Shared Channel, PUSCH) transmission (that is, it cannot determine the specific location where the terminal sends the PUSCH), it cannot determine the specific PUSCH transmission of the terminal. Therefore, the network cannot accurately determine the time position at which the terminal can monitor the Physical Downlink Control Channel (PDCCH). According to the existing land network protocol, the terminal and the network cannot reach an agreement on the monitoring position of the PDCCH. Therefore, a new data transmission timing rule needs to be introduced.
  • PDCCH Physical Downlink Control Channel
  • the embodiments of the present application provide a PDCCH monitoring method and apparatus, a terminal, and a network device, so as to ensure that the terminal and the network reach an agreement on the PDCCH monitoring position, and at the same time, the energy consumption of the terminal can be reduced.
  • an embodiment of the present application provides a PDCCH monitoring method, which is applied to a terminal; the method includes:
  • a first time interval is determined according to the configuration information, and the first time interval is a time interval in which monitoring of the PDCCH is not required in the scheduling delay enhancement interval.
  • an embodiment of the present application provides a PDCCH monitoring method, which is characterized in that it is applied to a network device; the method includes:
  • an embodiment of the present application provides a PDCCH monitoring device, which acquires configuration information through the communication unit;
  • a first time interval is determined according to the configuration information, and the first time interval is a time interval in which monitoring of the PDCCH is not required in the scheduling delay enhancement interval.
  • an embodiment of the present application provides a PDCCH monitoring apparatus, which is applied to network equipment; the apparatus includes a processing unit and a communication unit, and the processing unit is configured to:
  • the configuration information is sent by the communication unit, and the configuration information is used to determine a first time interval, where the first time interval is a time interval in which monitoring of the PDCCH is not required in the scheduling delay enhancement interval.
  • an embodiment of the present application provides a terminal, where the terminal is a first terminal, and includes a processor, a memory, a communication interface, and one or more programs, wherein the one or more programs are stored in the in the memory and configured to be executed by the processor, the program including instructions for executing steps in any method of the first aspect of the embodiments of the present application.
  • embodiments of the present application provide a network device, including a processor, a memory, a communication interface, and one or more programs, wherein the one or more programs are stored in the memory and configured by Executed by the processor, the program includes instructions for executing steps in any of the methods in the second aspect of the embodiments of the present application.
  • an embodiment of the present application provides a chip, including: a processor for calling and running a computer program from a memory, so that a device installed with the chip executes the first aspect or the second embodiment of the present application.
  • an embodiment of the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes a computer to execute the implementation of the present application Examples include some or all of the steps described in any of the methods of the first aspect or the second aspect.
  • an embodiment of the present application provides a computer program, wherein the computer program is operable to cause a computer to execute part or all of the steps described in any of the methods in the first aspect or the second aspect of the embodiments of the present application .
  • the computer program may be a software installation package.
  • the terminal can obtain the configuration information and determine the first time interval in the scheduling delay enhancement interval that does not need to monitor the PDCCH according to the configuration information, thereby helping to ensure that the terminal does not perform the PDCCH in the target interval. monitoring, thereby ensuring that the terminal and the network reach an agreement on the PDCCH monitoring position, and at the same time, the energy consumption of the terminal can be reduced.
  • FIG. 1 is a schematic diagram of the architecture of a non-terrestrial network communication system provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of the architecture of a transparent satellite communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a PDCCH monitoring method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a time relationship in an exemplary application scenario provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a time relationship in another exemplary application scenario provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a time relationship under another exemplary application scenario provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of another PDCCH monitoring method provided by an embodiment of the present application.
  • FIG. 8 is a block diagram of functional units of a PDCCH monitoring device provided in an embodiment of the present application.
  • FIG. 9 is a block diagram of functional units of another PDCCH monitoring device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • non-terrestrial network non-terrestrial network
  • NTN non-terrestrial network
  • the non-terrestrial network communication system 10 may include a terminal 110 , a cell or beam (beam, or beam footprint) 120 where the terminal 110 is located, a satellite 130 , a non-terrestrial network gateway (NTN gateway) 140 and a network device 150 .
  • the terminal 110, the non-terrestrial network gateway 140 and the network device 150 may be located on the earth's surface, while the satellite 130 is located in the earth's orbit.
  • the satellites 130 can provide communication services to the geographic area covered by the signal, and can communicate with the terminals 110 located within the signal coverage area. Meanwhile, the terminal 110 is located within a certain cell or beam 120 .
  • the wireless communication link between the terminal 110 and the satellite 130 is called a service link
  • the wireless communication link between the satellite 130 and the non-terrestrial network gateway (NTN gateway) 140 is called a supply link ( feeder link).
  • NTN gateway non-terrestrial network gateway
  • the network device 150 may be integrated into the same device, or may be separate devices, which are not specifically limited.
  • the terminal in this embodiment of the present application may be a user equipment (user equipment, terminal), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, an intelligent Terminal, wireless communication device, user agent or user equipment.
  • a user equipment user equipment, terminal
  • an access terminal a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, an intelligent Terminal, wireless communication device, user agent or user equipment.
  • the terminal may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication function handheld devices, computing devices or other processing devices connected to wireless modems, relay devices, in-vehicle devices, wearable devices, terminals in next-generation communication systems such as NR networks or future evolution of public land mobile communication networks network, PLMN), etc., which are not specifically limited.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle; can be deployed on water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal may be a mobile phone (mobile phone), a tablet computer, a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, an industrial control (industrial control) wireless terminal equipment in , autonomous driving (self driving) in-vehicle equipment, remote medical (remote medical) wireless terminal equipment, smart grid (smart grid) wireless terminal equipment, transportation safety (transportation safety) in Wireless terminal equipment, wireless terminal equipment in a smart city or wireless terminal equipment in a smart home, etc.
  • VR virtual reality
  • AR augmented reality
  • industrial control wireless terminal equipment in autonomous driving (self driving) in-vehicle equipment
  • remote medical remote medical
  • smart grid smart grid wireless terminal equipment
  • transportation safety transportation safety
  • the satellite in the embodiment of the present application may be a spacecraft carrying a bent pipe payload or a regenerative payload signal transmitter, which usually operates at an altitude between 300 and 1500 km.
  • Low Earth Orbit (LEO) Low Earth Orbit (LEO) at altitudes between 7000 and 25000km
  • High elliptical orbit (HEO) at altitudes between 50,000km.
  • the satellites may be LEO satellites, MEO satellites, GEO satellites, or HEO satellites, etc. according to different orbital altitudes.
  • the signals sent by the satellites in the embodiments of the present application generally generate one or more beams (beams, or referred to as “beams”) on a given service area (given service area) bounded by its field of view (field of view).
  • beams beams
  • the shape of a beam on the ground can be elliptical, and the field of view of the satellite depends on the antenna and the minimum elevation angle, etc.
  • the non-terrestrial network gateway in this embodiment of the present application may be an earth station or gateway located on the surface of the earth, and can provide enough radio frequency (radio freq terminal ncy, RF) power and RF sensitivity to connect satellites.
  • the non-terrestrial network gateway may be a transport network layer (TNL) node.
  • TNL transport network layer
  • the network device in the embodiment of the present application may be a base station (base transceiver station) in a global system of mobile communication (GSM) communication system or a code division multiple access (code division multiple access, CDMA) communication system.
  • BTS base stations
  • nodeB, NB wideband code division multiple access
  • WCDMA wideband code division multiple access
  • evolutional node B, eNB in long term evolution (long term evolution, LTE) communication systems or eNodeB) or a base station (gNB) in a new radio (NR) communication system.
  • the network device may also be an access point (access point, AP) in a wireless local area network (WLAN), a relay station, a network device in a future evolved PLMN network, or a network device in an NTN communication system, and the like.
  • WLAN wireless local area network
  • relay station a network device in a future evolved PLMN network
  • NTN communication system and the like.
  • the gNB may include a centralized unit (CU) and a distributed unit (DU), and the gNB may also include an active antenna unit (AAU) .
  • the CU can implement part of the functions of the gNB, and the DU can also implement part of the functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, implementing the functions of the radio resource control (RRC) layer and the packet data convergence protocol (PDCP) layer;
  • the DU is responsible for processing physical layer protocols and real-time services.
  • RLC radio link control
  • MAC medium access control
  • PHY physical
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, the higher-layer signaling (such as the RRC layer signaling) can be considered to be sent by the DU, or by the DU+AAU sent.
  • the network device may include one or more devices of a CU node, a DU node, and an AAU node.
  • the CU may be divided into network devices in an access network (radio access network, RAN), and the CU may also be divided into network devices in a core network (core network, CN), which is not specifically limited.
  • an embodiment of the present application provides a schematic diagram of the architecture of a communication system with a transparent satellite (transparent satellite), as shown in FIG. 2 .
  • terminals, non-terrestrial network gateways and gNBs are located on the earth's surface, while satellites are located in earth orbit.
  • satellites, non-terrestrial network gateways and gNBs can act as 5G radio access network (NG-radio access network, NG-RAN), and NG-RAN is connected to 5G core network through NG interface.
  • NG-radio access network NG-radio access network
  • NG-RAN 5G radio access network
  • NG-RAN 5G radio access network
  • NG-RAN 5G radio access network
  • NG-RAN 5G core network
  • the satellite payload implements frequency conversion and RF amplifiers in both uplink and downlink directions, and the satellite corresponds to an analog RF repeater.
  • different transparent satellites can be connected to the same gNB on the ground.
  • the satellite In the NTN communication system, the satellite usually generates one or more beams (beams, or beam footprints) or cells on the ground, and a cell consists of one or more beams.
  • the operation of the satellite is based on For a specific orbit, its motion is regular, so the propagation delay variation caused by satellite motion is regular and predictable.
  • the maximum differential delay value corresponding to the cell or beam coverage refers to: in a cell or beam coverage, the propagation delay corresponding to the position farthest from the satellite is the same as the one closest to the satellite. The difference between the propagation delays corresponding to the location.
  • the maximum differential delay corresponding to a cell or beam coverage area can be calculated by the network equipment. Since the satellite is far from the ground, the beam/cell coverage formed by the satellite is caused. It is relatively large, resulting in a large differential delay in the coverage area of the beam (twice the maximum differential delay value of a geostationary satellite is 20.6ms).
  • the terminal will send the uplink data in advance based on the obtained timing advance (TA) value. For this reason, the uplink and downlink timing in the existing protocol needs to be enhanced, that is, adding An extra time interval (that is, the length value of the scheduling delay enhancement interval) K_offset.
  • K2 the scheduling delay enhancement interval
  • the scheduling delay of PDCCH scheduling PUSCH is enhanced as: K2+K_offset, which can ensure that there must be a large enough time interval between the PDCCH reception time and the PUSCH transmission time for the terminal to send in advance.
  • the terminal can determine the propagation delay between the terminal and the satellite according to its own location information (the location information is determined by GNSS) and ephemeris information. This propagation delay is called the terminal-level timing advance.
  • a reference point is introduced in the prior art, and the location of the reference point can be a satellite, a ground base station, or any location of a service link or feedback link.
  • the so-called Common TA is the round trip propagation delay (Round trip Time, RTT) between the reference point and the satellite.
  • RTT Round trip Time
  • the NB-IOT/eMTC in the existing land network adopts the technology of repeated transmission.
  • the maximum number of repetitions for downlink transmission is 2048 times, and for uplink transmission, the maximum number of repetitions is 128 times.
  • the actual number of repetitions of PDSCH/PUSCH is dynamically indicated by its corresponding scheduling DCI, that is, the terminal determines the number of repetitions of PDSCH/PUSCH according to a specific bit field in the DCI, and the maximum number of repetitions of PDCCH (ie Rmax) is semi-statically configured by RRC/SIB.
  • a terminal in the half-frequency division duplex mode cannot transmit and receive data at the same time, that is, cannot receive and transmit data at the same time.
  • the uplink and downlink data transmission timing Timing introduces K_offset based on the existing transmission timing Timing.
  • the timing advance (TA) compensation value of the terminal is determined by the TA value at the terminal level and the public TA value broadcast by the network.
  • the specific value of the TA compensation of the terminal cannot be determined. . Since the network cannot know the specific value of the TA compensation of the terminal (ie, cannot determine the specific location where the terminal sends the PUSCH), the network cannot accurately determine the timing when the terminal can monitor the PDCCH. Therefore, according to the existing land network protocol, the terminal will always perform PUSCH monitoring in the scheduling delay enhancement interval.
  • an embodiment of the present application provides a schematic flowchart of a method for monitoring a physical downlink control channel PDCCH, which is applied to a terminal, and please refer to FIG. 3 .
  • the method includes:
  • the terminal acquires configuration information.
  • acquiring the configuration information by the terminal includes: the terminal receiving radio resource control (Radio Resource Control, RRC) signaling or system broadcast information sent by the network device to acquire the configuration information.
  • RRC Radio Resource Control
  • the configuration information includes one of the following: the length value of the first time window; the length value of the second time window; the length value of the third time window and the target parameter threshold of the PUSCH.
  • the length value of the first time window may be cell or beam level.
  • the network device configures a length value of the first time window for the cell through system broadcast information or RRC signaling.
  • the length value of the first time window is the network device. It is determined by the device according to the maximum differential delay corresponding to the cell where the terminal is located. If a cell includes multiple beams, each beam coverage area in the cell corresponds to the same length value of the first time window.
  • the network device configures a length value of the first time window for each beam in a cell through system broadcast information or RRC signaling.
  • the length of the window is determined by the network device according to the maximum differential delay corresponding to the beam where the terminal is located. If a cell includes multiple beams, each beam coverage area in the cell corresponds to a different length value of the first time window.
  • the length value of the second time window may be cell or beam level.
  • the network device configures a length value of the second time window for the cell through system broadcast information or RRC signaling.
  • the length value of the second time window may be determined by the network device according to the maximum differential delay and the maximum PUSCH transmission duration corresponding to the cell where the terminal is located. If a cell includes multiple beams, each beam coverage area in the cell corresponds to the same length value of the second time window.
  • the network device configures a length value of the second time window for each beam in a cell through system broadcast information or RRC signaling.
  • the second time window The length value of the window may be determined by the network device according to the beam where the terminal is located, the maximum differential delay and the maximum PUSCH transmission duration. If a cell includes multiple beams, each beam coverage area in the cell corresponds to a different length value of the second time window.
  • the length value of the third time window may be cell or beam level.
  • the network device configures a length value of the third time window for the cell through system broadcast information or RRC signaling.
  • the length value of the third time window may be determined by the network device according to the maximum differential delay and the PUSCH transmission duration threshold corresponding to the cell where the terminal is located.
  • the PUSCH transmission duration threshold is used to judge whether the terminal can use the third time window to determine the time interval in which it is not necessary to monitor the PDCCH.
  • the terminal can use the third time window to determine the time interval that does not need to monitor the PDCCH.
  • the third time window determines the time interval in which the PDCCH does not need to be monitored. If a cell includes multiple beams, each beam coverage area in the cell corresponds to the same length value of the third time window.
  • the network device configures a length value of the third time window for the cell through system broadcast information or RRC signaling.
  • the length value of the third time window may be determined by the network device according to the maximum differential delay and the threshold of the number of repeated PUSCH transmissions corresponding to the cell where the terminal is located. The threshold for the number of times of repeated PUSCH transmission is used to determine whether the terminal can use the third time window to determine the time interval in which it is not necessary to monitor the PDCCH.
  • the terminal can use the third time window to determine the time interval that does not need to monitor the PDCCH; when the number of PUSCH repeated transmissions scheduled by DCI is greater than or equal to the threshold of the number of PUSCH repeated transmissions, The terminal cannot use the third time window to determine the time interval that does not need to monitor the PDCCH. If a cell contains multiple beams, the coverage area of each beam in the cell has the same length value of the third time window.
  • the network device configures a length value of the third time window for each beam in a cell through system broadcast information or RRC signaling.
  • the length value of the window may be determined by the network device according to the beam where the terminal is located, the maximum differential delay and the PUSCH transmission duration threshold.
  • the PUSCH transmission duration threshold is used to judge whether the terminal can use the third time window to determine the time interval in which it is not necessary to monitor the PDCCH.
  • the terminal can use the third time window to determine the time interval that does not need to monitor the PDCCH; when the PUSCH transmission duration scheduled by DCI is greater than or equal to the PUSCH transmission duration threshold, the terminal cannot use the The third time window determines the time interval in which the PDCCH does not need to be monitored. If a cell includes multiple beams, each beam coverage area in the cell corresponds to a different length value of the third time window.
  • the network device configures a length value of the third time window for each beam in a cell through system broadcast information or RRC signaling.
  • the length of the window may be determined by the network device according to the beam where the terminal is located, the maximum differential delay and the PUSCH or the threshold of the number of repeated transmissions.
  • the threshold for the number of PUSCH repeated transmissions is used to determine whether the terminal can use the third time window to determine the time interval in which it is not necessary to monitor the PDCCH.
  • the terminal can use the third time window to determine the time interval that does not need to monitor the PDCCH; when the number of PUSCH repeated transmissions scheduled by DCI is greater than or equal to the threshold of the number of PUSCH repeated transmissions, The terminal cannot use the third time window to determine the time interval that does not need to monitor the PDCCH. If a cell includes multiple beams, each beam coverage area in the cell corresponds to a different length value of the third time window.
  • the maximum differential delay is the first propagation delay difference between the propagation delay and the second propagation delay
  • the first propagation delay is the propagation delay between the first location and the location where the target device is located, and the first location is the coverage of the cell where the terminal is located In the area, the position closest to the target device; or, the first position is the position closest to the target device in the beam coverage area of the cell where the terminal is located, and the target device is a satellite or the network device
  • the The second propagation delay is the propagation delay between the second location and the location where the target device is located, and the second location is the location farthest from the target device in the coverage area of the cell where the terminal is located; or, The second position is a position farthest from the target device in the beam coverage area of the cell where the terminal is located.
  • the maximum differential delay is the first propagation delay difference between the propagation delay and the second propagation delay
  • the first propagation delay is the propagation delay between the first position and the position of the target device, and the first position is the wave speed coverage where the terminal is located In the area, the position closest to the target device; or, the first position is the position closest to the target device in the beam coverage area of the wave speed where the terminal is located, and the target device is a satellite or the network device
  • the The second propagation delay is the propagation delay between the second location and the location where the target device is located, and the second location is the location farthest from the target device in the wave speed coverage area where the terminal is located; or, The second position is the position farthest from the target device in the beam coverage area of the wave speed where the terminal is located.
  • the terminal determines a first time interval according to the configuration information, where the first time interval is a time interval in which monitoring of the PDCCH is not required in the scheduling delay enhancement interval.
  • the terminal determines the first time interval according to the configuration information in the following three ways.
  • the configuration information includes the length value of the first time window, and the terminal determines the first time interval according to the configuration information, including: determining the first reference position; determining the first time interval and the physical uplink shared channel PUSCH scheduled by the DCI according to the downlink control information DCI Transmission duration; determine the starting position of the first time interval according to the first reference position and the first time interval, and the starting position is the sum of the first reference position and the first time interval; according to the starting position and the first time window
  • the length value and PUSCH transmission duration are determined, and the end position of the first time interval is determined, and the end position is the sum of the start position, the length value of the first time window, and the PUSCH transmission duration minus 1 time unit.
  • PUSCH transmission includes uplink data transmission or HARQ-ACK information transmission corresponding to downlink data.
  • the acquisition method of the PUSCH transmission duration may be as follows: the terminal determines the PUSCH transmission duration according to information such as PUSCH scheduling information and time slot configuration in the DCI, that is, the terminal determines the PUSCH transmission duration according to the number of repeated transmissions, resource configuration instructions, and scheduling indicated by the DCI.
  • the TB number indication and the like determine the PUSCH transmission duration.
  • the time unit involved in the embodiments of the present application may be, but is not limited to, one of milliseconds (ms), subframe (subframe), frame (frame), and time slot (slot), which is not specifically limited.
  • ms milliseconds
  • subframe subframe
  • frame frame
  • slot time slot
  • the configuration information includes the length value of the second time window
  • the terminal determining the first time interval according to the configuration information includes: determining a first reference position; determining the first time interval according to the downlink control information DCI; according to the first reference position and the first time interval, Determine the starting position of the first time interval, where the starting position is the sum of the first reference position and the first time interval; determine the ending position and ending position of the first time interval according to the starting position and the length value of the second time window Subtract 1 time unit from the starting position and the length of the second time window.
  • the configuration information includes the length value of the third time window and the target parameter threshold of the PUSCH, and the determining the first time interval according to the configuration information includes: determining the first reference position; determining the first time interval according to the downlink control information DCI and the target parameter of the PUSCH scheduled by the DCI; determine that the target parameter of the PUSCH is less than the target parameter threshold of the PUSCH; according to the first reference position and the first time interval, determine the first time interval.
  • starting position the starting position is the sum of the first reference position and the first time interval; the first time is determined according to the starting position and the length value of the third time window
  • the end position of the interval where the end position is the sum of the start position and the length value of the third time window minus 1 time unit.
  • the target parameter of the PUSCH includes the PUSCH transmission duration or the number of repeated PUSCH transmissions.
  • the target parameter threshold of the PUSCH includes a PUSCH transmission duration threshold or a PUSCH repeated transmission times threshold.
  • the target parameter threshold of PUSCH is the PUSCH transmission duration threshold
  • the target parameter threshold of PUSCH is the PUSCH transmission duration threshold
  • the target parameter of PUSCH target parameter threshold is the number of PUSCH repeated transmissions.
  • the method for obtaining the PUSCH transmission duration may be: the terminal determines the PUSCH transmission duration according to information such as PUSCH scheduling information and time slot configuration in the DCI, that is, the terminal determines the PUSCH transmission duration according to the number of repeated transmissions, resource configuration instructions, and scheduling TBs indicated by the DCI. The number of indications, etc., determine the PUSCH transmission duration.
  • the manner of obtaining the number of times of PUSCH repeated transmission may be: the terminal determines the number of times of PUSCH repeated transmission according to the bit field in the DCI.
  • the corresponding relationship between the first reference position and the first time interval is the same.
  • the corresponding relationship between time intervals has the following two situations:
  • the first time interval is the scheduling delay corresponding to the PUSCH transmission scheduled by the DCI corresponding to the PDCCH monitoring occasion.
  • the first time interval is the time when the HARQ-ACK transmission corresponding to the first reference position and the PDSCH transmission is scheduled extension.
  • the method further includes: determining that the starting position for starting PDCCH monitoring is the end position of the first time interval plus 1 time unit.
  • the terminal can determine the starting position for PDCCH monitoring in the scheduling delay enhancement interval according to the configuration information, so as to avoid the terminal from performing invalid PDCCH monitoring in the scheduling delay enhancement interval, thereby reducing the energy consumption of the terminal.
  • the method further includes: determining that the ending position for performing PDCCH monitoring is the end of the scheduling delay enhancement interval The position minus one time unit.
  • the terminal can determine the start position and end position of the PDCCH monitoring in the scheduling delay enhancement interval according to the configuration information, so as to maintain the throughput of the NTN communication system.
  • the method before determining the first time interval according to the configuration information, the method further includes:
  • K_offset is configured by the network device.
  • the terminal can obtain the K_offset configured by the network device.
  • the terminals involved in this application include terminals, and the network devices involved in this application include network devices.
  • the TA compensation value of the terminal is determined by the TA value of the terminal level and the public TA value broadcast by the network.
  • the specific value of the TA compensation of the terminal cannot be determined. Since the network device cannot know the specific value of the TA compensation of the terminal (ie, cannot determine the specific location where the terminal sends the PUSCH), the network device cannot accurately determine the timing when the terminal can monitor the PDCCH.
  • the network device may determine the range of the terminal compensation value according to the cell or beam where the terminal is currently located, that is, according to the lowest point (that is, the farthest position from the satellite) and the highest point (that is, the distance from the satellite) of the terminal coverage area where the terminal is currently located. The round-trip propagation delay between the nearest position) and the satellite determines the range of the TA compensation value of the terminal, and then the time interval for the terminal to send the PUSCH can be determined.
  • the network device can determine the time range for the terminal to send the PUSCH according to the range of the terminal TA compensation value and the transmission duration of the PUSCH (which may be the HARQ-ACK information corresponding to the uplink data or the downlink data) scheduled by the DCI, and the arrival of the PDCCH delivered by the network device.
  • the time of the terminal cannot fall within the time range for the terminal to send the PUSCH, which is equivalent to the fact that the terminal does not need to monitor the PDCCH within the time range for sending the PUSCH determined by the network device.
  • the value interval span of the terminal TA compensation value is related to the maximum differential delay corresponding to the cell or beam where the terminal is located, it means that after the terminal sends the PUSCH, within a period of time (the worst case is twice the maximum differential delay of the terminal) The PDCCH cannot be monitored.
  • the uplink and downlink data transmission timing is based on the existing transmission timing.
  • the terminal receives the network device configuration through the radio resource control RRC signaling or system broadcast information. K_offset.
  • the terminal receives the length value T of the first time window configured by the network device through radio resource control RRC signaling or system broadcast information.
  • the terminal determines the transmission duration N of the PUSCH (including the HARQ-ACK information corresponding to the uplink data or the downlink data) according to the PUSCH scheduling information and the time slot configuration and other information in the DCI.
  • the first time interval k is the scheduling delay corresponding to the PUSCH transmission scheduled by the DCI
  • the first time interval The starting position of the window is fixed to n+k.
  • n+k to n+k+K_offset are the scheduling delay enhancement interval.
  • n+k to n+k+T+N-1 do not need to monitor the PDCCH.
  • the terminal does not perform PDCCH monitoring from n+k to n+k+T+N-1, so as to ensure that the terminal and the network reach an agreement on the PDCCH monitoring position, and at the same time, the energy consumption of the terminal can be reduced.
  • n+k+T+N is the starting position for starting PDCCH monitoring after the terminal sends the PUSCH
  • n+K_offset+k-1 is the ending position for the PDCCH monitoring.
  • the terminal performs PDCCH monitoring from n+k+T+N to n+K_offset+k-1, which can maintain the throughput of the NTN communication system.
  • T can be at the cell level, that is, the network device configures a T for a cell through system broadcast information or RRC signaling. If a cell contains multiple beams, each beam coverage area in the cell corresponds to the same T. T can also be at the beam level, that is, the network device configures a T for each beam in a cell through system broadcast information or RRC signaling. If a cell contains multiple beams, the coverage areas of each beam in the cell correspond to different the T. Specifically, the network device may configure T for the terminal through RRC dedicated signaling or system broadcast information. Further, T is determined by the network device according to the maximum differential delay corresponding to the beam or cell where the terminal is located.
  • N is the PUSCH transmission duration scheduled by the DCI.
  • PUSCH transmission includes uplink data transmission or HARQ-ACK information transmission corresponding to downlink data.
  • the terminal may determine N according to information such as PUSCH scheduling information and time slot configuration in the DCI, that is, the terminal determines N according to the number of PUSCH repeated transmissions, the resource configuration indication, and the number of scheduling bytes indicated in the DCI.
  • the unit of k may be, but is not limited to, one of milliseconds, subframes, frames, and time slots. If n is a subframe number, the units of k, K_offset, T, and N are all subframes. If n is a subslot number, the units of k, K_offset, T, and N are time slots.
  • the maximum differential delay is the propagation delay difference between the first propagation delay and the second propagation delay
  • the first propagation delay is the difference between the first position and the target
  • the propagation delay between the locations of the devices the first location is the location closest to the target device in the coverage area of the cell where the terminal is located; or, the first location is in the beam coverage area of the cell where the terminal is located, the distance The nearest position of the target device, the target device is a satellite or the network device
  • the second propagation delay is the propagation delay between the second position and the position of the target device, the second position is the location farthest from the target device in the coverage area of the cell where the terminal is located; or the second location is the location farthest from the target device in the beam coverage area of the cell where the terminal is located.
  • the maximum differential delay is the propagation delay difference between the first propagation delay and the second propagation delay
  • the first propagation delay is the difference between the first position and the target
  • the propagation delay between the positions of the devices the first position is the position closest to the target device in the wave speed coverage area where the terminal is located; or, the first position is in the wave speed beam coverage area where the terminal is located, the distance The nearest position of the target device, the target device is a satellite or the network device
  • the second propagation delay is the propagation delay between the second position and the position of the target device, the second position is the position farthest from the target device in the wave speed coverage area where the terminal is located; or, the second position is the farthest position from the target device in the beam coverage area of the wave speed where the terminal is located.
  • the second condition includes that n is the DCI The end position of the scheduled PDSCH transmission on the physical downlink shared channel, and k is the scheduling delay of the HARQ-ACK transmission corresponding to the PDSCH transmission, and the first reference position n of the first condition is the PDCCH monitoring opportunity carrying the DCI. and the first time interval k is the scheduling delay corresponding to the PUSCH transmission scheduled by the DCI.
  • the TA compensation value of the terminal is determined by the TA value of the terminal level and the public TA value broadcast by the network.
  • the specific value of the TA compensation of the terminal cannot be determined. Since the network device cannot know the specific value of the TA compensation of the terminal (ie, cannot determine the specific location where the terminal sends the PUSCH), the network device cannot accurately determine the timing when the terminal can monitor the PDCCH.
  • the network device may determine the range of the terminal compensation value according to the cell or beam where the terminal is currently located, that is, according to the lowest point (that is, the farthest position from the satellite) and the highest point (that is, the distance from the satellite) of the terminal coverage area where the terminal is currently located. The round-trip propagation delay between the nearest position) and the satellite determines the range of the TA compensation value of the terminal, and then the time interval for the terminal to send the PUSCH can be determined.
  • the network device will configure the maximum PUSCH (which can be HARQ-ACK information corresponding to uplink data or downlink data) at the cell level through system broadcast information or RRC dedicated signaling. Repeated transmission times (one cell corresponds to a maximum number of PUSCH repeated transmissions), or, configure the maximum number of PUSCH repeated transmissions at the beam level (that is, one beam corresponds to one maximum number of PUSCH repeated transmissions). Therefore, the network device can determine the time range for the terminal to send the PUSCH according to the range of the terminal TA compensation value and the maximum PUSCH transmission duration corresponding to the cell or beam where the terminal is currently located. within the time frame within which the terminal transmits the PUSCH. Equivalently, the terminal does not need to monitor the PDCCH within the time range for sending the PUSCH determined by the network device.
  • the maximum PUSCH which can be HARQ-ACK information corresponding to uplink data or downlink data
  • the value interval span of the TA compensation value of the terminal is related to the maximum differential delay corresponding to the current cell or beam, it means that after the terminal sends the uplink data, within a period of time (the worst case is twice the maximum differential delay) is Can not monitor PDCCH information.
  • the uplink and downlink data transmission timing is based on the existing transmission timing.
  • K_offset is introduced, as shown in Figure 5, the terminal receives the network device configuration through radio resource control RRC signaling or system broadcast information. K_offset. The terminal receives the length value T1 of the second time window configured by the network device through radio resource control RRC signaling or system broadcast information.
  • the first reference position n is the end position of the PDCCH monitoring occasion carrying the DCI
  • the first time interval k is the scheduling delay corresponding to the PUSCH transmission scheduled by the DCI
  • the first time interval k The starting position of the second time window is fixed as n+k.
  • n+k to n+k+K_offset are the scheduling delay enhancement interval.
  • n+k to n+k+T1-1 do not need to monitor the PDCCH.
  • the terminal does not perform PDCCH monitoring from n+k to n+k+T1-1, so as to ensure that the terminal and the network reach an agreement on the PDCCH monitoring position, and at the same time, the energy consumption of the terminal can be reduced.
  • n+k+T1 is the starting position for starting the PDCCH monitoring after the terminal sends the PUSCH
  • n+K_offset+k-1 is the ending position for the PDCCH monitoring.
  • the terminal performs PDCCH monitoring in the interval from n+k+T1 to n+K_offset+k-1, which can maintain the throughput of the NTN communication system.
  • the T1 may be at the cell level, that is, the network device configures a T1 for the cell through system broadcast information or RRC signaling. If a cell contains multiple beams, each beam coverage area in the cell corresponds to the same T1. T1 can also be at the beam level, that is, the network device configures a T1 for each beam in a cell through system broadcast information or RRC signaling. If a cell contains multiple beams, the coverage areas of each beam in the cell correspond to different the T1. Specifically, the network device may configure T1 for the terminal through RRC dedicated signaling or system broadcast information.
  • T1 is determined by the network device according to the maximum differential delay corresponding to the cell or beam where the terminal is located and the maximum PUSCH (which may be HARQ-ACK information corresponding to uplink data or downlink data) transmission duration corresponding to the cell or beam where the terminal is located.
  • the maximum PUSCH which may be HARQ-ACK information corresponding to uplink data or downlink data
  • the corresponding maximum PUSCH transmission duration is also at the beam level. If the second time window is at the cell level, the corresponding maximum PUSCH transmission duration is also at the cell level.
  • the unit of k may be, but is not limited to, one of milliseconds, subframes, frames, and time slots. If n is a subframe number, the units of k, K_offset, and T1 are all subframes. If n is a subslot number, the units of k, K_offset, and T1 are time slots.
  • the maximum differential delay is the propagation delay difference between the first propagation delay and the second propagation delay
  • the first propagation delay is the difference between the first position and the target
  • the propagation delay between the locations of the devices the first location is the location closest to the target device in the coverage area of the cell where the terminal is located; or, the first location is in the beam coverage area of the cell where the terminal is located, the distance The nearest position of the target device, the target device is a satellite or the network device
  • the second propagation delay is the propagation delay between the second position and the position of the target device, the second position is the position farthest from the target device in the coverage area of the cell where the terminal is located; or, the second position is the position farthest from the target device in the beam coverage area of the cell where the terminal is located.
  • the maximum differential delay is the propagation delay difference between the first propagation delay and the second propagation delay
  • the first propagation delay is the difference between the first position and the target
  • the propagation delay between the positions of the devices the first position is the position closest to the target device in the wave speed coverage area where the terminal is located; or, the first position is in the wave speed beam coverage area where the terminal is located, the distance The nearest position of the target device, the target device is a satellite or the network device
  • the second propagation delay is the propagation delay between the second position and the position of the target device, the second position is the position farthest from the target device in the wave speed coverage area where the terminal is located; or, the second position is the farthest position from the target device in the beam coverage area of the wave speed where the terminal is located.
  • the second condition includes that n is the DCI The end position of the scheduled PDSCH transmission on the physical downlink shared channel, and k is the scheduling delay of the HARQ-ACK transmission corresponding to the PDSCH transmission, and the first reference position n of the first condition is the PDCCH monitoring opportunity carrying the DCI. and the first time interval k is the scheduling delay corresponding to the PUSCH transmission scheduled by the DCI.
  • the TA compensation value of the terminal is determined by the TA value of the terminal level and the public TA value broadcast by the network.
  • the specific value of the TA compensation of the terminal cannot be determined. Since the network device cannot know the specific value of the TA compensation of the terminal (ie, cannot determine the specific location where the terminal sends the PUSCH), the network device cannot accurately determine the timing when the terminal can monitor the PDCCH.
  • the network device may determine the range of the terminal compensation value according to the cell or beam where the terminal is currently located, that is, according to the lowest point (that is, the farthest position from the satellite) and the highest point (that is, the distance from the satellite) of the terminal coverage area where the terminal is currently located. The round-trip propagation delay between the nearest position) and the satellite determines the range of the TA compensation value of the terminal, and then the time interval for the terminal to send the PUSCH can be determined.
  • the network device can configure the length value of the third time window according to the range of the terminal TA compensation value and the PUSCH (which may be HARQ-ACK information corresponding to uplink data or downlink data) transmission duration (or the number of repeated transmissions) thresholds scheduled by DCI. T2, it is ensured that the actual sending position of the uplink data scheduling that satisfies a certain condition falls within the third time window.
  • the PUSCH which may be HARQ-ACK information corresponding to uplink data or downlink data
  • transmission duration or the number of repeated transmissions
  • the uplink and downlink data transmission timing is based on the existing transmission timing.
  • the terminal receives the network device configuration through radio resource control RRC signaling or system broadcast information. K_offset.
  • the terminal receives the length value T2 of the third time window configured by the network device and the target parameter threshold value of PUSCH through radio resource control RRC signaling or system broadcast information.
  • the target parameter threshold value of PUSCH includes the PUSCH transmission duration threshold or the PUSCH repeated transmission times threshold .
  • the terminal will The PUSCH scheduling information and time slot configuration and other information in the DCI determine the PUSCH transmission duration, or the terminal determines the number of times of PUSCH repeated transmission according to the bit field in the DCI. Further, the starting position of the third time window is fixed to be n+k, and the schedule delay enhancement interval from n+k to n+k+K_offset.
  • the terminal determines that the PUSCH transmission duration is less than the PUSCH transmission duration threshold configured by the network device through RRC signaling or system broadcast information, or, if the terminal determines that the number of PUSCH repeated transmissions is less than the PUSCH repetition configured by the network device through RRC signaling or system broadcast information If the number of transmissions is the threshold, n+k to n+k+T2-1 do not need to monitor the PDCCH. In the specific implementation, the terminal does not perform PDCCH monitoring from n+k to n+k+T2-1, so as to ensure that the terminal and the network reach an agreement on the PDCCH monitoring position, and at the same time, the energy consumption of the terminal can be reduced.
  • n+k+T2 is the starting position for starting PDCCH monitoring after the terminal sends the PUSCH
  • n+K_offset+k-1 is the ending position for the PDCCH monitoring.
  • the terminal performs PDCCH monitoring in the interval from n+k+T2 to n+K_offset+k-1, which can maintain the throughput of the NTN communication system.
  • T2 may be at the cell level, that is, the network device configures a T2 for a cell through system broadcast information or RRC signaling. If a cell contains multiple beams, each beam coverage area in the cell corresponds to the same T2.
  • T2 can also be at the beam level, that is, the network device configures a T2 for each beam in a cell through system broadcast information or RRC signaling. If a cell contains multiple beams, the coverage areas of each beam in the cell correspond to different the T2.
  • the network device may configure T2 for the terminal through RRC dedicated signaling or system broadcast information.
  • T2 is the maximum differential delay corresponding to the cell or beam where the terminal is located and the PUSCH (which may be HARQ-ACK information corresponding to uplink data or downlink data) corresponding to the cell or beam where the terminal is located. Transmission duration (or number of repeated transmissions) ) threshold is determined.
  • the unit of k may be, but is not limited to, one of milliseconds, subframes, frames, and time slots. If n is a subframe number, the units of k, K_offset, and T2 are all subframes. If n is a subslot number, the units of k, K_offset, and T2 are time slots.
  • the maximum differential delay is the propagation delay difference between the first propagation delay and the second propagation delay
  • the first propagation delay is the difference between the first position and the target
  • the propagation delay between the locations of the devices the first location is the location closest to the target device in the coverage area of the cell where the terminal is located; or, the first location is in the beam coverage area of the cell where the terminal is located, the distance The nearest position of the target device, the target device is a satellite or the network device
  • the second propagation delay is the propagation delay between the second position and the position of the target device, the second position is the position farthest from the target device in the coverage area of the cell where the terminal is located; or, the second position is the position farthest from the target device in the beam coverage area of the cell where the terminal is located.
  • the maximum differential delay is the propagation delay difference between the first propagation delay and the second propagation delay
  • the first propagation delay is the difference between the first position and the target
  • the propagation delay between the positions of the devices the first position is the position closest to the target device in the wave speed coverage area where the terminal is located; or, the first position is in the wave speed beam coverage area where the terminal is located, the distance The nearest position of the target device, the target device is a satellite or the network device
  • the second propagation delay is the propagation delay between the second position and the position of the target device, the second position is the position farthest from the target device in the wave speed coverage area where the terminal is located; or, the second position is the farthest position from the target device in the beam coverage area of the wave speed where the terminal is located.
  • the second condition includes that n is the DCI The end position of the scheduled PDSCH transmission on the physical downlink shared channel, and k is the scheduling delay of the HARQ-ACK transmission corresponding to the PDSCH transmission, and the first reference position n of the first condition is the PDCCH monitoring opportunity carrying the DCI. and the first time interval k is the scheduling delay corresponding to the PUSCH transmission scheduled by the DCI.
  • an embodiment of the present application provides a schematic flowchart of another non-terrestrial network communication method, please refer to FIG. 7 .
  • the method is applied to network equipment.
  • the method includes:
  • the network device sends configuration information, where the configuration information is used to determine a first time interval, where the first time interval is a time interval in which monitoring of the PDCCH is not required in the scheduling delay enhancement interval.
  • the network device obtains the configuration information, and the configuration information is used to determine the first time interval in the scheduling delay enhancement interval that does not need to monitor the PDCCH, thereby helping to ensure that the terminal does not perform the operation in the target interval.
  • PDCCH monitoring ensures that the terminal and the network reach an agreement on the PDCCH monitoring position, and at the same time, the energy consumption of the terminal can be reduced.
  • sending the configuration information by the network device includes: the network device sends the configuration information through radio resource control RRC signaling or system broadcast information.
  • the configuration information includes one of the following: the length value of the first time window; the length value of the second time window; the length value of the third time window and the target parameter threshold.
  • the length value of the first time window is determined by the network device according to the maximum differential delay corresponding to the beam or cell where the terminal is located.
  • the length value of the second time window is determined by the network device according to the maximum differential delay and the maximum PUSCH transmission duration corresponding to the beam or cell where the terminal is located.
  • the length value of the third time window is determined by the network device according to the maximum differential delay corresponding to the beam or cell where the terminal is located, and the target parameter threshold of the PUSCH.
  • the target parameter threshold includes a PUSCH transmission duration threshold or a PUSCH repeated transmission number threshold.
  • the method further includes: sending the length value K_offset of the scheduling delay enhancement interval through radio resource control RRC signaling or system broadcast information.
  • the terminal includes corresponding hardware structures and/or software modules for executing each function.
  • the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software-driven hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the terminal may be divided into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated units can be implemented in the form of hardware, and can also be implemented in the form of software program modules. It should be noted that, the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division manners in actual implementation.
  • FIG. 8 provides a block diagram of functional units of a PDCCH monitoring device.
  • the PDCCH monitoring apparatus 800 is applied to a terminal, and specifically includes: a processing unit 802 and a communication unit 803 .
  • the processing unit 802 is used to control and manage the actions of the terminal.
  • the processing unit 802 is used to support the terminal to perform the steps in FIG. 3 and other processes used in the technical solutions described in this application.
  • the communication unit 803 is used to support communication between the terminal and other devices in the non-terrestrial network communication system.
  • the PDCCH monitoring apparatus 800 may further include a storage unit 801 for storing program codes and data of the terminal.
  • the processing unit 802 may be a processor or a controller, such as a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), or an application-specific integrated circuit (application-specific integrated circuit). integrated circuit, ASIC), field programmable gate array (FPGA), or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • the processing unit 802 may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 803 may be a communication interface, a transceiver, a transceiver circuit, etc., and the storage unit 801 may be a memory.
  • the processing unit 802 is a processor
  • the communication unit 803 is a communication interface
  • the storage unit 801 is a memory
  • the PDCCH monitoring apparatus 800 involved in this embodiment of the present application may be the terminal shown in FIG. 7 .
  • the processing unit 802 is configured to perform any step performed by the terminal in the above method embodiments, and when performing data transmission such as sending, the communication unit 803 can be selectively invoked to complete corresponding operations. A detailed description will be given below.
  • the processing unit 802 is configured to: obtain configuration information through the communication unit 803; and determine a first time interval according to the configuration information, where the first time interval is a time interval in the scheduling delay enhancement interval that does not require monitoring of the PDCCH.
  • the terminal can obtain the configuration information and determine the first time interval in the scheduling delay enhancement interval that does not need to monitor the PDCCH according to the configuration information, thereby helping to ensure that the terminal does not perform the PDCCH in the target interval. monitoring, thereby ensuring that the terminal and the network reach an agreement on the PDCCH monitoring position, and at the same time, the energy consumption of the terminal can be reduced.
  • the processing unit 802 is specifically configured to: receive radio resource control RRC signaling or system broadcast information sent by a network device to obtain the configuration information.
  • the configuration information includes one of the following: the length value of the first time window; the length value of the second time window; the length value of the third time window and the target parameter threshold of the PUSCH.
  • the configuration information includes a length value of the first time window, and in the aspect of determining the first time interval according to the configuration information, the processing unit 802 is specifically configured to:
  • the configuration information includes a length value of the second time window, and in terms of determining the first time interval according to the configuration information, the processing unit 802 is specifically configured to:
  • the configuration information includes a length value of the third time window and a target parameter threshold of the PUSCH, and in terms of determining the first time interval according to the configuration information, the processing unit 802 is specifically configured to: determine the first reference position;
  • the target parameter of the PUSCH includes a PUSCH transmission duration or the number of PUSCH repeated transmissions.
  • the first time interval is the scheduling delay corresponding to the PUSCH transmission scheduled by the DCI
  • the first time interval is the HARQ corresponding to the first reference position and the PDSCH transmission Scheduling delay in response to HARQ-ACK transmission.
  • the PUSCH transmission includes uplink data transmission or HARQ-ACK information transmission corresponding to downlink data.
  • the processing unit 802 is further configured to: after the first time interval is determined according to the configuration information, determine that the starting position for starting the PDCCH monitoring is the end of the first time interval The location plus 1 time unit.
  • the processing unit 802 is further configured to: after the determining that the starting position for starting PDCCH monitoring is the ending position of the first time interval plus 1 time unit, determine to execute the PDCCH The end position of monitoring is the end position of the scheduling delay enhancement interval minus one time unit.
  • the processing unit 802 is further configured to: before the determination of the first time interval according to the configuration information, receive the radio resource control RRC signaling or system broadcast information sent by the network device, to Obtain the length value K_offset of the scheduling delay enhancement interval.
  • FIG. 9 provides a block diagram of functional units of another PDCCH monitoring device.
  • the PDCCH monitoring apparatus 900 is applied to network equipment, and specifically includes: a processing unit 902 and a communication unit 903 .
  • the processing unit 902 is configured to control and manage the actions of the network device.
  • the processing unit 902 is configured to support the network device to perform the steps in FIG. 4 and other processes for the technical solutions described in this application.
  • the communication unit 903 is used to support communication between the network device and other devices in the non-terrestrial network communication system.
  • the PDCCH monitoring apparatus 900 may further include a storage unit 901 for storing program codes and data of the network device.
  • the processing unit 902 may be a processor or a controller, such as a CPU, DSP, ASIC, FPGA or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • the processing unit 902 may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 903 may be a communication interface, a transceiver, a transceiver circuit, etc., and the storage unit 901 may be a memory. When the processing unit 902 is a processor, the communication unit 903 is a communication interface, and the storage unit 901 is a memory, the PDCCH monitoring apparatus 900 involved in this embodiment of the present application may be the network device shown in FIG. 8 .
  • the processing unit 902 is configured to perform any step performed by the network device in the above method embodiments, and when performing data transmission such as sending, the communication unit 903 can be selectively invoked to complete corresponding operations. A detailed description will be given below.
  • the processing unit 902 is configured to send configuration information through the communication unit 903, where the configuration information is used to determine a first time interval, where the first time interval is a time interval in the scheduling delay enhancement interval that does not require monitoring of the PDCCH.
  • the network device obtains the configuration information, and the configuration information is used to determine the first time interval in the scheduling delay enhancement interval that does not need to monitor the PDCCH, thereby helping to ensure that the terminal does not perform the operation in the target interval.
  • PDCCH monitoring ensures that the terminal and the network reach an agreement on the PDCCH monitoring position, and at the same time, the energy consumption of the terminal can be reduced.
  • the configuration information includes one of the following: the length value of the first time window; the length value of the second time window; the length value of the third time window and the target parameter threshold of the PUSCH.
  • the length value of the first time window is determined by the network device according to the maximum differential delay corresponding to the beam or cell where the terminal is located.
  • the length value of the second time window is determined by the network device according to the maximum differential delay and the maximum PUSCH transmission duration corresponding to the beam or cell where the terminal is located.
  • the length value of the third time window is determined by the network device according to the maximum differential delay corresponding to the beam or cell where the terminal is located, and the target parameter threshold of the PUSCH.
  • the target parameter threshold includes a PUSCH transmission duration threshold or a PUSCH repeated transmission number threshold.
  • the processing unit 902 is further configured to send the length value K_offset of the scheduling delay enhancement interval through radio resource control RRC signaling or system broadcast information.
  • FIG. 10 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • the terminal 1000 includes a processor 1010 , a memory 1020 , a communication interface 1030 and at least one communication bus for connecting the processor 1010 , the memory 1020 and the communication interface 1030 .
  • the memory 1020 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (PROM) or portable Read-only memory (compact disc read-only memory, CD-ROM), the memory 1020 is used for related instructions and data.
  • RAM random access memory
  • ROM read-only memory
  • PROM erasable programmable read-only memory
  • CD-ROM portable Read-only memory
  • Communication interface 1030 is used to receive and transmit data.
  • the processor 1010 may be one or more CPUs, and if the processor 1010 is one CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 1010 in the terminal 1000 is configured to read one or more programs 1021 stored in the memory 1020 to perform the following steps:
  • the first time interval is determined according to the configuration information, and the first time interval is a time interval in which monitoring of the PDCCH is not required in the scheduling delay enhancement interval.
  • the network device obtains the configuration information, and the configuration information is used to determine the first time interval in the scheduling delay enhancement interval that does not need to monitor the PDCCH, thereby helping to ensure that the terminal does not perform the operation in the target interval.
  • PDCCH monitoring ensures that the terminal and the network reach an agreement on the PDCCH monitoring position, and at the same time, the energy consumption of the terminal can be reduced.
  • the processor 1010 is configured to read one or more programs 1021 stored in the memory 1020 to specifically perform the following steps: receiving the radio resource control RRC signaling or system sent by the network device Broadcast information for configuration information.
  • the configuration information includes a length value of the first time window; a length value of the second time window; a length value of the third time window and a target parameter threshold.
  • the configuration information includes a length value of the first time window, and in the aspect of determining the first time interval according to the configuration information, the processor 1010 is configured to read one or more data stored in the memory 1020
  • a program 1021 specifically performs the following steps:
  • the starting position is the sum of the first reference position and the first time interval
  • the configuration information includes a length value of the second time window, and in terms of determining the first time interval according to the configuration information, the processor 1010 is configured to read one or more data stored in the memory 1020
  • the program 1021 specifically performs the following steps:
  • the configuration information includes a length value of a third time window, and in terms of determining the first time interval according to the configuration information, the processor 1010 is configured to read one or more data stored in the memory 1020
  • the program 1021 specifically performs the following steps:
  • the target parameter of the PUSCH includes a PUSCH transmission duration or the number of PUSCH repeated transmissions.
  • the first time interval is the scheduling delay corresponding to the PUSCH transmission scheduled by the DCI
  • the first time interval is the HARQ corresponding to the first reference position and the PDSCH transmission Scheduling delay in response to HARQ-ACK transmission.
  • the PUSCH transmission includes uplink data transmission or HARQ-ACK information transmission corresponding to downlink data.
  • the processor 1010 is configured to read one or more programs 1021 stored in the memory 1020 to further perform the following step: after the first time interval is determined according to the configuration information, determine to start the The starting position of PDCCH monitoring is the ending position of the first time interval plus 1 time unit.
  • the processor 1010 is configured to read one or more programs 1021 stored in the memory 1020 to further perform the following step: the starting position for starting PDCCH monitoring is determined to be within the first time interval. After adding one time unit to the end position, it is determined that the end position of performing the PDCCH monitoring is the end position of the scheduling delay enhancement interval minus one time unit.
  • the processor 1010 is configured to read one or more programs 1021 stored in the memory 1020 to further perform the following step: before the determining of the first time interval according to the configuration information, receive the network
  • the radio resource control RRC signaling or system broadcast information sent by the device is used to obtain the length value K_offset of the scheduling delay enhancement interval.
  • FIG. 11 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device 1100 includes a processor 1110 , a memory 1120 , a communication interface 1130 and at least one communication bus for connecting the processor 1110 , the memory 1120 , and the communication interface 1130 .
  • the memory 1120 includes, but is not limited to, RAM, ROM, PROM or CD-ROM, and the memory 1120 is used to store related instructions and data.
  • the communication interface 1130 is used to receive and transmit data.
  • the processor 1110 may be one or more CPUs, and if the processor 1110 is one CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 1110 in the network device 1100 is configured to read one or more programs 1121 stored in the memory 1120 to perform the following steps: send configuration information, and the configuration information is used to determine a first time interval, where the first time interval is a scheduling delay In the enhanced interval, there is no need to monitor the time interval of the PDCCH.
  • the network device obtains the configuration information, and the configuration information is used to determine the first time interval in the scheduling delay enhancement interval that does not need to monitor the PDCCH, thereby helping to ensure that the terminal does not perform the operation in the target interval.
  • PDCCH monitoring ensures that the terminal and the network reach an agreement on the PDCCH monitoring position, and at the same time, the energy consumption of the terminal can be reduced.
  • the processor 1110 is configured to read one or more programs 1121 stored in the memory 1120 to specifically perform the following steps:
  • the configuration information is sent through radio resource control RRC signaling or system broadcast information.
  • the configuration information includes one of the following: the length value of the first time window; the length value of the second time window; the length value of the third time window and the target parameter threshold of the PUSCH.
  • the length value of the first time window is determined by the network device according to the maximum differential delay corresponding to the beam or cell where the terminal is located.
  • the length value of the second time window is determined by the network device according to the maximum differential delay and the maximum PUSCH transmission duration corresponding to the beam or cell where the terminal is located.
  • the length value of the third time window is determined by the network device according to the maximum differential delay corresponding to the beam or cell where the terminal is located, and the target parameter threshold of the PUSCH.
  • the target parameter threshold includes a PUSCH transmission duration threshold or a PUSCH repeated transmission number threshold.
  • the processor 1110 is configured to read one or more programs 1121 stored in the memory 1120 to further perform the following steps: send the scheduling delay enhancement interval through radio resource control RRC signaling or system broadcast information The length value K_offset.
  • An embodiment of the present application further provides a chip, wherein the chip includes a processor, configured to call and run a computer program from a memory, so that the device installed with the chip executes the terminal or network device described in the above method embodiments. some or all of the steps.
  • Embodiments of the present application further provide a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute the method performed by the terminal or the network device in the foregoing method embodiment. some or all of the steps described.
  • Embodiments of the present application further provide a computer program product, wherein the computer program product includes a computer program, and the computer program is operable to cause the computer to execute some or all of the steps described by the terminal or network device in the foregoing method embodiments.
  • the computer program product may be a software installation package.
  • the steps of the method or algorithm described in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in RAM, flash memory, ROM, erasable programmable read-only memory (erasable programmable read-only memory, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM), or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in a terminal or network device.
  • the processor and the storage medium may also exist in the terminal or network device as discrete components.
  • the functions described in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted via wireline (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) means from a website site, computer, server, or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, digital video disc (DVD)), or semiconductor media (eg, solid state disk (SSD)), etc. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种PDCCH监听方法与装置、终端和网络设备,该方法包括:终端获取配置信息;终端根据配置信息确定第一时间区间,第一时间区间为调度时延增强区间中不需要监听PDCCH的时间区间。可见,本申请实施例中,终端能够通过获取配置信息,并根据配置信息确定调度时延增强区间中不需要监听PDCCH的第一时间区间,保证终端与网络在PDCCH监听位置上达成一致,同时,能减少终端能耗。

Description

PDCCH监听方法与装置、终端和网络设备 技术领域
本申请涉及通信技术领域,尤其涉及一种PDCCH监听方法与装置、终端和网络设备。
背景技术
第三代合作计划(3rd Generation Partnership Project,3GPP)已经制定关于地面通信(如蜂窝移动通信)的协议标准。在非陆地(non-terrestrial network,NTN)网络中,上下行数据传输定时Timing在现有的传输定时Timing基础上引入K_offset。在NTN通信系统中,终端的定时提前(Timing advance,TA)补偿值是由终端级别的TA值以及网络广播的公共TA值确定,对于网络而言,是不能够确定终端的TA补偿的具体值。由于网络在调度终端进行上行物理共享信道(Physical Uplink Shared Channel,PUSCH)传输时,不知道终端的TA补偿的具体值(即不能确定终端具体发送PUSCH的具体位置),无法确定终端具体的PUSCH发送时机,进而网络无法精确确定终端能够监听物理下行控制信道(Physical Downlink Control Channel,PDCCH)的时间位置。按照现有陆地网的协议,终端与网络无法在PDCCH的监听位置达成一致,因此,需要引入一种新的数据传输定时规则。
发明内容
本申请实施例提供一种PDCCH监听方法与装置、终端和网络设备,以期望保证终端与网络在PDCCH监听位置上达成一致,同时,能减少终端能耗。
第一方面,本申请实施例提供一种PDCCH监听方法,应用于终端;所述方法包括:
获取配置信息;
根据所述配置信息确定第一时间区间,所述第一时间区间为调度时延增强区间中不需要监听PDCCH的时间区间。
第二方面,本申请实施例提供一种PDCCH监听方法,其特征在于,应用于网络设备;所述方法包括:
发送配置信息,所述配置信息用于确定第一时间区间,所述第一时间区间为调度时延增强区间中不需要监听PDCCH的时间区间。
第三方面,本申请实施例提供一种PDCCH监听装置,通过所述通信单元获取配置信息;
根据所述配置信息确定第一时间区间,所述第一时间区间为调度时延增强区间中不需要监听PDCCH的时间区间。
第四方面,本申请实施例提供一种PDCCH监听装置,应用于网络设备;所述装置包括处理单元和通信单元,所述处理单元用于:
通过所述通信单元发送配置信息,所述配置信息用于确定第一时间区间,所述第一时间区间为调度时延增强区间中不需要监听PDCCH的时间区间。
第五方面,本申请实施例提供一种终端,所述终端为第一终端,包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且 被配置由所述处理器执行,所述程序包括用于执行本申请实施例第一方面任一方法中的步骤的指令。
第六方面,本申请实施例提供一种网络设备,包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行本申请实施例第二方面任一方法中的步骤的指令。
第七方面,本申请实施例提供了一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如本申请实施例第一方面或第二方面任一方法中所描述的部分或全部步骤。
第八方面,本申请实施例提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如本申请实施例第一方面或第二方面任一方法中所描述的部分或全部步骤。
第九方面,本申请实施例提供了一种计算机程序,其中,所述计算机程序可操作来使计算机执行如本申请实施例第一方面或第二方面任一方法中所描述的部分或全部步骤。该计算机程序可以为一个软件安装包。
可以看出,本申请实施例中,终端能够通过获取配置信息,并根据配置信息确定调度时延增强区间中不需要监听PDCCH的第一时间区间,从而有利于保证终端在该目标区间不进行PDCCH监听,进而保证终端与网络在PDCCH监听位置上达成一致,同时,能减少终端能耗。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种非地面网络通信系统的架构示意图;
图2是本申请实施例提供的一种具有透明卫星通信系统的架构示意图;
图3是本申请实施例提供的一种PDCCH监听方法的流程示意图;
图4是本申请实施例提供的一种示例性应用场景下的时间关系的示意图;
图5是本申请实施例提供的另一种示例性应用场景下的时间关系的示意图;
图6是本申请实施例提供的又一种示例性应用场景下的时间关系的示意图;
图7是本申请实施例提供的另一种PDCCH监听方法的流程示意图;
图8是本申请实施例提供的一种PDCCH监听装置的功能单元组成框图;
图9是本申请实施例提供的又一种PDCCH监听装置的功能单元组成框图;
图10是本申请实施例提供的一种终端的结构示意图;
图11是本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图, 对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、软件、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。下面结合附图,对本申请实施例进行详细介绍。
本申请实施例的技术方案可以应用于非地面网络(non-terrestrial network,NTN)通信系统中,而NTN通信系统一般采用卫星通信的方式向地面终端提供通信服务。
示例性的,本申请实施例应用的非地面网络通信系统,如图1所示。非地面网络通信系统10可以包括终端110、终端110所处的小区或者波束(波束,或者称为波束footprint)120、卫星130、非地面网络网关(NTN gateway)140和网络设备150。其中,终端110、非地面网络网关140和网络设备150可以位于地球表面,而卫星130位于地球轨道。卫星130可以向信号覆盖的地理区域提供通信服务,并且可以与位于信号覆盖区域内的终端110进行通信。同时,终端110位于某个小区或者波束120内。此外,终端110与卫星130之间的无线通信链路称为服务链路(service link),而卫星130与非地面网络网关(NTN gateway)140之间的无线通信链路称为供给链路(feeder link)。需要说明的是,非地面网络网关(NTN gateway)140与网络设备150可以集成到同一个设备,也可以为分离的不同设备,对此不作具体限制。
本申请实施例结合终端、卫星和网络设备描述了各个实施例。下面对其进行具体介绍。
具体的,本申请实施例中的终端可以是用户设备(user equipment,终端)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、智能终端、无线通信设备、用户代理或用户装置。终端还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、中继设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端等,对此不作具体限定。
进一步的,终端可以部署在陆地上,包括室内或室外、手持、穿戴或车载;可以部署在水面上(如轮船等);还可以部署在空中(如飞机、气球和卫星等)。
进一步的,终端可以是手机(mobile phone)、平板电脑、带无线收发功能的电脑、 虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的车载设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
具体的,本申请实施例中的卫星可以是载有弯管有效载荷(bent pipe payload)或再生有效载荷(regenerative payload)信号发射机的航天器,其通常运行在300至1500km之间的高度的近地轨道(low earth orbit,LEO)、在7000至25000km之间的高度的中地轨道(medium earth orbit,MEO)、在35786km的高度的同步地球轨道(geostationary earth orbit,GEO)或者在400至50000km之间的高度的高椭圆轨道(high elliptical orbit,HEO)。也就是说,卫星按照轨道高度的不同可以为LEO卫星、MEO卫星、GEO卫星或者HEO卫星等。
进一步的,本申请实施例中的卫星发送的信号通常会在以其视场(field of view)为边界的给定服务区域(given service area)上产生一个或多个波束(波束,或者称为波束footprint)。同时,一个波束在地面上的形状可以为椭圆形,而卫星的视场取决于天线和最小仰角等。
具体的,本申请实施例中的非地面网络网关可以是位于地球表面的地球站或网关,并能够提供足够的无线射频(radio freq终端ncy,RF)功率和RF灵敏度以连接卫星。同时,非地面网络网关可以是传输网络层(transport network layer,TNL)节点。
具体的,本申请实施例中的网络设备可以是全球移动通讯(global system of mobile communication,GSM)通信系统或者码分多址(code division multiple access,CDMA)通信系统中的基站(base transceiver station,BTS)、宽带码分多址(wideband code division multiple access,WCDMA)通信系统中的基站(nodeB,NB)、长期演进(long term evolution,LTE)通信系统中的演进型基站(evolutional node B,eNB或eNodeB)或者新无线(new radio,NR)通信系统中的基站(gNB)。网络设备还可以是无线局域网WLAN中的接入点(access point,AP)、中继站、未来演进的PLMN网络中的网络设备或者NTN通信系统中的网络设备等。
需要说明的是,在一些网络部署中,gNB可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),而gNB还可以包括有源天线单元(active antenna unit,AAU)。其中,CU可以实现gNB的部分功能,而DU也可以实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC)层和分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能;DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。另外,AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因此,高层信令(如RRC层信令)可以认为是由DU发送的,或者由DU+AAU发送的。可以理解的是,网络设备可以包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio  access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,对此不做具体限制。
示例性的,本申请实施例提供一种具有透明卫星(transparent satellite)通信系统的架构示意图,如图2所示。其中,终端、非地面网络网关和gNB位于地球表面,而卫星位于地球轨道。同时,卫星、非地面网络网关和gNB可以作为5G无线接入网(NG-radio access network,NG-RAN),并且NG-RAN通过NG接口连接5G核心网。需要说明的是,卫星有效载荷在上行链路和下行链路方向都实现了频率转换和射频放大器,该卫星对应于模拟RF中继器。此外,不同的透明卫星可以连接到地面上的同一个gNB上。
在对本申请实施例提供的PDCCH监听方法进行详细介绍之前,再对本申请所涉及的相关通信技术进行介绍。
1、NTN通信系统
在NTN通信系统中,卫星通常会在地面上产生一个或多个波束(波束,或者称为波束footprint)或者小区,一个小区由一个或者多个波束组成在NTN通信系统中,卫星的运转是基于特定的轨道,其运动是有规律的,因此,由卫星运动所带来的传播时延变化是有规律且可以预测的。
此外,在NTN通信系统中,小区或者波束覆盖范围内对应的最大差分时延值是指:在某一个小区或者波束覆盖范围内,距卫星最远的位置对应的传播时延与距卫星最近的位置对应的传播时延之差,一般来讲,一个小区或者波束覆盖区域对应的最大差分时延,网络设备是能够计算出来的,由于卫星距离地面比较远,导致卫星形成的波束/小区覆盖范围比较大,导致在波束覆盖范围内存在较大的差分时延(同步卫星最大的差分时延值的2倍是20.6ms)。
2、NTN通信系统中的调度时延增强区间的长度值K_offset
在NTN通信系统中,终端在发送上行数据时会基于所获得的时间提前量(timing advance,TA)值,进行提前发送,基于这个原因需要对现有协议中的上下行定时进行增强,即加入一个额外的时间间隔(也即调度时延增强区间的长度值)K_offset。例如,在现有的PDCCH调度PUSCH的过程中,PDCCH中的DCI会指示终端一个调度的时延值(协议称K2),终端根据指示的K2值确定PUSCH的发送资源位置。然而,由于NTN通信系统中存在很大的传播时延,如果终端需要根据获取的TA值进行提前发送,意味着PDCCH接收时刻与PUSCH发送时刻之间必须有足够大的时间间隔(至少不能小于TA的大小,终端TA的大小可能是卫星与终端之间的来回传播时延)保证终端的提前发送。因此,在NTN通信系统中,PDCCH调度PUSCH的调度时延增强为:K2+K_offset,这样就可以保证PDCCH接收时刻与PUSCH发送时刻之间必须有足够大的时间间隔让终端进行提前发送。
3、NTN中的TA(Timing advance)维护机制
在NTN中,终端可以根据自身位置信息(位置信息由GNSS确定)以及星历信息确定终端到卫星之间的传播时延,这段传播时延称作为终端级别的定时提前量。为了定义Common TA(公共定时提前量),现有技术引入了参考点,参考点的位置可以是卫星,也可以是地面基站,也可以是服务链路或者反馈链路任何位置。所谓的Common TA为参考点至卫星之间的来回传播时延(Round trip Time,RTT)。终端在进行TA补偿时,TA的取 值需要根据终端自主计算的终端级别的定时提前量以及网络广播的Common TA值确定。
4、重复传输。
为了保证覆盖范围,现有陆地网中NB-IOT/eMTC采用了重复传输的技术。对于下行传输最大的重复次数是2048次,对于上行传输,最大的重复次数为128次。PDSCH/PUSCH的实际重复次数由其对应的调度DCI动态指示,即终端根据DCI中特定的比特域确定PDSCH/PUSCH的重复次数,PDCCH的最大重复次数(即Rmax)由RRC/SIB半静态配置。
5、半频分双工(Freqncy Division Duplexing,FDD)
在半频分双工模式下的终端不能同时进行数据的收发,即不能同时进行数据的接收与发送。
在NTN通信系统中,上下行数据传输定时Timing在现有的传输定时Timing基础上引入K_offset。在NTN通信系统中,终端的定时提前(Timing advance,TA)补偿值是由终端级别的TA值以及网络广播的公共TA值确定,对于网络而言,是不能够确定终端的TA补偿的具体值。由于网络不能知道终端的TA补偿的具体值(即不能确定终端具体发送PUSCH的具体位置),网络无法精确确定终端能够监听PDCCH的时机。因此,按照现有陆地网的协议,终端在调度时延增强区间会一直执行PUSCH监听。
结合上述描述,本申请实施例提供一种物理下行控制信道PDCCH监听方法的流程示意图,其应用于终端,请参阅图3。该方法包括:
S310、终端获取配置信息。
具体的,终端获取配置信息,包括:终端接收网络设备发送的无线资源控制(Radio Resource Control,RRC)信令或者系统广播信息,以获取配置信息。
具体的,该配置信息包括以下其中一种:第一时间窗口的长度值;第二时间窗口的长度值;第三时间窗口的长度值和PUSCH的目标参数阈值。
下面,对第一时间窗口的长度值进行详细介绍。
第一时间窗口的长度值可以是小区或者波束级别。
若第一时间窗口的长度值是小区级别的,即网络设备通过系统广播信息或者RRC信令为小区配置一个第一时间窗口的长度值,此种情况下,第一时间窗口的长度值为网络设备根据终端所在小区对应的最大差分时延确定的。若一个小区包含多个波束,则小区内每个波束覆盖区域均对应同一个第一时间窗口的长度值。
若第一时间窗口的长度值是波束级别的,即网络设备通过系统广播信息或者RRC信令为一个小区中的每个波束配置一个第一时间窗口的长度值,此种情况下,第一时间窗口的长度值为网络设备根据终端所在波束对应的最大差分时延确定的。若一个小区包含多个波束,则小区内每个波束覆盖区域均对应不同的第一时间窗口的长度值。
下面,对第二时间窗口的长度值进行详细介绍。
第二时间窗口的长度值可以是小区或者波束级别。
若第二时间窗口的长度值为小区级别的,即网络设备通过系统广播信息或者RRC信令为小区配置一个第二时间窗口的长度值。此种情况下,第二时间窗口的长度值可以为网络设备根据终端所在的小区对应的,最大差分时延和最大PUSCH传输时长确定的。若一个小 区包含多个波束,则小区内每个波束覆盖区域均对应同一个第二时间窗口的长度值。
若第二时间窗口的长度值为波束级别的,即网络设备通过系统广播信息或者RRC信令为一个小区中的每个波束配置一个第二时间窗口的长度值,此种情况下,第二时间窗口的长度值可以为网络设备根据终端所在的波束对应的,最大差分时延和最大PUSCH传输时长确定的。若一个小区包含多个波束,则小区内每个波束覆盖区域均对应不同的第二时间窗口的长度值。
下面,对第三时间窗口的长度值进行详细介绍。
第三时间窗口的长度值可以是小区或者波束级别。
若第三时间窗口的长度值为小区级别的,即网络设备通过系统广播信息或者RRC信令为小区配置一个第三时间窗口的长度值。此种情况下,第三时间窗口的长度值可以为网络设备根据终端所在的小区对应的,最大差分时延和PUSCH传输时长阈值确定的。PUSCH传输时长阈值用于判断终端是否能够使用第三时间窗确定不需要监听PDCCH的时间区间。当DCI调度的PUSCH传输时长小于PUSCH传输时长阈值时,终端能够使用第三时间窗口确定不需要监听PDCCH的时间区间,当DCI调度的PUSCH传输时长大于或者等于PUSCH传输时长阈值时,终端不能够使用第三时间窗口确定不需要监听PDCCH的时间区间。若一个小区包含多个波束,则小区内每个波束覆盖区域均对应同一个第三时间窗口的长度值。
若第三时间窗口的长度值为小区级别的,即网络设备通过系统广播信息或者RRC信令为小区配置一个第三时间窗口的长度值。此种情况下,第三时间窗口的长度值可以为网络设备根据终端所在的小区对应的,最大差分时延和PUSCH重复传输次数阈值确定的。PUSCH重复传输次数阈值用于判断终端是否能够使用第三时间窗确定不需要监听PDCCH的时间区间。当DCI调度的PUSCH重复传输次数小于PUSCH重复传输次数阈值时,终端能够使用第三时间窗确定不需要监听PDCCH的时间区间;当DCI调度的PUSCH重复传输次数大于或者等于PUSCH重复传输次数阈值时,终端不能够使用第三时间窗确定不需要监听PDCCH的时间区间。若一个小区包含多个波束,则小区内每个波束覆盖区域同一个第三时间窗口的长度值。
若第三时间窗口的长度值为波束级别的,即网络设备通过系统广播信息或者RRC信令为一个小区中的每个波束配置一个第三时间窗口的长度值,此种情况下,第二时间窗口的长度值可以为网络设备根据终端所在的波束对应的,最大差分时延和PUSCH传输时长阈值确定的。PUSCH传输时长阈值用于判断终端是否能够使用第三时间窗确定不需要监听PDCCH的时间区间。当DCI调度的PUSCH传输时长小于PUSCH传输时长阈值时,终端能够使用第三时间窗口确定不需要监听PDCCH的时间区间;当DCI调度的PUSCH传输时长大于或者等于PUSCH传输时长阈值时,终端不能够使用第三时间窗口确定不需要监听PDCCH的时间区间。若一个小区包含多个波束,则小区内每个波束覆盖区域均对应不同的第三时间窗口的长度值。
若第三时间窗口的长度值为波束级别的,即网络设备通过系统广播信息或者RRC信令为一个小区中的每个波束配置一个第三时间窗口的长度值,此种情况下,第二时间窗口的长度值可以为网络设备根据终端所在的波束对应的,最大差分时延和PUSCH或者重复传输次数阈值确定的。PUSCH重复传输次数阈值用于判断终端是否能够使用第三时间窗口确定 不需要监听PDCCH的时间区间。当DCI调度的PUSCH重复传输次数小于PUSCH重复传输次数阈值时,终端能够使用第三时间窗确定不需要监听PDCCH的时间区间;当DCI调度的PUSCH重复传输次数大于或者等于PUSCH重复传输次数阈值时,终端不能够使用第三时间窗口确定不需要监听PDCCH的时间区间。若一个小区包含多个波束,则小区内每个波束覆盖区域均对应不同的第三时间窗口的长度值。
下面,对最大差分时延进行介绍。
当目标时间窗口的长度值(包括第一时间窗口的长度值、第二时间窗口的长度值以及第三时间窗口的长度值)为小区级别时,所述最大差分时延为第一传播时延和第二传播时延之间的传播时延差值;所述第一传播时延为第一位置与目标设备所在位置之间的传播时延,所述第一位置为所述终端所在小区覆盖区域中,距离目标设备最近的位置;或者,所述第一位置为终端所在小区的波束覆盖区域中,距离所述目标设备最近的位置,所述目标设备为卫星或者所述网络设备;所述第二传播时延为第二位置与所述目标设备所在位置之间的传播时延,所述第二位置为所述终端所在小区覆盖区域中,距离所述目标设备最远的位置;或者,所述第二位置为所述终端所在小区的波束覆盖区域中,距离所述目标设备最远的位置。
当目标时间窗口的长度值(包括第一时间窗口的长度值、第二时间窗口的长度值以及第三时间窗口的长度值)为波速级别时,所述最大差分时延为第一传播时延和第二传播时延之间的传播时延差值;所述第一传播时延为第一位置与目标设备所在位置之间的传播时延,所述第一位置为所述终端所在波速覆盖区域中,距离目标设备最近的位置;或者,所述第一位置为终端所在波速的波束覆盖区域中,距离所述目标设备最近的位置,所述目标设备为卫星或者所述网络设备;所述第二传播时延为第二位置与所述目标设备所在位置之间的传播时延,所述第二位置为所述终端所在波速覆盖区域中,距离所述目标设备最远的位置;或者,所述第二位置为所述终端所在波速的波束覆盖区域中,距离所述目标设备最远的位置。
S320、终端根据配置信息确定第一时间区间,第一时间区间为调度时延增强区间中不需要监听PDCCH的时间区间。
由于配置信息包括的信息存在三种情况,因此,终端根据配置信息确定第一时间区间存在以下三种方式。
方式一:
配置信息包括第一时间窗口的长度值,终端根据配置信息确定第一时间区间,包括:确定第一参考位置;根据下行控制信息DCI确定第一时间间隔以及所述DCI调度的物理上行共享信道PUSCH传输时长;根据第一参考位置和第一时间间隔,确定第一时间区间的起始位置,起始位置为第一参考位置和第一时间间隔的和值;根据起始位置、第一时间窗口的长度值和PUSCH传输时长,确定第一时间区间的结束位置,结束位置为起始位置、第一时间窗口的长度值和PUSCH传输时长的和值减去1个时间单位。
具体的,PUSCH传输包括上行数据传输或者下行数据对应的HARQ-ACK信息传输。
具体的,PUSCH传输时长的获取方式可以是:终端根据DCI中的PUSCH调度信息以及时隙配置等信息确定该PUSCH传输时长,也即,终端即根据DCI指示的重复传输次数、资 源配置指示、调度TB数指示等确定PUSCH传输时长。
具体的,本申请实施例所涉及的时间单位可以但不限于是毫秒(ms)、子帧(subframe)、帧(frame)、时隙(slot)中的一种,对此不作具体限制。
方式二:
配置信息包括第二时间窗口的长度值,终端根据配置信息确定第一时间区间包括:确定第一参考位置;根据下行控制信息DCI确定第一时间间隔;根据第一参考位置和第一时间间隔,确定第一时间区间的起始位置,起始位置为第一参考位置和第一时间间隔的和值;根据起始位置和第二时间窗口的长度值确定第一时间区间的结束位置,结束位置为起始位置与第二时间窗口的长度值减去1个时间单位。
方式三:
所述配置信息包括第三时间窗口的长度值和PUSCH的目标参数阈值,所述根据所述配置信息确定第一时间区间,包括:确定第一参考位置;根据下行控制信息DCI确定第一时间间隔以及所述DCI调度的PUSCH的目标参数;确定所述PUSCH的目标参数小于所述PUSCH的目标参数阈值;根据所述第一参考位置和所述第一时间间隔,确定所述第一时间区间的起始位置,所述起始位置为所述第一参考位置和所述第一时间间隔的和值;根据所述起始位置和所述第三时间窗口的长度值,确定所述第一时间区间的结束位置,所述结束位置为所述起始位置、所述第三时间窗口的长度值的和值减去1个时间单位。
具体的,所述PUSCH的目标参数包括PUSCH传输时长或者PUSCH重复传输次数。
具体的,所述PUSCH的目标参数阈值包括PUSCH传输时长阈值或者PUSCH重复传输次数阈值。
可以理解的是,当PUSCH的目标参数为PUSCH传输时长时,PUSCH的目标参数阈值为PUSCH传输时长阈值,当PUSCH的目标参数为PUSCH重复传输次数时,PUSCH的目标参数阈值为PUSCH重复传输次数。
其中,PUSCH传输时长的获取方式可以是:终端根据DCI中的PUSCH调度信息以及时隙配置等信息确定该PUSCH传输时长,也即,终端即根据DCI指示的重复传输次数、资源配置指示、调度TB数指示等确定PUSCH传输时长。
其中,PUSCH重复传输次数的获取方式可以是:终端根据所述DCI中的比特域确定PUSCH重复传输次数。
具体的,在方式一、方式二以及方式三中,第一参考位置和第一时间间隔的之间对应关系是相同的,由于第一参考位置有不同的情况,因此第一参考位置和第一时间间隔的之间对应关系存在以下两种情形:
情形一:
若第一参考位置为承载该DCI的PDCCH监听时机的结束位置,则第一时间间隔为所述PDCCH监听时机对应的DCI所调度的PUSCH传输对应的调度时延。
情形二:
若第一参考位置为所述DCI所调度的物理下行共享信道PDSCH传输的结束位置,则第一时间间隔为第一参考位置与PDSCH传输对应的混合自动重传请求应答HARQ-ACK传输的调度时延。
在一个可能的示例中,根据配置信息确定第一时间区间之后,方法还包括:确定启动PDCCH监听的起始位置为第一时间区间的结束位置加上1个时间单位。
可见,本示例中,终端能够根据配置信息确定调度时延增强区间中需要进行PDCCH监听的起始位置,以避免终端在该调度时延增强区间执行无效的PDCCH监听,进而减少终端的能耗。
在一个可能的示例中,确定启动PDCCH监听的起始位置为第一时间区间的结束位置加上1个时间单位之后,方法还包括:确定执行PDCCH监听的结束位置为调度时延增强区间的结束位置减去一个时间单位。
可见,本示例中,终端能够根据配置信息确定调度时延增强区间中需要进行PDCCH监听的起始位置和结束位置,以维系NTN通信系统吞吐量。
在一个可能的示例中,根据配置信息确定第一时间区间之前,方法还包括:
接收网络设备发送的RRC信令或者系统广播信息,以获取调度时延增强区间的长度值K_offset。
其中,K_offset为网络设备配置的。
可见,本示例中,终端能够获取网络设备配置的K_offset。
本申请所涉及的终端包括终端,本申请所涉及的网络设备包括网络设备。
下面,对本申请实施例方法的应用场景进行示例性说明。
应用场景实施例1:
在NTN通信系统中,终端的TA补偿值是由终端级别的TA值以及网络广播的公共TA值确定,对于网络设备而言,是不能够确定终端的TA补偿的具体值。由于网络设备不能知道终端的TA补偿的具体值(即不能确定终端具体发送PUSCH的具体位置),网络设备无法精确确定终端能够监听PDCCH的时机。但是,网络设备可以根据终端当前所处的小区或者波束确定终端补偿值的范围,即根据终端当前所处的终端覆盖区域的最低点(即距离卫星最远的位置)以及最高点(即距离卫星最近的位置)与卫星之间的来回传播时延确定出终端TA补偿值的范围,进而可以确定出终端发送PUSCH的时间区间。
因此,网络设备能够根据终端TA补偿值的范围以及DCI调度的PUSCH(可以是上行数据或者下行数据对应的HARQ-ACK信息)传输时长,确定终端发送PUSCH的时间范围,网络设备下发的PDCCH到达终端的时间是不能够落在终端发送PUSCH的时间范围内的,相当于,终端在网路设备所确定的发送PUSCH的时间范围内是不需要监听PDCCH的。
由于终端TA补偿值的取值区间跨度与终端所在小区或者波束对应的最大差分时延相关,意味着终端发送完PUSCH后,一段时间内(最差的情况是终端最大差分时延的2倍)是监听不到PDCCH的。
在NTN通信系统中,上下行数据传输定时Timing在现有的传输定时Timing基础上引入K_offset后,如图4所示出的,终端通过无线资源控制RRC信令或者系统广播信息接收网络设备配置的K_offset。终端通过无线资源控制RRC信令或者系统广播信息接收网络设备配置的第一时间窗口的长度值T。终端根据DCI中的PUSCH调度信息以及时隙配置等信息确定该PUSCH(包括上行数据或者下行数据对应的HARQ-ACK信息)传输时长N。
若所述第一参考位置n为承载所述DCI的PDCCH监听时机的结束位置,且所述第一时间间隔k为所述DCI所调度的PUSCH传输对应的调度时延情况下,该第一时间窗口的起始位置固定为n+k。n+k至n+k+K_offset为调度时延增强区间。n+k到n+k+T+N-1不需要监听PDCCH。具体实现中,终端在该n+k到n+k+T+N-1不进行PDCCH监听,以保证终端与网络在PDCCH监听位置上达成一致,同时,能减少终端能耗。进一步的,n+k+T+N为终端发送完PUSCH后,启动PDCCH监听的起始位置,n+K_offset+k-1为该PDCCH监听的结束位置。具体实现中,终端在n+k+T+N至n+K_offset+k-1进行PDCCH监听,能够维系NTN通信系统吞吐量。
其中,T可以是小区级别的,即网络设备通过系统广播信息或者RRC信令为小区配置一个T,若一个小区包含多个波束,则小区内每个波束覆盖区域均对应同一个T。T也可以是波束级别的,即网络设备通过系统广播信息或者RRC信令为一个小区中的每个波束配置一个T,若一个小区包含多个波束,则小区内每个波束覆盖区域均对应不同的T。具体的,网络设备可以通过RRC专用信令或者系统广播信息给终端配置T。进一步的,T是网络设备根据终端所在波束或者小区对应的最大差分时延确定的。
N为DCI调度的PUSCH传输时长。PUSCH传输包括上行数据传输或者下行数据对应的HARQ-ACK信息传输。终端可以根据DCI中的PUSCH调度信息以及时隙配置等信息确定N,即终端根据DCI中指示的PUSCH重复传输次数、资源配置指示、调度字节数指示确定N。
k的单位可以但不限于是毫秒、子帧、帧、时隙中的一种。若n为子帧号,则k、K_offset、T、N的单位均为子帧,若n为子时隙号,则k、K_offset、T、N的单位均为时隙。
具体的,当T为小区级别时,所述最大差分时延为第一传播时延和第二传播时延之间的传播时延差值;所述第一传播时延为第一位置与目标设备所在位置之间的传播时延,所述第一位置为所述终端所在小区覆盖区域中,距离目标设备最近的位置;或者,所述第一位置为终端所在小区的波束覆盖区域中,距离所述目标设备最近的位置,所述目标设备为卫星或者所述网络设备;所述第二传播时延为第二位置与所述目标设备所在位置之间的传播时延,所述第二位置为所述终端所在小区覆盖区域中,距离所述目标设备最远的位置;或者,所述第二位置为所述终端所在小区的波束覆盖区域中,距离所述目标设备最远的位置。
具体的,当T为波速级别时,所述最大差分时延为第一传播时延和第二传播时延之间的传播时延差值;所述第一传播时延为第一位置与目标设备所在位置之间的传播时延,所述第一位置为所述终端所在波速覆盖区域中,距离目标设备最近的位置;或者,所述第一位置为终端所在波速的波束覆盖区域中,距离所述目标设备最近的位置,所述目标设备为卫星或者所述网络设备;所述第二传播时延为第二位置与所述目标设备所在位置之间的传播时延,所述第二位置为所述终端所在波速覆盖区域中,距离所述目标设备最远的位置;或者,所述第二位置为所述终端所在波速的波束覆盖区域中,距离所述目标设备最远的位置。
需要说明的是,第二条件的应用原理和第一条件的应用原理相同,针对第二条件的描述参考前述针对第一条件的描述,此处不再赘述,第二条件包括n为所述DCI所调度的物理下行共享信道PDSCH传输的结束位置,且k为n与PDSCH传输对应的HARQ-ACK传输的 调度时延,第一条件所述第一参考位置n为承载所述DCI的PDCCH监听时机的结束位置,且所述第一时间间隔k为所述DCI所调度的PUSCH传输对应的调度时延。
应用场景实施例2:
在NTN通信系统中,终端的TA补偿值是由终端级别的TA值以及网络广播的公共TA值确定,对于网络设备而言,是不能够确定终端的TA补偿的具体值。由于网络设备不能知道终端的TA补偿的具体值(即不能确定终端具体发送PUSCH的具体位置),网络设备无法精确确定终端能够监听PDCCH的时机。但是,网络设备可以根据终端当前所处的小区或者波束确定终端补偿值的范围,即根据终端当前所处的终端覆盖区域的最低点(即距离卫星最远的位置)以及最高点(即距离卫星最近的位置)与卫星之间的来回传播时延确定出终端TA补偿值的范围,进而可以确定出终端发送PUSCH的时间区间。
此外,在NTN通信系统中,网络设备会通过系统广播信息或者RRC专用信令配置小区级别的最大PUSCH(可以是上行数据或者下行数据对应的HARQ-ACK信息)重复传输次数(一个小区对应一个最大PUSCH重复传输次数),或者,配置波束级别的最大PUSCH重复传输次数(即一个波束对应一个最大PUSCH重复传输次数)。因此,网络设备能够根据终端TA补偿值的范围以及当前终端所在的小区或者波束对应的最大PUSCH传输时长,确定终端发送PUSCH的时间范围,网络设备下发的PDCCH到达终端的时间是不能够落在的终端发送PUSCH的时间范围内的。相当于,终端在网路设备所确定的发送PUSCH的时间范围内是不需要监听PDCCH的。
由于终端TA补偿值的取值区间跨度与当前小区或者波束对应的最大差分时延相关,意味着终端发送完上行数据后,一段时间内(最差的情况是最大差分时延的2倍)是监听不到PDCCH信息的。
在NTN通信系统中,上下行数据传输定时Timing在现有的传输定时Timing基础上引入K_offset后,如图5所示出的,终端通过无线资源控制RRC信令或者系统广播信息接收网络设备配置的K_offset。终端通过无线资源控制RRC信令或者系统广播信息接收网络设备配置的第二时间窗口的长度值T1。
若所述第一参考位置n为承载所述DCI的PDCCH监听时机的结束位置,且所述第一时间间隔k为所述DCI所调度的PUSCH传输对应的调度时延的情况下,所述第二时间窗口的起始位置固定为n+k。n+k至n+k+K_offset为调度时延增强区间。n+k到n+k+T1-1不需要监听PDCCH。具体实现中,终端在该n+k到n+k+T1-1不进行PDCCH监听,以保证终端与网络在PDCCH监听位置上达成一致,同时,能减少终端能耗。n+k+T1为终端发送完PUSCH后,启动PDCCH监听的起始位置,n+K_offset+k-1为该PDCCH监听的结束位置。具体实现中,终端在n+k+T1至n+K_offset+k-1区间进行PDCCH监听,能够维系NTN通信系统吞吐量。
其中,T1可以是小区级别的,即网络设备通过系统广播信息或者RRC信令为小区配置一个T1,若一个小区包含多个波束,则小区内每个波束覆盖区域均对应同一个T1。T1也可以是波束级别的,即网络设备通过系统广播信息或者RRC信令为一个小区中的每个波束配置一个T1,若一个小区包含多个波束,则小区内每个波束覆盖区域均对应不同的T1。具体的,网络设备可以通过RRC专用信令或者系统广播信息给终端配置T1。进一步的,T1 是网络设备根据终端所在小区或者波束对应的最大差分时延以及终端所在小区或者波束对应的最大PUSCH(可以是上行数据或者下行数据对应的HARQ-ACK信息)传输时长确定的。
可以理解的是,如果第二时间窗口是波束级别的,则对应的最大PUSCH传输时长也是波束级别的,如果第二时间窗口是小区级别的,则对应的最大PUSCH传输时长也是小区级别的。
k的单位可以但不限于是毫秒、子帧、帧、时隙中的一种。若n为子帧号,则k、K_offset、T1的单位均为子帧,若n为子时隙号,则k、K_offset、T1的单位均为时隙。
具体的,当T1为小区级别时,所述最大差分时延为第一传播时延和第二传播时延之间的传播时延差值;所述第一传播时延为第一位置与目标设备所在位置之间的传播时延,所述第一位置为所述终端所在小区覆盖区域中,距离目标设备最近的位置;或者,所述第一位置为终端所在小区的波束覆盖区域中,距离所述目标设备最近的位置,所述目标设备为卫星或者所述网络设备;所述第二传播时延为第二位置与所述目标设备所在位置之间的传播时延,所述第二位置为所述终端所在小区覆盖区域中,距离所述目标设备最远的位置;或者,所述第二位置为所述终端所在小区的波束覆盖区域中,距离所述目标设备最远的位置。
具体的,当T1为波速级别时,所述最大差分时延为第一传播时延和第二传播时延之间的传播时延差值;所述第一传播时延为第一位置与目标设备所在位置之间的传播时延,所述第一位置为所述终端所在波速覆盖区域中,距离目标设备最近的位置;或者,所述第一位置为终端所在波速的波束覆盖区域中,距离所述目标设备最近的位置,所述目标设备为卫星或者所述网络设备;所述第二传播时延为第二位置与所述目标设备所在位置之间的传播时延,所述第二位置为所述终端所在波速覆盖区域中,距离所述目标设备最远的位置;或者,所述第二位置为所述终端所在波速的波束覆盖区域中,距离所述目标设备最远的位置。
需要说明的是,第二条件的应用原理和第一条件的应用原理相同,针对第二条件的描述参考前述针对第一条件的描述,此处不再赘述,第二条件包括n为所述DCI所调度的物理下行共享信道PDSCH传输的结束位置,且k为n与PDSCH传输对应的HARQ-ACK传输的调度时延,第一条件所述第一参考位置n为承载所述DCI的PDCCH监听时机的结束位置,且所述第一时间间隔k为所述DCI所调度的PUSCH传输对应的调度时延。
应用场景实施例3:
在NTN通信系统中,终端的TA补偿值是由终端级别的TA值以及网络广播的公共TA值确定,对于网络设备而言,是不能够确定终端的TA补偿的具体值。由于网络设备不能知道终端的TA补偿的具体值(即不能确定终端具体发送PUSCH的具体位置),网络设备无法精确确定终端能够监听PDCCH的时机。但是,网络设备可以根据终端当前所处的小区或者波束确定终端补偿值的范围,即根据终端当前所处的终端覆盖区域的最低点(即距离卫星最远的位置)以及最高点(即距离卫星最近的位置)与卫星之间的来回传播时延确定出终端TA补偿值的范围,进而可以确定出终端发送PUSCH的时间区间。
因此,网络设备能够根据终端TA补偿值的范围以及DCI调度的PUSCH(可以是上行 数据或者下行数据对应的HARQ-ACK信息)传输时长(或者重复传输次数)阈值,配置第三时间窗口的长度值T2,保证满足一定条件的上行数据调度的实际发送位置落在第三时间窗口。
在NTN通信系统中,上下行数据传输定时Timing在现有的传输定时Timing基础上引入K_offset之后,如图6所示出的,终端通过无线资源控制RRC信令或者系统广播信息接收网络设备配置的K_offset。终端通过无线资源控制RRC信令或者系统广播信息接收网络设备配置的第三时间窗口的长度值T2和PUSCH的目标参数阈值,所述PUSCH的目标参数阈值包括PUSCH传输时长阈值或者PUSCH重复传输次数阈值。
若所述第一参考位置n为承载所述DCI的PDCCH监听时机的结束位置,且所述第一时间间隔k为所述DCI所调度的PUSCH传输对应的调度时延的情况下,终端根据所述DCI中的PUSCH调度信息以及时隙配置等信息确定该PUSCH传输时长,或者,终端根据所述DCI中的比特域确定PUSCH重复传输次数。进一步的,该第三时间窗口的起始位置固定为n+k,n+k至n+k+K_offset调度时延增强区间。若终端确定出PUSCH传输时长小于网络设备通过RRC信令或者系统广播信息配置的PUSCH传输时长阈值,或者,若终端确定出PUSCH重复传输次数小于网络设备通过RRC信令或者系统广播信息配置的PUSCH重复传输次数阈值,则n+k到n+k+T2-1不需要监听PDCCH。具体实现中,终端在该n+k到n+k+T2-1不进行PDCCH监听,以保证终端与网络在PDCCH监听位置上达成一致,同时,能减少终端能耗。n+k+T2为终端发送完PUSCH后,启动PDCCH监听的起始位置,n+K_offset+k-1为该PDCCH监听的结束位置。具体实现中,终端在n+k+T2至n+K_offset+k-1区间进行PDCCH监听,能够维系NTN通信系统吞吐量。
其中,T2可以是小区级别的,即网络设备通过系统广播信息或者RRC信令为小区配置一个T2,若一个小区包含多个波束,则小区内每个波束覆盖区域均对应同一个T2。T2也可以是波束级别的,即网络设备通过系统广播信息或者RRC信令为一个小区中的每个波束配置一个T2,若一个小区包含多个波束,则小区内每个波束覆盖区域均对应不同的T2。具体的,网络设备可以通过RRC专用信令或者系统广播信息给终端配置T2。进一步的,T2是网络设备根据终端所在小区或者波束对应的最大差分时延以及终端所在小区或者波束对应的PUSCH(可以是上行数据或者下行数据对应的HARQ-ACK信息)传输时长(或者重复传输次数)阈值确定的。
k的单位可以但不限于是毫秒、子帧、帧、时隙中的一种。若n为子帧号,则k、K_offset、T2的单位均为子帧,若n为子时隙号,则k、K_offset、T2的单位均为时隙。
具体的,当T2为小区级别时,所述最大差分时延为第一传播时延和第二传播时延之间的传播时延差值;所述第一传播时延为第一位置与目标设备所在位置之间的传播时延,所述第一位置为所述终端所在小区覆盖区域中,距离目标设备最近的位置;或者,所述第一位置为终端所在小区的波束覆盖区域中,距离所述目标设备最近的位置,所述目标设备为卫星或者所述网络设备;所述第二传播时延为第二位置与所述目标设备所在位置之间的传播时延,所述第二位置为所述终端所在小区覆盖区域中,距离所述目标设备最远的位置;或者,所述第二位置为所述终端所在小区的波束覆盖区域中,距离所述目标设备最远的位置。
具体的,当T2为波速级别时,所述最大差分时延为第一传播时延和第二传播时延之间的传播时延差值;所述第一传播时延为第一位置与目标设备所在位置之间的传播时延,所述第一位置为所述终端所在波速覆盖区域中,距离目标设备最近的位置;或者,所述第一位置为终端所在波速的波束覆盖区域中,距离所述目标设备最近的位置,所述目标设备为卫星或者所述网络设备;所述第二传播时延为第二位置与所述目标设备所在位置之间的传播时延,所述第二位置为所述终端所在波速覆盖区域中,距离所述目标设备最远的位置;或者,所述第二位置为所述终端所在波速的波束覆盖区域中,距离所述目标设备最远的位置。
需要说明的是,第二条件的应用原理和第一条件的应用原理相同,针对第二条件的描述参考前述针对第一条件的描述,此处不再赘述,第二条件包括n为所述DCI所调度的物理下行共享信道PDSCH传输的结束位置,且k为n与PDSCH传输对应的HARQ-ACK传输的调度时延,第一条件所述第一参考位置n为承载所述DCI的PDCCH监听时机的结束位置,且所述第一时间间隔k为所述DCI所调度的PUSCH传输对应的调度时延。
与上述实施例一致,本申请实施例提供又一种非地面网络通信方法的流程示意图,请参阅图7。该方法应用于网络设备。该方法包括:
S710、网络设备发送配置信息,该配置信息用于确定第一时间区间,第一时间区间为调度时延增强区间中不需要监听PDCCH的时间区间。
可以看出,本申请实施例中,网络设备通过获取配置信息,而配置信息用于确定调度时延增强区间中不需要监听PDCCH的第一时间区间,从而有利于保证终端在该目标区间不进行PDCCH监听,进而保证终端与网络在PDCCH监听位置上达成一致,同时,能减少终端能耗。
在一个可能的示例中,网络设备发送配置信息,包括:网络设备通过无线资源控制RRC信令或者系统广播信息,以发送配置信息。
在一个可能的示例中,配置信息包括以下其中一种:第一时间窗口的长度值;第二时间窗口的长度值;第三时间窗口的长度值和目标参数阈值。
在一个可能的示例中,所述第一时间窗口的长度值为所述网络设备根据终端所在波束或者小区对应的最大差分时延确定的。
在一个可能的示例中,所述第二时间窗口的长度值为所述网络设备根据所述终端所在的波束或者小区对应的,最大差分时延和最大PUSCH传输时长确定的。
在一个可能的示例中,所述第三时间窗口的长度值为所述网络设备根据所述终端所在的波束或者小区对应的,最大差分时延以及PUSCH的目标参数阈值确定的,所述PUSCH的目标参数阈值包括PUSCH传输时长阈值或者PUSCH重复传输次数阈值。
在一个可能的示例中,方法还包括:通过无线资源控制RRC信令或者系统广播信息,以发送调度时延增强区间的长度值K_offset。
上述主要从方法侧中各个网元之间交互的角度对本申请实施例的方案进行了介绍。可以理解的是,终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件 模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件与计算机软件的结合形式来实现。某个功能究竟以硬件或计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,只是一种逻辑功能划分,而实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图8提供了一种PDCCH监听装置的功能单元组成框图。PDCCH监听装置800应用于终端,具体包括:处理单元802和通信单元803。处理单元802用于对终端的动作进行控制管理,例如,处理单元802用于支持终端执行图3中的步骤以及用于本申请所描述的技术方案的其它过程。通信单元803用于支持终端与非地面网络通信系统中的其他设备之间的通信。PDCCH监听装置800还可以包括存储单元801,用于存储终端的程序代码和数据。
其中,处理单元802可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU)、通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框、模块和电路。处理单元802也可以是实现计算功能的组合,例如包含一个或多个微处理器组合、DSP和微处理器的组合等等。通信单元803可以是通信接口、收发器、收发电路等,存储单元801可以是存储器。当处理单元802为处理器,通信单元803为通信接口,存储单元801为存储器时,本申请实施例所涉及的PDCCH监听装置800可以为图7所示的终端。
具体实现时,处理单元802用于执行如上述方法实施例中由终端执行的任一步骤,且在执行诸如发送等数据传输时,可选择的调用通信单元803来完成相应操作。下面进行详细说明。
处理单元802用于:通过通信单元803获取配置信息;根据配置信息确定第一时间区间,第一时间区间为调度时延增强区间中不需要监听PDCCH的时间区间。
可以看出,本申请实施例中,终端能够通过获取配置信息,并根据配置信息确定调度时延增强区间中不需要监听PDCCH的第一时间区间,从而有利于保证终端在该目标区间不进行PDCCH监听,进而保证终端与网络在PDCCH监听位置上达成一致,同时,能减少终端能耗。
在一个可能的示例中,在所述获取配置信息方面,所述处理单元802具体用于:接收网络设备发送的无线资源控制RRC信令或者系统广播信息,以获取所述配置信息。
在一个可能的示例中,所述配置信息包括以下其中一种:第一时间窗口的长度值;第 二时间窗口的长度值;第三时间窗口的长度值和PUSCH的目标参数阈值。
在一个可能的示例中,所述配置信息包括第一时间窗口的长度值,在所述根据所述配置信息确定第一时间区间方面,所述处理单元802具体用于:
确定第一参考位置;
根据下行控制信息DCI确定第一时间间隔以及所述DCI调度的物理上行共享信道PUSCH传输时长;
根据所述第一参考位置和所述第一时间间隔,确定所述第一时间区间的起始位置,所述起始位置为所述第一参考位置和所述第一时间间隔的和值;
根据所述起始位置、所述第一时间窗口的长度值和所述PUSCH传输时长,确定所述第一时间区间的结束位置,所述结束位置为所述起始位置、所述第一时间窗口的长度值和所述PUSCH传输时长的和值减去1个时间单位。
在一个可能的示例中,所述配置信息包括第二时间窗口的长度值,所述根据所述配置信息确定第一时间区间方面,所述处理单元802具体用于:
确定第一参考位置;
根据下行控制信息DCI确定第一时间间隔;
根据所述第一参考位置和所述第一时间间隔,确定所述第一时间区间的起始位置,所述起始位置为所述第一参考位置和所述第一时间间隔的和值;
根据所述起始位置和第二时间窗口的长度值确定所述第一时间区间的结束位置,所述结束位置为所述起始位置与所述第二时间窗口的长度值减去1个时间单位。
在一个可能的示例中,所述配置信息包括第三时间窗口的长度值和PUSCH的目标参数阈值,所述根据所述配置信息确定第一时间区间方面,所述处理单元802具体用于:确定第一参考位置;
根据下行控制信息DCI确定第一时间间隔以及所述DCI调度的PUSCH的目标参数;
确定所述PUSCH的目标参数小于所述PUSCH的目标参数阈值;
根据所述第一参考位置和所述第一时间间隔,确定所述第一时间区间的起始位置,所述起始位置为所述第一参考位置和所述第一时间间隔的和值;
根据所述起始位置和所述第三时间窗口的长度值,确定所述第一时间区间的结束位置,所述结束位置为所述起始位置、所述第三时间窗口的长度值的和值减去1个时间单位。
在一个可能的示例中,所述PUSCH的目标参数包括PUSCH传输时长或者PUSCH重复传输次数。
在一个可能的示例中,若所述第一参考位置为承载所述DCI的PDCCH监听时机的结束位置,则所述第一时间间隔为所述DCI所调度的PUSCH传输对应的调度时延;
若所述第一参考位置为所述DCI所调度的物理下行共享信道PDSCH传输的结束位置,则所述第一时间间隔为所述第一参考位置与所述PDSCH传输对应的混合自动重传请求应答HARQ-ACK传输的调度时延。
在一个可能的示例中,所述PUSCH传输包括上行数据传输或者下行数据对应的HARQ-ACK信息传输。
在一个可能的示例中,所述处理单元802还用于:在所述根据所述配置信息确定第一 时间区间之后,确定启动所述PDCCH监听的起始位置为所述第一时间区间的结束位置加上1个时间单位。
在一个可能的示例中,所述处理单元802还用于:在所述确定启动PDCCH监听的起始位置为所述第一时间区间的结束位置加上1个时间单位之后,确定执行所述PDCCH监听的结束位置为所述调度时延增强区间的结束位置减去一个时间单位。
在一个可能的示例中,所述处理单元802还用于:在所述根据所述配置信息确定第一时间区间之前,接收所述网络设备发送的无线资源控制RRC信令或者系统广播信息,以获取所述调度时延增强区间的长度值K_offset。
在采用集成的单元的情况下,图9提供了又一种PDCCH监听装置的功能单元组成框图。PDCCH监听装置900应用于网络设备,具体包括:处理单元902和通信单元903。处理单元902用于对网络设备的动作进行控制管理,例如,处理单元902用于支持网络设备执行图4中的步骤以及用于本申请所描述的技术方案的其它过程。通信单元903用于支持网络设备与非地面网络通信系统中的其他设备之间的通信。PDCCH监听装置900还可以包括存储单元901,用于存储网络设备的程序代码和数据。
其中,处理单元902可以是处理器或控制器,例如可以是CPU、DSP、ASIC、FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框、模块和电路。处理单元902也可以是实现计算功能的组合,例如包含一个或多个微处理器组合、DSP和微处理器的组合等等。通信单元903可以是通信接口、收发器、收发电路等,存储单元901可以是存储器。当处理单元902为处理器,通信单元903为通信接口,存储单元901为存储器时,本申请实施例所涉及的PDCCH监听装置900可以为图8所示的网络设备。
具体实现时,处理单元902用于执行如上述方法实施例中由网络设备执行的任一步骤,且在执行诸如发送等数据传输时,可选择的调用通信单元903来完成相应操作。下面进行详细说明。
处理单元902用于:通过通信单元903发送配置信息,配置信息用于确定第一时间区间,第一时间区间为调度时延增强区间中不需要监听PDCCH的时间区间。
可以看出,本申请实施例中,网络设备通过获取配置信息,而配置信息用于确定调度时延增强区间中不需要监听PDCCH的第一时间区间,从而有利于保证终端在该目标区间不进行PDCCH监听,进而保证终端与网络在PDCCH监听位置上达成一致,同时,能减少终端能耗。
在一个可能的示例中,所述配置信息包括以下其中一种:第一时间窗口的长度值;第二时间窗口的长度值;第三时间窗口的长度值和PUSCH的目标参数阈值。
在一个可能的示例中,所述第一时间窗口的长度值为所述网络设备根据终端所在波束或者小区对应的最大差分时延确定的。
在一个可能的示例中,所述第二时间窗口的长度值为所述网络设备根据所述终端所在的波束或者小区对应的,最大差分时延和最大PUSCH传输时长确定的。
在一个可能的示例中,所述第三时间窗口的长度值为所述网络设备根据所述终端所在 的波束或者小区对应的,最大差分时延以及PUSCH的目标参数阈值确定的,所述PUSCH的目标参数阈值包括PUSCH传输时长阈值或者PUSCH重复传输次数阈值。
在一个可能的示例中,处理单元902还用于:通过无线资源控制RRC信令或者系统广播信息,以发送调度时延增强区间的长度值K_offset。
请参阅图10,图10是本申请实施例提供的一种终端的结构示意图。其中,终端1000包括处理器1010、存储器1020、通信接口1030和至少一个用于连接处理器1010、存储器1020、通信接口1030的通信总线。
存储器1020包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable eead only memory,PROM)或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器1020用于相关指令及数据。
通信接口1030用于接收和发送数据。
处理器1010可以是一个或多个CPU,在处理器1010是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
终端1000中的处理器1010用于读取存储器1020中存储的一个或多个程序1021以执行以下步骤:
获取配置信息;
根据配置信息确定第一时间区间,第一时间区间为调度时延增强区间中不需要监听PDCCH的时间区间。
需要说明的是,各个操作的具体实现可以详见上述图3或者图6所示的方法实施例中的描述,在此不再具体赘述。
可以看出,本申请实施例中,网络设备通过获取配置信息,而配置信息用于确定调度时延增强区间中不需要监听PDCCH的第一时间区间,从而有利于保证终端在该目标区间不进行PDCCH监听,进而保证终端与网络在PDCCH监听位置上达成一致,同时,能减少终端能耗。
在一个可能的示例中,在获取配置信息方面,处理器1010用于读取存储器1020中存储的一个或多个程序1021以具体执行以下步骤:接收网络设备发送的无线资源控制RRC信令或者系统广播信息,以获取配置信息。
在一个可能的示例中,所述配置信息包括第一时间窗口的长度值;第二时间窗口的长度值;第三时间窗口的长度值和目标参数阈值。
在一个可能的示例中,所述配置信息包括第一时间窗口的长度值,在所述根据所述配置信息确定第一时间区间方面,处理器1010用于读取存储器1020中存储的一个或多个程序1021以具体执行以下步骤:
确定第一参考位置;
根据下行控制信息DCI确定第一时间间隔以及所述DCI调度的物理上行共享信道PUSCH传输时长;
根据所述第一参考位置和所述第一时间间隔,确定所述第一时间区间的起始位置,所 述起始位置为所述第一参考位置和所述第一时间间隔的和值;
根据所述起始位置、所述第一时间窗口的长度值和所述PUSCH传输时长,确定所述第一时间区间的结束位置,所述结束位置为所述起始位置、所述第一时间窗口的长度值和所述PUSCH传输时长的和值减去1个时间单位。
在一个可能的示例中,所述配置信息包括第二时间窗口的长度值,所述根据所述配置信息确定第一时间区间方面,处理器1010用于读取存储器1020中存储的一个或多个程序1021以具体执行以下步骤:
确定第一参考位置;
根据下行控制信息DCI确定第一时间间隔;
根据所述第一参考位置和所述第一时间间隔,确定所述第一时间区间的起始位置,所述起始位置为所述第一参考位置和所述第一时间间隔的和值;
根据所述起始位置和第二时间窗口的长度值确定所述第一时间区间的结束位置,所述结束位置为所述起始位置与所述第二时间窗口的长度值减去1个时间单位。
在一个可能的示例中,所述配置信息包括第三时间窗口的长度值,所述根据所述配置信息确定第一时间区间方面,处理器1010用于读取存储器1020中存储的一个或多个程序1021以具体执行以下步骤:
确定第一参考位置;
根据下行控制信息DCI确定第一时间间隔以及所述DCI调度的PUSCH的目标参数;
确定所述PUSCH的目标参数小于所述PUSCH的目标参数阈值;
根据所述第一参考位置和所述第一时间间隔,确定所述第一时间区间的起始位置,所述起始位置为所述第一参考位置和所述第一时间间隔的和值;
根据所述起始位置和所述第三时间窗口的长度值,确定所述第一时间区间的结束位置,所述结束位置为所述起始位置、所述第三时间窗口的长度值的和值减去1个时间单位。
在一个可能的示例中,所述PUSCH的目标参数包括PUSCH传输时长或者PUSCH重复传输次数。
在一个可能的示例中,若所述第一参考位置为承载所述DCI的PDCCH监听时机的结束位置,则所述第一时间间隔为所述DCI所调度的PUSCH传输对应的调度时延;
若所述第一参考位置为所述DCI所调度的物理下行共享信道PDSCH传输的结束位置,则所述第一时间间隔为所述第一参考位置与所述PDSCH传输对应的混合自动重传请求应答HARQ-ACK传输的调度时延。
在一个可能的示例中,所述PUSCH传输包括上行数据传输或者下行数据对应的HARQ-ACK信息传输。
在一个可能的示例中,处理器1010用于读取存储器1020中存储的一个或多个程序1021以还执行以下步骤:在所述根据所述配置信息确定第一时间区间之后,确定启动所述PDCCH监听的起始位置为所述第一时间区间的结束位置加上1个时间单位。
在一个可能的示例中,处理器1010用于读取存储器1020中存储的一个或多个程序1021以还执行以下步骤:在所述确定启动PDCCH监听的起始位置为所述第一时间区间的结束位置加上1个时间单位之后,确定执行所述PDCCH监听的结束位置为所述调度时延增强 区间的结束位置减去一个时间单位。
在一个可能的示例中,处理器1010用于读取存储器1020中存储的一个或多个程序1021以还执行以下步骤:在所述根据所述配置信息确定第一时间区间之前,接收所述网络设备发送的无线资源控制RRC信令或者系统广播信息,以获取所述调度时延增强区间的长度值K_offset。
请参阅图11,图11是本申请实施例提供的一种网络设备的结构示意图。其中,网络设备1100包括处理器1110、存储器1120、通信接口1130和至少一个用于连接处理器1110、存储器1120、通信接口1130的通信总线。
存储器1120包括但不限于是RAM、ROM、PROM或CD-ROM,该存储器1120用于存储相关指令及数据。
通信接口1130用于接收和发送数据。
处理器1110可以是一个或多个CPU,在处理器1110是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
网络设备1100中的处理器1110用于读取存储器1120中存储的一个或多个程序1121以执行以下步骤:发送配置信息,配置信息用于确定第一时间区间,第一时间区间为调度时延增强区间中不需要监听PDCCH的时间区间。
需要说明的是,各个操作的具体实现可以详见上述图3或者图6所示的方法实施例中的描述,在此不再具体赘述。
可以看出,本申请实施例中,网络设备通过获取配置信息,而配置信息用于确定调度时延增强区间中不需要监听PDCCH的第一时间区间,从而有利于保证终端在该目标区间不进行PDCCH监听,进而保证终端与网络在PDCCH监听位置上达成一致,同时,能减少终端能耗。
在一个可能的示例中,在发送配置信息方面,处理器1110用于读取存储器1120中存储的一个或多个程序1121以具体执行以下步骤:
通过无线资源控制RRC信令或者系统广播信息,以发送配置信息。
在一个可能的示例中,所述配置信息包括以下其中一种:第一时间窗口的长度值;第二时间窗口的长度值;第三时间窗口的长度值和PUSCH的目标参数阈值。
在一个可能的示例中,所述第一时间窗口的长度值为所述网络设备根据终端所在波束或者小区对应的最大差分时延确定的。
在一个可能的示例中,所述第二时间窗口的长度值为所述网络设备根据所述终端所在的波束或者小区对应的,最大差分时延和最大PUSCH传输时长确定的。
在一个可能的示例中,所述第三时间窗口的长度值为所述网络设备根据所述终端所在的波束或者小区对应的,最大差分时延以及PUSCH的目标参数阈值确定的,所述PUSCH的目标参数阈值包括PUSCH传输时长阈值或者PUSCH重复传输次数阈值。
在一个可能的示例中,处理器1110用于读取存储器1120中存储的一个或多个程序1121以还执行以下步骤:通过无线资源控制RRC信令或者系统广播信息,以发送调度时延增强区间的长度值K_offset。
本申请实施例还提供了一种芯片,其中,该芯片包括处理器,用于从存储器中调用并运行计算机程序,使得安装有芯片的设备执行如上述方法实施例中终端或网络设备所描述的部分或全部步骤。
本申请实施例还提供了一种计算机可读存储介质,其中,计算机可读存储介质存储用于电子数据交换的计算机程序,其中,计算机程序使得计算机执行如上述方法实施例中终端或网络设备所描述的部分或全部步骤。
本申请实施例还提供了一种计算机程序产品,其中,计算机程序产品包括计算机程序,计算机程序可操作来使计算机执行如上述方法实施例中终端或网络设备所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
本申请实施例所描述的方法或者算法的步骤可以以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于终端或网络设备中。当然,处理器和存储介质也可以作为分立组件存在于终端或网络设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输。例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (26)

  1. 一种物理下行控制信道PDCCH监听方法,其特征在于,应用于终端;所述方法包括:
    获取配置信息;
    根据所述配置信息确定第一时间区间,所述第一时间区间为调度时延增强区间中不需要监听PDCCH的时间区间。
  2. 根据权利要求1所述的方法,其特征在于,所述获取配置信息,包括:
    接收网络设备发送的无线资源控制RRC信令或者系统广播信息,以获取所述配置信息。
  3. 根据权利要求1所述的方法,其特征在于,所述配置信息包括以下其中一种:
    第一时间窗口的长度值;
    第二时间窗口的长度值;
    第三时间窗口的长度值和PUSCH的目标参数阈值。
  4. 根据权利要求3所述的方法,其特征在于,所述配置信息包括第一时间窗口的长度值,所述根据所述配置信息确定第一时间区间,包括:
    确定第一参考位置;
    根据下行控制信息DCI确定第一时间间隔以及所述DCI调度的物理上行共享信道PUSCH传输时长;
    根据所述第一参考位置和所述第一时间间隔,确定所述第一时间区间的起始位置,所述起始位置为所述第一参考位置和所述第一时间间隔的和值;
    根据所述起始位置、所述第一时间窗口的长度值和所述PUSCH传输时长,确定所述第一时间区间的结束位置,所述结束位置为所述起始位置、所述第一时间窗口的长度值和所述PUSCH传输时长的和值减去1个时间单位。
  5. 根据权利要求3所述的方法,其特征在于,所述配置信息包括第二时间窗口的长度值,所述根据所述配置信息确定第一时间区间,包括:
    确定第一参考位置;
    根据下行控制信息DCI确定第一时间间隔;
    根据所述第一参考位置和所述第一时间间隔,确定所述第一时间区间的起始位置,所述起始位置为所述第一参考位置和所述第一时间间隔的和值;
    根据所述起始位置和第二时间窗口的长度值确定所述第一时间区间的结束位置,所述结束位置为所述起始位置与所述第二时间窗口的长度值减去1个时间单位。
  6. 根据权利要求3所述的方法,其特征在于,所述配置信息包括第三时间窗口的长度值和PUSCH的目标参数阈值,所述根据所述配置信息确定第一时间区间,包括:
    确定第一参考位置;
    根据下行控制信息DCI确定第一时间间隔以及所述DCI调度的PUSCH的目标参数;
    确定所述PUSCH的目标参数小于所述PUSCH的目标参数阈值;
    根据所述第一参考位置和所述第一时间间隔,确定所述第一时间区间的起始位置,所述起始位置为所述第一参考位置和所述第一时间间隔的和值;
    根据所述起始位置和所述第三时间窗口的长度值,确定所述第一时间区间的结束位置, 所述结束位置为所述起始位置、所述第三时间窗口的长度值的和值减去1个时间单位。
  7. 根据权利要求6所述的方法,其特征在于,所述PUSCH的目标参数包括PUSCH传输时长或者PUSCH重复传输次数。
  8. 根据权利要求4-7任一项所述的方法,其特征在于,若所述第一参考位置为承载所述DCI的PDCCH监听时机的结束位置,则所述第一时间间隔为所述DCI所调度的PUSCH传输对应的调度时延;
    若所述第一参考位置为所述DCI所调度的物理下行共享信道PDSCH传输的结束位置,则所述第一时间间隔为所述第一参考位置与所述PDSCH传输对应的混合自动重传请求应答HARQ-ACK传输的调度时延。
  9. 根据权利要求4、5、7任一项所述的方法,其特征在于,所述PUSCH传输包括上行数据传输或者下行数据对应的HARQ-ACK信息传输。
  10. 根据权利要求1所述的方法,其特征在于,所述根据所述配置信息确定第一时间区间之后,所述方法还包括:
    确定启动所述PDCCH监听的起始位置为所述第一时间区间的结束位置加上1个时间单位。
  11. 根据权利要求10所述的方法,其特征在于,所述确定启动PDCCH监听的起始位置为所述第一时间区间的结束位置加上1个时间单位之后,所述方法还包括:
    确定执行所述PDCCH监听的结束位置为所述调度时延增强区间的结束位置减去一个时间单位。
  12. 根据权利要求1所述的方法,其特征在于,所述根据所述配置信息确定第一时间区间之前,所述方法还包括:
    接收所述网络设备发送的无线资源控制RRC信令或者系统广播信息,以获取所述调度时延增强区间的长度值K_offset。
  13. 一种PDCCH监听方法,其特征在于,应用于网络设备;所述方法包括:
    发送配置信息,所述配置信息用于确定第一时间区间,所述第一时间区间为调度时延增强区间中不需要监听PDCCH的时间区间。
  14. 根据权利要求13所述的方法,其特征在于,所述发送配置信息,包括:
    通过无线资源控制RRC信令或者系统广播信息,以发送所述配置信息。
  15. 根据权利要求13所述的方法,其特征在于,所述配置信息包括以下其中一种:
    第一时间窗口的长度值;
    第二时间窗口的长度值;
    第三时间窗口的长度值和PUSCH的目标参数阈值。
  16. 根据权利要求15所述的方法,其特征在于,所述第一时间窗口的长度值为所述网络设备根据终端所在波束或者小区对应的最大差分时延确定的。
  17. 根据权利要求15所述的方法,其特征在于,所述第二时间窗口的长度值为所述网络设备根据所述终端所在的波束或者小区对应的,最大差分时延和最大PUSCH传输时长确定的。
  18. 根据权利要求15所述的方法,其特征在于,所述第三时间窗口的长度值为所述 网络设备根据所述终端所在的波束或者小区对应的,最大差分时延以及所述PUSCH的目标参数阈值确定的,所述PUSCH的目标参数阈值包括PUSCH传输时长阈值或者PUSCH重复传输次数阈值。
  19. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    通过无线资源控制RRC信令或者系统广播信息,以发送调度时延增强区间的长度值K_offset。
  20. 一种PDCCH监听装置,其特征在于,应用于终端;所述装置包括处理单元和通信单元,所述处理单元用于:
    通过所述通信单元获取配置信息;
    根据所述配置信息确定第一时间区间,所述第一时间区间为调度时延增强区间中不需要监听PDCCH的时间区间。
  21. 一种PDCCH监听装置,其特征在于,应用于网络设备;所述装置包括处理单元和通信单元,所述处理单元用于:
    通过所述通信单元发送配置信息,所述配置信息用于确定第一时间区间,所述第一时间区间为调度时延增强区间中不需要监听PDCCH的时间区间。
  22. 一种终端,其特征在于,包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求1-12任一项所述的方法中的步骤的指令。
  23. 一种网络设备,其特征在于,包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求13-19任一项所述的方法中的步骤的指令。
  24. 一种计算机可读存储介质,其特征在于,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-12或权利要求13-19中任一项所述的方法。
  25. 一种芯片,其特征在于,包括处理器、存储器以及存储在所述存储器上的计算机程序或指令,所述处理器执行所述计算机程序或指令以实现如权利要求1-12或权利要求13-19中任一项所述的方法。
  26. 一种芯片模组,其特征在于,包括收发组件和芯片,所述芯片包括处理器、存储器以及存储在所述存储器上的计算机程序或指令,所述处理器执行所述计算机程序或指令以实现如权利要求1-12或权利要求13-19中任一项所述的方法。
PCT/CN2022/085743 2021-04-09 2022-04-08 Pdcch监听方法与装置、终端和网络设备 WO2022214062A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110387288.2 2021-04-09
CN202110387288.2A CN115209442A (zh) 2021-04-09 2021-04-09 Pdcch监听方法与装置、终端和网络设备

Publications (1)

Publication Number Publication Date
WO2022214062A1 true WO2022214062A1 (zh) 2022-10-13

Family

ID=83545058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085743 WO2022214062A1 (zh) 2021-04-09 2022-04-08 Pdcch监听方法与装置、终端和网络设备

Country Status (2)

Country Link
CN (1) CN115209442A (zh)
WO (1) WO2022214062A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117858158B (zh) * 2024-03-07 2024-05-10 上海移芯通信科技股份有限公司 一种基于nb-iot的非地面网络通讯方法及通讯终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108702764A (zh) * 2018-05-29 2018-10-23 北京小米移动软件有限公司 物理下行控制信道监测配置、监测方法及装置和基站
CN109429258A (zh) * 2017-07-17 2019-03-05 中国移动通信有限公司研究院 一种信道监听的指示方法、监听方法、终端及网络侧设备
WO2021062726A1 (zh) * 2019-09-30 2021-04-08 Oppo广东移动通信有限公司 随机接入方法、终端设备、网络设备及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109429258A (zh) * 2017-07-17 2019-03-05 中国移动通信有限公司研究院 一种信道监听的指示方法、监听方法、终端及网络侧设备
CN108702764A (zh) * 2018-05-29 2018-10-23 北京小米移动软件有限公司 物理下行控制信道监测配置、监测方法及装置和基站
WO2021062726A1 (zh) * 2019-09-30 2021-04-08 Oppo广东移动通信有限公司 随机接入方法、终端设备、网络设备及存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CONVIDA WIRELESS: "On Power Savings Using PDCCH Skipping", 3GPP DRAFT; R1-1911007_ON_POWER_SAVINGS_USING_PDCCH_SKIPPING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 5 October 2019 (2019-10-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051789787 *
HUAWEI, HISILICON: "Discussion on timer impacts in NTN", 3GPP DRAFT; R2-1818246 DISCUSSION ON TIMER IMPACTS IN NTN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Spokane, USA; 20181112 - 20181116, 12 November 2018 (2018-11-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051557747 *
MEDIATEK INC.: "Physical layer control procedure in NR-NTN", 3GPP DRAFT; R1-1906467-MEDIATEK-PHYSICAL LAYER CONTROL PROCEDURE IN NR NTN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, Nevada, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051727917 *

Also Published As

Publication number Publication date
CN115209442A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
US20220045803A1 (en) Adapting harq procedures for non-terrestrial networks
WO2022121710A1 (zh) 重复传输次数确定方法与装置、终端和网络设备
CN114142906A (zh) 非地面网络通信方法与装置、终端和网络设备
WO2022135052A1 (zh) 无线通信方法与装置、终端和网络设备
US11621803B2 (en) Hybrid automatic repeat request in non-terrestrial networks
WO2022121680A1 (zh) 窗口偏移量确定方法与装置、终端和网络设备
WO2022214062A1 (zh) Pdcch监听方法与装置、终端和网络设备
WO2023078385A1 (zh) 数据传输方法及相关产品
WO2022135051A1 (zh) 跨载波数据传输方法与装置、终端和网络设备
WO2021142663A1 (zh) 调度请求sr发送方法及相关装置
CN115580380A (zh) 无线通信的方法及装置
WO2022120747A1 (zh) 无线通信的方法和终端设备
WO2021163913A9 (zh) 一种数据传输方法、终端设备、网络设备
WO2023066144A1 (zh) 通信方法与装置、计算机可读存储介质和芯片模组
WO2022135053A1 (zh) 载波切换方法与装置、终端和网络设备
WO2021168651A1 (zh) 媒体接入控制层控制单元生效时间的确定方法及相关产品
US11894930B1 (en) Wireless communication method and terminal device
WO2023011522A1 (zh) 数据传输方法及相关装置
WO2024021705A1 (zh) 一种定位方法及相关装置
WO2022236574A1 (zh) 时域参数确定方法、终端设备及网络设备
WO2023185616A1 (zh) 一种psfch传输方法、装置、芯片及模组设备
EP4340494A1 (en) Wireless communication method, terminal device, and network device
US20240056171A1 (en) Ntn-entity, user equipment and base station involved in transmission procedure
WO2023279308A1 (zh) 确定drx激活期的方法及终端设备
CN117675116A (zh) 一种通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784128

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 30/11/2023)