WO2023078385A1 - 数据传输方法及相关产品 - Google Patents

数据传输方法及相关产品 Download PDF

Info

Publication number
WO2023078385A1
WO2023078385A1 PCT/CN2022/129826 CN2022129826W WO2023078385A1 WO 2023078385 A1 WO2023078385 A1 WO 2023078385A1 CN 2022129826 W CN2022129826 W CN 2022129826W WO 2023078385 A1 WO2023078385 A1 WO 2023078385A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay
scheduling
scheduling delay
serving cell
terminal
Prior art date
Application number
PCT/CN2022/129826
Other languages
English (en)
French (fr)
Inventor
雷珍珠
Original Assignee
展讯半导体(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯半导体(南京)有限公司 filed Critical 展讯半导体(南京)有限公司
Publication of WO2023078385A1 publication Critical patent/WO2023078385A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • This application belongs to the technical field of communication, and specifically relates to a data transmission method and related products.
  • NTN non-terrestrial network
  • the embodiment of the present application provides a data transmission method and related products, in order to determine the scheduling delay between the network device and the terminal in the cross-carrier scheduling process in the NTN scenario, so as to ensure the reliability of data transmission.
  • the embodiment of the present application provides a data transmission method, including:
  • the terminal acquires the first scheduling delay and the second scheduling delay configured by the network device, the first scheduling delay is the scheduling delay indicated by the downlink control information DCI, and the second scheduling delay includes the scheduling delay related to the DCI The scheduling delay associated with the indicated cross-carrier scheduling;
  • the terminal determines a third scheduling delay according to the first scheduling delay and the second scheduling delay, and the third scheduling delay is used to indicate a starting position for the terminal to perform data transmission;
  • the terminal transmits data from the starting location.
  • the embodiment of the present application provides a data transmission method, including:
  • the network device sends a first scheduling delay and a second scheduling delay to the terminal, the first scheduling delay is the scheduling delay indicated by the DCI, and the second scheduling delay includes the cross-carrier scheduling indicated by the DCI An associated scheduling delay, the first scheduling delay and the second scheduling delay are used to determine a third scheduling delay, and the third scheduling delay is used to indicate the starting position of the terminal for data transmission .
  • an embodiment of the present application provides a data transmission apparatus, including: a processing unit, configured for a terminal to acquire a first scheduling delay and a second scheduling delay configured by a network device, the first scheduling delay is The scheduling delay indicated by the downlink control information DCI, the second scheduling delay includes the scheduling delay associated with the cross-carrier scheduling indicated by the DCI, and is used by the terminal according to the first scheduling delay and the The second scheduling delay determines a third scheduling delay, and the third scheduling delay is used to indicate the start position of the terminal for data transmission; a transmission unit is used for the terminal to transmit data from the start position .
  • an embodiment of the present application provides a data transmission device, including: a sending unit, configured for a network device to send a first scheduling delay and a second scheduling delay to a terminal, the first scheduling delay is determined by the DCI The indicated scheduling delay, the second scheduling delay includes the scheduling delay associated with the cross-carrier scheduling indicated by the DCI, the first scheduling delay and the second scheduling delay are used to determine the third scheduling delay Delay, the third scheduling delay is used to indicate the start position of the terminal to perform data transmission.
  • the embodiment of the present application provides a terminal, including a processor, a memory, a communication interface, and one or more programs, wherein the one or more programs are stored in the memory and configured by The processor executes, and the program includes steps for executing the steps in the first aspect of the embodiments of the present application.
  • the embodiment of the present application provides a network device, including a processor, a memory, a communication interface, and one or more programs, wherein the one or more programs are stored in the memory and configured Executed by the processor, the program includes steps for executing the second aspect of the embodiments of the present application.
  • the embodiment of the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program enables the computer to execute the For example, part or all of the steps described in the first aspect or the second aspect.
  • the embodiments of the present application provide a computer program product, including computer programs or instructions.
  • the computer programs or instructions are executed by a processor, the computer program or instructions described in any method of the first aspect or the second aspect of the embodiments of the present application can be implemented. Some or all of the steps described.
  • the embodiment of the present application provides a chip, including: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the first aspect or the second aspect of the embodiment of the present application. Part or all of the steps described in any method of the aspect.
  • the embodiment of the present application provides a chip module, including the chip described in the ninth aspect of the embodiment of the present application.
  • the first scheduling delay and the second scheduling delay are considered to determine the final starting position of data transmission, which can effectively solve the problem of cross-carrier scheduling in the NTN scenario. Due to the problem of too large or too small scheduling delay caused by large propagation delay difference in different cells, the reliability of data transmission can be guaranteed.
  • Figure 1a is a system architecture diagram of an NTN communication system provided by an embodiment of the present application.
  • FIG. 1b is a schematic structural diagram of a terminal provided in an embodiment of the present application.
  • Fig. 1c is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • Fig. 2a is a schematic diagram of a differential time delay within the coverage of a beam provided by an embodiment of the present application
  • FIG. 2b is a schematic structural diagram of a satellite performing carrier aggregation provided by an embodiment of the present application
  • Figure 2c is a schematic structural diagram of another satellite performing carrier aggregation provided by the embodiment of the present application.
  • FIG. 2d is a schematic diagram of a propagation delay provided by an embodiment of the present application.
  • Fig. 3a is a schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • Fig. 3b is a schematic diagram of a data sending location provided by an embodiment of the present application.
  • Fig. 3c is a schematic diagram of another data sending location provided by the embodiment of the present application.
  • Fig. 3d is a schematic diagram of another data sending location provided by the embodiment of the present application.
  • Fig. 3e is a schematic diagram of another data sending location provided by the embodiment of the present application.
  • Fig. 3f is a schematic diagram of another data sending location provided by the embodiment of the present application.
  • FIG. 4 is a block diagram of functional units of a data transmission device provided in an embodiment of the present application.
  • FIG. 5 is a block diagram of functional units of another data transmission device provided by an embodiment of the present application.
  • FIG. 6 is a block diagram of functional units of a data transmission device provided in an embodiment of the present application.
  • Fig. 7 is a block diagram of functional units of a data transmission device provided by an embodiment of the present application.
  • FIG. 1a is a system architecture diagram of an NTN communication system provided by an embodiment of the present application.
  • the NTN communication system 10 includes a terminal 110 , a satellite 130 , a gateway 140 and a network device 150 .
  • Signals transmitted by satellites 130 typically generate one or more beam footprints 120 over a given service area bounded by their field of view.
  • the terminal 110 may directly communicate with the satellite 130, that is, the base station is located on the satellite 130, and the satellite 130 at this time may be regarded as a base station. It can also be that the terminal communicates with the gateway 140 or the network device 150.
  • the satellite 130 acts as a relay in the system, and the gateway 140 and the network device 150 can be different devices or integrated into the same device.
  • the wireless communication link between the terminal 110 and the satellite 130 is called a service link (service link), and the wireless communication link between the satellite 130 and the gateway 140 is called a feeder link (feeder link).
  • the terminal 20 in the embodiment of the present application may refer to a user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or user device.
  • the terminal can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (wireless local loop, WLL) station, a personal digital assistant (personal digital assistant, PDA), with a wireless communication function Handheld devices, computing devices or other processing devices connected to wireless modems, relay devices, vehicle-mounted devices, wearable devices, terminals in future 5G networks or future evolved public land mobile networks (PLMN)
  • PLMN public land mobile networks
  • the terminal in the terminal of the embodiment of the present application may include one or more of the following components: a processor 210, a memory 220, and a communication interface 230, the processor 210 is connected to the memory 220 and the communication interface 230 respectively, and the memory 220
  • One or more programs 221 are also included.
  • the network device 30 in the embodiment of the present application may be an evolved base station (evolved NodeB, eNB or eNodeB) in the LTE system, and may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario, Or a network element, or the network device can be a relay device, an access point, a vehicle-mounted device, a wearable device, and a network device in a future 5G network or a network device in a future evolved PLMN network, one of the base stations in a 5G system Or a group (including multiple antenna panels) of antenna panels, or it can also be a network node that constitutes a base station (gNB) or a transmission point in a new radio (new radio, NR) communication system, such as a baseband unit (baseband unit, BBU ), or a distributed unit (distributed unit, DU), etc., which are not limited in this embodiment of the present application.
  • gNB base station
  • BBU baseband
  • the source network device or the target network device in the embodiment of the present application may include one or more of the following components: a processor 310, a memory 320, and a communication interface 330, and the processor 310 communicates with the memory 320 and the communication interface 330 respectively.
  • the memory 320 also includes one or more programs 321 .
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and realizing the functions of radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer.
  • the DU is responsible for processing physical layer protocols and real-time services, realizing the functions of the radio link control (radio link control, RLC) layer, medium access control (medium access control, MAC) layer and physical (physical, PHY) layer.
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , or, sent by DU+AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • the terminal 20 or the network device 30 includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of the present application does not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run to provide the method according to the embodiment of the present application.
  • the execution subject of the method provided by the embodiment of the present application may be a terminal, or a functional module in the terminal that can call a program and execute the program.
  • LTE-A Long Term Evolution Advanced, Advanced Long Term Evolution
  • R10 Release 10, version 10
  • CA Carrier Aggregation, carrier aggregation
  • UE User's Equipment
  • the introduction of cross-carrier scheduling is mainly to solve the problem that in the actual system, the PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel) allocation failure rate of a certain CC (Component Carrier, component carrier) is high or the PDCCH channel quality is poor.
  • the scheduling signaling cannot be transmitted successfully, which will affect the system performance.
  • the base station When carrier aggregation is adopted, the base station needs to send scheduling signaling indicating each carrier.
  • the protocol supports two scheduling methods: independent scheduling of each carrier and cross-carrier scheduling. Among them, the former is the same as the LTE R8/9 system.
  • the Physical Downlink Control Channel (PDCCH) on each carrier indicates its own PDSCH (Physical Downlink Shared Channel, Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel, Physical uplink shared channel) scheduling signaling; the latter allows the scheduling signaling of the SCC (Secondary Component Carrier, secondary carrier) to be carried by the PDCCH channel of the PCC (Primary Component Carrier, primary carrier).
  • PDSCH Physical Downlink Control Channel
  • PUSCH Physical Uplink Shared Channel, Physical uplink shared channel
  • a single CC may need to transmit scheduling signaling for multiple different CCs of the same UE at the same time, thereby improving the probability of successful transmission of scheduling signaling and making full use of the PDCCH on the carrier resource.
  • NTN communication system In the NTN scenario, a cell consists of one or more beams. Since the satellite is far away from the ground, and the coverage of the beam or cell formed by the satellite is relatively large, it will cause the beam or cell coverage memory at larger differential delays.
  • the maximum differential delay within the coverage of a cell or beam refers to: within a certain cell or beam coverage, the value of the propagation delay corresponding to the position farthest from the satellite and the value of the propagation delay corresponding to the position closest to the satellite Difference. As shown in Figure 2a, it is assumed that D1 is the shortest distance from the satellite to the coverage of the beam, and D2 is the furthest distance from the satellite to the coverage of the beam.
  • the propagation delay can be calculated according to the length of the transmission channel and the propagation rate of the signal in the transmission medium. And in the NTN scenario, the operation of the satellite is based on a specific orbit, and its movement is regular. Therefore, the propagation delay change caused by the satellite movement is regular and predictable. Therefore, the maximum differential delay corresponding to a cell or beam coverage area can be calculated. For example, twice the value of the maximum differential delay of a geostationary satellite is 20.6ms.
  • the network device configures a total of 3 server cells for the terminal, including a primary cell Pcell and two secondary cells, namely Scell1 and Scell2.
  • a primary cell Pcell and two secondary cells, namely Scell1 and Scell2.
  • FIG. 3a is a schematic flowchart of a data transmission method provided by an embodiment of the present application. As shown, the method includes the following steps:
  • Step 301 the terminal acquires the first scheduling delay and the second scheduling delay configured by the network device
  • Step 302 the terminal determines a third scheduling delay according to the first scheduling delay and the second scheduling delay, and the third scheduling delay is used to indicate the starting position of the terminal for data transmission;
  • Step 303 the terminal transmits data from the starting location.
  • the first scheduling delay is the scheduling delay indicated by the downlink control information DCI
  • the second scheduling delay includes the scheduling delay associated with the cross-carrier scheduling indicated by the DCI.
  • the first scheduling delay value indicated in the DCI is K2
  • the time slot Ks for the UE to send the PUSCH is determined by K2
  • the calculation method of Ks is:
  • the first scheduling delay value indicated in DCI is K 0
  • the time slot allocated for PDSCH is Ks
  • the calculation method of Ks is:
  • n is the time slot or subframe number where the DCI is received.
  • the first scheduling delay K 0 or K2 indicated in the DCI and the second scheduling delay configured by the network device for cross-carrier scheduling for the terminal are taken into account at the same time.
  • the first scheduling delay and the second scheduling delay are considered to determine the final starting position of data transmission, which can effectively solve the problem of cross-carrier scheduling in the NTN scenario.
  • the problem of too large or too small scheduling delay caused by large propagation delay difference in different cells can ensure the reliability of data transmission.
  • the method before acquiring the first scheduling delay and the second scheduling delay configured by the network device, the method further includes: acquiring the first propagation delay and the second propagation delay of the first serving cell The second propagation delay, the first propagation delay is used to indicate the propagation delay between the terminal and the network device corresponding to the first serving cell, and the second propagation delay is used to indicate the A propagation delay between the terminal and the network device corresponding to the second serving cell.
  • the terminal when the network device configures multiple serving cells for the terminal (including the primary cell and the secondary cell), the terminal can obtain the propagation delay of each serving cell in the multiple server cells, and obtain multiple propagation delays value. Each propagation delay value is respectively used to indicate the propagation delay between the network device corresponding to the corresponding serving cell and the terminal.
  • the terminal obtains the propagation delay of each serving cell, it can first calculate the round-trip propagation delay between the terminal and the satellite according to the ephemeris information of the satellite corresponding to each serving cell and the terminal's own position information. Latency can also be referred to as a timing advance at the terminal level. Then the terminal determines the size of the public TA according to the public TA parameters indicated by the network equipment.
  • the public TA is the round trip time (RTT) between the reference point and the satellite.
  • the reference point can be a satellite or the ground
  • the base station can also be anywhere on the serving link or feedback link.
  • the terminal receives the effective delay value K_mac of the media access layer control signaling (MAC CE) indicated by the network device. Therefore, the propagation delay of each serving cell is half of the sum of the round-trip propagation delay between the terminal and the satellite, the size of the public TA, and the effective delay value K_mac.
  • the first serving cell and the second serving cell are any two different serving cells among the at least two serving cells configured by the network device for the terminal, and the terminal is in Cross-carrier data transmission is performed between the first serving cell and the second serving cell, the terminal receives scheduling DCI based on the first serving cell, and receives data scheduled by the scheduling DCI based on the second serving cell.
  • data scheduling can be performed between different cells, that is, the terminal receives the scheduling DCI and the data scheduled by the scheduling DCI is in different carriers or cells, and the carrier or cell that receives the scheduling DCI is called a scheduling carrier or The scheduling cell, the carrier or the cell receiving the data scheduled by the scheduling DCI is called a scheduled carrier or a scheduled cell. Therefore, the first serving cell is the scheduling cell, and the second serving cell is the scheduled cell.
  • the obtaining the first scheduling delay and the second scheduling delay configured by the network device includes: obtaining the The propagation delay difference corresponding to the first serving cell and the second serving cell; sending the propagation delay difference to the network device; acquiring the second scheduling delay configured from the network device, the first The second scheduling delay is determined by the network device according to the propagation delay difference.
  • the terminal after obtaining the propagation delays of the first serving cell and the second serving cell, the terminal can obtain the corresponding propagation delays of the first serving cell and the second serving cell according to the first propagation delay and the second propagation delay Then report the propagation delay difference to the network device, and the network device can determine the additional scheduling delay value when the first serving cell and the second serving cell perform cross-carrier data transmission according to the propagation delay difference.
  • the second scheduling delay includes the additional scheduling delay value.
  • the additional scheduling delay value configured by the network device for uplink data scheduling and downlink data scheduling can be different, that is, the additional scheduling delay value configured by the network device for downlink data transmission: the downlink scheduling delay value is T 1 , and the network The additional scheduling delay value configured by the device for uplink data transmission: the uplink scheduling delay value is T 2 .
  • the network device can determine according to the processing capability of the terminal when configuring T1 or T2 .
  • the terminal when sending the propagation delay difference corresponding to the first serving cell and the second serving cell, the terminal may simultaneously send the propagation delay difference corresponding to any other two serving cells to the network device. Since the terminal can first obtain the propagation delay of all serving cells configured by the network device for the terminal, when determining the second scheduling delay, the terminal can first combine all serving cells in any pair to obtain multiple cell groups, and then According to the propagation delay of all serving cells obtained in advance, the propagation delay difference of each cell group is obtained, and when the propagation delay difference is reported, the propagation delay difference of all serving cells is reported to the network device, and the network device Based on this, the additional scheduling delay associated with cross-carrier scheduling corresponding to each cell group is determined.
  • the terminal can learn the additional scheduling delay associated with cross-carrier scheduling corresponding to each cell group.
  • the terminal When performing cross-carrier data transmission, the terminal first determines two serving cells for cross-carrier data transmission according to the content indicated in the DCI, then determines the cell group corresponding to the two serving cells, and then determines the cell group corresponding to the cell group.
  • the additional scheduling delay associated with cross-carrier scheduling determines the second scheduling delay. It should be noted that all the serving cells mentioned in this solution are the serving cells configured by the network device for the terminal, including the primary cell and the secondary cell.
  • the acquiring the first scheduling delay and the second scheduling delay configured by the network device includes: sending the first propagation delay and the second propagation delay to the network device Delay: acquiring the second scheduling delay configured from the network device, where the second scheduling delay is determined by the network device according to the first propagation delay and the second propagation delay.
  • the terminal after the terminal obtains the scheduling delays of the first serving cell and the second serving cell, it can directly send the first scheduling delay and the second scheduling delay to the network device, and the network device can send the first scheduling delay and the second scheduling delay to the network device according to the first scheduling delay and the second scheduling delay.
  • the second scheduling delay determines the scheduling delay difference corresponding to the first serving cell and the second serving cell, and finally determines the additional scheduling delay when the first serving cell and the second serving cell perform cross-carrier data scheduling according to the scheduling delay difference .
  • the terminal when sending the first propagation delay and the second propagation delay, can also send the propagation delays of other serving cells at the same time, that is, the terminal can send the propagation delays of all serving cells to the network device at the same time,
  • the network device determines the additional scheduling delay associated with cross-carrier scheduling corresponding to each cell group according to the propagation delay of all serving cells, and then the network device calculates the additional scheduling delay associated with cross-carrier scheduling corresponding to each cell group sent to the terminal.
  • the value of the propagation delay difference is an absolute value of a difference between the value of the first propagation delay and the value of the second propagation delay.
  • the terminal may obtain the absolute value of the difference between the propagation delay values of the two serving cells included in each cell group, The propagation delay difference of each cell group is obtained.
  • the terminal sends the propagation delays of all serving cells to the network device, and the network device performs a difference operation on any two propagation delays to obtain multiple propagation delay differences, and then determines the corresponding The serving cell is a cell group.
  • the network device firstly combines all serving cells in pairs according to the obtained propagation delays to obtain multiple cell groups, and then performs a difference operation on the corresponding propagation delays in each cell group.
  • the network device is configured with three service cells for the terminal, which are cell A, cell B, and cell C.
  • the terminal first obtains the propagation delays of cell A, cell B, and cell C respectively, and obtains propagation delay 1, propagation time Delay 2 and Propagation Delay 3.
  • the terminal can first acquire multiple cell groups to obtain cell group a, cell group b, and cell group c, wherein, cell group a includes cell A and cell B, cell group b includes cell B and cell C, and cell group c includes cell A and cell C, so it can be determined that the propagation delay value corresponding to cell group a is the absolute value of the difference between the value of propagation delay 1 and the value of propagation delay 2, and the propagation delay difference corresponding to other cell groups Value calculation method and so on.
  • the terminal sends the propagation delay difference corresponding to the first serving cell and the second serving cell to the network device through high-layer signaling.
  • the terminal sends the first propagation delay and the second propagation delay to the network device through high-layer signaling.
  • the high-layer signaling includes a radio resource control (Radio Resource Control, RRC) message or a media access layer control signaling (MAC CE).
  • RRC Radio Resource Control
  • MAC CE media access layer control signaling
  • the terminal may also simultaneously send the propagation delay difference corresponding to the cell group through high-level signaling, or simultaneously transmit the propagation delays of other serving cells through high-level signaling.
  • the second scheduling delay is determined according to the propagation delay of the two serving cells for cross-carrier scheduling, so that in the cross-carrier scheduling scenario, when the terminal performs data transmission according to the first scheduling delay and the second scheduling delay , can ensure the reliability of data transmission, and will not cause problems such as excessive actual scheduling delay.
  • the second scheduling delay includes downlink scheduling configured by the network device and associated with the terminal performing downlink cross-carrier data transmission between the first serving cell and the second serving cell delay.
  • the terminal after the terminal determines two serving cells for cross-carrier data scheduling according to the content indicated by the DCI, it can determine the second cell corresponding to the two serving cells from multiple additional scheduling delay values configured by the network device.
  • Scheduling delay that is, when performing downlink data transmission, the second scheduling delay includes downlink scheduling delay T 1 , and when performing uplink data transmission, the second scheduling delay includes uplink scheduling delay T 2 .
  • the value of the first propagation delay is greater than the value of the second propagation delay, it is determined that the value of the third scheduling delay is equal to the value of the first scheduling delay The sum of the value and the value of the second scheduling delay.
  • the third scheduling delay value of the terminal is: K 0 +T 1 , namely The terminal starts data transmission at the time slot or subframe of K 0 +T 1 . It should be noted that the units of K 0 and T 1 are both time slots or subframes. Then the calculation method of the time slot Ks allocated for PDSCH at this time is:
  • n is the time slot or subframe number where the DCI is received.
  • the first serving cell Scell1 receives DCI at time slot A
  • the second serving cell Scell2 receives DCI at time slot B. If DCI is received at , if the data transmission start position of the second serving cell is determined only according to the first scheduling delay K 0 , the data transmission start position may still be located before time slot A, so that the terminal does not have enough time to process the data Therefore, in this case, it is determined that the start position of the data transmission of the second serving cell is K 0 +T 1 , so that the start position of the data transmission of the second serving cell is located after time slot A, so that the terminal has enough time to process the data.
  • the starting position of the data transmission of the second serving cell may be: K 2 +T 2 .
  • the calculation method of the time slot Ks allocated for PUSCH at this time is:
  • n is the time slot or subframe number where the DCI is received.
  • determining the third scheduling delay as the sum of the first scheduling delay and the second scheduling delay can ensure the reliability of data transmission without making the actual scheduling delay too large.
  • the value of the first propagation delay is less than the value of the second propagation delay, it is determined that the value of the third scheduling delay is equal to the value of the first scheduling delay The difference between the value and the value of the second scheduling delay.
  • the third scheduling delay value of the terminal is: K 0 -T 1 , namely The terminal starts data transmission at the time slot or subframe of K 0 -T 1 . It should be noted that the units of K 0 and T 1 are both time slots or subframes. Then the calculation method of the time slot Ks allocated for PDSCH at this time is:
  • n is the time slot or subframe number where the DCI is received.
  • the first serving cell Scell2 receives DCI at time slot A
  • the second serving cell Scell1 receives DCI at time slot B. If DCI is received at , if the data transmission starting position of the second serving cell is determined only according to the first scheduling delay K 0 , the actual scheduling delay will be too large, so the starting position of data transmission of the second serving cell is determined to be K 0 -T 1 can not only ensure that the terminal has enough time to process the data, but also solve the problem of large actual scheduling delay caused by the large propagation delay of the scheduled cell, and reduce the scheduling delay.
  • the starting position of the data transmission of the second serving cell may be: K 2 -T 2 . Then the calculation method of the time slot Ks allocated for PUSCH at this time is:
  • n is the time slot or subframe number where the DCI is received.
  • determining the third scheduling delay as the absolute value of the difference between the first scheduling delay and the second scheduling delay can ensure the reliability of data transmission and reduce the scheduling delay.
  • the determining the third scheduling delay according to the first scheduling delay and the second scheduling delay includes: determining that the value of the third scheduling delay is the value of the first scheduling delay The sum of the value of the delay and the value of the second scheduling delay.
  • the terminal performs uplink cross-carrier data scheduling between the first serving cell and the second serving cell.
  • the second scheduling delay includes an uplink scheduling delay and a fourth scheduling delay configured by the network device, and the uplink scheduling delay is the same as that of the terminal in the first serving cell
  • the scheduling delay associated with the execution of uplink cross-carrier data transmission between the second serving cell, the fourth scheduling delay is associated with the first serving cell or the second serving cell in non-terrestrial network communication Additional scheduling delay K_offset.
  • the value of the uplink scheduling delay is T 2 determined in the above embodiment.
  • the UE when the UE sends uplink data, it will send it in advance based on the obtained TA (timing advance) value. For this reason, it is necessary to enhance the uplink and downlink timing in the existing protocol, that is, add an additional time interval (K_offset). Therefore, a fourth scheduling delay needs to be configured for both the first serving cell and the second serving cell, and since the network device can determine a corresponding additional scheduling delay for each UE in each serving cell, each UE is A fourth scheduling delay is configured on each serving cell.
  • the network may configure a K_offset value for cross-carrier scheduling for each cell in each cell group through RRC signaling or MAC CE.
  • the UE Due to the large propagation delay in NTN, if the UE needs to transmit in advance according to the obtained TA value, it means that there must be a large enough time interval between the PDCCH receiving moment and the PUSCH transmission resource position to ensure the UE's early transmission. And the time interval cannot be smaller than the size of the TA at least, and the size of the TA compensated by the UE may be the round-trip propagation delay between the satellite and the UE. Therefore, when the terminal performs uplink cross-carrier data transmission, it also needs to consider the fourth scheduling delay.
  • the value of the second scheduling delay is the value of the uplink scheduling delay and The sum of the values of the fourth scheduling delay.
  • the third scheduling delay value of the terminal is: K 2 +K_offset+T 2 , that is, the terminal starts data transmission at the time slot or subframe of K 2 +K_offset+T 2 .
  • K_offset at this time may be the K_offset value corresponding to the first serving cell, or the K_offset value corresponding to the second serving cell. Then the calculation method of the time slot Ks allocated for PUSCH at this time is:
  • n is the time slot or subframe number where the DCI is received.
  • the first serving cell Scell1 receives DCI at time slot A
  • the second serving cell Scell2 receives DCI at time slot B.
  • the first scheduling delay K 2 or only according to the first scheduling delay K 2 and the fourth scheduling delay K_offset determine the data transmission start position of the second serving cell, which may cause the data transmission start position to still be located in time slot A
  • the terminal does not have enough time to process the data. Therefore, in this case, the starting position of the data transmission of the second serving cell is determined to be K 2 +K_offset+T 2 , so that the data transmission of the second serving cell
  • the starting position is located after slot A, so that the terminal has enough time to perform timing advance and data processing. In this way, the reliability of uplink data transmission is guaranteed, and the actual scheduling delay will not be too large.
  • determining the second scheduling delay as the sum of the first uplink scheduling delay and the fourth scheduling delay can ensure the reliability of data transmission, and will not make the actual The scheduling delay is too large.
  • the value of the second scheduling delay is the value of the uplink scheduling delay and The difference between the values of the fourth scheduling delay.
  • the third scheduling delay value of the terminal is: K 2 +K_offset-T 2 , that is, the terminal starts data transmission at the time slot or subframe of K 2 +K_offset-T 2 .
  • the units of K2 and T2 are both time slots or subframes, and the K_offset at this time may be the K_offset value corresponding to the first serving cell, or the K_offset value corresponding to the second serving cell. Then the calculation method of the time slot Ks allocated for PUSCH at this time is:
  • n is the time slot or subframe number where the DCI is received.
  • the first serving cell Scell2 receives DCI at time slot A
  • the second serving cell Scell1 receives DCI at time slot B.
  • the first scheduling delay K 2 or only according to the first scheduling delay K 2 and the fourth scheduling delay K_offset to determine the data transmission start position of the second serving cell will cause the actual scheduling delay is too large, so determine the second
  • the starting position of the data transmission of the serving cell is K 2 +K_offset-T 2 , which can not only allow the terminal to have enough time to perform timing advance and data processing, but also solve the actual scheduling caused by the large propagation delay of the scheduled cell The problem of large delay can reduce the scheduling delay.
  • the second scheduling delay is determined to be the difference between the first uplink scheduling delay and the fourth scheduling delay, which can ensure the reliability of data transmission and reduce the scheduling delay at the same time .
  • the second scheduling delay is included in non-terrestrial network communication, and when the terminal performs uplink cross-carrier data transmission between the first serving cell and the second serving cell, the The scheduling delay associated with the first serving cell or the second serving cell.
  • the network determines when performing cross-carrier uplink transmission within each cell group (one is the scheduling cell and the other is the scheduled cell) according to the propagation delay difference corresponding to each cell group reported by the UE.
  • the second scheduling delay value corresponding to the scheduled cell that is, the network can configure a second scheduling delay value for cross-carrier scheduling for each cell in each cell group through RRC signaling or MAC CE.
  • the UE determines the scheduling delay according to the second scheduling delay value for cross-carrier scheduling corresponding to the scheduled carrier in the cell group, wherein different serving cells correspond to The second scheduling delay value may be different. It should be noted that at this time, when performing uplink cross-carrier data transmission, the terminal can still be guaranteed to have enough time to perform timing advance and data processing, so there is no need for the network device to configure a fourth scheduling delay K_offset.
  • the second scheduling delay configured by the network device for the second serving cell is M
  • the first serving cell Scell1 receives at time slot A DCI
  • the second serving cell Scell2 receives DCI at time slot B
  • the data transmission starting position of the second serving cell is determined only according to the first scheduling delay K2
  • the data transmission starting position may still be located in the time slot Before A, the data cannot be transmitted normally, so in this case, it is determined that the starting position of the data transmission of the second serving cell is K 2 +M, so that the starting position of the data transmission of the second serving cell is located in the time slot After A, the terminal has enough time to perform timing advance and data processing. In this way, the reliability of uplink data transmission is guaranteed, and the actual scheduling delay will not be too large.
  • the calculation method of the time slot Ks allocated for PUSCH at this time is:
  • n is the time slot or subframe number where the DCI is received.
  • An embodiment of the present application provides a data transmission device configured to perform the steps performed by the terminal in the above data transmission method, and the data transmission device provided in the embodiment of the present application may include units corresponding to the corresponding steps.
  • the embodiment of the present application may divide the functional units of the data transmission device according to the above method example, for example, each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the division of units in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 4 shows a possible structural diagram of the data transmission device involved in the above-mentioned embodiment.
  • the data transmission device 40 includes: a processing unit 401, which is used for the terminal to obtain information from The first scheduling delay and the second scheduling delay configured by the network device, the first scheduling delay is the scheduling delay indicated by the downlink control information DCI, and the second scheduling delay includes the interval between the DCI and the DCI A scheduling delay associated with carrier scheduling, and used for the terminal to determine a third scheduling delay according to the first scheduling delay and the second scheduling delay, and the third scheduling delay is used to instruct the terminal A starting location for data transmission; a transmission unit 402, configured for the terminal to transmit data from the starting location.
  • a processing unit 401 which is used for the terminal to obtain information from The first scheduling delay and the second scheduling delay configured by the network device, the first scheduling delay is the scheduling delay indicated by the downlink control information DCI, and the second scheduling delay includes the interval between the DCI and the DCI A scheduling delay associated with carrier scheduling, and used for the terminal to determine a third scheduling
  • the device 40 before acquiring the first scheduling delay and the second scheduling delay configured by the network device, the device 40 is further configured to: acquire the first propagation delay and the second propagation delay of the first serving cell
  • the second propagation delay of two serving cells, the first serving cell and the second serving cell are any two different serving cells among the at least two serving cells configured by the network device for the terminal, and the The terminal performs cross-carrier data transmission between the first serving cell and the second serving cell, the terminal receives scheduling DCI based on the first serving cell, and receives the scheduling DCI scheduling based on the second serving cell data
  • the first propagation delay is used to indicate the propagation delay between the terminal and the network device corresponding to the first serving cell
  • the second propagation delay is used to indicate the terminal and the network device corresponding to the first serving cell Propagation delay between network devices corresponding to the second serving cell.
  • the processing unit 401 is specifically configured to: according to the first propagation delay and the obtained The second propagation delay obtains the propagation delay difference corresponding to the first serving cell and the second serving cell; sends the propagation delay difference to the network device; obtains the configuration from the network device A second scheduling delay, where the second scheduling delay is determined by the network device according to the propagation delay difference.
  • the value of the propagation delay difference is an absolute value of a difference between the value of the first propagation delay and the value of the second propagation delay.
  • the processing unit 401 is specifically configured to: send the first scheduling delay to the network device Propagation delay and the second propagation delay; obtain the second scheduling delay from the configuration of the network device, the second scheduling delay is the network device according to the first propagation delay and the obtained Determination of the second propagation delay described above.
  • the first serving cell and the second serving cell are any two different serving cells among the at least two serving cells configured by the network device for the terminal, and the terminal is in Cross-carrier data transmission is performed between the first serving cell and the second serving cell, the terminal receives scheduling DCI based on the first serving cell, and receives data scheduled by the scheduling DCI based on the second serving cell.
  • the second scheduling delay includes downlink scheduling configured by the network device and associated with the terminal performing downlink cross-carrier data transmission between the first serving cell and the second serving cell delay.
  • the value of the first propagation delay is greater than the value of the second propagation delay, it is determined that the value of the third scheduling delay is equal to the value of the first scheduling delay The sum of the value and the value of the second scheduling delay.
  • the value of the first propagation delay is less than the value of the second propagation delay, it is determined that the value of the third scheduling delay is equal to the value of the first scheduling delay The difference between the value and the value of the second scheduling delay.
  • the processing unit 401 is specifically configured to: determine the third scheduling time delay
  • the value of the delay is the sum of the value of the first scheduling delay and the value of the second scheduling delay.
  • the second scheduling delay includes an uplink scheduling delay and a fourth scheduling delay configured by the network device, and the uplink scheduling delay is the same as that of the terminal in the first serving cell
  • the scheduling delay associated with the execution of uplink cross-carrier data transmission between the second serving cell, the fourth scheduling delay is associated with the first serving cell or the second serving cell in non-terrestrial network communication Additional scheduling delay K_offset.
  • the value of the second scheduling delay is the value of the uplink scheduling delay and The sum of the values of the fourth scheduling delay.
  • the value of the second scheduling delay is the value of the uplink scheduling delay and The difference between the values of the fourth scheduling delay.
  • the second scheduling delay is included in non-terrestrial network communication, and when the terminal performs uplink cross-carrier data transmission between the first serving cell and the second serving cell, the The scheduling delay associated with the first serving cell or the second serving cell.
  • the data transmission device 5 includes a processing module 50 and a communication module 51 .
  • the processing module 50 is used to control and manage the actions of the data transmission device, for example, the steps executed by the processing unit 401 and the transmission unit 402 shown in FIG. 4 and/or other processes for implementing the technology described herein.
  • the communication module 51 is used for the interaction between the data transmission device and other devices.
  • the data transmission device 5 may further include a storage module 52 , which is used for program codes and data of the data transmission device 40 , for example, to store the content stored in the above storage unit.
  • the processing module 50 can be a processor or a controller, such as a central processing unit (Central Processing Unit, CPU), a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), ASIC, FPGA or other programmable Logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, a combination of one or more microprocessors, a combination of DSP and a microprocessor, and so on.
  • the communication module 51 may be a transceiver, an RF circuit, or a communication interface and the like.
  • the storage module 52 may be a memory.
  • the above-mentioned data transmission device 40 can execute the steps performed by the terminal in the above-mentioned data transmission method shown in FIG. 3a.
  • An embodiment of the present application provides a data transmission device configured to perform the steps performed by the network device in the above data transmission method.
  • the data transmission device provided in the embodiment of the present application may include units corresponding to the corresponding steps.
  • the embodiment of the present application may divide the functional units of the data transmission device according to the above method example, for example, each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the division of units in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 6 shows a possible structural diagram of the data transmission device involved in the above-mentioned embodiment.
  • the data transmission device 60 includes: a sending unit 601, used for network equipment to send The terminal sends the first scheduling delay and the second scheduling delay, the first scheduling delay is the scheduling delay indicated by the DCI, and the second scheduling delay includes the scheduling associated with the cross-carrier scheduling indicated by the DCI Delay, the first scheduling delay and the second scheduling delay are used to determine a third scheduling delay, and the third scheduling delay is used to indicate a starting position for the terminal to perform data transmission.
  • the device 60 before sending the first scheduling delay and the second scheduling delay to the terminal, is further configured to: obtain the first serving cell and the second serving cell reported by the terminal Corresponding propagation delay difference, the first serving cell and the second serving cell are any two different serving cells among the at least two serving cells configured by the network device for the terminal, and the network device Perform cross-carrier scheduling between the first serving cell and the second serving cell, the network device sends scheduling DCI based on the first serving cell, and sends data scheduled by the scheduling DCI based on the second serving cell , the first propagation delay is used to indicate the propagation delay between the terminal and the network device corresponding to the first serving cell, and the second propagation delay is used to indicate the terminal and the second A propagation delay between network devices corresponding to the serving cell; determining the second scheduling delay according to the propagation delay difference.
  • the value of the propagation delay difference is an absolute value of a difference between the value of the first propagation delay and the value of the second propagation delay.
  • the device 60 before sending the first scheduling delay and the second scheduling delay to the terminal, is further configured to: acquire the first propagation time of the first serving cell reported by the terminal delay and a second propagation delay of the second serving cell; determining the second scheduling delay according to the first propagation delay and the second propagation delay.
  • the first serving cell and the second serving cell are any two different serving cells among the at least two serving cells configured by the network device for the terminal, and the network device Perform cross-carrier scheduling between the first serving cell and the second serving cell, the network device sends scheduling DCI based on the first serving cell, and sends data scheduled by the scheduling DCI based on the second serving cell .
  • the second scheduling delay includes a scheduling delay associated with the network device performing downlink cross-carrier scheduling between the first serving cell and the second serving cell.
  • the second scheduling delay includes an uplink scheduling delay and a fourth scheduling delay configured by the network device
  • the uplink scheduling delay is the The scheduling delay associated with performing uplink cross-carrier scheduling between the cell and the second serving cell
  • the fourth scheduling delay is the time delay associated with the first serving cell or the second serving cell in non-terrestrial network communication Additional scheduling delay K_offset.
  • the second scheduling delay is included in non-terrestrial network communication, and when the network device performs uplink cross-carrier scheduling between the first serving cell and the second serving cell, the The scheduling delay associated with the first serving cell or the second serving cell.
  • the data transmission device 7 includes a processing module 70 and a communication module 71 .
  • the processing module 70 is used to control and manage the actions of the data transmission device, for example, the steps performed by the sending unit 601 shown in FIG. 6 and/or other processes for implementing the technology described herein.
  • the communication module 71 is used for the interaction between the data transmission device and other devices.
  • the data transmission device 7 may further include a storage module 72 , which is used for program codes and data of the data transmission device 40 , for example, to store the content stored in the above storage unit.
  • the processing module 70 can be a processor or a controller, such as a central processing unit (Central Processing Unit, CPU), a general purpose processor, a digital signal processor (Digital Signal Processor, DSP), ASIC, FPGA or other programmable Logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, a combination of one or more microprocessors, a combination of DSP and a microprocessor, and so on.
  • the communication module 71 may be a transceiver, an RF circuit, or a communication interface and the like.
  • the storage module 72 may be a memory.
  • the above-mentioned data transmission device 60 can execute the steps performed by the network equipment in the above-mentioned data transmission method shown in FIG. 3a.
  • An embodiment of the present application also provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program enables the computer to execute the network Some or all of the steps described on the side device.
  • the embodiment of the present application also provides a computer program product, including a computer program or instruction, when the computer program or instruction is executed by a processor, it can realize some or all of the above-mentioned network-side device or terminal-side device described in the method embodiment. step.
  • the embodiment of the present application provides a chip, the chip is used for the terminal to obtain the first scheduling delay and the second scheduling delay configured by the network device, and the first scheduling delay is the scheduling indicated by the downlink control information DCI Delay, the second scheduling delay includes the scheduling delay associated with the cross-carrier scheduling indicated by the DCI, and is used for the terminal to determine the second scheduling delay according to the first scheduling delay and the second scheduling delay Three scheduling delays, where the third scheduling delay is used to indicate a start position for the terminal to perform data transmission; and is used for the terminal to transmit data from the start position.
  • An embodiment of the present application provides a chip module, including a transceiver component and a chip.
  • the chip is used for the terminal to obtain the first scheduling delay and the second scheduling delay from the configuration of the network device.
  • the first scheduling delay is the scheduling delay indicated by the downlink control information DCI
  • the second scheduling delay includes the scheduling delay associated with the cross-carrier scheduling indicated by the DCI, and is used by the terminal according to the first scheduling delay and
  • the second scheduling delay determines a third scheduling delay
  • the third scheduling delay is used to indicate a starting position for the terminal to perform data transmission; and is used for the terminal to transmit data from the starting position.
  • An embodiment of the present application provides a chip, the chip is used for a network device to send a first scheduling delay and a second scheduling delay to a terminal, the first scheduling delay is the scheduling delay indicated by the DCI, and the The second scheduling delay includes the scheduling delay associated with the cross-carrier scheduling indicated by the DCI, the first scheduling delay and the second scheduling delay are used to determine a third scheduling delay, and the third scheduling The delay is used to indicate the start position of the terminal for data transmission.
  • An embodiment of the present application provides a chip module, including a transceiver component and a chip, the chip is used for a network device to send a first scheduling delay and a second scheduling delay to a terminal, and the first scheduling delay is DCI
  • the indicated scheduling delay, the second scheduling delay includes the scheduling delay associated with the cross-carrier scheduling indicated by the DCI, the first scheduling delay and the second scheduling delay are used to determine the third Scheduling delay, where the third scheduling delay is used to indicate a starting position for the terminal to perform data transmission.
  • the steps of the methods or algorithms described in the embodiments of the present application may be implemented in the form of hardware, or may be implemented in the form of a processor executing software instructions.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read Only Memory, ROM), erasable programmable read-only memory ( Erasable Programmable ROM, EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically EPROM, EEPROM), registers, hard disk, removable hard disk, CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC may be located in an access network device, a target network device or a core network device.
  • the processor and the storage medium may also exist in the access network device, the target network device or the core network device as discrete components.
  • modules/units which may be software modules/units, hardware modules/units, or partly software modules/units and partly hardware modules/units.
  • each device of the application or integrated chip, and each module/unit contained in the product can be realized by hardware such as circuits, or at least some modules/units can be realized by software programs, which run on the integrated processing inside the chip.
  • each module/unit contained in it can be realized by means of hardware such as circuits, different modules/units
  • the units can be located in the same part of the chip module (such as a chip, a circuit module, etc.) or in different components, and at least part/unit can be implemented in the form of a software program, which runs on the remaining part of the integrated processor module/unit in the chip module.
  • the unit can be implemented by means of hardware such as circuits; for each device or product corresponding to or integrated with the terminal, the modules/units it contains can all be implemented by means of hardware such as circuits, and different modules/units can be located in the same component in the terminal (for example, Chips, circuit modules, etc.) or different components, or at least part of the modules/units can be implemented in the form of software programs, which run on the processor integrated in the terminal, and the remaining sub-modules/units can be implemented in hardware such as circuits.
  • the functions described in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (Digital Video Disc, DVD)), or a semiconductor medium (for example, a solid state disk (Solid State Disk, SSD) )wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital video disc (Digital Video Disc, DVD)
  • a semiconductor medium for example, a solid state disk (Solid State Disk, SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法及相关产品,终端获取来自网络设备配置的第一调度时延和第二调度时延,第一调度时延为下行控制信息DCI所指示的调度时延,第二调度时延包括与DCI指示的跨载波调度关联的调度时延;终端根据第一调度时延和第二调度时延确定第三调度时延,第三调度时延用于指示终端进行数据传输的起始位置;终端从起始位置传输数据。

Description

数据传输方法及相关产品 技术领域
本申请属于通信技术领域,具体涉及一种数据传输方法及相关产品。
背景技术
由于非地面网络(non-terrestrial network,NTN)通信系统中的传播时延远大于陆地网络通信系统的传播时延。因此,在对不同卫星对应的小区进行载波聚合时,会存在不同小区的下行数据到达时间不对齐的问题。因此,在NTN场景中,如何确定在跨载波调度过程中的调度时延是需要解决的问题。
发明内容
本申请实施例提供了一种数据传输方法及相关产品,以期确定在NTN场景中,网络设备与终端在跨载波调度过程中的调度时延,保证数据传输的可靠性。
第一方面,本申请实施例提供了一种数据传输方法,包括:
终端获取来自网络设备配置的第一调度时延和第二调度时延,所述第一调度时延为下行控制信息DCI所指示的调度时延,所述第二调度时延包括与所述DCI指示的跨载波调度关联的调度时延;
所述终端根据所述第一调度时延和所述第二调度时延确定第三调度时延,所述第三调度时延用于指示所述终端进行数据传输的起始位置;
所述终端从所述起始位置传输数据。
第二方面,本申请实施例提供了一种数据传输方法,包括:
网络设备向终端发送第一调度时延和第二调度时延,所述第一调度时延为DCI所指示的调度时延,所述第二调度时延包括与所述DCI指示的跨载波调度关联的调度时延,所述第一调度时延和所述第二调度时延用于确定第三调度时延,所述第三调度时延用于指示所述终端进行数据传输的起始位置。
第三方面,本申请实施例提供了一种数据传输装置,包括:处理单元,用于终端获取来自网络设备配置的第一调度时延和第二调度时延,所述第一调度时延为下行控制信息DCI所指示的调度时延,所述第二调度时延包括与所述DCI指示的跨载波调度关联的调度时延,以及用于所述终端根据所述第一调度时延和所述第二调度时延确定第三调度时延,所述第三调度时延用于指示所述终端进行数据传输的起始位置;传输单元,用于所述终端从所述起始位置传输数据。
第四方面,本申请实施例提供了一种数据传输装置,包括:发送单元,用于网络设备向终端发送第一调度时延和第二调度时延,所述第一调度时延为DCI所指示的调度时延,所述第二调度时延包括与所述DCI指示的跨载波调度关联的调度时延,所述第一调度时延和所述第二调度时延用于确定第三调度时延,所述第三调度时延用于指示所述终端进行数 据传输的起始位置。
第五方面,本申请实施例提供了一种终端,包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行本申请实施例第一方面中的步骤的。
第六方面,本申请实施例提供了一种网络设备,包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行本申请实施例第二方面中的步骤。
第七方面,本申请实施例提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如本申请实施例第一方面或第二方面中所描述的部分或全部步骤。
第八方面,本申请实施例提供了一种计算机程序产品,包括计算机程序或指令,该计算机程序或指令被处理器执行时实现如本申请实施例第一方面或第二方面任一方法中所描述的部分或全部步骤。
第九方面,本申请实施例提供了一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如本申请实施例第一方面或第二方面任一方法中所描述的部分或全部步骤。
第十方面,本申请实施例提供了一种芯片模组,包括本申请实施例第九方面中所描述的芯片。
可见,本实例中,在进行跨载波调度时,同时考虑第一调度时延和第二调度时延来确定最终的数据传输的起始位置,可以有效解决NTN场景下,跨载波调度过程中,由于不同小区存在较大的传播时延差所带来的调度时延过大或者过小的问题,可保证数据传输的可靠性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1a是本申请实施例提供的一种NTN通信系统的系统架构图;
图1b是本申请实施例提供的一种终端的结构示意图;
图1c是本申请实施例提供的一种网络设备的结构示意图;
图2a是本申请实施例提供的一种波束的覆盖范围内的差分时延示意图;
图2b是本申请实施例提供的一种卫星进行载波聚合时的的结构示意图;
图2c是本申请实施例提供的另一种卫星进行载波聚合时的的结构示意图
图2d是本申请实施例提供的一种传播时延示意图;
图3a是本申请实施例提供的一种数据传输方法的流程示意图;
图3b是本申请实施例提供的一种数据发送位置示意图;
图3c是本申请实施例提供另的一种数据发送位置示意图;
图3d是本申请实施例提供另的一种数据发送位置示意图;
图3e是本申请实施例提供另的一种数据发送位置示意图;
图3f是本申请实施例提供另的一种数据发送位置示意图;
图4是本申请实施例提供的一种数据传输装置的功能单元组成框图;
图5是本申请实施例提供的另一种数据传输装置的功能单元组成框图;
图6是本申请实施例提供的一种数据传输装置的功能单元组成框图;
图7是本申请实施例提供的一种数据传输装置的功能单元组成框图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
为了更好地理解本申请实施例的技术方案,下面将结合附图对本申请实施例中的技术方案进行描述。
如图1a所示,图1a是本申请实施例提供的一种NTN通信系统的系统架构图。所述NTN通信系统10包括终端110、卫星130、网关(gateway)140和网络设备150。卫星130发送的信号通常会在以其视场(field of view)为边界的给定服务区域(given service area)上产生一个或多个波束(beam footprint)120。在与终端进行通信时,可以是终端110直接与卫星130进行通信,即基站位于卫星130上,此时的卫星130可以看作是基站。还可以是终端与网关140或者网络设备150通信,此时的卫星130在系统中充当中继转发的角色,且网关140和网络设备150可以是不同的设备,也可以集成于同一个设备。终端110与卫星130之间的无线通信链路称为服务链路(service link),卫星130与网关140之间的无线通信链路称为供给链路(feeder link)。
本申请实施例中的终端20可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设 备、中继设备、车载设备、可穿戴设备,未来5G网络中的终端或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端等,本申请实施例对此并不限定。如图1b所示,本申请实施例终端中的终端可以包括一个或多个如下部件:处理器210、存储器220和通信接口230,处理器210分别与存储器220、通信接口230通信连接,存储器220还包括一个或多个程序221。
本申请实施例中的网络设备30可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者网元,或者该网络设备可以为中继设备、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备,5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成新无线(new radio,NR)通信系统中的基站(gNB)或传输点的网络节点,如基带单元(baseband unit,BBU),或,分布式单元(distributed unit,DU)等,本申请实施例并不限定。如图1c所示,本申请实施例中的源网络设备或目标网络设备可以包括一个或多个如下部件:处理器310、存储器320和通信接口330,处理器310分别与存储器320、通信接口330通信连接,存储器320还包括一个或多个程序321。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
在本申请实施例中,终端20或网络设备30包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端,或者,是终端中能够调用程序并执行程序的功能模块。
本申请涉及到的概念和术语的定义或解释如下。
跨载波调度:LTE-A(Long Term Evolution Advanced,高级长期演进)R10(Release 10,版本10)引入了CA(Carrier Aggregation,载波聚合)特性,允许一个UE(User’s Equipment,用户设备)同时聚合多个载波,这多个载波共同服务于该UE,并支持上/下行共享信道的跨载波调度。跨载波调度的引入,主要是为了解决实际系统中,某CC(Component Carrier,成员载波)的PDCCH(Physical Downlink Control Channel,物理下行控制信道)分配失败率高或PDCCH信道质量差,而导致该CC的调度信令无法成功传输以致对系统性能造成影响。
采用载波聚合,需要基站发送指示各个载波的调度信令。目前协议支持各载波独立调度和跨载波调度两种调度方式。其中,前者与LTE R8/9系统相同,各个载波上的物理下行控制信道(Physical Downlink Control Channel,PDCCH)指示自身的PDSCH(Physical Downlink Shared Channel,物理下行共享信道)和PUSCH(Physical Uplink Shared Channel,物理上行共享信道)调度信令;后者允许SCC(Secondary Component Carrier,辅载波)的调度信令通过PCC(Primary Component Carrier,主载波)的PDCCH信道承载。通过配置跨载波调度,使得在同一个子帧,单个CC上可能需要同时传输针对同一个UE的多个不同CC的调度信令,从而可以提高调度信令成功传输的概率,充分利用载波上的PDCCH资源。
NTN通信系统:在NTN场景下,一个小区由一个或者多个波束组成,由于卫星距离地面较远,且卫星形成的波束或者小区的覆盖范围比较大,因此会导致在波束或者小区的覆盖范围内存在较大的差分时延。小区或者波束覆盖范围内的最大差分时延是指:在某一个小区或者波束覆盖范围内,距卫星最远的位置对应的传播时延的值与距卫星最近的位置对应的传播时延的值之差。如图2a所示,假设D1为卫星到波束覆盖范围的最近距离,D2为卫星到波束覆盖范围的最远距离,由于传播时延可以根据传输信道长度和传输介质中信号的传播速率来计算,且在NTN场景中,卫星的运转是基于特定的轨道,其运动是有规律的,因此,由卫星运动所带来的传播时延变化是有规律且可以预测的。因此可以计算出一个小区或者波束覆盖区域对应的最大差分时延。例如同步卫星最大的差分时延的值的2倍是20.6ms。
目前,由于不同卫星(包括同一轨道的不同卫星以及不同轨道上的不同卫星)与终端的距离存在很大的差异,导致终端接收不同卫星下发的数据时存在较大的时延差。例如对于不同轨道卫星之间进行CA时,由于不同轨道之间的高度差可达几百甚至几万千米,因此这种场景下,不同小区之间的时延差可达几十甚至几百毫秒。而对于同一轨道的卫星进行CA时,如图2b所示,以地球固定波束为例子,同一轨道上的3个卫星对应的小区进行CA,不同小区之间也会存在几ms至数十ms的时延差。对于同一卫星不同基站进行CA时,如图2c所示,由于小区或波束的最大差分时延值可达10ms,因此,feeder link也会存在较大的时延差,使得此种情况下,不同小区之间也会存在较大的时延差,例如该时延差在3ms-10ms之间。
因此,在NTN场景中,对小区或载波进行载波聚合时,从终端侧来看,会存在不同小区(主小区/辅小区)的下行数据到达时间不对齐的问题。如图2d所示,网络设备为终端共配置了3个服务器小区,包括一个主小区Pcell和两个辅小区,分别是Scell1和Scell2, 假设基站侧对不同小区的数据是同步发送的,可以看出,不同服务小区因为传播时延差距较大,而出现了下行时间同步不对齐的情况。且该不对齐的程度可达几十ms,甚至上百ms。但由于基站侧是不知道不同载波或小区的时延差值的,因此,在NTN场景中,基站与终端如何确定跨载波调度的调度时延是需要解决的问题。
针对上述问题,本申请实施例提供了一种数据传输方法及相关产品,下面结合附图进行详细说明。
请参阅图3a,图3a是本申请实施例提供的一种数据传输方法的流程示意图。如图所示,所述方法包括以下步骤:
步骤301,终端获取来自网络设备配置的第一调度时延和第二调度时延;
步骤302,所述终端根据所述第一调度时延和所述第二调度时延确定第三调度时延,所述第三调度时延用于指示所述终端进行数据传输的起始位置;
步骤303,所述终端从所述起始位置传输数据。
其中,所述第一调度时延为下行控制信息DCI所指示的调度时延,所述第二调度时延包括与所述DCI指示的跨载波调度关联的调度时延。对于上行数据调度来说,DCI中指示的第一调度时延值为K2,UE发送PUSCH的时隙Ks由K 2确定,Ks的计算方式为:
Figure PCTCN2022129826-appb-000001
对于下行数据调度来说,DCI中指示的第一调度时延值为K 0,为PDSCH分配的时隙为Ks,Ks的计算方式为:
Figure PCTCN2022129826-appb-000002
其中,n为接收DCI所在的时隙或子帧号。
因此在本方案中,确定终端进行数据传输的起始位置时,同时考虑到DCI中指示的第一调度时延K 0或K2,以及网络设备为终端进行跨载波调度配置的第二调度时延。
可见,本实例中,在进行跨载波调度时,同时考虑第一调度时延和第二调度时延来确定最终的数据传输的起始位置,可以有效解决NTN场景下跨载波调度过程中,由于不同小区存在较大的传播时延差所带来的调度时延过大或者过小的问题,可保证数据传输的可靠性。
在一个可能的实例中,所述获取来自网络设备配置的第一调度时延和第二调度时延之前,所述方法还包括:获取第一服务小区的第一传播时延和第二服务小区的第二传播时延,所述第一传播时延用于指示所述终端与所述第一服务小区对应的网络设备之间的传播时延,所述第二传播时延用于指示所述终端与所述第二服务小区对应的网络设备之间的传播时延。
具体实现中,当网络设备为终端配置的服务小区包括多个时(包括主小区和辅小区),终端可以获取这多个服务器小区中每个服务小区的传播时延,得到多个传播时延值。每个传播时延值分别用于指示其对应的服务小区对应的网络设备与终端之间的传播时延。终端在获取每个服务小区的传播时延时,可以是先根据每个服务小区对应卫星的星历信息以及终端自身的位置信息计算出终端到卫星之间的来回传播时延,这段传播时延也可以称作为 终端级别的定时提前量。然后终端根据网络设备指示的公共TA参数确定公共TA的大小,公共TA即为参考点到卫星之间的来回传播时延(Round trip Time,RTT),其中参考点可以是卫星,也可以是地面基站,也可以是服务链路或者反馈链路任何位置。再然后终端接收网络设备指示的媒体接入层控制信令(MAC CE)的生效时延值K_mac。因此,每个服务小区的传播时延为终端到卫星之间的来回传播时延、公共TA的大小和生效时延值K_mac之和的二分之一。
在一个可能的实例中,所述第一服务小区与所述第二服务小区为所述网络设备为所述终端配置的至少两个服务小区中任意两个不同的服务小区,且所述终端在所述第一服务小区和所述第二服务小区间执行跨载波数据传输,所述终端基于所述第一服务小区接收调度DCI,基于所述第二服务小区接收所述调度DCI调度的数据。
其中,在CA场景中,不同小区之间可以相互进行数据调度,即终端接收调度DCI以及所述调度DCI调度的数据是在不同的载波或小区,接收调度DCI的载波或小区称为调度载波或调度小区,接收所述调度DCI调度的数据的载波或小区称为被调度载波或被调度小区。因此第一服务小区为调度小区,第二服务小区为被调度小区。
在一个可能的实例中,所述获取来自所述网络设备配置的第一调度时延和第二调度时延,包括:根据所述第一传播时延和所述第二传播时延获取所述第一服务小区与所述第二服务小区对应的传播时延差;向所述网络设备发送所述传播时延差;获取来自所述网络设备配置的所述第二调度时延,所述第二调度时延为所述网络设备根据所述传播时延差确定。
其中,终端在获取了第一服务小区和第二服务小区的传播时延时,可以根据第一传播时延和第二传播时延得到第一服务小区和第二服务小区对应的的传播时延差值,然后将该传播时延差值上报给网络设备,网络设备可以根据该传播时延差值确定第一服务小区和第二服务小区进行跨载波数据传输时的额外调度时延值。第二调度时延就包括该额外调度时延值。需要说明的是,网络设备为上行数据调度和下行数据调度配置的额外调度时延值可以不同,即网络设备为下行数据传输配置的额外调度时延值:下行调度时延值为T 1,网络设备为上行数据传输配置的额外调度时延值:上行调度时延值为T 2。且网络设备在配置T1或T 2时可以根据终端的处理能力确定。
具体实现中,终端在发送第一服务小区和第二服务小区对应的传播时延差时,可以同时向网络设备发送其他任意两个服务小区对应的传播时延差。由于终端可以先获取网络设备为终端配置的所有服务小区的传播时延,因此在确定第二调度时延时,终端可以先将所有的服务小区进行任意两两组合,得到多个小区组,然后根据事先获取的所有服务小区的传播时延,得到每个小区组的传播时延差,并在进行传播时延差上报时,将所有服务小区的传播时延差都上报给网络设备,网络设备再以此确定出每个小区组对应的与跨载波调度关联的额外调度时延。当网络设备将每个小区组的与跨载波调度关联的额外调度时延值配置给终端后,终端就可以获知每个小区组对应的与跨载波调度关联的额外调度时延。在进行跨载波数据传输时,终端先根据DCI中指示的内容确定出用于进行跨载波数据传输的两个服务小区,然后确定这两个服务小区对应的小区组,然后根据该小区组对应的与跨载波调度关联的额外调度时延确定出第二调度时延。需要注意的是,本方案中所述的所有服务 小区为网络设备为终端配置的服务小区,包括主小区和辅小区。
在一个可能的实例中,所述获取来自所述网络设备配置的第一调度时延和第二调度时延,包括:向所述网络设备发送所述第一传播时延和所述第二传播时延;获取来自所述网络设备配置的所述第二调度时延,所述第二调度时延为所述网络设备根据所述第一传播时延和所述第二传播时延确定。
其中,在终端获取了第一服务小区和第二服务小区的调度时延后,可以直接将第一调度时延和第二调度时延发送给网络设备,由网络设备根据第一调度时延和第二调度时延确定第一服务小区和第二服务小区对应的调度时延差,并最终根据调度时延差确定第一服务小区和第二服务小区进行跨载波数据调度时的额外调度时延。
具体实现中,终端在发送第一传播时延和第二传播时延时,还可以同时发送其他服务小区的传播时延,即终端可以同时将所有服务小区的传播时延都发送给网络设备,网络设备根据所有服务小区的传播时延,确定出每个小区组对应的与跨载波调度关联额外调度时延,然后网络设备将每个小区组对应的与跨载波调度关联的额外调度时延都发送给终端。
在一个可能的实例中,所述传播时延差的数值为所述第一传播时延的数值与所述第二传播时延的数值之差的绝对值。
其中,在确定每个服务小区组对应的与跨载波调度关联的额外调度时延时,可以由终端获取每个小区组中包括的两个服务小区的传播时延的数值之差的绝对值,得到每个小区组的传播时延差值。或者由终端将所有服务小区的传播时延都发送给网络设备,网络设备将任意两个传播时延进行做差运算得到多个传播时延差值,然后根据传播时延差值确定其对应的服务小区为一个小区组。或者网络设备先根据获得的传播时延将所有服务小区进行任意两两组合,得到多个小区组,然后再对每个小区组中对应的传播时延进行做差运算。例如,网络设备共为终端配置有3个服务小区,分别为小区A、小区B和小区C,终端先分别获取小区A、小区B和小区C的传播时延,得到传播时延1、传播时延2和传播时延3。然后终端可以先获取多个小区组,得到小区组a、小区组b和小区组c,其中,小区组a中包括小区A和小区B,小区组b中包括小区B和小区C,小区组c中包括小区A和小区C,因此可以确定出小区组a对应的传播时延值为传播时延1的值与传播时延2的值之差的绝对值,其他小区组对应的传播时延差值计算方式以此类推。
在一个可能的实例中,所述终端通过高层信令向所述网络设备发送所述第一服务小区和所述第二服务小区对应的传播时延差。或者所述终端通过高层信令向所述网络设备发送所述第一传播时延和所述第二传播时延。
其中,高层信令包括无线资源控制(Radio Resource Control,RRC)消息或者媒体接入层控制信令(MAC CE)。终端也可以通过高层信令同时发送小区组对应的传播时延差,或者通过高层信令同时发送其他服务小区的传播时延。
可见,根据进行跨载波调度的两个服务小区的传播时延确定出第二调度时延,使得在跨载波调度场景中,终端在根据第一调度时延和第二调度时延进行数据传输时,可以保证数据传输的可靠性,且不会造成实际调度时延过大等问题。
在一个可能的实例中,所述第二调度时延包括所述网络设备配置的与所述终端在所述 第一服务小区和所述第二服务小区间执行下行跨载波数据传输关联的下行调度时延。
其中,终端根据DCI指示的内容确定出了用于进行跨载波数据调度的两个服务小区后,可以从网络设备配置的多个额外调度时延值中确定出这两个服务小区对应的第二调度时延,即在进行下行数据传输时,该第二调度时延包括下行调度时延T 1,在进行上行数据传输时,该第二调度时延包括上行调度时延T 2
在一个可能的实例中,在所述第一传播时延的数值大于所述第二传播时延的数值的情况下,确定所述第三调度时延的数值为所述第一调度时延的数值与所述第二调度时延的数值之和。
其中,对于下行跨载波数据传输,当调度小区或载波的传播时延值大于被调度小区或载波的传播时延值时,则终端的第三调度时延值为:K 0+T 1,即终端在K 0+T 1的时隙或子帧时开始数据传输。需要注意的是,K 0与T 1的单元均为时隙或者子帧。则此时为PDSCH分配的时隙Ks的计算方式为:
Figure PCTCN2022129826-appb-000003
其中,n为接收DCI所在的时隙或子帧号。
例如图3b所示,对于下行跨载波数据传输,由于两个服务小区间的传播时延差较大,因此第一服务小区Scell1在时隙A处接收DCI,第二服务小区Scell2在时隙B处接收DCI,若仅根据第一调度时延K 0确定第二服务小区的数据发送起始位置,则可能导致该数据发送起始位置仍位于时隙A之前,则使得终端没有足够时间对数据进行处理,因此在此种情况下,确定第二服务小区的数据传输的起始位置为K 0+T 1,使得第二服务小区的数据传输的起始位置位于时隙A之后,使得终端有足够的时间可以对数据进行处理。以此保证下行数据传输的可靠性,且不会使得实际的调度时延过大。当然,对于上行跨载波数据传输来说,第二服务小区的数据传输的起始位置可以为:K 2+T 2。则此时为PUSCH分配的时隙Ks的计算方式为:
Figure PCTCN2022129826-appb-000004
其中,n为接收DCI所在的时隙或子帧号。
可见,本实例中,确定第三调度时延为第一调度时延与第二调度时延之和,可以保证数据传输的可靠性,且不会使得实际的调度时延过大。
在一个可能的实例中,在所述第一传播时延的数值小于所述第二传播时延的数值的情况下,确定所述第三调度时延的数值为所述第一调度时延的数值与所述第二调度时延的数值之差。
其中,对于下行跨载波数据传输,当调度小区或载波的传播时延值小于被调度小区或载波的传播时延值时,则终端的第三调度时延值为:K 0-T 1,即终端在K 0-T 1的时隙或子帧时开始数据传输。需要注意的是,K 0与T 1的单元均为时隙或者子帧。则此时为PDSCH分配的时隙Ks的计算方式为:
Figure PCTCN2022129826-appb-000005
其中,n为接收DCI所在的时隙或子帧号。
例如图3c所示,对于下行跨载波数据传输,由于两个服务小区间的传播时延差较大,因此第一服务小区Scell2在时隙A处接收DCI,第二服务小区Scell1在时隙B处接收DCI,若仅根据第一调度时延K 0确定第二服务小区的数据发送起始位置,则会导致实际调度时延过大,因此确定第二服务小区的数据发送的起始位置为K 0-T 1,既可以保证终端有足够的时间对数据进行处理,又可以解决被调度小区传播时延大所带来的实际调度时延大问题,降低调度时延。当然,对于上行跨载波数据传输来说,第二服务小区的数据传输的起始位置可以为:K 2-T 2。则此时为PUSCH分配的时隙Ks的计算方式为:
Figure PCTCN2022129826-appb-000006
其中,n为接收DCI所在的时隙或子帧号。
可见,本实例中,确定第三调度时延为第一调度时延与第二调度时延之差的绝对值,可以保证数据传输的可靠性,且降低调度时延。
在一个可能的实例中,所述根据所述第一调度时延和所述第二调度时延确定第三调度时延,包括:确定所述第三调度时延的数值为所述第一调度时延的数值与所述第二调度时延的数值之和。
其中,所述终端在所述第一服务小区和所述第二服务小区间执行上行跨载波数据调度。
在一个可能的实例中,所述第二调度时延包括所述网络设备配置的上行调度时延和第四调度时延,所述上行调度时延为与所述终端在所述第一服务小区和所述第二服务小区间执行上行跨载波数据传输关联的调度时延,所述第四调度时延为在非陆地网络通信中与所述第一服务小区或所述第二服务小区关联的额外调度时延K_offset。
其中,所述上行调度时延的值为上述实施例所确定的T 2。在NTN场景中,UE在发送上行数据时会基于所获得的TA(timing advance)值,进行提前发送,基于这个原因需要对现有协议中的上下行定时进行增强,即加入一个额外的时间间隔(K_offset)。因此,需要为第一服务小区和第二服务小区均配置一个第四调度时延,而由于网络设备可以为每个UE在每个服务小区确定一个对应的额外调度时延,因此每个UE在每个服务小区上都会配置一个第四调度时延。具体实现中,网络可以通过RRC信令或者MAC CE针对每个小区组中每个小区配置一个用于跨载波调度的K_offset取值。
由于在NTN中存在很大的传播时延,如果UE需要根据获取的TA值进行提前发送,意味着PDCCH接收时刻与PUSCH发送资源位置之间必须有足够大的时间间隔保证UE的提前发送。且该时间间隔至少不能小于TA的大小,UE补偿TA的大小可能是卫星与UE之间的来回传播时延。因此,在终端进行上行跨载波数据传输时,还需要考虑第四调度时延。
在一个可能的实例中,在所述第一传播时延的数值大于所述第二传播时延的数值的情况下,所述第二调度时延的数值为所述上行调度时延的数值与所述第四调度时延的数值之和。
其中,对于上行跨载波数据传输,当调度小区或载波的传播时延值大于被调度小区或 载波的传播时延值时,则终端的第三调度时延值为:K 2+K_offset+T 2,即终端在K 2+K_offset+T 2的时隙或子帧时开始数据传输。需要注意的是,K 2与T 2的单元均为时隙或者子帧,此时的K_offset可以是第一服务小区对应的K_offset值,也可以是第二服务小区对应的K_offset值。则此时为PUSCH分配的时隙Ks的计算方式为:
Figure PCTCN2022129826-appb-000007
其中,n为接收DCI所在的时隙或子帧号。
例如图3d所示,由于两个服务小区间的传播时延差较大,因此第一服务小区Scell1在时隙A处接收DCI,第二服务小区Scell2在时隙B处接收DCI,若仅根据第一调度时延K 2或仅根据第一调度时延K 2和第四调度时延K_offset确定第二服务小区的数据发送起始位置,则可能导致该数据发送起始位置仍位于时隙A之前,则使得终端没有足够时间对数据进行处理,因此在此种情况下,确定第二服务小区的数据传输的起始位置为K 2+K_offset+T 2,使得第二服务小区的数据传输的起始位置位于时隙A之后,使得终端有足够的时间来执行定时提前和数据处理。以此保证上行数据传输的可靠性,且不会使得实际的调度时延过大。
可见,本实例中,在进行上行跨载波数据传输时,确定第二调度时延为第上行调度时延与第四调度时延之和,可以保证数据传输的可靠性,且不会使得实际的调度时延过大。
在一个可能的实例中,在所述第一传播时延的数值小于所述第二传播时延的数值的情况下,所述第二调度时延的数值为所述上行调度时延的数值与所述第四调度时延的数值之差。
其中,对于上行跨载波数据传输,当调度小区或载波的传播时延值小于被调度小区或载波的传播时延值时,则终端的第三调度时延值为:K 2+K_offset-T 2,即终端在K 2+K_offset-T 2的时隙或子帧时开始数据传输。需要注意的是,K2与T2的单元均为时隙或者子帧,此时的K_offset可以是第一服务小区对应的K_offset值,也可以是第二服务小区对应的K_offset值。则此时为PUSCH分配的时隙Ks的计算方式为:
Figure PCTCN2022129826-appb-000008
其中,n为接收DCI所在的时隙或子帧号。
例如图3e所示,由于两个服务小区间的传播时延差较大,因此第一服务小区Scell2在时隙A处接收DCI,第二服务小区Scell1在时隙B处接收DCI,若仅根据第一调度时延K 2或仅根据第一调度时延K 2和第四调度时延K_offset确定第二服务小区的数据发送起始位置,则会导致实际调度时延过大,因此确定第二服务小区的数据发送的起始位置为K 2+K_offset-T 2,既可以使得终端有足够的时间来执行定时提前和数据处理,又可以解决被调度小区传播时延大所带来的实际调度时延大问题,降低调度时延。
可见,本实例中,在进行上行跨载波数据传输时,确定第二调度时延为第上行调度时延与第四调度时延之差,可以保证数据传输的可靠性,且同时降低调度时延。
在一个可能的实例中,所述第二调度时延包括在非陆地网络通信中,所述终端在所述第一服务小区和所述第二服务小区间执行上行跨载波数据传输时,与所述第一服务小区或所述第二服务小区关联的调度时延。
其中,对于上行跨载波数据传输,网络根据UE上报的各个小区组对应的传播时延差,确定在每个小区组之内进行跨载波上行传输(一个是调度小区,一个是被调度小区)时,被调度小区对应的第二调度时延值,即网络可以通过RRC信令或者MAC CE针对每个小区组中每个小区配置一个用于跨载波调度的第二调度时延值。当网络在某个小区组内执行跨载波数据调度,则UE根据小区组中被调度载波对应的用于跨载波调度的第二调度时延值确定调度时延,其中,不同的服务小区对应的第二调度时延值可以不同。需要说明的是,此时在进行上行跨载波数据传输时,依然可以保证终端有足够的时间来执行定时提前和数据处理,所以不需要网络设备在配置一个第四调度时延K_offset。
例如图3f所示,假设网络设备为第二服务小区配置的第二调度时延为M,由于两个服务小区间的传播时延差较大,因此第一服务小区Scell1在时隙A处接收DCI,第二服务小区Scell2在时隙B处接收DCI,若仅根据第一调度时延K 2确定第二服务小区的数据发送起始位置,则可能导致该数据发送起始位置仍位于时隙A之前,则使得数据无法正常传输,因此在此种情况下,确定第二服务小区的数据传输的起始位置为K 2+M,使得第二服务小区的数据传输的起始位置位于时隙A之后,使得终端有足够的时间来执行定时提前和数据处理。以此保证上行数据传输的可靠性,且不会使得实际的调度时延过大。则此时为PUSCH分配的时隙Ks的计算方式为:
Figure PCTCN2022129826-appb-000009
其中,n为接收DCI所在的时隙或子帧号。
本申请实施例提供了一种数据传输装置,用于执行以上数据传输方法中的终端所执行的步骤,本申请实施例提供的数据传输装置可以包括相应步骤所对应的单元。
本申请实施例可以根据上述方法示例对数据传输装置进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能单元的情况下,图4示出上述实施例中所涉及的数据传输装置的一种可能的结构示意图,数据传输装置40包括:处理单元401,用于终端获取来自网络设备配置的第一调度时延和第二调度时延,所述第一调度时延为下行控制信息DCI所指示的调度时延,所述第二调度时延包括与所述DCI指示的跨载波调度关联的调度时延,以及用于所述终端根据所述第一调度时延和所述第二调度时延确定第三调度时延, 所述第三调度时延用于指示所述终端进行数据传输的起始位置;传输单元402,用于所述终端从所述起始位置传输数据。
在一个可能的实例中,在所述获取来自网络设备配置的第一调度时延和第二调度时延之前,所述装置40还用于:获取第一服务小区的第一传播时延和第二服务小区的第二传播时延,所述第一服务小区与所述第二服务小区为所述网络设备为所述终端配置的至少两个服务小区中任意两个不同的服务小区,且所述终端在所述第一服务小区和所述第二服务小区间执行跨载波数据传输,所述终端基于所述第一服务小区接收调度DCI,基于所述第二服务小区接收所述调度DCI调度的数据,所述第一传播时延用于指示所述终端与所述第一服务小区对应的网络设备之间的传播时延,所述第二传播时延用于指示所述终端与所述第二服务小区对应的网络设备之间的传播时延。
在一个可能的实例中,在所述获取来自所述网络设备配置的第一调度时延和第二调度时延方面,所述处理单元401具体用于:根据所述第一传播时延和所述第二传播时延获取所述第一服务小区与所述第二服务小区对应的传播时延差;向所述网络设备发送所述传播时延差;获取来自所述网络设备配置的所述第二调度时延,所述第二调度时延为所述网络设备根据所述传播时延差确定。
在一个可能的实例中,所述传播时延差的数值为所述第一传播时延的数值与所述第二传播时延的数值之差的绝对值。
在一个可能的实例中,在所述获取来自所述网络设备配置的第一调度时延和第二调度时延方面,所述处理单元401具体用于:向所述网络设备发送所述第一传播时延和所述第二传播时延;获取来自所述网络设备配置的所述第二调度时延,所述第二调度时延为所述网络设备根据所述第一传播时延和所述第二传播时延确定。
在一个可能的实例中,所述第一服务小区与所述第二服务小区为所述网络设备为所述终端配置的至少两个服务小区中任意两个不同的服务小区,且所述终端在所述第一服务小区和所述第二服务小区间执行跨载波数据传输,所述终端基于所述第一服务小区接收调度DCI,基于所述第二服务小区接收所述调度DCI调度的数据。
在一个可能的实例中,所述第二调度时延包括所述网络设备配置的与所述终端在所述第一服务小区和所述第二服务小区间执行下行跨载波数据传输关联的下行调度时延。
在一个可能的实例中,在所述第一传播时延的数值大于所述第二传播时延的数值的情况下,确定所述第三调度时延的数值为所述第一调度时延的数值与所述第二调度时延的数值之和。
在一个可能的实例中,在所述第一传播时延的数值小于所述第二传播时延的数值的情况下,确定所述第三调度时延的数值为所述第一调度时延的数值与所述第二调度时延的数值之差。
在一个可能的实例中,在所述根据所述第一调度时延和所述第二调度时延确定第三调度时延方面,所述处理单元401具体用于:确定所述第三调度时延的数值为所述第一调度时延的数值与所述第二调度时延的数值之和。
在一个可能的实例中,所述第二调度时延包括所述网络设备配置的上行调度时延和第 四调度时延,所述上行调度时延为与所述终端在所述第一服务小区和所述第二服务小区间执行上行跨载波数据传输关联的调度时延,所述第四调度时延为在非陆地网络通信中与所述第一服务小区或所述第二服务小区关联的额外调度时延K_offset。
在一个可能的实例中,在所述第一传播时延的数值大于所述第二传播时延的数值的情况下,所述第二调度时延的数值为所述上行调度时延的数值与所述第四调度时延的数值之和。
在一个可能的实例中,在所述第一传播时延的数值小于所述第二传播时延的数值的情况下,所述第二调度时延的数值为所述上行调度时延的数值与所述第四调度时延的数值之差。
在一个可能的实例中,所述第二调度时延包括在非陆地网络通信中,所述终端在所述第一服务小区和所述第二服务小区间执行上行跨载波数据传输时,与所述第一服务小区或所述第二服务小区关联的调度时延。
在采用集成的模块的情况下,本申请实施例提供的数据传输装置的结构示意图如图5所示。在图5中,数据传输装置5包括处理模块50和通信模块51。处理模块50用于对数据传输装置的动作进行控制管理,例如,图4所示的处理单元401和传输单元402所执行的步骤和/或用于执行本文所描述的技术的其它过程。通信模块51用于数据传输装置与其他设备之间的交互。如图5所示,数据传输装置5还可以包括存储模块52,存储模块52用于数据传输装置40的程序代码和数据,例如存储上述存储单元所保存的内容。
其中,处理模块50可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块51可以是收发器、RF电路或通信接口等。存储模块52可以是存储器。
其中,上述方法实施例涉及的各场景的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。上述数据传输装置40可执行上述图3a所示的数据传输方法中终端所执行的步骤。
本申请实施例提供了一种数据传输装置,用于执行以上数据传输方法中的网络设备所执行的步骤,本申请实施例提供的数据传输装置可以包括相应步骤所对应的单元。
本申请实施例可以根据上述方法示例对数据传输装置进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能单元的情况下,图6示出上述实施例中所涉及的数据传输装置的一种可能的结构示意图,数据传输装置60包括:发送单元601,用于网络设备向终端发送第一调度时延和第二调度时延,所述第一调度时延为DCI所指示的调度时延, 所述第二调度时延包括与所述DCI指示的跨载波调度关联的调度时延,所述第一调度时延和所述第二调度时延用于确定第三调度时延,所述第三调度时延用于指示所述终端进行数据传输的起始位置。
在一个可能的实例中,在所述向终端发送第一调度时延和第二调度时延之前,所述装置60还用于:获取来自所述终端上报的第一服务小区与第二服务小区对应的传播时延差,所述第一服务小区与所述第二服务小区为所述网络设备为所述终端配置的至少两个服务小区中任意两个不同的服务小区,且所述网络设备在所述第一服务小区和所述第二服务小区间执行跨载波调度,所述网络设备基于所述第一服务小区发送调度DCI,基于所述第二服务小区发送所述调度DCI调度的数据,所述第一传播时延用于指示所述终端与所述第一服务小区对应的网络设备之间的传播时延,所述第二传播时延用于指示所述终端与所述第二服务小区对应的网络设备之间的传播时延;根据所述传播时延差确定所述第二调度时延。
在一个可能的实例中,所述传播时延差的数值为所述第一传播时延的数值与所述第二传播时延的数值之差的绝对值。
在一个可能的实例中,在所述向终端发送第一调度时延和第二调度时延之前,所述装置60还用于:获取来自所述终端上报的第一服务小区的第一传播时延和所述第二服务小区的第二传播时延;根据所述第一传播时延和所述第二传播时延确定所述第二调度时延。
在一个可能的实例中,所述第一服务小区与所述第二服务小区为所述网络设备为所述终端配置的至少两个服务小区中任意两个不同的服务小区,且所述网络设备在所述第一服务小区和所述第二服务小区间执行跨载波调度,所述网络设备基于所述第一服务小区发送调度DCI,基于所述第二服务小区发送所述调度DCI调度的数据。
在一个可能的实例中,所述第二调度时延包括与所述网络设备在所述第一服务小区和所述第二服务小区间执行下行跨载波调度关联的调度时延。
在一个可能的实例中,所述第二调度时延包括所述网络设备配置的上行调度时延和第四调度时延,所述上行调度时延为与所述网络设备在所述第一服务小区和所述第二服务小区间执行上行跨载波调度关联的调度时延,所述第四调度时延为在非陆地网络通信中与所述第一服务小区或所述第二服务小区关联的额外调度时延K_offset。
在一个可能的实例中,所述第二调度时延包括在非陆地网络通信中,所述网络设备在所述第一服务小区和所述第二服务小区间执行上行跨载波调度时,与所述第一服务小区或所述第二服务小区关联的调度时延。
在采用集成的模块的情况下,本申请实施例提供的数据传输装置的结构示意图如图7所示。在图7中,数据传输装置7包括处理模块70和通信模块71。处理模块70用于对数据传输装置的动作进行控制管理,例如,图6所示的发送单元601所执行的步骤和/或用于执行本文所描述的技术的其它过程。通信模块71用于数据传输装置与其他设备之间的交互。如图7所示,数据传输装置7还可以包括存储模块72,存储模块72用于数据传输装置40的程序代码和数据,例如存储上述存储单元所保存的内容。
其中,处理模块70可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),ASIC,FPGA 或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块71可以是收发器、RF电路或通信接口等。存储模块72可以是存储器。
其中,上述方法实施例涉及的各场景的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。上述数据传输装置60可执行上述图3a所示的数据传输方法中网络设备所执行的步骤。
本申请实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如上述方法实施例中网络侧设备所描述的部分或全部步骤。
本申请实施例还提供了了一种计算机程序产品,包括计算机程序或指令,该计算机程序或指令被处理器执行时实现如上述方法实施例中网络侧设备或终端侧设备所描述的部分或全部步骤。
本申请实施例提供了一种芯片,所述芯片用于终端获取来自网络设备配置的第一调度时延和第二调度时延,所述第一调度时延为下行控制信息DCI所指示的调度时延,所述第二调度时延包括与所述DCI指示的跨载波调度关联的调度时延,以及用于所述终端根据所述第一调度时延和所述第二调度时延确定第三调度时延,所述第三调度时延用于指示所述终端进行数据传输的起始位置;以及用于所述终端从所述起始位置传输数据。
本申请实施例提供了一种芯片模组,包括收发组件和芯片,所述芯片,用于终端获取来自网络设备配置的第一调度时延和第二调度时延,所述第一调度时延为下行控制信息DCI所指示的调度时延,所述第二调度时延包括与所述DCI指示的跨载波调度关联的调度时延,以及用于所述终端根据所述第一调度时延和所述第二调度时延确定第三调度时延,所述第三调度时延用于指示所述终端进行数据传输的起始位置;以及用于所述终端从所述起始位置传输数据。
本申请实施例提供了一种芯片,所述芯片用于网络设备向终端发送第一调度时延和第二调度时延,所述第一调度时延为DCI所指示的调度时延,所述第二调度时延包括与所述DCI指示的跨载波调度关联的调度时延,所述第一调度时延和所述第二调度时延用于确定第三调度时延,所述第三调度时延用于指示所述终端进行数据传输的起始位置。
本申请实施例提供了一种芯片模组,包括收发组件和芯片,所述芯片,用于网络设备向终端发送第一调度时延和第二调度时延,所述第一调度时延为DCI所指示的调度时延,所述第二调度时延包括与所述DCI指示的跨载波调度关联的调度时延,所述第一调度时延和所述第二调度时延用于确定第三调度时延,所述第三调度时延用于指示所述终端进行数据传输的起始位置。
本申请实施例所描述的方法或者算法的步骤可以以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、 电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于接入网设备、目标网络设备或核心网设备中。当然,处理器和存储介质也可以作为分立组件存在于接入网设备、目标网络设备或核心网设备中。
关于上述实施例中描的各个装置、产品包含模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。例如,对于应用或集成芯片的各个装置、产品其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者至少部分模块/单元可以采用软件程序的方式实现,该运行于芯片内部集成处理器,剩余的部分模块/单元可以采用电路等硬件方式实现;对于应于或集成芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同模块/单元可以位于芯片模组的同一件(例如片、电路模块等)或者不同组件中,至少部分/单元可以采用软件程序的方式实现,该软件程运行于芯片模组内部集成处理器剩余部分模块/单元可以采用电路等硬件方式实现;对于应或集成终端的各个装置、产品,其包含的模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者至少部分模块/单元可以采用软件程序的方式实现,该序运行于终端内部集成的处理器,剩余分模块/单元可以采用电路等硬件方式实现。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
以上所述的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (32)

  1. 一种数据传输方法,其特征在于,包括:
    终端获取来自网络设备配置的第一调度时延和第二调度时延,所述第一调度时延为下行控制信息DCI所指示的调度时延,所述第二调度时延包括与所述DCI指示的跨载波调度关联的调度时延;
    所述终端根据所述第一调度时延和所述第二调度时延确定第三调度时延,所述第三调度时延用于指示所述终端进行数据传输的起始位置;
    所述终端从所述起始位置传输数据。
  2. 根据权利要求1所述的方法,其特征在于,所述获取来自网络设备配置的第一调度时延和第二调度时延之前,所述方法还包括:
    获取第一服务小区的第一传播时延和第二服务小区的第二传播时延,所述第一传播时延用于指示所述终端与所述第一服务小区对应的网络设备之间的传播时延,所述第二传播时延用于指示所述终端与所述第二服务小区对应的网络设备之间的传播时延。
  3. 根据权利要求2所述的方法,其特征在于,所述获取来自所述网络设备配置的第一调度时延和第二调度时延,包括:
    根据所述第一传播时延和所述第二传播时延获取所述第一服务小区与所述第二服务小区对应的传播时延差;
    向所述网络设备发送所述传播时延差;
    获取来自所述网络设备配置的所述第二调度时延,所述第二调度时延为所述网络设备根据所述传播时延差确定。
  4. 根据权利要求3所述的方法,其特征在于,所述传播时延差的数值为所述第一传播时延的数值与所述第二传播时延的数值之差的绝对值。
  5. 根据权利要求2所述的方法,其特征在于,所述获取来自所述网络设备配置的第一调度时延和第二调度时延,包括:
    向所述网络设备发送所述第一传播时延和所述第二传播时延;
    获取来自所述网络设备配置的所述第二调度时延,所述第二调度时延为所述网络设备根据所述第一传播时延和所述第二传播时延确定。
  6. 根据权利要求2-5任一项所述的方法,其特征在于,所述第一服务小区与所述第二服务小区为所述网络设备为所述终端配置的至少两个服务小区中任意两个不同的服务小区,且所述终端在所述第一服务小区和所述第二服务小区间执行跨载波数据传输,所述终端基于所述第一服务小区接收调度DCI,基于所述第二服务小区接收所述调度DCI调度的数据。
  7. 根据权利要求6所述的方法,其特征在于,所述第二调度时延包括所述网络设备配置的与所述终端在所述第一服务小区和所述第二服务小区间执行下行跨载波数据传输关联的下行调度时延。
  8. 根据权利要求7所述的方法,其特征在于,在所述第一传播时延的数值大于所述第二传播时延的数值的情况下,确定所述第三调度时延的数值为所述第一调度时延的数值与所述第二调度时延的数值之和。
  9. 根据权利要求7所述的方法,其特征在于,在所述第一传播时延的数值小于所述第二传播时延的数值的情况下,确定所述第三调度时延的数值为所述第一调度时延的数值与所述第二调度时延的数值之差。
  10. 根据权利要求6所述的方法,其特征在于,所述根据所述第一调度时延和所述第二调度时延确定第三调度时延,包括:
    确定所述第三调度时延的数值为所述第一调度时延的数值与所述第二调度时延的数值之和。
  11. 根据权利要求10所述的方法,其特征在于,所述第二调度时延包括所述网络设备配置的上行调度时延和第四调度时延,所述上行调度时延为与所述终端在所述第一服务小区和所述第二服务小区间执行上行跨载波数据传输关联的调度时延,所述第四调度时延为在非陆地网络通信中与所述第一服务小区或所述第二服务小区关联的额外调度时延K_offset。
  12. 根据权利要求11所述的方法,其特征在于,在所述第一传播时延的数值大于所述第二传播时延的数值的情况下,所述第二调度时延的数值为所述上行调度时延的数值与所述第四调度时延的数值之和。
  13. 根据权利要求11所述的方法,其特征在于,在所述第一传播时延的数值小于所述第二传播时延的数值的情况下,所述第二调度时延的数值为所述上行调度时延的数值与所述第四调度时延的数值之差。
  14. 根据权利要求10所述的方法,其特征在于,所述第二调度时延包括在非陆地网络通信中,所述终端在所述第一服务小区和所述第二服务小区间执行上行跨载波数据传输时,与所述第一服务小区或所述第二服务小区关联的调度时延。
  15. 一种数据传输方法,其特征在于,包括:
    网络设备向终端发送第一调度时延和第二调度时延,所述第一调度时延为DCI所指示的调度时延,所述第二调度时延包括与所述DCI指示的跨载波调度关联的调度时延,所述第一调度时延和所述第二调度时延用于确定第三调度时延,所述第三调度时延用于指示所述终端进行数据传输的起始位置。
  16. 根据权利要求15所述的方法,其特征在于,所述向终端发送第一调度时延和第二调度时延之前,所述方法还包括:
    获取来自所述终端上报的第一服务小区与第二服务小区对应的传播时延差,所述第一传播时延用于指示所述终端与所述第一服务小区对应的网络设备之间的传播时延,所述第二传播时延用于指示所述终端与所述第二服务小区对应的网络设备之间的传播时延;
    根据所述传播时延差确定所述第二调度时延。
  17. 根据权利要求16所述的方法,其特征在于,所述传播时延差的数值为所述第一传播时延的数值与所述第二传播时延的数值之差的绝对值。
  18. 根据权利要求15所述的方法,其特征在于,所述向终端发送第一调度时延和第二调度时延之前,所述方法还包括:
    获取来自所述终端上报的第一服务小区的第一传播时延和所述第二服务小区的第二传播时延;
    根据所述第一传播时延和所述第二传播时延确定所述第二调度时延。
  19. 根据权利要求16-18任一项所述的方法,其特征在于,所述第一服务小区与所述第二服务小区为所述网络设备为所述终端配置的至少两个服务小区中任意两个不同的服务小区,且所述网络设备在所述第一服务小区和所述第二服务小区间执行跨载波调度,所述网络设备基于所述第一服务小区发送调度DCI,基于所述第二服务小区发送所述调度DCI调度的数据。
  20. 根据权利要求19所述的方法,其特征在于,所述第二调度时延包括与所述网络设备在所述第一服务小区和所述第二服务小区间执行下行跨载波调度关联的调度时延。
  21. 根据权利要求19所述的方法,其特征在于,所述第二调度时延包括所述网络设备配置的上行调度时延和第四调度时延,所述上行调度时延为与所述网络设备在所述第一服务小区和所述第二服务小区间执行上行跨载波调度关联的调度时延,所述第四调度时延为在非陆地网络通信中与所述第一服务小区或所述第二服务小区关联的额外调度时延K_offset。
  22. 根据权利要求19所述的方法,其特征在于,所述第二调度时延包括在非陆地网络通信中,所述网络设备在所述第一服务小区和所述第二服务小区间执行上行跨载波调度时,与所述第一服务小区或所述第二服务小区关联的调度时延。
  23. 一种数据传输装置,其特征在于,包括:
    处理单元,用于终端获取来自网络设备配置的第一调度时延和第二调度时延,所述第一调度时延为下行控制信息DCI所指示的调度时延,所述第二调度时延包括与所述DCI指示的跨载波调度关联的调度时延,以及用于所述终端根据所述第一调度时延和所述第二调度时延确定第三调度时延,所述第三调度时延用于指示所述终端进行数据传输的起始位置;
    传输单元,用于所述终端从所述起始位置传输数据。
  24. 一种数据传输装置,其特征在于,包括:
    发送单元,用于网络设备向终端发送第一调度时延和第二调度时延,所述第一调度时延为DCI所指示的调度时延,所述第二调度时延包括与所述DCI指示的跨载波调度关联的调度时延,所述第一调度时延和所述第二调度时延用于确定第三调度时延,所述第三调度时延用于指示所述终端进行数据传输的起始位置。
  25. 一种终端,其特征在于,包括处理器、存储器,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求1-14任一项所述的方法中的步骤的指令。
  26. 一种网络设备,其特征在于,包括处理器、存储器,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求15-22任一项所述的方法中的步骤的指令。
  27. 一种计算机可读存储介质,其特征在于,存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-14任一项或权利要求15-22任一项所述的方法。
  28. 一种计算机程序产品,包括计算机程序或指令,其特征在于,该计算机程序或指令被处理器执行时实现权利要求1-14任一项或权利要求15-22任一项所述方法的步骤。
  29. 一种芯片,其特征在于,
    所述芯片,用于终端获取来自网络设备配置的第一调度时延和第二调度时延,所述第一调度时延为下行控制信息DCI所指示的调度时延,所述第二调度时延包括与所述DCI指示的跨载波调度关联的调度时延;以及用于所述终端根据所述第一调度时延和所述第二调度时延确定第三调度时延,所述第三调度时延用于指示所述终端进行数据传输的起始位置;以及用于所述终端从所述起始位置传输数据。
  30. 一种芯片模组,其特征在于,包括收发组件和芯片,
    所述芯片,用于终端获取来自网络设备配置的第一调度时延和第二调度时延,所述第一调度时延为下行控制信息DCI所指示的调度时延,所述第二调度时延包括与所述DCI指示的跨载波调度关联的调度时延;以及用于所述终端根据所述第一调度时延和所述第二调度时延确定第三调度时延,所述第三调度时延用于指示所述终端进行数据传输的起始位置;以及用于所述终端从所述起始位置传输数据。
  31. 一种芯片,其特征在于,
    所述芯片,用于网络设备向终端发送第一调度时延和第二调度时延,所述第一调度时延为DCI所指示的调度时延,所述第二调度时延包括与所述DCI指示的跨载波调度关联的调度时延,所述第一调度时延和所述第二调度时延用于确定第三调度时延,所述第三调度时延用于指示所述终端进行数据传输的起始位置。
  32. 一种芯片模组,其特征在于,包括收发组件和芯片,
    所述芯片,用于网络设备向终端发送第一调度时延和第二调度时延,所述第一调度时延为DCI所指示的调度时延,所述第二调度时延包括与所述DCI指示的跨载波调度关联的调度时延,所述第一调度时延和所述第二调度时延用于确定第三调度时延,所述第三调度时延用于指示所述终端进行数据传输的起始位置。
PCT/CN2022/129826 2021-11-05 2022-11-04 数据传输方法及相关产品 WO2023078385A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111310512.4 2021-11-05
CN202111310512.4A CN116095728A (zh) 2021-11-05 2021-11-05 数据传输方法及相关产品

Publications (1)

Publication Number Publication Date
WO2023078385A1 true WO2023078385A1 (zh) 2023-05-11

Family

ID=86197887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129826 WO2023078385A1 (zh) 2021-11-05 2022-11-04 数据传输方法及相关产品

Country Status (2)

Country Link
CN (1) CN116095728A (zh)
WO (1) WO2023078385A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117320168A (zh) * 2023-11-24 2023-12-29 中国星网网络系统研究院有限公司 上行及下行数据传输调度方法、装置及cu设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109151983A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 一种信息的发送方法、接收方法和网络设备以及终端设备
CN111586848A (zh) * 2019-02-15 2020-08-25 电信科学技术研究院有限公司 一种调度时序确定方法、终端及网络侧设备
WO2021072609A1 (zh) * 2019-10-14 2021-04-22 Oppo广东移动通信有限公司 无线通信的方法及设备
WO2021155596A1 (zh) * 2020-02-07 2021-08-12 Oppo广东移动通信有限公司 信息指示方法、装置、设备、系统及存储介质
CN115190081A (zh) * 2021-04-02 2022-10-14 展讯半导体(南京)有限公司 一种数据传输方法、通信装置、芯片及模组设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109151983A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 一种信息的发送方法、接收方法和网络设备以及终端设备
CN111586848A (zh) * 2019-02-15 2020-08-25 电信科学技术研究院有限公司 一种调度时序确定方法、终端及网络侧设备
WO2021072609A1 (zh) * 2019-10-14 2021-04-22 Oppo广东移动通信有限公司 无线通信的方法及设备
WO2021155596A1 (zh) * 2020-02-07 2021-08-12 Oppo广东移动通信有限公司 信息指示方法、装置、设备、系统及存储介质
CN115190081A (zh) * 2021-04-02 2022-10-14 展讯半导体(南京)有限公司 一种数据传输方法、通信装置、芯片及模组设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117320168A (zh) * 2023-11-24 2023-12-29 中国星网网络系统研究院有限公司 上行及下行数据传输调度方法、装置及cu设备
CN117320168B (zh) * 2023-11-24 2024-03-08 中国星网网络系统研究院有限公司 上行及下行数据传输调度方法、装置及cu设备

Also Published As

Publication number Publication date
CN116095728A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2018202178A1 (zh) 波束恢复方法及装置
JP2022125271A (ja) ビームフォーミングに関連する端末装置、基地局、及び、方法
US11638222B2 (en) Power determining method and apparatus
CN107624260A (zh) Ta获取方法和装置
WO2022082757A1 (zh) 通信方法和装置
JP7441960B2 (ja) 情報伝送方法、端末機器及びネットワーク機器
WO2023078385A1 (zh) 数据传输方法及相关产品
WO2022135052A1 (zh) 无线通信方法与装置、终端和网络设备
US20240023186A1 (en) Network method for small data transmission termination and signaling
WO2018141115A1 (zh) 一种用于传输信号的方法、终端设备和网络设备
US20240056889A1 (en) Communication processing method for data transmission and related device
WO2022205014A1 (zh) 信息传输方法、终端设备和网络设备
WO2022056854A1 (zh) 无线通信方法和设备
WO2024103798A1 (zh) 无线通信的方法及装置
US20230224843A1 (en) Timing offset parameter update method, device, and system
WO2022214062A1 (zh) Pdcch监听方法与装置、终端和网络设备
WO2022135051A1 (zh) 跨载波数据传输方法与装置、终端和网络设备
WO2021142663A1 (zh) 调度请求sr发送方法及相关装置
WO2022160298A1 (zh) 时间同步方法、装置和系统
EP3928579B1 (en) Transceiver device and scheduling device
RU2736782C1 (ru) Способ и устройство для передачи информации и сетевое устройство
WO2021168651A1 (zh) 媒体接入控制层控制单元生效时间的确定方法及相关产品
WO2024093735A1 (zh) 一种调度请求处理方法及装置
WO2023131319A1 (zh) 定时提前确定方法及相关装置
WO2024060164A1 (zh) 通信方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889406

Country of ref document: EP

Kind code of ref document: A1