WO2021155596A1 - 信息指示方法、装置、设备、系统及存储介质 - Google Patents

信息指示方法、装置、设备、系统及存储介质 Download PDF

Info

Publication number
WO2021155596A1
WO2021155596A1 PCT/CN2020/074541 CN2020074541W WO2021155596A1 WO 2021155596 A1 WO2021155596 A1 WO 2021155596A1 CN 2020074541 W CN2020074541 W CN 2020074541W WO 2021155596 A1 WO2021155596 A1 WO 2021155596A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
offset value
indication information
slot offset
downlink
Prior art date
Application number
PCT/CN2020/074541
Other languages
English (en)
French (fr)
Inventor
李海涛
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to US18/551,294 priority Critical patent/US20240314749A1/en
Priority to CN202410053750.9A priority patent/CN117880998A/zh
Priority to PCT/CN2020/074541 priority patent/WO2021155596A1/zh
Priority to CN202080073275.1A priority patent/CN114557088B/zh
Publication of WO2021155596A1 publication Critical patent/WO2021155596A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • This application relates to the field of communication technology, and in particular to an information indication method, device, equipment, system, and storage medium.
  • the NR system in order to ensure the orthogonality of uplink transmission and avoid interference between the uplink transmissions of different terminals from the same cell, the NR system supports the uplink timing advance mechanism, that is, the uplink transmission from the same time slot The time when uplink transmissions of terminals with different frequency domain resources arrive at the network device are aligned. For this reason, the network device can configure the time slot offset for the terminal when instructing the terminal's uplink transmission to control the time when the terminal's uplink transmission reaches the network device. Generally, the time slot offset needs to be greater than the time between the terminal and the network device. The signal propagation round-trip delay.
  • NTN Non Terrestrial Network
  • the embodiments of the present application provide an information indication method, device, equipment, system, and storage medium, which can be used to solve the problem of realizing random access on an unlicensed spectrum.
  • the technical solution is as follows:
  • an information indication method which is applied to a terminal, and the method includes:
  • Receive target indication information where the target indication information includes first indication information and/or second indication information, and the first indication information is used to indicate that the first time slot offset value is a relative time slot offset value or an absolute A time slot offset value, where the second indication information is used to indicate a relative offset object when the first time slot offset value is a relative time slot offset value;
  • an information indication method is provided, which is applied to a network device, and the method includes:
  • Send target indication information where the target indication information includes first indication information and/or second indication information, and the first indication information is used to indicate that the first time slot offset value is a relative time slot offset value or an absolute value A time slot offset value, where the second indication information is used to indicate a relative offset object when the first time slot offset value is a relative time slot offset value;
  • the first time slot offset value and the target indication information are used to determine the time domain position of the uplink transmission.
  • an information indicating device which is configured in a terminal, and the device includes:
  • An obtaining module configured to obtain a first time slot offset value from a first downlink transmission, where the first time slot offset value is used to determine a time interval between an uplink transmission and a target downlink transmission;
  • the receiving module is configured to receive target indication information, where the target indication information includes first indication information and/or second indication information, and the first indication information is used to indicate that the first time slot offset value is a relative time slot An offset value or an absolute time slot offset value, where the second indication information is used to indicate a relative offset object when the first time slot offset value is a relative time slot offset value;
  • the determining module is configured to determine the time domain position of the uplink transmission based on the first time slot offset value and the target indication information.
  • an information indicating device which is configured in a network device, and the device includes:
  • a first sending module configured to send a first time slot offset value in a first downlink transmission, where the first time slot offset value is used to determine a time interval between uplink transmission and target downlink transmission;
  • the second sending module is configured to send target indication information, where the target indication information includes first indication information and/or second indication information, and the first indication information is used to indicate that the first time slot offset value is relative Time slot offset value or absolute time slot offset value, the second indication information is used to indicate the relative offset object when the first time slot offset value is the relative time slot offset value;
  • the first time slot offset value and the target indication information are used to determine the time domain position of the uplink transmission.
  • a communication system including a terminal and a network device.
  • the terminal includes any of the devices described in the third aspect
  • the network device includes any of the devices described in the fourth aspect.
  • a terminal in a sixth aspect, includes a processor and a memory, the memory stores at least one instruction, and the at least one instruction is used to be executed by the processor to implement any one of the above-mentioned first aspects. The method described.
  • a network device in a seventh aspect, includes a processor and a memory, the memory stores at least one instruction, and the at least one instruction is used to be executed by the processor to implement the above-mentioned second aspect Any of the methods described.
  • a computer-readable storage medium is provided, and instructions are stored on the computer-readable storage medium, and when the instructions are executed by a processor, the method described in the first aspect is implemented.
  • a computer-readable storage medium is provided, and instructions are stored on the computer-readable storage medium, and when the instructions are executed by a processor, the method described in the second aspect is implemented.
  • a computer program product containing instructions which when running on a computer, causes the computer to execute the method described in the first aspect.
  • a computer program product containing instructions which when run on a computer, causes the computer to execute the method described in the second aspect.
  • the terminal obtains the first time slot offset value from the first downlink transmission
  • the first time slot offset value is used to determine the difference between the uplink transmission and the target downlink transmission.
  • Receive target indication information where the target indication information includes the first indication information and/or the second indication information, that is, the target indication information may include only the first indication information, or may only include the second indication information, or may include both the first indication information
  • the first indication information is used to indicate that the first time slot offset value is a relative time slot offset value or an absolute time slot offset value
  • the second indication information is used to indicate that the first time slot offset value is a relative time slot offset value.
  • the relative offset object when shifting. In this way, based on the first time slot offset value and the target indication information, the time slot offset value between the uplink transmission and the target downlink transmission can be determined, so that the time domain position of the uplink transmission can be determined.
  • FIG. 1 is a schematic diagram of timing advance provided by an exemplary embodiment of the present application
  • Fig. 2 is a flowchart of a random access process provided by an exemplary embodiment of the present application
  • FIG. 3 is a schematic diagram of the round-trip delay of signal propagation provided by an exemplary embodiment of the present application.
  • FIG. 4 is a schematic diagram of timing advance adjustment provided by an exemplary embodiment of the present application.
  • Fig. 5 is a schematic diagram of an implementation environment provided by an exemplary embodiment of the present application.
  • Fig. 6 is a flowchart of an information indication method provided by an exemplary embodiment of the present application.
  • Fig. 7 is a flowchart of an information indication method provided by another exemplary embodiment of the present application.
  • FIG. 8 is a schematic diagram of an information indication method provided by an exemplary embodiment of the present application.
  • FIG. 9 is a schematic diagram of an information indication method provided by another exemplary embodiment of the present application.
  • FIG. 10 is a schematic diagram of an information indicating method provided by another exemplary embodiment of the present application.
  • FIG. 11 is a schematic diagram of an information indication method provided by another exemplary embodiment of the present application.
  • Fig. 12 is a flowchart of an information indication method provided by an exemplary embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of an information indicating device provided by an exemplary embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of an information indicating device provided by another exemplary embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a terminal provided by an exemplary embodiment of the present application.
  • Fig. 16 is a schematic structural diagram of a network device provided by an exemplary embodiment of the present application.
  • NTN generally uses satellite communications to provide communications services to ground users.
  • satellite communications have many unique advantages.
  • satellite communication is not restricted by the user area.
  • general terrestrial communication cannot cover the ocean, mountains, deserts and other areas where communication equipment cannot be installed or because of the sparse population. Satellites can cover a larger ground, and satellites can orbit the earth, so theoretically every corner of the earth can be covered by satellite communications.
  • satellite communication has greater social value. Satellite communication can be covered at a lower cost in remote mountainous areas, poor and backward countries or regions, so that people in these areas can enjoy advanced voice communication and mobile Internet technology, which is conducive to narrowing the digital gap with developed areas and promoting The development of these areas.
  • the satellite communication distance is long, and the communication distance increases and the cost of communication does not increase significantly.
  • the stability of satellite communication is high, and it is not restricted by natural disasters.
  • LEO Low-Earth Orbit
  • MEO Medium-Earth Orbit
  • GEO Global-Earth Orbit
  • HEO High Elliptical Orbit (highly elliptical orbit) satellites and so on.
  • the main research at this stage is LEO satellite and GEO satellite.
  • the LEO satellite altitude ranges from 500km to 1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation round-trip delay of single-hop communication between users is generally less than 20ms.
  • the maximum satellite viewing time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the requirement for the transmission power of the user terminal is not high.
  • the GEO satellite has an orbital height of 35786km, and its orbital period around the earth is 24 hours.
  • the signal propagation round-trip delay of single-hop communication between users is generally 250ms.
  • satellites In order to ensure satellite coverage and increase the system capacity of the entire satellite communication system, satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground.
  • a satellite beam can cover tens to hundreds of kilometers in diameter. Ground area.
  • network equipment In order to ensure the orthogonality of uplink transmissions and avoid interference between uplink transmissions from different terminals in the same cell, network equipment requires that the uplink transmissions from terminals in the same time slot but with different frequency domain resources arrive at the network equipment in a substantially aligned time. As long as the network device receives the uplink transmission sent by the terminal within the CP (Cyclic Prefix) range, it can decode it correctly. Therefore, the network device requires the uplink transmission from the terminal of the same time slot but different frequency domain resources to reach the network device. The time falls within the CP.
  • CP Cyclic Prefix
  • NR supports the mechanism of uplink timing advance.
  • TA Timing Advance
  • the network equipment can control the time when the uplink transmission from different terminals arrives at the network equipment by appropriately controlling the time slot offset value of each terminal.
  • the terminal far away from the network device due to the larger signal propagation round-trip delay, it is necessary to send the uplink transmission earlier than the terminal closer to the network device.
  • the uplink clock and the downlink clock of the network device are aligned, and there is an offset between the uplink clock and the downlink clock of the terminal. And the timing advance of different terminals may be different.
  • the network device may determine the TA value of the terminal by measuring the uplink transmission of the terminal. Furthermore, in the following two situations, the network device can send TA commands to the terminal:
  • the first type In the random access process, the network device can determine the TA value of the terminal by measuring the received preamble, and use the TAC (Timing Advance Command, timing) in the RAR (Random Access Response) The advance command) field is sent to the terminal.
  • TAC Timing Advance Command, timing
  • RAR Random Access Response
  • the second type Although in the random access process, the terminal and the network device have achieved uplink synchronization, but the time for the uplink transmission to reach the network device may change. Exemplarily, for a terminal that is moving at a high speed, the round-trip delay of signal propagation between it and the network device will constantly change. Therefore, the terminal needs to continuously update its TA value to maintain uplink synchronization with the network device.
  • the network device can use a closed-loop mechanism to adjust the TA value. That is, the network device can determine the TA value of the terminal by measuring the terminal's uplink transmission. Therefore, as long as the terminal has uplink transmission, the network equipment can be used to estimate the TA value.
  • any signal sent by the terminal can be used for network equipment to measure the TA value, such as SRS (Sounding Reference Signal), DMRS (Demodulation Reference Signal), and CQI (Channel Quality Indication) sent by the terminal.
  • SRS Sounding Reference Signal
  • DMRS Demodulation Reference Signal
  • CQI Channel Quality Indication
  • PUSCH Physical Uplink Control Channel, Physical Uplink Shared Channel
  • the network device will send a TAC to the terminal, requesting the terminal to adjust the TA value.
  • the TAC may be sent to the terminal through a MAC (Media Access Control, Media Access Control) CE (Control Element, control unit).
  • the random access process usually includes the following four-step process.
  • the first step the terminal sends Msg1 to the network device, and the Msg1 is a random access preamble sequence (that is, a preamble).
  • the terminal sends Msg1 to the network device to notify the network device that there is a random access request, and at the same time enables the network device to estimate the transmission delay between itself and the terminal, and use this to calibrate the uplink time.
  • the information of the resource for sending Msg1 can be obtained through RACH (Random Access Channel, random access channel) resource configuration.
  • RACH resource configuration information configured for terminal access is defined, including 256 types.
  • the cell can indicate its own RACH resource configuration information to the terminal in a system message.
  • Each kind of RACH resource configuration information includes preamble format, period, radio frame offset, subframe number in radio frame, start symbol in subframe, number of PRACH slots in subframe, PRACH timing in PRACH slot The number of PRACH timing duration. This information can determine the time, frequency, and code information of the PRACH resource.
  • the terminal can send Msg1 on the corresponding PRACH resource according to the RACH resource configuration information indicated by the network device.
  • Step 2 After detecting the Msg1 sent by the terminal, the network device sends an RAR (Msg2) to the terminal to inform the terminal of the uplink resource information that can be used when sending the next message (Msg3).
  • Msg2 an RAR
  • Msg3 the uplink resource information that can be used when sending the next message
  • one RAR may include response messages to multiple terminals that send preambles, and the response message to each terminal includes the random access preamble identification field RAP ID, Msg3 resource allocation information used by each terminal, TA information, etc.
  • the network device can also perform other operations, such as assigning a temporary RNTI (Radio Network Temporary Identity, wireless network temporary identity) to the terminal, etc., which will not be introduced here.
  • RNTI Radio Network Temporary Identity, wireless network temporary identity
  • Step 3 The terminal receives the RAR and sends Msg3 to the network device on the uplink resource indicated by the RAR.
  • the terminal may monitor PDCCH (Physical Downlink Control Channel) in a search space within a RAR time window corresponding to the RAR to receive the RAR.
  • PDCCH Physical Downlink Control Channel
  • the RAR time window can be configured through high-level parameters, and the configuration information of the search space of the PDCCH can be indicated through a system message.
  • the terminal does not receive the RAR sent by the network device within the RAR time window, it is considered that this random access procedure has failed. If the terminal receives a RAR and the preamble index in the RAR is the same as the preamble index sent by the terminal, it is considered that the RAR has been successfully received. At this time, the terminal can stop monitoring the RAR, and the terminal sends Msg3 to the network device.
  • the Msg3 may carry a terminal-specific temporary identification information or a terminal identifier from the core network.
  • the terminal identifier may be S-TMSI (Serving-Temporary Mobile Subscriber Identity) or a random number.
  • Step 4 After the network device receives Msg3, it sends Msg4 to the terminal.
  • the Msg4 includes a contention resolution message and also includes information about the uplink transmission resources allocated to the terminal.
  • the network device will carry a unique flag in the Msg4 to indicate the terminal that has won the competition.
  • the terminal receives the Msg4 sent by the base station, it will detect whether the temporary identification information sent by the terminal in Msg3 is included in the contention resolution message sent by the network device. If it is included, it indicates that the random access process of the terminal is successful. Otherwise, the random process is considered to have failed and the terminal needs Start the random access process again from the first step.
  • the terminals in NTN should have positioning capabilities, and NTN will support two types of terminals, one is the terminal without initial TA compensation capability, that is, the terminal is in the random access process There is no TA compensation when sending Msg1 in the middle, and the other is a terminal with initial TA compensation capability, that is, the terminal uses its own estimated TA to send Msg1 during random access.
  • the method for determining TA is different.
  • the network equipment will broadcast a common TA based on the round-trip delay of signal propagation between the ground reference point and the satellite.
  • the terminal does not perform TA compensation when sending Msg1, and then the network device indicates a TA value to the terminal in the RAR, so that the terminal can accumulate the broadcast public TA and the TA indicated in the RAR to obtain the TA used when sending Msg3.
  • the TA is introduced here only to describe the random access procedures of different types of terminals, and the TA is different from the first TA and the second TA below.
  • TA 2*(d0+d0_F)/c, where d0 refers to the distance between the ground reference point and the satellite, c refers to the speed of light, and d0_F refers to the satellite The distance from the ground base station.
  • the terminal estimates its own TA based on the positioning capability, and uses the estimated TA to send Msg1.
  • the network device determines the TA adjustment value of the terminal after receiving Msg1, and instructs it to the terminal through Msg2. Since the network device does not know the actual round-trip delay of signal propagation with the terminal at this time, the network device can schedule the Msg3 resource of the terminal according to the maximum uplink scheduling delay.
  • the terminal adjusts the TA based on the received RAR indication, and sends Msg3 on the uplink resource scheduled by the network device.
  • the network device receives the Msg3 of the terminal, it can determine the actual round-trip delay of signal propagation with the terminal.
  • the RAR sent by the network device will include a UL grant field, which is used to indicate the uplink resource of Msg3.
  • the terminal sends Msg3 on the PUSCH resource indicated by the UL grant of the RAR.
  • GSM global system of mobile communication, global mobile communication
  • CDMA code division multiple access, code division multiple access
  • WCDMA wideband code division multiple access
  • broadband code division multiple access GPRS (general packet radio service)
  • LTE long term evolution, long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • LTE-A advanced long term evolution
  • NR system NR system evolution system
  • LTE-U LTE-based access to unlicensed spectrum, unlicensed frequency band) LTE
  • NR-U NR-based access to unlicensed spectrum, NR on unlicensed frequency band
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access, global interconnection
  • Microwave access communication systems
  • WLAN wireless local area networks, wireless local area networks
  • WiFi wireless fidelity, wireless fidelity
  • the communication system 500 applied in the embodiment of the present application is shown in FIG. 5.
  • the communication system 500 may include a network device 510, and the network device 510 may be a device that communicates with a terminal 520 (or called a communication terminal or a terminal).
  • the network device 510 can provide communication coverage for a specific geographic area, and can communicate with terminals located in the coverage area.
  • the network device 510 may be an eNB (Evolutional Node B, evolved base station), or a wireless controller in CRAN (Cloud Radio Access Network, cloud radio access network), or the network device may be a mobile switch Centers, relay stations, access points, in-vehicle devices, wearable devices, hubs, switches, bridges, routers, network side devices in 5G networks, or network devices in future communication systems, etc.
  • eNB Evolutional Node B, evolved base station
  • CRAN Cloud Radio Access Network
  • the network device may be a mobile switch Centers, relay stations, access points, in-vehicle devices, wearable devices, hubs, switches, bridges, routers, network side devices in 5G networks, or network devices in future communication systems, etc.
  • the communication system 500 also includes at least one terminal 520 located within the coverage area of the network device 510.
  • the "terminal" used here includes, but is not limited to, connection via wired lines, such as PSTN (Public Switched Telephone Networks), DSL (Digital Subscriber Line), digital cable, and direct cable connection; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, WLANs, digital TV networks such as DVB-H networks, satellite networks, AM-FM broadcast transmitters; and/or another A device of a terminal that is set to receive/send a communication signal; and/or an IoT (Internet of Things, Internet of Things) device.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • wireless interface such as for cellular networks, WLANs, digital TV networks such as DVB-H networks, satellite networks, AM-FM broadcast transmitters; and/or another A device of a terminal that is set to receive/send a communication signal; and/
  • a terminal set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; PCS (Personal Communications System) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with Internet access, web browser, memo pad, calendar, and/or GPS (Global Positioning System) receiver; and conventional laptop and/or palm-type receivers or others including radio telephone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal can refer to access terminal, UE (User Equipment), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user Device.
  • the access terminal can be a cellular phone, a cordless phone, SIP (Session Initiation Protocol) phone, WLL (Wireless Local Loop, wireless local loop) station, PDA (Personal Digital Assistant, personal digital processing), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks, or terminals in the future evolution of PLMN, etc.
  • D2D communication may be performed between the terminals 520.
  • the 5G communication system or 5G network may also be referred to as an NR system or NR network.
  • FIG. 5 exemplarily shows one network device and two terminals.
  • the communication system 500 may include multiple network devices and the coverage area of each network device may include other numbers of terminals.
  • the embodiment of the present application There is no restriction on this.
  • the communication system 500 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 510 and a terminal 520 with communication functions, and the network device 510 and the terminal 520 may be the specific devices described above, which will not be repeated here;
  • the device may also include other devices in the communication system 500, such as other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • FIG. 6 is a flowchart of an information indicating method according to an exemplary embodiment.
  • the information indicating method can be applied to the implementation environment shown in FIG. 5, and the information indicating method may include the following At least part of the content:
  • Step 601 Obtain a first time slot offset value from the first downlink transmission, where the first time slot offset value is used to determine the time interval between the uplink transmission and the target downlink transmission.
  • the first downlink transmission may be the transmission of a downlink signal and/or a downlink channel.
  • the downlink signal may be SSB (Synchronization Signal Block), CSI-RS (Channel Status Information Reference Signal, channel state information reference signal), downlink DMRS (Demodulation Reference Signal, demodulation reference signal), and so on.
  • the downlink channel may be PBCH (Physical Broadcast Channel), PDCCH, PDSCH (Physical Downlink Control Channel, physical downlink shared channel), etc., which are not limited in this embodiment.
  • the target downlink transmission may also be the transmission of a downlink signal and/or a downlink channel, which is not limited in this embodiment.
  • the target downlink transmission may be the first downlink transmission, or may be other downlink transmissions except the first downlink transmission, which is not limited in this embodiment.
  • the uplink transmission may be the transmission of an uplink signal and/or an uplink channel.
  • the uplink signal may be SRS, uplink DMRS, and so on.
  • the uplink channel may be PUSCH, PUCCH (Physical Uplink Control Channel), PRACH (Physical Random Access Channel, Physical Random Access Channel), etc., which are not limited in this embodiment.
  • the terminal can receive the first downlink transmission sent by the network device, and obtain the first time slot offset value in the received first downlink transmission, because the first time slot offset value can be used to determine the uplink transmission The time interval between the target downlink transmission and the target downlink transmission. Therefore, the terminal can determine how long the interval to send the uplink transmission after receiving the target downlink transmission according to the first time slot offset value.
  • Step 602 Receive target indication information, where the target indication information includes first indication information and/or second indication information, and the first indication information is used to indicate that the first time slot offset value is a relative time slot offset value or an absolute time slot offset value.
  • the second indication information is used to indicate the relative offset object when the first time slot offset value is the relative time slot offset value.
  • the target indication information may be sent by a network device, and the target indication information may include only the first indication information, or may only include the second indication information, or may include both the first indication information and the second indication information.
  • the terminal may determine whether the first time slot offset is a relative time slot offset value or an absolute time slot offset value according to the first indication information.
  • the first indication information indicates that the first time slot offset value is a relative time slot offset value
  • the first time slot offset value is an increment relative to the reference time slot offset value.
  • the reference time slot offset value may be indicated by the network device.
  • the terminal may obtain the reference time slot offset value in the received first downlink transmission, or the terminal may obtain the reference time slot offset value in the received system message.
  • the terminal does not need to refer to the time slot offset value, but can directly determine the uplink transmission based on the first time slot offset value.
  • the time interval between downlink transmission to the target is an absolute time slot offset value.
  • the first time slot offset value is a relative time slot offset value
  • the terminal can determine the first time slot offset according to the second indication information
  • the relative offset object of the value that is, the reference time slot offset of the first time slot offset value can be determined according to the second indication information.
  • the target indication information includes the first indication information and the second indication information
  • the relative offset object of the first time slot offset value may be determined according to the second indication information , That is, determine the reference time slot offset value of the first time slot offset value.
  • the target indication information is carried in a system message.
  • the target indication information is carried by RRC (Radio Resource Control, radio resource control) signaling.
  • the target indication information is carried by MAC CE (Medium Access Control Control Element).
  • the target indication information may be indicated by the network device to the terminal through a system message.
  • the target indication information may be obtained in the system message.
  • the target indication information may also be indicated by the network device to the terminal through RRC signaling.
  • the target indication information may be obtained from the RRC signaling.
  • the target indication information may also be indicated by the network device to the terminal through the MAC CE. In this case, when the terminal receives the MAC CE, the target indication information may be obtained from the MAC CE.
  • Step 603 Determine the time domain position of the uplink transmission based on the first time slot offset value and the target indication information.
  • the terminal can determine the time domain position of the uplink transmission based on the first time slot offset value indicated by the network device and the target indication information, that is, determine how long the terminal sends the uplink transmission after receiving the target downlink transmission.
  • the terminal may determine the time domain position of the uplink transmission based on the first two or all of the first time slot offset value, the target indication information and the reference time slot offset value.
  • the terminal may base on the first time slot offset value and Refer to the time slot offset value to determine how long to send the uplink transmission after receiving the target downlink transmission. That is, in this case, based on the first time slot offset value and the target indication information, the realization of determining the time domain position of the uplink transmission may include: obtaining the reference time slot offset value based on the first time slot offset Value, target indication information and reference time slot offset value to determine the time domain position of uplink transmission.
  • the terminal may be based on the first time slot offset value, Determine how long to send the uplink transmission after receiving the target downlink transmission. That is, in this case, the terminal determines the time domain position of the uplink transmission based on the first time slot offset value and the target indication information.
  • the terminal may determine how long the interval is after receiving the target downlink transmission based on the first time slot offset value and the relative offset object indicated by the second indication information Time to send uplink transmission.
  • the terminal can be based on the first indication information.
  • the time slot offset value determines how long to send the uplink transmission after receiving the target downlink transmission.
  • the terminal may determine the relative time slot offset value based on the second indication information. In this way, the terminal can determine how long to send the uplink transmission after receiving the target downlink transmission based on the first time slot offset value and the relative offset object.
  • the terminal obtains the first time slot offset value from the first downlink transmission, and the first time slot offset value is used to determine the time interval between the uplink transmission and the target downlink transmission.
  • Receive target indication information where the target indication information includes the first indication information and/or the second indication information, that is, the target indication information may include only the first indication information, or may only include the second indication information, or may include both the first indication information
  • the first indication information is used to indicate that the first time slot offset value is a relative time slot offset value or an absolute time slot offset value
  • the second indication information is used to indicate that the first time slot offset value is a relative time slot offset value.
  • the relative offset object when shifting. In this way, based on the first time slot offset value and the target indication information, the time slot offset value between the uplink transmission and the target downlink transmission can be determined, so that the time domain position of the uplink transmission can be determined.
  • FIG. 7 is a flowchart of an information indicating method according to an exemplary embodiment.
  • the information indicating method may be applied to the implementation environment shown in FIG. 5, and the information indicating method may include the following At least part of the content:
  • Step 701 Obtain a first time slot offset value from the first downlink transmission, where the first time slot offset value is used to determine the time interval between the uplink transmission and the target downlink transmission.
  • Step 702 Receive target indication information, where the target indication information includes first indication information, and the first indication information is used to indicate that the first time slot offset value is a relative time slot offset value or an absolute time slot offset value.
  • the target indication information is carried in a system message.
  • the target indication information is carried by RRC signaling.
  • the target indication information is carried by MAC CE.
  • Step 703 Determine the time domain position of the uplink transmission based on the first time slot offset value and the target indication information.
  • the target indication information includes first indication information
  • the first downlink transmission is a random access response downlink transmission
  • the target downlink transmission is a random access response downlink transmission.
  • the implementation manner of determining the time domain position of the uplink transmission may be: determining the first downlink time slot number of the target downlink transmission. Determine the first parameter based on the uplink subcarrier interval of uplink transmission. Based on the first downlink time slot number, the first parameter, the first time slot offset value and the first indication information, the time domain position of the uplink transmission is determined.
  • the first downlink time slot number refers to the downlink time slot number of the downlink transmission in which the terminal receives the random access response.
  • the downlink transmission of the random access response may be a PDSCH used to transmit Msg2 in the random access response.
  • the uplink transmission may be the PUSCH used to transmit Msg3 in the random access response.
  • the terminal may use the first time slot offset value and the first indication information , The downlink time slot number of the downlink transmission that receives the random access response and the first parameter determined according to the uplink subcarrier interval, determine the time domain position of the uplink transmission.
  • the terminal can use the first time slot offset value, the first indication information, and the random access response.
  • the downlink time slot number of the PDSCH of Msg2 in the access response and the first parameter determined according to the uplink subcarrier spacing determine the time domain position of the PUSCH of Msg3 in the random access response.
  • the implementation manners for determining the time domain position of uplink transmission may include the following two:
  • the first implementation manner if the first indication information indicates that the first time slot offset value is an absolute time slot offset value, add the first downlink time slot number, the first parameter, and the first time slot offset value, Get the first uplink time slot number. Based on the first uplink time slot number, the time domain position of the uplink transmission is determined.
  • the terminal may add the first parameter and the first time slot offset value to obtain the target time slot offset value, It is determined that the target time slot offset value is the time interval between the target downlink transmission and the uplink transmission. Furthermore, the terminal can add the first downlink time slot number and the target time slot offset value to obtain the first uplink time slot number. In this way, the terminal can determine the time domain position to which the first uplink time slot number belongs as The time domain location of the uplink transmission.
  • the first uplink time slot number is N1.
  • the first time slot offset value can be determined by the following formula (1) Uplink time slot number:
  • n is the first downlink time slot number
  • K1 is the first time slot offset value
  • is the first parameter
  • K1+ ⁇ is the target time slot offset value
  • the second implementation manner if the first indication information indicates that the first time slot offset value is a relative time slot offset value, then the reference time slot offset value is obtained.
  • the first downlink time slot number, the first parameter, the first time slot offset value, and the reference time slot offset value are added to obtain the second uplink time slot number. Based on the second uplink time slot number, the time domain position of the uplink transmission is determined.
  • the terminal may also obtain the reference time slot offset value.
  • the terminal may add the first parameter, the first time slot offset value, and the reference time slot offset value to obtain the target time slot offset value, and determine that the target time slot offset value is the difference between the target downlink transmission and the uplink transmission. time interval.
  • the terminal can add the first downlink time slot number and the target time slot offset value to obtain the second uplink time slot number. In this way, the terminal can determine the time domain position to which the second uplink time slot number belongs as The time domain location of the uplink transmission.
  • the second uplink time slot number is N2
  • the first indication information indicates that the first time slot offset value is the relative time slot offset value
  • the second time slot can be determined by the following formula (2) Uplink time slot number:
  • N2 n+K1+Kr+ ⁇ (2)
  • n is the first downlink time slot number
  • K1 is the first time slot offset value
  • Kr is the reference time slot offset value
  • is the first parameter
  • K1+Kr+ ⁇ is the target time slot offset value.
  • the implementation of obtaining the reference time slot offset value may be: if the radio resource control RRC signaling or the media access control MAC control unit CE carries the first timing advance TA, then the first TA is obtained as a reference Slot offset value.
  • the terminal may use the first TA obtained in the RRC signaling or MAC CE as the reference time slot offset value. In this way, the terminal The time domain position of uplink transmission may be determined based on the first TA.
  • the implementation manner of obtaining the reference time slot offset value may be: if the first TA is not carried in the RRC signaling and MAC CE, the second TA is obtained from the system message to obtain the reference time slot offset value.
  • the terminal can obtain the second TA in the system message and use the second TA as the reference time slot offset value. In this way, the terminal The time domain position of uplink transmission may be determined based on the second TA.
  • the first TA is a TA determined based on the actual location of the terminal
  • the second TA is a TA determined based on a ground reference point.
  • the ground reference point may be any ground reference point within the coverage area of the network device.
  • the ground reference point may be the ground reference point closest to the network device within the coverage area of the network device.
  • the first TA may be determined by the network device according to the actual location of the terminal.
  • the second TA may be determined by the network device according to the ground reference point in the coverage area of the network device.
  • the terminal obtains the first time slot offset value from the first downlink transmission, and the first time slot offset value is used to determine the time interval between the uplink transmission and the target downlink transmission.
  • Receive target indication information where the target indication information includes first indication information.
  • the first indication information is used to indicate that the first time slot offset value is a relative time slot offset value or an absolute time slot offset value. In this way, based on the first time slot offset value and the target indication information, the time slot offset value between the uplink transmission and the target downlink transmission can be determined, so that the time domain position of the uplink transmission can be determined.
  • the first time slot offset value of the transmission can be an increment based on the reference time slot offset value, which can reduce transmission The signaling overhead of the first slot offset value.
  • the relative time slot offset value can be used to more accurately control the time slot offset value between the uplink transmission and the target downlink transmission, that is, the time domain position of the uplink transmission can be determined more accurately .
  • the target indication information further includes second indication information.
  • the method for obtaining the offset value of the reference time slot may be: obtaining the reference time slot according to the second indication information. The offset value.
  • the target indication information also includes the second indication information.
  • the first indication information indicates that the first time slot offset value is a relative time slot offset value
  • the relative offset object indicated by the second indication information can be determined, and then the reference time slot offset can be determined according to the relative offset object. Shift value.
  • adding the first downlink time slot number, the first parameter, the first time slot offset value, and the reference time slot offset value to obtain the second uplink time slot number can include the following two implementations: :
  • the first implementation mode when the second indication information indicates that the relative offset object of the first time slot offset value is the first TA, the first downlink time slot number, the first parameter, and the first time slot offset value Add to the first TA to get the second uplink time slot number.
  • the terminal may add the first parameter, the first time slot offset value, and the first TA to obtain the target time slot offset value, and determine that the target time slot offset value is the time between the target downlink transmission and the uplink transmission interval. Furthermore, the terminal can add the first downlink time slot number and the target time slot offset value to obtain the second uplink time slot number. In this way, the terminal can determine the time domain position to which the second uplink time slot number belongs as The time domain location of the uplink transmission.
  • Second uplink time slot number N2
  • Second uplink time slot number N2
  • N2 n+K1+TA1+ ⁇ (3)
  • n is the first downlink time slot number
  • K1 is the first time slot offset value
  • TA1 is the first TA
  • is the first parameter
  • K1+TA1+ ⁇ is the target time slot offset value.
  • the second implementation mode when the second indication information indicates that the relative offset object of the first time slot offset value is the second TA, the first downlink time slot number, the first parameter, and the first time slot offset value Add to the second TA to get the second uplink time slot number.
  • the terminal can add the first parameter, the first time slot offset value, and the second TA to obtain the target time slot offset value, and determine that the target time slot offset value is the time between the target downlink transmission and the uplink transmission interval. Furthermore, the terminal can add the first downlink time slot number and the target time slot offset value to obtain the second uplink time slot number. In this way, the terminal can determine the time domain position to which the second uplink time slot number belongs as The time domain location of the uplink transmission.
  • Second uplink time slot number N2
  • Second uplink time slot number N2
  • N2 n+K1+TA2+ ⁇ (4)
  • n is the first downlink time slot number
  • K1 is the first time slot offset value
  • TA2 is the second TA
  • is the first parameter
  • K1+TA2+ ⁇ is the target time slot offset value.
  • the terminal obtains the first time slot offset value from the first downlink transmission, and the first time slot offset value is used to determine the time interval between the uplink transmission and the target downlink transmission.
  • Receive target indication information where the target indication information includes both the first indication information and the second indication information.
  • the first indication information is used to indicate that the first time slot offset value is a relative time slot offset value or an absolute time slot offset value
  • the second indication information is used to indicate that the first time slot offset value is a relative time slot offset value.
  • the relative offset object when shifting. In this way, based on the first time slot offset value and the target indication information, the time slot offset value between the uplink transmission and the target downlink transmission can be determined, so that the time domain position of the uplink transmission can be determined.
  • the first time slot offset value of the transmission can be an increment based on the reference time slot offset value, which can reduce transmission The signaling overhead of the first slot offset value.
  • the relative time slot offset value can be used to more accurately control the time slot offset value between the uplink transmission and the target downlink transmission, that is, the time domain position of the uplink transmission can be determined more accurately .
  • the embodiment of the present application also provides an information indicating method, which can be applied to the implementation environment shown in FIG. 5, and the information indicating method may include at least part of the following content:
  • Step A1 Obtain a first time slot offset value from the first downlink transmission.
  • the first time slot offset value is used to determine the time interval between the uplink transmission and the target downlink transmission.
  • Step A2 Receive target indication information, where the target indication information includes first indication information, and the first indication information is used to indicate that the first time slot offset value is a relative time slot offset value or an absolute time slot offset value.
  • the target indication information is carried in a system message.
  • the target indication information is carried by RRC signaling.
  • the target indication information is carried by MAC CE.
  • Step A3 Determine the time domain position of uplink transmission based on the first time slot offset value and target indication information.
  • the target indication information includes first indication information
  • the first downlink transmission is a first physical downlink control channel PDCCH indicating uplink scheduling
  • the target downlink transmission is the first PDCCH.
  • the implementation manner of determining the time domain position of the uplink transmission may be: determining the second downlink time slot number of the first PDCCH. Determine the time domain position of the uplink transmission based on the second downlink time slot number, the uplink subcarrier interval of uplink transmission, the downlink subcarrier interval of target downlink transmission, the first time slot offset value and the first indication information.
  • the first PDCCH may indicate the time-frequency resources used by the terminal for uplink transmission, adjustment of the coding method, and so on.
  • the second downlink time slot number refers to the downlink time slot number of the first PDCCH received by the terminal.
  • the uplink transmission may be PUSCH for uploading uplink data.
  • the terminal may receive the first PDCCH according to the first time slot offset value, the first indication information, and the first indication information.
  • the downlink time slot number of a PDCCH, the uplink subcarrier interval of uplink transmission and the downlink subcarrier interval of the first PDCCH determine the time domain position of uplink transmission.
  • the terminal may receive the first PDCCH according to the first time slot offset value and the first indication information.
  • the downlink time slot number, the uplink subcarrier interval of the PUSCH, and the downlink subcarrier interval of the first PDCCH determine the time domain position of the PUSCH of the uplink data.
  • determine the time domain position of uplink transmission based on the second downlink time slot number, uplink subcarrier interval of uplink transmission, downlink subcarrier interval of target downlink transmission, first time slot offset value, and first indication information The implementation of can include the following two:
  • the first implementation mode if the first indication information indicates that the first time slot offset value is an absolute time slot offset value, it is based on the second downlink time slot number, the uplink subcarrier interval for uplink transmission, and the downlink subcarrier of the target downlink transmission.
  • the carrier interval and the offset value of the first time slot determine the time domain position of the uplink transmission.
  • the terminal can be based on the uplink subcarrier interval of uplink transmission, the downlink subcarrier interval of target downlink transmission, and the first time slot offset.
  • the offset value is used to determine the target time slot offset value
  • the target time slot offset value is the time interval between the target downlink transmission and the uplink transmission.
  • the terminal can obtain the third uplink time slot number based on the second downlink time slot number and the target time slot offset value. In this way, the terminal can determine the time domain position to which the third uplink time slot number belongs as the uplink transmission Time domain location.
  • the third uplink time slot number is N3, and when the first indication information indicates that the first time slot offset value is the absolute time slot offset value, the third uplink time slot number can be determined by the following formula (5) Uplink time slot number:
  • n is the second downlink time slot number
  • K1 is the first time slot offset value
  • ⁇ PUSCH is the uplink subcarrier interval for uplink transmission
  • ⁇ PDCCH is the downlink subcarrier interval for target downlink transmission. It is the time slot number obtained by the conversion of the downlink time slot number.
  • the second implementation manner if the first indication information indicates that the first time slot offset value is a relative time slot offset value, then the first TA is acquired, and the first TA is a TA determined based on the actual location of the terminal. Based on the second downlink time slot number, the uplink subcarrier interval of uplink transmission, the downlink subcarrier interval of target downlink transmission, the first time slot offset value and the first TA, the time domain position of the uplink transmission is determined.
  • the terminal may obtain the first TA as the reference time slot offset value.
  • the terminal can determine the target time slot offset value based on the uplink subcarrier interval of the uplink transmission, the downlink subcarrier interval of the target downlink transmission, the first time slot offset value and the first TA, and the target time slot offset value is the target downlink The time interval between transmission and upstream transmission.
  • the terminal can obtain the fourth uplink time slot number based on the second downlink time slot number and the target time slot offset value. In this way, the terminal can determine the time domain position to which the fourth uplink time slot number belongs as the uplink transmission Time domain location.
  • the fourth uplink time slot number is N4, and when the first indication information indicates that the first time slot offset value is the absolute time slot offset value, the fourth time slot can be determined by the following formula (6) Uplink time slot number:
  • n is the second downlink time slot number
  • K1 is the first time slot offset value
  • TA1 is the first TA
  • ⁇ PUSCH is the uplink subcarrier interval for uplink transmission
  • ⁇ PDCCH is the downlink subcarrier interval for target downlink transmission. It is the time slot number obtained by the conversion of the downlink time slot number.
  • the terminal obtains the first time slot offset value from the first downlink transmission, and the first time slot offset value is used to determine the time interval between the uplink transmission and the target downlink transmission.
  • Receive target indication information where the target indication information includes first indication information.
  • the first indication information is used to indicate that the first time slot offset value is a relative time slot offset value or an absolute time slot offset value. In this way, based on the first time slot offset value and the target indication information, the time slot offset value between the uplink transmission and the target downlink transmission can be determined, so that the time domain position of the uplink transmission can be determined.
  • the first time slot offset value of the transmission can be an increment based on the reference time slot offset value, which can reduce transmission The signaling overhead of the first slot offset value.
  • the relative time slot offset value can be used to more accurately control the time slot offset value between the uplink transmission and the target downlink transmission, that is, the time domain position of the uplink transmission can be determined more accurately .
  • the embodiment of the present application also provides an information indicating method, which can be applied to the implementation environment shown in FIG. 5, and the information indicating method may include at least part of the following content:
  • Step B1 Obtain a first time slot offset value from the first downlink transmission, where the first time slot offset value is used to determine the time interval between the uplink transmission and the target downlink transmission.
  • Step B2 Receive target indication information, where the target indication information includes first indication information, and the first indication information is used to indicate that the first time slot offset value is a relative time slot offset value or an absolute time slot offset value.
  • the target indication information is carried in a system message.
  • the target indication information is carried by RRC signaling.
  • the target indication information is carried by MAC CE.
  • Step B3 Determine the time domain position of uplink transmission based on the first time slot offset value and target indication information.
  • the target indication information includes first indication information
  • the first downlink transmission is the second PDCCH indicating downlink scheduling
  • the target downlink transmission is the first physical downlink shared channel PDSCH, or in other words, the first downlink transmission is the first physical downlink shared channel PDSCH.
  • the PDSCH is the PDSCH scheduled by the second PDCCH.
  • the implementation manner of determining the time domain position of the uplink transmission may be: determining the third downlink time slot number of the first PDSCH. Based on the third downlink time slot number, the first time slot offset value and the first indication information, the time domain position of the uplink transmission is determined.
  • the third downlink time slot number refers to the downlink time slot number in which the terminal receives the first PDSCH.
  • the uplink transmission may be a PUCCH used to feed back ACK/NACK.
  • the terminal can use the first time slot offset value, the first indication information, and The downlink time slot number of the first PDSCH is received, and the time domain position of the uplink transmission is determined.
  • the terminal can use the first time slot offset value, the first indication information, and the received The downlink time slot number of the first PDSCH determines the time domain position of the PUCCH fed back by the ACK/NACK.
  • the implementation manners for determining the time domain position of uplink transmission may include the following two:
  • the first implementation mode if the first indication information indicates that the first time slot offset value is an absolute time slot offset value, then the time domain of uplink transmission is determined based on the third downlink time slot number and the first time slot offset value Location.
  • the terminal may determine the first time slot offset value as the target time slot offset value, and the target time slot offset The value is the time interval between the target downlink transmission and the uplink transmission. Furthermore, the terminal can add the first downlink time slot number and the target time slot offset value to obtain the fifth uplink time slot number. In this way, the terminal can determine the time domain position to which the fifth uplink time slot number belongs as The time domain location of the uplink transmission.
  • the fifth uplink time slot number can be determined by the following formula (7) Uplink time slot number:
  • N5 n+K1 (7)
  • n is the third downlink time slot number
  • K1 is the first time slot offset value
  • the second implementation manner if the first indication information indicates that the first time slot offset value is a relative time slot offset value, then the first TA is acquired, and the first TA is a TA determined based on the actual location of the terminal. Based on the third downlink time slot number, the first time slot offset value and the first TA, the time domain position of the uplink transmission is determined.
  • the terminal may also obtain the first TA and determine the first TA as the reference time slot offset value.
  • the terminal may add the first time slot offset value and the first TA to obtain the target time slot offset value, and determine that the target time slot offset value is the time interval between the target downlink transmission and the uplink transmission.
  • the terminal can add the third downlink time slot number and the target time slot offset value to obtain the sixth uplink time slot number. In this way, the terminal can determine the time domain position to which the sixth uplink time slot number belongs as the uplink The time domain position of the transmission.
  • the sixth uplink time slot number can be determined by the following formula (8) Uplink time slot number:
  • N6 n+K1+TA1 (8)
  • n is the third downlink time slot number
  • K1 is the first time slot offset value
  • TA1 is the first TA
  • K1+TA1 is the target time slot offset value.
  • the terminal obtains the first time slot offset value from the first downlink transmission, and the first time slot offset value is used to determine the time interval between the uplink transmission and the target downlink transmission.
  • Receive target indication information where the target indication information includes first indication information.
  • the first indication information is used to indicate that the first time slot offset value is a relative time slot offset value or an absolute time slot offset value. In this way, based on the first time slot offset value and the target indication information, the time slot offset value between the uplink transmission and the target downlink transmission can be determined, so that the time domain position of the uplink transmission can be determined.
  • the first time slot offset value of the transmission can be an increment based on the reference time slot offset value, which can reduce transmission The signaling overhead of the first slot offset value.
  • the relative time slot offset value can be used to more accurately control the time slot offset value between the uplink transmission and the target downlink transmission, that is, the time domain position of the uplink transmission can be determined more accurately .
  • the embodiment of the present application also provides an information indicating method, which can be applied to the implementation environment shown in FIG. 5, and the information indicating method may include at least part of the following content:
  • Step C1 Obtain a first time slot offset value from the first downlink transmission, where the first time slot offset value is used to determine the time interval between the uplink transmission and the target downlink transmission.
  • Step C2 Receive target indication information, where the target indication information includes second indication information, and the second indication information is used to indicate the relative offset object when the first time slot offset value is the relative time slot offset value.
  • the target indication information is carried in a system message.
  • the target indication information is carried by RRC signaling.
  • the target indication information is carried by MAC CE.
  • Step C3 Determine the time domain position of uplink transmission based on the first time slot offset value and target indication information.
  • the target indication information includes second indication information
  • the first time slot offset value is a relative time slot offset value
  • the first downlink transmission is a random access response downlink transmission
  • the target downlink transmission It is the downlink transmission of the random access response.
  • an implementation manner for determining the time domain position of the uplink transmission may be: obtaining the reference time slot offset value according to the second indication information. Determine the fourth downlink time slot number of the target downlink transmission. Determine the first parameter based on the uplink subcarrier interval of uplink transmission. Based on the first time slot offset value, the fourth downlink time slot number, the first parameter and the reference time slot offset value, the time domain position of the uplink transmission is determined.
  • the fourth downlink time slot number refers to the downlink time slot number of the downlink transmission of the random access response received by the terminal.
  • the downlink transmission of the random access response may be a PDSCH used to transmit Msg2 in the random access response.
  • the uplink transmission may be the PUSCH used to transmit Msg3 in the random access response.
  • the terminal may determine the relative offset object indicated by the second indication information, and determine the reference time slot offset based on the relative offset object.
  • the terminal may determine the uplink transmission based on the first time slot offset value, the reference time slot offset, the downlink time slot number of the downlink transmission that received the random access response, and the first parameter determined according to the uplink subcarrier interval. Time domain location.
  • the terminal may add the first parameter, the first time slot offset value, and the reference time slot offset value to obtain the target time slot offset value, and determine that the target time slot offset value is the target downlink transmission and uplink transmission.
  • the time interval between transmissions Furthermore, the terminal can add the fourth downlink time slot number and the target time slot offset value to obtain the seventh uplink time slot number. In this way, the terminal can determine the time domain position to which the seventh uplink time slot number belongs as the uplink The time domain position of the transmission.
  • the reference time slot offset value may be the first TA or the second TA, which is not limited in this embodiment.
  • the terminal obtains the first time slot offset value from the first downlink transmission, and the first time slot offset value is used to determine the time interval between the uplink transmission and the target downlink transmission.
  • Receive target indication information where the target indication information includes second indication information.
  • the second indication information is used to indicate the relative offset object when the first time slot offset value is the relative time slot offset value.
  • the first time slot offset value of the transmission can be an increment based on the reference time slot offset value, which can reduce transmission The signaling overhead of the first slot offset value.
  • the relative time slot offset value can be used to more accurately control the time slot offset value between the uplink transmission and the target downlink transmission, that is, the time domain position of the uplink transmission can be determined more accurately .
  • FIG. 12 is a flowchart of an information indicating method according to an exemplary embodiment.
  • the information indicating method can be applied to the implementation environment shown in FIG. 5, and the information indicating method may include the following At least part of the content:
  • Step 1201 Send a first time slot offset value in the first downlink transmission, where the first time slot offset value is used to determine the time interval between the uplink transmission and the target downlink transmission.
  • the network device may send the first time slot offset value to the terminal, the first time slot offset value may be carried in the first downlink transmission, and the first time slot offset value may be used by the terminal to determine the transmission uplink The time domain position of the transmission.
  • Step 1202 Send target indication information, where the target indication information includes first indication information and/or second indication information, and the first indication information is used to indicate that the first time slot offset value is a relative time slot offset value or an absolute time slot offset value.
  • the second indication information is used to indicate the relative offset object when the first time slot offset value is the relative time slot offset value.
  • the network device may send target indication information to the terminal, where the target indication information may include only the first indication information, or may only include the second indication information, or may include both the first indication information and the second indication information.
  • the first time slot offset value and target indication information are used to determine the time domain position of uplink transmission.
  • the first time slot offset value and target indication information sent by the network device to the terminal can be used to instruct the terminal to determine the time domain position for sending the uplink transmission, that is, it can instruct the terminal to determine how long the interval is after receiving the target downlink transmission Send an upstream transmission.
  • the network device sends a first downlink transmission, the first downlink transmission carries a first time slot offset value, and the first time slot offset value is used by the terminal to determine the difference between the uplink transmission and the target downlink transmission. time interval.
  • Send target indication information the target indication information includes the first indication information and/or the second indication information, that is, the target indication information may include only the first indication information, or only the second indication information, or both the first indication information Also includes second instruction information.
  • the first indication information is used to indicate that the first time slot offset value is a relative time slot offset value or an absolute time slot offset value
  • the second indication information is used to indicate that the first time slot offset value is a relative time slot offset value.
  • the relative offset object when shifting. In this way, the network device can indicate the time slot offset value between the terminal's uplink transmission and the target downlink transmission by sending the first time slot offset value and the target indication information, so that the terminal can determine the time domain position of the uplink transmission.
  • FIG. 13 is a structural diagram of an information indicating device according to an exemplary embodiment.
  • the device may be configured in a terminal, and the device may include:
  • the obtaining module 1310 is configured to obtain the first time slot offset value from the first downlink transmission, and the first time slot offset value is used to determine the time interval between the uplink transmission and the target downlink transmission;
  • the receiving module 1320 is configured to receive target indication information, where the target indication information includes first indication information and/or second indication information, and the first indication information is used to indicate that the first time slot offset value is a relative time slot offset value or an absolute value. Time slot offset value, the second indication information is used to indicate the relative offset object when the first time slot offset value is the relative time slot offset value;
  • the determining module 1330 is configured to determine the time domain position of uplink transmission based on the first time slot offset value and target indication information.
  • the target indication information includes the first indication information, the first downlink transmission is a random access response downlink transmission, and the target downlink transmission is a random access response downlink transmission;
  • the determination module 1330 is used to:
  • the time domain position of the uplink transmission is determined.
  • the determining module 1330 is used to:
  • the first indication information indicates that the first time slot offset value is an absolute time slot offset value, add the first downlink time slot number, the first parameter, and the first time slot offset value to obtain the first uplink time slot No;
  • the time domain position of the uplink transmission is determined.
  • the determining module 1330 is used to:
  • the first indication information indicates that the first time slot offset value is a relative time slot offset value, obtain the reference time slot offset value
  • the time domain position of the uplink transmission is determined.
  • the determining module 1330 is used to:
  • the radio resource control RRC signaling or the media access control MAC control unit CE carries the first timing advance TA, the first TA is acquired as the reference time slot offset value;
  • the determining module 1330 is used to:
  • the second TA is obtained from the system message to obtain the reference time slot offset value.
  • the first TA is a TA determined based on the actual position of the terminal
  • the second TA is a TA determined based on a ground reference point.
  • the target indication information further includes second indication information
  • the determining module 1330 is configured to:
  • the determining module 1330 is used to:
  • the second indication information indicates that the relative offset object of the first time slot offset value is the first TA
  • add the first downlink time slot number, the first parameter, the first time slot offset value, and the first TA Get the second uplink time slot number
  • the determining module 1330 is used to:
  • the second indication information indicates that the relative offset object of the first time slot offset value is the second TA
  • add the first downlink time slot number, the first parameter, the first time slot offset value, and the second TA Get the second uplink time slot number.
  • the target indication information includes first indication information
  • the first downlink transmission is the first physical downlink control channel PDCCH indicating uplink scheduling
  • the target downlink transmission is the first PDCCH
  • the determination module 1330 is used to:
  • the determining module 1330 is used to:
  • the first indication information indicates that the first time slot offset value is an absolute time slot offset value, it is based on the second downlink time slot number, the uplink subcarrier interval of uplink transmission, the downlink subcarrier interval of target downlink transmission, and the first time slot. Slot offset value to determine the time domain position of uplink transmission.
  • the determining module 1330 is used to:
  • the first indication information indicates that the first time slot offset value is a relative time slot offset value, then acquire the first TA, which is a TA determined based on the actual location of the terminal;
  • the uplink subcarrier interval of uplink transmission is determined.
  • the target indication information includes first indication information
  • the first downlink transmission is the second PDCCH indicating downlink scheduling
  • the target downlink transmission is the first physical downlink shared channel PDSCH;
  • the determination module 1330 is used to:
  • the time domain position of the uplink transmission is determined.
  • the determining module 1330 is used to:
  • the time domain position of the uplink transmission is determined based on the third downlink time slot number and the first time slot offset value.
  • the determining module 1330 is used to:
  • the first indication information indicates that the first time slot offset value is a relative time slot offset value, then acquire the first TA, which is a TA determined based on the actual location of the terminal;
  • the time domain position of the uplink transmission is determined.
  • the target indication information includes second indication information
  • the first time slot offset value is a relative time slot offset value
  • the first downlink transmission is a random access response downlink transmission
  • the target The downlink transmission is the downlink transmission of the random access response
  • the determination module 1330 is used to:
  • the time domain position of the uplink transmission is determined.
  • the target indication information is carried in system messages; or,
  • the target indication information is carried by RRC signaling; or,
  • the target indication information is carried by MAC CE.
  • the terminal obtains the first time slot offset value from the first downlink transmission, and the first time slot offset value is used to determine the time interval between the uplink transmission and the target downlink transmission.
  • Receive target indication information where the target indication information includes the first indication information and/or the second indication information, that is, the target indication information may include only the first indication information, or may only include the second indication information, or may include both the first indication information
  • the first indication information is used to indicate that the first time slot offset value is a relative time slot offset value or an absolute time slot offset value
  • the second indication information is used to indicate that the first time slot offset value is a relative time slot offset value.
  • the relative offset object when shifting. In this way, based on the first time slot offset value and the target indication information, the time slot offset value between the uplink transmission and the target downlink transmission can be determined, so that the time domain position of the uplink transmission can be determined.
  • the first time slot offset value of the transmission can be an increment based on the reference time slot offset value, which can reduce transmission The signaling overhead of the first slot offset value.
  • the relative time slot offset value can be used to more accurately control the time slot offset value between the uplink transmission and the target downlink transmission, that is, the time domain position of the uplink transmission can be determined more accurately .
  • FIG. 14 is a structural diagram of an information indicating device according to an exemplary embodiment.
  • the device may be configured in a network device, and the device may include:
  • the first sending module 1410 is configured to send the first time slot offset value in the first downlink transmission, and the first time slot offset value is used to determine the time interval between the uplink transmission and the target downlink transmission;
  • the second sending module 1420 is configured to send target indication information, where the target indication information includes first indication information and/or second indication information, and the first indication information is used to indicate that the first time slot offset value is a relative time slot offset value Or the absolute time slot offset value, the second indication information is used to indicate the relative offset object when the first time slot offset value is the relative time slot offset value;
  • the first time slot offset value and target indication information are used to determine the time domain position of uplink transmission.
  • the network device sends a first downlink transmission, the first downlink transmission carries a first time slot offset value, and the first time slot offset value is used by the terminal to determine the difference between the uplink transmission and the target downlink transmission. time interval.
  • Send target indication information the target indication information includes the first indication information and/or the second indication information, that is, the target indication information may include only the first indication information, or only the second indication information, or both the first indication information Also includes second instruction information.
  • the first indication information is used to indicate that the first time slot offset value is a relative time slot offset value or an absolute time slot offset value
  • the second indication information is used to indicate that the first time slot offset value is a relative time slot offset value.
  • the relative offset object when shifting. In this way, the network device can indicate the time slot offset value between the terminal's uplink transmission and the target downlink transmission by sending the first time slot offset value and the target indication information, so that the terminal can determine the time domain position of the uplink transmission.
  • FIG. 15 shows a schematic structural diagram of a terminal provided by an exemplary embodiment of the present application.
  • the terminal includes: a processor 1501, a receiver 1502, a transmitter 1503, a memory 1504, and a bus 1505.
  • the processor 1501 includes one or more processing cores, and the processor 1501 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1502 and the transmitter 1503 may be implemented as a communication component, and the communication component may be a communication chip.
  • the memory 1504 is connected to the processor 1501 through a bus 1505.
  • the memory 1504 may be used to store at least one instruction, and the processor 1501 is used to execute the at least one instruction, so as to implement each step performed by the first IAB base station in the foregoing method embodiments.
  • the memory 1504 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • the volatile or non-volatile storage device includes, but is not limited to: magnetic disks or optical disks, EEPROM (Electrically Erasable Programmable read only memory, electrically erasable programmable read-only memory), EPROM (Erasable Programmable Read-Only Memory, erasable programmable read-only memory), SRAM (Static Random Access Memory, static access memory at any time), ROM (Read Only Memory, magnetic memory, flash memory, PROM (Programmable Read-Only Memory).
  • the present application provides a computer-readable storage medium in which at least one instruction is stored, and the at least one instruction is loaded and executed by the processor to implement the information indication method provided by the foregoing method embodiments.
  • This application also provides a computer program product, which when the computer program product runs on a computer, causes the computer to execute the information indicating method provided by the foregoing method embodiments.
  • FIG. 16 shows a schematic structural diagram of a network device provided by an exemplary embodiment of the present application.
  • the network device includes a processor 1601, a receiver 1602, a transmitter 1603, a memory 1604, and a bus 1605.
  • the processor 1601 includes one or more processing cores, and the processor 1601 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1602 and the transmitter 1603 may be implemented as a communication component, and the communication component may be a communication chip.
  • the memory 1604 is connected to the processor 1601 through a bus 1605.
  • the memory 1604 may be used to store at least one instruction, and the processor 1601 is used to execute the at least one instruction, so as to implement each step performed by the second IAB base station in the foregoing method embodiments.
  • the memory 1604 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • the volatile or non-volatile storage device includes but is not limited to: magnetic or optical disk, EEPROM, EPROM, SRAM, ROM, magnetic memory, flash memory, PROM.
  • the present application provides a computer-readable storage medium in which at least one instruction is stored, and the at least one instruction is loaded and executed by the processor to implement the information indication method provided by the foregoing method embodiments.
  • This application also provides a computer program product, which when the computer program product runs on a computer, causes the computer to execute the information indicating method provided by the foregoing method embodiments.
  • the functions described in the embodiments of the present application may be implemented by hardware, software, firmware, or any combination thereof. When implemented by software, these functions can be stored in a computer-readable medium or transmitted as one or more instructions or codes on the computer-readable medium.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信息指示方法、装置、设备、系统及存储介质,涉及通信技术领域。所述方法包括:从第一下行传输中获取第一时隙偏移值,第一时隙偏移值用于确定上行传输与目标下行传输之间的时间间隔。接收目标指示信息,目标指示信息可以只包括第一指示信息,也可以只包括第二指示信息,还可以既包括第一指示信息又包括第二指示信息。其中,第一指示信息用于指示第一时隙偏移值为相对时隙偏移值或绝对时隙偏移值,第二指示信息用于指示第一时隙偏移值为相对时隙偏移值时的相对偏移对象。如此,基于第一时隙偏移值和目标指示信息,可以确定上行传输与目标下行传输之间的时隙偏移值,从而可以确定上行传输的时域位置。

Description

信息指示方法、装置、设备、系统及存储介质 技术领域
本申请涉及通信技术领域,特别涉及一种信息指示方法、装置、设备、系统及存储介质。
背景技术
NR(New Radio,新空口)系统中,为了保证上行传输的正交性,避免来自同一小区的不同终端的上行传输之间产生干扰,NR系统支持上行定时提前的机制,即将来自同一时隙但不同频域资源的终端的上行传输到达网络设备的时间对齐。为此,网络设备在指示终端的上行传输时可以为终端配置时隙偏移量,以控制终端的上行传输到达网络设备的时间,通常,该时隙偏移量需要大于终端与网络设备之间的信号传播往返时延。
目前,3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)正在研究NTN(Non Terrestrial Network,非地面通信网络)通信方式。NTN中终端与网络设备之间的信号传播往返时延大幅增加,远大于目前标准中可以支持的时隙偏移量。
发明内容
本申请实施例提供了一种信息指示方法、装置、设备、系统及存储介质,可以用于解决实现非授权频谱上随机接入的问题。所述技术方案如下:
第一方面,提供了一种信息指示方法,应用于终端中,所述方法包括:
从第一下行传输中获取第一时隙偏移值,所述第一时隙偏移值用于确定上行传输与目标下行传输之间的时间间隔;
接收目标指示信息,所述目标指示信息包括第一指示信息和/或第二指示信息,所述第一指示信息用于指示所述第一时隙偏移值为相对时隙偏移值或绝对时隙偏移值,所述第二指示信息用于指示所述第一时隙偏移值为相对时隙偏移值时的相对偏移对象;
基于所述第一时隙偏移值和所述目标指示信息,确定所述上行传输的时域位置。
第二方面,提供了一种信息指示方法,应用于网络设备中,所述方法包括:
在第一下行传输中发送第一时隙偏移值,所述第一时隙偏移值用于确定上行传输与目标下行传输之间的时间间隔;
发送目标指示信息,所述目标指示信息包括第一指示信息和/或第二指示信息,所述第一指示信息用于指示所述第一时隙偏移值为相对时隙偏移值或绝对时隙偏移值,所述第二指示信息用于指示所述第一时隙偏移值为相对时隙偏移值时的相对偏移对象;
所述第一时隙偏移值和所述目标指示信息用于确定所述上行传输的时域位置。
第三方面,提供了一种信息指示装置,配置于终端中,所述装置包括:
获取模块,用于从第一下行传输中获取第一时隙偏移值,所述第一时隙偏移值用于确定上行传输与目标下行传输之间的时间间隔;
接收模块,用于接收目标指示信息,所述目标指示信息包括第一指示信息和/或第二指示信息,所述第一指示信息用于指示所述第一时隙偏移值为相对时隙偏移值或绝对时隙偏移值,所述第二指示信息用于指示所述第一时隙偏移值为相对时隙偏移值时的相对偏移对象;
确定模块,用于基于所述第一时隙偏移值和所述目标指示信息,确定所述上行传输的时域位置。
第四方面,提供了一种信息指示装置,配置于网络设备中,所述装置包括:
第一发送模块,用于在第一下行传输中发送第一时隙偏移值,所述第一时隙偏移值用于确定上行传输与目标下行传输之间的时间间隔;
第二发送模块,用于发送目标指示信息,所述目标指示信息包括第一指示信息和/或第二指示信息,所述第一指示信息用于指示所述第一时隙偏移值为相对时隙偏移值或绝对时隙偏移值,所述第二指示信息用于指示所述第一时隙偏移值为相对时隙偏移值时的相对偏移对象;
所述第一时隙偏移值和所述目标指示信息用于确定所述上行传输的时域位置。
第五方面,提供了一种通信系统,包括终端和网络设备,终端包括第三方面任一所述的装置,网络设备包括第四方面任一所述的装置。
第六方面,提供了一种终端,所述终端包括处理器和存储器,所述存储器存储有至少一条指令,所述至少一条指令用于被所述处理器执行以实现上述第一方面中任一所述的方法。
第七方面,提供了一种网络设备,所述网络设备包括处理器和存储器,所述存储器存储有至少一条 指令,所述至少一条指令用于被所述处理器执行以实现上述第二方面中任一所述的方法。
第八方面,提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有指令,所述指令被处理器执行时实现上述第一方面所述的方法。
第九方面,提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有指令,所述指令被处理器执行时实现上述第二方面所述的方法。
第十方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十一方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
本申请实施例提供的技术方案带来的有益效果至少包括:终端从第一下行传输中获取第一时隙偏移值,第一时隙偏移值用于确定上行传输与目标下行传输之间的时间间隔。接收目标指示信息,目标指示信息包括第一指示信息和/或第二指示信息,即目标指示信息可以只包括第一指示信息,也可以只包括第二指示信息,还可以既包括第一指示信息又包括第二指示信息。其中,第一指示信息用于指示第一时隙偏移值为相对时隙偏移值或绝对时隙偏移值,第二指示信息用于指示第一时隙偏移值为相对时隙偏移值时的相对偏移对象。如此,基于第一时隙偏移值和目标指示信息,可以确定上行传输与目标下行传输之间的时隙偏移值,从而可以确定上行传输的时域位置。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的定时提前的示意图;
图2是本申请一个示例性实施例提供的随机接入过程的流程图;
图3是本申请一个示例性实施例提供的信号传播往返时延的示意图;
图4是本申请一个示例性实施例提供的定时提前调整的示意图;
图5是本申请一个示例性实施例提供的实施环境的示意图;
图6是本申请一个示例性实施例提供的信息指示方法的流程图;
图7是本申请另一个示例性实施例提供的信息指示方法的流程图;
图8是本申请一个示例性实施例提供的信息指示方法的示意图;
图9是本申请另一个示例性实施例提供的信息指示方法的示意图;
图10是本申请另一个示例性实施例提供的信息指示方法的示意图;
图11是本申请另一个示例性实施例提供的信息指示方法的示意图;
图12是本申请一个示例性实施例提供的信息指示方法的流程图;
图13是本申请一个示例性实施例提供的信息指示装置的结构示意图;
图14是本申请另一个示例性实施例提供的信息指示装置的结构示意图;
图15是本申请一个示例性实施例提供的终端的结构示意图;
图16是本申请一个示例性实施例提供的网络设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
在对本申请实施例提供的信息指示方法进行详细介绍之前,先对本申请实施例涉及的相关术语和实施环境进行简单介绍。
首先,对本申请实施例涉及的相关术语进行简单介绍。
1、NTN
NTN一般采用卫星通信的方式向地面用户提供通信服务,相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达 地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加。最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同分为LEO(Low-Earth Orbit,低地球轨道)卫星、MEO(Medium-Earth Orbit,中地球轨道)卫星、GEO(Geostationary Earth Orbit,地球同步轨道)卫星和HEO(High Elliptical Orbit,高椭圆轨道)卫星等等。目前阶段主要研究的是LEO卫星和GEO卫星。
其中,LEO卫星高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信的信号传播往返时延一般小于20ms。最大卫星可视时间20分钟。信号传播距离短,链路损耗少,对用户终端的发射功率要求不高。
其中,GEO卫星的轨道高度为35786km,围绕地球旋转周期为24小时。用户间单跳通信的信号传播往返时延一般为250ms。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面,一个卫星波束可以覆盖直径几十至上百公里的地面区域。
2、上行定时提前
为了保证上行传输的正交性,避免来自同一小区的不同终端的上行传输之间产生干扰,网络设备要求来自同一时隙但不同频域资源的终端的上行传输到达网络设备的时间基本对齐。由于网络设备只要在CP(Cyclic Prefix,循环前缀)范围内接收到终端发送的上行传输,就能够正确地解码,因此网络设备要求来自同一时隙但不同频域资源的终端的上行传输到达网络设备的时间都落在CP之内。
为了保证网络设备的时间同步,NR支持上行定时提前的机制。对于终端而言,TA(Timing Advance,定时提前)本质上是接收到下行传输与发送上行传输之间的一个时隙偏移值。网络设备通过适当地控制每个终端的时隙偏移值,可以控制来自不同终端的上行传输到达网络设备的时间。对于离网络设备较远的终端,由于有较大的信号传播往返时延,就要比离网络设备较近的终端提前发送上行传输。
如图1(a)所示,当终端没有进行上行定时提前时,来自同一时隙但不同频域资源的终端的上行传输到达网络设备的时间差异较大。而如图1(b)所示,当终端进行上行定时提前时,来自同一时隙但不同频域资源的终端的上行传输到达网络设备的时间是基本对齐的。
需要说明的是,由图1(b)可以得知,网络设备的上行时钟和下行时钟是对齐的,而终端的上行时钟与下行时钟之间是存在偏移的。且不同的终端的定时提前可以是不同的。
示例性的,网络设备可以通过测量终端的上行传输来确定该终端的TA值。进而,在如下两种情形下,网络设备可以给终端发送TA命令:
第一种:在随机接入过程,网络设备可以通过测量接收到的前导码preamble来确定终端的TA值,并通过RAR(Random Access Response,随机接入响应)中的TAC(Timing Advance Command,定时提前命令)字段发送给终端。
第二种:虽然在随机接入过程中,终端与网络设备取得了上行同步,但上行传输到达网络设备的时间可能会发生变化。示例性的,对于高速移动中的终端,其与网络设备之间的信号传播往返时延会不断变化。因此,终端需要不断地更新其TA值,以保持与网络设备之间的上行同步。
作为一种示例,网络设备可以使用一种闭环机制来调整TA值。即网络设备可以通过测量终端的上行传输来确定该终端的TA值。因此,只要终端有上行传输,网络设备就可以用来估计TA值。理论上,终端发送的任何信号都可用于网络设备测量TA值,譬如,终端发送的SRS(Sounding Reference Signal,探测参考信号)、DMRS(Demodulation Reference Signal,解调参考信号)、CQI(Channel Quality Indication,信道质量指示)、ACK(Acknowledgment,肯定应答)/NACK(Non-Acknowledgment,否定应答)、PUSCH(Physical Uplink Control Channel,物理上行共享信道)等,均可以用于网络设备测量TA值。
如果某个终端的TA值需要校正,网络设备会发送一个TAC给该终端,要求该终端调整TA值。其中,该TAC可以是通过MAC(Media Access Control,媒体接入控制)CE(Control Element,控制单元)发送给终端的。
3、随机接入过程
请参考图2,随机接入过程通常可以包括如下四步过程。
第一步:终端向网络设备发送Msg1,该Msg1为随机接入前导序列(即前导码)。
终端发送Msg1给网络设备,以通知网络设备有一个随机接入请求,同时使得网络设备能够估计自身与终端之间的传输时延,并以此校准上行时间。
作为一种示例,发送Msg1的资源的信息可以通过RACH(Random Access Channel,随机接入信道)的资源配置获得。在Rel-15NR技术中,定义了为终端接入配置的RACH资源配置信息,包括256种,小区可以在系统消息中将自身使用的RACH资源配置信息指示给终端。每种RACH资源配置信息包括前导码格式,周期,无线帧偏移,无线帧内的子帧编号,子帧内的起始符号,子帧内PRACH时隙的个 数,PRACH时隙内PRACH时机的个数,PRACH时机持续时间。通过这些信息可以确定PRACH资源的时、频、码信息,如此,终端可以根据网络设备指示的RACH资源配置信息,在对应的PRACH资源上发送Msg1。
第二步:网络设备检测到终端发送的Msg1后,向终端发送RAR(Msg2)以告知终端在发送下一个消息(Msg3)时可以使用的上行资源信息。
其中,一个RAR中可以包括对多个发送前导码的终端的响应消息,对每一个终端的响应消息中包含该每个终端采用的随机接入前导码标识字段RAP ID、Msg3的资源分配信息、TA信息等。
当然,除此之外网络设备还可以执行其它操作,比如为终端分配临时RNTI(Radio Network Temporary Identity,无线网络临时标识)等,这里不作过多介绍。
第三步:终端接收RAR,并在该RAR所指示的上行资源上向网络设备发送Msg3。
在一些实施例中,该终端可以在该RAR对应的一个RAR时间窗内的搜索空间中监听PDCCH(Physical Downlink Control Channel,物理下行控制信道),以接收该RAR。其中,该RAR时间窗可以通过高层参数进行配置,PDCCH的搜索空间的配置信息可以通过系统消息来指示。
若终端在RAR时间窗内未接收到网络设备发送的RAR,则认为此次随机接入过程失败。若终端接收到一个RAR,且该RAR中的前导码索引与终端发送的前导码索引相同,则认为成功接收了RAR,此时终端可以停止监听RAR,终端向网络设备发送Msg3。
作为一种示例,该Msg3可以携带一个终端特定的临时标识信息或来自核心网的终端标志,譬如,该终端标志可以为S-TMSI(Serving-Temporary Mobile Subscriber Identity,临时移动用户标识)或一个随机数。
第四步:网络设备接收到Msg3后,向该终端发送Msg4。
作为一种示例,该Msg4包括竞争解决消息,同时包括为终端分配的上行传输资源的信息,示例性的,网络设备在冲突解决机制中,会在Msg4中携带唯一的标志以指示竞争胜出的终端。终端接收到基站发送的Msg4时,会检测终端在Msg3发送的临时标识信息是否包含在网络设备发送的竞争解决消息中,若包含则表明终端随机接入过程成功,否则认为随机过程失败,终端需要再次从第一步开始发起随机接入过程。
需要说明的是,基于目前NTN标准化讨论,NTN中的终端都应该具备定位能力,并且NTN中将支持两种类型的终端,一种是没有初始TA补偿能力的终端,即终端在随机接入过程中发送Msg1时没有进行TA补偿,另一种是有初始TA补偿能力的终端,即终端在随机接入过程中使用自己估算的TA发送Msg1。
对于这两种类型的终端,TA的确定方法有所不同。
首先,对于不具有初始TA补偿能力的终端,网络设备会基于地面参考点与卫星之间的信号传播往返时延广播1个公共TA。终端发送Msg1时不进行TA补偿,然后网络设备在RAR中向终端指示一个TA值,这样终端可以将广播的公共TA与RAR中指示的TA两者累加,得到发送Msg3时使用的TA。需要说明的是,此处仅是为了对不同类型的终端的随机接入过程进行说明而引入了TA,该TA不同于下文中的第一TA和第二TA。
其中,公共TA的确定方法如图3所示,对于可再生负载(regenerative payload),如图3(a)所示,公共TA=2*d0/c,其中,d0指的是地面参考点与卫星之间的距离,c指的是光速。
对于弯管负载(bent-pipe payload),TA=2*(d0+d0_F)/c,其中,d0指的是地面参考点与卫星之间的距离,c指的是光速,d0_F指的是卫星与地面基站之间的距离。
其次,对于具有初始TA补偿能力的终端,其随机接入过程如图4所示。
具体地,终端基于定位能力估算自己的TA,并使用自己估算的该TA发送Msg1。
进而,网络设备在收到Msg1后确定终端的TA调整值,并通过Msg2指示给终端。由于此时网络设备并不知道与终端之间实际的信号传播往返时延,因此网络设备可以按照最大上行调度时延调度该终端的Msg3的资源。
然后,终端基于接收到的RAR的指示对TA进行调整,并在网络设备调度的上行资源上发送Msg3。
进而,网络设备接收到终端的Msg3后,就可以确定与终端之间实际的信号传播往返时延。
需要说明的是,在随机接入过程中,无论终端是否具有初始TA补偿能力,网络设备发送的RAR中都会包含一个UL grant域,用于指示Msg3的上行资源。终端在RAR的UL grant指示的PUSCH资源上发送Msg3。
接下来,对本申请实施例涉及的实施环境进行简单介绍。
本申请实施例的技术方案可以应用于各种通信系统,例如:GSM(global system of mobile  communication,全球移动通讯)系统、CDMA(code division multiple access,码分多址)系统、WCDMA(wideband code division multiple access,宽带码分多址)系统、GPRS(general packet radio service,通用分组无线业务)、LTE(long term evolution,长期演进)系统、FDD(frequency division duplex,频分双工)系统、TDD(time division duplex,时分双工)系统、LTE-A(advanced long term evolution,先进的长期演进)系统、NR系统、NR系统的演进系统、LTE-U(LTE-based access to unlicensed spectrum,非授权频段上的LTE)系统、NR-U(NR-based access to unlicensed spectrum,非授权频段上的NR)系统、UMTS(universal mobile telecommunication system,通用移动通信系统)、WiMAX(worldwide interoperability for microwave access,全球互联微波接入)通信系统、WLAN(wireless local area networks,无线局域网)、WiFi(wireless fidelity,无线保真)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,D2D(device to device,设备到设备)通信,M2M(machine to machine,机器到机器)通信,MTC(machine type communication,机器类型通信),以及V2V(vehicle to vehicle,车辆间)通信等,本申请实施例也可以应用于这些通信系统。
本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
示例性的,本申请实施例应用的通信系统500如图5所示。该通信系统500可以包括网络设备510,网络设备510可以是与终端520(或称为通信终端、终端)通信的设备。网络设备510可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备510可以是eNB(Evolutional Node B,演进型基站),或者是CRAN(Cloud Radio Access Network,云无线接入网络)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来通信系统中的网络设备等。
该通信系统500还包括位于网络设备510覆盖范围内的至少一个终端520。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由PSTN(Public Switched Telephone Networks,公共交换电话网络)、DSL(Digital Subscriber Line,数字用户线路)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、WLAN、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或IoT(Internet of Things,物联网)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的PCS(Personal Communications System,个人通信系统)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或GPS(Global Positioning System,全球定位系统)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、UE(User Equipment,用户设备)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端520之间可以进行D2D通信。
可选地,5G通信系统或5G网络还可以称为NR系统或NR网络。
图5示例性地示出了一个网络设备和两个终端,可选地,该通信系统500可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统500还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图5示出的通信系统500为例,通信设备可包括具有通信功能的网络设备510和终端520,网络设备510和终端520可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统500中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
在介绍完本申请实施例涉及的相关术语和实施环境后,接下来将结合附图对本申请实施例提供的信息指示方法进行详细介绍。
请参考图6,该图6是根据一示例性实施例示出的一种信息指示方法的流程图,该信息指示方法可 以应用于上述图5所示的实施环境中,该信息指示方法可以包括如下内容中的至少部分内容:
步骤601:从第一下行传输中获取第一时隙偏移值,第一时隙偏移值用于确定上行传输与目标下行传输之间的时间间隔。
作为一种示例,第一下行传输可以为下行信号和/或下行信道的传输。其中,下行信号可以为SSB(Synchronization Signal Block,同步信号块)、CSI-RS(Channel Status Information Reference Signal,信道状态信息参考信号)和下行DMRS(Demodulation Reference Signal,解调参考信号)等等。下行信道可以为PBCH(Physical Broadcast Channel,物理广播控制信道)、PDCCH和PDSCH(Physical Downlink Control Channel,物理下行共享信道)等等,本实施例对此不做限定。
类似的,目标下行传输也可以为下行信号和/或下行信道的传输,本实施例对此也不做限定。
需要说明的是,目标下行传输可以为第一下行传输,也可以为除第一下行传输之外的其他下行传输,本实施例对此不做限定。
作为一种示例,上行传输可以为上行信号和/或上行信道的传输。上行信号可以为SRS、上行DMRS等等。上行信道可以为PUSCH、PUCCH(Physical Uplink Control Channel,物理上行控制信道)、PRACH(Physical Random Access Channel,物理随机接入信道)等等,本实施例对此不做限定。
也就是,终端可以接收网络设备发送的第一下行传输,并在接收到的第一下行传输中获取第一时隙偏移值,由于第一时隙偏移值可以用于确定上行传输与目标下行传输之间的时间间隔,因此终端可以根据第一时隙偏移值,确定在接收到目标下行传输之后间隔多长时间发送上行传输。
步骤602:接收目标指示信息,目标指示信息包括第一指示信息和/或第二指示信息,第一指示信息用于指示第一时隙偏移值为相对时隙偏移值或绝对时隙偏移值,第二指示信息用于指示第一时隙偏移值为相对时隙偏移值时的相对偏移对象。
其中,目标指示信息可以为网络设备发送的,该目标指示信息可以仅包括第一指示信息,也可以仅包括第二指示信息,还可以既包括第一指示信息又包括第二指示信息。
其中,在该目标指示信息仅包括第一指示信息的情况下,终端可以根据该第一指示信息确定该第一时隙偏移为相对时隙偏移值还是绝对时隙偏移值。
作为一种示例,当第一指示信息指示该第一时隙偏移值为相对时隙偏移值时,可以说明该第一时隙偏移值为相对于参考时隙偏移值的增量,即说明上行传输与目标下行传输之间的时间间隔应由该第一时隙偏移值和该参考时隙偏移值共同确定。
其中,该参考时隙偏移值可以为网络设备指示的。示例性的,终端可以在接收到的第一下行传输中获取该参考时隙偏移值,或者,终端可以在接收到的系统消息中获取该参考时隙偏移值。
当第一指示信息指示该第一时隙偏移值为绝对时隙偏移值时,说明终端不需要参考时隙偏移值,而是可以直接基于该第一时隙偏移值确定上行传输与目标下行传输之间的时间间隔。
其中,在该目标指示信息仅包括第二指示信息的情况下,该第一时隙偏移值为相对时隙偏移值,且终端可以根据该第二指示信息确定该第一时隙偏移值的相对偏移对象,也就是可以根据该第二指示信息确定该第一时隙偏移值的参考时隙偏移量。
其中,在该目标指示信息包括第一指示信息和第二指示信息的情况下,可以根据该第一指示信息确定该第一时隙偏移值为相对时隙偏移值还是绝对时隙偏移值。进而,当根据该第一指示信息确定该第一时隙偏移偏移值为相对时隙偏移值时,可以根据该第二指示信息确定该第一时隙偏移值的相对偏移对象,即确定该第一时隙偏移值的参考时隙偏移值。
作为一种示例,目标指示信息通过系统消息携带。或者,目标指示信息通过RRC(Radio Resource Control,无线资源控制)信令携带。或者,目标指示信息通过MAC CE(Medium Access Control Control Element,媒体接入控制控制单元)携带。
也就是,目标指示信息可以是网络设备通过系统消息向终端指示的,在这种情况下,当终端接收到系统消息时,可以在系统消息中获取到目标指示信息。或者,目标指示信息也可以为网络设备通过RRC信令向终端指示的,在这种情况下,当终端接收到RRC信令时,可以在该RRC信令中获取到目标指示信息。再或者,目标指示信息还可以为网络设备通过MAC CE向终端指示的,在这种情况下,当终端接收到MAC CE时,可以在该MAC CE中获取到目标指示信息。
步骤603:基于第一时隙偏移值和目标指示信息,确定上行传输的时域位置。
也就是,终端可以基于网络设备指示的第一时隙偏移值和目标指示信息,确定上行传输的时域位置,即确定终端在接收到目标下行传输之后间隔多长时间发送上行传输。
在一些实施例中,根据目标指示信息不同,该终端可以基于第一时隙偏移值、目标指示信息和参考时隙偏移值中的前两者或者全部,确定上行传输的时域位置。
作为一种示例,当目标指示信息包括第一指示信息,且第一指示信息指示该第一时隙偏移值为相对 时隙偏移值时,终端可以基于该第一时隙偏移值以及参考时隙偏移值,确定在接收到目标下行传输之后间隔多长时间发送上行传输。也即是,在该种情况下,基于第一时隙偏移值和目标指示信息,确定上行传输的时域位置的实现可以包括:获取参考时隙偏移值,基于第一时隙偏移值、目标指示信息和参考时隙偏移值,确定上行传输的时域位置。
作为一种示例,当目标指示信息包括第一指示信息,且第一指示信息指示该第一时隙偏移值为绝对时隙偏移值时,终端可以基于该第一时隙偏移值,确定在接收到目标下行传输之后间隔多长时间发送上行传输。也即是,在该种情况下,终端基于第一时隙偏移值和目标指示信息,确定上行传输的时域位置。
作为一种示例,当目标指示信息包括第二指示信息时,终端可以基于该第一时隙偏移值和第二指示信息指示的相对偏移对象,确定在接收到目标下行传输之后间隔多长时间发送上行传输。
作为一种示例,当目标指示信息包括第一指示信息和第二指示信息时,若第一指示信息指示该第一时隙偏移值为绝对时隙偏移值,则终端可以基于该第一时隙偏移值,确定在接收到目标下行传输之后间隔多长时间发送上行传输。
若第一指示信息指示该第一时隙偏移值为相对时隙偏移值,则终端可以基于第二指示信息确定相对时隙偏移值。如此,终端可以基于第一时隙偏移值和相对偏移对象,确定在接收到目标下行传输之后间隔多长时间发送上行传输。
在本申请实施例中,终端从第一下行传输中获取第一时隙偏移值,第一时隙偏移值用于确定上行传输与目标下行传输之间的时间间隔。接收目标指示信息,目标指示信息包括第一指示信息和/或第二指示信息,即目标指示信息可以只包括第一指示信息,也可以只包括第二指示信息,还可以既包括第一指示信息又包括第二指示信息。其中,第一指示信息用于指示第一时隙偏移值为相对时隙偏移值或绝对时隙偏移值,第二指示信息用于指示第一时隙偏移值为相对时隙偏移值时的相对偏移对象。如此,基于第一时隙偏移值和目标指示信息,可以确定上行传输与目标下行传输之间的时隙偏移值,从而可以确定上行传输的时域位置。
请参考图7,该图7是根据一示例性实施例示出的一种信息指示方法的流程图,该信息指示方法可以应用于上述图5所示的实施环境中,该信息指示方法可以包括如下内容中的至少部分内容:
步骤701:从第一下行传输中获取第一时隙偏移值,第一时隙偏移值用于确定上行传输与目标下行传输之间的时间间隔。
其具体实现方式可以参见图6实施例中的步骤601,这里不再重复赘述。
步骤702:接收目标指示信息,目标指示信息包括第一指示信息,第一指示信息用于指示第一时隙偏移值为相对时隙偏移值或绝对时隙偏移值。
其具体实现方式可以参见图6实施例中的步骤601,这里不再重复赘述。
作为一种示例,目标指示信息通过系统消息携带。或者,目标指示信息通过RRC信令携带。或者,目标指示信息通过MAC CE携带。
其具体实现方式可以参见图6实施例中的步骤601,这里不再重复赘述。
步骤703:基于第一时隙偏移值和目标指示信息,确定上行传输的时域位置。
在一种可能的实现方式中,目标指示信息包括第一指示信息,第一下行传输为随机接入响应的下行传输,目标下行传输为随机接入响应的下行传输。
在该种情况下,基于第一时隙偏移值和目标指示信息,确定上行传输的时域位置的实现方式可以为:确定目标下行传输的第一下行时隙号。基于上行传输的上行子载波间隔,确定第一参数。基于第一下行时隙号、第一参数、第一时隙偏移值和第一指示信息,确定上行传输的时域位置。
其中,第一下行时隙号指的是终端接收到随机接入响应的下行传输的下行时隙号。
作为一种示例,随机接入响应的下行传输可以为用于传输随机接入响应中Msg2的PDSCH。
作为一种示例,上行传输可以为用于传输随机接入响应中Msg3的PUSCH。
也就是,当目标指示信息只包括第一指示信息,且第一下行传输和目标下行传输都为随机接入响应的下行传输时,终端可以根据第一时隙偏移值、第一指示信息、接收到随机接入响应的下行传输的下行时隙号和根据上行子载波间隔确定的第一参数,确定上行传输的时域位置。
譬如,当目标指示只包括第一指示信息,且第一下行传输和目标下行传输都为随机接入响应中Msg2的PDSCH,终端可以根据第一时隙偏移值、第一指示信息、随机接入响应中Msg2的PDSCH的下行时隙号和根据上行子载波间隔确定的第一参数,确定随机接入响应中Msg3的PUSCH的时域位置。
作为一种示例,基于第一下行时隙号、第一参数、第一时隙偏移值和第一指示信息,确定上行传输的时域位置的实现方式可以包括如下两种:
第一种实现方式:若第一指示信息指示第一时隙偏移值为绝对时隙偏移值,将第一下行时隙号、第 一参数和第一时隙偏移值相加,得到第一上行时隙号。基于第一上行时隙号,确定上行传输的时域位置。
也就是,当第一指示信息指示第一时隙偏移值为绝对时隙偏移值时,终端可以将第一参数和第一时隙偏移值相加,得到目标时隙偏移值,确定该目标时隙偏移值为目标下行传输与上行传输之间的时间间隔。进而,终端可以将第一下行时隙号和该目标时隙偏移值相加,得到第一上行时隙号,如此,终端可以将该第一上行时隙号所属的时域位置确定为上行传输的时域位置。
譬如,如图8所示,设第一上行时隙号为N1,当第一指示信息指示第一时隙偏移值为绝对时隙偏移值时,可以通过如下公式(1)确定第一上行时隙号:
N1=n+K1+Δ   (1)
其中,n为第一下行时隙号,K1为第一时隙偏移值,Δ为第一参数,K1+Δ为目标时隙偏移值。
第二种实现方式:若第一指示信息指示第一时隙偏移值为相对时隙偏移值,则获取参考时隙偏移值。将第一下行时隙号、第一参数、第一时隙偏移值和参考时隙偏移值相加,得到第二上行时隙号。基于第二上行时隙号,确定上行传输的时域位置。
也就是,当第一指示信息指示第一时隙偏移值为相对时隙偏移值时,终端还可以获取参考时隙偏移值。终端可以将第一参数、第一时隙偏移值和参考时隙偏移值相加,得到目标时隙偏移值,确定该目标时隙偏移值为目标下行传输与上行传输之间的时间间隔。进而,终端可以将第一下行时隙号和该目标时隙偏移值相加,得到第二上行时隙号,如此,终端可以将该第二上行时隙号所属的时域位置确定为上行传输的时域位置。
譬如,如图8所示,设第二上行时隙号为N2,当第一指示信息指示第一时隙偏移值为相对时隙偏移值时,可以通过如下公式(2)确定第二上行时隙号:
N2=n+K1+Kr+Δ   (2)
其中,n为第一下行时隙号,K1为第一时隙偏移值,Kr为参考时隙偏移值,Δ为第一参数,K1+Kr+Δ为目标时隙偏移值。
作为一种示例,获取参考时隙偏移值的实现方式可以为:若无线资源控制RRC信令或媒体接入控制MAC控制单元CE中携带第一定时提前TA,则将第一TA获取为参考时隙偏移值。
也就是,当网络设备发送的RRC信令或MAC CE中携带有第一TA时,终端可以将在该RRC信令或MAC CE中获取的第一TA作为参考时隙偏移值,如此,终端可以基于该第一TA确定上行传输的时域位置。
作为一种示例,获取参考时隙偏移值的实现方式可以为:若RRC信令和MAC CE中未携带第一TA,则从系统消息中获取第二TA,得到参考时隙偏移值。
也就是,当网络设备发送的RRC信令或MAC CE中没有携带有第一TA时,终端可以在系统消息中获取第二TA,将该第二TA作为参考时隙偏移值,如此,终端可以基于该第二TA确定上行传输的时域位置。
示例性的,第一TA是基于终端的实际位置确定的TA,第二TA是基于地面参考点确定的TA。
其中,地面参考点可以为网络设备的覆盖范围内的任一地面参考点,譬如,地面参考点可以为网络设备的覆盖范围内距离网络设备最近的地面参考点。
也就是,当网络设备可以获取当前终端的实际位置时,该第一TA可以是网络设备根据终端的实际位置确定的。当网络设备不可以获取当前终端的实际位置时,该第二TA可以是网络设备根据该网络设备覆盖范围内的地面参考点确定的。
在本申请实施例中,终端从第一下行传输中获取第一时隙偏移值,第一时隙偏移值用于确定上行传输与目标下行传输之间的时间间隔。接收目标指示信息,目标指示信息包括第一指示信息。第一指示信息用于指示第一时隙偏移值为相对时隙偏移值或绝对时隙偏移值。如此,基于第一时隙偏移值和目标指示信息,可以确定上行传输与目标下行传输之间的时隙偏移值,从而可以确定上行传输的时域位置。
进而,由于在确定上行传输的时域位置时,引入了相对时隙偏移值,也就是传输的第一时隙偏移值可以是基于参考时隙偏移值的增量,如此可以减少传输第一时隙偏移值的信令开销。
而且,在同样的信令开销下,使用相对时隙偏移值可以更加精准地控制上行传输与目标下行传输之间的时隙偏移值,也就是可以更加准确地确定上行传输的时域位置。
在基于图7的可选实施例中,目标指示信息还包括第二指示信息,在该种情况下,获取参考时隙偏移值的实现方式可以为:根据第二指示信息,获取参考时隙偏移值。
也就是,目标指示信息中除了包括第一指示信息之外,还包括第二指示信息。在第一指示信息指示第一时隙偏移值为相对时隙偏移值的情况下,可以确定第二指示信息指示的相对偏移对象,进而可以根 据该相对偏移对象确定参考时隙偏移值。
作为一种示例,将第一下行时隙号、第一参数、第一时隙偏移值和参考时隙偏移值相加,得到第二上行时隙号的实现方式可以包括如下两种:
第一种实现方式:当第二指示信息指示第一时隙偏移值的相对偏移对象为第一TA时,将第一下行时隙号、第一参数、第一时隙偏移值和第一TA相加,得到第二上行时隙号。
也就是,当第二指示信息指示第一时隙偏移值的相对偏移对象为第一TA时,可以确定参考时隙偏移值为第一TA。如此,终端可以将第一参数、第一时隙偏移值和第一TA相加,得到目标时隙偏移值,确定该目标时隙偏移值为目标下行传输与上行传输之间的时间间隔。进而,终端可以将第一下行时隙号和该目标时隙偏移值相加,得到第二上行时隙号,如此,终端可以将该第二上行时隙号所属的时域位置确定为上行传输的时域位置。
譬如,如图9所示,设第二上行时隙号为N2,当第二指示信息指示第一时隙偏移值的相对偏移对象为第一TA时,可以通过如下公式(3)确定第二上行时隙号:
N2=n+K1+TA1+Δ   (3)
其中,n为第一下行时隙号,K1为第一时隙偏移值,TA1为第一TA,Δ为第一参数,K1+TA1+Δ为目标时隙偏移值。
第二种实现方式:当第二指示信息指示第一时隙偏移值的相对偏移对象为第二TA时,将第一下行时隙号、第一参数、第一时隙偏移值和第二TA相加,得到第二上行时隙号。
也就是,当第二指示信息指示第一时隙偏移值的相对偏移对象为第二TA时,可以确定参考时隙偏移值为第二TA。如此,终端可以将第一参数、第一时隙偏移值和第二TA相加,得到目标时隙偏移值,确定该目标时隙偏移值为目标下行传输与上行传输之间的时间间隔。进而,终端可以将第一下行时隙号和该目标时隙偏移值相加,得到第二上行时隙号,如此,终端可以将该第二上行时隙号所属的时域位置确定为上行传输的时域位置。
譬如,如图9所示,设第二上行时隙号为N2,当第二指示信息指示第一时隙偏移值的相对偏移对象为第二TA时,可以通过如下公式(4)确定第二上行时隙号:
N2=n+K1+TA2+Δ   (4)
其中,n为第一下行时隙号,K1为第一时隙偏移值,TA2为第二TA,Δ为第一参数,K1+TA2+Δ为目标时隙偏移值。
在本申请实施例中,终端从第一下行传输中获取第一时隙偏移值,第一时隙偏移值用于确定上行传输与目标下行传输之间的时间间隔。接收目标指示信息,目标指示信息既包括第一指示信息又包括第二指示信息。其中,第一指示信息用于指示第一时隙偏移值为相对时隙偏移值或绝对时隙偏移值,第二指示信息用于指示第一时隙偏移值为相对时隙偏移值时的相对偏移对象。如此,基于第一时隙偏移值和目标指示信息,可以确定上行传输与目标下行传输之间的时隙偏移值,从而可以确定上行传输的时域位置。
进而,由于在确定上行传输的时域位置时,引入了相对时隙偏移值,也就是传输的第一时隙偏移值可以是基于参考时隙偏移值的增量,如此可以减少传输第一时隙偏移值的信令开销。
而且,在同样的信令开销下,使用相对时隙偏移值可以更加精准地控制上行传输与目标下行传输之间的时隙偏移值,也就是可以更加准确地确定上行传输的时域位置。
作为一种示例,本申请实施例还提供了一种信息指示方法,该信息指示方法可以应用于上述图5所示的实施环境中,该信息指示方法可以包括如下内容中的至少部分内容:
步骤A1:从第一下行传输中获取第一时隙偏移值,第一时隙偏移值用于确定上行传输与目标下行传输之间的时间间隔。
其具体实现方式可以参见图6实施例中的步骤601,这里不再重复赘述。
步骤A2:接收目标指示信息,目标指示信息包括第一指示信息,第一指示信息用于指示第一时隙偏移值为相对时隙偏移值或绝对时隙偏移值。
其具体实现方式可以参见图6实施例中的步骤601,这里不再重复赘述。
作为一种示例,目标指示信息通过系统消息携带。或者,目标指示信息通过RRC信令携带。或者,目标指示信息通过MAC CE携带。
其具体实现方式可以参见图6实施例中的步骤601,这里不再重复赘述。
步骤A3:基于第一时隙偏移值和目标指示信息,确定上行传输的时域位置。
在一种可能的实现方式中,目标指示信息包括第一指示信息,第一下行传输为指示上行调度的第一物理下行控制信道PDCCH,目标下行传输为该第一PDCCH。
在该种情况下,基于第一时隙偏移值和目标指示信息,确定上行传输的时域位置的实现方式可以为:确定第一PDCCH的第二下行时隙号。基于第二下行时隙号、上行传输的上行子载波间隔、目标下行传输的下行子载波间隔、第一时隙偏移值和第一指示信息,确定上行传输的时域位置。
其中,第一PDCCH可以指示终端的上行传输使用的时频资源、调整编码方式等。
其中,第二下行时隙号指的是终端接收到第一PDCCH的下行时隙号。
作为一种示例,上行传输可以为用于上传上行数据的PUSCH。
也就是,当目标指示信息只包括第一指示信息,且第一下行传输和目标下行传输都为第一PDCCH时,终端可以根据第一时隙偏移值、第一指示信息、接收到第一PDCCH的下行时隙号、上行传输的上行子载波间隔和第一PDCCH的下行子载波间隔,确定上行传输的时域位置。
譬如,当目标指示只包括第一指示信息,且第一下行传输和目标下行传输都为第一PDCCH时,终端可以根据第一时隙偏移值、第一指示信息、接收到第一PDCCH的下行时隙号、PUSCH的上行子载波间隔和第一PDCCH的下行子载波间隔,确定上行数据的PUSCH的时域位置。
作为一种示例,基于第二下行时隙号、上行传输的上行子载波间隔、目标下行传输的下行子载波间隔、第一时隙偏移值和第一指示信息,确定上行传输的时域位置的实现方式可以包括如下两种:
第一种实现方式:若第一指示信息指示第一时隙偏移值为绝对时隙偏移值,则基于第二下行时隙号、上行传输的上行子载波间隔、目标下行传输的下行子载波间隔和第一时隙偏移值,确定上行传输的时域位置。
也就是,当第一指示信息指示第一时隙偏移值为绝对时隙偏移值时,终端可以基于上行传输的上行子载波间隔、目标下行传输的下行子载波间隔和第一时隙偏移值,确定目标时隙偏移值,该目标时隙偏移值为目标下行传输与上行传输之间的时间间隔。进而,终端可以基于该第二下行时隙号和该目标时隙偏移值,得到第三上行时隙号,如此,终端可以将该第三上行时隙号所属的时域位置确定为上行传输的时域位置。
譬如,如图10所示,设第三上行时隙号为N3,当第一指示信息指示第一时隙偏移值为绝对时隙偏移值时,可以通过如下公式(5)确定第三上行时隙号:
Figure PCTCN2020074541-appb-000001
其中,n为第二下行时隙号,K1为第一时隙偏移值,μ PUSCH为上行传输的上行子载波间隔,μ PDCCH为目标下行传输的下行子载波间隔,
Figure PCTCN2020074541-appb-000002
为经下行时隙号转换得到的时隙号。
第二种实现方式:若第一指示信息指示第一时隙偏移值为相对时隙偏移值,则获取第一TA,第一TA是基于终端的实际位置确定的TA。基于第二下行时隙号、上行传输的上行子载波间隔、目标下行传输的下行子载波间隔、第一时隙偏移值和第一TA,确定上行传输的时域位置。
也就是,当第一指示信息指示第一时隙偏移值为相对时隙偏移值时,终端可以获取第一TA作为参考时隙偏移值。终端可以基于上行传输的上行子载波间隔、目标下行传输的下行子载波间隔、第一时隙偏移值和第一TA,确定目标时隙偏移值,该目标时隙偏移值为目标下行传输与上行传输之间的时间间隔。进而,终端可以基于该第二下行时隙号和该目标时隙偏移值,得到第四上行时隙号,如此,终端可以将该第四上行时隙号所属的时域位置确定为上行传输的时域位置。
譬如,如图10所示,设第四上行时隙号为N4,当第一指示信息指示第一时隙偏移值为绝对时隙偏移值时,可以通过如下公式(6)确定第四上行时隙号:
Figure PCTCN2020074541-appb-000003
其中,n为第二下行时隙号,K1为第一时隙偏移值,TA1为第一TA,μ PUSCH为上行传输的上行子载波间隔,μ PDCCH为目标下行传输的下行子载波间隔,
Figure PCTCN2020074541-appb-000004
为经下行时隙号转换得到的时隙号。
在本申请实施例中,终端从第一下行传输中获取第一时隙偏移值,第一时隙偏移值用于确定上行传输与目标下行传输之间的时间间隔。接收目标指示信息,目标指示信息包括第一指示信息。第一指示信 息用于指示第一时隙偏移值为相对时隙偏移值或绝对时隙偏移值。如此,基于第一时隙偏移值和目标指示信息,可以确定上行传输与目标下行传输之间的时隙偏移值,从而可以确定上行传输的时域位置。
进而,由于在确定上行传输的时域位置时,引入了相对时隙偏移值,也就是传输的第一时隙偏移值可以是基于参考时隙偏移值的增量,如此可以减少传输第一时隙偏移值的信令开销。
而且,在同样的信令开销下,使用相对时隙偏移值可以更加精准地控制上行传输与目标下行传输之间的时隙偏移值,也就是可以更加准确地确定上行传输的时域位置。
作为一种示例,本申请实施例还提供了一种信息指示方法,该信息指示方法可以应用于上述图5所示的实施环境中,该信息指示方法可以包括如下内容中的至少部分内容:
步骤B1:从第一下行传输中获取第一时隙偏移值,第一时隙偏移值用于确定上行传输与目标下行传输之间的时间间隔。
其具体实现方式可以参见图6实施例中的步骤601,这里不再重复赘述。
步骤B2:接收目标指示信息,目标指示信息包括第一指示信息,第一指示信息用于指示第一时隙偏移值为相对时隙偏移值或绝对时隙偏移值。
其具体实现方式可以参见图6实施例中的步骤601,这里不再重复赘述。
作为一种示例,目标指示信息通过系统消息携带。或者,目标指示信息通过RRC信令携带。或者,目标指示信息通过MAC CE携带。
其具体实现方式可以参见图6实施例中的步骤601,这里不再重复赘述。
步骤B3:基于第一时隙偏移值和目标指示信息,确定上行传输的时域位置。
在一种可能的实现方式中,目标指示信息包括第一指示信息,第一下行传输为指示下行调度的第二PDCCH,目标下行传输为第一物理下行共享信道PDSCH,或者说,该第一PDSCH为该第二PDCCH调度的PDSCH。
在该种情况下,基于第一时隙偏移值和目标指示信息,确定上行传输的时域位置的实现方式可以为:确定第一PDSCH的第三下行时隙号。基于第三下行时隙号、第一时隙偏移值和第一指示信息,确定上行传输的时域位置。
其中,第三下行时隙号指的是终端接收到第一PDSCH的下行时隙号。
作为一种示例,上行传输可以为用于反馈ACK/NACK的PUCCH。
也就是,当目标指示信息只包括第一指示信息,且第一下行传输为第二PDCCH,目标下行传输为第一PDSCH时,终端可以根据第一时隙偏移值、第一指示信息和接收到第一PDSCH的下行时隙号,确定上行传输的时域位置。
譬如,当目标指示只包括第一指示信息,且第一下行传输为第二PDCCH,目标下行传输为第一PDSCH时,终端可以根据第一时隙偏移值、第一指示信息和接收到第一PDSCH的下行时隙号,确定ACK/NACK反馈的PUCCH的时域位置。
作为一种示例,基于第三下行时隙号、第一时隙偏移值和第一指示信息,确定上行传输的时域位置的实现方式可以包括如下两种:
第一种实现方式:若第一指示信息指示第一时隙偏移值为绝对时隙偏移值,则基于第三下行时隙号和第一时隙偏移值,确定上行传输的时域位置。
也就是,当第一指示信息指示第一时隙偏移值为绝对时隙偏移值时,终端可以将第一时隙偏移值确定为目标时隙偏移值,该目标时隙偏移值为目标下行传输与上行传输之间的时间间隔。进而,终端可以将第一下行时隙号和该目标时隙偏移值相加,得到第五上行时隙号,如此,终端可以将该第五上行时隙号所属的时域位置确定为上行传输的时域位置。
譬如,如图11所示,设第五上行时隙号为N5,当第一指示信息指示第一时隙偏移值为绝对时隙偏移值时,可以通过如下公式(7)确定第五上行时隙号:
N5=n+K1   (7)
其中,n为第三下行时隙号,K1为第一时隙偏移值。
第二种实现方式:若第一指示信息指示第一时隙偏移值为相对时隙偏移值,则获取第一TA,第一TA是基于终端的实际位置确定的TA。基于第三下行时隙号、第一时隙偏移值和第一TA,确定上行传输的时域位置。
也就是,当第一指示信息指示第一时隙偏移值为相对时隙偏移值时,终端还可以获取第一TA,并将第一TA确定为参考时隙偏移值。终端可以将第一时隙偏移值和第一TA相加,得到目标时隙偏移值,确定该目标时隙偏移值为目标下行传输与上行传输之间的时间间隔。进而,终端可以将第三下行时隙号和该目标时隙偏移值相加,得到第六上行时隙号,如此,终端可以将该第六上行时隙号所属的时域位置 确定为上行传输的时域位置。
譬如,如图11所示,设第六上行时隙号为N6,当第一指示信息指示第一时隙偏移值为相对时隙偏移值时,可以通过如下公式(8)确定第六上行时隙号:
N6=n+K1+TA1   (8)
其中,n为第三下行时隙号,K1为第一时隙偏移值,TA1为第一TA,K1+TA1为目标时隙偏移值。
在本申请实施例中,终端从第一下行传输中获取第一时隙偏移值,第一时隙偏移值用于确定上行传输与目标下行传输之间的时间间隔。接收目标指示信息,目标指示信息包括第一指示信息。第一指示信息用于指示第一时隙偏移值为相对时隙偏移值或绝对时隙偏移值。如此,基于第一时隙偏移值和目标指示信息,可以确定上行传输与目标下行传输之间的时隙偏移值,从而可以确定上行传输的时域位置。
进而,由于在确定上行传输的时域位置时,引入了相对时隙偏移值,也就是传输的第一时隙偏移值可以是基于参考时隙偏移值的增量,如此可以减少传输第一时隙偏移值的信令开销。
而且,在同样的信令开销下,使用相对时隙偏移值可以更加精准地控制上行传输与目标下行传输之间的时隙偏移值,也就是可以更加准确地确定上行传输的时域位置。
作为一种示例,本申请实施例还提供了一种信息指示方法,该信息指示方法可以应用于上述图5所示的实施环境中,该信息指示方法可以包括如下内容中的至少部分内容:
步骤C1:从第一下行传输中获取第一时隙偏移值,第一时隙偏移值用于确定上行传输与目标下行传输之间的时间间隔。
其具体实现方式可以参见图6实施例中的步骤601,这里不再重复赘述。
步骤C2:接收目标指示信息,目标指示信息包括第二指示信息,第二指示信息用于指示第一时隙偏移值为相对时隙偏移值时的相对偏移对象。
其具体实现方式可以参见图6实施例中的步骤601,这里不再重复赘述。
作为一种示例,目标指示信息通过系统消息携带。或者,目标指示信息通过RRC信令携带。或者,目标指示信息通过MAC CE携带。
其具体实现方式可以参见图6实施例中的步骤601,这里不再重复赘述。
步骤C3:基于第一时隙偏移值和目标指示信息,确定上行传输的时域位置。
在一种可能的实现方式中,目标指示信息包括第二指示信息,第一时隙偏移值为相对时隙偏移值,第一下行传输为随机接入响应的下行传输,目标下行传输为随机接入响应的下行传输。
在该种情况下,基于第一时隙偏移值和目标指示信息,确定上行传输的时域位置的实现方式可以为:根据第二指示信息,获取参考时隙偏移值。确定目标下行传输的第四下行时隙号。基于上行传输的上行子载波间隔,确定第一参数。基于第一时隙偏移值、第四下行时隙号、第一参数和参考时隙偏移值,确定上行传输的时域位置。
其中,第四下行时隙号指的是终端接收到随机接入响应的下行传输的下行时隙号。
作为一种示例,随机接入响应的下行传输可以为用于传输随机接入响应中Msg2的PDSCH。
作为一种示例,上行传输可以为用于传输随机接入响应中Msg3的PUSCH。
当目标指示信息只包括第二指示信息时,可以说明该第一时隙偏移值为相对时隙偏移值。如此,终端可以确定第二指示信息指示的相对偏移对象,并基于该相对偏移对象确定参考时隙偏移量。
进而,终端可以根据第一时隙偏移值、参考时隙偏移量、接收到随机接入响应的下行传输的下行时隙号和根据上行子载波间隔确定的第一参数,确定上行传输的时域位置。
示例性的,终端可以将第一参数、第一时隙偏移值和参考时隙偏移值相加,得到目标时隙偏移值,确定该目标时隙偏移值为目标下行传输与上行传输之间的时间间隔。进而,终端可以将第四下行时隙号和该目标时隙偏移值相加,得到第七上行时隙号,如此,终端可以将该第七上行时隙号所属的时域位置确定为上行传输的时域位置。
需要说明的是,该参考时隙偏移值可以为第一TA,也可以为第二TA,本实施例对此不做限定。
在本申请实施例中,终端从第一下行传输中获取第一时隙偏移值,第一时隙偏移值用于确定上行传输与目标下行传输之间的时间间隔。接收目标指示信息,目标指示信息包括第二指示信息。第二指示信息用于指示第一时隙偏移值为相对时隙偏移值时的相对偏移对象。如此,基于第一时隙偏移值和目标指示信息,可以确定上行传输与目标下行传输之间的时隙偏移值,从而可以确定上行传输的时域位置。
进而,由于在确定上行传输的时域位置时,引入了相对时隙偏移值,也就是传输的第一时隙偏移值可以是基于参考时隙偏移值的增量,如此可以减少传输第一时隙偏移值的信令开销。
而且,在同样的信令开销下,使用相对时隙偏移值可以更加精准地控制上行传输与目标下行传输之间的时隙偏移值,也就是可以更加准确地确定上行传输的时域位置。
请参考图12,该图12是根据一示例性实施例示出的一种信息指示方法的流程图,该信息指示方法可以应用于上述图5所示的实施环境中,该信息指示方法可以包括如下内容中的至少部分内容:
步骤1201:在第一下行传输中发送第一时隙偏移值,第一时隙偏移值用于确定上行传输与目标下行传输之间的时间间隔。
也就是,网络设备可以向终端发送第一时隙偏移值,该第一时隙偏移值可以承载于第一下行传输中,该第一时隙偏移值可以用于终端确定发送上行传输的时域位置。
其具体实现方式可以参见图6实施例中的步骤601,这里不再重复赘述。
步骤1202:发送目标指示信息,目标指示信息包括第一指示信息和/或第二指示信息,第一指示信息用于指示第一时隙偏移值为相对时隙偏移值或绝对时隙偏移值,第二指示信息用于指示第一时隙偏移值为相对时隙偏移值时的相对偏移对象。
也就是,网络设备可以向终端发送目标指示信息,其中,目标指示信息可以仅包括第一指示信息,也可以仅包括第二指示信息,还可以既包括第一指示信息又包括第二指示信息。
作为一种示例,第一时隙偏移值和目标指示信息用于确定上行传输的时域位置。
也就是,网络设备向终端发送的第一时隙偏移值和目标指示信息,可以用于指示终端确定发送上行传输的时域位置,即可以指示终端确定接收到目标下行传输之后间隔多长时间发送上行传输。
其具体实现方式可以参见图6实施例中的步骤601,这里不再重复赘述。
在本申请实施例中,网络设备发送第一下行传输,第一下行传输携带第一时隙偏移值,第一时隙偏移值用于终端确定上行传输与目标下行传输之间的时间间隔。发送目标指示信息,目标指示信息包括第一指示信息和/或第二指示信息,即目标指示信息可以只包括第一指示信息,也可以只包括第二指示信息,还可以既包括第一指示信息又包括第二指示信息。其中,第一指示信息用于指示第一时隙偏移值为相对时隙偏移值或绝对时隙偏移值,第二指示信息用于指示第一时隙偏移值为相对时隙偏移值时的相对偏移对象。如此,网络设备通过发送第一时隙偏移值和目标指示信息,可以指示终端上行传输与目标下行传输之间的时隙偏移值,从而可以使终端确定上行传输的时域位置。
请参考图13,该图13是根据一示例性实施例示出的一种信息指示装置的结构图,该装置可以配置于终端中,该装置可以包括:
获取模块1310,用于从第一下行传输中获取第一时隙偏移值,第一时隙偏移值用于确定上行传输与目标下行传输之间的时间间隔;
接收模块1320,用于接收目标指示信息,目标指示信息包括第一指示信息和/或第二指示信息,第一指示信息用于指示第一时隙偏移值为相对时隙偏移值或绝对时隙偏移值,第二指示信息用于指示第一时隙偏移值为相对时隙偏移值时的相对偏移对象;
确定模块1330,用于基于第一时隙偏移值和目标指示信息,确定上行传输的时域位置。
在本申请一种可能的实现方式中,目标指示信息包括第一指示信息,第一下行传输为随机接入响应的下行传输,目标下行传输为随机接入响应的下行传输;
确定模块1330用于:
确定目标下行传输的第一下行时隙号;
基于上行传输的上行子载波间隔,确定第一参数;
基于第一下行时隙号、第一参数、第一时隙偏移值和第一指示信息,确定上行传输的时域位置。
在本申请一种可能的实现方式中,确定模块1330用于:
若第一指示信息指示第一时隙偏移值为绝对时隙偏移值,将第一下行时隙号、第一参数和第一时隙偏移值相加,得到第一上行时隙号;
基于第一上行时隙号,确定上行传输的时域位置。
在本申请一种可能的实现方式中,确定模块1330用于:
若第一指示信息指示第一时隙偏移值为相对时隙偏移值,则获取参考时隙偏移值;
将第一下行时隙号、第一参数、第一时隙偏移值和参考时隙偏移值相加,得到第二上行时隙号;
基于第二上行时隙号,确定上行传输的时域位置。
在本申请一种可能的实现方式中,确定模块1330用于:
若无线资源控制RRC信令或媒体接入控制MAC控制单元CE中携带第一定时提前TA,则将第一TA获取为参考时隙偏移值;
在本申请一种可能的实现方式中,确定模块1330用于:
若RRC信令和MAC CE中未携带第一TA,则从系统消息中获取第二TA,得到参考时隙偏移值。
在本申请一种可能的实现方式中,第一TA是基于终端的实际位置确定的TA,第二TA是基于地面参考点确定的TA。
在本申请一种可能的实现方式中,目标指示信息还包括第二指示信息,确定模块1330用于:
根据第二指示信息,获取参考时隙偏移值。
在本申请一种可能的实现方式中,确定模块1330用于:
当第二指示信息指示第一时隙偏移值的相对偏移对象为第一TA时,将第一下行时隙号、第一参数、第一时隙偏移值和第一TA相加,得到第二上行时隙号;
在本申请一种可能的实现方式中,确定模块1330用于:
当第二指示信息指示第一时隙偏移值的相对偏移对象为第二TA时,将第一下行时隙号、第一参数、第一时隙偏移值和第二TA相加,得到第二上行时隙号。
在本申请一种可能的实现方式中,目标指示信息包括第一指示信息,第一下行传输为指示上行调度的第一物理下行控制信道PDCCH,目标下行传输为第一PDCCH;
确定模块1330用于:
确定第一PDCCH的第二下行时隙号;
基于第二下行时隙号、上行传输的上行子载波间隔、目标下行传输的下行子载波间隔、第一时隙偏移值和第一指示信息,确定上行传输的时域位置。
在本申请一种可能的实现方式中,确定模块1330用于:
若第一指示信息指示第一时隙偏移值为绝对时隙偏移值,则基于第二下行时隙号、上行传输的上行子载波间隔、目标下行传输的下行子载波间隔和第一时隙偏移值,确定上行传输的时域位置。
在本申请一种可能的实现方式中,确定模块1330用于:
若第一指示信息指示第一时隙偏移值为相对时隙偏移值,则获取第一TA,第一TA是基于终端的实际位置确定的TA;
基于第二下行时隙号、上行传输的上行子载波间隔、目标下行传输的下行子载波间隔、第一时隙偏移值和第一TA,确定上行传输的时域位置。
在本申请一种可能的实现方式中,目标指示信息包括第一指示信息,第一下行传输为指示下行调度的第二PDCCH,目标下行传输为第一物理下行共享信道PDSCH;
确定模块1330用于:
确定第一PDSCH的第三下行时隙号;
基于第三下行时隙号、第一时隙偏移值和第一指示信息,确定上行传输的时域位置。
在本申请一种可能的实现方式中,确定模块1330用于:
若第一指示信息指示第一时隙偏移值为绝对时隙偏移值,则基于第三下行时隙号和第一时隙偏移值,确定上行传输的时域位置。
在本申请一种可能的实现方式中,确定模块1330用于:
若第一指示信息指示第一时隙偏移值为相对时隙偏移值,则获取第一TA,第一TA是基于终端的实际位置确定的TA;
基于第三下行时隙号、第一时隙偏移值和第一TA,确定上行传输的时域位置。
在本申请一种可能的实现方式中,目标指示信息包括第二指示信息,第一时隙偏移值为相对时隙偏移值,第一下行传输为随机接入响应的下行传输,目标下行传输为随机接入响应的下行传输;
确定模块1330用于:
根据第二指示信息,获取参考时隙偏移值;
确定目标下行传输的第四下行时隙号;
基于上行传输的上行子载波间隔,确定第一参数;
基于第一时隙偏移值、第四下行时隙号、第一参数和参考时隙偏移值,确定上行传输的时域位置。
在本申请一种可能的实现方式中,
目标指示信息通过系统消息携带;或者,
目标指示信息通过RRC信令携带;或者,
目标指示信息通过MAC CE携带。
在本申请实施例中,终端从第一下行传输中获取第一时隙偏移值,第一时隙偏移值用于确定上行传输与目标下行传输之间的时间间隔。接收目标指示信息,目标指示信息包括第一指示信息和/或第二指示信息,即目标指示信息可以只包括第一指示信息,也可以只包括第二指示信息,还可以既包括第一指示信息又包括第二指示信息。其中,第一指示信息用于指示第一时隙偏移值为相对时隙偏移值或绝对时隙偏移值,第二指示信息用于指示第一时隙偏移值为相对时隙偏移值时的相对偏移对象。如此,基于第 一时隙偏移值和目标指示信息,可以确定上行传输与目标下行传输之间的时隙偏移值,从而可以确定上行传输的时域位置。
进而,由于在确定上行传输的时域位置时,引入了相对时隙偏移值,也就是传输的第一时隙偏移值可以是基于参考时隙偏移值的增量,如此可以减少传输第一时隙偏移值的信令开销。
而且,在同样的信令开销下,使用相对时隙偏移值可以更加精准地控制上行传输与目标下行传输之间的时隙偏移值,也就是可以更加准确地确定上行传输的时域位置。
请参考图14,该图14是根据一示例性实施例示出的一种信息指示装置的结构图,该装置可以配置于网络设备中,该装置可以包括:
第一发送模块1410,用于在第一下行传输中发送第一时隙偏移值,第一时隙偏移值用于确定上行传输与目标下行传输之间的时间间隔;
第二发送模块1420,用于发送目标指示信息,目标指示信息包括第一指示信息和/或第二指示信息,第一指示信息用于指示第一时隙偏移值为相对时隙偏移值或绝对时隙偏移值,第二指示信息用于指示第一时隙偏移值为相对时隙偏移值时的相对偏移对象;
其中,第一时隙偏移值和目标指示信息用于确定上行传输的时域位置。
在本申请实施例中,网络设备发送第一下行传输,第一下行传输携带第一时隙偏移值,第一时隙偏移值用于终端确定上行传输与目标下行传输之间的时间间隔。发送目标指示信息,目标指示信息包括第一指示信息和/或第二指示信息,即目标指示信息可以只包括第一指示信息,也可以只包括第二指示信息,还可以既包括第一指示信息又包括第二指示信息。其中,第一指示信息用于指示第一时隙偏移值为相对时隙偏移值或绝对时隙偏移值,第二指示信息用于指示第一时隙偏移值为相对时隙偏移值时的相对偏移对象。如此,网络设备通过发送第一时隙偏移值和目标指示信息,可以指示终端上行传输与目标下行传输之间的时隙偏移值,从而可以使终端确定上行传输的时域位置。
请参考图15,其示出了本申请一个示例性实施例提供的终端的结构示意图,该终端包括:处理器1501、接收器1502、发射器1503、存储器1504和总线1505。
处理器1501包括一个或者一个以上处理核心,处理器1501通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1502和发射器1503可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器1504通过总线1505与处理器1501相连。
存储器1504可用于存储至少一个指令,处理器1501用于执行该至少一个指令,以实现上述各个方法实施例中的第一IAB基站执行的各个步骤。
此外,存储器1504可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,EEPROM(Electrically Erasable Programmable read only memory,电可擦除可编程只读存储器),EPROM(Erasable Programmable Read-Only Memory,可擦除可编程只读存储器),SRAM(Static Random Access Memory,静态随时存取存储器),ROM(Read Only Memory,只读存储器),磁存储器,快闪存储器,PROM(Programmable Read-Only Memory,可编程只读存储器)。
本申请提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令,所述至少一条指令由所述处理器加载并执行以实现上述各个方法实施例提供的信息指示方法。
本申请还提供了一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述各个方法实施例提供的信息指示方法。
请参考图16,其示出了本申请一个示例性实施例提供的网络设备的结构示意图,该网络设备包括:处理器1601、接收器1602、发射器1603、存储器1604和总线1605。
处理器1601包括一个或者一个以上处理核心,处理器1601通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1602和发射器1603可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器1604通过总线1605与处理器1601相连。
存储器1604可用于存储至少一个指令,处理器1601用于执行该至少一个指令,以实现上述各个方法实施例中的第二IAB基站执行的各个步骤。
此外,存储器1604可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,EEPROM,EPROM,SRAM,ROM,磁存储器,快闪 存储器,PROM。
本申请提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令,所述至少一条指令由所述处理器加载并执行以实现上述各个方法实施例提供的信息指示方法。
本申请还提供了一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述各个方法实施例提供的信息指示方法。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (41)

  1. 一种信息指示方法,其特征在于,应用于终端中,所述方法包括:
    从第一下行传输中获取第一时隙偏移值,所述第一时隙偏移值用于确定上行传输与目标下行传输之间的时间间隔;
    接收目标指示信息,所述目标指示信息包括第一指示信息和/或第二指示信息,所述第一指示信息用于指示所述第一时隙偏移值为相对时隙偏移值或绝对时隙偏移值,所述第二指示信息用于指示所述第一时隙偏移值为相对时隙偏移值时的相对偏移对象;
    基于所述第一时隙偏移值和所述目标指示信息,确定所述上行传输的时域位置。
  2. 如权利要求1所述的方法,其特征在于,所述目标指示信息包括所述第一指示信息,所述第一下行传输为随机接入响应的下行传输,所述目标下行传输为所述随机接入响应的下行传输;
    所述基于所述第一时隙偏移值和所述目标指示信息,确定所述上行传输的时域位置,包括:
    确定所述目标下行传输的第一下行时隙号;
    基于所述上行传输的上行子载波间隔,确定第一参数;
    基于所述第一下行时隙号、所述第一参数、所述第一时隙偏移值和所述第一指示信息,确定所述上行传输的时域位置。
  3. 如权利要求2所述的方法,其特征在于,所述基于所述第一下行时隙号、所述第一参数、所述第一时隙偏移值和所述第一指示信息,确定所述上行传输的时域位置,包括:
    若所述第一指示信息指示所述第一时隙偏移值为绝对时隙偏移值,将所述第一下行时隙号、所述第一参数和所述第一时隙偏移值相加,得到第一上行时隙号;
    基于所述第一上行时隙号,确定所述上行传输的时域位置。
  4. 如权利要求2所述的方法,其特征在于,所述基于所述第一下行时隙号、所述第一参数、所述第一时隙偏移值和所述第一指示信息,确定所述上行传输的时域位置,包括:
    若所述第一指示信息指示所述第一时隙偏移值为相对时隙偏移值,则获取参考时隙偏移值;
    将所述第一下行时隙号、所述第一参数、所述第一时隙偏移值和所述参考时隙偏移值相加,得到第二上行时隙号;
    基于所述第二上行时隙号,确定所述上行传输的时域位置。
  5. 如权利要求4所述的方法,其特征在于,所述获取参考时隙偏移值,包括:
    若无线资源控制RRC信令或媒体接入控制MAC控制单元CE中携带第一定时提前TA,则将所述第一TA获取为所述参考时隙偏移值。
  6. 如权利要求4所述的方法,其特征在于,所述获取参考时隙偏移值,包括:
    若所述RRC信令和所述MAC CE中未携带所述第一TA,则从系统消息中获取第二TA,得到所述参考时隙偏移值。
  7. 如权利要求5或6所述的方法,其特征在于,所述第一TA是基于所述终端的实际位置确定的TA,所述第二TA是基于地面参考点确定的TA。
  8. 如权利要求5-7中任一项所述的方法,其特征在于,所述目标指示信息还包括第二指示信息,所述获取参考时隙偏移值,包括:
    根据所述第二指示信息,获取所述参考时隙偏移值。
  9. 如权利要求8所述的方法,其特征在于,所述将所述第一下行时隙号、所述第一参数、所述第一时隙偏移值和所述参考时隙偏移值相加,得到第二上行时隙号,包括:
    当所述第二指示信息指示所述第一时隙偏移值的相对偏移对象为第一TA时,将所述第一下行时隙号、所述第一参数、所述第一时隙偏移值和所述第一TA相加,得到所述第二上行时隙号。
  10. 如权利要求8所述的方法,其特征在于,所述将所述第一下行时隙号、所述第一参数、所述第一时隙偏移值和所述参考时隙偏移值相加,得到第二上行时隙号,包括:
    当所述第二指示信息指示所述第一时隙偏移值的相对偏移对象为第二TA时,将所述第一下行时隙号、所述第一参数、所述第一时隙偏移值和所述第二TA相加,得到所述第二上行时隙号。
  11. 如权利要求1所述的方法,其特征在于,所述目标指示信息包括所述第一指示信息,所述第一下行传输为指示上行调度的第一物理下行控制信道PDCCH,所述目标下行传输为所述第一PDCCH;
    所述基于所述第一时隙偏移值和所述目标指示信息,确定所述上行传输的时域位置,包括:
    确定所述第一PDCCH的第二下行时隙号;
    基于所述第二下行时隙号、所述上行传输的上行子载波间隔、所述目标下行传输的下行子载波间隔、所述第一时隙偏移值和所述第一指示信息,确定所述上行传输的时域位置。
  12. 如权利要求11所述的方法,其特征在于,所述基于所述第二下行时隙号、所述上行传输的上行子载波间隔、所述目标下行传输的下行子载波间隔、所述第一时隙偏移值和所述第一指示信息,确定所述上行传输的时域位置,包括:
    若所述第一指示信息指示所述第一时隙偏移值为绝对时隙偏移值,则基于所述第二下行时隙号、所述上行传输的上行子载波间隔、所述目标下行传输的下行子载波间隔和所述第一时隙偏移值,确定所述上行传输的时域位置。
  13. 如权利要求11所述的方法,其特征在于,所述基于所述第二下行时隙号、所述上行传输的上行子载波间隔、所述目标下行传输的下行子载波间隔、所述第一时隙偏移值和所述第一指示信息,确定所述上行传输的时域位置,包括:
    若所述第一指示信息指示所述第一时隙偏移值为相对时隙偏移值,则获取第一TA,所述第一TA是基于所述终端的实际位置确定的TA;
    基于所述第二下行时隙号、所述上行传输的上行子载波间隔、所述目标下行传输的下行子载波间隔、所述第一时隙偏移值和所述第一TA,确定所述上行传输的时域位置。
  14. 如权利要求1所述的方法,其特征在于,所述目标指示信息包括所述第一指示信息,所述第一下行传输为指示下行调度的第二PDCCH,所述目标下行传输为第一物理下行共享信道PDSCH;
    所述基于所述第一时隙偏移值和所述目标指示信息,确定所述上行传输的时域位置,包括:
    确定所述第一PDSCH的第三下行时隙号;
    基于所述第三下行时隙号、所述第一时隙偏移值和所述第一指示信息,确定所述上行传输的时域位置。
  15. 如权利要求14所述的方法,其特征在于,所述基于所述第三下行时隙号、所述第一时隙偏移值和所述第一指示信息,确定所述上行传输的时域位置,包括:
    若所述第一指示信息指示所述第一时隙偏移值为绝对时隙偏移值,则基于所述第三下行时隙号和所述第一时隙偏移值,确定所述上行传输的时域位置。
  16. 如权利要求14所述的方法,其特征在于,所述基于所述第三下行时隙号、所述第一时隙偏移值和所述第一指示信息,确定所述上行传输的时域位置,包括:
    若所述第一指示信息指示所述第一时隙偏移值为相对时隙偏移值,则获取第一TA,所述第一TA是基于所述终端的实际位置确定的TA;
    基于所述第三下行时隙号、所述第一时隙偏移值和所述第一TA,确定所述上行传输的时域位置。
  17. 如权利要求1所述的方法,其特征在于,所述目标指示信息包括第二指示信息,所述第一时隙偏移值为相对时隙偏移值,所述第一下行传输为随机接入响应的下行传输,所述目标下行传输为所述随机接入响应的下行传输;
    所述基于所述第一时隙偏移值和所述目标指示信息,确定所述上行传输的时域位置,包括:
    根据所述第二指示信息,获取参考时隙偏移值;
    确定所述目标下行传输的第四下行时隙号;
    基于所述上行传输的上行子载波间隔,确定第一参数;
    基于所述第一时隙偏移值、所述第四下行时隙号、所述第一参数和所述参考时隙偏移值,确定所述上行传输的时域位置。
  18. 如权利要求1-17中任一项所述的方法,其特征在于,
    所述目标指示信息通过系统消息携带;或者,
    所述目标指示信息通过RRC信令携带;或者,
    所述目标指示信息通过MAC CE携带。
  19. 一种信息指示方法,其特征在于,应用于网络设备中,所述方法包括:
    在第一下行传输中发送第一时隙偏移值,所述第一时隙偏移值用于确定上行传输与目标下行传输之间的时间间隔;
    发送目标指示信息,所述目标指示信息包括第一指示信息和/或第二指示信息,所述第一指示信息用于指示所述第一时隙偏移值为相对时隙偏移值或绝对时隙偏移值,所述第二指示信息用于指示所述第一时隙偏移值为相对时隙偏移值时的相对偏移对象;
    所述第一时隙偏移值和所述目标指示信息用于确定所述上行传输的时域位置。
  20. 一种信息指示装置,其特征在于,配置于终端中,所述装置包括:
    获取模块,用于从第一下行传输中获取第一时隙偏移值,所述第一时隙偏移值用于确定上行传输与目标下行传输之间的时间间隔;
    接收模块,用于接收目标指示信息,所述目标指示信息包括第一指示信息和/或第二指示信息,所述第一指示信息用于指示所述第一时隙偏移值为相对时隙偏移值或绝对时隙偏移值,所述第二指示信息用于指 示所述第一时隙偏移值为相对时隙偏移值时的相对偏移对象;
    确定模块,用于基于所述第一时隙偏移值和所述目标指示信息,确定所述上行传输的时域位置。
  21. 如权利要求20所述的装置,其特征在于,所述目标指示信息包括所述第一指示信息,所述第一下行传输为随机接入响应的下行传输,所述目标下行传输为所述随机接入响应的下行传输;
    所述确定模块用于:
    确定所述目标下行传输的第一下行时隙号;
    基于所述上行传输的上行子载波间隔,确定第一参数;
    基于所述第一下行时隙号、所述第一参数、所述第一时隙偏移值和所述第一指示信息,确定所述上行传输的时域位置。
  22. 如权利要求21所述的装置,其特征在于,所述确定模块用于:
    若所述第一指示信息指示所述第一时隙偏移值为绝对时隙偏移值,将所述第一下行时隙号、所述第一参数和所述第一时隙偏移值相加,得到第一上行时隙号;
    基于所述第一上行时隙号,确定所述上行传输的时域位置。
  23. 如权利要求21所述的装置,其特征在于,所述确定模块用于:
    若所述第一指示信息指示所述第一时隙偏移值为相对时隙偏移值,则获取参考时隙偏移值;
    将所述第一下行时隙号、所述第一参数、所述第一时隙偏移值和所述参考时隙偏移值相加,得到第二上行时隙号;
    基于所述第二上行时隙号,确定所述上行传输的时域位置。
  24. 如权利要求23所述的装置,其特征在于,所述确定模块用于:
    若无线资源控制RRC信令或媒体接入控制MAC控制单元CE中携带第一定时提前TA,则将所述第一TA获取为所述参考时隙偏移值。
  25. 如权利要求23所述的装置,其特征在于,所述确定模块用于:
    若所述RRC信令和所述MAC CE中未携带所述第一TA,则从系统消息中获取第二TA,得到所述参考时隙偏移值。
  26. 如权利要求24或25所述的装置,其特征在于,所述第一TA是基于所述终端的实际位置确定的TA,所述第二TA是基于地面参考点确定的TA。
  27. 如权利要求24-26中任一项所述的装置,其特征在于,所述目标指示信息还包括第二指示信息,所述确定模块用于:
    根据所述第二指示信息,获取所述参考时隙偏移值。
  28. 如权利要求27所述的装置,其特征在于,所述确定模块用于:
    当所述第二指示信息指示所述第一时隙偏移值的相对偏移对象为第一TA时,将所述第一下行时隙号、所述第一参数、所述第一时隙偏移值和所述第一TA相加,得到所述第二上行时隙号。
  29. 如权利要求27所述的装置,其特征在于,所述确定模块用于:
    当所述第二指示信息指示所述第一时隙偏移值的相对偏移对象为第二TA时,将所述第一下行时隙号、所述第一参数、所述第一时隙偏移值和所述第二TA相加,得到所述第二上行时隙号。
  30. 如权利要求20所述的装置,其特征在于,所述目标指示信息包括所述第一指示信息,所述第一下行传输为指示上行调度的第一物理下行控制信道PDCCH,所述目标下行传输为所述第一PDCCH;
    所述确定模块用于:
    确定所述第一PDCCH的第二下行时隙号;
    基于所述第二下行时隙号、所述上行传输的上行子载波间隔、所述目标下行传输的下行子载波间隔、所述第一时隙偏移值和所述第一指示信息,确定所述上行传输的时域位置。
  31. 如权利要求30所述的装置,其特征在于,所述确定模块用于:
    若所述第一指示信息指示所述第一时隙偏移值为绝对时隙偏移值,则基于所述第二下行时隙号、所述上行传输的上行子载波间隔、所述目标下行传输的下行子载波间隔和所述第一时隙偏移值,确定所述上行传输的时域位置。
  32. 如权利要求30所述的装置,其特征在于,所述确定模块用于:
    若所述第一指示信息指示所述第一时隙偏移值为相对时隙偏移值,则获取第一TA,所述第一TA是基于所述终端的实际位置确定的TA;
    基于所述第二下行时隙号、所述上行传输的上行子载波间隔、所述目标下行传输的下行子载波间隔、所述第一时隙偏移值和所述第一TA,确定所述上行传输的时域位置。
  33. 如权利要求20所述的装置,其特征在于,所述目标指示信息包括所述第一指示信息,所述第一下行传输为指示下行调度的第二PDCCH,所述目标下行传输为第一物理下行共享信道PDSCH;
    所述确定模块用于:
    确定所述第一PDSCH的第三下行时隙号;
    基于所述第三下行时隙号、所述第一时隙偏移值和所述第一指示信息,确定所述上行传输的时域位置。
  34. 如权利要求33所述的装置,其特征在于,所述确定模块用于:
    若所述第一指示信息指示所述第一时隙偏移值为绝对时隙偏移值,则基于所述第三下行时隙号和所述第一时隙偏移值,确定所述上行传输的时域位置。
  35. 如权利要求33所述的装置,其特征在于,所述确定模块用于:
    若所述第一指示信息指示所述第一时隙偏移值为相对时隙偏移值,则获取第一TA,所述第一TA是基于所述终端的实际位置确定的TA;
    基于所述第三下行时隙号、所述第一时隙偏移值和所述第一TA,确定所述上行传输的时域位置。
  36. 如权利要求20所述的装置,其特征在于,所述目标指示信息包括第二指示信息,所述第一时隙偏移值为相对时隙偏移值,所述第一下行传输为随机接入响应的下行传输,所述目标下行传输为所述随机接入响应的下行传输;
    所述确定模块用于:
    根据所述第二指示信息,获取参考时隙偏移值;
    确定所述目标下行传输的第四下行时隙号;
    基于所述上行传输的上行子载波间隔,确定第一参数;
    基于所述第一时隙偏移值、所述第四下行时隙号、所述第一参数和所述参考时隙偏移值,确定所述上行传输的时域位置。
  37. 如权利要求20-36中任一项所述的装置,其特征在于,
    所述目标指示信息通过系统消息携带;或者,
    所述目标指示信息通过RRC信令携带;或者,
    所述目标指示信息通过MAC CE携带。
  38. 一种信息指示装置,其特征在于,配置于网络设备中,所述装置包括:
    第一发送模块,用于在第一下行传输中发送第一时隙偏移值,所述第一时隙偏移值用于确定上行传输与目标下行传输之间的时间间隔;
    第二发送模块,用于发送目标指示信息,所述目标指示信息包括第一指示信息和/或第二指示信息,所述第一指示信息用于指示所述第一时隙偏移值为相对时隙偏移值或绝对时隙偏移值,所述第二指示信息用于指示所述第一时隙偏移值为相对时隙偏移值时的相对偏移对象;
    所述第一时隙偏移值和所述目标指示信息用于确定所述上行传输的时域位置。
  39. 一种设备,其特征在于,所述设备包括处理器和存储器,所述存储器存储有至少一条指令,所述至少一条指令用于被所述处理器执行以实现权利要求1-18任一项方法的步骤,或者,用于实现权利要求19所述方法的步骤。
  40. 一种通信系统,其特征在于,包括终端和网络设备,所述终端包括权利要求20-37任一项所述的装置,所述网络设备包括权利要求38所述的装置。
  41. 一种计算机可读存储介质,所述计算机可读存储介质上存储有指令,其特征在于,所述指令被处理器执行时实现权利要求1-18任一项方法的步骤,或者,用于实现权利要求19所述方法的步骤。
PCT/CN2020/074541 2020-02-07 2020-02-07 信息指示方法、装置、设备、系统及存储介质 WO2021155596A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/551,294 US20240314749A1 (en) 2020-02-07 2020-02-07 Information indication method and apparatus, device, and storage medium
CN202410053750.9A CN117880998A (zh) 2020-02-07 2020-02-07 信息指示方法、装置、设备、系统及存储介质
PCT/CN2020/074541 WO2021155596A1 (zh) 2020-02-07 2020-02-07 信息指示方法、装置、设备、系统及存储介质
CN202080073275.1A CN114557088B (zh) 2020-02-07 2020-02-07 信息指示方法、装置、设备、系统及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074541 WO2021155596A1 (zh) 2020-02-07 2020-02-07 信息指示方法、装置、设备、系统及存储介质

Publications (1)

Publication Number Publication Date
WO2021155596A1 true WO2021155596A1 (zh) 2021-08-12

Family

ID=77199713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074541 WO2021155596A1 (zh) 2020-02-07 2020-02-07 信息指示方法、装置、设备、系统及存储介质

Country Status (3)

Country Link
US (1) US20240314749A1 (zh)
CN (2) CN114557088B (zh)
WO (1) WO2021155596A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023050335A1 (zh) * 2021-09-30 2023-04-06 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
WO2023078385A1 (zh) * 2021-11-05 2023-05-11 展讯半导体(南京)有限公司 数据传输方法及相关产品

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024031239A1 (en) * 2022-08-08 2024-02-15 Apple Inc. System and method for ue location verification in non-terrestrial network (ntn)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108235435A (zh) * 2016-12-15 2018-06-29 华为技术有限公司 一种资源指示方法及装置
CN110035532A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种保留资源的指示方法及设备
US20190239093A1 (en) * 2018-03-19 2019-08-01 Intel Corporation Beam indication information transmission
CN110419186A (zh) * 2017-03-23 2019-11-05 夏普株式会社 用于上行链路超高可靠和低延迟通信的下行链路控制通道
CN110650001A (zh) * 2019-10-15 2020-01-03 中兴通讯股份有限公司 传输方法、装置、第一通信节点、第二通信节点及介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109152027B (zh) * 2017-06-16 2023-09-29 华为技术有限公司 通信方法及装置
CN114222374A (zh) * 2018-04-04 2022-03-22 华为技术有限公司 一种通信方法及装置
US10419259B1 (en) * 2018-04-16 2019-09-17 Telefonaktiebolaget Lm Ericsson (Publ) Time-domain table for PUSCH and Msg3

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108235435A (zh) * 2016-12-15 2018-06-29 华为技术有限公司 一种资源指示方法及装置
CN110419186A (zh) * 2017-03-23 2019-11-05 夏普株式会社 用于上行链路超高可靠和低延迟通信的下行链路控制通道
CN110035532A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种保留资源的指示方法及设备
US20190239093A1 (en) * 2018-03-19 2019-08-01 Intel Corporation Beam indication information transmission
CN110650001A (zh) * 2019-10-15 2020-01-03 中兴通讯股份有限公司 传输方法、装置、第一通信节点、第二通信节点及介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023050335A1 (zh) * 2021-09-30 2023-04-06 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
WO2023078385A1 (zh) * 2021-11-05 2023-05-11 展讯半导体(南京)有限公司 数据传输方法及相关产品

Also Published As

Publication number Publication date
CN117880998A (zh) 2024-04-12
CN114557088A (zh) 2022-05-27
CN114557088B (zh) 2024-02-06
US20240314749A1 (en) 2024-09-19

Similar Documents

Publication Publication Date Title
US20210321353A1 (en) Systems and methods for uplink transmission timing
WO2021155596A1 (zh) 信息指示方法、装置、设备、系统及存储介质
CN115413045B (zh) 信息传输方法、终端设备和网络设备
CN114270773B (zh) 一种参考时钟的确定方法及装置、终端设备、网络设备
EP4024999B1 (en) Communication method, device, and storage medium
WO2022027628A1 (zh) 上行提前定时的确定方法、装置、设备及存储介质
WO2021062680A1 (zh) 数据传输方法及相关设备
CN116456445A (zh) 无线通信方法、终端设备和网络设备
WO2021088055A1 (zh) 非授权频谱上的数据传输方法、装置、设备及存储介质
US20240031964A1 (en) Adjustment method and determination method for transmission timing, and terminal device
WO2024020922A1 (zh) 一种随机接入方法及装置、终端设备、网络设备
EP4271088A1 (en) Parameter transmission method and apparatus
CN115023985B (zh) 时序处理方法及其装置
WO2022141414A1 (zh) 公共信息的广播方法、装置、设备及介质
US20230074439A1 (en) Network Device, Terminal Device, and Methods Therein
CN114788362B (zh) 媒体接入控制层控制单元生效时间的确定方法及相关产品
CN115299092A (zh) 一种无线链路测量方法、电子设备及存储介质
US20230328798A1 (en) Random access methods, terminal device and network device
WO2022205482A1 (zh) 无线通信方法和终端设备
WO2022006820A1 (en) Method and apparatus for determining timing advance value
US20240298283A1 (en) Communication method and apparatus, device, storage medium, chip, product, and program
CN117769818A (zh) 通信方法及终端设备
WO2023078675A1 (en) Management of updates in scheduling offset via system information and soft indication of system information modification
CN115516795A (zh) 一种信息处理方法、终端设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917664

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18551294

Country of ref document: US