WO2022205482A1 - 无线通信方法和终端设备 - Google Patents

无线通信方法和终端设备 Download PDF

Info

Publication number
WO2022205482A1
WO2022205482A1 PCT/CN2021/085471 CN2021085471W WO2022205482A1 WO 2022205482 A1 WO2022205482 A1 WO 2022205482A1 CN 2021085471 W CN2021085471 W CN 2021085471W WO 2022205482 A1 WO2022205482 A1 WO 2022205482A1
Authority
WO
WIPO (PCT)
Prior art keywords
offset value
terminal device
subframe
harq
control channel
Prior art date
Application number
PCT/CN2021/085471
Other languages
English (en)
French (fr)
Inventor
吴作敏
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21934137.7A priority Critical patent/EP4319002A1/en
Priority to JP2023558878A priority patent/JP2024512073A/ja
Priority to PCT/CN2021/085471 priority patent/WO2022205482A1/zh
Priority to KR1020237037461A priority patent/KR20230165806A/ko
Priority to CN202180096604.9A priority patent/CN117178506A/zh
Publication of WO2022205482A1 publication Critical patent/WO2022205482A1/zh
Priority to US18/478,603 priority patent/US11894930B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the embodiments of the present application relate to the field of communication, and more particularly, to a wireless communication method and a terminal device.
  • Non-Terrestrial Networks In a new radio (New Radio, NR) system, a non-terrestrial communication network (Non-Terrestrial Networks, NTN) is considered to provide communication services to users.
  • NTN non-terrestrial communication network
  • IoT-NTN Internet of Things NTN
  • the uplink and downlink timing relationship in the terrestrial communication network (Terrestrial Networks, TN) system needs to be enhanced, for example, the detection of the control channel in the IoT-NTN system also needs to be enhanced.
  • the present application provides a wireless communication method and terminal device. By enhancing the scheduling sequence, the normal operation of the terminal device that does not have the capability of simultaneously receiving and transmitting signals can be ensured, and the effect of power saving can also be achieved.
  • the present application provides a wireless communication method, including:
  • the monitoring control channel candidate is confirmed; wherein, the time interval corresponding to the first offset value is associated with the terminal equipment
  • the timing advance TA value or the round-trip transmission time RTT, the time interval corresponding to the second offset value is associated with the synchronization information acquisition of the terminal device.
  • the present application provides a terminal device for executing the method in the first aspect or each of its implementations.
  • the terminal device includes a functional module for executing the method in the first aspect or each implementation manner thereof.
  • the terminal device may include a processing unit for performing functions related to information processing.
  • the processing unit may be a processor.
  • the terminal device may include a sending unit and/or a receiving unit.
  • the sending unit is used to perform functions related to transmission, and the receiving unit is used to perform functions related to reception.
  • the sending unit may be a transmitter or a transmitter, and the receiving unit may be a receiver or a receiver.
  • the terminal device is a communication chip, the sending unit may be an input circuit or an interface of the communication chip, and the sending unit may be an output circuit or an interface of the communication chip.
  • the present application provides a terminal device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so as to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • the processor is one or more and the memory is one or more.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the terminal device also includes a transmitter (transmitter) and a receiver (receiver).
  • the present application provides a chip for implementing the method in the above-mentioned first aspect or each of its implementation manners.
  • the chip includes: a processor for invoking and running a computer program from a memory, so that a device on which the chip is installed executes the method in the first aspect or its respective implementations.
  • the present application provides a computer-readable storage medium for storing a computer program, wherein the computer program causes a computer to execute the method in the first aspect or each of its implementations.
  • the present application provides a computer program product, comprising computer program instructions, the computer program instructions causing a computer to execute the method in the first aspect or each of its implementations.
  • the present application provides a computer program, which, when run on a computer, causes the computer to execute the method in the above-mentioned first aspect or each of its implementations.
  • monitoring the control channel candidate based on at least one of the first offset value, the second offset value and the HARQ-ACK feedback status of the HARQ-ACK feedback state is used to enhance the scheduling sequence. To ensure the normal operation of terminal equipment that does not have the ability to receive and transmit signals at the same time, it can also achieve the effect of power saving.
  • 1 to 3 are schematic block diagrams of a system framework provided by an embodiment of the present application.
  • FIG. 4 and FIG. 5 respectively show schematic diagrams of NTN scenarios based on transparent-transmitting and re-transmitting satellites.
  • FIG. 6 is a schematic structural diagram of Case 1 in the timing relationship of the NTN system provided by the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of Case 2 in the timing relationship of the NTN system provided by the embodiment of the present application.
  • FIGS. 8 to 10 are schematic diagrams of subframes in which a terminal device does not detect an NPDCCH provided by an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a terminal device not detecting a subframe of a control channel candidate provided by an embodiment of the present application.
  • FIG. 13 is another schematic diagram of a subframe in which a terminal device does not detect a control channel candidate provided by an embodiment of the present application.
  • FIG. 14 and FIG. 15 are schematic block diagrams of terminal devices provided by embodiments of the present application.
  • FIG. 16 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the communication system 100 may include a terminal device 110 and a network device 120 .
  • the network device 120 may communicate with the terminal device 110 through the air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120 .
  • the embodiment of the present application only uses the communication system 100 for exemplary description, but the embodiment of the present application is not limited thereto. That is to say, the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: long term evolution (Long Term Evolution, LTE) system, LTE time division duplex (Time Division Duplex, TDD), universal mobile communication system (Universal mobile communication system) Mobile Telecommunication System (UMTS), Internet of Things (IoT) system, Narrow Band Internet of Things (NB-IoT) system, enhanced Machine-Type Communications (eMTC) system, 5G communication system (also known as New Radio (NR) communication system), or future communication system, etc.
  • LTE Long Term Evolution
  • LTE time division duplex Time Division Duplex
  • UMTS Universal mobile communication system
  • IoT Internet of Things
  • NB-IoT Narrow Band Internet of Things
  • eMTC enhanced Machine-Type Communications
  • 5G communication system also known as New Radio (NR) communication system
  • NR New Radio
  • the network device 120 may be an access network device that communicates with the terminal device 110 .
  • An access network device may provide communication coverage for a particular geographic area, and may communicate with terminal devices 110 (eg, UEs) located within the coverage area.
  • the network device 120 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (Long Term Evolution, LTE) system, or a next generation radio access network (Next Generation Radio Access Network, NG RAN) device, Or a base station (gNB) in an NR system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the network device 120 can be a relay station, an access point, a vehicle-mounted device, a wearable Devices, hubs, switches, bridges, routers, or network devices in the future evolved Public Land Mobile Network (PLMN).
  • PLMN Public Land Mobile Network
  • the terminal device 110 may be any terminal device, which includes, but is not limited to, a terminal device that adopts a wired or wireless connection with the network device 120 or other terminal devices.
  • the terminal equipment 110 may refer to an access terminal, a user equipment (UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, user agent, or user device.
  • UE user equipment
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, an IoT device, a satellite handset, a Wireless Local Loop (WLL) station, a Personal Digital Assistant , PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolution networks, etc.
  • SIP Session Initiation Protocol
  • IoT device a satellite handset
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device 110 may be used for device-to-device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the wireless communication system 100 may further include a core network device 130 that communicates with the base station, and the core network device 130 may be a 5G core network (5G Core, 5GC) device, for example, an Access and Mobility Management Function (Access and Mobility Management Function). , AMF), another example, authentication server function (Authentication Server Function, AUSF), another example, user plane function (User Plane Function, UPF), another example, session management function (Session Management Function, SMF).
  • the core network device 130 may also be an evolved packet core (Evolved Packet Core, EPC) device of an LTE network, for example, a session management function+core network data gateway (Session Management Function+Core Packet Gateway, SMF+PGW- C) Equipment.
  • EPC evolved packet core
  • the SMF+PGW-C can simultaneously implement the functions that the SMF and the PGW-C can implement.
  • the above-mentioned core network equipment may also be called by other names, or a new network entity may be formed by dividing the functions of the core network, which is not limited in this embodiment of the present application.
  • the various functional units in the communication system 100 may also establish a connection through a next generation network (next generation, NG) interface to implement communication.
  • NG next generation network
  • the terminal equipment establishes an air interface connection with the access network equipment through the NR interface to transmit user plane data and control plane signaling; the terminal equipment can establish a control plane signaling connection with the AMF through the NG interface 1 (N1 for short); access Network equipment, such as the next generation wireless access base station (gNB), can establish a user plane data connection with the UPF through the NG interface 3 (N3 for short); the access network equipment can establish a control plane signaling with the AMF through the NG interface 2 (N2 for short).
  • gNB next generation wireless access base station
  • UPF can establish a control plane signaling connection with SMF through NG interface 4 (N4 for short); UPF can exchange user plane data with the data network through NG interface 6 (N6 for short); AMF can communicate with SMF through NG interface 11 (N11 for short)
  • the SMF establishes a control plane signaling connection; the SMF can establish a control plane signaling connection with the PCF through the NG interface 7 (N7 for short).
  • FIG. 1 exemplarily shows one base station, one core network device and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and the coverage area of each base station may include other numbers of terminals. equipment, which is not limited in this embodiment of the present application.
  • NTN Non Terrestrial Network
  • satellite communication is not limited by the user's geographical area. For example, general terrestrial communication cannot cover areas such as oceans, mountains, deserts, etc. where communication equipment cannot be set up or cannot be covered due to sparse population.
  • satellite communication due to a single Satellites can cover a large ground, and satellites can orbit around the earth, so theoretically every corner of the earth can be covered by satellite communications.
  • satellite communication has great social value.
  • Satellite communications can be covered at low cost in remote mountainous areas and poor and backward countries or regions, so that people in these regions can enjoy advanced voice communication and mobile Internet technologies, which is conducive to narrowing the digital divide with developed regions and promoting development in these areas.
  • the satellite communication distance is long, and the communication cost does not increase significantly when the communication distance increases; finally, the satellite communication has high stability and is not limited by natural disasters.
  • NTN technology can be combined with various communication systems.
  • NTN technology can be combined with NR system as NR-NTN system.
  • the NTN technology can be combined with the IoT system to form an IoT-NTN system.
  • the IoT-NTN system may include an NB-IoT-NTN system and an eMTC-NTN system.
  • FIG. 2 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • a terminal device 1101 and a satellite 1102 are included, and wireless communication can be performed between the terminal device 1101 and the satellite 1102 .
  • the network formed between the terminal device 1101 and the satellite 1102 may also be referred to as NTN.
  • the satellite 1102 can function as a base station, and the terminal device 1101 and the satellite 1102 can communicate directly. Under the system architecture, satellite 1102 may be referred to as a network device.
  • the communication system may include multiple network devices 1102, and the coverage of each network device 1102 may include other numbers of terminal devices, which are not limited in this embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • the terminal device 1201 and the satellite 1202 can communicate wirelessly, and the satellite 1202 and the base station 1203 can communicate.
  • the network formed between the terminal device 1201, the satellite 1202 and the base station 1203 may also be referred to as NTN.
  • the satellite 1202 may not have the function of the base station, and the communication between the terminal device 1201 and the base station 1203 needs to be relayed through the satellite 1202 .
  • the base station 1203 may be referred to as a network device.
  • the communication system may include multiple network devices 1203, and the coverage of each network device 1203 may include other numbers of terminal devices, which are not limited in this embodiment of the present application.
  • the network device 1203 may be the network device 120 in FIG. 1 .
  • satellite 1102 or satellite 1202 includes but is not limited to:
  • Satellites can use multiple beams to cover the ground. For example, a satellite can form dozens or even hundreds of beams to cover the ground. In other words, a satellite beam can cover a ground area with a diameter of tens to hundreds of kilometers to ensure satellite coverage and increase the system capacity of the entire satellite communication system.
  • the altitude range of LEO can be 500km to 1500km
  • the corresponding orbital period can be about 1.5 hours to 2 hours
  • the signal propagation delay of single-hop communication between users can generally be less than 20ms
  • the maximum satellite visibility time can be 20 minutes
  • LEO The signal propagation distance is short and the link loss is small, and the transmit power requirements of the user terminal are not high.
  • the orbital height of GEO can be 35786km
  • the rotation period around the earth can be 24 hours
  • the signal propagation delay of single-hop communication between users can generally be 250ms.
  • satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. ground area.
  • FIG. 1 to FIG. 3 only illustrate systems to which the present application applies in the form of examples, and of course, the methods shown in the embodiments of the present application may also be applied to other systems.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is only an association relationship to describe the associated objects, indicating that there can be three kinds of relationships, for example, A and/or B, it can mean that A exists alone, A and B exist at the same time, and A and B exist independently B these three cases.
  • the character "/" in this document generally indicates that the related objects are an "or” relationship.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the "correspondence” mentioned in the embodiments of the present application may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or may indicate and be indicated , configuration and configuration, etc.
  • predefined or “predefined rules” mentioned in the embodiments of the present application can be stored in devices (for example, including terminal devices and network devices) in advance by storing corresponding codes, forms, or other methods that can be used for It is implemented in a manner of indicating related information, and the present application does not limit its specific implementation manner.
  • predefined may refer to the definition in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, such as LTE protocol, NR protocol, and related protocols applied in future communication systems, which are not limited in this application. .
  • Satellites can be divided into two types: transparent payload and regenerative payload.
  • transparent transmission satellite only the functions of radio frequency filtering, frequency conversion and amplification are provided, and only the transparent transmission of the signal is provided, and the waveform signal transmitted by it will not be changed.
  • regenerative repeater satellite in addition to the functions of radio frequency filtering, frequency conversion and amplification, it can also provide the functions of demodulation/decoding, routing/conversion, coding/modulation, and it has some or all of the functions of the base station.
  • one or more gateways may be included for communication between satellites and terminals.
  • FIG. 4 and FIG. 5 respectively show schematic diagrams of NTN scenarios based on transparent-transmitting and re-transmitting satellites.
  • the gateway and the satellite communicate through the feeder link, and the satellite and the terminal can communicate through the service link (service link).
  • the communication between the satellite and the satellite is through InterStar link
  • the communication between the gateway and the satellite is through the feeder link (Feeder link)
  • the communication between the satellite and the terminal can communicate through a service link.
  • the UE needs to consider the influence of Timing Advance (TA) when performing uplink transmission. Since the propagation delay in the system is relatively large, the range of the TA value is relatively large.
  • TA Timing Advance
  • the UE When the UE is scheduled to perform uplink transmission in time slot n (or subframe n), the UE considers the round-trip propagation delay and transmits in advance during uplink transmission, so that when the signal reaches the network device side, the uplink time on the network device side can be increased. on slot n (or subframe n).
  • the timing relationship in the NTN system may include two cases, namely case 1 and case 2.
  • FIG. 6 is a schematic structural diagram of Case 1 in the timing relationship of the NTN system provided by the embodiment of the present application.
  • the downlink subframe and the uplink subframe on the network device side are aligned.
  • the UE needs to use a larger TA value.
  • the TA value corresponds to the timing offset value Koffset.
  • FIG. 7 is a schematic structural diagram of Case 2 in the timing relationship of the NTN system provided by the embodiment of the present application.
  • the UE As shown in FIG. 7 , for case 2, there is an offset value between the downlink subframe and the uplink subframe on the network device side.
  • the UE if the UE's uplink transmission is to be aligned with the uplink subframe of the network device side when it reaches the network device side, the UE only needs to use a smaller TA value.
  • the TA value corresponds to the timing offset value Koffset.
  • the RTT of the UE corresponds to the timing offset value Koffset.
  • an NB-IoT terminal device detects an NPDCCH corresponding to DCI format N0 (carrying an uplink grant) and the end position of the NPDCCH is in subframe n, or receives a random access Response (random access response, RAR) authorized NPDSCH and the end position of the NPDSCH is in subframe n, if the transmission of the corresponding (the uplink authorization scheduling) NPUSCH format 1 starts from subframe n+k, then the terminal is not required to The device detects the NPDCCH on any subframe between subframe n+1 to subframe n+k-1.
  • RAR random access response
  • FIG. 9 is another schematic diagram of a subframe in which a terminal device does not detect an NPDCCH provided by an embodiment of the present application. As shown in Fig.
  • Fig. 9 shows a schematic diagram of the subframe in which the terminal equipment does not detect the NPDCCH, that is, the terminal equipment is in subframe n to subframe n NPDCCH is not detected on +20.
  • FIG. 10 is another schematic diagram of a subframe in which a terminal device does not detect an NPDCCH provided by an embodiment of the present application. As shown in FIG. 10 , when the terminal device completes uplink transmission on subframe n, the NPDCCH is not detected on subframe n+1 to subframe n+3.
  • Non-Terrestrial Networks In a new radio (New Radio, NR) system, a non-terrestrial communication network (Non-Terrestrial Networks, NTN) is considered to provide communication services to users.
  • NTN non-terrestrial communication network
  • IoT-NTN Internet of Things NTN
  • the uplink and downlink timing relationship in the terrestrial communication network (Terrestrial Networks, TN) system needs to be enhanced, for example, the detection of the control channel in the IoT-NTN system also needs to be enhanced.
  • the GNSS module is used for terminal equipment to obtain synchronization information. For example, when the terminal device is in an idle state, if the terminal device receives a paging message or receives a wake up signal (Wake up signal, WUS), the terminal device needs to perform time-frequency synchronization after receiving the paging message or WUS; Alternatively, the terminal device needs to perform time-frequency synchronization in advance, so as to receive the paging message or the WUS.
  • WUS wake up signal
  • the terminal device may need to start the GNSS module to fix the GNSS position, such as completing GNSS TTFF (Time To First Fix), and then switch from the GNSS module to the IoT-NTN system working module to obtain the NTN-SIB to obtain the ephemeris of the serving satellite.
  • Information serving satellite ephemeris
  • a GNSS TTFF usually takes 1 second (warm start if the GNSS ephemeris information corresponding to the last TTFF ephemeris is obtained within 4 hours) or less than 5 seconds (warm start if the GNSS almanac information corresponding to the last TTFF Almanac is within 180 days) time obtained).
  • the terminal equipment may not have the ability to simultaneously receive and transmit signals.
  • the uplink and downlink timing relationships in the IoT-NTN system need to be enhanced relative to the uplink and downlink timing relationships in the TN system.
  • the detection of control channels in the IoT-NTN system also needs to be enhanced accordingly.
  • the present application provides a wireless communication method and terminal device. By enhancing the scheduling sequence, the normal operation of the terminal device that does not have the capability of simultaneously receiving and transmitting signals can be ensured, and the effect of power saving can also be achieved.
  • FIG. 11 is a schematic flowchart of a wireless communication method 200 provided by an embodiment of the present application.
  • the method 200 may be performed by a terminal device, for example, the terminal device shown in FIG. 1 to FIG. 5 .
  • a terminal device for example, the terminal device shown in FIG. 1 to FIG. 5 .
  • Another example is the terminal equipment on the side link.
  • the method 200 may include some or all of the following:
  • the time interval corresponding to the first offset value is associated with the timing advance TA value or the round-trip transmission time RTT of the terminal device, and the time interval corresponding to the second offset value is associated with the acquisition of synchronization information of the terminal device.
  • the first offset value is used to determine the scheduling sequence of the uplink channel.
  • the uplink channel includes at least one of a physical uplink shared channel PUSCH, a physical uplink control channel PUCCH and a random access channel PRACH.
  • the first offset value is used to determine the scheduling timing between the uplink grant and the physical uplink shared channel PUSCH; and/or the first offset value is used to determine the physical downlink shared channel PDSCH and The HARQ-ACK feedback schedules between HARQ-ACK feedbacks.
  • the first offset value is predefined; or,
  • the first offset value is configured by the network device through at least one of system messages, radio resource control RRC, medium access control control element MAC CE, and downlink control information DCI.
  • the unit of the first offset value is a time unit or an absolute value.
  • the time unit includes, but is not limited to, a subframe, a time slot, a symbol, a frame, and the like.
  • the absolute value includes, but is not limited to, milliseconds, microseconds, seconds, and the like.
  • the second offset value is used to determine the scheduling sequence between the downlink grant and the physical downlink shared channel PDSCH.
  • the second offset value is predefined; or,
  • the second offset value is configured by the network device through at least one of system messages, radio resource control RRC, medium access control control element MAC CE, and downlink control information DCI.
  • the unit of the second offset value is a time unit or an absolute value.
  • the time unit includes, but is not limited to, a subframe, a time slot, a symbol, a frame, and the like.
  • the absolute value includes, but is not limited to, milliseconds, microseconds, seconds, and the like.
  • the HARQ-ACK feedback state includes that the HARQ-ACK feedback of the physical downlink shared channel PDSCH is disabled; or the HARQ-ACK feedback state includes that the HARQ-ACK corresponding to the PDSCH is in a non-feedback state.
  • the HARQ-ACK corresponding to the PDSCH transmitted using the first HARQ process is not fed back.
  • the S210 may include:
  • the terminal device does not Control channel candidates are expected to be listened to at time units from time unit n+1 to time unit n+k, where k is a non-negative integer.
  • the time units include, but are not limited to, subframes, time slots, symbols, frames, and the like.
  • the S210 may include:
  • the terminal device does not expect to be in subframe n. Control channel candidates are monitored on any subframe from subframe n+1 to subframe n+12.
  • the S210 may include:
  • Whether to monitor the control channel candidate on the time unit between the downlink grant and the downlink shared channel is determined based on the second offset value.
  • the first offset value corresponds to Koffset1.
  • the first offset value is Koffset1.
  • Koffset1 is a value obtained according to the time interval corresponding to the first offset value in units of time, such as subframes.
  • whether to monitor the control channel candidate on the time unit between the uplink grant and the uplink shared channel is determined based on the first offset value.
  • the end position of the first downlink control channel carrying the first uplink grant (for example, corresponding to DCI format NO) received by the terminal device is in subframe n
  • the first uplink grant corresponds to starts from subframe n+k+Koffset1, so it is not required that the terminal equipment be in the subframe n+k+i-2 to subframe n+k+i-1 Monitor downlink control channel candidates on any subframe in .
  • this embodiment is applied to downlink control channel candidate monitoring in a UE-specific search space and the terminal device is configured with two HARQ processes.
  • the terminal device if the end position of the first downlink control channel carrying the first uplink grant (for example, corresponding to DCI format NO) received by the terminal device is in subframe n, and if the first uplink grant corresponds to (for example, The transmission of the first uplink shared channel corresponding to NPUSCH format 1) starts from subframe n+k+Koffset1, then the terminal device does not expect to receive a second uplink grant (for example, corresponding to The second downlink control channel of DCI format NO), wherein the transmission end position of the second uplink shared channel corresponding to the second uplink grant (for example, corresponding to NPUSCH format 1) is later than subframe n+k+i+255.
  • this embodiment is applied to downlink control channel candidate monitoring in a UE-specific search space and the terminal device is configured with two HARQ processes.
  • the terminal device if the end position of the first downlink control channel carrying the first uplink grant (for example, corresponding to DCI format NO) received by the terminal device is in subframe n, and if the first uplink grant corresponds to (for example, The transmission of the first uplink shared channel corresponding to NPUSCH format 1) starts from subframe n+k+Koffset1.
  • the transmission of the first uplink shared channel corresponding to the first uplink grant (for example, corresponding to NPUSCH format 1) ends If the position is located in subframe n+m+Koffset1, the terminal device is not required to monitor downlink control channel candidates on any subframe between subframe n+k+i to subframe n+m+i-1.
  • this embodiment is applied to downlink control channel candidate monitoring in a UE-specific search space and the terminal device is configured with two HARQ processes.
  • the terminal device if the end position of the first downlink control channel carrying the first uplink grant (for example, corresponding to DCI format No) received by the terminal device is in subframe n, or, if the terminal device receives a random access response (random access response)
  • the end position of the first downlink shared channel authorized by the access response, RAR is in subframe n, and if the first uplink authorization or the first uplink shared channel corresponding to the RAR authorization (for example, corresponding to NPUSCH format 1) is transmitted from Subframe n+k+Koffset1 starts, then the terminal device is not required to monitor downlink control channel candidates on any subframe between subframe n+1 and subframe n+k+i-1.
  • the terminal device if the end position of the first downlink control channel carrying the first uplink grant (for example, corresponding to DCI format NO) received by the terminal device is in subframe n, or if the terminal device receives the first downlink control channel carrying the random access
  • the end position of the first downlink shared channel authorized by the response is in subframe n, and if the first uplink shared channel corresponding to the first uplink authorization or the RAR authorization (for example, corresponding to NPUSCH format 1)
  • the transmission end position is located in subframe n+k+Koffset1, the terminal device is not required to monitor downlink control channel candidates on any subframe between subframe n+1 and subframe n+k+i.
  • the terminal device is configured with two HARQ processes:
  • the transmission of the first uplink shared channel starts from subframe n+k+Koffset1, then:
  • the terminal equipment is not required to monitor downlink control channel candidates on any subframe between subframe n+k+i-2 and subframe n+k+i-1; or
  • the terminal device does not expect to receive a second downlink control channel carrying a second uplink grant (for example, corresponding to DCI format N0) before subframe n+k+i-2, wherein the second uplink grant corresponds to (for example, corresponding to NPUSCH)
  • the transmission end position of the second uplink shared channel of format 1) is later than subframe n+k+i+255; or
  • the terminal device For TDD, if the transmission end position of the first uplink shared channel corresponding to the first uplink grant (for example, corresponding to NPUSCH format 1) is located in subframe n+m+Koffset1, the terminal device is not required to be in subframe n+k+ Monitor downlink control channel candidates on any subframe from i to subframes n+m+i-1. otherwise:
  • the terminal device If the end position of the first downlink control channel carrying the first uplink grant (for example, corresponding to DCI format N0) received by the terminal device is in subframe n, or, if the terminal device receives a random access response (random access response, RAR) grant The end position of the first downlink shared channel is in subframe n, and if the transmission of the first uplink shared channel corresponding to the first uplink grant or the RAR grant (for example, corresponding to NPUSCH format 1) starts from subframe n+k+ Koffset1 starts, then the terminal device is not required to monitor downlink control channel candidates on any subframe between subframe n+1 and subframe n+k+i-1; or
  • the terminal device For TDD, if the end position of the first downlink control channel carrying the first uplink grant (for example, corresponding to DCI format N0) received by the terminal device is in subframe n, or, if it receives a random access response (random access response, The end position of the first downlink shared channel granted by RAR) is in subframe n, and if the transmission end position of the first uplink shared channel corresponding to the first uplink grant or the RAR grant (for example, corresponding to NPUSCH format 1) is in subframe n frame n+k+Koffset1, the terminal device is not required to monitor downlink control channel candidates on any subframe between subframe n+1 and subframe n+k+i.
  • i is an integer.
  • At least the following methods may be included:
  • the terminal device For UE-specific search space, if the terminal device is configured with two HARQ processes:
  • the transmission of the first uplink shared channel starts from subframe n+k+Koffset1, then:
  • the terminal device is not required to monitor downlink control channel candidates on any subframe between subframe n+k-2 and subframe n+k-1; or
  • the terminal device does not expect to receive a second downlink control channel carrying a second uplink grant (for example, corresponding to DCI format N0) before subframe n+k-2, wherein the second uplink grant corresponds to (for example, corresponding to NPUSCH format 1) ) the transmission end position of the second uplink shared channel is later than subframe n+k+255; or
  • TDD Time Division Duplexing
  • the transmission end position of the first uplink shared channel corresponding to the first uplink grant for example, corresponding to NPUSCH format 1
  • the The terminal device monitors downlink control channel candidates on any subframe between subframe n+k and subframe n+m-1. otherwise:
  • the terminal device If the end position of the first downlink control channel carrying the first uplink grant (for example, corresponding to DCI format N0) received by the terminal device is in subframe n, or, if the terminal device receives a random access response (random access response, RAR) grant The end position of the first downlink shared channel is in subframe n, and if the transmission of the first uplink shared channel corresponding to the first uplink grant or the RAR grant (for example, corresponding to NPUSCH format 1) starts from subframe n+k+ Koffset1 starts, then the terminal device is not required to monitor downlink control channel candidates on any subframe between subframe n+1 and subframe n+k-1; or
  • the terminal device For TDD, if the end position of the first downlink control channel carrying the first uplink grant (for example, corresponding to DCI format N0) received by the terminal device is in subframe n, or, if it receives a random access response (random access response, The end position of the first downlink shared channel granted by RAR) is in subframe n, and if the transmission end position of the first uplink shared channel corresponding to the first uplink grant or the RAR grant (for example, corresponding to NPUSCH format 1) is in subframe n frame n+k+Koffset1, the terminal device is not required to monitor downlink control channel candidates on any subframe between subframe n+1 and subframe n+k.
  • the terminal device For UE-specific search space, if the terminal device is configured with two HARQ processes:
  • the transmission of the first uplink shared channel starts from subframe n+k+Koffset1, then:
  • the terminal device is not required to monitor downlink control channel candidates on any subframe between subframe n+k+Koffset1-2 and subframe n+k+Koffset1-1; or
  • the terminal device does not expect to receive a second downlink control channel carrying a second uplink grant (for example, corresponding to DCI format N0) before subframe n+k+Koffset1-2, wherein the second uplink grant corresponds to (for example, corresponding to NPUSCH)
  • the transmission end position of the second uplink shared channel of format 1) is later than subframe n+k+Koffset1+255; or
  • the terminal device For TDD, if the transmission end position of the first uplink shared channel corresponding to the first uplink grant (for example, corresponding to NPUSCH format 1) is located in subframe n+m+Koffset1, the terminal device is not required to be in subframe n+k+ Downlink control channel candidates are monitored on any subframe between Koffset1 and subframe n+m+Koffset1-1. otherwise:
  • the terminal device If the end position of the first downlink control channel carrying the first uplink grant (for example, corresponding to DCI format N0) received by the terminal device is in subframe n, or, if the terminal device receives a random access response (random access response, RAR) grant The end position of the first downlink shared channel is in subframe n, and if the transmission of the first uplink shared channel corresponding to the first uplink grant or the RAR grant (for example, corresponding to NPUSCH format 1) starts from subframe n+k+ Koffset1 starts, then the terminal device is not required to monitor downlink control channel candidates on any subframe between subframe n+1 and subframe n+k+Koffset1-1; or
  • the terminal device For TDD, if the end position of the first downlink control channel carrying the first uplink grant (for example, corresponding to DCI format N0) received by the terminal device is in subframe n, or, if it receives a random access response (random access response, The end position of the first downlink shared channel granted by RAR) is in subframe n, and if the transmission end position of the first uplink shared channel corresponding to the first uplink grant or the RAR grant (for example, corresponding to NPUSCH format 1) is in subframe n frame n+k+Koffset1, the terminal device is not required to monitor downlink control channel candidates on any subframe between subframe n+1 and subframe n+k+Koffset1.
  • whether to monitor the control channel candidates on the time unit between the PDCCH command of the physical downlink control channel and the random access channel is determined based on the first offset value.
  • the terminal device if the end position of the first downlink control channel (for example, corresponding to DCI format N1) that carries a PDCCH order (PDCCH order) received by the terminal device is in subframe n, for FDD, if the corresponding first downlink control channel ends at subframe n
  • the transmission of the random access channel eg NPRACH
  • the terminal device is not required to monitor downlink on any subframe between subframe n+1 and subframe n+k+i-1 Control channel candidates.
  • the terminal device if the end position of the first downlink control channel carrying the PDCCH order (PDCCH order) (for example, corresponding to DCI format N1) received by the terminal device is in subframe n, for TDD, if the corresponding first downlink control channel ends at subframe n
  • the transmission end position of the random access channel (such as NPRACH) is located in subframe n+k+Koffset1, then the terminal device is not required to monitor on any subframe between subframe n+1 and subframe n+k+i-1 Downlink control channel candidate.
  • i is an integer.
  • the end position of the first downlink control channel (for example, corresponding to DCI format N1) that carries a PDCCH order (PDCCH order) received by the terminal equipment is in subframe n: or
  • FDD Frequency Division Duplexing
  • the terminal device For TDD, if the transmission end position of the corresponding first random access channel (eg NPRACH) is located in subframe n+k+Koffset1, then the terminal device is not required to be in the middle of subframe n+1 to subframe n+k-1 Downlink control channel candidates are monitored on any subframe of .
  • first random access channel eg NPRACH
  • the end position of the first downlink control channel (for example, corresponding to DCI format N1) that carries a PDCCH order (PDCCH order) received by the terminal device is in subframe n:
  • the terminal device For FDD, if the transmission of the corresponding first random access channel (eg, NPRACH) starts from subframe n+k+Koffset1, then the terminal device is not required to start from subframe n+1 to subframe n+k+Koffset1-1 Monitor downlink control channel candidates on any subframe in the middle; or
  • the corresponding first random access channel eg, NPRACH
  • the terminal device For TDD, if the transmission end position of the corresponding first random access channel (eg NPRACH) is located in subframe n+k+Koffset1, then the terminal device is not required to be in subframe n+1 to subframe n+k+Koffset1- 1 Monitor downlink control channel candidates on any subframe in the middle.
  • first random access channel eg NPRACH
  • the terminal device if the terminal device sends the first uplink channel (an uplink shared channel such as NPUSCH) at the end of subframe n, for FDD, if the Type B half-duplex guard period is configured ), then the terminal equipment is not required to receive transmissions within the Type B half-duplex guard interval.
  • the terminal device is configured with two HARQ processes.
  • the terminal device if the terminal device sends the first uplink channel (an uplink shared channel such as NPUSCH) at the end of subframe n, for FDD, if the Type B half-duplex guard period is configured ), then the terminal device does not expect to receive a downlink control channel scheduled to be transmitted based on the first HARQ process ID on any subframe between subframe n+1-j1 and subframe n+j2 (for example, corresponding to DCI format N0 or N1 ), where the first HARQ process number is the HARQ process number used for the first uplink channel transmission, where j2>1.
  • the terminal device is configured with two HARQ processes.
  • the terminal device if the terminal device sends the first uplink channel (an uplink shared channel such as NPUSCH) at the end of subframe n, and if the terminal device does not use the upper layer EDT parameter configuration, or uses the upper layer EDT parameter configuration and the MCS index satisfies 0 ⁇ MCS index ⁇ 2: then the terminal device is not required to monitor downlink control channel candidates on any subframe between subframes n+1-j1 to subframe n+j2.
  • the terminal device is configured with two HARQ processes.
  • the terminal device sends the transmission end position of the first uplink channel (an uplink shared channel such as NPUSCH) corresponding to Msg3 and the transport block size is the first transport block size (transport block size, TBS) value in subframe n1, wherein, if the transmission block size is selected to be the maximum TBS value, then the transmission end position of the first uplink channel will be in subframe n, so the terminal device is not required to be anywhere in the middle of subframe n+1-j1 to subframe n+j2. Monitor downlink control channel candidates on subframes.
  • TBS transport block size
  • the terminal device if the terminal device is configured with two HARQ processes, and the terminal device sends the first uplink channel (an uplink shared channel such as NPUSCH), the end position is in subframe n:
  • Type B half-duplex guard periods are configured, then the end device is not required to receive transmissions within that Type B half-duplex guard period;
  • the terminal device does not expect to receive a downlink control channel (for example, corresponding to DCI format N0 or N1) scheduled to transmit based on the first HARQ process number on any subframe between subframes n+1-j1 and subframe n+j2, where , the first HARQ process number is the HARQ process number used for the first uplink channel transmission, where j2>1.
  • a downlink control channel for example, corresponding to DCI format N0 or N1
  • the first HARQ process number is the HARQ process number used for the first uplink channel transmission, where j2>1.
  • the terminal device is not configured with high-level EDT parameters, or is configured with high-level EDT parameters and the MCS index satisfies 0 ⁇ MCS index ⁇ 2, then the terminal device is not required to be in the middle of subframe n+1-j1 to subframe n+j2 Downlink control channel candidates are monitored on any subframe of .
  • the transmission end position of the first uplink channel is in subframe n1, wherein, if the transport block is selected If the size is the maximum TBS value, then the transmission end position of the first uplink channel will be in subframe n, then the terminal device is not required to monitor the downlink control on any subframe between subframe n+1-j1 and subframe n+j2 channel candidate.
  • j1 is greater than or equal to zero.
  • j1 Koffset1
  • j2 3-Koffset1.
  • Koffset3 is determined based on Koffset1 or the first offset value.
  • Koffset3 and Koffset1 are the same.
  • Koffset3 is half of Koffset1 or Koffset3 is a round of half of Koffset1.
  • the terminal device If the terminal device is configured with two HARQ processes, and the terminal device sends the first uplink channel (an uplink shared channel such as NPUSCH), the end position is in subframe n:
  • Type B half-duplex guard periods are configured, then the end device is not required to receive transmissions within that Type B half-duplex guard period;
  • the terminal device does not expect to receive a downlink control channel (for example, corresponding to DCI format N0 or N1) scheduled to transmit based on the first HARQ process number on any subframe from subframe n+1 to subframe n+Koffset3+3,
  • the first HARQ process number is the HARQ process number used for the first uplink channel transmission.
  • the terminal device does not use the high-level EDT parameter configuration, or uses the high-level EDT parameter configuration and the MCS index satisfies 0 ⁇ MCS index ⁇ 2: then the terminal device is not required to run from subframe n+1 to subframe n+Koffset3+3 Downlink control channel candidates are monitored on any subframe in the middle.
  • the transmission end position of the first uplink channel is in subframe n1, wherein, if the transport block is selected If the size is the maximum TBS value, then the transmission end position of the first uplink channel will be in subframe n, so the terminal device is not required to monitor the downlink on any subframe from subframe n1+1 to subframe n+Koffset3+3. Control channel candidates.
  • the terminal device If the terminal device is configured with two HARQ processes, and the terminal device sends the first uplink channel (an uplink shared channel such as NPUSCH), the end position is in subframe n:
  • Type B half-duplex guard periods are configured, then the end device is not required to receive transmissions within that Type B half-duplex guard period;
  • the terminal device does not expect to receive a downlink control channel (for example, corresponding to DCI format N0 or N1) scheduled to transmit based on the first HARQ process number on any subframe from subframe n+1 to subframe n+Koffset3, wherein,
  • the first HARQ process number is the HARQ process number used for the first uplink channel transmission.
  • the terminal device does not use the high-level EDT parameter configuration, or uses the high-level EDT parameter configuration and the MCS index satisfies 0 ⁇ MCS index ⁇ 2, then the terminal device is not required to be in the middle from subframe n+1 to subframe n+Koffset3. Monitor downlink control channel candidates on any subframe.
  • the transmission end position of the first uplink channel is in subframe n1, wherein, if the transport block is selected If the size is the maximum TBS value, then the transmission end position of the first uplink channel will be in subframe n, so the terminal device is not required to monitor the downlink control channel on any subframe from subframe n1+1 to subframe n+Koffset3. candidate.
  • the terminal device If the terminal device is configured with two HARQ processes, and the terminal device sends the first uplink channel (an uplink shared channel such as NPUSCH), the end position is in subframe n:
  • Type B half-duplex guard periods are configured, then the end device is not required to receive transmissions within that Type B half-duplex guard period;
  • the terminal device does not expect to receive a downlink control channel scheduled to transmit based on the first HARQ process number (for example, corresponding to DCI format N0 or N1) on any subframe from subframe n+1-Koffset1 to subframe n+3-Koffset1 ), wherein the first HARQ process number is the HARQ process number used for the first uplink channel transmission.
  • the first HARQ process number for example, corresponding to DCI format N0 or N1
  • the first HARQ process number is the HARQ process number used for the first uplink channel transmission.
  • the terminal device does not use the high-level EDT parameter configuration, or uses the high-level EDT parameter configuration and the MCS index satisfies 0 ⁇ MCS index ⁇ 2, then the terminal device is not required to be in the subframe n+1-Koffset1 to subframe n+3 - Monitor downlink control channel candidates on any subframe in the middle of Koffset1.
  • the transmission end position of the first uplink channel is in subframe n1, wherein, if the transport block is selected If the size is the maximum TBS value, then the transmission end position of the first uplink channel will be in subframe n, then the terminal device is not required to be in any subframe from subframe n1+1-Koffset1 to subframe n+3-Koffset1. Monitor downlink control channel candidates.
  • Koffset3 is determined based on Koffset1 or the first offset value.
  • Koffset3 and Koffset1 are the same.
  • Koffset3 is half of Koffset1 or Koffset3 is a round of half of Koffset1.
  • whether to monitor control channel candidates on time units after random access channel transmission is determined based on the first offset value.
  • the terminal device is not required to Monitor the terminal equipment-specific downlink control channel search space between frame n-j3 and subframe n+j4.
  • this embodiment is applicable to the case where the terminal device is configured with the high-level parameter sr-WithoutHARQ-ACK-Config.
  • the terminal device if the transmission end position of the random access preamble sequence (eg narrowband random access preamble) for SR is in subframe n, in the case of not frame structure type 1, or using random access channel format 0 and 1 and the number of repetitions of the random access channel is less than 64, or the random access channel format 2 is used and the number of repetitions of the random access channel is less than 16, then the terminal device is not required to go from subframe n-j3 to subframe n Monitor the terminal equipment-specific downlink control channel search space between +j5.
  • this embodiment is applicable to the case where the terminal device is configured with the high-level parameter sr-WithoutHARQ-ACK-Config.
  • the terminal device if the transmission end position of the random access preamble sequence (eg narrowband random access preamble) for SR is in subframe n, then the terminal device is not required to go from subframe n-j3 to subframe n+j5 Monitor the terminal equipment-specific downlink control channel search space between them.
  • this embodiment is applicable to the case where the terminal device is configured with the high-level parameter sr-WithoutHARQ-ACK-Config.
  • the terminal device when the terminal device is configured with the high-level parameter sr-WithoutHARQ-ACK-Config, if the transmission end position of the random access preamble sequence for SR (for example, narrowband random access preamble) is in subframe n:
  • the terminal device is not required to monitor the terminal device-specific downlink control channel search space from subframe n-j3 to subframe n+j5.
  • j3 Koffset1
  • j4 40-Koffset1
  • j5 3-Koffset3.
  • the monitoring of the search space of the downlink control channel after the random access channel transmission may at least include the following methods:
  • the terminal device is configured with the high-level parameter sr-WithoutHARQ-ACK-Config, if the transmission end position of the random access preamble sequence (such as narrowband random access preamble) used for SR is in subframe n:
  • the terminal device is not required to monitor the terminal device-specific downlink control channel search space from subframe n to subframe n+Koffset3+3.
  • the terminal device is configured with the high-level parameter sr-WithoutHARQ-ACK-Config, if the transmission end position of the random access preamble sequence (such as narrowband random access preamble) used for SR is in subframe n:
  • the terminal device is not required to monitor the terminal device-specific downlink control channel search space from subframe n to subframe n+Koffset3.
  • the terminal device is configured with the high-level parameter sr-WithoutHARQ-ACK-Config, if the transmission end position of the random access preamble sequence (such as narrowband random access preamble) used for SR is in subframe n:
  • the terminal device is not required to monitor the terminal device-specific downlink control channel search space from subframe n-Koffset1 to subframe n+3-Koffset1.
  • whether to monitor the control channel candidates in the time unit between the downlink grant and the HARQ-ACK feedback corresponding to the downlink shared channel is determined based on the first offset value.
  • the first downlink control channel carrying the first downlink grant (for example, corresponding to DCI format N1) received by the terminal device is in subframe n, and the first downlink grant corresponding to the first downlink grant ends at subframe n
  • the transmission of the downlink shared channel starts from subframe n+k:
  • the terminal device For FDD, if the transmission of the corresponding first uplink channel carrying HARQ-ACK information (for example, corresponding to NPUSCH format 2) starts from subframe n+m+Koffset1, then the terminal device is not required to start from subframe n+k to subframe Monitor downlink control channel candidates on any subframe in the middle of n+m+i-1; or
  • the terminal device For TDD, if the transmission end position of the corresponding first uplink channel carrying HARQ-ACK information (for example, corresponding to NPUSCH format 2) is in subframe n+m+Koffset1, then the terminal device is not required to be in subframe n+k to subframe Downlink control channel candidates are monitored on any subframe in the middle of frame n+m+i-1.
  • HARQ-ACK information for example, corresponding to NPUSCH format 2
  • i is an integer.
  • the first downlink control channel carrying the first downlink grant (for example, corresponding to DCI format N1) received by the terminal device is in subframe n, and the first downlink shared channel corresponding to the first downlink grant Transmission starts from subframe n+k:
  • the terminal device For FDD, if the transmission of the corresponding first uplink channel carrying HARQ-ACK information (for example, corresponding to NPUSCH format 2) starts from subframe n+m+Koffset1, then the terminal device is not required to start from subframe n+k to subframe Monitor downlink control channel candidates on any subframe in the middle of n+m-1; or
  • the terminal device For TDD, if the transmission end position of the corresponding first uplink channel carrying HARQ-ACK information (for example, corresponding to NPUSCH format 2) is in subframe n+m+Koffset1, then the terminal device is not required to be in subframe n+k to subframe Downlink control channel candidates are monitored on any subframe in the middle of frame n+m-1.
  • HARQ-ACK information for example, corresponding to NPUSCH format 2
  • the first downlink control channel carrying the first downlink grant (for example, corresponding to DCI format N1) received by the terminal device is in subframe n, and the first downlink shared channel corresponding to the first downlink grant Transmission starts from subframe n+k:
  • the terminal device For FDD, if the transmission of the corresponding first uplink channel carrying HARQ-ACK information (for example, corresponding to NPUSCH format 2) starts from subframe n+m+Koffset1, then the terminal device is not required to start from subframe n+k to subframe Monitor downlink control channel candidates on any subframe in the middle of n+m+Koffset1-1; or
  • the terminal device For TDD, if the transmission end position of the corresponding first uplink channel carrying HARQ-ACK information (for example, corresponding to NPUSCH format 2) is in subframe n+m+Koffset1, then the terminal device is not required to be in subframe n+k to subframe Monitor downlink control channel candidates on any subframe in the middle of frame n+m+Koffset1-1.
  • the second offset value corresponds to Koffset2.
  • the second offset value is Koffset2.
  • Koffset2 is a value obtained according to the time interval corresponding to the second offset value in a unit of time such as a subframe.
  • whether to monitor the control channel candidates in the time unit between the downlink grant and the HARQ-ACK feedback corresponding to the downlink shared channel is determined based on the first offset value and the second offset value.
  • the first downlink control channel carrying the first downlink grant (for example, corresponding to DCI format N1) received by the terminal device is in subframe n, and the first downlink grant corresponding to the first downlink grant ends at subframe n
  • the transmission of the downlink shared channel starts from subframe n+k+Koffset2:
  • the terminal device For FDD, if the transmission of the corresponding first uplink channel carrying HARQ-ACK information (for example, corresponding to NPUSCH format 2) starts from subframe n+m+Koffset1, then the terminal device is not required to start from subframe n+k+Koffset2 to Monitor downlink control channel candidates on any subframe in the middle of subframes n+m+Koffset1-1; or
  • the terminal device For TDD, if the transmission end position of the corresponding first uplink channel carrying HARQ-ACK information (for example, corresponding to NPUSCH format 2) is in subframe n+m+Koffset1, then the terminal device is not required to be in subframe n+k+Koffset2 Monitor downlink control channel candidates on any subframe in the middle of subframes n+m+Koffset1-1.
  • whether to monitor the control channel candidate on the time unit between the downlink grant and the downlink shared channel is determined based on the second offset value.
  • the terminal device if the end position of the first downlink control channel carrying the first downlink grant (for example, corresponding to DCI format N1 or N2) received by the terminal device is in subframe n, and if the first downlink shared channel The transmission starts from subframe n+k+Koffset2, then the terminal device is not required to monitor downlink control channel candidates on any subframe between subframe n+k+Koffset2-2 and subframe n+k+Koffset2-1.
  • this embodiment is applied to downlink control channel candidate monitoring in a UE-specific search space and the terminal device is configured with two HARQ processes.
  • the terminal device if the end position of the first downlink control channel carrying the first downlink grant (for example, corresponding to DCI format N1 or N2) received by the terminal device is in subframe n, and if the first downlink grant The transmission of the corresponding first downlink shared channel starts from subframe n+k+Koffset2, so the terminal device is not required to monitor downlink on any subframe between subframe n+1 and subframe n+k+Koffset2-1 Control channel candidates.
  • the terminal device for the monitoring of downlink control channel candidates between the downlink grant and the downlink shared channel, for the UE-specific search space, if the terminal device is configured with two HARQ processes:
  • the terminal device If the end position of the first downlink control channel carrying the first downlink grant (for example, corresponding to DCI format N1 or N2) received by the terminal equipment is in subframe n, and if the transmission of the first downlink shared channel starts from subframe n +k+Koffset2 starts, then the terminal device is not required to monitor downlink control channel candidates on any subframe between subframe n+k+Koffset2-2 and subframe n+k+Koffset2-1.
  • the terminal device If the end position of the first downlink control channel carrying the first downlink grant (for example, corresponding to DCI format N1 or N2) received by the terminal device is in subframe n, and if the first downlink corresponding to the first downlink grant Transmission of the shared channel starts from subframe n+k+Koffset2, so the terminal device is not required to monitor downlink control channel candidates on any subframe between subframe n+1 and subframe n+k+Koffset2-1.
  • the terminal device during the uplink gap (UL gap) of uplink channel transmissions, the terminal device is not required to monitor the downlink control channel candidates in the downlink control channel search space.
  • the length of the uplink interval is greater than or equal to the first offset value.
  • FIG. 12 is a schematic diagram of a terminal device not detecting a subframe of a control channel candidate provided by an embodiment of the present application. As shown in Figure 12, assuming that the terminal device is configured with two HARQ processes, for the UE-specific search space:
  • the terminal device If the end position of the first downlink control channel carrying the first uplink grant (for example, corresponding to DCI format N0) received by the terminal device is in subframe n, and if the first uplink grant is scheduled (for example, corresponding to NPUSCH format 1)
  • the transmission of the first uplink shared channel starts from subframe n+k+Koffset1, then: the terminal device is not required to be on any subframe between subframe n+k+Koffset1-2 and subframe n+k+Koffset1-1 monitor downlink control channel candidates; and/or, the terminal device does not expect to receive a second downlink control channel carrying a second uplink grant (for example, corresponding to DCI format N0) before subframe n+k+Koffset1-2, wherein the The transmission end position of the second uplink shared channel scheduled by the second uplink grant (for example, corresponding to NPUSCH format 1) is later than subframe n+k+Koffset1+255.
  • FIG. 13 is another schematic diagram of a subframe in which a terminal device does not detect a control channel candidate provided by an embodiment of the present application.
  • the terminal device sends the first uplink channel (eg, the uplink shared channel NPUSCH) at subframe n
  • the terminal device is not required to be in the middle of subframe n+1 to subframe n+Koffset3+3
  • Downlink control channel candidates are monitored on any subframe of .
  • Koffset3 is determined according to Koffset1.
  • the terminal device is a terminal device in an IoT-NTN system.
  • the terminal device is a terminal device in an NB-IoT-NTN system or a terminal device in an eMTC-NTN system.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the present application.
  • the implementation of the embodiments constitutes no limitation.
  • the term "and/or" is only an association relationship for describing associated objects, indicating that there may be three kinds of relationships. Specifically, A and/or B can represent three situations: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this document generally indicates that the related objects are an "or" relationship.
  • FIG. 14 is a schematic block diagram of a terminal device 300 according to an embodiment of the present application.
  • the terminal device 300 may include:
  • the communication unit 310 is configured to confirm at least one of the HARQ-ACK feedback status based on the first offset value, the second offset value and the HARQ-ACK feedback state for monitoring the control channel candidate; wherein the first offset value corresponds to The time interval is associated with the timing advance TA value or the round-trip transmission time RTT of the terminal device, and the time interval corresponding to the second offset value is associated with the synchronization information acquisition of the terminal device.
  • the first offset value is used to determine the scheduling timing between the uplink grant and the physical uplink shared channel PUSCH; and/or the first offset value is used to determine the physical downlink shared channel PDSCH and The HARQ-ACK feedback schedules between HARQ-ACK feedbacks.
  • the first offset value is predefined; or,
  • the first offset value is configured by the network device through at least one of system messages, radio resource control RRC, medium access control control element MAC CE, and downlink control information DCI.
  • the unit of the first offset value is a time unit or an absolute value.
  • the second offset value is used to determine the scheduling sequence between the downlink grant and the physical downlink shared channel PDSCH.
  • the second offset value is predefined; or,
  • the second offset value is configured by the network device through at least one of system messages, radio resource control RRC, medium access control control element MAC CE, and downlink control information DCI.
  • the unit of the second offset value is a time unit or an absolute value.
  • the HARQ-ACK feedback state includes that the HARQ-ACK feedback of the physical downlink shared channel PDSCH is disabled; or the HARQ-ACK feedback state includes that the HARQ-ACK corresponding to the PDSCH is in a non-feedback state.
  • the HARQ-ACK corresponding to the PDSCH transmitted using the first HARQ process is not fed back.
  • the processing unit 310 is specifically configured to:
  • the terminal device does not Control channel candidates are expected to be listened to at time units from time unit n+1 to time unit n+k, where k is a non-negative integer.
  • the processing unit 310 is specifically configured to:
  • the terminal device does not expect to be in subframe n. Control channel candidates are monitored on any subframe from subframe n+1 to subframe n+12.
  • the processing unit 310 is specifically configured to:
  • Whether to monitor the control channel candidate on the time unit between the downlink grant and the downlink shared channel is determined based on the second offset value.
  • the apparatus embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the terminal device 300 shown in FIG. 14 may correspond to the corresponding subject in executing the method 200 of the embodiment of the present application, and the aforementioned and other operations and/or functions of the various units in the terminal device 300 are respectively for the purpose of realizing the method shown in FIG. 11 .
  • the corresponding processes in each of the methods are not repeated here.
  • the steps of the method embodiments in the embodiments of the present application may be completed by hardware integrated logic circuits in the processor and/or instructions in the form of software, and the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as hardware
  • the execution of the decoding processor is completed, or the execution is completed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory, electrically erasable programmable memory, registers, and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps in the above method embodiments in combination with its hardware.
  • processing unit and the communication unit referred to above may be implemented by a processor and a transceiver, respectively.
  • FIG. 15 is a schematic structural diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 may include a processor 410 .
  • the processor 410 may call and run a computer program from the memory to implement the methods in the embodiments of the present application.
  • the terminal device 400 may further include a memory 420 .
  • the memory 420 may be used to store instruction information, and may also be used to store codes, instructions, etc. executed by the processor 410 .
  • the processor 410 may call and run a computer program from the memory 420 to implement the methods in the embodiments of the present application.
  • the memory 420 may be a separate device independent of the processor 410 , or may be integrated in the processor 410 .
  • the terminal device 400 may further include a transceiver 430 .
  • the processor 410 may control the transceiver 430 to communicate with other devices, specifically, may send information or data to other devices, or receive information or data sent by other devices.
  • Transceiver 430 may include a transmitter and a receiver.
  • the transceiver 430 may further include antennas, and the number of the antennas may be one or more.
  • each component in the terminal device 400 is connected through a bus system, wherein the bus system includes a power bus, a control bus and a status signal bus in addition to a data bus.
  • the terminal device 400 may be the terminal device of the embodiments of the present application, and the terminal device 400 may implement the corresponding processes implemented by the terminal device in the various methods of the embodiments of the present application.
  • the terminal device 400 may correspond to the terminal device 300 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method 200 according to the embodiment of the present application, which is not repeated here for brevity.
  • the embodiment of the present application also provides a chip.
  • the chip may be an integrated circuit chip, which has a signal processing capability, and can implement or execute the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the chip may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • the chip can be applied to various communication devices, so that the communication device installed with the chip can execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • FIG. 16 is a schematic structural diagram of a chip 500 according to an embodiment of the present application.
  • the chip 500 includes a processor 510 .
  • the processor 510 may call and run a computer program from the memory to implement the methods in the embodiments of the present application.
  • the chip 500 may further include a memory 520 .
  • the processor 510 may call and run a computer program from the memory 520 to implement the methods in the embodiments of the present application.
  • the memory 520 may be used to store instruction information, and may also be used to store codes, instructions, etc. executed by the processor 510 .
  • the memory 520 may be a separate device independent of the processor 510 , or may be integrated in the processor 510 .
  • the chip 500 may further include an input interface 530 .
  • the processor 510 may control the input interface 530 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 500 may further include an output interface 540 .
  • the processor 510 may control the output interface 540 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the chip 500 can be applied to the network device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the network device in the various methods in the embodiments of the present application, and can also implement the various methods in the embodiments of the present application.
  • the corresponding process implemented by the terminal device in FIG. 1 is not repeated here.
  • each component in the chip 500 is connected through a bus system, wherein the bus system includes a power bus, a control bus and a status signal bus in addition to a data bus.
  • the processors referred to above may include, but are not limited to:
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the processor may be used to implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of this application.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in random access memory, flash memory, read-only memory, programmable read-only memory or erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory mentioned above includes but is not limited to:
  • Non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • Embodiments of the present application also provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium stores one or more programs comprising instructions that, when executed by a portable electronic device including a plurality of application programs, enable the portable electronic device to perform the methods of the method embodiments .
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • the embodiments of the present application also provide a computer program product, including a computer program.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, in order to It is concise and will not be repeated here.
  • a computer program is also provided in the embodiments of the present application.
  • the computer program When the computer program is executed by a computer, it enables the computer to perform the method of the method embodiment.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program runs on the computer, the computer program is implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. The corresponding process, for the sake of brevity, will not be repeated here.
  • an embodiment of the present application also provides a communication system
  • the communication system may include the above-mentioned terminal equipment and network equipment to form a communication system as shown in FIG. 1 , which is not repeated here for brevity.
  • system and the like in this document may also be referred to as “network management architecture” or “network system” and the like.
  • a software functional unit If implemented in the form of a software functional unit and sold or used as a stand-alone product, it may be stored in a computer-readable storage medium.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence, or the parts that make contributions to the prior art or the parts of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a read-only memory, a random access memory, a magnetic disk or an optical disk and other media that can store program codes.

Abstract

本申请实施例提供了一种无线通信方法和终端设备,所述方法包括:基于第一偏移值、第二偏移值和混合自动重传请求确认HARQ-ACK反馈状态中的至少一项监听控制信道候选;其中,所述第一偏移值对应的时间间隔关联终端设备的定时提前TA值或往返传输时间RTT,所述第二偏移值对应的时间间隔关联终端设备的同步信息获取。本申请提供的方案通过对调度时序的增强,能够保证不具备同时进行信号接收和发送能力的终端设备的正常工作,也可以达到省电的效果。

Description

无线通信方法和终端设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及无线通信方法和终端设备。
背景技术
在新无线(New Radio,NR)系统中,考虑采用非地面通信网络(Non-Terrestrial Networks,NTN)向用户提供通信服务。但是,由于NTN系统中的传播时延较大,因此TA值的范围也比较大,相应地,物联网非地面通信网络(Internet of Things NTN,IoT-NTN)系统中的上下行时序关系相对于地面通信网络(Terrestrial Networks,TN)系统中的上下行时序关系需要增强,例如,IoT-NTN系统中的控制信道的检测也需要增强。
发明内容
本申请提供了一种无线通信方法和终端设备,通过对调度时序的增强,能够保证不具备同时进行信号接收和发送能力的终端设备的正常工作,也可以达到省电的效果。
第一方面,本申请提供了一种无线通信方法,包括:
基于第一偏移值、第二偏移值和混合自动重传请求确认HARQ-ACK反馈状态中的至少一项监听控制信道候选;其中,所述第一偏移值对应的时间间隔关联终端设备的定时提前TA值或往返传输时间RTT,所述第二偏移值对应的时间间隔关联终端设备的同步信息获取。
第二方面,本申请提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。具体地,所述终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
在一种实现方式中,该终端设备可包括处理单元,该处理单元用于执行与信息处理相关的功能。例如,该处理单元可以为处理器。
在一种实现方式中,该终端设备可包括发送单元和/或接收单元。该发送单元用于执行与发送相关的功能,该接收单元用于执行与接收相关的功能。例如,该发送单元可以为发射机或发射器,该接收单元可以为接收机或接收器。再如,该终端设备为通信芯片,该发送单元可以为该通信芯片的输入电路或者接口,该发送单元可以为该通信芯片的输出电路或者接口。
第三方面,本申请提供了一种终端设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第一方面或其各实现方式中的方法。
在一种实现方式中,该处理器为一个或多个,该存储器为一个或多个。
在一种实现方式中,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在一种实现方式中,该终端设备还包括发射机(发射器)和接收机(接收器)。
第四方面,本申请提供了一种芯片,用于实现上述第一方面或其各实现方式中的方法。具体地,所述芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述第一方面或其各实现方式中的方法。
第五方面,本申请提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第一方面或其各实现方式中的方法。
第六方面,本申请提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面或其各实现方式中的方法。
第七方面,本申请提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或其各实现方式中的方法。
基于以上方案,基于第一偏移值、第二偏移值和混合自动重传请求确认HARQ-ACK反馈状态中的至少一项监听控制信道候选,实现了对调度时序的增强,此外,还能够保证不具备同时进行信号接收和发送能力的终端设备的正常工作,也可以达到省电的效果。
附图说明
图1至图3是本申请实施例提供的系统框架的示意框图。
图4和图5分别示出了基于透传转发卫星和再生转发卫星的NTN场景的示意图。
图6是本申请实施例提供的NTN系统的定时关系中的情况1的示意性结构图。
图7是本申请实施例提供的NTN系统的定时关系中的情况2的示意性结构图。
图8至图10是本申请实施例提供的终端设备不检测NPDCCH的子帧的示意图。
图11是本申请实施例提供的无线通信方法的示意性流程图。
图12是本申请实施例提供的终端设备不检测控制信道候选的子帧的一示意图。
图13是本申请实施例提供的终端设备不检测控制信道候选的子帧的另一示意图。
图14和图15是本申请实施例提供的终端设备的示意性框图。
图16是本申请实施例提供的芯片的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如UE)进行通信。
网络设备120可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。
例如,所述终端设备110可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、IoT设备、卫星手持终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。
终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100 可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
3GPP正在研究Non Terrestrial Network(NTN,非地面通信网络设备)技术,NTN一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
NTN技术可以和各种通信系统结合。例如,NTN技术可以和NR系统结合为NR-NTN系统。又例如,NTN技术可以和物联网IoT系统结合为IoT-NTN系统。作为示例,IoT-NTN系统可以包括NB-IoT-NTN系统和eMTC-NTN系统。
图2为本申请实施例提供的另一种通信系统的架构示意图。
如图2所示,包括终端设备1101和卫星1102,终端设备1101和卫星1102之间可以进行无线通信。终端设备1101和卫星1102之间所形成的网络还可以称为NTN。在图2所示的通信系统的架构中,卫星1102可以具有基站的功能,终端设备1101和卫星1102之间可以直接通信。在系统架构下,可以将卫星1102称为网络设备。在本申请的一些实施例中,通信系统中可以包括多个网络设备1102,并且每个网络设备1102的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
图3为本申请实施例提供的另一种通信系统的架构示意图。
如图3所示,包括终端设备1201、卫星1202和基站1203,终端设备1201和卫星1202之间可以进行无线通信,卫星1202与基站1203之间可以通信。终端设备1201、卫星1202和基站1203之间所形成的网络还可以称为NTN。在图3所示的通信系统的架构中,卫星1202可以不具有基站的功能,终端设备1201和基站1203之间的通信需要通过卫星1202的中转。在该种系统架构下,可以将基站1203称为网络设备。在本申请的一些实施例中,通信系统中可以包括多个网络设备1203,并且每个网络设备1203的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。所述网络设备1203可以是图1中的网络设备120。
应理解,上述卫星1102或卫星1202包括但不限于:
低地球轨道(Low-Earth Orbit,)LEO卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等等。卫星可采用多波束覆盖地面,例如,一颗卫星可以形成几十甚至数百个波束来覆盖地面。换言之,一个卫星波束可以覆盖直径几十至上百公里的地面区域,以保证卫星的覆盖以及提升整个卫星通信系统的系统容量。
作为示例,LEO的高度范围可以为500km~1500km,相应轨道周期约可以为1.5小时~2小时,用户间单跳通信的信号传播延迟一般可小于20ms,最大卫星可视时间可以为20分钟,LEO的信号传播距离短且链路损耗少,对用户终端的发射功率要求不高。GEO的轨道高度可以35786km,围绕地球旋转周期可以24小时,用户间单跳通信的信号传播延迟一般可为250ms。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
需要说明的是,图1至图3只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的 方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
卫星从其提供的功能上可以分为透传转发(transparent payload)和再生转发(regenerative payload)两种。对于透传转发卫星,只提供无线频率滤波,频率转换和放大的功能,只提供信号的透明转发,不会改变其转发的波形信号。对于再生转发卫星,除了提供无线频率滤波,频率转换和放大的功能,还可以提供解调/解码,路由/转换,编码/调制的功能,其具有基站的部分或者全部功能。
在NTN中,可以包括一个或多个网关(Gateway),用于卫星和终端之间的通信。
图4和图5分别示出了基于透传转发卫星和再生转发卫星的NTN场景的示意图。
如图4所示,对于基于透传转发卫星的NTN场景,网关和卫星之间通过馈线链路(Feeder link)进行通信,卫星和终端之间可以通过服务链路(service link)进行通信。如图5所示,对于基于再生转发卫星的NTN场景,卫星和卫星之间通过星间(InterStar link)进行通信,网关和卫星之间通过馈线链路(Feeder link)进行通信,卫星和终端之间可以通过服务链路(service link)进行通信。
在NTN系统中,和NR系统一样,UE在进行上行传输时需要考虑定时提前(Timing Advance,TA)的影响。由于系统中的传播时延较大,因此TA值的范围也比较大。当UE被调度在时隙n(或子帧n)进行上行传输时,该UE考虑往返传播时延,在上行传输时提前传输,从而可以使得信号到达网络设备侧时在网络设备侧上行的时隙n(或子帧n)上。具体地,NTN系统中的定时关系可能包括两种情况,即情况1和情况2。
图6是本申请实施例提供的NTN系统的定时关系中的情况1的示意性结构图。
如图6所示,针对情况1,网络设备侧的下行子帧和上行子帧是对齐的。相应地,为了使UE的上行传输到达网络设备侧时和网络设备侧的上行子帧对齐,UE需要使用一个较大的TA值。在一些情况下,该TA值对应定时偏移值Koffset。
图7是本申请实施例提供的NTN系统的定时关系中的情况2的示意性结构图。
如图7所示,针对情况2,网络设备侧的下行子帧和上行子帧之间有一个偏移值。在这种情况下,如果想要使UE的上行传输到达网络设备侧时和网络设备侧的上行子帧对齐,UE只需要使用一个较小的TA值。在一些情况下,该TA值对应定时偏移值Koffset。在另一些情况下,UE的RTT对应定时偏移值Koffset。
下面对NB-IoT系统中的控制信道检测的时序关系进行说明。
针对上行授权和NPUSCH之间的调度时序,如果一个NB-IoT终端设备检测到对应DCI格式N0(携带上行授权)的NPDCCH且该NPDCCH的结束位置在子帧n,或者,收到携带随机接入响应(random access response,RAR)授权的NPDSCH且该NPDSCH的结束位置在子帧n,如果对应的(该上行授权调度的)NPUSCH格式1的传输从子帧n+k开始,那么不要求该终端设备在子帧n+1到子帧n+k-1中间的任意子帧上检测NPDCCH。图8是本申请实施例提供的终端设备不检测NPDCCH的子帧的一个示意图。如图8所示,假设k=9,则终端设备不检测NPDCCH的子帧包括图案填充的子帧。
针对下行授权和HARQ-ACK反馈之间的时序,如果一个NB-IoT终端设备检测到对应DCI格式N1(携带下行授权)的NPDCCH且该NPDCCH的结束位置在子帧n,如果对应的(该下行授权调度的NPDSCH对应的HARQ-ACK反馈)NPUSCH格式2的传输从子帧n+k开始,那么不要求该终端设备在子帧n+1到子帧n+k-1中间的任意子帧上检测NPDCCH。图9是本申请实施例提供的终端设备不检测NPDCCH的子帧的另一示意图。如图9所示,以k1=5,k2=13,NPDSCH包括4个子帧为例,图9给出了终端设备不检测NPDCCH的子帧的示意图,即终端设备在子帧n到子帧n+20上不检测NPDCCH。
其中,k=k1+k2;k1表示DCI格式N1到NPDSCH的调度时序,如果对应DCI格式N1(携带下行授权)的NPDCCH的结束位置在子帧n,则被调度的NPDSCH的起始位置在子帧n+k1,其中,k1=5+k0,k0={0,4,8,12,16,32,64,128}或{0,16,32,64,128,256,512,1024};k2表示NPDSCH到HARQ-ACK的反馈时序,如果NPDSCH的结束位置在子帧n,则对应的HARQ-ACK传输的起始位置在子帧n+k2,其中,k2=k0-1,k0={13,21}或{13,15,17,18}。
针对NPUSCH和NPDCCH之间的时序,如果一个NB-IoT终端设备传输NPUSCH的结束位置在子帧n,那么不要求该终端设备在子帧n+1到子帧n+3中间的任意子帧上检测NPDCCH。图10是本申请实施例提供的终端设备不检测NPDCCH的子帧的另一示意图。如图10所示,终端设备在子帧n上完成上行传输,则在子帧n+1到子帧n+3上不检测NPDCCH。
在新无线(New Radio,NR)系统中,考虑采用非地面通信网络(Non-Terrestrial Networks,NTN)向用户提供通信服务。但是,由于NTN系统中的传播时延较大,因此TA值的范围也比较大,相应地,物联网非地面通信网络(Internet of Things NTN,IoT-NTN)系统中的上下行时序关系相对于地 面通信网络(Terrestrial Networks,TN)系统中的上下行时序关系需要增强,例如,IoT-NTN系统中的控制信道的检测也需要增强。
例如,对于IoT-NTN系统中的终端设备,不具备同时使用GNSS模块和在IoT-NTN系统中进行收发的能力。GNSS模块用于终端设备获取同步信息。例如,终端设备处于空闲态时,如果终端设备收到寻呼消息或收到唤醒信号(Wake up signal,WUS),则终端设备需要在收到寻呼消息或收到WUS后进行时频同步;或者,终端设备需要提前进行时频同步,从而进行寻呼消息或WUS的接收。在这个过程中,终端设备可能需要启动GNSS模块进行GNSS位置固定例如完成GNSS TTFF(Time To First Fix),然后从GNSS模块切换到IoT-NTN系统工作模块,获取NTN-SIB获取服务卫星的星历信息(serving satellite ephemeris)用于上行同步。一次GNSS TTFF通常需要1秒(热启动如果上一次TTFF对应的GNSS星历信息ephemeris是在4小时内获得的)或小于5秒(温启动如果上一次TTFF对应的GNSS年历信息Almanac是在180天内获得的)的时间。另外终端设备可能也不具备同时进行信号接收和发送的能力。
此外,由于NTN系统中的传播时延较大,因此TA值的范围也比较大。相应地,IoT-NTN系统中的上下行时序关系相对于TN系统中的上下行时序关系需要增强,在这种情况下,IoT-NTN系统中的控制信道的检测也需要相应增强。
本申请提供了一种无线通信方法和终端设备,通过对调度时序的增强,能够保证不具备同时进行信号接收和发送能力的终端设备的正常工作,也可以达到省电的效果。
图11是本申请实施例提供的无线通信方法200的示意性流程图。所述方法200可以由终端设备执行,例如,如图1至图5所示的终端设备。再如,侧行链路上的终端设备。
如图11所示,所述方法200可包括以下中的部分或全部内容:
S210,基于第一偏移值、第二偏移值和混合自动重传请求确认HARQ-ACK反馈状态中的至少一项监听控制信道候选。
在一些实施例中,所述第一偏移值对应的时间间隔关联终端设备的定时提前TA值或往返传输时间RTT,所述第二偏移值对应的时间间隔关联终端设备的同步信息获取。
在一些实施例中,所述第一偏移值用于确定上行信道的调度时序。所述上行信道包括物理上行共享信道PUSCH、物理上行控制信道PUCCH和随机接入信道PRACH中的至少一种。
在一些实施例中,所述第一偏移值用于确定上行授权和物理上行共享信道PUSCH之间的调度时序;和/或,所述第一偏移值用于确定物理下行共享信道PDSCH和混合自动重传请求确认HARQ-ACK反馈之间的调度时序。
在一些实施例中,所述第一偏移值是预定义的;或,
所述第一偏移值是网络设备通过系统消息、无线资源控制RRC、媒体接入控制控制元素MAC CE、下行控制信息DCI中的至少一项配置的。
在一些实施例中,所述第一偏移值的单位为时间单元或绝对值。例如所述时间单元包括但不限于子帧、时隙、符号、帧等。例如所述绝对值包括但不限于毫秒、微秒、秒等。
在一些实施例中,所述第二偏移值用于确定下行授权和物理下行共享信道PDSCH之间的调度时序。
在一些实施例中,所述第二偏移值是预定义的;或,
所述第二偏移值是网络设备通过系统消息、无线资源控制RRC、媒体接入控制控制元素MAC CE、下行控制信息DCI中的至少一项配置的。
在一些实施例中,所述第二偏移值的单位为时间单元或绝对值。例如所述时间单元包括但不限于子帧、时隙、符号、帧等。例如所述绝对值包括但不限于毫秒、微秒、秒等。
在一些实施例中,所述HARQ-ACK反馈状态包括物理下行共享信道PDSCH的HARQ-ACK反馈被去使能;或所述HARQ-ACK反馈状态包括PDSCH对应的HARQ-ACK处于不反馈状态。
在一些实施例中,若第一HARQ进程被配置HARQ-ACK反馈去使能,则使用所述第一HARQ进程传输的PDSCH对应的HARQ-ACK不反馈。
在一些实施例中,所述S210可包括:
若第一HARQ进程对应HARQ-ACK反馈去使能状态,所述终端设备收到的对应所述第一HARQ进程的第一下行共享信道的结束位置在时间单元n,则所述终端设备不期望在从时间单元n+1到时间单元n+k中的时间单元上监听控制信道候选,其中,k为非负整数。
在一些实施例中,所述时间单元包括但不限于子帧、时隙、符号、帧等。
在一些实施例中,所述S210可包括:
若第一HARQ进程对应HARQ-ACK反馈去使能状态,终端设备收到的对应所述第一HARQ进 程的第一下行共享信道的结束位置在子帧n,则所述终端设备不期望在从子帧n+1到子帧n+12中的任意子帧上监听控制信道候选。
在一些实施例中,所述S210可包括:
基于所述第一偏移值确定是否监听上行授权和上行共享信道之间的时间单元上的控制信道候选;
基于所述第一偏移值确定是否监听物理下行控制信道PDCCH命令和随机接入信道之间的时间单元上的控制信道候选;
基于所述第一偏移值确定是否监听上行共享信道或上行控制信道传输后的时间单元上的控制信道候选;
基于所述第一偏移值确定是否监听随机接入信道传输后的时间单元上的控制信道候选;
基于所述第一偏移值确定是否监听下行授权和下行共享信道对应的HARQ-ACK反馈之间的时间单元上的控制信道候选;
基于所述第一偏移值和所述第二偏移值确定是否监听下行授权和下行共享信道对应的HARQ-ACK反馈之间的时间单元上的控制信道候选;
基于所述第二偏移值确定是否监听下行授权和下行共享信道之间的时间单元上的控制信道候选。
在一些实施例中,所述第一偏移值与Koffset1对应。例如,第一偏移值为Koffset1。再如,Koffset1是根据第一偏移值对应的时间间隔得到的以时间单元例如子帧为单位的数值。
在一些实施例中,基于所述第一偏移值确定是否监听上行授权和上行共享信道之间的时间单元上的控制信道候选。
在一些实施例中,如果终端设备收到的携带第一上行授权(例如对应DCI格式N0)的第一下行控制信道的结束位置在子帧n,且如果该第一上行授权对应的(例如对应NPUSCH格式1)的第一上行共享信道的传输从子帧n+k+Koffset1开始,那么不要求该终端设备在从子帧n+k+i-2到子帧n+k+i-1中的任意子帧上监听下行控制信道候选。可选地,该实施例应用于UE-specific搜索空间中的下行控制信道候选监听且该终端设备被配置两个HARQ进程。
在一些实施例中,如果终端设备收到的携带第一上行授权(例如对应DCI格式N0)的第一下行控制信道的结束位置在子帧n,且如果该第一上行授权对应的(例如对应NPUSCH格式1)的第一上行共享信道的传输从子帧n+k+Koffset1开始,那么该终端设备不期望在子帧n+k+i-2之前接收到携带第二上行授权(例如对应DCI格式N0)的第二下行控制信道,其中,该第二上行授权对应的(例如对应NPUSCH格式1)的第二上行共享信道的传输结束位置晚于子帧n+k+i+255。可选地,该实施例应用于UE-specific搜索空间中的下行控制信道候选监听且该终端设备被配置两个HARQ进程。
在一些实施例中,如果终端设备收到的携带第一上行授权(例如对应DCI格式N0)的第一下行控制信道的结束位置在子帧n,且如果该第一上行授权对应的(例如对应NPUSCH格式1)的第一上行共享信道的传输从子帧n+k+Koffset1开始,对于TDD,如果该第一上行授权对应的(例如对应NPUSCH格式1)的第一上行共享信道的传输结束位置位于子帧n+m+Koffset1,则不要求该终端设备在子帧n+k+i到子帧n+m+i-1中间的任意子帧上监听下行控制信道候选。可选地,该实施例应用于UE-specific搜索空间中的下行控制信道候选监听且该终端设备被配置两个HARQ进程。
在一些实施例中,如果终端设备收到的携带第一上行授权(例如对应DCI格式N0)的第一下行控制信道的结束位置在子帧n,或者,收到携带随机接入响应(random access response,RAR)授权的第一下行共享信道的结束位置在子帧n,且如果该第一上行授权或该RAR授权对应的(例如对应NPUSCH格式1)的第一上行共享信道的传输从子帧n+k+Koffset1开始,那么不要求该终端设备在子帧n+1到子帧n+k+i-1中间的任意子帧上监听下行控制信道候选。
在一些实施例中,对于TDD,如果终端设备收到的携带第一上行授权(例如对应DCI格式N0)的第一下行控制信道的结束位置在子帧n,或者,收到携带随机接入响应(random access response,RAR)授权的第一下行共享信道的结束位置在子帧n,且如果该第一上行授权或该RAR授权对应的(例如对应NPUSCH格式1)的第一上行共享信道的传输结束位置位于子帧n+k+Koffset1,则不要求该终端设备在子帧n+1到子帧n+k+i中间的任意子帧上监听下行控制信道候选。
在一些实施例中,对于UE-specific搜索空间,如果终端设备被配置两个HARQ进程:
如果终端设备收到的携带第一上行授权(例如对应DCI格式N0)的第一下行控制信道的结束位置在子帧n,且如果该第一上行授权对应的(例如对应NPUSCH格式1)的第一上行共享信道的传输从子帧n+k+Koffset1开始,那么:
不要求该终端设备在子帧n+k+i-2到子帧n+k+i-1中间的任意子帧上监听下行控制信道候选;或
该终端设备不期望在子帧n+k+i-2之前接收到携带第二上行授权(例如对应DCI格式N0)的第 二下行控制信道,其中,该第二上行授权对应的(例如对应NPUSCH格式1)的第二上行共享信道的传输结束位置晚于子帧n+k+i+255;或
对于TDD,如果该第一上行授权对应的(例如对应NPUSCH格式1)的第一上行共享信道的传输结束位置位于子帧n+m+Koffset1,则不要求该终端设备在子帧n+k+i到子帧n+m+i-1中间的任意子帧上监听下行控制信道候选。否则:
如果终端设备收到的携带第一上行授权(例如对应DCI格式N0)的第一下行控制信道的结束位置在子帧n,或者,收到携带随机接入响应(random access response,RAR)授权的第一下行共享信道的结束位置在子帧n,且如果该第一上行授权或该RAR授权对应的(例如对应NPUSCH格式1)的第一上行共享信道的传输从子帧n+k+Koffset1开始,那么不要求该终端设备在子帧n+1到子帧n+k+i-1中间的任意子帧上监听下行控制信道候选;或
对于TDD,如果终端设备收到的携带第一上行授权(例如对应DCI格式N0)的第一下行控制信道的结束位置在子帧n,或者,收到携带随机接入响应(random access response,RAR)授权的第一下行共享信道的结束位置在子帧n,且如果该第一上行授权或该RAR授权对应的(例如对应NPUSCH格式1)的第一上行共享信道的传输结束位置位于子帧n+k+Koffset1,则不要求该终端设备在子帧n+1到子帧n+k+i中间的任意子帧上监听下行控制信道候选。
在一些实现方式中,i大于或等于0。例如i=0。再如i=Koffset1。
在一些实现方式中,i为整数。
作为一个示例,针对上行授权和上行共享信道之间的下行控制信道候选的监听,至少可包括以下方式:
方式1:
对于UE-specific搜索空间,如果终端设备被配置两个HARQ进程:
如果终端设备收到的携带第一上行授权(例如对应DCI格式N0)的第一下行控制信道的结束位置在子帧n,且如果该第一上行授权对应的(例如对应NPUSCH格式1)的第一上行共享信道的传输从子帧n+k+Koffset1开始,那么:
不要求该终端设备在子帧n+k-2到子帧n+k-1中间的任意子帧上监听下行控制信道候选;或
该终端设备不期望在子帧n+k-2之前接收到携带第二上行授权(例如对应DCI格式N0)的第二下行控制信道,其中,该第二上行授权对应的(例如对应NPUSCH格式1)的第二上行共享信道的传输结束位置晚于子帧n+k+255;或
对于时分双工(Time Division Duplexing,TDD),如果该第一上行授权对应的(例如对应NPUSCH格式1)的第一上行共享信道的传输结束位置位于子帧n+m+Koffset1,则不要求该终端设备在子帧n+k到子帧n+m-1中间的任意子帧上监听下行控制信道候选。否则:
如果终端设备收到的携带第一上行授权(例如对应DCI格式N0)的第一下行控制信道的结束位置在子帧n,或者,收到携带随机接入响应(random access response,RAR)授权的第一下行共享信道的结束位置在子帧n,且如果该第一上行授权或该RAR授权对应的(例如对应NPUSCH格式1)的第一上行共享信道的传输从子帧n+k+Koffset1开始,那么不要求该终端设备在子帧n+1到子帧n+k-1中间的任意子帧上监听下行控制信道候选;或
对于TDD,如果终端设备收到的携带第一上行授权(例如对应DCI格式N0)的第一下行控制信道的结束位置在子帧n,或者,收到携带随机接入响应(random access response,RAR)授权的第一下行共享信道的结束位置在子帧n,且如果该第一上行授权或该RAR授权对应的(例如对应NPUSCH格式1)的第一上行共享信道的传输结束位置位于子帧n+k+Koffset1,则不要求该终端设备在子帧n+1到子帧n+k中间的任意子帧上监听下行控制信道候选。
方式2:
对于UE-specific搜索空间,如果终端设备被配置两个HARQ进程:
如果终端设备收到的携带第一上行授权(例如对应DCI格式N0)的第一下行控制信道的结束位置在子帧n,且如果该第一上行授权对应的(例如对应NPUSCH格式1)的第一上行共享信道的传输从子帧n+k+Koffset1开始,那么:
不要求该终端设备在子帧n+k+Koffset1-2到子帧n+k+Koffset1-1中间的任意子帧上监听下行控制信道候选;或
该终端设备不期望在子帧n+k+Koffset1-2之前接收到携带第二上行授权(例如对应DCI格式N0) 的第二下行控制信道,其中,该第二上行授权对应的(例如对应NPUSCH格式1)的第二上行共享信道的传输结束位置晚于子帧n+k+Koffset1+255;或
对于TDD,如果该第一上行授权对应的(例如对应NPUSCH格式1)的第一上行共享信道的传输结束位置位于子帧n+m+Koffset1,则不要求该终端设备在子帧n+k+Koffset1到子帧n+m+Koffset1-1中间的任意子帧上监听下行控制信道候选。否则:
如果终端设备收到的携带第一上行授权(例如对应DCI格式N0)的第一下行控制信道的结束位置在子帧n,或者,收到携带随机接入响应(random access response,RAR)授权的第一下行共享信道的结束位置在子帧n,且如果该第一上行授权或该RAR授权对应的(例如对应NPUSCH格式1)的第一上行共享信道的传输从子帧n+k+Koffset1开始,那么不要求该终端设备在子帧n+1到子帧n+k+Koffset1-1中间的任意子帧上监听下行控制信道候选;或
对于TDD,如果终端设备收到的携带第一上行授权(例如对应DCI格式N0)的第一下行控制信道的结束位置在子帧n,或者,收到携带随机接入响应(random access response,RAR)授权的第一下行共享信道的结束位置在子帧n,且如果该第一上行授权或该RAR授权对应的(例如对应NPUSCH格式1)的第一上行共享信道的传输结束位置位于子帧n+k+Koffset1,则不要求该终端设备在子帧n+1到子帧n+k+Koffset1中间的任意子帧上监听下行控制信道候选。
在一些实施例中,基于所述第一偏移值确定是否监听物理下行控制信道PDCCH命令和随机接入信道之间的时间单元上的控制信道候选。
在一些实施例中,如果终端设备收到的携带PDCCH命令(PDCCH order)的(例如对应DCI格式N1)的第一下行控制信道的结束位置在子帧n,对于FDD,如果对应的第一随机接入信道(例如NPRACH)的传输从子帧n+k+Koffset1开始,那么不要求该终端设备在子帧n+1到子帧n+k+i-1中间的任意子帧上监听下行控制信道候选。
在一些实施例中,如果终端设备收到的携带PDCCH命令(PDCCH order)的(例如对应DCI格式N1)的第一下行控制信道的结束位置在子帧n,对于TDD,如果对应的第一随机接入信道(例如NPRACH)的传输结束位置位于子帧n+k+Koffset1,那么不要求该终端设备在子帧n+1到子帧n+k+i-1中间的任意子帧上监听下行控制信道候选。
在一些实现方式中,i大于或等于0。例如i=0。再如i=Koffset1。
在一些实现方式中,i为整数。
作为一个示例,针对PDCCH命令和随机接入信道之间的下行控制信道候选的监听,至少可包括以下方式:
方式1:
如果终端设备收到的携带PDCCH命令(PDCCH order)的(例如对应DCI格式N1)的第一下行控制信道的结束位置在子帧n:或
对于频分双工(Frequency Division Duplexing,FDD),如果对应的第一随机接入信道(例如NPRACH)的传输从子帧n+k+Koffset1开始,那么不要求该终端设备在子帧n+1到子帧n+k-1中间的任意子帧上监听下行控制信道候选;
对于TDD,如果对应的第一随机接入信道(例如NPRACH)的传输结束位置位于子帧n+k+Koffset1,那么不要求该终端设备在子帧n+1到子帧n+k-1中间的任意子帧上监听下行控制信道候选。
方式2:
如果终端设备收到的携带PDCCH命令(PDCCH order)的(例如对应DCI格式N1)的第一下行控制信道的结束位置在子帧n:
对于FDD,如果对应的第一随机接入信道(例如NPRACH)的传输从子帧n+k+Koffset1开始,那么不要求该终端设备在子帧n+1到子帧n+k+Koffset1-1中间的任意子帧上监听下行控制信道候选;或
对于TDD,如果对应的第一随机接入信道(例如NPRACH)的传输结束位置位于子帧n+k+Koffset1,那么不要求该终端设备在子帧n+1到子帧n+k+Koffset1-1中间的任意子帧上监听下行控制信道候选。
在一些实施例中,基于所述第一偏移值确定是否监听上行共享信道或上行控制信道传输后的时间单元上的控制信道候选。
在一些实施例中,如果终端设备发送第一上行信道(上行共享信道例如NPUSCH)的结束位置在子帧n,对于FDD,如果被配置类型B半双工保护间隔(Type B half-duplex guard periods),那么不要求该终端设备在该类型B半双工保护间隔内接收传输。可选地,该终端设备被配置两个HARQ进程。
在一些实施例中,如果终端设备发送第一上行信道(上行共享信道例如NPUSCH)的结束位置在子帧n,对于FDD,如果被配置类型B半双工保护间隔(Type B half-duplex guard periods),那么该终端设备不期望在子帧n+1-j1到子帧n+j2中间的任意子帧上接收到调度基于第一HARQ进程号传输的下行控制信道(例如对应DCI格式N0或N1),其中,该第一HARQ进程号为该第一上行信道传输使用的HARQ进程号,其中j2>1。可选地,该终端设备被配置两个HARQ进程。
在一些实施例中,如果终端设备发送第一上行信道(上行共享信道例如NPUSCH)的结束位置在子帧n,且如果终端设备没有使用高层EDT参数配置,或使用高层EDT参数配置且MCS索引满足0≤MCS索引≤2:那么不要求该终端设备在子帧n+1-j1到子帧n+j2中间的任意子帧上监听下行控制信道候选。可选地,该终端设备被配置两个HARQ进程。
在一些实施例中,如果终端设备发送对应Msg3且传输块大小为第一传输块(transport block size,TBS)值的第一上行信道(上行共享信道例如NPUSCH)的传输结束位置在子帧n1,其中,如果选择传输块大小为最大TBS值那么该第一上行信道的传输结束位置将在子帧n,那么不要求该终端设备在子帧n+1-j1到子帧n+j2中间的任意子帧上监听下行控制信道候选。
在一些实施例中,如果终端设备被配置两个HARQ进程,且终端设备发送第一上行信道(上行共享信道例如NPUSCH)的结束位置在子帧n:
对于FDD,如果被配置类型B半双工保护间隔(Type B half-duplex guard periods),那么不要求该终端设备在该类型B半双工保护间隔内接收传输;并且,
该终端设备不期望在子帧n+1-j1到子帧n+j2中间的任意子帧上接收到调度基于第一HARQ进程号传输的下行控制信道(例如对应DCI格式N0或N1),其中,该第一HARQ进程号为该第一上行信道传输使用的HARQ进程号,其中j2>1。
或者,如果终端设备没有使用高层EDT参数配置,或使用高层EDT参数配置且MCS索引满足0≤MCS索引≤2,那么不要求该终端设备在子帧n+1-j1到子帧n+j2中间的任意子帧上监听下行控制信道候选。
否则:
如果终端设备发送对应Msg3且传输块大小为第一传输块(transport block size,TBS)值的第一上行信道(上行共享信道例如NPUSCH)的传输结束位置在子帧n1,其中,如果选择传输块大小为最大TBS值那么该第一上行信道的传输结束位置将在子帧n,那么不要求该终端设备在子帧n+1-j1到子帧n+j2中间的任意子帧上监听下行控制信道候选。
在一些实现方式中,j1大于或等于0。
在一些实现方式中,j1=0,j2=Koffset3。
在一些实现方式中,j1=0,j2=Koffset3+3。
在一些实现方式中,j1=Koffset1,j2=3-Koffset1。
在一些实施例中,Koffset3是基于Koffset1或第一偏移值确定的。
在一些实施例中,Koffset3和Koffset1相同。
在一些实施例中,Koffset3为Koffset1的一半或Koffset3为Koffset1的一半的取整。
作为一个示例,针对上行信道传输后的下行控制信道候选的监听,至少可包括以下三种方式:
方式1:
如果终端设备被配置两个HARQ进程,且终端设备发送第一上行信道(上行共享信道例如NPUSCH)的结束位置在子帧n:
对于FDD,如果被配置类型B半双工保护间隔(Type B half-duplex guard periods),那么不要求该终端设备在该类型B半双工保护间隔内接收传输;并且,
该终端设备不期望在从子帧n+1到子帧n+Koffset3+3中间的任意子帧上接收到调度基于第一HARQ进程号传输的下行控制信道(例如对应DCI格式N0或N1),其中,该第一HARQ进程号为该第一上行信道传输使用的HARQ进程号。
或者,如果终端设备没有使用高层EDT参数配置,或使用高层EDT参数配置且MCS索引满足0 ≤MCS索引≤2:那么不要求该终端设备在从子帧n+1到子帧n+Koffset3+3中间的任意子帧上监听下行控制信道候选。
否则:
如果终端设备发送对应Msg3且传输块大小为第一传输块(transport block size,TBS)值的第一上行信道(上行共享信道例如NPUSCH)的传输结束位置在子帧n1,其中,如果选择传输块大小为最大TBS值那么该第一上行信道的传输结束位置将在子帧n,那么不要求该终端设备在从子帧n1+1到子帧n+Koffset3+3中间的任意子帧上监听下行控制信道候选。
方式2:
如果终端设备被配置两个HARQ进程,且终端设备发送第一上行信道(上行共享信道例如NPUSCH)的结束位置在子帧n:
对于FDD,如果被配置类型B半双工保护间隔(Type B half-duplex guard periods),那么不要求该终端设备在该类型B半双工保护间隔内接收传输;并且,
该终端设备不期望在从子帧n+1到子帧n+Koffset3中间的任意子帧上接收到调度基于第一HARQ进程号传输的下行控制信道(例如对应DCI格式N0或N1),其中,该第一HARQ进程号为该第一上行信道传输使用的HARQ进程号。
或者,如果终端设备没有使用高层EDT参数配置,或使用高层EDT参数配置且MCS索引满足0≤MCS索引≤2,那么不要求该终端设备在从子帧n+1到子帧n+Koffset3中间的任意子帧上监听下行控制信道候选。
否则:
如果终端设备发送对应Msg3且传输块大小为第一传输块(transport block size,TBS)值的第一上行信道(上行共享信道例如NPUSCH)的传输结束位置在子帧n1,其中,如果选择传输块大小为最大TBS值那么该第一上行信道的传输结束位置将在子帧n,那么不要求该终端设备在从子帧n1+1到子帧n+Koffset3中间的任意子帧上监听下行控制信道候选。
方式3:
如果终端设备被配置两个HARQ进程,且终端设备发送第一上行信道(上行共享信道例如NPUSCH)的结束位置在子帧n:
对于FDD,如果被配置类型B半双工保护间隔(Type B half-duplex guard periods),那么不要求该终端设备在该类型B半双工保护间隔内接收传输;并且,
该终端设备不期望在从子帧n+1-Koffset1到子帧n+3-Koffset1中间的任意子帧上接收到调度基于第一HARQ进程号传输的下行控制信道(例如对应DCI格式N0或N1),其中,该第一HARQ进程号为该第一上行信道传输使用的HARQ进程号。
或者,如果终端设备没有使用高层EDT参数配置,或使用高层EDT参数配置且MCS索引满足0≤MCS索引≤2,那么不要求该终端设备在从子帧n+1-Koffset1到子帧n+3-Koffset1中间的任意子帧上监听下行控制信道候选。
否则:
如果终端设备发送对应Msg3且传输块大小为第一传输块(transport block size,TBS)值的第一上行信道(上行共享信道例如NPUSCH)的传输结束位置在子帧n1,其中,如果选择传输块大小为最大TBS值那么该第一上行信道的传输结束位置将在子帧n,那么不要求该终端设备在从子帧n1+1-Koffset1到子帧n+3-Koffset1中间的任意子帧上监听下行控制信道候选。
在一些实施例中,Koffset3是基于Koffset1或第一偏移值确定的。
在一些实施例中,Koffset3和Koffset1相同。
在一些实施例中,Koffset3为Koffset1的一半或Koffset3为Koffset1的一半的取整。
在一些实施例中,基于所述第一偏移值确定是否监听随机接入信道传输后的时间单元上的控制信道候选。
在一些实施例中,如果用于SR的随机接入前导序列(例如narrowband random access preamble)的传输结束位置在子帧n,在帧结构类型1(frame structure type 1)场景下,如果使用随机接入信道格式0和1且该随机接入信道的重复次数大于或等于64,或使用随机接入信道格式2且该随机接入信道的重复次数大于或等于16,那么不要求该终端设备从子帧n-j3到子帧n+j4之间监听终端设备专 有的下行控制信道搜索空间。可选的,该实施例适用于终端设备被配置高层参数sr-WithoutHARQ-ACK-Config的情况下。
在一些实施例中,如果用于SR的随机接入前导序列(例如narrowband random access preamble)的传输结束位置在子帧n,在不是帧结构类型1的场景下,或使用随机接入信道格式0和1且该随机接入信道的重复次数小于64,或使用随机接入信道格式2且该随机接入信道的重复次数小于16,那么不要求该终端设备从子帧n-j3到子帧n+j5之间监听终端设备专有的下行控制信道搜索空间。可选的,该实施例适用于终端设备被配置高层参数sr-WithoutHARQ-ACK-Config的情况下。
在一些实施例中,如果用于SR的随机接入前导序列(例如narrowband random access preamble)的传输结束位置在子帧n,那么不要求该终端设备从子帧n-j3到子帧n+j5之间监听终端设备专有的下行控制信道搜索空间。可选的,该实施例适用于终端设备被配置高层参数sr-WithoutHARQ-ACK-Config的情况下。
在一些实施例中,对于终端设备被配置高层参数sr-WithoutHARQ-ACK-Config的情况下,如果用于SR的随机接入前导序列(例如narrowband random access preamble)的传输结束位置在子帧n:
在帧结构类型1(frame structure type 1)场景下,如果使用随机接入信道格式0和1且该随机接入信道的重复次数大于或等于64,或使用随机接入信道格式2且该随机接入信道的重复次数大于或等于16,那么不要求该终端设备从子帧n-j3到子帧n+j4之间监听终端设备专有的下行控制信道搜索空间;
否则,不要求该终端设备从子帧n-j3到子帧n+j5之间监听终端设备专有的下行控制信道搜索空间。
在一些实现方式中,j3=0,j4=Koffset3+40,j5=Koffset3+3。
在一些实现方式中,j3=0,j4=40,j5=Koffset3。
在一些实现方式中,j3=Koffset1,j4=40-Koffset1,j5=3-Koffset3。
作为一个示例,针对随机接入信道传输后的下行控制信道搜索空间的监听,至少可包括以下方式:
方式1:
对于终端设备被配置高层参数sr-WithoutHARQ-ACK-Config的情况下,如果用于SR的随机接入前导序列(例如narrowband random access preamble)的传输结束位置在子帧n:
在帧结构类型1(frame structure type 1)场景下,如果使用随机接入信道格式0和1且该随机接入信道的重复次数大于或等于64,或使用随机接入信道格式2且该随机接入信道的重复次数大于或等于16,那么不要求该终端设备从子帧n到子帧n+Koffset3+40之间监听终端设备专有的下行控制信道搜索空间;
否则,不要求该终端设备从子帧n到子帧n+Koffset3+3之间监听终端设备专有的下行控制信道搜索空间。
方式2:
对于终端设备被配置高层参数sr-WithoutHARQ-ACK-Config的情况下,如果用于SR的随机接入前导序列(例如narrowband random access preamble)的传输结束位置在子帧n:
在帧结构类型1(frame structure type 1)场景下,如果使用随机接入信道格式0和1且该随机接入信道的重复次数大于或等于64,或使用随机接入信道格式2且该随机接入信道的重复次数大于或等于16,那么不要求该终端设备从子帧n到子帧n+40之间监听终端设备专有的下行控制信道搜索空间;
否则,不要求该终端设备从子帧n到子帧n+Koffset3之间监听终端设备专有的下行控制信道搜索空间。
方式3:
对于终端设备被配置高层参数sr-WithoutHARQ-ACK-Config的情况下,如果用于SR的随机接入前导序列(例如narrowband random access preamble)的传输结束位置在子帧n:
在帧结构类型1(frame structure type 1)场景下,如果使用随机接入信道格式0和1且该随机接入信道的重复次数大于或等于64,或使用随机接入信道格式2且该随机接入信道的重复次数大于或等于16,那么不要求该终端设备从子帧n-Koffset1到子帧n+40-Koffset1之间监听终端设备专有的下行控制信道搜索空间;
否则,不要求该终端设备从子帧n-Koffset1到子帧n+3-Koffset1之间监听终端设备专有的下行控 制信道搜索空间。
在一些实施例中,基于所述第一偏移值确定是否监听下行授权和下行共享信道对应的HARQ-ACK反馈之间的时间单元上的控制信道候选。
在一些实现方式中,如果终端设备收到的携带第一下行授权(例如对应DCI格式N1)的第一下行控制信道的结束位置在子帧n,且该第一下行授权对应的第一下行共享信道的传输从子帧n+k开始:
对于FDD,如果对应的携带HARQ-ACK信息的第一上行信道(例如对应NPUSCH格式2)的传输从子帧n+m+Koffset1开始,那么不要求该终端设备在子帧n+k到子帧n+m+i-1中间的任意子帧上监听下行控制信道候选;或
对于TDD,如果对应的携带HARQ-ACK信息的第一上行信道(例如对应NPUSCH格式2)的传输结束位置在子帧n+m+Koffset1,那么不要求该终端设备在子帧n+k到子帧n+m+i-1中间的任意子帧上监听下行控制信道候选。
在一些实现方式中,i大于或等于0。例如i=0。再如i=Koffset1。
在一些实现方式中,i为整数。
作为一个示例,针对下行授权和下行共享信道对应的HARQ-ACK反馈之间的下行控制信道候选的监听,至少可包括以下方式:
方式1:
如果终端设备收到的携带第一下行授权(例如对应DCI格式N1)的第一下行控制信道的结束位置在子帧n,且该第一下行授权对应的第一下行共享信道的传输从子帧n+k开始:
对于FDD,如果对应的携带HARQ-ACK信息的第一上行信道(例如对应NPUSCH格式2)的传输从子帧n+m+Koffset1开始,那么不要求该终端设备在子帧n+k到子帧n+m-1中间的任意子帧上监听下行控制信道候选;或
对于TDD,如果对应的携带HARQ-ACK信息的第一上行信道(例如对应NPUSCH格式2)的传输结束位置在子帧n+m+Koffset1,那么不要求该终端设备在子帧n+k到子帧n+m-1中间的任意子帧上监听下行控制信道候选。
方式2:
如果终端设备收到的携带第一下行授权(例如对应DCI格式N1)的第一下行控制信道的结束位置在子帧n,且该第一下行授权对应的第一下行共享信道的传输从子帧n+k开始:
对于FDD,如果对应的携带HARQ-ACK信息的第一上行信道(例如对应NPUSCH格式2)的传输从子帧n+m+Koffset1开始,那么不要求该终端设备在子帧n+k到子帧n+m+Koffset1-1中间的任意子帧上监听下行控制信道候选;或
对于TDD,如果对应的携带HARQ-ACK信息的第一上行信道(例如对应NPUSCH格式2)的传输结束位置在子帧n+m+Koffset1,那么不要求该终端设备在子帧n+k到子帧n+m+Koffset1-1中间的任意子帧上监听下行控制信道候选。
在一些实施例中,所述第二偏移值与Koffset2对应。例如,第二偏移值为Koffset2。再如,Koffset2是根据第二偏移值对应的时间间隔得到的以时间单元例如子帧为单位的数值。
在一些实施例中,基于所述第一偏移值和所述第二偏移值确定是否监听下行授权和下行共享信道对应的HARQ-ACK反馈之间的时间单元上的控制信道候选。
在一些实现方式中,如果终端设备收到的携带第一下行授权(例如对应DCI格式N1)的第一下行控制信道的结束位置在子帧n,且该第一下行授权对应的第一下行共享信道的传输从子帧n+k+Koffset2开始:
对于FDD,如果对应的携带HARQ-ACK信息的第一上行信道(例如对应NPUSCH格式2)的传输从子帧n+m+Koffset1开始,那么不要求该终端设备在子帧n+k+Koffset2到子帧n+m+Koffset1-1中间的任意子帧上监听下行控制信道候选;或
对于TDD,如果对应的携带HARQ-ACK信息的第一上行信道(例如对应NPUSCH格式2)的传输结束位置在子帧n+m+Koffset1,那么不要求该终端设备在子帧n+k+Koffset2到子帧n+m+Koffset1-1中间的任意子帧上监听下行控制信道候选。
在一些实施例中,基于所述第二偏移值确定是否监听下行授权和下行共享信道之间的时间单元上的控制信道候选。
在一些实施例中,如果终端设备收到的携带第一下行授权(例如对应DCI格式N1或N2)的第 一下行控制信道的结束位置在子帧n,且如果第一下行共享信道的传输从子帧n+k+Koffset2开始,那么不要求该终端设备在子帧n+k+Koffset2-2到子帧n+k+Koffset2-1中间的任意子帧上监听下行控制信道候选。可选地,该实施例应用于UE-specific搜索空间中的下行控制信道候选监听且该终端设备被配置两个HARQ进程。
在一些实施例中,如果终端设备收到的携带第一下行授权(例如对应DCI格式N1或N2)的第一下行控制信道的结束位置在子帧n,且如果该第一下行授权对应的第一下行共享信道的传输从子帧n+k+Koffset2开始,那么不要求该终端设备在子帧n+1到子帧n+k+Koffset2-1中间的任意子帧上监听下行控制信道候选。
在一些实现方式中,针对下行授权和下行共享信道之间的下行控制信道候选的监听,对于UE-specific搜索空间,如果终端设备被配置两个HARQ进程:
如果终端设备收到的携带第一下行授权(例如对应DCI格式N1或N2)的第一下行控制信道的结束位置在子帧n,且如果第一下行共享信道的传输从子帧n+k+Koffset2开始,那么不要求该终端设备在子帧n+k+Koffset2-2到子帧n+k+Koffset2-1中间的任意子帧上监听下行控制信道候选。
否则:
如果终端设备收到的携带第一下行授权(例如对应DCI格式N1或N2)的第一下行控制信道的结束位置在子帧n,且如果该第一下行授权对应的第一下行共享信道的传输从子帧n+k+Koffset2开始,那么不要求该终端设备在子帧n+1到子帧n+k+Koffset2-1中间的任意子帧上监听下行控制信道候选。
在一些实施例中,在上行信道传输的上行间隔(UL gap)期间,不要求终端设备监听下行控制信道搜索空间中的下行控制信道候选。其中,所述上行间隔的长度大于或等于第一偏移值。
图12是本申请实施例提供的终端设备不检测控制信道候选的子帧的一示意图。如图12所示,假设终端设备被配置两个HARQ进程,对于UE-specific搜索空间:
如果终端设备收到的携带第一上行授权(例如对应DCI格式N0)的第一下行控制信道的结束位置在子帧n,且如果该第一上行授权调度的(例如对应NPUSCH格式1)的第一上行共享信道的传输从子帧n+k+Koffset1开始,那么:不要求该终端设备在子帧n+k+Koffset1-2到子帧n+k+Koffset1-1中间的任意子帧上监听下行控制信道候选;和/或,该终端设备不期望在子帧n+k+Koffset1-2之前接收到携带第二上行授权(例如对应DCI格式N0)的第二下行控制信道,其中,该第二上行授权调度的(例如对应NPUSCH格式1)的第二上行共享信道的传输结束位置晚于子帧n+k+Koffset1+255。
图13是本申请实施例提供的终端设备不检测控制信道候选的子帧的另一示意图。如图13所示,如果终端设备发送第一上行信道(例如上行共享信道NPUSCH)的结束位置在子帧n,那么不要求该终端设备在子帧n+1到子帧n+Koffset3+3中间的任意子帧上监听下行控制信道候选。其中,Koffset3是根据Koffset1确定的。
在一些实施例中,终端设备为IoT-NTN系统中的终端设备。例如该终端设备为NB-IoT-NTN系统中的终端设备或为eMTC-NTN系统中的终端设备。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
下文结合图14至图16,详细描述本申请的装置实施例。
图14是本申请实施例的终端设备300的示意性框图。
如图14所示,所述终端设备300可包括:
通信单元310,用于基于第一偏移值、第二偏移值和混合自动重传请求确认HARQ-ACK反馈状态中的至少一项监听控制信道候选;其中,所述第一偏移值对应的时间间隔关联终端设备的定时提前TA值或往返传输时间RTT,所述第二偏移值对应的时间间隔关联终端设备的同步信息获取。
在一些实施例中,所述第一偏移值用于确定上行授权和物理上行共享信道PUSCH之间的调度时 序;和/或,所述第一偏移值用于确定物理下行共享信道PDSCH和混合自动重传请求确认HARQ-ACK反馈之间的调度时序。
在一些实施例中,所述第一偏移值是预定义的;或,
所述第一偏移值是网络设备通过系统消息、无线资源控制RRC、媒体接入控制控制元素MAC CE、下行控制信息DCI中的至少一项配置的。
在一些实施例中,所述第一偏移值的单位为时间单元或绝对值。
在一些实施例中,所述第二偏移值用于确定下行授权和物理下行共享信道PDSCH之间的调度时序。
在一些实施例中,所述第二偏移值是预定义的;或,
所述第二偏移值是网络设备通过系统消息、无线资源控制RRC、媒体接入控制控制元素MAC CE、下行控制信息DCI中的至少一项配置的。
在一些实施例中,所述第二偏移值的单位为时间单元或绝对值。
在一些实施例中,所述HARQ-ACK反馈状态包括物理下行共享信道PDSCH的HARQ-ACK反馈被去使能;或所述HARQ-ACK反馈状态包括PDSCH对应的HARQ-ACK处于不反馈状态。
在一些实施例中,若第一HARQ进程被配置HARQ-ACK反馈去使能,则使用所述第一HARQ进程传输的PDSCH对应的HARQ-ACK不反馈。
在一些实施例中,所述处理单元310具体用于:
若第一HARQ进程对应HARQ-ACK反馈去使能状态,所述终端设备收到的对应所述第一HARQ进程的第一下行共享信道的结束位置在时间单元n,则所述终端设备不期望在从时间单元n+1到时间单元n+k中的时间单元上监听控制信道候选,其中,k为非负整数。
在一些实施例中,所述处理单元310具体用于:
若第一HARQ进程对应HARQ-ACK反馈去使能状态,终端设备收到的对应所述第一HARQ进程的第一下行共享信道的结束位置在子帧n,则所述终端设备不期望在从子帧n+1到子帧n+12中的任意子帧上监听控制信道候选。
在一些实施例中,所述处理单元310具体用于:
基于所述第一偏移值确定是否监听上行授权和上行共享信道之间的时间单元上的控制信道候选;
基于所述第一偏移值确定是否监听物理下行控制信道PDCCH命令和随机接入信道之间的时间单元上的控制信道候选;
基于所述第一偏移值确定是否监听上行共享信道或上行控制信道传输后的时间单元上的控制信道候选;
基于所述第一偏移值确定是否监听随机接入信道传输后的时间单元上的控制信道候选;
基于所述第一偏移值确定是否监听下行授权和下行共享信道对应的HARQ-ACK反馈之间的时间单元上的控制信道候选;
基于所述第一偏移值和所述第二偏移值确定是否监听下行授权和下行共享信道对应的HARQ-ACK反馈之间的时间单元上的控制信道候选;
基于所述第二偏移值确定是否监听下行授权和下行共享信道之间的时间单元上的控制信道候选。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图14所示的终端设备300可以对应于执行本申请实施例的方法200中的相应主体,并且终端设备300中的各个单元的前述和其它操作和/或功能分别为了实现图11中的各个方法中的相应流程,为了简洁,在此不再赘述。
上文中结合附图从功能模块的角度描述了本申请实施例的通信设备。应理解,该功能模块可以通过硬件形式实现,也可以通过软件形式的指令实现,还可以通过硬件和软件模块组合实现。
具体地,本申请实施例中的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路和/或软件形式的指令完成,结合本申请实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。
可选地,软件模块可以位于随机存储器,闪存、只读存储器、可编程只读存储器、电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法实施例中的步骤。
例如,上文涉及的处理单元和通信单元可分别由处理器和收发器实现。
图15是本申请实施例的终端设备400示意性结构图。
如图15所示,所述终端设备400可包括处理器410。
其中,处理器410可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
请继续参见图15,终端设备400还可以包括存储器420。
其中,该存储器420可以用于存储指示信息,还可以用于存储处理器410执行的代码、指令等。其中,处理器410可以从存储器420中调用并运行计算机程序,以实现本申请实施例中的方法。存储器420可以是独立于处理器410的一个单独的器件,也可以集成在处理器410中。
请继续参见图15,终端设备400还可以包括收发器430。
其中,处理器410可以控制该收发器430与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。收发器430可以包括发射机和接收机。收发器430还可以进一步包括天线,天线的数量可以为一个或多个。
应当理解,该终端设备400中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
还应理解,该终端设备400可为本申请实施例的终端设备,并且该终端设备400可以实现本申请实施例的各个方法中由终端设备实现的相应流程,也就是说,本申请实施例的终端设备400可对应于本申请实施例中的终端设备300,并可以对应于执行根据本申请实施例的方法200中的相应主体,为了简洁,在此不再赘述。
此外,本申请实施例中还提供了一种芯片。
例如,芯片可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。所述芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。可选地,该芯片可应用到各种通信设备中,使得安装有该芯片的通信设备能够执行本申请实施例中的公开的各方法、步骤及逻辑框图。
图16是根据本申请实施例的芯片500的示意性结构图。
如图16所示,所述芯片500包括处理器510。
其中,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
请继续参见图16,所述芯片500还可以包括存储器520。
其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。该存储器520可以用于存储指示信息,还可以用于存储处理器510执行的代码、指令等。存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
请继续参见图16,所述芯片500还可以包括输入接口530。
其中,处理器510可以控制该输入接口530与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
请继续参见图16,所述芯片500还可以包括输出接口540。
其中,处理器510可以控制该输出接口540与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
应理解,所述芯片500可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,也可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
还应理解,该芯片500中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
上文涉及的处理器可以包括但不限于:
通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等等。
所述处理器可以用于实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上文涉及的存储器包括但不限于:
易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、 动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的存储器旨在包括这些和其它任意适合类型的存储器。
本申请实施例中还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行方法实施例的方法。可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序产品,包括计算机程序。可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序。当该计算机程序被计算机执行时,使得计算机可以执行方法实施例的方法。可选的,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
此外,本申请实施例还提供了一种通信系统,所述通信系统可以包括上述涉及的终端设备和网络设备,以形成如图1所示的通信系统,为了简洁,在此不再赘述。需要说明的是,本文中的术语“系统”等也可以称为“网络管理架构”或者“网络系统”等。
还应当理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (30)

  1. 一种无线通信方法,其特征在于,包括:
    基于第一偏移值、第二偏移值和混合自动重传请求确认HARQ-ACK反馈状态中的至少一项监听控制信道候选;其中,所述第一偏移值对应的时间间隔关联终端设备的定时提前TA值或往返传输时间RTT,所述第二偏移值对应的时间间隔关联终端设备的同步信息获取。
  2. 根据权利要求1所述的方法,其特征在于,所述第一偏移值用于确定上行授权和物理上行共享信道PUSCH之间的调度时序;和/或,所述第一偏移值用于确定物理下行共享信道PDSCH和混合自动重传请求确认HARQ-ACK反馈之间的调度时序。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一偏移值是预定义的;或,
    所述第一偏移值是网络设备通过系统消息、无线资源控制RRC、媒体接入控制控制元素MAC CE、下行控制信息DCI中的至少一项配置的。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一偏移值的单位为时间单元或绝对值。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第二偏移值用于确定下行授权和物理下行共享信道PDSCH之间的调度时序。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第二偏移值是预定义的;或,
    所述第二偏移值是网络设备通过系统消息、无线资源控制RRC、媒体接入控制控制元素MAC CE、下行控制信息DCI中的至少一项配置的。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第二偏移值的单位为时间单元或绝对值。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述HARQ-ACK反馈状态包括物理下行共享信道PDSCH的HARQ-ACK反馈被去使能;或所述HARQ-ACK反馈状态包括PDSCH对应的HARQ-ACK处于不反馈状态。
  9. 根据权利要求8所述的方法,其特征在于,若第一HARQ进程被配置HARQ-ACK反馈去使能,则使用所述第一HARQ进程传输的PDSCH对应的HARQ-ACK不反馈。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述基于第一偏移值、第二偏移值和混合自动重传请求确认HARQ-ACK反馈状态中的至少一项监听控制信道候选,包括:
    若第一HARQ进程对应HARQ-ACK反馈去使能状态,所述终端设备收到的对应所述第一HARQ进程的第一下行共享信道的结束位置在时间单元n,则所述终端设备不期望在从时间单元n+1到时间单元n+k中的时间单元上监听控制信道候选,其中,k为非负整数。
  11. 根据权利要求10所述的方法,其特征在于,所述时间单元包括子帧,所述k取值为12;所述基于第一偏移值、第二偏移值和混合自动重传请求确认HARQ-ACK反馈状态中的至少一项监听控制信道候选,包括:
    若第一HARQ进程对应HARQ-ACK反馈去使能状态,终端设备收到的对应所述第一HARQ进程的第一下行共享信道的结束位置在子帧n,则所述终端设备不期望在从子帧n+1到子帧n+12中的任意子帧上监听控制信道候选。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述基于第一偏移值、第二偏移值和混合自动重传请求确认HARQ-ACK反馈状态中的至少一项监听控制信道候选,包括:
    基于所述第一偏移值确定是否监听上行授权和上行共享信道之间的时间单元上的控制信道候选;
    基于所述第一偏移值确定是否监听物理下行控制信道PDCCH命令和随机接入信道之间的时间单元上的控制信道候选;
    基于所述第一偏移值确定是否监听上行共享信道或上行控制信道传输后的时间单元上的控制信道候选;
    基于所述第一偏移值确定是否监听随机接入信道传输后的时间单元上的控制信道候选;
    基于所述第一偏移值确定是否监听下行授权和下行共享信道对应的HARQ-ACK反馈之间的时间单元上的控制信道候选;
    基于所述第一偏移值和所述第二偏移值确定是否监听下行授权和下行共享信道对应的HARQ-ACK反馈之间的时间单元上的控制信道候选;
    基于所述第二偏移值确定是否监听下行授权和下行共享信道之间的时间单元上的控制信道候选。
  13. 一种终端设备,其特征在于,包括:
    通信单元,用于基于第一偏移值、第二偏移值和混合自动重传请求确认HARQ-ACK反馈状态中的至少一项监听控制信道候选;其中,所述第一偏移值对应的时间间隔关联终端设备的定时提前TA 值或往返传输时间RTT,所述第二偏移值对应的时间间隔关联终端设备的同步信息获取。
  14. 根据权利要求13所述的终端设备,其特征在于,所述第一偏移值用于确定上行授权和物理上行共享信道PUSCH之间的调度时序;和/或,所述第一偏移值用于确定物理下行共享信道PDSCH和混合自动重传请求确认HARQ-ACK反馈之间的调度时序。
  15. 根据权利要求13或14所述的终端设备,其特征在于,所述第一偏移值是预定义的;或,
    所述第一偏移值是网络设备通过系统消息、无线资源控制RRC、媒体接入控制控制元素MAC CE、下行控制信息DCI中的至少一项配置的。
  16. 根据权利要求13至15中任一项所述的终端设备,其特征在于,所述第一偏移值的单位为时间单元或绝对值。
  17. 根据权利要求13至16中任一项所述的终端设备,其特征在于,所述第二偏移值用于确定下行授权和物理下行共享信道PDSCH之间的调度时序。
  18. 根据权利要求13至17中任一项所述的终端设备,其特征在于,所述第二偏移值是预定义的;或,
    所述第二偏移值是网络设备通过系统消息、无线资源控制RRC、媒体接入控制控制元素MAC CE、下行控制信息DCI中的至少一项配置的。
  19. 根据权利要求13至18中任一项所述的终端设备,其特征在于,所述第二偏移值的单位为时间单元或绝对值。
  20. 根据权利要求13至19中任一项所述的终端设备,其特征在于,所述HARQ-ACK反馈状态包括物理下行共享信道PDSCH的HARQ-ACK反馈被去使能;或所述HARQ-ACK反馈状态包括PDSCH对应的HARQ-ACK处于不反馈状态。
  21. 根据权利要求20所述的终端设备,其特征在于,若第一HARQ进程被配置HARQ-ACK反馈去使能,则使用所述第一HARQ进程传输的PDSCH对应的HARQ-ACK不反馈。
  22. 根据权利要求13至21中任一项所述的终端设备,其特征在于,所述通信单元具体用于:
    若第一HARQ进程对应HARQ-ACK反馈去使能状态,所述终端设备收到的对应所述第一HARQ进程的第一下行共享信道的结束位置在时间单元n,则所述终端设备不期望在从时间单元n+1到时间单元n+k中的时间单元上监听控制信道候选,其中,k为非负整数。
  23. 根据权利要求22所述的终端设备,其特征在于,所述通信单元具体用于:
    若第一HARQ进程对应HARQ-ACK反馈去使能状态,终端设备收到的对应所述第一HARQ进程的第一下行共享信道的结束位置在子帧n,则所述终端设备不期望在从子帧n+1到子帧n+12中的任意子帧上监听控制信道候选。
  24. 根据权利要求13至23中任一项所述的终端设备,其特征在于,所述通信单元具体用于:
    基于所述第一偏移值确定是否监听上行授权和上行共享信道之间的时间单元上的控制信道候选;
    基于所述第一偏移值确定是否监听物理下行控制信道PDCCH命令和随机接入信道之间的时间单元上的控制信道候选;
    基于所述第一偏移值确定是否监听上行共享信道或上行控制信道传输后的时间单元上的控制信道候选;
    基于所述第一偏移值确定是否监听随机接入信道传输后的时间单元上的控制信道候选;
    基于所述第一偏移值确定是否监听下行授权和下行共享信道对应的HARQ-ACK反馈之间的时间单元上的控制信道候选;
    基于所述第一偏移值和所述第二偏移值确定是否监听下行授权和下行共享信道对应的HARQ-ACK反馈之间的时间单元上的控制信道候选;
    基于所述第二偏移值确定是否监听下行授权和下行共享信道之间的时间单元上的控制信道候选。
  25. 一种终端设备,其特征在于,包括:
    通信单元,用于基于第一偏移值、第二偏移值和混合自动重传请求确认HARQ-ACK反馈状态中的至少一项监听控制信道候选;其中,所述第一偏移值对应的时间间隔关联终端设备的定时提前TA值或往返传输时间RTT,所述第二偏移值对应的时间间隔关联终端设备的同步信息获取。
  26. 一种终端设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求1至12中任一项所述的方法。
  27. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至12中任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至12中任一项所述的方法。
  29. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至12中任一项所述的方法。
  30. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至23中任一项所述的方法。
PCT/CN2021/085471 2021-04-02 2021-04-02 无线通信方法和终端设备 WO2022205482A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP21934137.7A EP4319002A1 (en) 2021-04-02 2021-04-02 Wireless communication method and terminal device
JP2023558878A JP2024512073A (ja) 2021-04-02 2021-04-02 無線通信方法及び端末機器
PCT/CN2021/085471 WO2022205482A1 (zh) 2021-04-02 2021-04-02 无线通信方法和终端设备
KR1020237037461A KR20230165806A (ko) 2021-04-02 2021-04-02 무선 통신 방법 및 단말 장치
CN202180096604.9A CN117178506A (zh) 2021-04-02 2021-04-02 无线通信方法和终端设备
US18/478,603 US11894930B1 (en) 2021-04-02 2023-09-29 Wireless communication method and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/085471 WO2022205482A1 (zh) 2021-04-02 2021-04-02 无线通信方法和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/478,603 Continuation US11894930B1 (en) 2021-04-02 2023-09-29 Wireless communication method and terminal device

Publications (1)

Publication Number Publication Date
WO2022205482A1 true WO2022205482A1 (zh) 2022-10-06

Family

ID=83455512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085471 WO2022205482A1 (zh) 2021-04-02 2021-04-02 无线通信方法和终端设备

Country Status (6)

Country Link
US (1) US11894930B1 (zh)
EP (1) EP4319002A1 (zh)
JP (1) JP2024512073A (zh)
KR (1) KR20230165806A (zh)
CN (1) CN117178506A (zh)
WO (1) WO2022205482A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802772A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 一种信息发送的方法及设备
CN111800868A (zh) * 2019-04-02 2020-10-20 华为技术有限公司 通信方法及装置
CN111865506A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 半静态码本生成的方法和通信装置
CN112217619A (zh) * 2019-07-12 2021-01-12 大唐移动通信设备有限公司 混合自动重传请求确认码本的确定方法、终端及网络设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102376115B1 (ko) 2017-08-10 2022-03-18 삼성전자 주식회사 차세대 이동 통신 시스템에서 pdcp 버전 변경에 따른 재설정 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802772A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 一种信息发送的方法及设备
CN111800868A (zh) * 2019-04-02 2020-10-20 华为技术有限公司 通信方法及装置
CN111865506A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 半静态码本生成的方法和通信装置
CN112217619A (zh) * 2019-07-12 2021-01-12 大唐移动通信设备有限公司 混合自动重传请求确认码本的确定方法、终端及网络设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On scheduling, HARQ, and DRX for NTN", 3GPP DRAFT; R2-2010168, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. E-Meeting; 20201102 - 20201113, 22 October 2020 (2020-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051942854 *
NOKIA, NOKIA SHANGHAI BELL: "Timing Advance, Random Access and DRX aspects in NTN", 3GPP DRAFT; R2-2007590, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051912263 *

Also Published As

Publication number Publication date
CN117178506A (zh) 2023-12-05
US11894930B1 (en) 2024-02-06
EP4319002A1 (en) 2024-02-07
JP2024512073A (ja) 2024-03-18
US20240031072A1 (en) 2024-01-25
KR20230165806A (ko) 2023-12-05

Similar Documents

Publication Publication Date Title
EP4038794B1 (en) Harq codebook construction with feedback enabling/disabling per harq process
WO2021155596A1 (zh) 信息指示方法、装置、设备、系统及存储介质
US20220240262A1 (en) Wireless communication method and device
WO2022056854A1 (zh) 无线通信方法和设备
CN114731238B (zh) 配置授权定时器的使用方法与装置、终端设备和网络设备
WO2022205223A1 (zh) 一种随机接入方法、电子设备及存储介质
WO2022205482A1 (zh) 无线通信方法和终端设备
WO2022077174A1 (zh) 无线通信方法和设备
US20240121762A1 (en) Wireless communication method, terminal device, and network device
WO2021068224A1 (zh) 无线通信方法、终端设备和网络设备
WO2021168651A1 (zh) 媒体接入控制层控制单元生效时间的确定方法及相关产品
WO2022099514A1 (zh) 无线通信方法和设备
WO2022205002A1 (zh) 传输定时的调整方法、确定方法和终端设备
WO2022120591A1 (zh) 一种随机接入方法、电子设备及存储介质
WO2023206010A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
US20230403068A1 (en) Method for time-domain parameter determination, terminal device, and network device
WO2023108642A1 (zh) 通信方法、装置、设备、芯片、存储介质、产品及程序
WO2023206419A1 (zh) 无线通信方法、终端设备和网络设备
WO2022006820A1 (en) Method and apparatus for determining timing advance value
WO2023050401A1 (zh) 无线通信方法和设备
CN115516795A (zh) 一种信息处理方法、终端设备及存储介质
CN115580380A (zh) 无线通信的方法及装置
CN117751637A (zh) 无线通信方法、终端设备和网络设备
CN116235439A (zh) 信息处理方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934137

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023558878

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237037461

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021934137

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021934137

Country of ref document: EP

Effective date: 20231102