WO2023108642A1 - 通信方法、装置、设备、芯片、存储介质、产品及程序 - Google Patents

通信方法、装置、设备、芯片、存储介质、产品及程序 Download PDF

Info

Publication number
WO2023108642A1
WO2023108642A1 PCT/CN2021/139287 CN2021139287W WO2023108642A1 WO 2023108642 A1 WO2023108642 A1 WO 2023108642A1 CN 2021139287 W CN2021139287 W CN 2021139287W WO 2023108642 A1 WO2023108642 A1 WO 2023108642A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdsch
harq
terminal device
ack feedback
harq process
Prior art date
Application number
PCT/CN2021/139287
Other languages
English (en)
French (fr)
Inventor
吴作敏
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/139287 priority Critical patent/WO2023108642A1/zh
Publication of WO2023108642A1 publication Critical patent/WO2023108642A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the embodiments of the present application relate to the technical field of communication, and specifically relate to a communication method, device, equipment, chip, storage medium, product, and program.
  • NTN Non-Terrestrial Networks
  • Embodiments of the present application provide a communication method, device, device, chip, storage medium, product, and program.
  • the embodiment of the present application provides a communication method, the method including:
  • the terminal device receives the first physical downlink shared channel PDSCH that the network device schedules the transmission of the first hybrid automatic repeat request HARQ process;
  • the terminal device does not expect to receive the second PDSCH scheduled by the network device for transmission by the first HARQ process within the first time range, or does not expect to receive the first physical downlink control channel PDCCH, wherein the The first PDCCH is used by the network device to schedule the first HARQ process to transmit the second PDSCH.
  • an embodiment of the present application provides a communication method, the method including:
  • the network device sends to the terminal device the first physical downlink shared channel PDSCH for scheduling the transmission of the first hybrid automatic repeat request HARQ process;
  • the network device does not expect to send the second PDSCH scheduling the transmission of the first HARQ process to the terminal device within the second time range, or does not expect to send the first physical downlink control channel PDCCH to the terminal device, Wherein, the first PDCCH is used by the network device to schedule the first HARQ process to transmit the second PDSCH.
  • an embodiment of the present application provides a communication device, and the communication device includes:
  • the transceiver unit is configured to receive the first physical downlink shared channel PDSCH that the network device schedules the transmission of the first hybrid automatic repeat request HARQ process;
  • the transceiver unit is further configured to not expect to receive the second PDSCH scheduled by the network device for transmission by the first HARQ process within the first time range, or to not expect to receive the first physical downlink control channel PDCCH, Wherein, the first PDCCH is used by the network device to schedule the first HARQ process to transmit the second PDSCH.
  • the embodiment of the present application provides a communication device, and the communication device includes:
  • the transceiver unit is configured to send to the terminal device the first physical downlink shared channel PDSCH that schedules the transmission of the first hybrid automatic repeat request HARQ process;
  • the transceiver unit is further configured to not expect to send the second PDSCH scheduling the transmission of the first HARQ process to the terminal device within the second time range, or not expect to send the first physical downlink to the terminal device A control channel PDCCH, wherein the first PDCCH is used to schedule the first HARQ process to transmit the second PDSCH.
  • the embodiment of the present application provides a terminal device, including: a processor and a memory, the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, and execute the first The communication method described in the aspect.
  • the embodiment of the present application provides a network device, including: a processor and a memory, the memory is used to store computer programs, the processor is used to invoke and run the computer programs stored in the memory, and execute the second The communication method described in the aspect.
  • the embodiment of the present application provides a chip, including: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the communication method as described in the first aspect, or, Make the device installed with the chip execute the communication method as described in the second aspect.
  • the embodiment of the present application provides a computer storage medium for storing a computer program, the computer program enables the terminal device to execute the communication method described in the first aspect, or the computer program enables the network device to execute the communication method as described in the first aspect The communication method described in the second aspect.
  • the embodiment of the present application provides a computer program product, including computer program instructions, the computer program instructions cause the terminal device to execute the communication method as described in the first aspect, or, the computer program instructions enable the network device to execute The communication method as described in the second aspect.
  • the embodiment of the present application provides a computer program, the computer program enables the terminal device to execute the communication method described in the first aspect, or the computer program enables the network device to execute the communication method described in the second aspect method.
  • the terminal device receives the first Physical Downlink Shared Channel (PDSCH) transmitted by the first Hybrid Automatic Repeat Request HARQ process scheduled by the network device; the terminal device does not expect to receive the PDSCH within the first time range.
  • the network device schedules the second PDSCH transmitted by the first HARQ process, or does not expect to receive the first physical downlink control channel PDCCH, where the first PDCCH is used by the network device to schedule the transmission of the first HARQ process Second PDSCH.
  • the scheduling of the PDSCH can be restricted, so as to avoid the out-of-order situation when the terminal equipment receives the PDSCH.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an NTN scenario based on a transparent transmission forwarding satellite provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of an NTN scenario based on regenerative forwarding satellites provided in an embodiment of the present application
  • FIG. 6 is a schematic diagram of transmission of HARQ-ACK feedback information provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of transmission of another HARQ-ACK feedback information provided by the embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • Fig. 9 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a scheduling restriction of a first HARQ process provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another scheduling restriction of the first HARQ process provided by the embodiment of the present application.
  • FIG. 12 is a schematic diagram of another scheduling restriction of the first HARQ process provided by the embodiment of the present application.
  • FIG. 13 is a schematic diagram of another scheduling restriction of the first HARQ process provided by the embodiment of the present application.
  • FIG. 14 is a schematic diagram of the structural composition of a communication device provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of the structural composition of another communication device provided by the embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • a communication system 100 may include a terminal device 110 and a network device 120 .
  • the network device 120 may communicate with the terminal device 110 through an air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120 .
  • the embodiment of the present application is only described by using the communication system 100 as an example, but the embodiment of the present application is not limited thereto. That is to say, the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: Long Term Evolution (Long Term Evolution, LTE) system, LTE Time Division Duplex (Time Division Duplex, TDD), Universal Mobile Communication System (Universal Mobile Telecommunication System, UMTS), Internet of Things (Internet of Things, IoT) system, Narrow Band Internet of Things (NB-IoT) system, enhanced Machine-Type Communications (eMTC) system, 5G communication system (also known as New Radio (NR) communication system), or future communication systems (such as 6G, 7G and other communication systems), etc.
  • LTE Long Term Evolution
  • LTE Time Division Duplex Time Division Duplex
  • TDD Time Division Duplex
  • Universal Mobile Telecommunication System Universal Mobile Telecommunication System
  • UMTS Universal Mobile Communication System
  • Internet of Things Internet of Things
  • NB-IoT Narrow Band Internet of Things
  • the network device 120 may be an access network device that communicates with the terminal device 110 .
  • the access network device can provide communication coverage for a specific geographical area, and can communicate with terminal devices 110 located in the coverage area.
  • the terminal equipment in this application may be referred to as user equipment (User Equipment, UE), mobile station (Mobile Station, MS), mobile terminal (Mobile Terminal, MT), subscriber unit, subscriber station, mobile station, remote station, remote Terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • UE User Equipment
  • MS Mobile Station
  • MT mobile terminal
  • subscriber unit subscriber station, mobile station, remote station, remote Terminal
  • mobile device user terminal, terminal, wireless communication device, user agent or user device.
  • the terminal equipment may include one or a combination of at least two of the following: Internet of Things (Internet of Things, IoT) equipment, satellite terminal, wireless local loop (Wireless Local Loop, WLL) station, personal digital processing (Personal Digital Assistant, PDA ), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, servers, mobile phones, tablet computers (Pad), computers with wireless transceiver capabilities, palmtop computers, desktop computers, personal Digital assistants, portable media players, smart speakers, navigation devices, smart watches, smart glasses, smart necklaces and other wearable devices, pedometers, digital TVs, virtual reality (Virtual Reality, VR) terminal equipment, augmented reality (Augmented Reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, and smart grids Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and vehicles, vehicle-mounted equipment, vehicle-mounted modules, wireless Modem (modem), handheld device (handheld),
  • the network device 120 in this embodiment of the present application may include an access network device 121 and/or a core network device 122 .
  • the access network device 121 may include one or a combination of at least two of the following: an evolved base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (Long Term Evolution, LTE) system, a next-generation wireless access network (Next Generation Radio Access Network, NG RAN) equipment, base station (gNB), small station, micro station in NR system, wireless controller in Cloud Radio Access Network (Cloud Radio Access Network, CRAN), wireless fidelity (Wireless- Fidelity, Wi-Fi) access point, transmission reception point (transmission reception point, TRP), relay station, access point, vehicle equipment, wearable device, hub, switch, bridge, router, future evolution of public land mobile Network equipment in the network (Public Land Mobile Network, PLMN), etc.
  • Evolutional Node B, eNB or eNodeB in a Long Term Evolution (Long Term Evolution, LTE) system
  • NG RAN Next Generation Radio Access Network
  • CRAN Cloud Radio Access Network
  • Wi-Fi Wireless-
  • the core network device 122 may be a 5G core network (5G Core, 5GC) device, and the core network device 122 may include one or a combination of at least two of the following: access and mobility management function (Access and Mobility Management Function, AMF), Authentication Server Function (AUSF), User Plane Function (UPF), Session Management Function (SMF), Location Management Function (LMF).
  • AMF Access and Mobility Management Function
  • AUSF Authentication Server Function
  • UPF User Plane Function
  • SMF Session Management Function
  • LMF Location Management Function
  • the core network device may also be an Evolved Packet Core (EPC) device of an LTE network, for example, a data gateway (Session Management Function+Core Packet Gateway, SMF+ PGW-C) equipment.
  • SMF+PGW-C can realize the functions of SMF and PGW-C at the same time.
  • the above-mentioned core network device 122 may also be called by other names, or a new network entity may be formed
  • the terminal device 110 may be any terminal device, including but not limited to a terminal device connected to the network device 120 or other terminal devices by wire or wirelessly.
  • the terminal device 110 can be used for device-to-device (Device to Device, D2D) communication.
  • D2D Device to Device
  • Various functional units in the communication system 100 may also establish a connection through a next generation network (next generation, NG) interface to implement communication.
  • NG next generation network
  • the terminal device establishes an air interface connection with the access network device through the NR interface to transmit user plane data and control plane signaling; the terminal device can establish a control plane signaling connection with the AMF through the NG interface 1 (N1 for short); access Network equipment such as the next generation wireless access base station (gNB), can establish a user plane data connection with UPF through NG interface 3 (abbreviated as N3); access network equipment can establish control plane signaling with AMF through NG interface 2 (abbreviated as N2) connection; UPF can establish a control plane signaling connection with SMF through NG interface 4 (abbreviated as N4); UPF can exchange user plane data with the data network through NG interface 6 (abbreviated as N6); AMF can communicate with SMF through NG interface 11 (abbreviated as N11) The SMF establishes a control plane signaling connection; the SMF may establish a control plane signaling connection with the PCF through an NG interface 7 (N7 for short).
  • gNB next generation wireless access base station
  • Fig. 1 exemplarily shows a base station, a core network device and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and the coverage of each base station may include other numbers terminal device, which is not limited in the embodiment of this application.
  • NTN Non Terrestrial Network
  • satellite communication is not restricted by the user's region. For example, general land communication cannot cover areas such as oceans, mountains, deserts, etc. that cannot be equipped with communication equipment or are not covered by communication due to sparse population.
  • satellite communication due to a Satellites can cover a large area of the ground, and satellites can orbit the earth, so theoretically every corner of the earth can be covered by satellite communications.
  • satellite communication has great social value.
  • Satellite communication can be covered at a lower cost in remote mountainous areas, poor and backward countries or regions, so that people in these regions can enjoy advanced voice communication and mobile Internet technology, which is conducive to narrowing the digital gap with developed regions and promoting development of these areas.
  • the distance of satellite communication is long, and the cost of communication does not increase significantly with the increase of communication distance; finally, the stability of satellite communication is high, and it is not limited by natural disasters.
  • NTN technology can be combined with various communication systems.
  • NTN technology can be combined with NR system to form NR-NTN system.
  • NTN technology can be combined with the Internet of Things (IoT) system to form an IoT-NTN system.
  • IoT-NTN system may include a NB-IoT-NTN system and an eMTC-NTN system.
  • FIG. 2 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • a terminal device 201 and a satellite 202 are included, and wireless communication can be performed between the terminal device 201 and the satellite 202 .
  • the network formed between the terminal device 201 and the satellite 202 may also be referred to as NTN.
  • the satellite 202 may function as a base station, and the terminal device 201 and the satellite 202 may communicate directly. Under the system architecture, the satellite 202 can be called a network device.
  • the communication system may include multiple network devices 202, and the coverage of each network device 202 may include other numbers of terminal devices, which is not limited in this embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • FIG. 3 it includes a terminal device 301 , a satellite 302 and a base station 303 , wireless communication can be performed between the terminal device 301 and the satellite 302 , and communication can be performed between the satellite 302 and the base station 303 .
  • the network formed among the terminal equipment 301, the satellite 302 and the base station 303 may also be referred to as NTN.
  • the satellite 302 may not have the function of a base station, and the communication between the terminal device 301 and the base station 303 needs to be relayed through the satellite 302 .
  • the base station 303 can be called a network device.
  • the communication system may include multiple network devices 303, and the coverage of each network device 303 may include other numbers of terminal devices, which is not limited in this embodiment of the present application.
  • the network device 303 may be the network device 120 in FIG. 1 .
  • satellite 1102 or satellite 302 includes but is not limited to:
  • Satellites can use multiple beams to cover the ground. For example, a satellite can form dozens or even hundreds of beams to cover the ground. In other words, a satellite beam can cover a ground area with a diameter of tens to hundreds of kilometers to ensure satellite coverage and improve the system capacity of the entire satellite communication system.
  • the altitude of LEO satellites can range from 500 kilometers to 1500 kilometers, and the corresponding orbital period can be about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users can generally be less than 20 milliseconds, and the maximum satellite visible time It can be 20 minutes.
  • the signal propagation distance of the LEO satellite is short and the link loss is small, and the requirement for the transmission power of the user terminal is not high.
  • the orbital height of GEO satellites can be 35786km, the rotation period around the earth can be 24 hours, and the signal propagation delay of single-hop communication between users can generally be 250 milliseconds.
  • satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. ground area.
  • FIG. 1 to FIG. 3 are only illustrations of systems applicable to this application, and of course, the method shown in the embodiment of this application may also be applicable to other systems.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B can mean: A exists alone, A and B exist simultaneously, and there exists alone B these three situations.
  • the character “/” in this article generally indicates that the contextual objects are an "or” relationship.
  • the "indication” mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • A indicates B, which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the "correspondence" mentioned in the embodiments of the present application may mean that there is a direct correspondence or an indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated. , configuration and configured relationship.
  • pre-defined may refer to defined in the protocol.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which is not limited in this application .
  • Satellites can be divided into two types based on the functions they provide: transparent payload and regenerative payload.
  • transparent transponder satellites it only provides the functions of radio frequency filtering, frequency conversion and amplification, and only provides transparent transponder of signals without changing the waveform signal it transponders.
  • regenerative transponder satellites in addition to providing radio frequency filtering, frequency conversion and amplification functions, it can also provide demodulation/decoding, routing/conversion, coding/modulation functions, which have part or all of the functions of the base station.
  • one or more gateways may be included for communication between satellites and terminals.
  • FIG. 4 and FIG. 5 respectively show schematic diagrams of NTN scenarios based on transparent transmission forwarding satellites and regenerative forwarding satellites.
  • the communication between the gateway and the satellite is through the feeder link (Feeder link), and the communication between the satellite and the terminal can be through the service link (service link).
  • the satellites communicate with each other through the InterStar link, the gateway and the satellite communicate with each other through the feeder link, and the communication between the satellite and the terminal They can communicate through the service link (service link).
  • Each serving cell corresponding to the terminal device has its own Hybrid Automatic Repeat reQuest (HARQ) entity.
  • HARQ entity maintains a set of parallel downlink HARQ processes and a set of parallel uplink HARQ processes.
  • each HARQ process may correspond to a HARQ process ID.
  • the terminal device detects DCI according to the configured downlink control information (DCI) format 1_0, DCI format 1_1 or DCI format 1_2 and performs PDSCH decoding according to the scheduling of DCI.
  • DCI downlink control information
  • a terminal device does not expect to receive another PDSCH for a given HARQ process until after the expected transmission of a Hybrid Automatic Repeat reQuest–ACKnowledge (HARQ-ACK) for that HARQ process has ended.
  • HARQ-ACK Hybrid Automatic Repeat reQuest–ACKnowledge
  • the terminal device receives the first PDSCH scheduled by the network device for transmission by the first HARQ process, before the terminal device sends the first HARQ-ACK feedback information corresponding to the first PDSCH to the network device before the end of the transmission, the terminal The device does not expect to receive the second PDSCH that the network device schedules to transmit by the first HARQ process again.
  • the transmission timing at which the terminal device sends the first HARQ-ACK feedback information to the network device is determined according to at least one of the HARQ feedback timing set and the HARQ feedback timing value K1, wherein the HARQ feedback timing set may be a predetermined Assumed or configured by the network device, the HARQ feedback timing value K1 is a value in the HARQ feedback timing set.
  • FIG. 6 is a schematic diagram of the transmission of a kind of HARQ-ACK feedback information provided by the embodiment of the present application.
  • HARQ ID x corresponds to the first HARQ process
  • the terminal device receives the network equipment scheduling HARQ ID x corresponds to the first HARQ process
  • the HARQ-ACK feedback information corresponding to the first PDSCH is sent to the network device through the transmission sequence K1.
  • the time when the HARQ-ACK feedback information transmission is completed is the earliest time when HARQ ID x can be reused.
  • the terminal device can receive the network device scheduling HARQ ID x corresponding to the first time.
  • the second PDSCH transmitted by the HARQ process. It can be seen from Figure 6 that the time when the transmission of the HARQ-ACK feedback information is completed is the earliest time when the HARQ ID x can be reused.
  • the downlink HARQ process of the terminal device can be configured in two modes, and the two modes correspond to enabling or disabling HARQ-ACK feedback respectively.
  • a downlink HARQ process of a terminal device is configured with HARQ-ACK feedback disabled, for the transmission scheduled by the downlink (DownLink, DL) HARQ process, the terminal device may not feed back the HARQ-ACK corresponding to the downlink HARQ process.
  • ACK information In some embodiments of the present application, the downlink HARQ process that is configured to disable HARQ-ACK feedback is also referred to as the downlink HARQ process that disables HARQ feedback.
  • the downlink HARQ process configured with HARQ-ACK feedback disabled there are the following restrictions during scheduling:
  • the terminal device receives the first PDSCH transmitted by the first HARQ process scheduled by the network device, the terminal device does not expect to receive the first PDSCH scheduled by the network device again before the end of the first time duration.
  • a HARQ process transmits the first physical downlink control channel (Physical Downlink Control Channel, PDCCH) of the second PDSCH.
  • PDCCH Physical Downlink Control Channel
  • the length of the first duration is T_proc,1, and T_proc,1 is determined according to the value of PDSCH decoding time N1 (unit: symbol).
  • the first PDSCH may be a PDSCH or a group of slot-aggregated PDSCHs (slot-aggregated PDSCH).
  • the second PDSCH may be a PDSCH or a group of timeslot aggregated PDSCHs.
  • the transport blocks (Transport Block, TB) of the first PDSCH and the second PDSCH may be the same or different.
  • the processing capability 1 and the processing capability 2 of the UE correspond to different processing capabilities respectively, or in other words, the N1 value corresponding to the processing capability 1 of the UE is different from the N1 value corresponding to the processing capability 2 of the UE.
  • the value of N1 is different under different subcarrier intervals.
  • T proc,1 (N 1 +d 1,1 +d 2 )(2048+144) ⁇ 2 ⁇ ⁇ T C +T ext .
  • T proc,1 and T_proc,1 have the same understanding, and the calculation method of T_proc,1 may be stipulated in the protocol, or, according to the provisions of the evolved protocol, the embodiment of the present application does not make a calculation method for T_proc,1 limit.
  • Fig. 7 is a schematic diagram of transmission of another kind of HARQ-ACK feedback information provided by the embodiment of the present application.
  • HARQ ID x corresponds to the first HARQ process
  • the terminal device receives the network device scheduling HARQ ID x corresponding to the first HARQ process.
  • the time from the end of the first PDSCH reception to the end of the first duration, such as T_proc,1 is the earliest time that the DCI scheduling HARQ ID x can be received.
  • the terminal device may receive the first DCI, and determine that the HARQ ID x scheduled by the first DCI corresponds to the second PDSCH transmitted by the first HARQ process.
  • the HARQ-ACK feedback corresponding to the semi-persistent scheduling (Semi-Persistent Scheduling, SPS) configuration activation can be enabled by the network device through the Radio Resource Control (RRC) configuration.
  • RRC Radio Resource Control
  • the network device when the network device enables SPS configuration to activate corresponding HARQ-ACK feedback through RRC configuration, no matter whether the HARQ process corresponding to the first SPS PDSCH after SPS configuration is activated is configured as HARQ-ACK feedback enabling or When HARQ-ACK feedback is disabled, all terminal devices need to report the ACK or NACK information corresponding to the first SPS PDSCH after the SPS configuration is activated.
  • the network device when the network device does not enable the SPS configuration to activate the corresponding HARQ-ACK feedback through the RRC configuration, or the network device does not enable the SPS configuration to activate the corresponding HARQ-ACK feedback through the RRC configuration, when the SPS configuration is activated
  • the terminal device reports the ACK or NACK information corresponding to the first SPS PDSCH after the SPS configuration is activated; when the SPS configuration is activated after the first SPS PDSCH
  • the terminal device When the HARQ process corresponding to an SPS PDSCH is configured to disable HARQ-ACK feedback, the terminal device does not report the ACK or NACK information corresponding to the first SPS PDSCH after the SPS configuration is activated.
  • the terminal device When the SPS configuration is activated, for other SPS PDSCHs except the first SPS PDSCH, when the HARQ process corresponding to the SPS PDSCH is configured to enable HARQ-ACK feedback, the terminal device reports the ACK or NACK information corresponding to the SPS PDSCH ; When the HARQ process corresponding to the SPS PDSCH is configured to disable HARQ-ACK feedback, the terminal device does not report the ACK or NACK information corresponding to the SPS PDSCH.
  • Fig. 8 is a schematic flow chart of a communication method provided in the embodiment of the present application. As shown in Fig. 8, the method includes:
  • the terminal device receives the first physical downlink shared channel PDSCH that the network device schedules transmission of the first hybrid automatic repeat request (HARQ) process.
  • HARQ hybrid automatic repeat request
  • the first PDSCH is the first PDSCH after the semi-persistent scheduling (SPS) configuration is activated.
  • the first PDSCH may be activated by the PDCCH, or it may be said that the first PDSCH is the SPS PDSCH corresponding to or associated with the PDCCH.
  • the first PDSCH is PDCCH scheduled.
  • the first PDSCH is an SPS PDSCH not corresponding to a PDCCH.
  • the resource of the first PDSCH may be pre-configured, and the first PDSCH does not correspond to or is not associated with the PDCCH, or in other words, the first PDSCH is not the first PDSCH after the SPS configuration is activated.
  • the first PDSCH after SPS configuration activation can be the PDSCH corresponding to or associated with the PDCCH, and all other PDSCHs except the first PDSCH are not PDSCHs corresponding to or associated with the PDCCH , it can also be said that other PDSCHs except the first PDSCH are SPS PDSCHs that do not correspond to PDCCHs.
  • PDSCHs other than the first PDSCH may correspond to or be associated with RRC.
  • the first HARQ process may be configured to enable HARQ-ACK feedback, or the first HARQ process may be configured to disable HARQ-ACK feedback.
  • the HARQ-ACK may include ACK and negative acknowledgment (Negative ACKnowledgment, NACK), or the HARQ-ACK may include one of ACK and NACK.
  • NACK negative acknowledgment
  • the terminal device does not expect to receive the second PDSCH scheduled by the network device for transmission by the first HARQ process within the first time range, or does not expect to receive the first physical downlink control channel PDCCH, wherein, The first PDCCH is used by the network device to schedule the first HARQ process to transmit the second PDSCH.
  • an implementation of S803 may include: the terminal device does not monitor or cannot monitor or detect the second PDSCH or the first PDCCH sent by the network device within the first time range.
  • the network device when the network device sends the first PDSCH to the terminal device, the network device will not send the second PDSCH or the first PDCCH to the terminal device within the second time range, while the terminal device will not send the second PDSCH or the first PDCCH to the terminal device within the first time range.
  • the second PDSCH or the first PDCCH sent by the network device is not monitored or cannot be monitored or detected, thereby preventing the network device from scheduling the terminal device to the terminal device when the terminal device does not expect to receive the second PDSCH or the first PDCCH. the second PDSCH or the first PDCCH, resulting in a waste of resources.
  • an implementation of S803 may include: the terminal device may monitor or detect the first PDCCH sent by the network device within the first time range, but the terminal device may not receive the monitored or detected PDCCH.
  • the second PDSCH scheduled by the first PDCCH, or the terminal device may not respond or ignore the monitored or detected second PDSCH or the first PDCCH.
  • the network device when the network device sends the first PDSCH to the terminal device, the network device will also send the second PDSCH or the first PDCCH to the terminal device within the second time range, so that the terminal device sends the second PDSCH or the first PDCCH to the terminal device within the first time range. It can monitor or detect that the network device sends the second PDSCH or the first PDCCH, but the terminal device may not receive the second PDSCH, so there is no need to change the configuration of the network device sending the second PDSCH or the first PDCCH.
  • the terminal device receives the first Physical Downlink Shared Channel (PDSCH) transmitted by the first Hybrid Automatic Repeat Request HARQ process scheduled by the network device; the terminal device does not expect to receive the PDSCH within the first time range.
  • the network device schedules the second PDSCH transmitted by the first HARQ process, or does not expect to receive the first physical downlink control channel PDCCH, where the first PDCCH is used by the network device to schedule the transmission of the first HARQ process Second PDSCH.
  • the scheduling of the PDSCH can be restricted, so as to avoid the out-of-sequence situation when the terminal equipment receives the PDSCH.
  • the starting moment of the first time range is: the ending moment of the first PDSCH reception.
  • the end moment of the first time range is: the terminal device sends the first hybrid automatic repeat request corresponding to the first PDSCH to the network device - confirming the transmission of HARQ-ACK feedback information end moment.
  • the terminal device sends the first HARQ-ACK feedback information corresponding to the first PDSCH to the network device. That is, when the terminal device receives the first PDSCH, it sends the HARQ-ACK feedback information corresponding to the first PDSCH to the network device.
  • the transmission end time of the HARQ-ACK feedback information may be determined based on a timing advance (Timing Advance, TA).
  • Timing Advance TA
  • the terminal device may determine to feed back the first HARQ-ACK feedback information corresponding to the first PDSCH at a time interval of time n with a specified duration T0.
  • the terminal device may, at time n +T0-TA sends the HARQ-ACK feedback information corresponding to the first PDSCH.
  • the time n, the time at which time n intervals specify the duration T0, and time n+T0-TA here may refer to symbols, time slots, mini-slots, subframes or radio frames.
  • the transmission end time of the HARQ-ACK feedback information is determined based on the uplink timing of the terminal equipment.
  • the HARQ-ACK feedback information may be called HARQ-ACK feedback, HARQ feedback, or HARQ process feedback in other embodiments.
  • the first HARQ process is configured to disable HARQ-ACK feedback, or the first HARQ process is configured to enable HARQ-ACK feedback.
  • the start time of the first time range is: the end time of the first PDSCH reception
  • the first The end time of the time range is: the transmission end time of the first hybrid automatic repeat request-confirmation HARQ-ACK feedback information corresponding to the first PDSCH sent by the terminal device to the network device.
  • the start time of the first time range is: the end time of the first PDSCH reception
  • the end time of the first time range is: the terminal device sends
  • the network device sends the first hybrid automatic repeat request corresponding to the first PDSCH-acknowledging the transmission end time of the HARQ-ACK feedback information.
  • the start time of the first time range is: the end time of the first PDSCH reception
  • the first The end time of a time range is: the transmission end time of the first hybrid automatic repeat request-confirmation HARQ-ACK feedback information corresponding to the first PDSCH sent by the terminal device to the network device.
  • the start time of the first time range is: the end time of the first PDSCH reception
  • the end time of the first time range is: the terminal device Sending the first hybrid automatic repeat request corresponding to the first PDSCH-acknowledging the transmission end time of the HARQ-ACK feedback information to the network device.
  • HARQ-ACK feedback is enabled, or HARQ-ACK feedback is disabled, but also the terminal device needs to be considered: configured to enable SPS configuration to activate the corresponding HARQ-ACK ACK feedback, or if it is not configured to enable SPS configuration to activate the corresponding HARQ-ACK feedback.
  • the terminal device determines that it needs to send the first HARQ-ACK feedback information, in this way, the start time of the first time range is: the end time of the first PDSCH reception, and the end time of the first time range is: the terminal device sends the network device Sending the first hybrid automatic repeat request corresponding to the first PDSCH-acknowledging the transmission end time of the HARQ-ACK feedback information.
  • the terminal device if the terminal device is configured to enable semi-persistent scheduling (SPS) configuration to activate corresponding HARQ-ACK feedback, and the first HARQ process is configured to enable HARQ-ACK feedback, the first time range The start time is: the end time of receiving the first PDSCH, and the end time of the first time range is: the terminal device sends the first hybrid automatic repeat request corresponding to the first PDSCH to the network device - Confirm the transmission end time of the HARQ-ACK feedback information.
  • SPS semi-persistent scheduling
  • the terminal device if the terminal device is configured to enable SPS configuration to activate corresponding HARQ-ACK feedback, and the first HARQ process is configured to disable HARQ-ACK feedback, the starting time of the first time range The start time is: the end time of receiving the first PDSCH, and the end time of the first time range is: the terminal device sends the first hybrid automatic repeat request corresponding to the first PDSCH to the network device- Confirm the transmission end time of the HARQ-ACK feedback information.
  • the start of the first time range The start time is: the end time of receiving the first PDSCH, and the end time of the first time range is: the terminal device sends the first hybrid automatic repeat request corresponding to the first PDSCH to the network device- Confirm the transmission end time of the HARQ-ACK feedback information.
  • the start time of the first time range is: the end time of the first PDSCH reception, and the start time of the first time range
  • the ending moment is: the end moment of transmission of the first hybrid automatic repeat request-acknowledgment HARQ-ACK feedback information corresponding to the first PDSCH sent by the terminal device to the network device.
  • the first PDSCH corresponds to the first HARQ-ACK feedback, and it can be understood that the terminal device needs to send the first HARQ-ACK feedback information to the network device.
  • the first PDSCH is transmitted through the first HARQ process, and the first HARQ-ACK feedback information may be determined by the terminal device according to the decoding result of the first PDSCH, or a preset value configured by the network device to the terminal device such as ACK or NACK.
  • the transmission timing at which the terminal device sends the first HARQ-ACK feedback information corresponding to the first PDSCH to the network device may be pre-configured by the terminal device, or configured by the network device, or specified by a protocol, Or it may be calculated by the terminal device, or it may be calculated by the network device and configured to the terminal device.
  • the terminal device may determine the end moment of the first time range based on the transmission timing of the first HARQ-ACK feedback information.
  • the transmission timing at which the terminal device sends the first HARQ-ACK feedback information to the network device may be determined by the terminal device.
  • the transmission timing at which the terminal device sends the first HARQ-ACK feedback information to the network device is determined according to at least one of the following: a set of HARQ feedback timings, an offset value Koffset, and a HARQ feedback timing value K1.
  • the transmission timing of the first HARQ-ACK feedback information may be the value minus the timing advance.
  • the transmission timing of the first HARQ-ACK feedback information may be the above-mentioned duration T0-TA, or it may be no Subtracting the value of the timing advance, for example, the transmission timing of the first HARQ-ACK feedback information may be the above-mentioned duration T0.
  • the HARQ feedback timing set may be preset by the terminal device, configured by the network device, or specified by a protocol.
  • the set of HARQ feedback timings may include one or more HARQ feedback timing values K1, and the unit of each timing in one or more timings may be a subframe, a time slot, a mini-slot, or a symbol.
  • the offset value Koffset is a value configured by the NTN network.
  • the offset value Koffset can be the public offset value of the cell, and the public offset value of the cell can be broadcast by the network equipment, or the offset value Koffset can be a dedicated offset value of the terminal equipment, and the dedicated offset value of the terminal equipment can be the network
  • the device configures the terminal device, or the terminal device's dedicated offset value may be determined by the terminal device based on an increment of the offset value configured by the network device.
  • the HARQ feedback timing value K1 may be configured by the network device to the terminal device, or preset by the terminal device, or stipulated in a protocol, or calculated by the terminal device, or calculated by the network device and configured to the terminal device.
  • the start time of the first time range is: the end time of the first PDSCH reception; the duration corresponding to the first time range is the first duration.
  • the terminal device does not send the first HARQ-ACK feedback information corresponding to the first PDSCH to the network device.
  • the first duration may be the aforementioned T_proc,1.
  • the first HARQ process is configured to disable HARQ-ACK feedback, or the first HARQ process is configured to enable HARQ-ACK feedback.
  • the starting moment of the first time range is: the end moment of the first PDSCH reception; the first The duration corresponding to the time range is the first duration.
  • the first HARQ process is configured to disable HARQ-ACK feedback
  • whether the terminal device is configured to enable semi-persistent scheduling (SPS) is configured to activate the corresponding HARQ-ACK feedback, or the terminal device is not enabled The configuration enables the SPS configuration to activate corresponding HARQ-ACK feedback, the start time of the first time range is: the end time of the first PDSCH reception; the duration corresponding to the first time range is the first duration.
  • the start time of the first time range is: the end time of the first PDSCH reception;
  • the duration corresponding to a time range is the first duration.
  • the first HARQ process is configured to enable HARQ-ACK feedback
  • SPS semi-persistent scheduling
  • the start time of the first time range is: the end time of the first PDSCH reception; the duration corresponding to the first time range is the first duration.
  • HARQ-ACK feedback is enabled, or HARQ-ACK feedback is disabled, but also the terminal device needs to be considered: configured to enable SPS configuration to activate the corresponding HARQ-ACK ACK feedback, or if it is not configured to enable SPS configuration to activate the corresponding HARQ-ACK feedback.
  • the terminal device may determine that it does not need to send to the network device
  • the first HARQ-ACK feedback information in this way, the start time of the first time range is: the end time of the first PDSCH reception; the duration corresponding to the first time range is the first duration.
  • the start of the first time range The starting moment is: the ending moment of the first PDSCH reception; the duration corresponding to the first time range is the first duration.
  • the start time of the first time range is: the end time of the first PDSCH reception; the first time range The corresponding duration is the first duration.
  • the first PDSCH does not correspond to the first HARQ-ACK feedback, and it can be understood that the terminal device does not need to send the first HARQ-ACK feedback information to the network device.
  • the first PDSCH does not correspond to the first HARQ-ACK feedback, which may be determined by the terminal device itself, or configured by the network device to the terminal device.
  • the terminal device determines that it does not need Sending the first HARQ-ACK feedback information to the network device, in this way, the start time of the first time range is: the end time of the first PDSCH reception; the duration corresponding to the first time range is the first duration.
  • one of the terminal device and the first HARQ process is configured to need to perform HARQ-ACK feedback, and the other is not configured to need to perform HARQ-ACK feedback, which may include: the terminal device is configured to enable SPS configuration activation corresponds to HARQ-ACK feedback, and the first HARQ process is configured to disable HARQ-ACK feedback, or, the terminal device is not configured to enable SPS configuration activation corresponding to HARQ-ACK feedback, and the first HARQ process is configured to enable HARQ-ACK feedback A HARQ process is configured with HARQ-ACK feedback enabled.
  • the first duration is determined according to at least one of the following: processing capability of the terminal device, subcarrier spacing, and decoding duration of the first PDSCH.
  • the unit of the decoding duration N1 of the first PDSCH may be a symbol.
  • the decoding duration N1 of the first PDSCH corresponding to terminal devices with different processing capabilities may be different.
  • the processing capability 1 and the processing capability 2 of the terminal device respectively correspond to different processing capabilities, and the N1 value corresponding to the processing capability 1 of the terminal device is different from the N1 value corresponding to the processing capability 2 of the terminal device.
  • the decoding duration N1 of the first PDSCH corresponding to different subcarrier intervals may be different.
  • the decoding duration of the first PDSCH may be preset by the terminal device, configured by the network device to the terminal device, specified by a protocol, calculated by the terminal device, or calculated by the network device and configured to the terminal device.
  • enabling the semi-persistent scheduling (SPS) configuration and activating the corresponding HARQ-ACK feedback may be RRC configuration.
  • the network device may activate corresponding HARQ-ACK feedback by enabling SPS configuration through radio resource control RRC configuration.
  • the terminal device being configured to enable SPS configuration to activate corresponding HARQ-ACK feedback includes: the terminal device is configured by the network device to enable SPS configuration to activate corresponding HARQ-ACK feedback.
  • the terminal device is not configured to enable SPS configuration to activate corresponding HARQ-ACK feedback, including: the terminal device is configured by the network device to disable SPS configuration to activate corresponding HARQ-ACK feedback; or, the The terminal device is not configured by the network device to enable SPS configuration to activate RRC signaling corresponding to HARQ-ACK feedback.
  • the network device can enable the SPS configuration to activate the corresponding HARQ-ACK feedback through the RRC configuration.
  • the feedback of the HARQ process associated with the SPS PDSCH can be enabled or disabled by each SPS configuration (RRC configuration per SPS configuration) of the RRC configuration.
  • activating the corresponding HARQ-ACK feedback may include: enabling HARQ-ACK feedback or disabling HARQ-ACK feedback; enabling HARQ-ACK feedback may correspond to enabling HARQ-ACK feedback, and disabling HARQ-ACK feedback may correspond to HARQ-ACK feedback to enable.
  • the not expecting to receive the second PDSCH that the network device schedules the transmission of the first HARQ process includes: when the terminal device is scheduled by the network device within the first time range When using the first HARQ process to receive the second PDSCH, the terminal device does not receive the second PDSCH. In this case, the terminal device can monitor or detect the first PDCCH that schedules the second PDSCH, or know through pre-configuration that there are resources for transmitting the second PDSCH within the first time range, but the terminal device does not receive the second PDSCH. PDSCH.
  • the not expecting to receive the first Physical Downlink Control Channel PDCCH includes: when the terminal device is scheduled by the network device to receive the first PDCCH within the first time range, The terminal device does not receive the second PDSCH scheduled by the first PDCCH. In this case, the terminal device can monitor or detect the first PDCCH, but the terminal device does not receive the second PDSCH scheduled by the first PDCCH.
  • the second PDSCH is PDCCH scheduled.
  • the second PDSCH is an SPS PDSCH not corresponding to a PDCCH.
  • the second PDSCH may be pre-configured, and the second PDSCH is not the first PDSCH after the SPS configuration is activated.
  • the method also includes:
  • the terminal device receives the third PDSCH that the network device schedules the transmission of the second HARQ process; the third PDSCH does not correspond to the PDCCH SPS PDSCH;
  • the terminal device does not expect to receive the network's
  • the device schedules the fourth PDSCH transmitted by the second HARQ process, or does not expect to receive the second PDCCH, where the second PDCCH is used by the network device to schedule the fourth PDSCH transmitted by the second HARQ process.
  • the method also includes:
  • the terminal device receives the third PDSCH that the network device schedules the transmission of the second HARQ process; the third PDSCH does not correspond to the PDCCH SPS PDSCH;
  • the terminal device does not expect to receive the fourth PDSCH scheduled by the network device for transmission by the second HARQ process from the end time of receiving the third PDSCH to the end of the second duration, or does not expect to receive the fourth PDSCH for transmission by the second HARQ process.
  • the first duration and the second duration are the same duration.
  • the first time range and the second time range are the same time range.
  • the second HARQ process may be a HARQ process after the first HARQ process.
  • the second HARQ process in this embodiment of the present application may be a HARQ process corresponding to at least one SPS PDSCH other than the first SPS PDSCH after the SPS configuration is activated.
  • the first time range may be a continuous time range.
  • the start time of the first time range can be the first time
  • the end time (or end time) of the first time range can be the second time after the first time
  • the duration between the second time and the first time can be for a specific duration.
  • the first time range may include the first moment, or the first time range may not include the first moment.
  • the second moment may be included in the first time range, or the second moment may not be included in the first time range.
  • the starting moment of the first time range may be the ending moment of receiving the first PDSCH.
  • the specific duration corresponding to the first time range may be one of the following: preset by the terminal device, configured by the network device to the terminal device, stipulated by a protocol, calculated by the terminal device, calculated by the network device and configured to the terminal device.
  • the terminal device may start or restart a timer with a specific duration at the first moment, and during the running of the timer, the terminal device does not expect to receive the second PDSCH or the first PDCCH.
  • the second time range may be a continuous time range
  • the start time of the second time range may be the third time
  • the end time (or end time) of the second time range may be after the third time
  • the duration between the fourth moment and the third moment may be the target duration.
  • the target duration corresponding to the second time range may be the same as the specific duration corresponding to the first time range, or the target duration corresponding to the second time range may be greater than the specific duration corresponding to the first time range.
  • the third moment may be included in the second time range, or the third moment may not be included in the second time range.
  • the second time range may include the fourth moment, or the second time range may not include the fourth moment.
  • the start time and/or end time of the first time range and/or the second time range may be represented by at least one of the following: symbols, time slots or subframes, for example, the first time range and/or the second time range
  • the start moment of the second time range can be one of the following: start symbol, start time slot or start subframe
  • the end moment of the first time range and/or the second time range can be one of the following: end symbol, End slot or end subframe.
  • the start moment of the first time range and/or the second time range may be a start symbol
  • the end moment of the first time range and/or the second time range may be an end symbol.
  • the communication method corresponding to the network device is described as follows:
  • FIG. 9 is a schematic flowchart of a communication method provided in an embodiment of the present application. As shown in FIG. 9, the method includes:
  • the network device sends to the terminal device a first physical downlink shared channel PDSCH that schedules transmission of a first hybrid automatic repeat request (HARQ) process.
  • HARQ hybrid automatic repeat request
  • the first PDSCH is the first PDSCH after the semi-persistent scheduling (SPS) configuration is activated.
  • SPS semi-persistent scheduling
  • the first PDSCH is PDCCH scheduled.
  • the first PDSCH is an SPS PDSCH not corresponding to a PDCCH.
  • the network device does not expect to send the second PDSCH scheduling the transmission of the first HARQ process to the terminal device within the second time range, or does not expect to send the first physical downlink control channel to the terminal device PDCCH, wherein the first PDCCH is used by the network device to schedule the first HARQ process to transmit the second PDSCH.
  • the first type when the network device sends the first PDSCH to the terminal device, the network device does not send the second PDSCH that schedules the transmission of the first HARQ process to the terminal device within the second time range, or does not send the second PDSCH to the terminal device
  • the first PDCCH wherein, the start time of the second time range may be the end time of the first PDSCH transmission.
  • not expecting to send the second PDSCH that schedules the transmission of the first HARQ process to the terminal device, or not expecting to send the first PDCCH to the terminal device includes: not sending the second PDSCH that schedules the transmission of the first HARQ process to the terminal device.
  • the second PDSCH transmitted by the first HARQ process, or the first PDCCH is not sent to the terminal device.
  • the second type when the network device sends the first PDSCH to the terminal device, the network device may send the second PDSCH to the terminal device within the second time range to schedule the transmission of the first HARQ process, or send the first PDSCH to the terminal device PDCCH, but when the terminal device monitors or detects the second PDSCH or the first PDCCH, it does not receive the second PDSCH or the first PDCCH.
  • the network device sending the second PDSCH or the first PDCCH to the terminal device within the second time range may be based on pre-configuration or protocol regulation.
  • not expecting to send the second PDSCH that schedules the transmission of the first HARQ process to the terminal device, or not expecting to send the first PDCCH to the terminal device includes: sending to the terminal device The second PDSCH transmitted by a HARQ process, or the first PDCCH is sent to the terminal device, but the network device does not expect to receive the third HARQ-ACK feedback information corresponding to the second PDSCH.
  • the terminal device when the network device sends the second PDSCH or the first PDCCH to the terminal device, the terminal device does not receive the second PDSCH or the first PDCCH, so the terminal device does not send the third HARQ-ACK feedback corresponding to the second PDSCH to the network device information, so that the network device cannot receive the third HARQ-ACK feedback information corresponding to the second PDSCH.
  • the start moment of the second time range is: the end moment of the first PDSCH transmission. In some embodiments, the end moment of the second time range is: when the network device receives the first hybrid automatic repeat request-acknowledgment HARQ-ACK feedback information corresponding to the first PDSCH sent by the terminal device The moment the transmission ends.
  • the transmission end time of the HARQ-ACK feedback information is determined based on the uplink timing of the network device.
  • the start moment of the second time range is: the end moment of the first PDSCH transmission.
  • the end moment of the second time range is: the terminal device determined by the network device sends the first hybrid automatic repeat request-acknowledgment HARQ-ACK feedback information corresponding to the first PDSCH The moment the transmission ends.
  • the transmission end time of the HARQ-ACK feedback information is determined based on the uplink timing of the terminal equipment.
  • the first HARQ process is configured to disable HARQ-ACK feedback, or the first HARQ process is configured to enable HARQ-ACK feedback.
  • the following is an example of the second time range corresponding to the first HARQ process configured with HARQ-ACK feedback disabled or HARQ-ACK feedback enabled:
  • the start time of the second time range is: the end time of the first PDSCH transmission; the second The end time of the time range is: the network device receives the transmission end time of the first hybrid automatic repeat request-acknowledgment HARQ-ACK feedback information corresponding to the first PDSCH sent by the terminal device.
  • the start time of the second time range is: the end time of the first PDSCH transmission; the end time of the second time range is: the network device receives The first hybrid automatic repeat request corresponding to the first PDSCH sent by the terminal device confirms the transmission end time of the HARQ-ACK feedback information.
  • SPS semi-persistent scheduling
  • the start time of the second time range is: the end time of the first PDSCH transmission;
  • the end time of the second time range is: the network device receives the transmission end time of the first hybrid automatic repeat request-confirmation HARQ-ACK feedback information corresponding to the first PDSCH sent by the terminal device.
  • the start time of the second time range is: the end time of the first PDSCH transmission; the end time of the second time range is: the network device receiving the first hybrid automatic repeat request corresponding to the first PDSCH sent by the terminal device-acknowledging the transmission end time of the HARQ-ACK feedback information.
  • SPS semi-persistent scheduling
  • HARQ-ACK feedback is enabled, or HARQ-ACK feedback is disabled, but also the terminal device needs to be considered: configured to enable SPS configuration to activate the corresponding HARQ- ACK feedback, or if it is not configured to enable SPS configuration to activate the corresponding HARQ-ACK feedback.
  • the second The start time of the time range is: the end time of the transmission of the first PDSCH
  • the end time of the second time range is: the network device receives the first hybrid message corresponding to the first PDSCH sent by the terminal device Automatic repeat request-acknowledging the transmission end time of the HARQ-ACK feedback information.
  • the second time The start time of the range is: the end time of the first PDSCH transmission
  • the end time of the second time range is: the network device receives the first hybrid automatic transmission corresponding to the first PDSCH sent by the terminal device. Retransmission request-confirms the transmission end time of the HARQ-ACK feedback information.
  • the second time The start time of the range is: the end time of the first PDSCH transmission
  • the end time of the second time range is: the network device receives the first hybrid automatic transmission corresponding to the first PDSCH sent by the terminal device. Retransmission request-confirms the transmission end time of the HARQ-ACK feedback information.
  • the start time of the second time range is: the end time of the transmission of the first PDSCH, the end time of the second time range The end time is: the end time when the network device receives the transmission end time of the first hybrid automatic repeat request-acknowledgment HARQ-ACK feedback information corresponding to the first PDSCH sent by the terminal device.
  • the transmission timing for the terminal device to send the first HARQ-ACK feedback information to the network device is determined according to at least one of the following: HARQ feedback timing set, offset value Koffset, HARQ feedback timing Value K1.
  • the start time of the second time range is: the end time of the first PDSCH transmission; the duration corresponding to the second time range is the first duration.
  • the first duration may be the above T_proc,1.
  • the first HARQ process is configured to disable HARQ-ACK feedback, or the first HARQ process is configured to enable HARQ-ACK feedback.
  • the following is an example of the second time range corresponding to the first HARQ process configured with HARQ-ACK feedback disabled or HARQ-ACK feedback enabled:
  • the start time of the second time range is: the end time of the first PDSCH transmission; the second The duration corresponding to the time range is the first duration.
  • the first HARQ process is configured to disable HARQ-ACK feedback
  • whether the terminal device is configured to enable semi-persistent scheduling (SPS) is configured to activate the corresponding HARQ-ACK feedback, or the terminal device is not enabled The configuration enables the SPS configuration to activate corresponding HARQ-ACK feedback, the start time of the second time range is: the end time of the first PDSCH transmission; the duration corresponding to the second time range is the first duration.
  • the start time of the second time range is: the end time of the first PDSCH transmission;
  • the duration corresponding to the second time range is the first duration.
  • the start time of the second time range is: the end time of the first PDSCH transmission; the duration corresponding to the second time range is the first duration.
  • HARQ-ACK feedback is enabled, or HARQ-ACK feedback is disabled, but also the terminal device needs to be considered: configured to enable SPS configuration to activate the corresponding HARQ-ACK ACK feedback, or if it is not configured to enable SPS configuration to activate the corresponding HARQ-ACK feedback.
  • the second time The start time of the range is: the end time of the first PDSCH transmission; the duration corresponding to the second time range is the first duration.
  • the start time of the second time range is: the end time of the first PDSCH transmission; the second time range The corresponding duration is the first duration.
  • the network device configures the terminal device to enable SPS configuration to activate corresponding HARQ-ACK feedback, and the first HARQ process is configured to disable HARQ-ACK feedback, or, if The network device does not configure the terminal device to enable SPS configuration to activate corresponding HARQ-ACK feedback, and the first HARQ process is configured to enable HARQ-ACK feedback, and the starting time of the second time range is: The end time of the first PDSCH transmission; the duration corresponding to the second time range is the first duration.
  • the first duration is determined according to at least one of the following: processing capability of the terminal device, subcarrier spacing, and decoding duration of the first PDSCH.
  • the not expecting to send the second PDSCH that schedules the transmission of the first HARQ process to the terminal device includes: when the network device sends the scheduled transmission to the terminal device within the second time range When the second PDSCH is transmitted by the first HARQ process, the network device does not receive third HARQ-ACK feedback information corresponding to the second PDSCH.
  • the not expecting to send the first physical downlink control channel PDCCH to the terminal device includes: when the network device sends the first PDCCH to the terminal device within the second time range , the network device does not receive third HARQ-ACK feedback information corresponding to the second PDSCH.
  • the network device does not receive the third HARQ-ACK feedback information corresponding to the second PDSCH, which may be that the network device cannot receive the third HARQ-ACK feedback information corresponding to the second PDSCH.
  • the network device may not receive the third HARQ-ACK feedback information corresponding to the second PDSCH at any time after sending the second PDSCH or the first PDCCH to the terminal device.
  • the second PDSCH is PDCCH scheduled.
  • the second PDSCH is an SPS PDSCH not corresponding to a PDCCH.
  • the method also includes:
  • the network device sends to the terminal device a third PDSCH that schedules the transmission of the second HARQ process;
  • the third PDSCH is an SPS PDSCH that does not correspond to a PDCCH ;
  • the network device starts from the end time of sending the third PDSCH, and does not expect to send to the
  • the terminal device sends the fourth PDSCH that schedules the transmission of the second HARQ process, or does not expect to send the second PDCCH to the terminal device, where the second PDCCH is used by the network device to schedule the second HARQ process
  • the fourth PDSCH is transmitted.
  • the method also includes:
  • the network device When the second HARQ process is configured with HARQ-ACK feedback disabled, the network device sends to the terminal device a third PDSCH that schedules the transmission of the second HARQ process; the third PDSCH does not correspond to the PDCCH SPS PDSCH;
  • the network device does not expect to send the fourth PDSCH that schedules the transmission of the second HARQ process to the terminal device before the end time of the third PDSCH transmission ends, or does not expect to send the fourth PDSCH to the terminal device.
  • the terminal device sends a second PDCCH, where the second PDCCH is used by the network device to schedule the second HARQ process to transmit a fourth PDSCH.
  • the first duration and the second duration are the same duration.
  • the first time range and the second time range are the same time range.
  • the first HARQ process is the HARQ process corresponding to the first SPS PDSCH after the SPS configuration is activated.
  • the second HARQ process is the HARQ process corresponding to at least one SPS PDSCH other than the first SPS PDSCH after the SPS configuration is activated.
  • the scheduling limit of the first HARQ process satisfies:
  • the terminal device If the terminal device receives the first PDSCH scheduled by the network device for transmission by the first HARQ process, before the terminal device sends the first HARQ-ACK feedback information corresponding to the first PDSCH to the network device, the terminal device does not expect Receiving the second PDSCH that the network device schedules the first HARQ process to transmit again, or the terminal device does not expect to receive the PDCCH that the network device schedules the first HARQ process to transmit the second PDSCH again (that is, the above-mentioned first PDCCH ).
  • the transmission timing at which the terminal equipment sends the first HARQ-ACK feedback information to the network equipment is determined according to at least one of the HARQ feedback timing set, the offset value Koffset, and the HARQ feedback timing value K1, wherein, the HARQ feedback
  • the timing set may be preset or configured by the network device, and the HARQ feedback timing value K1 is a value in the HARQ feedback timing set.
  • the first HARQ process is configured to disable HARQ-ACK feedback.
  • the first HARQ process is configured to enable HARQ-ACK feedback.
  • the first PDSCH is scheduled by the PDCCH, and the second PDSCH is not scheduled by the PDCCH.
  • the first PDSCH is not scheduled by the PDCCH
  • the second PDSCH is scheduled by the PDCCH
  • the first PDSCH is scheduled by the PDCCH
  • the second PDSCH is scheduled by the PDCCH
  • the first PDSCH is not scheduled by the PDCCH
  • the second PDSCH is not scheduled by the PDCCH.
  • FIG. 10 is a schematic diagram of a scheduling restriction of a first HARQ process provided by an embodiment of the present application.
  • the network device can send the first SPS PDSCH after the SPS configuration is activated to the terminal device, and all but the first SPS PDSCH For other SPS PDSCHs other than the SPS PDSCH, the first SPS PDSCH may be scheduled for transmission by the first HARQ process (HARQ ID n).
  • the terminal device receives the first SPS PDSCH, it can send the HARQ-ACK feedback information corresponding to the first SPS PDSCH to the network device.
  • the first SPS PDSCH may be the above-mentioned first PDSCH.
  • the terminal device does not expect to receive another PDSCH scheduled for transmission by the first HARQ process.
  • the terminal device can receive the DCI for scheduling HARQ ID n again, or receive the SPS PDSCH corresponding to HARQ ID n again.
  • the scheduling limit of the first HARQ process satisfies:
  • the terminal device When the first HARQ process is configured with HARQ-ACK feedback enabled, if the terminal device receives the first PDSCH scheduled by the network device to transmit the first HARQ process, the terminal device sends the first PDSCH corresponding to the first PDSCH to the network device. Before the transmission of the HARQ-ACK feedback information ends, the terminal device does not expect to receive the second PDSCH that the network device schedules for transmission of the first HARQ process again, or the terminal device does not expect to receive the first PDSCH that the network device schedules again for transmission. The HARQ process transmits the PDCCH of the second PDSCH.
  • the transmission timing at which the terminal equipment sends the first HARQ-ACK feedback information to the network equipment is determined according to at least one of the HARQ feedback timing set, the offset value Koffset, and the HARQ feedback timing value K1, wherein, the HARQ feedback
  • the timing set may be preset or configured by the network device, and the HARQ feedback timing value K1 is a value in the HARQ feedback timing set. and / or,
  • the terminal device When the first HARQ process is configured with HARQ-ACK feedback disabled, if the terminal device receives the first PDSCH scheduled by the network device to transmit the first HARQ process, from the end of the first PDSCH reception to before the end of the first duration , the terminal device does not expect to receive the first PDCCH that the network device schedules to use the first HARQ process to transmit the second PDSCH again, or the terminal device does not expect to receive the network device to use the first HARQ process to transmit the second PDSCH again PDSCH.
  • the first PDSCH is scheduled by the PDCCH, and the second PDSCH is not scheduled by the PDCCH.
  • the first PDSCH is not scheduled by the PDCCH
  • the second PDSCH is scheduled by the PDCCH
  • the first PDSCH is scheduled by the PDCCH
  • the second PDSCH is scheduled by the PDCCH
  • the first PDSCH is not scheduled by the PDCCH
  • the second PDSCH is not scheduled by the PDCCH.
  • FIG. 11 is a schematic diagram of another scheduling limitation of the first HARQ process provided by the embodiment of the present application.
  • the network device can send the first SPS PDSCH after the SPS configuration is activated to the terminal device, and the For other SPS PDSCHs other than the first SPS PDSCH, the first SPS PDSCH may be scheduled for transmission by the first HARQ process (HARQ ID n).
  • HARQ ID n the first HARQ process
  • the terminal device may send HARQ-ACK feedback information corresponding to the first SPS PDSCH to the network device when receiving the first SPS PDSCH.
  • the first SPS PDSCH may be the above-mentioned first PDSCH.
  • the terminal device does not expect to receive another PDSCH scheduled for transmission by the first HARQ process. That is, when HARQ ID n is configured with HARQ-ACK feedback enabled, DCI for scheduling HARQ ID n can be received after the dotted line, or SPS PDSCH corresponding to HARQ ID n can be received after receiving.
  • the terminal device may not send the HARQ-ACK feedback information corresponding to the first SPS PDSCH to the network device when it receives the first SPS PDSCH.
  • the terminal device does not expect to receive another PDSCH scheduled for transmission by the first HARQ process. That is, when HARQ ID n is configured with HARQ-ACK feedback enabled, the DCI for scheduling HARQ ID n can be received after the dotted line, or the SPS PDSCH corresponding to HARQ ID n can be received again.
  • the scheduling limit of the first HARQ process satisfies:
  • the terminal device receives the first PDSCH transmitted by the first HARQ process scheduled by the network device, the terminal device does not expect to receive the first PDSCH scheduled by the network device again before the end of the first time duration.
  • a HARQ process transmits the first PDCCH of the second PDSCH, or the terminal device does not expect to receive the network device using the first HARQ process to transmit the second PDSCH again.
  • the first HARQ process is configured to disable HARQ-ACK feedback.
  • the first HARQ process is configured to enable HARQ-ACK feedback.
  • the first PDSCH is scheduled by the PDCCH, and the second PDSCH is not scheduled by the PDCCH.
  • the first PDSCH is not scheduled by the PDCCH
  • the second PDSCH is scheduled by the PDCCH
  • the first PDSCH is scheduled by the PDCCH
  • the second PDSCH is scheduled by the PDCCH
  • the first PDSCH is not scheduled by the PDCCH
  • the second PDSCH is not scheduled by the PDCCH.
  • Fig. 12 is a schematic diagram of another kind of scheduling restriction of the first HARQ process provided by the embodiment of the present application.
  • the network device can send the first SPS PDSCH after SPS configuration activation to the terminal device, and the For other SPS PDSCHs other than the first SPS PDSCH, the first SPS PDSCH may be scheduled for transmission by the first HARQ process (HARQ ID n).
  • HARQ ID n the first HARQ process
  • the terminal device When the terminal device receives the first SPS PDSCH, it may not send the HARQ-ACK feedback information corresponding to the first SPS PDSCH to the network device. Within the time range corresponding to the first duration T_proc,1 from the end moment when the terminal device receives the first SPS PDSCH, the terminal device does not expect to receive another PDSCH scheduled for transmission by the first HARQ process. After the time corresponding to the dotted line in Figure 12, the terminal device can receive the DCI for scheduling HARQ ID n again, or receive the SPS PDSCH corresponding to HARQ ID n again.
  • the network device when the network device does not enable the SPS configuration through the RRC configuration to activate the corresponding HARQ-ACK feedback:
  • the scheduling constraints of the first HARQ process meet:
  • the terminal device If the terminal device receives the first PDSCH scheduled by the network device for transmission by the first HARQ process, before the terminal device sends the first HARQ-ACK feedback information corresponding to the first PDSCH to the network device, the terminal device does not expect The second PDSCH that the network device schedules the first HARQ process to transmit is received again, or the terminal device does not expect to receive the PDCCH that the network device schedules the first HARQ process to transmit the second PDSCH again.
  • the transmission timing at which the terminal equipment sends the first HARQ-ACK feedback information to the network equipment is determined according to at least one of the HARQ feedback timing set, the offset value Koffset, and the HARQ feedback timing value K1, wherein, the HARQ feedback
  • the timing set may be preset or configured by the network device, and the HARQ feedback timing value K1 is a value in the HARQ feedback timing set.
  • the scheduling constraints of the first HARQ process meet:
  • the terminal device receives the first PDSCH transmitted by the first HARQ process scheduled by the network device, the terminal device does not expect to receive the first PDSCH scheduled by the network device again before the end of the first time duration.
  • a HARQ process transmits the first PDCCH of the second PDSCH, or the terminal device does not expect to receive the network device using the first HARQ process to transmit the second PDSCH again.
  • the length of the first duration may be T_proc,1.
  • the first PDSCH is scheduled by the PDCCH, and the second PDSCH is not scheduled by the PDCCH.
  • the first PDSCH is not scheduled by the PDCCH
  • the second PDSCH is scheduled by the PDCCH
  • the first PDSCH is scheduled by the PDCCH
  • the second PDSCH is scheduled by the PDCCH
  • the first PDSCH is not scheduled by the PDCCH
  • the second PDSCH is not scheduled by the PDCCH.
  • the scheduling constraints of the second HARQ process meet:
  • the terminal device If the terminal device receives the third PDSCH scheduled by the network device for transmission by the second HARQ process, before the terminal device sends the second HARQ-ACK feedback information corresponding to the third PDSCH to the network device, the terminal device does not expect Receiving the fourth PDSCH that the network device schedules the second HARQ process to transmit again, or the terminal device does not expect to receive the PDCCH that the network device schedules the second HARQ process to transmit the fourth PDSCH again (that is, the above-mentioned second PDCCH ).
  • the transmission timing at which the terminal equipment sends the second HARQ-ACK feedback information to the network equipment is determined according to at least one of the HARQ feedback timing set, the offset value Koffset, and the HARQ feedback timing value K1, wherein, the HARQ feedback
  • the timing set may be preset or configured by the network device, and the HARQ feedback timing value K1 is a value in the HARQ feedback timing set.
  • the transmission timing for the terminal device to send the second HARQ-ACK feedback information to the network device may be determined according to the following: HARQ feedback timing set, offset value Koffset, and HARQ feedback timing value K1.
  • the HARQ feedback timing value K1 is carried by the PDCCH, and the HARQ feedback timing value K1 indicates a value in the HARQ feedback timing set.
  • the offset value Koffset is configured by the network device.
  • the scheduling constraints of the second HARQ process meet:
  • the terminal device receives the third PDSCH transmitted by the second HARQ process scheduled by the network device, from the end time of receiving the third PDSCH to before the end of the second time period, the terminal device does not expect to receive the third PDSCH scheduled by the network device again.
  • the second HARQ process transmits the first PDCCH of the fourth PDSCH, or the terminal device does not expect to receive the network device using the second HARQ process to transmit the fourth PDSCH again.
  • the length of the second duration is T_proc,1.
  • the second duration may be the same as the first duration, or the second duration may be different from the first duration.
  • the second duration may be determined according to at least one of the following: processing capability of the terminal device, subcarrier spacing, and decoding duration of the first PDSCH.
  • the third PDSCH is not scheduled by the PDCCH, and/or the fourth PDSCH is not scheduled by the PDCCH.
  • the terminal device For the first HARQ process that expects the terminal device to provide HARQ-ACK information, if the terminal device receives the first PDSCH scheduled by the network device to transmit the first HARQ process, the terminal device sends the first PDSCH corresponding to the first PDSCH to the network device. Before the transmission of the HARQ-ACK feedback information ends, the terminal device does not expect to receive the second PDSCH that the network device schedules for transmission of the first HARQ process again, or the terminal device does not expect to receive the first PDSCH that the network device schedules again for transmission. The HARQ process transmits the PDCCH of the second PDSCH.
  • the transmission timing at which the terminal equipment sends the first HARQ-ACK feedback information to the network equipment is determined according to at least one of the HARQ feedback timing set, the offset value Koffset, and the HARQ feedback timing value K1, wherein, the HARQ feedback
  • the timing set may be preset or configured by the network device, and the HARQ feedback timing value K1 is a value in the HARQ feedback timing set.
  • the terminal device For the first HARQ process that does not expect the terminal device to provide HARQ-ACK information, if the terminal device receives the first PDSCH that the network device schedules the transmission of the second HARQ process, from the end time of the first PDSCH reception to before the end of the first duration The terminal device does not expect to receive the first PDCCH that the network device schedules to use the second HARQ process to transmit the second PDSCH again, or the terminal device does not expect to receive the network device to use the second HARQ process to transmit the second PDSCH again. PDSCH.
  • Fig. 13 is a schematic diagram of another kind of scheduling restriction of the first HARQ process provided by the embodiment of the present application.
  • the network device can send the first SPS PDSCH after SPS configuration activation to the terminal device, and the For other SPS PDSCHs other than the first SPS PDSCH, the first SPS PDSCH may be scheduled for transmission by the first HARQ process (HARQ ID n).
  • HARQ ID n the first HARQ process
  • the scheduling limit of the first HARQ process is satisfied: if the terminal device receives the first SPS PDSCH transmitted by the first HARQ process scheduled by the network device Before the end of the transmission of the first HARQ-ACK feedback information corresponding to the first SPS PDSCH sent by the terminal device to the network device, the terminal device does not expect to receive the first HARQ process transmission scheduled by the network device again Two PDSCH.
  • the terminal device may not receive the SPS PDSCH. After the dotted line in Figure 13, the DCI for scheduling HARQ ID n can be received again, or the SPS PDSCH corresponding to HARQ ID n can be received again.
  • the scheduling restrictions of the first SPS PDSCH and the non-first SPS PDSCH can be regulated, thereby preventing the terminal device from receiving the SPS PDSCH And/or the PDSCH scheduled by DCI is out of order.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the order of execution of the processes should be determined by their functions and internal logic, and should not be used in this application.
  • the implementation of the examples constitutes no limitation.
  • the terms “downlink”, “uplink” and “sidelink” are used to indicate the transmission direction of signals or data, wherein “downlink” is used to indicate that the transmission direction of signals or data is sent from the station The first direction to the user equipment in the cell, “uplink” is used to indicate that the signal or data transmission direction is the second direction sent from the user equipment in the cell to the station, and “side line” is used to indicate that the signal or data transmission direction is A third direction sent from UE1 to UE2.
  • “downlink signal” indicates that the transmission direction of the signal is the first direction.
  • the term “and/or” is only an association relationship describing associated objects, indicating that there may be three relationships. Specifically, A and/or B may mean: A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character "/" in this article generally indicates that the associated objects are an "or” relationship.
  • Fig. 14 is a schematic diagram of the structure and composition of a communication device provided by the embodiment of the present application, which can be applied to terminal equipment.
  • the communication device 1400 includes: a transceiver unit 1401, configured to receive the first The first physical downlink shared channel PDSCH transmitted by the hybrid automatic repeat request HARQ process; the transceiver unit 1401 is also configured to not expect to receive the transmission of the first HARQ process scheduled by the network device within the first time range The second PDSCH, or the first physical downlink control channel PDCCH is not expected to be received, where the first PDCCH is used by the network device to schedule the first HARQ process to transmit the second PDSCH.
  • the communication device 1400 may further include a determining unit, configured to determine the first time range.
  • the start time of the first time range is: the end time of the first PDSCH reception; and/or, the end time of the first time range is: the terminal device sends the The network device sends the first HARQ-ACK corresponding to the first PDSCH to confirm the transmission end time of the HARQ-ACK feedback information.
  • the transmission timing for the terminal device to send the first HARQ-ACK feedback information to the network device is determined according to at least one of the following: HARQ feedback timing set, offset value Koffset, HARQ feedback timing Value K1.
  • the start time of the first time range is: the end time of the first PDSCH reception; the duration corresponding to the first time range is the first duration.
  • the first duration is determined according to at least one of the following: processing capability of the terminal device, subcarrier spacing, and decoding duration of the first PDSCH.
  • the first HARQ process is configured to disable HARQ-ACK feedback, or the first HARQ process is configured to enable HARQ-ACK feedback.
  • the terminal device is configured to enable semi-persistent scheduling SPS configuration to activate corresponding HARQ-ACK feedback, and the first HARQ process is configured to enable HARQ-ACK feedback; or, the terminal device is configured Enable SPS configuration to activate corresponding HARQ-ACK feedback, and the first HARQ process is configured to disable HARQ-ACK feedback; or, the terminal device is not configured to enable SPS configuration to activate corresponding HARQ-ACK feedback, and the The first HARQ process is configured to enable HARQ-ACK feedback; or, the first PDSCH corresponds to the first HARQ-ACK feedback.
  • the terminal device is not configured to enable SPS configuration to activate corresponding HARQ-ACK feedback, and the first HARQ process is configured to disable HARQ-ACK feedback; or, the first PDSCH does not correspond to First HARQ-ACK feedback.
  • the first PDSCH is the first PDSCH after semi-persistent scheduling SPS configuration is activated; or, the first PDSCH is scheduled by PDCCH; or, the first PDSCH is an SPS that does not correspond to PDCCH PDSCH.
  • the transceiving unit 1401 is further configured to not receiving the second PDSCH; or,
  • the transceiving unit 1401 is further configured to not receive the first PDCCH when the terminal device is scheduled by the network device to receive the first PDCCH within the first time range.
  • the second PDSCH is scheduled by a PDCCH; or, the second PDSCH is an SPS PDSCH not corresponding to a PDCCH.
  • the transceiving unit 1401 is further configured to receive the third PDSCH that the network device schedules the transmission of the second HARQ process when the second HARQ process is configured to enable HARQ-ACK feedback
  • the third PDSCH is an SPS PDSCH that does not correspond to a PDCCH; the transceiver unit 1401 is also configured to start at the end of receiving the third PDSCH, and send the third PDSCH corresponding to the third PDSCH to the network device Before the end of the transmission of the second HARQ-ACK feedback information, it is not expected to receive the fourth PDSCH that the network device schedules the transmission of the second HARQ process, or it is not expected to receive the second PDCCH, wherein the second PDCCH It is used for the network device to schedule the second HARQ process to transmit the fourth PDSCH.
  • the transceiving unit 1401 is further configured to, when the second HARQ process is configured to disable HARQ-ACK feedback, the terminal device receives that the network device schedules the second HARQ process
  • the third PDSCH transmitted; the third PDSCH is an SPS PDSCH that does not correspond to the PDCCH; the transceiver unit 1401 is also configured to not expect to receive the third PDSCH from the end moment of receiving the third PDSCH to the end of the second duration.
  • the network device schedules the fourth PDSCH transmitted by the second HARQ process, or does not expect to receive the second PDCCH, where the second PDCCH is used by the network device to schedule the second HARQ process to transmit the fourth PDSCH PDSCH.
  • Fig. 15 is a schematic diagram of the structure and composition of another communication device provided by the embodiment of the present application, which can be applied to terminal equipment.
  • the communication device 1500 includes: A first physical downlink shared channel PDSCH transmitted by a hybrid automatic repeat request HARQ process; the transceiver unit 1501 is further configured to not expect to send and schedule the transmission of the first HARQ process to the terminal device within a second time range or the first physical downlink control channel PDCCH is not expected to be sent to the terminal device, where the first PDCCH is used to schedule the first HARQ process to transmit the second PDSCH.
  • the communication device 1500 may further include a determining unit configured to determine the second time range.
  • the start time of the second time range is: the end time of the first PDSCH transmission; and/or, the end time of the second time range is: the network device receives the The first HARQ-ACK corresponding to the first PDSCH sent by the terminal device confirms the end time of transmission of the HARQ-ACK feedback information.
  • the transmission timing for the terminal device to send the first HARQ-ACK feedback information to the network device is determined according to at least one of the following: HARQ feedback timing set, offset value Koffset, HARQ feedback timing Value K1.
  • the start time of the second time range is: the end time of the first PDSCH transmission; the duration corresponding to the second time range is the first duration.
  • the first duration is determined according to at least one of the following: processing capability of the terminal device, subcarrier spacing, and decoding duration of the first PDSCH.
  • the first HARQ process is configured to disable HARQ-ACK feedback, or the first HARQ process is configured to enable HARQ-ACK feedback.
  • the network device configures the terminal device to enable semi-persistent scheduling SPS configuration to activate corresponding HARQ-ACK feedback, and the first HARQ process is configured to enable HARQ-ACK feedback; or, the network The device configures the terminal device to enable SPS configuration to activate corresponding HARQ-ACK feedback, and the first HARQ process is configured to disable HARQ-ACK feedback; or, the network device does not configure the terminal device to enable SPS configuration
  • the corresponding HARQ-ACK feedback is activated, and the first HARQ process is configured to enable HARQ-ACK feedback; or, the first PDSCH corresponds to the first HARQ-ACK feedback.
  • the network device does not configure the terminal device to enable SPS configuration to activate corresponding HARQ-ACK feedback, and the first HARQ process is configured to disable HARQ-ACK feedback; or, the first PDSCH does not correspond to the first HARQ-ACK feedback.
  • the first PDSCH is the first PDSCH after semi-persistent scheduling SPS configuration is activated; or, the first PDSCH is scheduled by PDCCH; or, the first PDSCH is an SPS that does not correspond to PDCCH PDSCH.
  • the transceiving unit 1501 is further configured to not Receive third HARQ-ACK feedback information corresponding to the second PDSCH; or, the transceiver unit 1501 is further configured to send the first PDCCH to the terminal device when the network device sends the first PDCCH to the terminal device within the second time range , the third HARQ-ACK feedback information corresponding to the second PDSCH is not received.
  • the second PDSCH is scheduled by a PDCCH; or, the second PDSCH is an SPS PDSCH not corresponding to a PDCCH.
  • the transceiving unit 1501 is further configured to send to the terminal device a third PDSCH that schedules the transmission of the second HARQ process when the second HARQ process is configured with HARQ-ACK feedback enabled;
  • the third PDSCH is an SPS PDSCH that does not correspond to a PDCCH;
  • the transceiver unit 1501 is further configured to start from the end moment of sending the third PDSCH and before receiving the end moment of transmission of the second HARQ-ACK feedback information corresponding to the third PDSCH sent by the terminal device, It is not expected to send the fourth PDSCH that schedules the transmission of the second HARQ process to the terminal device, or it is not expected to send the second PDCCH to the terminal device, where the second PDCCH is used by the network device to schedule the transmission
  • the second HARQ process transmits the fourth PDSCH.
  • the transceiving unit 1501 is further configured to send to the terminal device a third message for scheduling the transmission of the second HARQ process when the second HARQ process is configured with HARQ-ACK feedback disabled.
  • PDSCH the third PDSCH is an SPS PDSCH that does not correspond to a PDCCH;
  • the transceiving unit 1501 is further configured to not expect to send the fourth PDSCH that schedules the transmission of the second HARQ process to the terminal device before the end time of the third PDSCH transmission starts to the end of the second duration, or, It is not expected to send the second PDCCH to the terminal device, where the second PDCCH is used by the network device to schedule the second HARQ process to transmit a fourth PDSCH.
  • FIG. 16 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may be a terminal device, or may be a network device.
  • the communication device 1600 shown in FIG. 16 includes a processor 1610 and a memory 1620, the memory 1620 is used to store computer programs, and the processor 1610 is used to invoke and run the computer programs stored in the memory 1620 to execute any of the above implementations.
  • the communication method described in the example For example, execute the communication method executed by the terminal device in any of the foregoing embodiments, or execute the communication method executed by the network device in any of the foregoing embodiments.
  • the memory 1620 may be an independent device independent of the processor 1610 , or may be integrated in the processor 1610 .
  • the communication device 1600 may further include a transceiver 1630, and the processor 1610 may control the transceiver 1630 to communicate with other devices, specifically, to send information or data to other devices, or Receive information or data from other devices.
  • the transceiver 1630 may include a transmitter and a receiver.
  • the transceiver 1630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 1600 may specifically be the network device of the embodiment of the present application, and the communication device 1600 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, the Let me repeat.
  • the communication device 1600 may specifically be the terminal device in the embodiment of the present application, and the communication device 1600 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, the Let me repeat.
  • FIG. 17 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1700 shown in FIG. 17 includes a processor 1710, and the processor 1710 can call and run a computer program from the memory 1720, so that the terminal device or the network device installed with the chip 1700 executes the operation of the terminal device or the network device in any of the above-mentioned embodiments.
  • the communication method implemented.
  • the chip 1700 may further include a memory 1720 .
  • the processor 1710 can invoke and run a computer program from the memory 1720, so as to implement the method in the embodiment of the present application.
  • the memory 1720 may be an independent device independent of the processor 1710 , or may be integrated in the processor 1710 .
  • the chip 1700 may also include an input interface 1730 .
  • the processor 1710 can control the input interface 1730 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 1700 may also include an output interface 1740 .
  • the processor 1710 can control the output interface 840 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of brevity, details are not repeated here.
  • the chip can be applied to the terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application. For the sake of brevity, details are not repeated here.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • An embodiment of the present application also provides a computer storage medium for storing a computer program, the computer program enables the terminal device to execute the communication method performed by the terminal device in any of the above embodiments, or the computer program enables the network device Execute the communication method executed by the network device in any of the foregoing embodiments.
  • the computer storage medium can be applied to the network device in the embodiment of the present application, and the computer program enables the network device to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, This will not be repeated here.
  • the computer storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program enables the terminal device to execute the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, the This will not be repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions, the computer program instructions cause the terminal device to perform the communication method performed by the terminal device in any of the above embodiments, or the computer program instructions cause the network
  • the device executes the communication method executed by the network device in any of the foregoing embodiments.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For brevity, This will not be repeated here.
  • the computer program product can be applied to the terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • the embodiment of the present application also provides a computer program, the computer program enables the terminal device to execute the communication method executed by the terminal device in any of the above embodiments, or, the computer program enables the network device to execute the communication method in any of the above embodiments.
  • the communication method implemented by network devices.
  • the computer program can be applied to the network device in the embodiment of the present application, and when the computer program is run on the computer, the computer executes the corresponding process implemented by the network device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the terminal device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the processor, communication device, or chip in this embodiment of the present application may be an integrated circuit chip that has a signal processing capability.
  • each step of the above-mentioned method embodiment may be completed by an integrated logic circuit of hardware in a processor, a communication device, or a chip, or instructions in the form of software.
  • the above-mentioned processor, communication device or chip may include any one or more of the following integrations: general-purpose processor, application specific integrated circuit (Application Specific Integrated Circuit, ASIC), digital signal processor (Digital Signal Processor, DSP), digital Signal Processing Device (Digital Signal Processing Device, DSPD), Programmable Logic Device (Programmable Logic Device, PLD), Field Programmable Gate Array (Field Programmable Gate Array, FPGA), Central Processing Unit (Central Processing Unit, CPU), graphics Processor (Graphics Processing Unit, GPU), embedded neural network processor (neural-network processing units, NPU), controller, microcontroller, microprocessor, programmable logic device, discrete gate or transistor logic device, discrete hardware components.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • Field Programmable Gate Array Field Programmable Gate Array
  • FPGA Field Programmable Gate Array
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • embedded neural network processor neural-
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory or computer storage medium in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM) , DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM ), synchronous connection dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法、装置、设备、芯片、存储介质、产品及程序,该方法包括:终端设备接收到网络设备调度第一混合自动重传请求HARQ进程传输的第一物理下行共享信道PDSCH;所述终端设备在第一时间范围内,不期待接收到所述网络设备调度所述第一HARQ进程传输的第二PDSCH,或者,不期待接收到第一物理下行控制信道PDCCH,其中,所述第一PDCCH用于所述网络设备调度所述第一HARQ进程传输第二PDSCH。

Description

通信方法、装置、设备、芯片、存储介质、产品及程序 技术领域
本申请实施例涉及通信技术领域,具体涉及一种通信方法、装置、设备、芯片、存储介质、产品及程序。
背景技术
目前第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)正在研究非陆地网络(Non-Terrestrial Networks,NTN)技术,NTN一般采用卫星通信的方式向地面用户提供通信服务。
在NTN系统中,本领域没有关注到如何对物理下行共享信道(Physical Downlink Shared Channel,PDSCH)进行调度限制。
发明内容
本申请实施例提供一种通信方法、装置、设备、芯片、存储介质、产品及程序。
第一方面,本申请实施例提供一种通信方法,所述方法包括:
终端设备接收到网络设备调度第一混合自动重传请求HARQ进程传输的第一物理下行共享信道PDSCH;
所述终端设备在第一时间范围内,不期待接收到所述网络设备调度所述第一HARQ进程传输的第二PDSCH,或者,不期待接收到第一物理下行控制信道PDCCH,其中,所述第一PDCCH用于所述网络设备调度所述第一HARQ进程传输第二PDSCH。
第二方面,本申请实施例提供一种通信方法,所述方法包括:
网络设备向终端设备发送调度第一混合自动重传请求HARQ进程传输的第一物理下行共享信道PDSCH;
所述网络设备在第二时间范围内,不期待向所述终端设备发送调度所述第一HARQ进程传输的第二PDSCH,或者,不期待向所述终端设备发送第一物理下行控制信道PDCCH,其中,所述第一PDCCH用于所述网络设备调度所述第一HARQ进程传输第二PDSCH。
第三方面,本申请实施例提供一种通信装置,所述通信装置包括:
收发单元,用于接收到网络设备调度第一混合自动重传请求HARQ进程传输的第一物理下行共享信道PDSCH;
所述收发单元,还用于在第一时间范围内,不期待接收到所述网络设备调度所述第一HARQ进程传输的第二PDSCH,或者,不期待接收到第一物理下行控制信道PDCCH,其中,所述第一PDCCH用于所述网络设备调度所述第一HARQ进程传输第二PDSCH。
第四方面,本申请实施例提供一种通信装置,所述通信装置包括:
收发单元,用于向终端设备发送调度第一混合自动重传请求HARQ进程传输的第一物理下行共享信道PDSCH;
所述收发单元,还用于在第二时间范围内,不期待向所述终端设备发送调度所述第一HARQ进程传输的第二PDSCH,或者,不期待向所述终端设备发送第一物理下行控制信道PDCCH,其中,所述第一PDCCH用于调度所述第一HARQ进程传输第二PDSCH。
第五方面,本申请实施例提供一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如第一方面所述的通信方法。
第六方面,本申请实施例提供一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如第二方面所述的通信方法。
第七方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如第一方面所述的通信方法,或者,使得安装有所述芯片的设备执行如第二方面所述的通信方法。
第八方面,本申请实施例提供一种计算机存储介质,用于存储计算机程序,所述计算机程序使得终端设备执行如第一方面所述的通信方法,或者,所述计算机程序使得网络设备执行如第二方面所述的通 信方法。
第九方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得终端设备执行如第一方面所述的通信方法,或者,所述计算机程序指令使得网络设备执行如第二方面所述的通信方法。
第十方面,本申请实施例提供一种计算机程序,所述计算机程序使得终端设备执行如第一方面所述的通信方法,或者,所述计算机程序使得网络设备执行如第二方面所述的通信方法。
在本申请实施例中,终端设备接收到网络设备调度第一混合自动重传请求HARQ进程传输的第一物理下行共享信道PDSCH;所述终端设备在第一时间范围内,不期待接收到所述网络设备调度所述第一HARQ进程传输的第二PDSCH,或者,不期待接收到第一物理下行控制信道PDCCH,其中,所述第一PDCCH用于所述网络设备调度所述第一HARQ进程传输第二PDSCH。这样,可以对PDSCH的调度进行限制,避免终端设备在接收PDSCH时出现乱序(out of order)的情况。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例的一个应用场景的示意图;
图2为本申请实施例提供的一种通信系统的架构示意图;
图3为本申请实施例提供的另一种通信系统的架构示意图;
图4为本申请实施例提供的基于透传转发卫星的NTN场景的示意图;
图5为本申请实施例提供的基于再生转发卫星的NTN场景的示意图;
图6为本申请实施例提供的一种HARQ-ACK反馈信息的传输示意图;
图7为本申请实施例提供的另一种HARQ-ACK反馈信息的传输示意图;
图8为本申请实施例提供的一种通信方法的流程示意图;
图9为本申请实施例提供的一种通信方法的流程示意图
图10为本申请实施例提供的一种第一HARQ进程的调度限制的示意图;
图11为本申请实施例提供的另一种第一HARQ进程的调度限制的示意图;
图12为本申请实施例提供的又一种第一HARQ进程的调度限制的示意图;
图13为本申请实施例提供的再一种第一HARQ进程的调度限制的示意图;
图14为本申请实施例提供的一种通信装置的结构组成示意图;
图15为本申请实施例提供的另一种通信装置的结构组成示意图;
图16为本申请实施例提供的一种通信设备示意性结构图;
图17为本申请实施例的芯片的示意性结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。本申请实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
图1为本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统(例如6G、7G等通信系统)等。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设 备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110进行通信。
本申请中的终端设备,可以称为用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal,MT)、用户单元、用户站、移动站、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以包括以下之一或者至少两者的组合:物联网(Internet of Things,IoT)设备、卫星终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、服务器、手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、掌上电脑、台式计算机、个人数字助理、便捷式媒体播放器、智能音箱、导航装置、智能手表、智能眼镜、智能项链等可穿戴设备、计步器、数字TV、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端以及车联网系统中的车、车载设备、车载模块、无线调制解调器(modem)、手持设备(handheld)、客户终端设备(Customer Premise Equipment,CPE)、智能家电。
本申请实施例中的网络设备120可以包括接入网设备121和/或核心网设备122。
接入网设备121可以包括以下之一或者至少两者的组合:长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB)、下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备、NR系统中的基站(gNB)、小站、微站、云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器、无线保真(Wireless-Fidelity,Wi-Fi)的接入点、传输接收点(transmission reception point,TRP)、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
核心网设备122可以是5G核心网(5G Core,5GC)设备,核心网设备122可以包括以下之一或者至少两者的组合:接入与移动性管理功能(Access and Mobility Management Function,AMF)、认证服务器功能(Authentication Server Function,AUSF)、用户面功能(User Plane Function,UPF)、会话管理功能(Session Management Function,SMF)、位置管理功能(Location Management Function,LMF)。在另一些实施方式中,核心网络设备也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备122也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。
终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,在一些实施例中,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
3GPP正在研究非地面通信网络设备(Non Terrestrial Network,NTN)技术,NTN一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些 地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
NTN技术可以和各种通信系统结合。例如,NTN技术可以和NR系统结合为NR-NTN系统。又例如,NTN技术可以和物联网(Internet of Things,IoT)系统结合为IoT-NTN系统。作为示例,IoT-NTN系统可以包括NB-IoT-NTN系统和eMTC-NTN系统。
图2为本申请实施例提供的一种通信系统的架构示意图。
如图2所示,包括终端设备201和卫星202,终端设备201和卫星202之间可以进行无线通信。终端设备201和卫星202之间所形成的网络还可以称为NTN。在图2所示的通信系统的架构中,卫星202可以具有基站的功能,终端设备201和卫星202之间可以直接通信。在系统架构下,可以将卫星202称为网络设备。在本申请的一些实施例中,通信系统中可以包括多个网络设备202,并且每个网络设备202的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
图3为本申请实施例提供的另一种通信系统的架构示意图。
如图3所示,包括终端设备301、卫星302和基站303,终端设备301和卫星302之间可以进行无线通信,卫星302与基站303之间可以通信。终端设备301、卫星302和基站303之间所形成的网络还可以称为NTN。在图3所示的通信系统的架构中,卫星302可以不具有基站的功能,终端设备301和基站303之间的通信需要通过卫星302的中转。在该种系统架构下,可以将基站303称为网络设备。在本申请的一些实施例中,通信系统中可以包括多个网络设备303,并且每个网络设备303的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。所述网络设备303可以是图1中的网络设备120。
应理解,上述卫星1102或卫星302包括但不限于:
低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等等。卫星可采用多波束覆盖地面,例如,一颗卫星可以形成几十甚至数百个波束来覆盖地面。换言之,一个卫星波束可以覆盖直径几十至上百公里的地面区域,以保证卫星的覆盖以及提升整个卫星通信系统的系统容量。
作为示例,LEO卫星的高度范围可以为500千米~1500千米,相应轨道周期约可以为1.5小时~2小时,用户间单跳通信的信号传播延迟一般可小于20毫秒,最大卫星可视时间可以为20分钟,LEO卫星的信号传播距离短且链路损耗少,对用户终端的发射功率要求不高。GEO卫星的轨道高度可以35786km,围绕地球旋转周期可以为24小时,用户间单跳通信的信号传播延迟一般可为250毫秒。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
需要说明的是,图1至图3只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”、“协议约定”、“预先确定”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
卫星从其提供的功能上可以分为透传转发(transparent payload)和再生转发(regenerative payload)两种。对于透传转发卫星,只提供无线频率滤波,频率转换和放大的功能,只提供信号的透明转发,不会改变其转发的波形信号。对于再生转发卫星,除了提供无线频率滤波,频率转换和放大的功能,还可以提供解调/解码,路由/转换,编码/调制的功能,其具有基站的部分或者全部功能。
在NTN中,可以包括一个或多个网关(Gateway),用于卫星和终端之间的通信。
图4和图5分别示出了基于透传转发卫星和再生转发卫星的NTN场景的示意图。
如图4所示,对于基于透传转发卫星的NTN场景,网关和卫星之间通过馈线链路(Feeder link) 进行通信,卫星和终端之间可以通过服务链路(service link)进行通信。如图5所示,对于基于再生转发卫星的NTN场景,卫星和卫星之间通过星间(InterStar link)进行通信,网关和卫星之间通过馈线链路(Feeder link)进行通信,卫星和终端之间可以通过服务链路(service link)进行通信。
终端设备对应的每个服务小区都有各自的混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)实体。每个HARQ实体维护一组并行的下行HARQ进程和一组并行的上行HARQ进程。其中,每个HARQ进程可以对应一个HARQ进程ID。
对于下行传输:终端设备根据配置的下行控制信息(Downlink Control Information,DCI)格式1_0、DCI格式1_1或DCI格式1_2来检测DCI并根据DCI的调度进行PDSCH译码。在一些实施例中,对于使用某个特定的HARQ进程ID调度下行传输,在调度时有如下限制:
终端设备不期待接收一个给定的HARQ进程的另一个PDSCH,直到该HARQ进程的混合自动重传请求-肯定应答(Hybrid Automatic Repeat reQuest–ACKnowledge,HARQ-ACK)的预期传输结束之后。
或者说,如果终端设备收到网络设备调度第一HARQ进程传输的第一PDSCH,在该终端设备向该网络设备发送该第一PDSCH对应的第一HARQ-ACK反馈信息的传输结束之前,该终端设备不期待再次接收到该网络设备调度该第一HARQ进程传输的第二PDSCH。其中,该终端设备向该网络设备发送该第一HARQ-ACK反馈信息的传输时序是根据HARQ反馈时序集合和HARQ反馈定时值K1中的至少一项确定的,其中,HARQ反馈时序集合可以是预设的或网络设备配置的,HARQ反馈定时值K1为HARQ反馈时序集合中的值。
图6为本申请实施例提供的一种HARQ-ACK反馈信息的传输示意图,如图6所示,HARQ ID x对应第一HARQ进程,终端设备收到网络设备调度HARQ ID x对应第一HARQ进程传输的第一PDSCH的情况下,通过传输时序K1向网络设备发送第一PDSCH对应的HARQ-ACK反馈信息。其中,HARQ-ACK反馈信息传输完成的时间,即为HARQ ID x可被重用的最早时间,在HARQ-ACK反馈信息传输完成的时间之后,终端设备可以收到网络设备调度HARQ ID x对应第一HARQ进程传输的第二PDSCH。从图6中可以看出:HARQ-ACK反馈信息传输完成的时间为HARQ ID x可被重用的最早时间。
在NTN系统中,终端设备的下行HARQ进程可以被配置为两种模式,该两种模式分别对应HARQ-ACK反馈使能或HARQ-ACK反馈去使能。在终端设备的某个下行HARQ进程被配置HARQ-ACK反馈去使能的情况下,对于该下行(DownLink,DL)HARQ进程调度的传输,该终端设备可以不反馈该下行HARQ进程对应的HARQ-ACK信息。本申请的一些实施例中,被配置HARQ-ACK反馈去使能的下行HARQ进程也称为禁用HARQ反馈的下行HARQ进程。相应地,对于该被配置HARQ-ACK反馈去使能的下行HARQ进程,在调度时有如下限制:
假设第一HARQ进程被配置为HARQ-ACK反馈去使能。如果终端设备收到网络设备调度第一HARQ进程传输的第一PDSCH,从该第一PDSCH接收的结束时刻开始到第一时长结束之前,该终端设备不期待再次接收到该网络设备调度使用该第一HARQ进程传输第二PDSCH的第一物理下行控制信道(Physical Downlink Control Channel,PDCCH)。
可选地,该第一时长的长度为T_proc,1,T_proc,1是根据PDSCH译码时间N1值(单位为符号)确定的。
其中,第一PDSCH可以为一个PDSCH或为一组时隙聚合PDSCH(slot-aggregated PDSCH)。
其中,第二PDSCH可以为一个PDSCH或为一组时隙聚合PDSCH。
其中,第一PDSCH与第二PDSCH的传输块(Transport Block,TB)可以相同或者不同。
其中,UE的处理能力1和处理能力2分别对应不同的处理能力,或者说,UE的处理能力1对应的N1值和UE的处理能力2对应的N1值不同。其中,不同子载波间隔下N1的取值不同。
作为示例而非限定,T proc,1=(N 1+d 1,1+d 2)(2048+144)·κ2 ·T C+T ext。需要说明的是,T proc,1与T_proc,1作同一理解,T_proc,1的计算方式可以是协议规定的,或者,根据演进的协议规定的,本申请实施例对T_proc,1的计算方式不作限制。
图7为本申请实施例提供的另一种HARQ-ACK反馈信息的传输示意图,如图7所示,HARQ ID x对应第一HARQ进程,终端设备收到网络设备调度HARQ ID x对应第一HARQ进程传输的第一PDSCH的情况下,在从该第一PDSCH接收的结束时刻开始到第一时长例如T_proc,1结束的时间,即是调度HARQ ID x的DCI可被收到的最早时间。在第一时长结束的时间之后,终端设备可以接收到第一DCI,并确定第一DCI调度的HARQ ID x对应第一HARQ进程传输的第二PDSCH。
在NTN系统中,半持续调度(Semi-Persistent Scheduling,SPS)配置激活对应的HARQ-ACK反馈可以是网络设备通过无线资源控制(Radio Resource Control,RRC)配置使能的。
在一些实施例中,当网络设备通过RRC配置使能SPS配置激活对应的HARQ-ACK反馈时,无论 SPS配置激活后的第一个SPS PDSCH对应的HARQ进程被配置为HARQ-ACK反馈使能还是HARQ-ACK反馈去使能,终端设备都需要上报该SPS配置激活后的第一个SPS PDSCH对应的ACK或NACK信息。
在另一些实施例中,当网络设备未通过RRC配置使能SPS配置激活对应的HARQ-ACK反馈,或网络设备通过RRC配置不使能SPS配置激活对应的HARQ-ACK反馈时,当SPS配置激活后的第一个SPS PDSCH对应的HARQ进程被配置为HARQ-ACK反馈使能时,终端设备上报该SPS配置激活后的第一个SPS PDSCH对应的ACK或NACK信息;当SPS配置激活后的第一个SPS PDSCH对应的HARQ进程被配置为HARQ-ACK反馈去使能时,终端设备不上报该SPS配置激活后的第一个SPS PDSCH对应的ACK或NACK信息。
当SPS配置激活后,对于除第一个SPS PDSCH外的其他SPS PDSCH,当该SPS PDSCH对应的HARQ进程被配置为HARQ-ACK反馈使能时,终端设备上报该SPS PDSCH对应的ACK或NACK信息;当该SPS PDSCH对应的HARQ进程被配置为HARQ-ACK反馈去使能时,终端设备不上报该SPS PDSCH对应的ACK或NACK信息。
然而,在NTN系统中,由于第一个SPS PDSCH在一些情况下会反馈对应的HARQ-ACK信息,在另一些情况下不会反馈对应的HARQ-ACK信息。因此,如何确定SPS PDSCH的调度限制,是待解决的问题。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。上述方案作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图8为本申请实施例提供的一种通信方法的流程示意图,如图8所示,该方法包括:
S801、终端设备接收到网络设备调度第一混合自动重传请求HARQ进程传输的第一物理下行共享信道PDSCH。
在一些实施例中,所述第一PDSCH为半持续调度SPS配置激活后的第一个PDSCH。在这种情况下,第一PDSCH可以是PDCCH激活的,或者可以说第一PDSCH是对应或关联PDCCH的SPS PDSCH。
在一些实施例中,所述第一PDSCH是PDCCH调度的。
在一些实施例中,所述第一PDSCH是不对应PDCCH的SPS PDSCH。在这种情况下,第一PDSCH的资源可以是预配置的,且第一PDSCH不对应或者不关联PDCCH,或者说,第一PDSCH不是SPS配置激活后的第一个PDSCH。
需要说明的是,对于被激活的SPS配置来说,SPS配置激活后的第一个PDSCH可以是对应或关联PDCCH的PDSCH,除第一个PDSCH之外的其它PDSCH都不是对应或关联PDCCH的PDSCH,也可以说除第一个PDSCH之外的其它PDSCH是不对应PDCCH的SPS PDSCH。例如,除第一个PDSCH之外的其它PDSCH可以对应或关联RRC。
可选地,第一HARQ进程可以被配置为混合自动重传请求-肯定应答HARQ-ACK反馈使能,或者,第一HARQ进程可以被配置为HARQ-ACK反馈去使能。
在一些实施方式中,HARQ-ACK可以包括ACK和否定应答(Negative ACKnowledgement,NACK),或者,HARQ-ACK可以包括ACK和NACK中的一种。
S803、所述终端设备在第一时间范围内,不期待接收到所述网络设备调度所述第一HARQ进程传输的第二PDSCH,或者,不期待接收到第一物理下行控制信道PDCCH,其中,所述第一PDCCH用于所述网络设备调度所述第一HARQ进程传输第二PDSCH。
在一些实施例中,S803的一种实施方式可以包括:终端设备在第一时间范围内不监听或监听不到或者检测不到网络设备发送的第二PDSCH或者第一PDCCH。
通过这种方式,网络设备在向终端设备发送第一PDSCH的情况下,网络设备在第二时间范围内不会向终端设备发送第二PDSCH或者第一PDCCH,而终端设备在第一时间范围内不监听或监听不到或者检测不到网络设备发送的第二PDSCH或者第一PDCCH,从而可以避免终端设备在不期待接收到第二PDSCH或者第一PDCCH的情况下,网络设备还向终端设备调度第二PDSCH或者第一PDCCH,而导致资源的浪费的情况发生。
在另一些实施例中,S803的一种实施方式可以包括:终端设备可以在第一时间范围内监听到或者检测到网络设备发送的第一PDCCH,但是终端设备可以不接收监听到或者检测到的第一PDCCH调度的第二PDSCH,或者,终端设备可以不响应或忽略监听到或者检测到的第二PDSCH或者第一PDCCH。
通过这种方式,网络设备在向终端设备发送第一PDSCH的情况下,网络设备在第二时间范围内还会向终端设备发送第二PDSCH或者第一PDCCH,从而终端设备在第一时间范围内能够监听或者检测到网络设备发送了第二PDSCH或者第一PDCCH,但是终端设备可以不接收第二PDSCH,从而无需改 变网络设备发送第二PDSCH或者第一PDCCH的配置。
在本申请实施例中,终端设备接收到网络设备调度第一混合自动重传请求HARQ进程传输的第一物理下行共享信道PDSCH;所述终端设备在第一时间范围内,不期待接收到所述网络设备调度所述第一HARQ进程传输的第二PDSCH,或者,不期待接收到第一物理下行控制信道PDCCH,其中,所述第一PDCCH用于所述网络设备调度所述第一HARQ进程传输第二PDSCH。这样,可以对PDSCH的调度进行限制,避免终端设备在接收PDSCH时出现乱序的情况。
在一些实施例中,所述第一时间范围的起始时刻为:所述第一PDSCH接收的结束时刻。在一些实施例中,所述第一时间范围的结束时刻为:所述终端设备向所述网络设备发送所述第一PDSCH对应的第一混合自动重传请求-确认HARQ-ACK反馈信息的传输结束时刻。可选地,在这种情况下,终端设备向网络设备发送第一PDSCH对应的第一HARQ-ACK反馈信息。即终端设备在接收到第一PDSCH的情况下,向网络设备发送第一PDSCH对应的HARQ-ACK反馈信息。
可选地,HARQ-ACK反馈信息的传输结束时刻可以基于时间提前量(Timing Advance,TA)确定。例如,终端设备在时间n接收到第一PDSCH,终端设备可以确定在时间n间隔指定时长T0的时间反馈第一PDSCH对应的第一HARQ-ACK反馈信息,考虑到TA,终端设备可以在时间n+T0-TA发送第一PDSCH对应的HARQ-ACK反馈信息。可选地,此处的时间n、时间n间隔指定时长T0的时间和时间n+T0-TA,可以指的是符号、时隙、迷你时隙、子帧或无线帧。
可选地,HARQ-ACK反馈信息的传输结束时刻是基于终端设备的上行时序确定的。
可选地,HARQ-ACK反馈信息在另一些实施例中可以称为HARQ-ACK反馈、HARQ反馈或者HARQ进程反馈等。
在一些实施例中,所述第一HARQ进程被配置HARQ-ACK反馈去使能,或者,所述第一HARQ进程被配置HARQ-ACK反馈使能。
以下对第一HARQ进程被配置HARQ-ACK反馈去使能或HARQ-ACK反馈使能所对应的第一时间范围分别进行举例说明:
在一些实施方式中,在第一HARQ进程被配置HARQ-ACK反馈去使能的情况下,所述第一时间范围的起始时刻为:所述第一PDSCH接收的结束时刻,所述第一时间范围的结束时刻为:所述终端设备向所述网络设备发送所述第一PDSCH对应的第一混合自动重传请求-确认HARQ-ACK反馈信息的传输结束时刻。
示例性地,在第一HARQ进程被配置HARQ-ACK反馈去使能的情况下,无论所述终端设备被配置使能半持续调度SPS配置激活对应HARQ-ACK反馈,还是所述终端设备未被配置使能SPS配置激活对应HARQ-ACK反馈,所述第一时间范围的起始时刻为:所述第一PDSCH接收的结束时刻,所述第一时间范围的结束时刻为:所述终端设备向所述网络设备发送所述第一PDSCH对应的第一混合自动重传请求-确认HARQ-ACK反馈信息的传输结束时刻。
在一些实施例中,在所述第一HARQ进程被配置HARQ-ACK反馈使能的情况下,所述第一时间范围的起始时刻为:所述第一PDSCH接收的结束时刻,所述第一时间范围的结束时刻为:所述终端设备向所述网络设备发送所述第一PDSCH对应的第一混合自动重传请求-确认HARQ-ACK反馈信息的传输结束时刻。
示例性地,在所述第一HARQ进程被配置HARQ-ACK反馈使能的情况下,无论所述终端设备被配置使能半持续调度SPS配置激活对应HARQ-ACK反馈,还是所述终端设备未被配置使能SPS配置激活对应HARQ-ACK反馈,所述第一时间范围的起始时刻为:所述第一PDSCH接收的结束时刻,所述第一时间范围的结束时刻为:所述终端设备向所述网络设备发送所述第一PDSCH对应的第一混合自动重传请求-确认HARQ-ACK反馈信息的传输结束时刻。
在一些实施例中,不仅需要考虑第一HARQ进程配置的是:HARQ-ACK反馈使能,或者,HARQ-ACK反馈去使能,还需要考虑终端设备:被配置使能SPS配置激活对应HARQ-ACK反馈,或者,未被配置使能SPS配置激活对应HARQ-ACK反馈。
在一些实施方式中,如果终端设备被配置使能SPS配置激活对应HARQ-ACK反馈和第一HARQ进程对应HARQ-ACK反馈使能中的至少一项,则终端设备确定需要向网络设备发送第一HARQ-ACK反馈信息,这样,所述第一时间范围的起始时刻为:所述第一PDSCH接收的结束时刻,所述第一时间范围的结束时刻为:所述终端设备向所述网络设备发送所述第一PDSCH对应的第一混合自动重传请求-确认HARQ-ACK反馈信息的传输结束时刻。
在一些实施例中,如果所述终端设备被配置使能半持续调度SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈使能,所述第一时间范围的起始时刻为:所述第一PDSCH接收的结束时刻,所述第一时间范围的结束时刻为:所述终端设备向所述网络设备发送所述第 一PDSCH对应的第一混合自动重传请求-确认HARQ-ACK反馈信息的传输结束时刻。
在另一些实施例中,如果所述终端设备被配置使能SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈去使能,所述第一时间范围的起始时刻为:所述第一PDSCH接收的结束时刻,所述第一时间范围的结束时刻为:所述终端设备向所述网络设备发送所述第一PDSCH对应的第一混合自动重传请求-确认HARQ-ACK反馈信息的传输结束时刻。
在又一些实施例中,如果所述终端设备未被配置使能SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈使能,所述第一时间范围的起始时刻为:所述第一PDSCH接收的结束时刻,所述第一时间范围的结束时刻为:所述终端设备向所述网络设备发送所述第一PDSCH对应的第一混合自动重传请求-确认HARQ-ACK反馈信息的传输结束时刻。
在再一些实施例中,如果所述第一PDSCH对应第一HARQ-ACK反馈,所述第一时间范围的起始时刻为:所述第一PDSCH接收的结束时刻,所述第一时间范围的结束时刻为:所述终端设备向所述网络设备发送所述第一PDSCH对应的第一混合自动重传请求-确认HARQ-ACK反馈信息的传输结束时刻。
可选地,所述第一PDSCH对应第一HARQ-ACK反馈,可以理解为终端设备需要向网络设备发送第一HARQ-ACK反馈信息。其中,第一PDSCH是通过第一HARQ进程传输的,第一HARQ-ACK反馈信息可以是终端设备根据第一PDSCH的译码结果确定的,或者网络设备向终端设备配置的预设值例如ACK或NACK。
可选地,终端设备向网络设备发送所述第一PDSCH对应的第一HARQ-ACK反馈信息的传输时序,可以是终端设备预先配置的,或者可以是网络设备配置的,或者是协议规定的,或者可以是终端设备计算得到的,或者可以是网络设备计算得到并向终端设备配置的。终端设备可以基于第一HARQ-ACK反馈信息的传输时序确定第一时间范围的结束时刻。
在一些实施例中,终端设备向所述网络设备发送所述第一HARQ-ACK反馈信息的传输时序,可以是终端设备确定的。例如,所述终端设备向所述网络设备发送所述第一HARQ-ACK反馈信息的传输时序是根据以下至少一项确定的:HARQ反馈时序集合、偏移值Koffset、HARQ反馈定时值K1。
可选地,第一HARQ-ACK反馈信息的传输时序可以是减去时间提前量的值,例如,第一HARQ-ACK反馈信息的传输时序可以是上述的时长T0-TA,或者,可以是没有减去时间提前量的值,例如,第一HARQ-ACK反馈信息的传输时序可以是上述的时长T0。
可选地,HARQ反馈时序集合可以是终端设备预设的,或所述网络设备配置的,或者协议规定的。HARQ反馈时序集合可以包括一个或多个HARQ反馈定时值K1,一个或多个时序中每个时序的单位可以是子帧、时隙,迷你时隙或者符号等。
可选地,偏移值Koffset是NTN网络配置的值。偏移值Koffset可以是小区公共偏移值,小区公共偏移值可以是网络设备广播的,或者,偏移值Koffset可以是终端设备的专用偏移值,终端设备的专用偏移值可以是网络设备向终端设备配置的,或者终端设备的专用偏移值可以是终端设备基于网络设备配置的偏移值增量确定的。
可选地,HARQ反馈定时值K1可以是网络设备向终端设备配置的,或者终端设备预设的,或者协议约定的,或者终端设备计算得到的,或者网络设备计算得到并向终端设备配置的。
在另一些实施例中,所述第一时间范围的起始时刻为:所述第一PDSCH接收的结束时刻;所述第一时间范围对应的时长为第一时长。可选地,在这种情况下,终端设备不向网络设备发送第一PDSCH对应的第一HARQ-ACK反馈信息。
可选地,第一时长可以为上述的T_proc,1。
在一些实施例中,所述第一HARQ进程被配置HARQ-ACK反馈去使能,或者,所述第一HARQ进程被配置HARQ-ACK反馈使能。
以下对第一HARQ进程被配置HARQ-ACK反馈去使能或HARQ-ACK反馈使能所对应的第一时间范围分别进行举例说明:
在一些实施例中,在第一HARQ进程被配置HARQ-ACK反馈去使能的情况下,所述第一时间范围的起始时刻为:所述第一PDSCH接收的结束时刻;所述第一时间范围对应的时长为第一时长。
示例性地,在第一HARQ进程被配置HARQ-ACK反馈去使能的情况下,无论所述终端设备被配置使能半持续调度SPS配置激活对应HARQ-ACK反馈,还是所述终端设备未被配置使能SPS配置激活对应HARQ-ACK反馈,所述第一时间范围的起始时刻为:所述第一PDSCH接收的结束时刻;所述第一时间范围对应的时长为第一时长。
在一些实施例中,在所述第一HARQ进程被配置HARQ-ACK反馈使能的情况下,所述第一时间范围的起始时刻为:所述第一PDSCH接收的结束时刻;所述第一时间范围对应的时长为第一时长。
示例性地,在所述第一HARQ进程被配置HARQ-ACK反馈使能的情况下,无论所述终端设备被 配置使能半持续调度SPS配置激活对应HARQ-ACK反馈,还是所述终端设备未被配置使能SPS配置激活对应HARQ-ACK反馈,所述第一时间范围的起始时刻为:所述第一PDSCH接收的结束时刻;所述第一时间范围对应的时长为第一时长。
在一些实施例中,不仅需要考虑第一HARQ进程配置的是:HARQ-ACK反馈使能,或者,HARQ-ACK反馈去使能,还需要考虑终端设备:被配置使能SPS配置激活对应HARQ-ACK反馈,或者,未被配置使能SPS配置激活对应HARQ-ACK反馈。
在一些实施方式中,如果终端设备未被配置使能SPS配置激活对应HARQ-ACK反馈以及第一HARQ进程也没有被配置为需要进行HARQ-ACK反馈,则终端设备可以确定不需要向网络设备发送第一HARQ-ACK反馈信息,这样,所述第一时间范围的起始时刻为:所述第一PDSCH接收的结束时刻;所述第一时间范围对应的时长为第一时长。
在一些实施例中,如果所述终端设备未被配置使能SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈去使能,所述第一时间范围的起始时刻为:所述第一PDSCH接收的结束时刻;所述第一时间范围对应的时长为第一时长。
在另一些实施例中,如果所述第一PDSCH不对应第一HARQ-ACK反馈,所述第一时间范围的起始时刻为:所述第一PDSCH接收的结束时刻;所述第一时间范围对应的时长为第一时长。
可选地,所述第一PDSCH不对应第一HARQ-ACK反馈,可以理解为终端设备不需要向网络设备发送第一HARQ-ACK反馈信息。所述第一PDSCH不对应第一HARQ-ACK反馈,可以是终端设备自行确定的,或者网络设备向终端设备配置的。
在一些可行的其它实施例中,如果终端设备和第一HARQ进程中,一者被配置为需要进行HARQ-ACK反馈,另一者没有被配置为需要进行HARQ-ACK反馈,终端设备确定不需要向网络设备发送第一HARQ-ACK反馈信息,这样,所述第一时间范围的起始时刻为:所述第一PDSCH接收的结束时刻;所述第一时间范围对应的时长为第一时长。
可选地,终端设备和第一HARQ进程中,一者被配置为需要进行HARQ-ACK反馈,另一者没有被配置为需要进行HARQ-ACK反馈,可以包括:所述终端设备被配置使能SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈去使能,或者,所述终端设备未被配置使能SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈使能。
在一些实施例中,所述第一时长根据以下至少之一确定:所述终端设备的处理能力、子载波间隔、所述第一PDSCH的译码时长。
可选地,第一PDSCH的译码时长N1的单位可以为符号。可选地,不同处理能力的终端设备对应的第一PDSCH的译码时长N1可以不同。示例性地,终端设备的处理能力1和处理能力2分别对应不同的处理能力,终端设备的处理能力1对应的N1值和终端设备的处理能力2对应的N1值不同。可选地,不同子载波间隔下对应的第一PDSCH的译码时长N1可以不同。
可选地,第一PDSCH的译码时长可以是终端设备预设的,或者网络设备向终端设备配置的,或者协议规定的,或者终端设备计算的,或者网络设备计算并向终端设备配置的。
在一些实施方式中,使能半持续调度SPS配置激活对应HARQ-ACK反馈可以是RRC配置的。所述网络设备可以通过无线资源控制RRC配置使能SPS配置激活对应的HARQ-ACK反馈。
可选地,所述终端设备被配置使能SPS配置激活对应HARQ-ACK反馈,包括:所述终端设备被网络设备通过RRC配置使能SPS配置激活对应HARQ-ACK反馈。
可选地,所述终端设备未被配置使能SPS配置激活对应HARQ-ACK反馈,包括:所述终端设备被网络设备通过RRC配置去使能SPS配置激活对应HARQ-ACK反馈;或者,所述终端设备未被网络设备配置用于使能SPS配置激活对应HARQ-ACK反馈的RRC信令。
通过这种方式,网络设备可以通过RRC配置,使能SPS配置激活对应的HARQ-ACK反馈。与SPS PDSCH相关联的HARQ进程的反馈可以通过RRC配置的每个SPS配置(RRC configuration per SPS configuration)启用或禁用。其中,激活对应的HARQ-ACK反馈,可以包括:启用HARQ-ACK反馈或者禁用HARQ-ACK反馈;启用HARQ-ACK反馈可以对应HARQ-ACK反馈使能,禁用HARQ-ACK反馈可以对应HARQ-ACK反馈去使能。
在一些实施例中,所述不期待接收到所述网络设备调度所述第一HARQ进程传输的第二PDSCH,包括:当所述终端设备被所述网络设备调度在所述第一时间范围内使用所述第一HARQ进程接收所述第二PDSCH时,所述终端设备不接收所述第二PDSCH。在这种情况下,终端设备能够监听到或检测到调度第二PDSCH的第一PDCCH或者通过预配置可以知道第一时间范围内包括用于传输第二PDSCH的资源,但是终端设备不接收第二PDSCH。
在另一些实施例中,所述不期待接收到第一物理下行控制信道PDCCH,包括:当所述终端设备被 所述网络设备调度在所述第一时间范围内接收所述第一PDCCH时,所述终端设备不接收所述第一PDCCH调度的第二PDSCH。在这种情况下,终端设备能够监听或检测到第一PDCCH,但是终端设备不接收第一PDCCH调度的第二PDSCH。
在一些实施例中,所述第二PDSCH是PDCCH调度的。
在一些实施例中,所述第二PDSCH是不对应PDCCH的SPS PDSCH。在这种情况下,第二PDSCH可以是预配置的,第二PDSCH不是SPS配置激活后的第一个PDSCH。
在一些实施例中,所述方法还包括:
在第二HARQ进程被配置HARQ-ACK反馈使能的情况下,所述终端设备接收到所述网络设备调度所述第二HARQ进程传输的第三PDSCH;所述第三PDSCH是不对应PDCCH的SPS PDSCH;
所述终端设备在所述第三PDSCH接收的结束时刻开始,到向所述网络设备发送所述第三PDSCH对应的第二HARQ-ACK反馈信息的传输结束时刻之前,不期待接收到所述网络设备调度所述第二HARQ进程传输的第四PDSCH,或者,不期待接收到第二PDCCH,其中,所述第二PDCCH用于所述网络设备调度所述第二HARQ进程传输第四PDSCH。
在一些实施例中,所述方法还包括:
在第二HARQ进程被配置HARQ-ACK反馈去使能的情况下,所述终端设备接收到所述网络设备调度所述第二HARQ进程传输的第三PDSCH;所述第三PDSCH是不对应PDCCH的SPS PDSCH;
所述终端设备从所述第三PDSCH接收的结束时刻开始到第二时长结束之前,不期待接收到所述网络设备调度所述第二HARQ进程传输的第四PDSCH,或者,不期待接收到第二PDCCH,其中,所述第二PDCCH用于所述网络设备调度所述第二HARQ进程传输第四PDSCH。
在一些实施例中,第一时长和第二时长为相同的时长。
在一些实施例中,第一时间范围和第二时间范围为相同的时间范围。
可选地,第二HARQ进程可以是在第一HARQ进程之后的HARQ进程。
可选地,本申请实施例中的第二HARQ进程可以为SPS配置激活后除第一个SPS PDSCH以外的其它至少一个SPS PDSCH对应的HARQ进程。
可选地,第一时间范围可以是一个连续的时间范围。第一时间范围的起始时刻可以为第一时刻,第一时间范围的结束时刻(或者称末尾时刻)可以为第一时刻之后的第二时刻,第二时刻与第一时刻之间的时长可以为特定时长。第一时间范围内可以包括第一时刻,或者,第一时间范围内可以不包括第一时刻。第一时间范围内可以包括第二时刻,或者,第一时间范围内可以不包括第二时刻。
可选地,第一时间范围的起始时刻可以为第一PDSCH接收的结束时刻。第一时间范围对应的特定时长可以是以下之一:终端设备预设的,网络设备向终端设备配置的、协议规定的、是终端设备计算得到的,网络设备计算得到并向终端设备配置的。
可选地,终端设备可以在第一时刻开启或重启时长为特定时长的定时器,在该定时器的运行期间,终端设备不期待接收到第二PDSCH或者不期待接收到第一PDCCH。
可选地,第二时间范围可以是一个连续的时间范围,第二时间范围的起始时刻可以为第三时刻,第二时间范围的结束时刻(或者称末尾时刻)可以为第三时刻之后的第四时刻,第四时刻与第三时刻之间的时长可以为目标时长。在一些实施例中,第二时间范围对应的目标时长可以与第一时间范围对应的特定时长相同,或者,第二时间范围对应的目标时长可以大于第一时间范围对应的特定时长。第二时间范围内可以包括第三时刻,或者,第二时间范围内可以不包括第三时刻。第二时间范围内可以包括第四时刻,或者,第二时间范围内可以不包括第四时刻。
可选地,第一时间范围和/或第二时间范围的起始时刻和/或结束时刻可以用以下至少之一表示:符号、时隙或者子帧,例如,第一时间范围和/或第二时间范围的起始时刻可以为以下之一:起始符号、起始时隙或起始子帧,第一时间范围和/或第二时间范围的结束时刻可以为以下之一:结束符号、结束时隙或结束子帧。示例性地,第一时间范围和/或第二时间范围的起始时刻可以为起始符号,第一时间范围和/或第二时间范围的结束时刻可以为结束符号。
以下对网络设备所对应通信方法进行说明:
图9为本申请实施例提供的一种通信方法的流程示意图,如图9所示,该方法包括:
S901、网络设备向终端设备发送调度第一混合自动重传请求HARQ进程传输的第一物理下行共享信道PDSCH。
在一些实施例中,所述第一PDSCH为半持续调度SPS配置激活后的第一个PDSCH。
在一些实施例中,所述第一PDSCH是PDCCH调度的。
在一些实施例中,所述第一PDSCH是不对应PDCCH的SPS PDSCH。
S903、所述网络设备在第二时间范围内,不期待向所述终端设备发送调度所述第一HARQ进程传 输的第二PDSCH,或者,不期待向所述终端设备发送第一物理下行控制信道PDCCH,其中,所述第一PDCCH用于所述网络设备调度所述第一HARQ进程传输第二PDSCH。
不期待向所述终端设备发送调度所述第一HARQ进程传输的第二PDSCH,或者,不期待向所述终端设备发送第一物理下行控制信道PDCCH,可以包括以下两种情况:
第一种:网络设备可以在向终端设备发送第一PDSCH的情况下,网络设备在第二时间范围内不向终端设备发送调度第一HARQ进程传输的第二PDSCH,或者,不向终端设备发送第一PDCCH。其中,第二时间范围的起始时刻可以为第一PDSCH发送的结束时刻。这样,S903中的不期待向所述终端设备发送调度所述第一HARQ进程传输的第二PDSCH,或者,不期待向所述终端设备发送第一PDCCH,包括:不向终端设备发送调度所述第一HARQ进程传输的第二PDSCH,或者,不向终端设备发送第一PDCCH。
第二种:网络设备可以在向终端设备发送第一PDSCH的情况下,网络设备可以在第二时间范围内向终端设备发送调度第一HARQ进程传输的第二PDSCH,或者,向终端设备发送第一PDCCH,但是终端设备在监听或者检测到第二PDSCH或者第一PDCCH的情况下,不接收第二PDSCH或者第一PDCCH。网络设备在第二时间范围内向终端设备发送第二PDSCH或者第一PDCCH,可以基于预先配置或协议规定而发送的。这样,S903中的不期待向所述终端设备发送调度所述第一HARQ进程传输的第二PDSCH,或者,不期待向所述终端设备发送第一PDCCH,包括:向终端设备发送调度所述第一HARQ进程传输的第二PDSCH,或者,向终端设备发送第一PDCCH,但是网络设备不期待接收第二PDSCH对应的第三HARQ-ACK反馈信息。即网络设备向终端设备发送第二PDSCH或者第一PDCCH的情况下,终端设备不接收该第二PDSCH或者第一PDCCH,从而终端设备不向网络设备发送第二PDSCH对应的第三HARQ-ACK反馈信息,从而网络设备接收不到第二PDSCH对应的第三HARQ-ACK反馈信息。
在一些实施例中,所述第二时间范围的起始时刻为:所述第一PDSCH发送的结束时刻。在一些实施例中,所述第二时间范围的结束时刻为:所述网络设备接收所述终端设备发送的所述第一PDSCH对应的第一混合自动重传请求-确认HARQ-ACK反馈信息的传输结束时刻。
可选地,HARQ-ACK反馈信息的传输结束时刻是基于网络设备的上行时序确定的。
在一些实施例中,所述第二时间范围的起始时刻为:所述第一PDSCH发送的结束时刻。在一些实施例中,所述第二时间范围的结束时刻为:所述网络设备确定的所述终端设备发送所述第一PDSCH对应的第一混合自动重传请求-确认HARQ-ACK反馈信息的传输结束时刻。
可选地,HARQ-ACK反馈信息的传输结束时刻是基于终端设备的上行时序确定的。
在一些实施例中,所述第一HARQ进程被配置HARQ-ACK反馈去使能,或者,所述第一HARQ进程被配置HARQ-ACK反馈使能。
以下对第一HARQ进程被配置HARQ-ACK反馈去使能或HARQ-ACK反馈使能所对应的第二时间范围分别进行举例说明:
在一些实施例中,在第一HARQ进程被配置HARQ-ACK反馈去使能的情况下,所述第二时间范围的起始时刻为:所述第一PDSCH发送的结束时刻;所述第二时间范围的结束时刻为:所述网络设备接收所述终端设备发送的所述第一PDSCH对应的第一混合自动重传请求-确认HARQ-ACK反馈信息的传输结束时刻。
示例性地,在第一HARQ进程被配置HARQ-ACK反馈去使能的情况下,无论所述终端设备被配置使能半持续调度SPS配置激活对应HARQ-ACK反馈,还是所述终端设备未被配置使能SPS配置激活对应HARQ-ACK反馈,所述第二时间范围的起始时刻为:所述第一PDSCH发送的结束时刻;所述第二时间范围的结束时刻为:所述网络设备接收所述终端设备发送的所述第一PDSCH对应的第一混合自动重传请求-确认HARQ-ACK反馈信息的传输结束时刻。
在一些实施例中,在所述第一HARQ进程被配置HARQ-ACK反馈使能的情况下,所述第二时间范围的起始时刻为:所述第一PDSCH发送的结束时刻;所述第二时间范围的结束时刻为:所述网络设备接收所述终端设备发送的所述第一PDSCH对应的第一混合自动重传请求-确认HARQ-ACK反馈信息的传输结束时刻。
示例性地,在所述第一HARQ进程被配置HARQ-ACK反馈使能的情况下,无论所述终端设备被配置使能半持续调度SPS配置激活对应HARQ-ACK反馈,还是所述终端设备未被配置使能SPS配置激活对应HARQ-ACK反馈,所述第二时间范围的起始时刻为:所述第一PDSCH发送的结束时刻;所述第二时间范围的结束时刻为:所述网络设备接收所述终端设备发送的所述第一PDSCH对应的第一混合自动重传请求-确认HARQ-ACK反馈信息的传输结束时刻。
在一些实施例中,不仅需要考虑第一HARQ进程配置的是:HARQ-ACK反馈使能,或者, HARQ-ACK反馈去使能,还需要考虑终端设备:被配置使能SPS配置激活对应HARQ-ACK反馈,或者,未被配置使能SPS配置激活对应HARQ-ACK反馈。
在一些实施例中,如果所述网络设备配置所述终端设备使能半持续调度SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈使能,所述第二时间范围的起始时刻为:所述第一PDSCH发送的结束时刻,所述第二时间范围的结束时刻为:所述网络设备接收所述终端设备发送的所述第一PDSCH对应的第一混合自动重传请求-确认HARQ-ACK反馈信息的传输结束时刻。
在另一些实施例中,如果所述网络设备配置所述终端设备使能SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈去使能,所述第二时间范围的起始时刻为:所述第一PDSCH发送的结束时刻,所述第二时间范围的结束时刻为:所述网络设备接收所述终端设备发送的所述第一PDSCH对应的第一混合自动重传请求-确认HARQ-ACK反馈信息的传输结束时刻。
在又一些实施例中,如果所述网络设备未配置所述终端设备使能SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈使能,所述第二时间范围的起始时刻为:所述第一PDSCH发送的结束时刻,所述第二时间范围的结束时刻为:所述网络设备接收所述终端设备发送的所述第一PDSCH对应的第一混合自动重传请求-确认HARQ-ACK反馈信息的传输结束时刻。
在再一些实施例中,如果所述第一PDSCH对应第一HARQ-ACK反馈,所述第二时间范围的起始时刻为:所述第一PDSCH发送的结束时刻,所述第二时间范围的结束时刻为:所述网络设备接收所述终端设备发送的所述第一PDSCH对应的第一混合自动重传请求-确认HARQ-ACK反馈信息的传输结束时刻。
在一些实施例中,所述终端设备向所述网络设备发送所述第一HARQ-ACK反馈信息的传输时序是根据以下至少一项确定的:HARQ反馈时序集合、偏移值Koffset、HARQ反馈定时值K1。
在一些实施例中,所述第二时间范围的起始时刻为:所述第一PDSCH发送的结束时刻;所述第二时间范围对应的时长为第一时长。第一时长可以为上述的T_proc,1。
在一些实施例中,所述第一HARQ进程被配置HARQ-ACK反馈去使能,或者,所述第一HARQ进程被配置HARQ-ACK反馈使能。
以下对第一HARQ进程被配置HARQ-ACK反馈去使能或HARQ-ACK反馈使能所对应的第二时间范围分别进行举例说明:
在一些实施例中,在第一HARQ进程被配置HARQ-ACK反馈去使能的情况下,所述第二时间范围的起始时刻为:所述第一PDSCH发送的结束时刻;所述第二时间范围对应的时长为第一时长。
示例性地,在第一HARQ进程被配置HARQ-ACK反馈去使能的情况下,无论所述终端设备被配置使能半持续调度SPS配置激活对应HARQ-ACK反馈,还是所述终端设备未被配置使能SPS配置激活对应HARQ-ACK反馈,所述第二时间范围的起始时刻为:所述第一PDSCH发送的结束时刻;所述第二时间范围对应的时长为第一时长。
在一些实施例中,在所述第一HARQ进程被配置HARQ-ACK反馈使能的情况下,所述第二时间范围的起始时刻为:所述第一PDSCH发送的结束时刻;所述第二时间范围对应的时长为第一时长。
示例性地,在所述第一HARQ进程被配置HARQ-ACK反馈使能的情况下,无论所述终端设备被配置使能半持续调度SPS配置激活对应HARQ-ACK反馈,还是所述终端设备未被配置使能SPS配置激活对应HARQ-ACK反馈,所述第二时间范围的起始时刻为:所述第一PDSCH发送的结束时刻;所述第二时间范围对应的时长为第一时长。
在一些实施例中,不仅需要考虑第一HARQ进程配置的是:HARQ-ACK反馈使能,或者,HARQ-ACK反馈去使能,还需要考虑终端设备:被配置使能SPS配置激活对应HARQ-ACK反馈,或者,未被配置使能SPS配置激活对应HARQ-ACK反馈。
在一些实施例中,如果所述网络设备未配置所述终端设备使能SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈去使能,所述第二时间范围的起始时刻为:所述第一PDSCH发送的结束时刻;所述第二时间范围对应的时长为第一时长。
在另一些实施例中,如果所述第一PDSCH不对应第一HARQ-ACK反馈,所述第二时间范围的起始时刻为:所述第一PDSCH发送的结束时刻;所述第二时间范围对应的时长为第一时长。
在本申请的其它实施例中,如果所述网络设备配置所述终端设备使能SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈去使能,或者,如果所述网络设备未配置所述终端设备使能SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈使能,所述第二时间范围的起始时刻为:所述第一PDSCH发送的结束时刻;所述第二时间范围对应的时长为第一时长。
在一些实施例中,所述第一时长根据以下至少之一确定:所述终端设备的处理能力、子载波间隔、所述第一PDSCH的译码时长。
在一些实施例中,所述不期待向所述终端设备发送调度所述第一HARQ进程传输的第二PDSCH,包括:当所述网络设备在所述第二时间范围内向所述终端设备发送调度所述第一HARQ进程传输的所述第二PDSCH时,所述网络设备不接收所述第二PDSCH对应的第三HARQ-ACK反馈信息。
在一些实施例中,所述不期待向所述终端设备发送第一物理下行控制信道PDCCH,包括:当所述网络设备在所述第二时间范围内向所述终端设备发送所述第一PDCCH时,所述网络设备不接收所述第二PDSCH对应的第三HARQ-ACK反馈信息。
可选地,所述网络设备不接收所述第二PDSCH对应的第三HARQ-ACK反馈信息,可以是网络设备接收不到第二PDSCH对应的第三HARQ-ACK反馈信息。其中,网络设备可以在向终端设备发送第二PDSCH或者第一PDCCH之后的任一时间,都接收不到第二PDSCH对应的第三HARQ-ACK反馈信息。
在一些实施例中,所述第二PDSCH是PDCCH调度的。
在一些实施例中,所述第二PDSCH是不对应PDCCH的SPS PDSCH。
在一些实施例中,所述方法还包括:
在第二HARQ进程被配置HARQ-ACK反馈使能的情况下,所述网络设备向终端设备发送调度所述第二HARQ进程传输的第三PDSCH;所述第三PDSCH是不对应PDCCH的SPS PDSCH;
所述网络设备在所述第三PDSCH发送的结束时刻开始,到接收到所述终端设备发送的所述第三PDSCH对应的第二HARQ-ACK反馈信息的传输结束时刻之前,不期待向所述终端设备发送调度所述第二HARQ进程传输的第四PDSCH,或者,不期待向所述终端设备发送第二PDCCH,其中,所述第二PDCCH用于所述网络设备调度所述第二HARQ进程传输第四PDSCH。
在一些实施例中,所述方法还包括:
在第二HARQ进程被配置HARQ-ACK反馈去使能的情况下,所述网络设备向所述终端设备发送调度所述第二HARQ进程传输的第三PDSCH;所述第三PDSCH是不对应PDCCH的SPS PDSCH;
所述网络设备在所述第三PDSCH发送的结束时刻开始到第二时长结束之前,不期待向所述终端设备发送调度所述第二HARQ进程传输的第四PDSCH,或者,不期待向所述终端设备发送第二PDCCH,其中,所述第二PDCCH用于所述网络设备调度所述第二HARQ进程传输第四PDSCH。
在一些实施例中,第一时长和第二时长为相同的时长。
在一些实施例中,第一时间范围和第二时间范围为相同的时间范围。
以下说明本申请的通信方法的一些实施例:
需要说明的是,在以下实施例中,第一HARQ进程为SPS配置激活后的第一个SPS PDSCH对应的HARQ进程。第二HARQ进程为SPS配置激活后除第一个SPS PDSCH以外的其他至少一个SPS PDSCH对应的HARQ进程。
在一些实施例中,在网络设备通过RRC配置使能SPS配置激活对应的HARQ-ACK反馈的情况下,第一HARQ进程的调度限制满足:
如果终端设备收到网络设备调度第一HARQ进程传输的第一PDSCH,在该终端设备向该网络设备发送该第一PDSCH对应的第一HARQ-ACK反馈信息的传输结束之前,该终端设备不期待再次接收到该网络设备调度该第一HARQ进程传输的第二PDSCH,或者,该终端设备不期待接收到该网络设备再次调度该第一HARQ进程传输第二PDSCH的PDCCH(即上述的第一PDCCH)。其中,该终端设备向该网络设备发送该第一HARQ-ACK反馈信息的传输时序是根据HARQ反馈时序集合、偏移值Koffset和HARQ反馈定时值K1中的至少一项确定的,其中,HARQ反馈时序集合可以是预设的或网络设备配置的,HARQ反馈定时值K1为HARQ反馈时序集合中的值。
在这种实施例的一种可行的实施方式中,该第一HARQ进程被配置HARQ-ACK反馈去使能。
在这种实施例的一种可行的实施方式中,该第一HARQ进程被配置HARQ-ACK反馈使能。
在这种实施例的一种可行的实施方式中,该第一PDSCH是PDCCH调度的,该第二PDSCH不是PDCCH调度的。
在这种实施例的一种可行的实施方式中,该第一PDSCH不是PDCCH调度的,该第二PDSCH是PDCCH调度的。
在这种实施例的一种可行的实施方式中,该第一PDSCH是PDCCH调度的,该第二PDSCH是PDCCH调度的。
在这种实施例的一种可行的实施方式中,该第一PDSCH不是PDCCH调度的,该第二PDSCH不是PDCCH调度的。
图10为本申请实施例提供的一种第一HARQ进程的调度限制的示意图,如图10所示,网络设备可以向终端设备发送SPS配置激活后的第一个SPS PDSCH,以及除第一个SPS PDSCH之外的其它SPS PDSCH,第一个SPS PDSCH可以是调度第一HARQ进程(HARQ ID n)传输的。终端设备在接收到到第一个SPS PDSCH的情况下,可以向网络设备发送第一个SPS PDSCH对应的HARQ-ACK反馈信息。在一些实施例中,第一个SPS PDSCH可以是上述的第一PDSCH。在终端设备接收到第一个SPS PDSCH的结束时刻到发送HARQ-ACK反馈信息的结束时刻对应的时间范围内,终端设备不期待接收调度第一HARQ进程传输的另一个PDSCH。在图10的虚线所对应的时间之后,终端设备可以再收到调度HARQ ID n的DCI,或收到可再收到对应HARQ ID n的SPS PDSCH。
在一些实施例中,在网络设备通过RRC配置使能SPS配置激活对应的HARQ-ACK反馈的情况下,第一HARQ进程的调度限制满足:
当第一HARQ进程被配置HARQ-ACK反馈使能时,如果终端设备收到网络设备调度第一HARQ进程传输的第一PDSCH,在该终端设备向该网络设备发送该第一PDSCH对应的第一HARQ-ACK反馈信息的传输结束之前,该终端设备不期待再次接收到该网络设备调度该第一HARQ进程传输的第二PDSCH,或者,该终端设备不期待接收到该网络设备再次调度该第一HARQ进程传输第二PDSCH的PDCCH。其中,该终端设备向该网络设备发送该第一HARQ-ACK反馈信息的传输时序是根据HARQ反馈时序集合、偏移值Koffset和HARQ反馈定时值K1中的至少一项确定的,其中,HARQ反馈时序集合可以是预设的或网络设备配置的,HARQ反馈定时值K1为HARQ反馈时序集合中的值。和/或,
当第一HARQ进程被配置HARQ-ACK反馈去使能时,如果终端设备收到网络设备调度第一HARQ进程传输的第一PDSCH,从该第一PDSCH接收的结束时刻开始到第一时长结束之前,该终端设备不期待再次接收到该网络设备调度使用该第一HARQ进程传输第二PDSCH的第一PDCCH,或者,该终端设备不期待再次接收到该网络设备使用该第一HARQ进程传输第二PDSCH。
在这种实施例的一种可行的实施方式中,该第一PDSCH是PDCCH调度的,该第二PDSCH不是PDCCH调度的。
在这种实施例的一种可行的实施方式中,该第一PDSCH不是PDCCH调度的,该第二PDSCH是PDCCH调度的。
在这种实施例的一种可行的实施方式中,该第一PDSCH是PDCCH调度的,该第二PDSCH是PDCCH调度的。
在这种实施例的一种可行的实施方式中,该第一PDSCH不是PDCCH调度的,该第二PDSCH不是PDCCH调度的。
图11为本申请实施例提供的另一种第一HARQ进程的调度限制的示意图,如图11所示,网络设备可以向终端设备发送SPS配置激活后的第一个SPS PDSCH,以及除第一个SPS PDSCH之外的其它SPS PDSCH,第一个SPS PDSCH可以是调度第一HARQ进程(HARQ ID n)传输的。
当第一HARQ进程被配置HARQ-ACK反馈使能时,终端设备在接收到到第一个SPS PDSCH的情况下,可以向网络设备发送第一个SPS PDSCH对应的HARQ-ACK反馈信息。在一些实施例中,第一个SPS PDSCH可以是上述的第一PDSCH。在终端设备接收到第一个SPS PDSCH的结束时刻到发送HARQ-ACK反馈信息的结束时刻对应的时间范围内,终端设备不期待接收调度第一HARQ进程传输的另一个PDSCH。即当HARQ ID n被配置HARQ-ACK反馈使能时,在虚线之后可再收到调度HARQ ID n的DCI,或收到可再收到对应HARQ ID n的SPS PDSCH。
当第一HARQ进程被配置HARQ-ACK反馈去使能时,终端设备在接收到到第一个SPS PDSCH的情况下,可以不向网络设备发送第一个SPS PDSCH对应的HARQ-ACK反馈信息。在终端设备接收到第一个SPS PDSCH的结束时刻到第一时长T_proc,1对应的时间范围内,终端设备不期待接收调度第一HARQ进程传输的另一个PDSCH。即当HARQ ID n被配置HARQ-ACK反馈使能时,在点划线之后可再收到调度HARQ ID n的DCI,或收到可再收到对应HARQ ID n的SPS PDSCH。
在一些实施例中,在网络设备通过RRC配置使能SPS配置激活对应的HARQ-ACK反馈的情况下,第一HARQ进程的调度限制满足:
如果终端设备收到网络设备调度第一HARQ进程传输的第一PDSCH,从该第一PDSCH接收的结束时刻开始到第一时长结束之前,该终端设备不期待再次接收到该网络设备调度使用该第一HARQ进程传输第二PDSCH的第一PDCCH,或者,该终端设备不期待再次接收到该网络设备使用该第一HARQ进程传输第二PDSCH。
在这种实施例的一种可行的实施方式中,该第一HARQ进程被配置HARQ-ACK反馈去使能。
在这种实施例的一种可行的实施方式中,该第一HARQ进程被配置HARQ-ACK反馈使能。
在这种实施例的一种可行的实施方式中,该第一PDSCH是PDCCH调度的,该第二PDSCH不是 PDCCH调度的。
在这种实施例的一种可行的实施方式中,该第一PDSCH不是PDCCH调度的,该第二PDSCH是PDCCH调度的。
在这种实施例的一种可行的实施方式中,该第一PDSCH是PDCCH调度的,该第二PDSCH是PDCCH调度的。
在这种实施例的一种可行的实施方式中,该第一PDSCH不是PDCCH调度的,该第二PDSCH不是PDCCH调度的。
图12为本申请实施例提供的又一种第一HARQ进程的调度限制的示意图,如图12所示,网络设备可以向终端设备发送SPS配置激活后的第一个SPS PDSCH,以及除第一个SPS PDSCH之外的其它SPS PDSCH,第一个SPS PDSCH可以是调度第一HARQ进程(HARQ ID n)传输的。
终端设备在接收到到第一个SPS PDSCH的情况下,可以不向网络设备发送第一个SPS PDSCH对应的HARQ-ACK反馈信息。在终端设备接收到第一个SPS PDSCH的结束时刻到第一时长T_proc,1对应的时间范围内,终端设备不期待接收调度第一HARQ进程传输的另一个PDSCH。在图12的点划线所对应的时间之后,终端设备可以再收到调度HARQ ID n的DCI,或收到可再收到对应HARQ ID n的SPS PDSCH。
在一些实施例中,在网络设备没有通过RRC配置使能SPS配置激活对应的HARQ-ACK反馈的情况下:
当第一HARQ进程被配置HARQ-ACK反馈使能时,第一HARQ进程的调度限制满足:
如果终端设备收到网络设备调度第一HARQ进程传输的第一PDSCH,在该终端设备向该网络设备发送该第一PDSCH对应的第一HARQ-ACK反馈信息的传输结束之前,该终端设备不期待再次接收到该网络设备调度该第一HARQ进程传输的第二PDSCH,或者,该终端设备不期待接收到该网络设备再次调度该第一HARQ进程传输第二PDSCH的PDCCH。其中,该终端设备向该网络设备发送该第一HARQ-ACK反馈信息的传输时序是根据HARQ反馈时序集合、偏移值Koffset和HARQ反馈定时值K1中的至少一项确定的,其中,HARQ反馈时序集合可以是预设的或网络设备配置的,HARQ反馈定时值K1为HARQ反馈时序集合中的值。
当第一HARQ进程被配置HARQ-ACK反馈去使能时,第一HARQ进程的调度限制满足:
如果终端设备收到网络设备调度第一HARQ进程传输的第一PDSCH,从该第一PDSCH接收的结束时刻开始到第一时长结束之前,该终端设备不期待再次接收到该网络设备调度使用该第一HARQ进程传输第二PDSCH的第一PDCCH,或者,该终端设备不期待再次接收到该网络设备使用该第一HARQ进程传输第二PDSCH。其中,该第一时长的长度可以为T_proc,1。
在这种实施例的一种可行的实施方式中,该第一PDSCH是PDCCH调度的,该第二PDSCH不是PDCCH调度的。
在这种实施例的一种可行的实施方式中,该第一PDSCH不是PDCCH调度的,该第二PDSCH是PDCCH调度的。
在这种实施例的一种可行的实施方式中,该第一PDSCH是PDCCH调度的,该第二PDSCH是PDCCH调度的。
在这种实施例的一种可行的实施方式中,该第一PDSCH不是PDCCH调度的,该第二PDSCH不是PDCCH调度的。
本申请实施例还提供一种对于第二HARQ进程的调度限制的通信方法:
当第二HARQ进程被配置HARQ-ACK反馈使能时,第二HARQ进程的调度限制满足:
如果终端设备收到网络设备调度第二HARQ进程传输的第三PDSCH,在该终端设备向该网络设备发送该第三PDSCH对应的第二HARQ-ACK反馈信息的传输结束之前,该终端设备不期待再次接收到该网络设备调度该第二HARQ进程传输的第四PDSCH,或者,该终端设备不期待接收到该网络设备再次调度该第二HARQ进程传输第四PDSCH的PDCCH(即上述的第二PDCCH)。其中,该终端设备向该网络设备发送该第二HARQ-ACK反馈信息的传输时序是根据HARQ反馈时序集合、偏移值Koffset和HARQ反馈定时值K1中的至少一项确定的,其中,HARQ反馈时序集合可以是预设的或网络设备配置的,HARQ反馈定时值K1为HARQ反馈时序集合中的值。例如,终端设备向该网络设备发送该第二HARQ-ACK反馈信息的传输时序可以根据以下确定:HARQ反馈时序集合、偏移值Koffset、HARQ反馈定时值K1。其中,HARQ反馈定时值K1是通过PDCCH承载的,HARQ反馈定时值K1指示HARQ反馈时序集合中的一个值。偏移值Koffset是网络设备配置的。
当第二HARQ进程被配置HARQ-ACK反馈去使能时,第二HARQ进程的调度限制满足:
如果终端设备收到网络设备调度第二HARQ进程传输的第三PDSCH,从该第三PDSCH接收的结 束时刻开始到第二时长结束之前,该终端设备不期待再次接收到该网络设备调度使用该第二HARQ进程传输第四PDSCH的第一PDCCH,或者,该终端设备不期待再次接收到该网络设备使用该第二HARQ进程传输第四PDSCH。其中,该第二时长的长度为T_proc,1。在一些实施例中,第二时长可以与第一时长相同,或者,第二时长可以与第一时长不同。第二时长可以根据以下至少一项确定:所述终端设备的处理能力、子载波间隔、所述第一PDSCH的译码时长。
在这种实施例的一种可行的实施方式中,该第三PDSCH不是PDCCH调度的,和/或,该第四PDSCH不是PDCCH调度的。
本申请实施例还提供一种需要反馈HARQ-ACK信息的HARQ进程的调度限制的通信方法:
对于需要反馈HARQ-ACK信息的HARQ进程,其调度限制如下:
对于期待终端设备提供HARQ-ACK信息的第一HARQ进程,如果终端设备收到网络设备调度第一HARQ进程传输的第一PDSCH,在该终端设备向该网络设备发送该第一PDSCH对应的第一HARQ-ACK反馈信息的传输结束之前,该终端设备不期待再次接收到该网络设备调度该第一HARQ进程传输的第二PDSCH,或者,该终端设备不期待接收到该网络设备再次调度该第一HARQ进程传输第二PDSCH的PDCCH。其中,该终端设备向该网络设备发送该第一HARQ-ACK反馈信息的传输时序是根据HARQ反馈时序集合、偏移值Koffset和HARQ反馈定时值K1中的至少一项确定的,其中,HARQ反馈时序集合可以是预设的或网络设备配置的,HARQ反馈定时值K1为HARQ反馈时序集合中的值。
本申请实施例还提供一种不需要反馈HARQ-ACK信息的HARQ进程的调度限制的通信方法:
对于不需要反馈HARQ-ACK信息的HARQ进程,其调度限制如下:
对于不期待终端设备提供HARQ-ACK信息的第一HARQ进程,如果终端设备收到网络设备调度第二HARQ进程传输的第一PDSCH,从该第一PDSCH接收的结束时刻开始到第一时长结束之前,该终端设备不期待再次接收到该网络设备调度使用该第二HARQ进程传输第二PDSCH的第一PDCCH,或者,该终端设备不期待再次接收到该网络设备使用该第二HARQ进程传输第二PDSCH。
本申请实施例还提供一种第一个SPS PDSCH对应的第一HARQ进程的调度限制的通信方法:
图13为本申请实施例提供的再一种第一HARQ进程的调度限制的示意图,如图13所示,网络设备可以向终端设备发送SPS配置激活后的第一个SPS PDSCH,以及除第一个SPS PDSCH之外的其它SPS PDSCH,第一个SPS PDSCH可以是调度第一HARQ进程(HARQ ID n)传输的。
在第一个SPS PDSCH对应的第一HARQ进程需要进行HARQ-ACK反馈的情况下,第一HARQ进程的调度限制满足:如果终端设备收到网络设备调度第一HARQ进程传输的第一个SPS PDSCH,在该终端设备向该网络设备发送该第一个SPS PDSCH对应的第一HARQ-ACK反馈信息的传输结束之前,该终端设备不期待再次接收到该网络设备调度该第一HARQ进程传输的第二PDSCH。当终端设备被配置在第一HARQ-ACK反馈信息的传输结束之前使用该第一HARQ进程接收SPS PDSCH时,该终端设备可以不接收该SPS PDSCH。在图13中的虚线之后可再收到调度HARQ ID n的DCI,或收到可再收到对应HARQ ID n的SPS PDSCH。
通过本申请实施例中的通信方法,对于第一个SPS PDSCH传输使用的第一HARQ进程,可以规范第一个SPS PDSCH以及非第一个SPS PDSCH的调度限制,从而避免终端设备在接收SPS PDSCH和/或DCI调度的PDSCH时出现乱序(out of order)的情况。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。又例如,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以和现有技术任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”、“上行”和“侧行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,“侧行”用于表示信号或数据的传输方向为从用户设备1发送至用户设备2的第三方向。例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中 字符“/”,一般表示前后关联对象是一种“或”的关系。
图14为本申请实施例提供的一种通信装置的结构组成示意图,可以应用于终端设备,如图14所示,所述通信装置1400包括:收发单元1401,用于接收到网络设备调度第一混合自动重传请求HARQ进程传输的第一物理下行共享信道PDSCH;所述收发单元1401,还用于在第一时间范围内,不期待接收到所述网络设备调度所述第一HARQ进程传输的第二PDSCH,或者,不期待接收到第一物理下行控制信道PDCCH,其中,所述第一PDCCH用于所述网络设备调度所述第一HARQ进程传输第二PDSCH。
在一些实施方式中,通信装置1400还可以包括确定单元,确定单元用于确定第一时间范围。
在一些实施例中,所述第一时间范围的起始时刻为:所述第一PDSCH接收的结束时刻;和/或,所述第一时间范围的结束时刻为:所述终端设备向所述网络设备发送所述第一PDSCH对应的第一混合自动重传请求-确认HARQ-ACK反馈信息的传输结束时刻。
在一些实施例中,所述终端设备向所述网络设备发送所述第一HARQ-ACK反馈信息的传输时序是根据以下至少一项确定的:HARQ反馈时序集合、偏移值Koffset、HARQ反馈定时值K1。
在一些实施例中,所述第一时间范围的起始时刻为:所述第一PDSCH接收的结束时刻;所述第一时间范围对应的时长为第一时长。
在一些实施例中,所述第一时长根据以下至少之一确定:所述终端设备的处理能力、子载波间隔、所述第一PDSCH的译码时长。
在一些实施例中,所述第一HARQ进程被配置HARQ-ACK反馈去使能,或者,所述第一HARQ进程被配置HARQ-ACK反馈使能。
在一些实施例中,所述终端设备被配置使能半持续调度SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈使能;或者,所述终端设备被配置使能SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈去使能;或者,所述终端设备未被配置使能SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈使能;或者,所述第一PDSCH对应第一HARQ-ACK反馈。
在一些实施例中,所述终端设备未被配置使能SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈去使能;或者,所述第一PDSCH不对应第一HARQ-ACK反馈。
在一些实施例中,所述第一PDSCH为半持续调度SPS配置激活后的第一个PDSCH;或者,所述第一PDSCH是PDCCH调度的;或者,所述第一PDSCH是不对应PDCCH的SPS PDSCH。
在一些实施例中,所述收发单元1401,还用于当所述终端设备被所述网络设备调度在所述第一时间范围内使用所述第一HARQ进程接收所述第二PDSCH时,不接收所述第二PDSCH;或者,
所述收发单元1401,还用于当所述终端设备被所述网络设备调度在所述第一时间范围内接收所述第一PDCCH时,不接收所述第一PDCCH。
在一些实施例中,所述第二PDSCH是PDCCH调度的;或者,所述第二PDSCH是不对应PDCCH的SPS PDSCH。
在一些实施例中,所述收发单元1401,还用于在第二HARQ进程被配置HARQ-ACK反馈使能的情况下,接收到所述网络设备调度所述第二HARQ进程传输的第三PDSCH;所述第三PDSCH是不对应PDCCH的SPS PDSCH;所述收发单元1401,还用于在所述第三PDSCH接收的结束时刻开始,到向所述网络设备发送所述第三PDSCH对应的第二HARQ-ACK反馈信息的传输结束时刻之前,不期待接收到所述网络设备调度所述第二HARQ进程传输的第四PDSCH,或者,不期待接收到第二PDCCH,其中,所述第二PDCCH用于所述网络设备调度所述第二HARQ进程传输第四PDSCH。
在一些实施例中,所述收发单元1401,还用于在第二HARQ进程被配置HARQ-ACK反馈去使能的情况下,所述终端设备接收到所述网络设备调度所述第二HARQ进程传输的第三PDSCH;所述第三PDSCH是不对应PDCCH的SPS PDSCH;所述收发单元1401,还用于从所述第三PDSCH接收的结束时刻开始到第二时长结束之前,不期待接收到所述网络设备调度所述第二HARQ进程传输的第四PDSCH,或者,不期待接收到第二PDCCH,其中,所述第二PDCCH用于所述网络设备调度所述第二HARQ进程传输第四PDSCH。
图15为本申请实施例提供的另一种通信装置的结构组成示意图,可以应用于终端设备,如图15所示,所述通信装置1500包括:收发单元1501,用于向终端设备发送调度第一混合自动重传请求HARQ进程传输的第一物理下行共享信道PDSCH;所述收发单元1501,还用于在第二时间范围内,不期待向所述终端设备发送调度所述第一HARQ进程传输的第二PDSCH,或者,不期待向所述终端设备发送第一物理下行控制信道PDCCH,其中,所述第一PDCCH用于调度所述第一HARQ进程传输第二PDSCH。
在一些实施方式中,通信装置1500还可以包括确定单元,确定单元用于确定第二时间范围。
在一些实施例中,所述第二时间范围的起始时刻为:所述第一PDSCH发送的结束时刻;和/或,所 述第二时间范围的结束时刻为:所述网络设备接收所述终端设备发送的所述第一PDSCH对应的第一混合自动重传请求-确认HARQ-ACK反馈信息的传输结束时刻。
在一些实施例中,所述终端设备向所述网络设备发送所述第一HARQ-ACK反馈信息的传输时序是根据以下至少一项确定的:HARQ反馈时序集合、偏移值Koffset、HARQ反馈定时值K1。
在一些实施例中,所述第二时间范围的起始时刻为:所述第一PDSCH发送的结束时刻;所述第二时间范围对应的时长为第一时长。
在一些实施例中,所述第一时长根据以下至少之一确定:所述终端设备的处理能力、子载波间隔、所述第一PDSCH的译码时长。
在一些实施例中,所述第一HARQ进程被配置HARQ-ACK反馈去使能,或者,所述第一HARQ进程被配置HARQ-ACK反馈使能。
在一些实施例中,所述网络设备配置所述终端设备使能半持续调度SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈使能;或者,所述网络设备配置所述终端设备使能SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈去使能;或者,所述网络设备未配置所述终端设备使能SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈使能;或者,所述第一PDSCH对应第一HARQ-ACK反馈。
在一些实施例中,所述网络设备未配置所述终端设备使能SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈去使能;或者,所述第一PDSCH不对应第一HARQ-ACK反馈。
在一些实施例中,所述第一PDSCH为半持续调度SPS配置激活后的第一个PDSCH;或者,所述第一PDSCH是PDCCH调度的;或者,所述第一PDSCH是不对应PDCCH的SPS PDSCH。
在一些实施例中,所述收发单元1501,还用于当所述网络设备在所述第二时间范围内向所述终端设备发送调度所述第一HARQ进程传输的所述第二PDSCH时,不接收所述第二PDSCH对应的第三HARQ-ACK反馈信息;或者,所述收发单元1501,还用于当所述网络设备在所述第二时间范围内向所述终端设备发送所述第一PDCCH时,不接收所述第二PDSCH对应的第三HARQ-ACK反馈信息。
在一些实施例中,所述第二PDSCH是PDCCH调度的;或者,所述第二PDSCH是不对应PDCCH的SPS PDSCH。
在一些实施例中,所述收发单元1501,还用于在第二HARQ进程被配置HARQ-ACK反馈使能的情况下,向终端设备发送调度所述第二HARQ进程传输的第三PDSCH;所述第三PDSCH是不对应PDCCH的SPS PDSCH;
所述收发单元1501,还用于在所述第三PDSCH发送的结束时刻开始,到接收到所述终端设备发送的所述第三PDSCH对应的第二HARQ-ACK反馈信息的传输结束时刻之前,不期待向所述终端设备发送调度所述第二HARQ进程传输的第四PDSCH,或者,不期待向所述终端设备发送第二PDCCH,其中,所述第二PDCCH用于所述网络设备调度所述第二HARQ进程传输第四PDSCH。
在一些实施例中,所述收发单元1501,还用于在第二HARQ进程被配置HARQ-ACK反馈去使能的情况下,向所述终端设备发送调度所述第二HARQ进程传输的第三PDSCH;所述第三PDSCH是不对应PDCCH的SPS PDSCH;
所述收发单元1501,还用于在所述第三PDSCH发送的结束时刻开始到第二时长结束之前,不期待向所述终端设备发送调度所述第二HARQ进程传输的第四PDSCH,或者,不期待向所述终端设备发送第二PDCCH,其中,所述第二PDCCH用于所述网络设备调度所述第二HARQ进程传输第四PDSCH。
本领域技术人员应当理解,本申请实施例的上述通信装置的相关描述可以参照本申请实施例的通信方法的相关描述进行理解。
图16为本申请实施例提供的一种通信设备示意性结构图。该通信设备可以是终端设备,或者可以是网络设备。图16所示的通信设备1600包括处理器1610和存储器1620,该存储器1620用于存储计算机程序,所述处理器1610用于调用并运行所述存储器1620中存储的计算机程序,执行上述任一实施例中所述的的通信方法。例如,执行上述任一实施例中终端设备所执行的通信方法,或者,执行上述任一实施例中网络设备所执行的通信方法。
其中,存储器1620可以是独立于处理器1610的一个单独的器件,也可以集成在处理器1610中。
在一些实施例中,如图16所示,通信设备1600还可以包括收发器1630,处理器1610可以控制该收发器1630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。其中,收发器1630可以包括发射机和接收机。收发器1630还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,该通信设备1600具体可为本申请实施例的网络设备,并且该通信设备1600可以 实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备1600具体可为本申请实施例的终端设备,并且该通信设备1600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图17为本申请实施例的芯片的示意性结构图。图17所示的芯片1700包括处理器1710,处理器1710可以从存储器1720中调用并运行计算机程序,使得安装有芯片1700的终端设备或者网络设备执行上述任一实施例中终端设备或者网络设备所执行的通信方法。
在一些实施例中,如图17所示,芯片1700还可以包括存储器1720。其中,处理器1710可以从存储器1720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1720可以是独立于处理器1710的一个单独的器件,也可以集成在处理器1710中。
在一些实施例中,该芯片1700还可以包括输入接口1730。其中,处理器1710可以控制该输入接口1730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些实施例中,该芯片1700还可以包括输出接口1740。其中,处理器1710可以控制该输出接口840与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一些实施例中,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例还提供了一种计算机存储介质,用于存储计算机程序,所述计算机程序使得终端设备执行上述任一实施例中终端设备所执行的通信方法,或者,所述计算机程序使得网络设备执行上述任一实施例中网络设备所执行的通信方法。
在一些实施例中,该计算机存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得网络设备执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得终端设备执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得终端设备执行上述任一实施例中终端设备所执行的通信方法,或者,所述计算机程序指令使得网络设备执行上述任一实施例中网络设备所执行的通信方法。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序,所述计算机程序使得终端设备执行上述任一实施例中终端设备所执行的通信方法,或者,所述计算机程序使得网络设备执行上述任一实施例中网络设备所执行的通信方法。
在一些实施例中,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例的处理器、通信装置或者芯片可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器、通信装置或者芯片中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器、通信装置或者芯片可以包括以下任一个或多个的集成:通用处理器、特定用途集成电路(Application Specific Integrated Circuit,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理装置(Digital Signal Processing Device,DSPD)、可编程逻辑装置(Programmable Logic Device,PLD)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、中央处理器(Central Processing Unit,CPU)、图形处理器(Graphics Processing Unit,GPU)、嵌入式神经网络处理器(neural-network processing units,NPU)、控制器、微控制器、微处理器、可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模 块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器或计算机存储介质可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器或计算机存储介质为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (34)

  1. 一种通信方法,所述方法包括:
    终端设备接收到网络设备调度第一混合自动重传请求HARQ进程传输的第一物理下行共享信道PDSCH;
    所述终端设备在第一时间范围内,不期待接收到所述网络设备调度所述第一HARQ进程传输的第二PDSCH,或者,不期待接收到第一物理下行控制信道PDCCH,其中,所述第一PDCCH用于所述网络设备调度所述第一HARQ进程传输第二PDSCH。
  2. 根据权利要求1所述的方法,其中,所述第一时间范围的起始时刻为:所述第一PDSCH接收的结束时刻;和/或,
    所述第一时间范围的结束时刻为:所述终端设备向所述网络设备发送所述第一PDSCH对应的第一混合自动重传请求-确认HARQ-ACK反馈信息的传输结束时刻。
  3. 根据权利要求2所述的方法,其中,所述终端设备向所述网络设备发送所述第一HARQ-ACK反馈信息的传输时序是根据以下至少一项确定的:HARQ反馈时序集合、偏移值Koffset、HARQ反馈定时值K1。
  4. 根据权利要求1所述的方法,其中,所述第一时间范围的起始时刻为:所述第一PDSCH接收的结束时刻;
    所述第一时间范围对应的时长为第一时长。
  5. 根据权利要求4所述的方法,其中,所述第一时长根据以下至少之一确定:所述终端设备的处理能力、子载波间隔、所述第一PDSCH的译码时长。
  6. 根据权利要求2至5任一项所述的方法,其中,所述第一HARQ进程被配置HARQ-ACK反馈去使能,或者,所述第一HARQ进程被配置HARQ-ACK反馈使能。
  7. 根据权利要求2或3所述的方法,其中,所述终端设备被配置使能半持续调度SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈使能;或者,
    所述终端设备被配置使能SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈去使能;或者,
    所述终端设备未被配置使能SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈使能;或者,
    所述第一PDSCH对应第一HARQ-ACK反馈。
  8. 根据权利要求4或5所述的方法,其中,所述终端设备未被配置使能SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈去使能;或者,
    所述第一PDSCH不对应第一HARQ-ACK反馈。
  9. 根据权利要求1至8任一项所述的方法,其中,所述第一PDSCH为半持续调度SPS配置激活后的第一个PDSCH;或者,
    所述第一PDSCH是PDCCH调度的;或者,
    所述第一PDSCH是不对应PDCCH的SPS PDSCH。
  10. 根据权利要求1至9任一项所述的方法,其中,所述不期待接收到所述网络设备调度所述第一HARQ进程传输的第二PDSCH,包括:当所述终端设备被所述网络设备调度在所述第一时间范围内使用所述第一HARQ进程接收所述第二PDSCH时,所述终端设备不接收所述第二PDSCH;
    所述不期待接收到第一物理下行控制信道PDCCH,包括:当所述终端设备被所述网络设备调度在所述第一时间范围内接收所述第一PDCCH时,所述终端设备不接收所述第二PDSCH。
  11. 根据权利要求10所述的方法,其中,所述第二PDSCH是PDCCH调度的;或者,
    所述第二PDSCH是不对应PDCCH的SPS PDSCH。
  12. 根据权利要求1至11任一项所述的方法,其中,所述方法还包括:
    在第二HARQ进程被配置HARQ-ACK反馈使能的情况下,所述终端设备接收到所述网络设备调度所述第二HARQ进程传输的第三PDSCH;所述第三PDSCH是不对应PDCCH的SPS PDSCH;
    所述终端设备在所述第三PDSCH接收的结束时刻开始,到向所述网络设备发送所述第三PDSCH对应的第二HARQ-ACK反馈信息的传输结束时刻之前,不期待接收到所述网络设备调度所述第二HARQ进程传输的第四PDSCH,或者,不期待接收到第二PDCCH,其中,所述第二PDCCH用于所述网络设备调度所述第二HARQ进程传输第四PDSCH。
  13. 根据权利要求1至12任一项所述的方法,其中,所述方法还包括:
    在第二HARQ进程被配置HARQ-ACK反馈去使能的情况下,所述终端设备接收到所述网络设备调度所述第二HARQ进程传输的第三PDSCH;所述第三PDSCH是不对应PDCCH的SPS PDSCH;
    所述终端设备从所述第三PDSCH接收的结束时刻开始到第二时长结束之前,不期待接收到所述网络设备调度所述第二HARQ进程传输的第四PDSCH,或者,不期待接收到第二PDCCH,其中,所述第二PDCCH用于所述网络设备调度所述第二HARQ进程传输第四PDSCH。
  14. 一种通信方法,所述方法包括:
    网络设备向终端设备发送调度第一混合自动重传请求HARQ进程传输的第一物理下行共享信道PDSCH;
    所述网络设备在第二时间范围内,不期待向所述终端设备发送调度所述第一HARQ进程传输的第二PDSCH,或者,不期待向所述终端设备发送第一物理下行控制信道PDCCH,其中,所述第一PDCCH用于所述网络设备调度所述第一HARQ进程传输第二PDSCH。
  15. 根据权利要求14所述的方法,其中,所述第二时间范围的起始时刻为:所述第一PDSCH发送的结束时刻;和/或,
    所述第二时间范围的结束时刻为:所述网络设备接收所述终端设备发送的所述第一PDSCH对应的第一混合自动重传请求-确认HARQ-ACK反馈信息的传输结束时刻。
  16. 根据权利要求15所述的方法,其中,所述终端设备向所述网络设备发送所述第一HARQ-ACK反馈信息的传输时序是根据以下至少一项确定的:HARQ反馈时序集合、偏移值Koffset、HARQ反馈定时值K1。
  17. 根据权利要求14所述的方法,其中,所述第二时间范围的起始时刻为:所述第一PDSCH发送的结束时刻;
    所述第二时间范围对应的时长为第一时长。
  18. 根据权利要求17所述的方法,其中,所述第一时长根据以下至少之一确定:所述终端设备的处理能力、子载波间隔、所述第一PDSCH的译码时长。
  19. 根据权利要求15至18任一项所述的方法,其中,所述第一HARQ进程被配置HARQ-ACK反馈去使能,或者,所述第一HARQ进程被配置HARQ-ACK反馈使能。
  20. 根据权利要求15或16所述的方法,其中,所述网络设备配置所述终端设备使能半持续调度SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈使能;或者,
    所述网络设备配置所述终端设备使能SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈去使能;或者,
    所述网络设备未配置所述终端设备使能SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈使能;或者,
    所述第一PDSCH对应第一HARQ-ACK反馈。
  21. 根据权利要求17或18所述的方法,其中,所述网络设备未配置所述终端设备使能SPS配置激活对应HARQ-ACK反馈,且所述第一HARQ进程被配置HARQ-ACK反馈去使能;或者,
    所述第一PDSCH不对应第一HARQ-ACK反馈。
  22. 根据权利要求14至21任一项所述的方法,其中,所述第一PDSCH为半持续调度SPS配置激活后的第一个PDSCH;或者,
    所述第一PDSCH是PDCCH调度的;或者,
    所述第一PDSCH是不对应PDCCH的SPS PDSCH。
  23. 根据权利要求14至22任一项所述的方法,其中,所述不期待向所述终端设备发送调度所述第一HARQ进程传输的第二PDSCH,包括:当所述网络设备在所述第二时间范围内向所述终端设备发送调度所述第一HARQ进程传输的所述第二PDSCH时,所述网络设备不接收所述第二PDSCH对应的第三HARQ-ACK反馈信息;
    所述不期待向所述终端设备发送第一物理下行控制信道PDCCH,包括:当所述网络设备在所述第二时间范围内向所述终端设备发送所述第一PDCCH时,所述网络设备不接收所述第二PDSCH对应的第三HARQ-ACK反馈信息。
  24. 根据权利要求23所述的方法,其中,所述第二PDSCH是PDCCH调度的;或者,
    所述第二PDSCH是不对应PDCCH的SPS PDSCH。
  25. 根据权利要求14至24任一项所述的方法,其中,所述方法还包括:
    在第二HARQ进程被配置HARQ-ACK反馈使能的情况下,所述网络设备向终端设备发送调度所述第二HARQ进程传输的第三PDSCH;所述第三PDSCH是不对应PDCCH的SPS PDSCH;
    所述网络设备在所述第三PDSCH发送的结束时刻开始,到接收到所述终端设备发送的所述第三 PDSCH对应的第二HARQ-ACK反馈信息的传输结束时刻之前,不期待向所述终端设备发送调度所述第二HARQ进程传输的第四PDSCH,或者,不期待向所述终端设备发送第二PDCCH,其中,所述第二PDCCH用于所述网络设备调度所述第二HARQ进程传输第四PDSCH。
  26. 根据权利要求14至25任一项所述的方法,其中,所述方法还包括:
    在第二HARQ进程被配置HARQ-ACK反馈去使能的情况下,所述网络设备向所述终端设备发送调度所述第二HARQ进程传输的第三PDSCH;所述第三PDSCH是不对应PDCCH的SPS PDSCH;
    所述网络设备在所述第三PDSCH发送的结束时刻开始到第二时长结束之前,不期待向所述终端设备发送调度所述第二HARQ进程传输的第四PDSCH,或者,不期待向所述终端设备发送第二PDCCH,其中,所述第二PDCCH用于所述网络设备调度所述第二HARQ进程传输第四PDSCH。
  27. 一种通信装置,所述通信装置包括:
    收发单元,用于接收到网络设备调度第一混合自动重传请求HARQ进程传输的第一物理下行共享信道PDSCH;
    所述收发单元,还用于在第一时间范围内,不期待接收到所述网络设备调度所述第一HARQ进程传输的第二PDSCH,或者,不期待接收到第一物理下行控制信道PDCCH,其中,所述第一PDCCH用于所述网络设备调度所述第一HARQ进程传输第二PDSCH。
  28. 一种通信装置,所述通信装置包括:
    收发单元,用于向终端设备发送调度第一混合自动重传请求HARQ进程传输的第一物理下行共享信道PDSCH;
    所述收发单元,还用于在第二时间范围内,不期待向所述终端设备发送调度所述第一HARQ进程传输的第二PDSCH,或者,不期待向所述终端设备发送第一物理下行控制信道PDCCH,其中,所述第一PDCCH用于调度所述第一HARQ进程传输第二PDSCH。
  29. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至13中任一项所述的通信方法。
  30. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求14至26中任一项所述的通信方法。
  31. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至13中任一项所述的通信方法,或者,使得安装有所述芯片的设备执行如权利要求14至26中任一项所述的通信方法。
  32. 一种计算机存储介质,用于存储计算机程序,所述计算机程序使得终端设备执行如权利要求1至13中任一项所述的通信方法,或者,所述计算机程序使得网络设备执行如权利要求14至26中任一项所述的通信方法。
  33. 一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得终端设备执行如权利要求1至13中任一项所述的通信方法,或者,所述计算机程序指令使得网络设备执行如权利要求14至26中任一项所述的通信方法。
  34. 一种计算机程序,所述计算机程序使得终端设备执行如权利要求1至13中任一项所述的通信方法,或者,所述计算机程序使得网络设备执行如权利要求14至26中任一项所述的通信方法。
PCT/CN2021/139287 2021-12-17 2021-12-17 通信方法、装置、设备、芯片、存储介质、产品及程序 WO2023108642A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/139287 WO2023108642A1 (zh) 2021-12-17 2021-12-17 通信方法、装置、设备、芯片、存储介质、产品及程序

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/139287 WO2023108642A1 (zh) 2021-12-17 2021-12-17 通信方法、装置、设备、芯片、存储介质、产品及程序

Publications (1)

Publication Number Publication Date
WO2023108642A1 true WO2023108642A1 (zh) 2023-06-22

Family

ID=86775329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139287 WO2023108642A1 (zh) 2021-12-17 2021-12-17 通信方法、装置、设备、芯片、存储介质、产品及程序

Country Status (1)

Country Link
WO (1) WO2023108642A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021056313A1 (zh) * 2019-09-26 2021-04-01 Oppo广东移动通信有限公司 上行逻辑信道复用的方法和终端设备
WO2021224733A1 (en) * 2020-05-06 2021-11-11 Orope France Sarl Methods and devices for transmitting and receiving pdsch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021056313A1 (zh) * 2019-09-26 2021-04-01 Oppo广东移动通信有限公司 上行逻辑信道复用的方法和终端设备
WO2021224733A1 (en) * 2020-05-06 2021-11-11 Orope France Sarl Methods and devices for transmitting and receiving pdsch

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On scheduling, HARQ, and DRX for NTNs", 3GPP DRAFT; R2-2103950, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. E-Meeting; 20210412, 1 April 2021 (2021-04-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051992321 *
MEDIATEK INC.: "Summary Delay-tolerant re-transmission mechanisms in NR-NTN", 3GPP DRAFT; R1-1905840-MEDIATEK-SUMMARY DELAY-TOLERANT TRANSMISSION MECHANISMS IN NR-NTN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 15 April 2019 (2019-04-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051707886 *
MODERATOR (ZTE): "Summary#2 of AI 8.4.3 for HARQ in NTN", 3GPP DRAFT; R1-2108511, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210816 - 20210827, 27 August 2021 (2021-08-27), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052042713 *

Similar Documents

Publication Publication Date Title
WO2022067549A1 (zh) 无线通信的方法和设备
US20230337320A1 (en) Wireless communication method and terminal device
WO2024103798A1 (zh) 无线通信的方法及装置
CN114731238B (zh) 配置授权定时器的使用方法与装置、终端设备和网络设备
WO2021217378A1 (zh) 无线通信方法、终端设备和网络设备
US20230231661A1 (en) Channel transmission method, terminal device and network device
WO2021128318A1 (zh) 上行mac ce传输的方法和装置
WO2022077174A1 (zh) 无线通信方法和设备
WO2023108642A1 (zh) 通信方法、装置、设备、芯片、存储介质、产品及程序
WO2022120747A1 (zh) 无线通信的方法和终端设备
WO2022120516A1 (zh) 通信方法、设备和系统
WO2022099555A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021184317A1 (zh) 生效时间的确定方法、终端及网络设备
WO2021068224A1 (zh) 无线通信方法、终端设备和网络设备
CN116097817A (zh) 无线通信方法和设备
WO2023087326A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
WO2023097504A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
WO2022246824A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022099514A1 (zh) 无线通信方法和设备
WO2023010586A1 (zh) 无线通信方法、终端设备和网络设备
WO2023206010A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
US20230403668A1 (en) Method and apparatus for reporting timing advance, and terminal device
WO2023050401A1 (zh) 无线通信方法和设备
CN114303333B (zh) 无线通信方法及设备、终端设备和网络设备
WO2022205482A1 (zh) 无线通信方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967774

Country of ref document: EP

Kind code of ref document: A1