WO2023087326A1 - 通信方法、装置、设备、存储介质、芯片、产品及程序 - Google Patents

通信方法、装置、设备、存储介质、芯片、产品及程序 Download PDF

Info

Publication number
WO2023087326A1
WO2023087326A1 PCT/CN2021/132183 CN2021132183W WO2023087326A1 WO 2023087326 A1 WO2023087326 A1 WO 2023087326A1 CN 2021132183 W CN2021132183 W CN 2021132183W WO 2023087326 A1 WO2023087326 A1 WO 2023087326A1
Authority
WO
WIPO (PCT)
Prior art keywords
offset value
terminal device
increment
specific
dedicated
Prior art date
Application number
PCT/CN2021/132183
Other languages
English (en)
French (fr)
Inventor
胡奕
李海涛
于新磊
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/132183 priority Critical patent/WO2023087326A1/zh
Priority to CN202180101906.0A priority patent/CN117882462A/zh
Publication of WO2023087326A1 publication Critical patent/WO2023087326A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the technical field of mobile communication, and specifically relate to a communication method, device, equipment, storage medium, chip, product, and program.
  • NTN Non-Terrestrial Networks
  • Embodiments of the present application provide a communication method, device, device, storage medium, chip, product, and program.
  • the embodiment of the present application provides a communication method, the method including:
  • the terminal device obtains the first offset value increment configured by the network device
  • the terminal device determines the dedicated offset value of the terminal device according to the first offset value increment and the cell-level public offset value
  • the terminal device determines a time-domain resource position for uplink transmission of the terminal device according to the dedicated offset value of the terminal device.
  • an embodiment of the present application provides a communication method, the method including:
  • the terminal device determines whether there is a dedicated offset value for the terminal device
  • the terminal device determines the specific offset value of the terminal device based on the cell-level public offset value and/or determines the adjusted specific offset value of the terminal device based on the specific offset value of the terminal device ;
  • the terminal device determines a time-domain resource position for uplink transmission of the terminal device according to the determined dedicated offset value of the terminal device.
  • the embodiment of the present application provides a communication method, the method including:
  • the terminal device determines whether there is a dedicated offset value for the terminal device
  • the terminal device determines a specific offset value of the terminal device and/or determines an adjusted specific offset value of the terminal device based on the specific offset value of the terminal device;
  • the terminal device determines a time-domain resource position for uplink transmission of the terminal device according to the determined dedicated offset value of the terminal device.
  • the embodiment of the present application provides a communication method, the method comprising:
  • the network device configures the first offset value increment to the terminal device
  • the network device determines the dedicated offset value of the terminal device according to the first offset value increment and the cell-level public offset value
  • the network device determines the time domain resource position of the terminal device for uplink transmission according to the dedicated offset value of the terminal device.
  • the embodiment of the present application provides a communication method, the method comprising:
  • the network device determines whether the terminal device has a dedicated offset value for the terminal device
  • the network device determines to determine the specific offset value of the terminal device based on the cell-level public offset value and/or determines the adjusted specific offset value of the terminal device based on the specific offset value of the terminal device ;
  • the network device determines a time-domain resource position for uplink transmission of the terminal device according to the determined dedicated offset value of the terminal device.
  • the embodiment of the present application provides a communication method, the method comprising:
  • the network device determines whether the terminal device has a dedicated offset value for the terminal device
  • the network device determines the specific offset value of the terminal device and/or determines the adjusted specific offset value of the terminal device based on the specific offset value of the terminal device;
  • the network device determines a time-domain resource position for uplink transmission of the terminal device according to the determined dedicated offset value of the terminal device.
  • the embodiment of the present application provides a communication device, including:
  • An acquisition unit configured to acquire the first offset value increment configured by the network device
  • a determining unit configured to determine the dedicated offset value of the terminal device according to the first offset value increment and the cell-level public offset value
  • the determining unit is further configured to determine the time-domain resource position of the terminal equipment for uplink transmission according to the dedicated offset value of the terminal equipment.
  • the embodiment of the present application provides a communication device, including:
  • a determining unit configured to determine whether there is a dedicated offset value for the terminal device
  • the determining unit is further configured to, according to the determination result, determine the specific offset value of the terminal device based on the cell-level public offset value and/or determine the adjusted terminal device based on the specific offset value of the terminal device Exclusive offset value;
  • the determining unit is further configured to determine a time-domain resource position for uplink transmission of the terminal device according to the determined dedicated offset value of the terminal device.
  • the embodiment of the present application provides a communication device, including:
  • a determining unit configured to determine whether there is a dedicated offset value for the terminal device
  • the determining unit is further configured to determine a specific offset value of the terminal device and/or determine an adjusted specific offset value of the terminal device based on the specific offset value of the terminal device according to the determination result;
  • the determining unit is further configured to determine a time-domain resource position for uplink transmission of the terminal device according to the determined dedicated offset value of the terminal device.
  • the embodiment of the present application provides a communication device, including:
  • a configuration unit configured to configure the first offset value increment to the terminal device
  • a determining unit configured to determine the dedicated offset value of the terminal device according to the first offset value increment and the cell-level public offset value
  • the determining unit is further configured to determine a time-domain resource position for uplink transmission of the terminal device according to the dedicated offset value of the terminal device.
  • the embodiment of the present application provides a communication device, including:
  • a determining unit configured to determine whether the terminal device has a dedicated offset value for the terminal device
  • the determining unit is further configured to, according to the determination result, determine the specific offset value of the terminal device based on the cell-level public offset value and/or determine the adjusted terminal device based on the specific offset value of the terminal device Exclusive offset value;
  • the determining unit is further configured to determine a time-domain resource position for uplink transmission of the terminal device according to the determined dedicated offset value of the terminal device.
  • the embodiment of the present application provides a communication device, including:
  • a determining unit configured to determine whether the terminal device has a dedicated offset value for the terminal device
  • the determining unit is further configured to determine a specific offset value of the terminal device and/or determine an adjusted specific offset value of the terminal device based on the specific offset value of the terminal device according to the determination result;
  • the determining unit is further configured to determine a time-domain resource position for uplink transmission of the terminal device according to the determined dedicated offset value of the terminal device.
  • the embodiment of the present application provides a terminal device, including: a memory and a processor,
  • the memory stores a computer program executable on the processor
  • the above method is realized when the processor executes the program.
  • the embodiment of the present application provides a network device, including: a memory and a processor,
  • the memory stores a computer program executable on the processor
  • the above method is realized when the processor executes the program.
  • the embodiment of the present application provides a computer storage medium, the computer storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to implement the above method .
  • the embodiment of the present application provides a chip, including: a processor, configured to invoke and run a computer program from a memory, so as to implement the above method.
  • the embodiment of the present application provides a computer program product
  • the computer program product includes a computer storage medium
  • the computer storage medium stores a computer program
  • the computer program includes instructions executable by at least one processor, The method described above is implemented when said instructions are executed by said at least one processor.
  • the embodiment of the present application provides a computer program, the computer program causes a computer to execute the above method.
  • the terminal device obtains the first offset value increment configured by the network device; the terminal device determines the dedicated offset value of the terminal device according to the first offset value increment and the cell-level public offset value; the terminal device According to the dedicated offset value of the terminal device, the time domain resource position of the uplink transmission of the terminal device is determined.
  • the time-domain resource position for uplink transmission is determined according to the exclusive offset value of the terminal device, so that the terminal device can determine the time-domain resource position for uplink transmission, which improves the reliability of the uplink transmission of the terminal device;
  • the dedicated offset value is determined according to the first offset value increment and the cell-level public offset value, which not only enables the terminal device to use the appropriate dedicated offset value of the terminal device in a timely manner according to the configured first offset value, but also improves
  • the length occupied by the first offset value increment is small, thereby reducing the network cost.
  • the resource consumption of the device effectively reduces the signaling overhead.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an NTN scenario based on a transparent transmission forwarding satellite provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of an NTN scenario based on regenerative forwarding satellites provided in an embodiment of the present application
  • FIG. 6 is a schematic diagram of a manner of time synchronization on the network device side
  • FIG. 7 is a schematic diagram of the timing relationship of the NTN system in the first case
  • FIG. 8 is a schematic diagram of the timing relationship of the NTN system in the second case
  • FIG. 9 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of determining a time-domain resource location for uplink transmission provided by an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 12 is another schematic diagram of determining the time-domain resource position for uplink transmission provided by the embodiment of the present application.
  • FIG. 13 is a schematic flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 14 is another schematic diagram of determining the time-domain resource position for uplink transmission provided by the embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • a communication system 100 may include a terminal device 110 and a network device 120 .
  • the network device 120 may communicate with the terminal device 110 through an air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120 .
  • the embodiment of the present application is only described by using the communication system 100 as an example, but the embodiment of the present application is not limited thereto. That is to say, the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: Long Term Evolution (Long Term Evolution, LTE) system, LTE Time Division Duplex (Time Division Duplex, TDD), Universal Mobile Communication System (Universal Mobile Telecommunication System, UMTS), Internet of Things (Internet of Things, IoT) system, Narrow Band Internet of Things (NB-IoT) system, enhanced Machine-Type Communications (eMTC) system, 5G communication system (also known as New Radio (NR) communication system), or future communication systems (such as 6G, 7G and other communication systems), etc.
  • LTE Long Term Evolution
  • LTE Time Division Duplex Time Division Duplex
  • TDD Time Division Duplex
  • Universal Mobile Telecommunication System Universal Mobile Telecommunication System
  • UMTS Universal Mobile Communication System
  • Internet of Things Internet of Things
  • NB-IoT Narrow Band Internet of Things
  • the network device 120 may include an access network device 121 communicating with the terminal device 110 .
  • the access network device 121 can provide communication coverage for a specific geographical area, and can communicate with the terminal device 110 located in the coverage area.
  • the terminal equipment or other equipment in this application may be called user equipment (User Equipment, UE), mobile station (Mobile Station, MS), mobile terminal (Mobile Terminal, MT), subscriber unit, subscriber station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • UE User Equipment
  • MS Mobile Station
  • MT mobile terminal
  • subscriber unit subscriber station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • Terminal equipment or other equipment may include one or a combination of at least two of the following: Internet of Things (Internet of Things, IoT) equipment, satellite terminals, wireless local loop (Wireless Local Loop, WLL) stations, personal digital processing (Personal Digital Assistant, PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, servers, mobile phones (mobile phone), tablet computers (Pad), computers with wireless transceiver functions, handheld computers, desktops Computers, personal digital assistants, portable media players, smart speakers, navigation devices, smart watches, smart glasses, smart necklaces and other wearable devices, pedometers, digital TVs, virtual reality (Virtual Reality, VR) terminal equipment, enhanced Reality (Augmented Reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, smart grid ), wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, and vehicles, vehicle-mounted equipment, vehicle-mounted Module, wireless modem (modem), handheld device (handheld
  • the network device 120 in this embodiment of the present application may include an access network device 121 and/or a core network device 122 .
  • the access network device 121 may include one or a combination of at least two of the following: an evolved base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (Long Term Evolution, LTE) system, a next-generation wireless access network (Next Generation Radio Access Network, NG RAN) equipment, base station (gNB), small station, micro station in NR system, wireless controller in Cloud Radio Access Network (Cloud Radio Access Network, CRAN), wireless fidelity (Wireless- Fidelity, Wi-Fi) access point, transmission reception point (transmission reception point, TRP), relay station, access point, vehicle equipment, wearable device, hub, switch, bridge, router, future evolution of public land mobile Network equipment in the network (Public Land Mobile Network, PLMN), etc.
  • Evolutional Node B, eNB or eNodeB in a Long Term Evolution (Long Term Evolution, LTE) system
  • NG RAN Next Generation Radio Access Network
  • CRAN Cloud Radio Access Network
  • Wi-Fi Wireless-
  • the core network device 122 may be a 5G core network (5G Core, 5GC) device, and the core network device 122 may include one or a combination of at least two of the following: access and mobility management function (Access and Mobility Management Function, AMF), Authentication Server Function (AUSF), User Plane Function (UPF), Session Management Function (SMF), Location Management Function (LMF).
  • AMF Access and Mobility Management Function
  • AUSF Authentication Server Function
  • UPF User Plane Function
  • SMF Session Management Function
  • LMF Location Management Function
  • the core network device may also be an Evolved Packet Core (EPC) device of an LTE network, for example, a data gateway (Session Management Function+Core Packet Gateway, SMF+ PGW-C) equipment.
  • SMF+PGW-C can realize the functions of SMF and PGW-C at the same time.
  • the above-mentioned core network device 122 may also be called by other names, or a new network entity may be formed
  • the terminal device 110 may be any terminal device, including but not limited to a terminal device connected to the network device 120 or other terminal devices by wire or wirelessly.
  • the terminal device 110 can be used for device-to-device (Device to Device, D2D) communication.
  • D2D Device to Device
  • Various functional units in the communication system 100 may also establish a connection through a next generation network (next generation, NG) interface to implement communication.
  • NG next generation network
  • the terminal device establishes an air interface connection with the access network device through the NR interface to transmit user plane data and control plane signaling; the terminal device can establish a control plane signaling connection with the AMF through the NG interface 1 (N1 for short); access Network equipment such as the next generation wireless access base station (gNB), can establish a user plane data connection with UPF through NG interface 3 (abbreviated as N3); access network equipment can establish control plane signaling with AMF through NG interface 2 (abbreviated as N2) connection; UPF can establish a control plane signaling connection with SMF through NG interface 4 (abbreviated as N4); UPF can exchange user plane data with the data network through NG interface 6 (abbreviated as N6); AMF can communicate with SMF through NG interface 11 (abbreviated as N11) The SMF establishes a control plane signaling connection; the SMF may establish a control plane signaling connection with the PCF through an NG interface 7 (N7 for short).
  • gNB next generation wireless access base station
  • Fig. 1 exemplarily shows a base station, a core network device and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and the coverage of each base station may include other numbers terminal device, which is not limited in the embodiment of this application.
  • NTN Non Terrestrial Network
  • satellite communication is not restricted by the user's region. For example, general land communication cannot cover areas such as oceans, mountains, deserts, etc. that cannot be equipped with communication equipment or are not covered by communication due to sparse population.
  • satellite communication due to a Satellites can cover a large area of the ground, and satellites can orbit the earth, so theoretically every corner of the earth can be covered by satellite communications.
  • satellite communication has great social value.
  • Satellite communication can be covered at a lower cost in remote mountainous areas, poor and backward countries or regions, so that people in these regions can enjoy advanced voice communication and mobile Internet technology, which is conducive to narrowing the digital gap with developed regions and promoting development of these areas.
  • the distance of satellite communication is long, and the cost of communication does not increase significantly with the increase of communication distance; finally, the stability of satellite communication is high, and it is not limited by natural disasters.
  • NTN technology can be combined with various communication systems.
  • NTN technology can be combined with NR system to form NR-NTN system.
  • NTN technology can be combined with the Internet of Things (IoT) system to form an IoT-NTN system.
  • IoT-NTN system may include a NB-IoT-NTN system and an eMTC-NTN system.
  • FIG. 2 is a schematic structural diagram of a communication system provided by an embodiment of the present application. As shown in FIG. 2 , it includes a terminal device 1101 and a satellite 1102 , and wireless communication can be performed between the terminal device 1101 and the satellite 1102 .
  • the network formed between the terminal device 1101 and the satellite 1102 may also be referred to as NTN.
  • the satellite 1102 may function as a base station, and the terminal device 1101 and the satellite 1102 may communicate directly. Under the system architecture, the satellite 1102 can be referred to as a network device.
  • the communication system may include multiple network devices 1102, and the coverage of each network device 1102 may include other numbers of terminal devices, which is not limited in this embodiment of the present application.
  • FIG. 3 is a schematic diagram of another communication system provided by the embodiment of the present application. As shown in FIG. It can communicate with the base station 1203.
  • the network formed among the terminal equipment 1201, the satellite 1202 and the base station 1203 may also be referred to as NTN.
  • the satellite 1202 may not have the function of a base station, and the communication between the terminal device 1201 and the base station 1203 needs to be relayed through the satellite 1202 .
  • the base station 1203 may be called a network device.
  • the communication system may include multiple network devices 1203, and the coverage of each network device 1203 may include other numbers of terminal devices, which is not limited in this embodiment of the present application.
  • the network device 1203 may be the network device 120 in FIG. 1 .
  • satellite 1102 or satellite 1202 includes but is not limited to: low-earth orbit (Low-Earth Orbit, LEO) satellite, medium-earth orbit (Medium-Earth Orbit, MEO) satellite, geosynchronous orbit (Geostationary Earth Orbit, GEO) Satellites, High Elliptical Orbit (HEO) satellites, etc. Satellites can use multiple beams to cover the ground. For example, a satellite can form dozens or even hundreds of beams to cover the ground. In other words, a satellite beam can cover a ground area with a diameter of tens to hundreds of kilometers to ensure satellite coverage and improve the system capacity of the entire satellite communication system.
  • the altitude of LEO satellites can range from 500 kilometers to 1500 kilometers, and the corresponding orbital period can be about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users can generally be less than 20 milliseconds, and the maximum satellite visible time It can be 20 minutes.
  • the signal propagation distance of the LEO satellite is short and the link loss is small, and the requirement for the transmission power of the user terminal is not high.
  • the orbital height of GEO satellites can be 35786km, the rotation period around the earth can be 24 hours, and the signal propagation delay of single-hop communication between users can generally be 250 milliseconds.
  • satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. ground area.
  • FIG. 1 to FIG. 3 are only illustrations of systems applicable to this application, and of course, the method shown in the embodiment of this application may also be applicable to other systems.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B can mean: A exists alone, A and B exist simultaneously, and there exists alone B these three situations.
  • the character “/” in this article generally indicates that the contextual objects are an "or” relationship.
  • the "indication” mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • A indicates B, which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the "correspondence" mentioned in the embodiments of the present application may mean that there is a direct correspondence or an indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated. , configuration and configured relationship.
  • pre-defined may refer to defined in the protocol.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which is not limited in this application .
  • Satellites can be divided into two types based on the functions they provide: transparent payload and regenerative payload.
  • transparent transponder satellites it only provides the functions of radio frequency filtering, frequency conversion and amplification, and only provides transparent transponder of signals without changing the waveform signal it transponders.
  • regenerative transponder satellites in addition to providing radio frequency filtering, frequency conversion and amplification functions, it can also provide demodulation/decoding, routing/conversion, coding/modulation functions, which have part or all of the functions of the base station.
  • one or more gateways may be included for communication between satellites and terminals.
  • FIG. 4 is a schematic diagram of an NTN scenario based on a transparent transmission forwarding satellite provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of an NTN scenario based on a regenerative forwarding satellite provided by an embodiment of the present application.
  • the communication between the gateway and the satellite is through the feeder link, and the communication between the satellite and the terminal can be through the service link.
  • the satellites communicate with each other through the InterStar link, and the gateway and the satellite communicate with each other through the Feeder link. Terminals can communicate through a service link.
  • the gateway is used to connect the satellite and the terrestrial public network (such as data network).
  • the feeder link is the link used for communication between the gateway and the satellite.
  • the service link is the link used for communication between the terminal and the satellite.
  • Inter-satellite links exist under the regenerative and forwarding network architecture.
  • An important feature of uplink transmission is that different terminal equipments have time-frequency orthogonal multiple access, that is, the uplink transmissions of different terminal equipments from the same cell do not interfere with each other.
  • NR supports an uplink timing advance mechanism.
  • the uplink clock and downlink clock on the network device side are the same, but there is an offset between the uplink clock and the downlink clock on the terminal device side, and different terminal devices have different uplink timing advances.
  • the network device can control the time when uplink signals from different terminal devices arrive at the network device. For a terminal device that is far away from the network device, due to a relatively large transmission delay, it is necessary to send uplink data earlier than a terminal device that is closer to the network device.
  • the network device determines a Timing Advance (TA) value of each terminal device based on measuring the uplink transmission of the terminal device.
  • the network device sends the TA command to the terminal device in two ways.
  • TA Timing Advance
  • the network device determines the TA value by measuring the received preamble, and the timing advance command (Timing Advance) of the random access response (Random Access Response, RAR) Command) field is sent to the terminal device.
  • Timing Advance Timing Advance
  • RAR Random Access Response
  • Radio Resource Control Radio Resource Control
  • RRC Radio Resource Control
  • the terminal device and the network device have achieved uplink synchronization during the random access process, the timing of the uplink signal arriving at the network device may change over time Therefore, the terminal equipment needs to constantly update its uplink timing advance to maintain uplink synchronization. If the TA of a terminal device needs to be corrected, the network device will send a Timing Advance Command to the terminal device, requiring it to adjust the uplink timing. The Timing Advance Command is sent to the terminal device through a Media Access Control Control Element (Media Access Control Control Element, MAC CE).
  • Media Access Control Element Media Access Control Element
  • the terminal device may need to use different TAs for different uplink carriers, so the standard introduces the concept of Timing Advance Group (TAG).
  • TAG Timing Advance Group
  • the network device configures up to 4 TAGs for each cell group of the terminal device, and configures the associated TAG for each serving cell.
  • the terminal device maintains a TA for each TAG separately.
  • the carriers can be divided into different timing advance groups according to the different TA values of the carriers, and the TA values of the carriers in each TAG are the same.
  • Fig. 6 is a schematic diagram of time synchronization on the network device side.
  • the downlink (DownLink, DL) symbol timing received at the terminal device (UE) close to the network device (gNB) after a short propagation delay T P1 , the uplink (UpLink, UL) transmission symbol timing is delayed T P1 compared to the downlink symbol timing of the network device (gNB), and the UL symbol timing received by the network device (gNB) is T P1 is delayed compared to the UL transmission symbol timing.
  • the DL symbol timing received at the terminal equipment (UE) far away from the network equipment (gNB) has a longer propagation delay T P2 , so that the UL transmission symbol timing is delayed compared to the downlink symbol timing of the network equipment (gNB) T P2 , the timing of the UL symbol received by the network device (gNB) is delayed by T P2 compared to the timing of the UL transmission symbol.
  • T P2 propagation delay
  • the propagation delay of signal communication is usually less than 1 ms.
  • the propagation delay of signal communication is very large, ranging from tens of milliseconds to hundreds of milliseconds, depending on the satellite orbital height and The business type of satellite communication is related.
  • the timing relationship of the NTN system needs to be enhanced relative to the NR system.
  • the terminal device needs to consider the influence of the TA when performing uplink transmission. Since the propagation delay in the system is relatively large, the range of the TA value is also relatively large.
  • the terminal device When the terminal device is scheduled to perform uplink transmission at time slot n, the terminal device considers the round-trip propagation delay and transmits in advance during uplink transmission, so that when the signal arrives at the base station side, it can be on the uplink time slot n of the base station side.
  • the timing relationship in the NTN system may include two situations, as shown in Figure 7 and Figure 8 below respectively.
  • FIG. 7 is a schematic diagram of the timing relationship of the NTN system in the first case.
  • the downlink time slot (gNB DL) and uplink time slot (gNB UL) on the network device side are aligned.
  • the terminal equipment in order to align the uplink transmission (UE UL) of the terminal equipment with the uplink time slot of the network equipment side, the terminal equipment needs to use a larger TA value, and the TA value is determined according to the delay, and the delay can be the terminal UE DL and Delay between gNB DLs.
  • Koffset When performing uplink transmission, it is also necessary to introduce a large offset value such as Koffset.
  • the value of Koffset may be determined based on the TA value.
  • Figure 8 is a schematic diagram of the timing relationship of the NTN system in the second case, as shown in Figure 8, there is an offset value between the downlink time slot (gNB DL) and the uplink time slot (gNB UL) on the network device side, this The offset value is the gNB DL-UL frame timing offset.
  • the terminal device if you want to align the uplink transmission (UE UL) of the terminal device with the uplink time slot of the network device side, the terminal device only needs to use a smaller TA value, and the TA value is based on the delay and gNB DL-
  • the UL frame timing offset is determined, and the delay can be the delay between the terminal UE DL and the gNB DL.
  • the network device may need additional scheduling complexity to handle the corresponding scheduling timing.
  • K offset configuration Based on the current progress of 3GPP for NTN standardization, the following conclusions are drawn for K offset configuration: 1. For the initial random access process, the network can configure cell-level K offset or satellite beam-level K offset through broadcast. 2. For terminal devices in the connected state, the network can configure a dedicated K offset for the terminal device. 3. If the network does not configure the terminal device-specific K offset, the terminal device uses the broadcasted K offset. 4. Use MAC CE to configure terminal device-specific K offset. Whether RRC signaling can be used to configure terminal device-specific K offset has not yet been concluded.
  • K offset is related to the NTN scenario.
  • NTN supports multiple scenarios such as GEO and LEO.
  • the value range of K offset (or called K offset value range) is different in different scenarios.
  • Table 1 provides a K offset range.
  • the network mainly refers to TA to configure the value of K offset.
  • the network needs to configure the K offset according to the largest TA supported in the community; for the terminal device-specific K offset, the network can refer to the TA configuration K offset of the terminal device.
  • the public K offset of the network broadcast community it is obviously necessary to configure an absolute value of K offset.
  • terminal device-specific K offset configuration an intuitive way is to configure the absolute value of K offset.
  • the corresponding K offset has a wide range of values. In the case of ensuring a certain K offset accuracy requirement, using this method to configure the terminal device-specific K offset needs to use more bits to support a larger K offset value range, which will cause the payload size of the MAC CE to be larger. big.
  • the terminal device determines the dedicated offset value of the terminal device based on the offset value increment configured by the network device, and then determines the uplink transmission time of the terminal device according to the dedicated offset value of the terminal device. Domain resource location.
  • the terminal device may determine the dedicated offset value of the terminal device based on the offset value increment configured by the network device and the acquired offset value.
  • the acquired offset value may be a cell-level public offset value or a dedicated offset value of the terminal device.
  • FIG. 9 is a schematic flowchart of a communication method provided in an embodiment of the present application. As shown in FIG. 9, the method is applied to a terminal device or a processor in a terminal device, and the method includes:
  • the terminal device acquires the first offset value increment configured by the network device.
  • the terminal device may receive the first offset value increment sent by the network device. In some embodiments, the terminal device may receive the first offset value increment sent by the network device through downlink information. In some other embodiments, the terminal device may receive the first offset value increment sent by other devices, and the other device receives the first offset value increment from the network device.
  • the first offset value increment can be understood as a first offset value change amount or a first offset value adjustment amount.
  • the first offset value increment is used to adjust the cell-level common offset value. For example, in some embodiments, the first offset value increment is used to adjust down the cell-level common offset value. In some other embodiments, the first offset value increment is used to increase the cell-level common offset value.
  • the first offset value increment may be less than or equal to the difference between the maximum offset value and the minimum offset value that can be used by the terminal device. For example, if the terminal device is at the edge of the cell corresponding to the network device, the terminal device will send uplink information based on the maximum offset value; if the terminal device is at the cell edge corresponding to the network device, the terminal device will send uplink information based on the minimum offset value, The first offset value increment may be less than or equal to the difference between the maximum offset value and the minimum offset value.
  • the network device can broadcast the cell-level public offset value, and the network device can determine the dedicated offset value of the terminal device based on the delay of the terminal device, and then determine the first offset value based on the cell-level public offset value and the specific offset value of the terminal device.
  • An offset value increment sending the first offset value increment to the terminal device.
  • the network device may send the first offset value increment to the terminal device when it is determined that the terminal device needs to update the offset value.
  • the terminal device may send request information to the network device when it is determined that the terminal device needs to update the offset value, so that the network device sends the first offset value increment to the terminal device.
  • the network device may send the first offset value increment to the terminal device every preset time period; in this way, the first offset value increment may be 0 or not be 0.
  • the terminal device determines a dedicated offset value of the terminal device according to the first offset value increment and a cell-level public offset value.
  • the offset value in this embodiment of the present application may also be referred to as a timing offset value, a timing offset, or an offset, and the like.
  • the cell-level common offset value may be called a cell common offset value or a common offset value in other embodiments.
  • the cell public offset value may be stored in the terminal device, so that the terminal device may acquire the cell public offset value from itself.
  • the terminal device receives the public cell offset value broadcast by the network device, and stores the public cell offset value.
  • the cell common offset value may be the maximum offset value that the terminal device can use. In some other embodiments, the cell common offset value may be the minimum offset value that the terminal device can use. In some other embodiments, the cell common offset value may be the average value of the maximum offset value and the minimum offset value that can be used by the terminal. In some embodiments, the cell common offset value may be related to the coverage area of the network device and/or the distance between the network device and the ground.
  • the terminal device may determine the specific offset value of the terminal device based on the sum of the cell common offset value and the first offset value increment.
  • the dedicated offset value of the terminal device is the sum of the public offset value of the cell and the first offset value increment.
  • the terminal device may determine the specific offset value of the terminal device based on the value of the cell common offset value minus the first offset value increment.
  • the dedicated offset value of the terminal device may be the value of the common offset value of the cell minus the first offset value increment.
  • units of the first offset value increment, the cell-level public offset value, and the terminal device-specific offset value may be time slots or symbols.
  • the first offset value increment can be 3 time slots
  • the cell public offset value can be 100 time slots
  • the dedicated offset value of the terminal equipment is the cell public offset value minus the first offset value increment value
  • the dedicated offset value of the terminal equipment may be 97 time slots.
  • the unit of the first offset value increment, the cell-level public offset value or the terminal device-specific offset value may be one or at least two of radio frame, subframe, time slot, and symbol combination.
  • the increment of the first offset value can be 7 symbols per slot
  • the common offset value of the cell can be 100 slots
  • the dedicated offset value of the terminal equipment can be the public offset value of the cell minus the first offset
  • the value of the value increment, the dedicated offset value of the terminal equipment may be 98 time slots and 7 symbols.
  • the terminal device determines a time-domain resource position for uplink transmission of the terminal device according to the dedicated offset value of the terminal device.
  • the terminal device may be at the time-domain resource position for uplink transmission, or at least one consecutive time domain between the time-domain resource position for uplink transmission and the time-domain resource position for uplink transmission Send uplink information at the resource location.
  • the uplink information may include uplink control information (Uplink Control Information, UCI) and/or uplink data information.
  • uplink control information Uplink Control Information, UCI
  • uplink data information may include uplink data information (Uplink Control Information, UCI) and/or uplink data information.
  • UCI Uplink Control Information
  • the terminal device may send uplink information to the network device through an uplink. In some other embodiments, the terminal device may send uplink information to the network device through other devices. For example, a terminal device may send uplink information to other devices through a sidelink, so that other devices send uplink information to the network device.
  • the time-domain resource locations for uplink transmission may include subframes, time slots or symbols.
  • the time-domain resource position for uplink transmission is a time slot.
  • the network device may send at least two first offset value increments to the terminal device, so that the terminal device may value increment and the obtained cell public offset value, determine the dedicated offset values of at least two terminal devices respectively, and then determine the uplink transmission time corresponding to at least two carriers respectively based on the dedicated offset values of at least two terminal devices Domain resource location.
  • the first offset value increment may include a first sub-offset value increment and a second sub-offset value increment, the first sub-offset value increment The offset value increment corresponds to the first carrier, and the second sub-offset value increment corresponds to the second carrier.
  • the terminal device can determine the third sub-offset based on the first sub-offset value increment and the cell-level public offset value.
  • the fourth sub-offset value is determined based on the second sub-offset value increment and the cell-level public offset value, and the dedicated offset value of the terminal device includes the third sub-offset value and the fourth sub-offset value.
  • the terminal device can determine the first sub-time domain resource position corresponding to the uplink transmission corresponding to the first carrier based on the third sub-offset value, and determine the first time-domain resource position corresponding to the uplink transmission corresponding to the second carrier based on the fourth sub-offset value.
  • Two sub-time-domain resource positions, the first sub-time-domain resource position and the second sub-time-domain resource position are included in the time-domain resource positions for uplink transmission.
  • the network device may separately configure the first offset value increment for each terminal device.
  • the network device may separately configure the first offset value increment for each terminal device based on location information of different terminal devices.
  • the first offset value increments configured for different terminal devices may be the same or different.
  • the terminal device obtains the first offset value increment configured by the network device; the terminal device determines the dedicated offset value of the terminal device according to the first offset value increment and the cell-level public offset value; the terminal device According to the dedicated offset value of the terminal device, the time domain resource position of the uplink transmission of the terminal device is determined.
  • the time-domain resource position for uplink transmission is determined according to the exclusive offset value of the terminal device, so that the terminal device can determine the time-domain resource position for uplink transmission, which improves the reliability of the uplink transmission of the terminal device;
  • the dedicated offset value is determined according to the first offset value increment and the cell-level public offset value, which not only enables the terminal device to use the appropriate dedicated offset value of the terminal device in a timely manner according to the configured first offset value, but also improves
  • the length occupied by the first offset value increment is small, thereby reducing the network cost.
  • the resource consumption of the device effectively reduces the signaling overhead.
  • the first offset value increment is an increment between the specific offset value of the terminal device and the cell-level common offset value.
  • the terminal device determines the dedicated offset value of the terminal device according to the first offset value increment and the cell-level public offset value, including: the terminal device determines the specific offset value of the terminal device according to the cell-level public offset value The sum of the offset value and the first offset value increment determines the dedicated offset value of the terminal device.
  • the terminal device determines the dedicated offset value of the terminal device according to the first offset value increment and the cell-level public offset value, comprising: the terminal device determines the specific offset value of the terminal device according to the cell-level The difference between the public offset value and the first offset value increment determines the dedicated offset value of the terminal device.
  • the terminal device may determine the dedicated offset value of the terminal device by determining the sum or difference between the cell-level public offset value and the first offset value increment in a pre-configured manner.
  • the network device may indicate that the sum or the difference between the cell-level public offset value and the first offset value increment is used to determine the dedicated offset value of the terminal device.
  • the first offset value increment may be a negative value or a non-positive value. In some other embodiments, the first offset increment is a positive value or a non-negative value.
  • the cell-level public offset value is transmitted by the network device in a broadcast manner.
  • the cell-level public offset value may be included in system information (System Information, SI), or indicated through system information.
  • the cell-level common offset value may be included in a synchronization signal block (Synchronization Signal Block, SSB), or indicated by the SSB.
  • SI System Information
  • SSB Synchronization Signal Block
  • the first offset value increment is transmitted by the network device through dedicated signaling.
  • the first offset value increment is configured in dedicated signaling of the terminal device.
  • the first offset value increment is configured in radio resource control RRC signaling of the terminal device. In some other embodiments, the first offset value increment is configured in a medium access control control element MAC CE.
  • the terminal device when the network device does not configure the first offset value increment, uses the cell-level public offset value to determine the time domain resource position of the uplink transmission, and then when the uplink transmission Send uplink information at the domain resource location.
  • the terminal device will determine the dedicated offset value of the terminal device according to the cell-level public offset value and the first offset value increment, and then use the terminal
  • the device-specific offset value determines the time-domain resource position of the uplink transmission, and then sends the uplink information on the time-domain resource position of the uplink transmission. That is, in the embodiment of the present application, for each first offset value increment configured by the network device, the terminal device determines the dedicated offset value of the terminal device based on the first offset value increment and the cell-level public offset value.
  • Fig. 10 is a schematic diagram of determining the time-domain resource position of uplink transmission provided by the embodiment of the present application.
  • the network device configures the first K offset increment (that is, the first offset value) for the terminal device in the connected state Increment), the first K offset increment is the increment of the terminal device-specific K offset relative to the cell-level public K offset (that is, the cell-level public offset value), and the terminal device is based on the cell-level public K offset and the first A K offset increment determines the terminal device-specific K offset value.
  • the specific implementation process is as follows:
  • the terminal device in the connected state receives the K offset configuration information (including or indicating the first offset value increment) of the network, and the K offset configuration information is used to determine the time domain resource position of the terminal device for uplink transmission.
  • the time-domain resource location for uplink transmission is determined based on the following two:
  • the first K offset increment (corresponding to the first offset value increment), the first K offset increment is the specific K offset of the terminal equipment (the exclusive offset value of the terminal equipment) relative to the community-level public K offset (the community-level public offset value), the first K offset increment is configured through terminal equipment-specific signaling, such as terminal equipment-specific RRC signaling or MAC CE.
  • the terminal device determines the K offset value specific to the terminal device based on the network configuration.
  • the first K offset increment is a negative value or a non-positive value.
  • the first K offset increment is a positive value or a non-negative value.
  • the terminal device uses the terminal device-specific K offset to determine the time-domain resource location of the terminal device's uplink transmission.
  • the network device does not configure a dedicated offset value (or UE-specific K offset) for the terminal device, and the terminal device uses a cell-level public offset value (or called the cell public K offset), That is, the time-domain resource position for uplink transmission is determined based on the public K offset of the cell.
  • the network device configures the first K offset increment to the terminal device, and the terminal device determines the dedicated offset value 1 (that is, K offset1) of the terminal device based on the first K offset increment and the public K offset of the cell.
  • the terminal device uses K offset1, that is, determines the time-domain resource position for uplink transmission based on the dedicated offset value 1 of the terminal device.
  • the network device configures a new first K offset increment to the terminal device, and the terminal device determines the dedicated offset value 2 (namely K offset2) of the terminal device based on the new first K offset increment and the community's public K offset.
  • the terminal device uses K offset2, that is, determines the time-domain resource position for uplink transmission based on the dedicated offset value 2 of the terminal device.
  • the terminal device may adjust the terminal device-specific offset value, and determine the time-domain resource position of the terminal device's uplink transmission based on the adjusted terminal device-specific offset value. For example, in some embodiments, the terminal device may determine the adjusted specific offset value of the terminal device based on the specific offset value of the terminal device.
  • the terminal device may obtain the second offset value increment configured by the network device, and determine the adjusted specific offset value of the terminal device based on the terminal device's specific offset value and the second offset value increment .
  • FIG. 11 is a schematic flow diagram of another communication method provided in the embodiment of the present application. As shown in FIG. 11, the method is applied to a terminal device or a processor in a terminal device, and the method includes:
  • the terminal device determines whether there is a dedicated offset value for the terminal device.
  • the terminal device may determine whether a specific offset value of the terminal device is stored in the terminal device, and determine whether the terminal device has the specific offset value of the terminal device. In the case of storage, it is determined that the terminal device has an offset value specific to the terminal device. In the case of no storage, it is determined that the terminal device does not have the specific offset value of the terminal device.
  • the terminal device may determine whether the currently used offset value is a public offset value, and determine whether the terminal device has a dedicated offset value for the terminal device. In a case where the offset value currently used by the terminal device is a terminal-device-specific offset value, it is determined that the terminal device has the terminal-device-specific offset value. In a case where the offset value currently used by the terminal device is a public offset value, it is determined that the terminal device does not have a dedicated offset value for the terminal device.
  • the specific offset value of the terminal equipment is different from the common offset value of the cell level.
  • the dedicated offset value of the terminal device may be determined based on the transmission delay between the terminal device and the network device.
  • the transmission delay between the terminal device and the network device may be related to the distance between the terminal device and the network device.
  • the terminal device may determine whether it has a dedicated offset value for the terminal device in the case of receiving the offset value increment sent by the network device.
  • the offset value increment sent by the network device may be the first offset value increment or the second offset value increment.
  • the network device may instruct the terminal device to determine the time-domain resource position for uplink transmission by using the offset value increment, and the cell-level public offset value or the terminal device-specific offset value.
  • the network device instructs the terminal device to use the offset value increment and the cell-level public offset value to determine the time-domain resource position for uplink transmission, it is determined that the terminal device does not have a dedicated offset value for the terminal device.
  • the network device instructs the terminal device to use the offset value increment and the terminal device's dedicated offset value to determine the location of the time-domain resource for uplink transmission, it is determined that the terminal device does not have the terminal device's dedicated offset value.
  • the dedicated offset values for different terminal devices may be the same or different.
  • the terminal device determines to determine the specific offset value of the terminal device based on the cell-level public offset value and/or determines the adjusted specific offset value of the terminal device based on the specific offset value of the terminal device. transfer value.
  • the determination result may include: having a terminal device-specific offset value or not having a terminal device-specific offset value.
  • the terminal device determines a time-domain resource position for uplink transmission of the terminal device according to the determined dedicated offset value of the terminal device.
  • the determined specific offset value of the terminal device may be the latest determined specific offset value of the terminal device.
  • the specific offset value of the terminal device is determined based on the cell-level public offset value; or, the adjusted specific offset value of the terminal device is the latest determined terminal device Exclusive offset value.
  • the terminal device after S1103, the terminal device will have a terminal device-specific offset value, so that after S1103, the terminal device can determine an adjusted terminal device-specific offset value based on the terminal device-specific offset value; According to the adjusted dedicated offset value of the terminal device, the time domain resource position of the terminal device for uplink transmission is determined.
  • the terminal device determines the specific offset value of the terminal device based on the cell-level public offset value and/or determines the adjusted specific offset value of the terminal device based on the specific offset value of the terminal device.
  • An offset value including: in the case that the terminal equipment does not have a dedicated offset value for the terminal equipment, the terminal equipment determines the terminal equipment according to the cell-level public offset value and the first offset value increment Device-specific offset value.
  • the terminal device determines the specific offset value of the terminal device based on the cell-level public offset value and/or determines the adjusted specific offset value of the terminal device based on the specific offset value of the terminal device. an offset value, including: in the case that the terminal device has a dedicated offset value of the terminal device, the terminal device determines the Adjusted end-device specific offset value.
  • the first offset value increment is used to change the cell-level common offset value.
  • the second offset value increment is used to change the dedicated offset value of the terminal device.
  • the terminal device determines the Adjusted end-device-specific offset values, including:
  • the terminal device acquires a second offset value increment configured by the network device, wherein the second offset value increment is the specific offset value of the terminal device and the adjusted specific offset value of the terminal device increment between values;
  • the terminal device determines the adjusted terminal device-specific offset value according to the terminal device-specific offset value and the second offset value increment.
  • An implementation in which the terminal device obtains the second offset value increment configured by the network device may include: the terminal device receives the second offset value increment sent by the network device.
  • the terminal device determines the adjusted specific offset value of the terminal device according to the specific offset value of the terminal device and the second offset value increment, including: the The terminal device determines the adjusted terminal device-specific offset value according to the sum of the terminal device-specific offset value and the second offset value increment.
  • the terminal device determines the adjusted specific offset value of the terminal device according to the specific offset value of the terminal device and the second offset value increment, including: The terminal device determines the adjusted terminal device-specific offset value according to a difference between the terminal device-specific offset value and the second offset value increment.
  • the terminal device may determine the specific offset value of the terminal device by using a pre-configured manner to determine the sum or the difference between the terminal device-specific offset value and the second offset value increment.
  • the network device may indicate to use the sum or the difference between the terminal device's specific offset value and the second offset value increment to determine the terminal device's specific offset value.
  • the difference between the specific offset value of the terminal device and the second offset value increment may be a result of subtracting the second offset value increment from the specific offset value of the terminal device.
  • the second offset increment may be negative or non-positive. In some other embodiments, the second offset value increment is a positive value or a non-negative value.
  • the second offset value increment is transmitted by the network device through dedicated signaling.
  • the second offset value increment is configured in dedicated signaling of the terminal device.
  • the terminal device determines according to the cell-level public offset value and the first offset value increment
  • the specific offset value of the terminal device includes:
  • the terminal device acquires a first offset value increment configured by the network device, wherein the first offset value increment is a specific offset value of the terminal device and a cell-level public offset value of the terminal device Increment between;
  • the terminal device determines the dedicated offset value of the terminal device according to the cell-level public offset value and the first offset value increment.
  • An implementation in which the terminal device acquires the first offset value increment configured by the network device may include: the terminal device receives the first offset value increment sent by the network device.
  • the terminal device determines the dedicated offset value of the terminal device according to the cell-level public offset value and the first offset value increment, including: the terminal device determines the specific offset value of the terminal device according to the cell-level The sum of the level public offset value and the first offset value increment determines the dedicated offset value of the terminal device.
  • the terminal device determines the dedicated offset value of the terminal device according to the cell-level public offset value and the first offset value increment, including: the terminal device determines the specific offset value of the terminal device according to the cell-level The difference between the class public offset value and the first offset value increment determines the dedicated offset value of the terminal device.
  • the difference between the cell-level common offset value and the first offset value increment it may be a result of subtracting the first offset value increment from the cell-level common offset value.
  • the first offset value increment is transmitted by the network device through dedicated signaling.
  • the first offset value increment is configured in dedicated signaling of the terminal device.
  • the first offset value increment and/or the second offset value increment are configured in radio resource control RRC signaling of the terminal device. In some other embodiments, the first offset value increment and/or the second offset value increment are configured in a medium access control control element MAC CE.
  • the terminal device when the network device does not configure the first offset value increment, uses the cell-level public offset value to determine the time domain resource position of the uplink transmission, and then when the uplink transmission Send uplink information at the domain resource location.
  • the terminal device receives the first offset value increment configured by the network device, the terminal device will determine the dedicated offset value of the terminal device according to the cell-level public offset value and the first offset value increment, and then use the terminal
  • the device-specific offset value determines the time-domain resource position of the uplink transmission, and then sends the uplink information on the time-domain resource position of the uplink transmission. In this way, the terminal device has a dedicated offset value of the terminal device.
  • the terminal device will determine the adjusted exclusive offset of the terminal device according to the exclusive offset value of the terminal device and the second offset value increment value, and then use the adjusted specific offset value of the terminal device to determine the time domain resource position of the uplink transmission, and then send the uplink information on the time domain resource position of the uplink transmission.
  • the terminal device determines the dedicated offset value of the terminal device based on the first offset value increment and the cell-level public offset value. For each second offset value increment configured by the network device, the terminal device determines the adjusted specific offset value of the terminal device based on the second offset value increment and the specific offset value of the terminal device. If the terminal device does not have a dedicated offset value for the terminal device, it uses the cell-level public offset value to determine the time-domain resource location for uplink transmission; if the terminal device has a dedicated offset value for the terminal device, it uses the latest obtained The specific offset value of the terminal equipment determines the time-domain resource position of the uplink transmission.
  • Fig. 12 is another schematic diagram of determining the time-domain resource position of uplink transmission provided by the embodiment of the present application.
  • the network device configures the K offset increment (the first offset value increment or the second offset value increment), the K offset increment is the increment of the adjusted terminal equipment-specific K offset relative to the cell-level public K offset (that is, the cell-level public offset value) (if the terminal equipment does not currently have terminal equipment-specific K offset); or, the K offset increment is the adjustment amount of the adjusted terminal equipment-specific K offset (that is, the first dedicated offset value of the terminal equipment) relative to the terminal equipment-specific K offset (if the terminal equipment currently has Terminal equipment exclusive K offset).
  • the terminal device determines the adjusted terminal device-specific K offset value based on the cell-level public K offset/terminal device-specific K offset, and the K offset increment.
  • the specific implementation process is as follows:
  • the terminal device in the connected state receives the K offset configuration information (including or indicating the first offset value increment) sent by the network, and the K offset configuration information is used to determine the time domain resource position of the terminal device for uplink transmission.
  • the time-domain resource location for uplink transmission is determined based on the following two:
  • the K offset increment is configured through terminal equipment-specific signaling, such as terminal equipment-specific RRC signaling or MAC CE.
  • the terminal device determines the exclusive K offset value of the terminal device.
  • the method is as follows:
  • the terminal device has an available terminal device-specific K offset (such as: The network device configures a terminal-device-specific K offset for the terminal device, or the terminal device determines the terminal-device-specific K offset based on the cell-level public offset value/terminal-device-specific K offset), then the terminal device is based on the current terminal device
  • the second K offset increment can be 0, a positive value, or a negative value.
  • the terminal device uses the newly obtained terminal device-specific K offset to determine the time-domain resource position of the terminal device's uplink transmission.
  • the network device does not configure a dedicated offset value (or called UE-specific K offset) for the terminal device, and the terminal device uses a cell-level public offset value (or called the cell public K offset) , that is, determine the time-domain resource position for uplink transmission based on the common K offset of the cell.
  • the network device configures the first K offset increment to the terminal device, and the terminal device determines the dedicated offset value 1 (that is, K offset1) of the terminal device based on the first K offset increment and the public K offset of the cell.
  • the terminal device uses a dedicated offset value of 1, that is, determines the time-domain resource position for uplink transmission based on the dedicated offset value 1 of the terminal device.
  • the network device configures the second K offset increment to the terminal device, and the terminal device determines the dedicated offset value 2 (that is, K offset2) of the terminal device based on the second K offset increment and K offset1.
  • K offset2 that is, determines the time-domain resource position for uplink transmission based on the dedicated offset value 2 of the terminal device.
  • FIG. 13 is a schematic flowchart of another communication method provided in the embodiment of the present application. As shown in FIG. 13, the method is applied to a terminal device or a processor in a terminal device, and the method includes:
  • the terminal device determines whether there is a dedicated offset value for the terminal device.
  • the terminal device determines a specific offset value of the terminal device and/or determines an adjusted specific offset value of the terminal device based on the specific offset value of the terminal device.
  • the determination result may include: having a terminal device-specific offset value or not having a terminal device-specific offset value.
  • the terminal device determining the terminal device-specific offset value may include: the terminal device receiving the terminal device-specific offset value configured by the network device.
  • the terminal device determines a time-domain resource position for uplink transmission of the terminal device according to the determined dedicated offset value of the terminal device.
  • the determined specific offset value of the terminal device may be the latest determined specific offset value of the terminal device.
  • the terminal device-specific offset value determined by the terminal device is the latest determined terminal device-specific offset value; or, the adjusted terminal device-specific offset value is the latest determined End device specific offset value.
  • the terminal device after S1303, the terminal device will have a terminal device-specific offset value, so that after S1103, the terminal device can determine the adjusted terminal device-specific offset value based on the terminal device-specific offset value; According to the adjusted dedicated offset value of the terminal device, the time domain resource position of the terminal device for uplink transmission is determined.
  • the terminal device determines the terminal device-specific offset value and/or determines the adjusted terminal device-specific offset value based on the terminal device-specific offset value, including: in the If the terminal device does not have the terminal device-specific offset value, the terminal device acquires the terminal device-specific offset value.
  • the terminal device determines the terminal device-specific offset value and/or determines the adjusted terminal device-specific offset value based on the terminal device-specific offset value, including: In the case that the terminal device has a specific offset value of the terminal device, the terminal device determines the adjusted specific offset value of the terminal device according to the specific offset value of the terminal device and the second offset value increment , wherein the second offset value increment is an increment between the terminal device-specific offset value and the adjusted terminal device-specific offset value.
  • the terminal device determines the adjusted specific offset value of the terminal device according to the specific offset value of the terminal device and the second offset value increment, comprising: the terminal device determines the adjusted specific offset value of the terminal device according to the terminal device The sum of the device-specific offset value and the second offset value increment determines the terminal device-specific offset value.
  • the terminal device determines the adjusted specific offset value of the terminal device according to the specific offset value of the terminal device and the second offset value increment, including: the terminal device according to the The difference between the specific offset value of the terminal device and the second offset value increment determines the specific offset value of the terminal device.
  • the method further includes: the terminal device acquiring first signaling configured by the network device, where the first signaling is used to configure a dedicated offset value of the terminal device.
  • the method further includes: the terminal device acquiring a second signaling configured by a network device, where the second signaling is used to configure the second offset value increment.
  • the first signaling may include a first MAC CE
  • the second signaling may include a second MAC CE.
  • the formats of the first MAC CE and the second MAC CE are different.
  • the format of MAC CE can include long format, short format, fixed length format and variable length format.
  • the format of the first MAC CE and the format of the second MAC CE can be selected from a long format, a short format, a fixed length format and a variable length format.
  • the format of the first MAC CE is a long format
  • the format of the second MAC CE is a short format.
  • the format of the first MAC CE is a fixed-length format or a variable-length format
  • the format of the second MAC CE is a variable-length format or a fixed-length format.
  • the format of the first MAC CE may be a combination of a long format and a fixed-length format
  • the format of the second MAC CE may be a combination of a short format and a fixed-length format.
  • the format of the first MAC CE may be a combination of the long format and the variable-length format
  • the format of the second MAC CE may be the result of the short format and the fixed-length format.
  • the embodiment of the present application does not limit the format of the first MAC CE and the format of the second MAC CE.
  • bit length (or called the number of bits or payload length) used for setting the offset value in the long format is greater than the bit length used for setting the offset value in the short format.
  • bit length for setting the offset value in the long format may be greater than the first target value and less than or equal to the second target value
  • the bit length for setting the offset value in the short format may be greater than or equal to 1 and less than or equal to first target value.
  • bit length for setting the offset value in the fixed-length format is fixed.
  • bit length used to set the offset value in the variable length format varies.
  • the format of the MAC CE may further include a first indicator, and the first indicator is used to indicate the bit length of the offset value. For example, when the first indicator indicates 5, it indicates that the bit length used to set the offset value in the MAC CE is 5.
  • the first signaling includes a long MAC CE
  • the second signaling includes a short MAC CE
  • the payload length of the long MAC CE is greater than the payload length of the short MAC CE
  • the first signaling includes dedicated RRC signaling
  • the second information includes MAC CE.
  • the terminal device determines that the network device sends the dedicated offset value of the terminal device according to the received signaling is RRC signaling; the terminal device determines the first offset value sent by the network device according to the received signaling is MAC CE Two Offset increments.
  • the terminal device when the terminal device does not configure a dedicated offset value for the terminal device on the network device, the terminal device uses the cell-level public offset value to determine the time-domain resource position for uplink transmission, and then Send uplink information at the domain resource location.
  • the terminal device receives the dedicated offset value of the terminal device configured by the network device, the terminal device has the dedicated offset value of the terminal device, and the terminal device will increase the value according to the dedicated offset value of the terminal device and the second offset value.
  • Determine the adjusted dedicated offset value of the terminal equipment and then use the adjusted dedicated offset value of the terminal equipment to determine the time domain resource position of uplink transmission, and then send uplink information on the time domain resource position of the uplink transmission.
  • the terminal device will determine the adjusted exclusive offset of the terminal device according to the exclusive offset value of the terminal device and the second offset value increment value, and then use the adjusted specific offset value of the terminal device to determine the time domain resource position of the uplink transmission, and then send the uplink information on the time domain resource position of the uplink transmission.
  • the terminal device determines the adjusted specific offset value of the terminal device based on the second offset value increment and the specific offset value of the terminal device. In the case that the terminal device does not have the specific offset value of the terminal device, the terminal device receives the specific offset value of the terminal device configured by the network device. If the terminal device has a specific offset value of the terminal device, it uses the newly obtained specific offset value of the terminal device to determine the time-domain resource position of the uplink transmission.
  • Figure 14 is another schematic diagram of determining the location of time-domain resources for uplink transmission provided by the embodiment of the present application. As shown in Figure 14, if the terminal device in the connected state does not currently have a dedicated K offset for the terminal device, the network device is a terminal in the connected state The device configures the exclusive K offset value of the terminal device or the absolute value of the exclusive K offset value.
  • the network device configures a second K offset increment for the terminal device in the connected state, and the second K offset increment is the adjusted terminal device-specific K offset relative to the current The adjustment amount of the terminal device-specific K offset, and the terminal device determines the adjusted terminal device-specific K offset value based on the second K offset increment.
  • the terminal device in the connected state receives the dedicated K offset configuration information (including or indicating the first offset value increment) sent by the network, and the dedicated K offset configuration information is used to determine the time domain resource position of the terminal device for uplink transmission.
  • the configuration information of the terminal-device-specific K offset can be used to indicate: the absolute value of the terminal-device-specific K offset or the second K offset increment, and the second K offset increment is the adjusted terminal-device-specific K offset The adjustment amount relative to the current terminal device-specific K offset.
  • the dedicated K offset configuration information of the terminal equipment is configured through terminal equipment-specific signaling, such as terminal equipment-specific RRC signaling or MAC CE.
  • MAC CE MAC CE
  • different MAC CE format For example: define a long MAC CE (Long MAC CE) format (that is, the corresponding MAC CE payload size is relatively large) for configuring "terminal device-specific K offset or the absolute value of dedicated K offset", and define another short MAC
  • the CE (Short MAC CE) format that is, the corresponding MAC CE payload size is smaller) is used to configure the "second K offset increment.
  • the terminal device currently has a terminal device-specific K offset available (for example: the network device configures the terminal device-specific K offset for the terminal device, or determines the terminal device-specific K offset based on the terminal device-specific K offset). offset), the network can use the short MAC CE format to configure the "second K offset increment".
  • RRC signaling is used to configure the absolute value of the terminal device-specific K offset
  • MAC CE is used to configure the second K offset increment.
  • the terminal device can determine the K offset value exclusive to the terminal device based on the network configuration.
  • the terminal equipment-specific K offset indicated by the first MAC CE or the absolute value of the exclusive K offset is used as the terminal equipment-specific K offset;
  • the second K offset increment can be 0, a positive value, or a negative value.
  • the terminal equipment receives the terminal equipment-specific RRC signaling to configure the terminal equipment-specific K offset, then the terminal equipment-specific K offset indicated by the RRC signaling is used as the terminal equipment-specific K offset;
  • the terminal device determines the adjusted K offset according to the current terminal device-specific K offset and the second K offset indicated by the MAC CE.
  • the terminal device uses the terminal device-specific K offset to determine the time-domain resource location of the terminal device's uplink transmission.
  • the network device does not configure a dedicated offset value (or UE-specific K offset) for the terminal device, and the terminal device uses a cell-level public offset value (or called the cell public K offset) , that is, determine the time-domain resource position for uplink transmission based on the common K offset of the cell.
  • a dedicated offset value or UE-specific K offset
  • the terminal device uses a cell-level public offset value (or called the cell public K offset) , that is, determine the time-domain resource position for uplink transmission based on the common K offset of the cell.
  • the network device configures the terminal device-specific K offset or the absolute value of the dedicated K offset to the terminal device (network configuration K offset 1), and the terminal device determines the terminal device-specific K offset or the absolute value of the dedicated K offset as the terminal device Dedicated offset value 1 (that is, K offset1), during the period from t2 to t3, the terminal device uses the dedicated offset value 1 of the terminal device, that is, determines the time-domain resource position for uplink transmission based on the dedicated offset value 1 of the terminal device.
  • the network device configures the second K offset increment to the terminal device, and the terminal device determines the dedicated offset value 2 (that is, K offset2) of the terminal device based on the second K offset increment and K offset1.
  • the terminal The device uses K offset2, that is, determines the time-domain resource position for uplink transmission based on the dedicated offset value 2 of the terminal device.
  • a communication method provided in an embodiment of the present application is applied to a network device or a processor in the network device, and the method includes:
  • the network device configures the first offset value increment to the terminal device
  • the network device determines the dedicated offset value of the terminal device according to the first offset value increment and the cell-level public offset value
  • the network device determines the time domain resource position of the terminal device for uplink transmission according to the dedicated offset value of the terminal device.
  • the first offset value increment is an increment between the specific offset value of the terminal device and the cell-level common offset value.
  • the network device determines the dedicated offset value of the terminal device according to the first offset value increment and the cell-level public offset value, including:
  • the network device determines the dedicated offset value of the terminal device according to the sum of the cell-level public offset value and the first offset value increment; or,
  • the network device determines the dedicated offset value of the terminal device according to the difference between the cell-level public offset value and the first offset value increment.
  • the cell-level public offset value is transmitted by the network device in a broadcast manner.
  • the first offset value increment is transmitted by the network device through dedicated signaling.
  • a communication method provided in an embodiment of the present application is applied to a network device or a processor in the network device, and the method includes:
  • the network device determines whether the terminal device has a dedicated offset value for the terminal device
  • the network device determines to determine the specific offset value of the terminal device based on the cell-level public offset value or determines the adjusted specific offset value of the terminal device based on the specific offset value of the terminal device;
  • the network device determines a time-domain resource position for uplink transmission of the terminal device according to the determined dedicated offset value of the terminal device.
  • the network device determines to determine the specific offset value of the terminal device based on the cell-level public offset value or determines the adjusted terminal based on the specific offset value of the terminal device Device-specific offset values, including:
  • the network device determines the specific offset of the terminal device according to the cell-level public offset value and the first offset value increment value;
  • the network device determines the adjusted terminal device according to the specific offset value of the terminal device and the second offset value increment Exclusive offset value.
  • the network device determines according to the specific offset value of the terminal device and the second offset value increment
  • the adjusted exclusive offset value of the terminal equipment includes:
  • the network device configures a second offset value increment to the terminal device, where the second offset value increment is the dedicated offset value of the terminal device and the adjusted dedicated offset value of the terminal device. increment between shift values;
  • the network device determines the adjusted specific offset value of the terminal device according to the specific offset value of the terminal device and the second offset value increment.
  • the network device determines the adjusted terminal device-specific offset value according to the terminal device-specific offset value and the second offset value increment, including:
  • the network device determines the adjusted terminal device-specific offset value according to the sum of the terminal device-specific offset value and the second offset value increment; or,
  • the network device determines the adjusted terminal device-specific offset value according to a difference between the terminal device-specific offset value and the second offset value increment.
  • the second offset value increment is transmitted by the network device through dedicated signaling.
  • the network device determines the The specific offset value of the terminal device includes:
  • the network device configures a first offset value increment to the terminal device, where the first offset value increment is a dedicated offset value of the terminal device and a cell-level public offset of the terminal device increment between values;
  • the network device determines the dedicated offset value of the terminal device according to the cell-level public offset value and the first offset value increment.
  • the network device determines the dedicated offset value of the terminal device according to the cell-level public offset value and the first offset value increment, including:
  • the network device determines the dedicated offset value of the terminal device according to the sum of the cell-level public offset value and the first offset value increment; or,
  • the network device determines the dedicated offset value of the terminal device according to the difference between the cell-level public offset value and the first offset value increment.
  • the first offset value increment is transmitted by the network device through dedicated signaling.
  • a communication method provided in an embodiment of the present application is applied to a network device or a processor in the network device, and the method includes:
  • the network device determines whether the terminal device has a dedicated offset value for the terminal device
  • the network device determines the specific offset value of the terminal device and/or determines the adjusted specific offset value of the terminal device based on the specific offset value of the terminal device;
  • the network device determines a time-domain resource position for uplink transmission of the terminal device according to the determined dedicated offset value of the terminal device.
  • the network device determines the specific offset value of the terminal device and/or determines the adjusted specific offset value of the terminal device based on the specific offset value of the terminal device ,include:
  • the network device obtains the terminal device-specific offset value
  • the network device determines the adjusted specific offset value of the terminal device according to the specific offset value of the terminal device and the second offset value increment An offset value, wherein the second offset value increment is an increment between the terminal device-specific offset value and the adjusted terminal device-specific offset value.
  • the network device determines the adjusted specific offset value of the terminal device according to the specific offset value of the terminal device and the second offset value increment, including:
  • the network device determines the specific offset value of the terminal device according to the sum of the specific offset value of the terminal device and the second offset value increment; or,
  • the network device determines the specific offset value of the terminal device according to the difference between the specific offset value of the terminal device and the second offset value increment.
  • the method also includes:
  • the network device configures the first signaling to the terminal device, where the first signaling is used to configure a dedicated offset value of the terminal device, and/or,
  • the network device configures the second signaling to the terminal device, where the second signaling is used to configure the second offset value increment.
  • the first signaling includes a long MAC CE
  • the second signaling includes a short MAC CE
  • the payload length of the long MAC CE is greater than the payload length of the short MAC CE
  • the first signaling includes dedicated RRC signaling
  • the second information includes MAC CE
  • the implementation method of determining the location of the time-domain resource for uplink transmission of the terminal device according to the dedicated offset value of the terminal device is described.
  • This implementation method can be applied to any of the above-mentioned In an embodiment, for example, this implementation may be applied to the above steps of S903, S1103 or S1303, and/or, in the steps of the network device side corresponding to S903, S1103 or S1303:
  • PUSCH Physical Uplink Shared Channel
  • DCI Downlink Control Information
  • K2 is determined based on the subcarrier spacing of the PUSCH
  • ⁇ PUSCH is used to determine the subcarrier spacing configured for the physical downlink shared channel (Physical Downlink Share Channel, PDSCH);
  • ⁇ PDCCH is used to determine the subcarrier spacing configured for the physical downlink control channel (Physical Downlink Control Channel, PDCCH);
  • K offset is a dedicated offset value of the terminal device.
  • the K offset in the embodiment of the present application can be understood in the same way as the K offset.
  • the value range of K 2 can be 0 to 32.
  • the indication information of K 2 may be included in the DCI, and the K 2 is used to determine the time slot for transmitting the PUSCH.
  • the terminal device after the terminal device initiates a physical random access channel (Physical Random Access Channel, PRACH), and the terminal device receives a physical downlink shared channel PDSCH including a random access response grant (grant)
  • a physical random access channel Physical Random Access Channel
  • PRACH Physical Random Access Channel
  • the terminal device receives a physical downlink shared channel PDSCH including a random access response grant (grant)
  • the time slot used for PUSCH transmission is n+K 2 + ⁇ +K offset ;
  • K offset is a dedicated offset value of the terminal device.
  • the first time domain resource location comprises a time slot
  • the terminal device When the end position of the PDSCH received by the terminal device is time slot n, or the end position of the received PDCCH indicating semi-persistent scheduling (Semi-Persistent Scheduling, SPS) PDSCH release is time slot n, the terminal device The device transmits Hybrid Automatic Repeat request-acknowledge (Hybrid Automatic Repeat request-ACKnowledge, HARQ-ACK) information on the physical uplink control channel (Physical Uplink Control Channel) PUCCH resource in time slot n+K 1 +K offset ;
  • Hybrid Automatic Repeat request-ACKnowledge Hybrid Automatic Repeat request-ACKnowledge, HARQ-ACK
  • K1 is determined based on PDSCH-to-HARQ-timing-indicator, or K1 is determined based on dl-DataToUL-ACK;
  • K offset is a dedicated offset value of the terminal device.
  • the UE shall The corresponding HARQ-ACK information is transmitted on the PUCCH resource within 1 +K offset .
  • K 1 is the number of time slots and is indicated by the PDSCH-to-HARQ-timing-indicator information field in the DCI format, or provided by the dl-DataToUL-ACK parameter.
  • K 1 0 corresponds to the last time slot of PUCCH transmission overlapping with the time slot of PDSCH reception or PDCCH reception indicating SPS PDSCH release.
  • the HARQ-ACK information corresponding to the PDSCH including the MAC CE command is transmitted on time slot n, the behavior indicated by the MAC CE command and/or the downlink configuration of the terminal device, when gap The first time slot after that takes effect;
  • X is determined based on the capability of the terminal equipment of the non-terrestrial communication network NTN; the value of X may not be 3;
  • K offset is a dedicated offset value of the terminal device.
  • the time slot n' for reporting the CSI on the CSI reference resource is based on the time slot definite
  • ⁇ DL is determined based on downlink subcarrier spacing
  • ⁇ UL is determined based on uplink subcarrier spacing
  • n CSI_ref is determined based on the type of CSI report
  • K offset is a dedicated offset value of the terminal device.
  • the CSI reference resource for reporting CSI on the uplink time slot n' is based on a single downlink time slot sure, among them, ⁇ DL and ⁇ UL are respectively downlink and uplink subcarrier spacing configurations.
  • n The value of CSI_ref depends on the type of CSI report.
  • the terminal device when the terminal device receives DCI-triggered transmission of an aperiodic Sounding Reference Signal (SRS) at time slot n, the terminal device Upward transmission of the aperiodic SRS in each triggered SRS resource set;
  • SRS Sounding Reference Signal
  • k is determined by the high layer parameter slotOffset in each triggered SRS resource set, and the subcarrier interval corresponding to the triggered SRS transmission;
  • the ⁇ SRS is determined based on the subcarrier spacing of the triggered SRS
  • the ⁇ PDCCH is determined based on the subcarrier spacing of the PDCCH carrying the trigger command
  • K offset is a dedicated offset value of the terminal device.
  • the UE transmits the aperiodic SRS in each triggered SRS resource set, where k is configured by the high layer parameter slotOffset in each triggered SRS resource set and is determined according to the subcarrier spacing corresponding to the triggered SRS transmission , ⁇ SRS and ⁇ PDCCH are the subcarrier spacing configurations of the triggered SRS transmission and the PDCCH carrying the trigger command, respectively.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the order of execution of the processes should be determined by their functions and internal logic, and should not be used in this application.
  • the implementation of the examples constitutes no limitation.
  • the terms “downlink”, “uplink” and “sidelink” are used to indicate the transmission direction of signals or data, wherein “downlink” is used to indicate that the transmission direction of signals or data is sent from the station The first direction to the user equipment in the cell, “uplink” is used to indicate that the signal or data transmission direction is the second direction sent from the user equipment in the cell to the station, and “side line” is used to indicate that the signal or data transmission direction is A third direction sent from UE1 to UE2.
  • “downlink signal” indicates that the transmission direction of the signal is the first direction.
  • the term “and/or” is only an association relationship describing associated objects, indicating that there may be three relationships. Specifically, A and/or B may mean: A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character "/" in this article generally indicates that the contextual objects are an "or” relationship.
  • the following is a schematic diagram of the structure and composition of a communication device provided by an embodiment of the present application.
  • the communication device can be applied to a terminal device, and the communication device includes:
  • An acquisition unit configured to acquire the first offset value increment configured by the network device
  • a determining unit configured to determine the dedicated offset value of the terminal device according to the first offset value increment and the cell-level public offset value
  • the determining unit is further configured to determine a time-domain resource position for uplink transmission of the terminal device according to the dedicated offset value of the terminal device.
  • the first offset value increment is an increment between the specific offset value of the terminal device and the cell-level public offset value.
  • the determining unit is further configured to:
  • the cell-level public offset value is transmitted by the network device in a broadcast manner.
  • the first offset value increment is transmitted by the network device through dedicated signaling.
  • the following is a schematic diagram of the structure and composition of another communication device provided by the embodiment of the present application.
  • the communication device can be applied to terminal equipment, and the communication device includes:
  • a determining unit configured to determine whether there is a dedicated offset value for the terminal device
  • the determining unit is further configured to, according to the determination result, determine the specific offset value of the terminal device based on the cell-level public offset value and/or determine the adjusted terminal device based on the specific offset value of the terminal device Exclusive offset value;
  • the determining unit is further configured to determine a time-domain resource position for uplink transmission of the terminal device according to the determined dedicated offset value of the terminal device.
  • the determining unit is further configured to:
  • the terminal device does not have a specific offset value for the terminal device, determine the specific offset value for the terminal device according to the cell-level common offset value and the first offset value increment;
  • the terminal device has a specific offset value of the terminal device, determining the adjusted specific offset value of the terminal device according to the specific offset value of the terminal device and a second offset value increment .
  • the determining unit is further configured to:
  • the second offset value increment is the difference between the terminal device's dedicated offset value and the adjusted terminal device's dedicated offset value increment;
  • the determining unit is further configured to:
  • the adjusted specific offset value of the terminal device is determined according to the difference between the specific offset value of the terminal device and the second offset value increment.
  • the second offset value increment is transmitted by the network device through dedicated signaling.
  • the determining unit is further configured to:
  • the determining unit is further configured to:
  • the first offset value increment is transmitted by the network device through dedicated signaling.
  • the following is a schematic diagram of the structural composition of another communication device provided by the embodiment of the present application.
  • the communication device can be applied to terminal equipment, and the communication device includes:
  • a determining unit configured to determine whether there is a dedicated offset value for the terminal device
  • the determining unit is further configured to determine a specific offset value of the terminal device and/or determine an adjusted specific offset value of the terminal device based on the specific offset value of the terminal device according to the determination result;
  • the determining unit is further configured to determine a time-domain resource position for uplink transmission of the terminal device according to the determined dedicated offset value of the terminal device.
  • the determining unit is further configured to:
  • the terminal device does not have a dedicated offset value for the terminal device, acquire the dedicated offset value for the terminal device;
  • an adjusted specific offset value of the terminal device is determined according to the specific offset value of the terminal device and a second offset value increment, wherein , the second offset value increment is an increment between the terminal device-specific offset value and the adjusted terminal device-specific offset value.
  • the determining unit is further configured to:
  • the communication device further includes an acquisition unit, and the acquisition unit is used for:
  • the first signaling includes a long MAC CE
  • the second signaling includes a short MAC CE
  • the payload length of the long MAC CE is greater than the payload length of the short MAC CE
  • the first signaling includes dedicated RRC signaling
  • the second information includes MAC CE
  • the following is a schematic diagram of the structural composition of another communication device provided by the embodiment of the present application.
  • the communication device can be applied to network equipment, and the communication device includes:
  • a configuration unit configured to configure the first offset value increment to the terminal device
  • a determining unit configured to determine the dedicated offset value of the terminal device according to the first offset value increment and the cell-level public offset value
  • the determining unit is further configured to determine a time-domain resource position for uplink transmission of the terminal device according to the dedicated offset value of the terminal device.
  • the first offset value increment is an increment between the specific offset value of the terminal device and the cell-level public offset value.
  • the determining unit is further configured to:
  • the cell-level public offset value is transmitted by the network device in a broadcast manner.
  • the first offset value increment is transmitted by the network device through dedicated signaling.
  • the following is a schematic diagram of the structural composition of a communication device provided by another embodiment of the present application.
  • the communication device can be applied to network equipment, and the communication device includes:
  • a determining unit configured to determine whether the terminal device has a dedicated offset value for the terminal device
  • the determining unit is further configured to, according to the determination result, determine the specific offset value of the terminal device based on the cell-level public offset value and/or determine the adjusted terminal device based on the specific offset value of the terminal device Exclusive offset value;
  • the determining unit is further configured to determine a time-domain resource position for uplink transmission of the terminal device according to the determined dedicated offset value of the terminal device.
  • the determining unit is further configured to:
  • the terminal device does not have a specific offset value for the terminal device, determine the specific offset value for the terminal device according to the cell-level common offset value and the first offset value increment;
  • the terminal device has a specific offset value of the terminal device, determining the adjusted specific offset value of the terminal device according to the specific offset value of the terminal device and a second offset value increment .
  • the determining unit is further configured to:
  • the determining unit is further configured to:
  • the adjusted specific offset value of the terminal device is determined according to the difference between the specific offset value of the terminal device and the second offset value increment.
  • the second offset value increment is transmitted by the network device through dedicated signaling.
  • the determining unit is further configured to:
  • the determining unit is further configured to:
  • the first offset value increment is transmitted by the network device through dedicated signaling.
  • the following is a schematic diagram of the structure and composition of a communication device provided by another embodiment of the present application.
  • the communication device can be applied to network equipment, and the communication device includes:
  • a determining unit configured to determine whether the terminal device has a dedicated offset value for the terminal device
  • the determining unit is further configured to determine a specific offset value of the terminal device and/or determine an adjusted specific offset value of the terminal device based on the specific offset value of the terminal device according to the determination result;
  • the determining unit is further configured to determine a time-domain resource position for uplink transmission of the terminal device according to the determined dedicated offset value of the terminal device.
  • the determining unit is further configured to:
  • the terminal device does not have a dedicated offset value for the terminal device, acquire the dedicated offset value for the terminal device;
  • an adjusted specific offset value of the terminal device is determined according to the specific offset value of the terminal device and a second offset value increment, wherein , the second offset value increment is an increment between the terminal device-specific offset value and the adjusted terminal device-specific offset value.
  • the determining unit is further configured to:
  • the communication device further includes: a configuration unit; the configuration unit is used for:
  • the first signaling includes a long MAC CE
  • the second signaling includes a short MAC CE
  • the payload length of the long MAC CE is greater than the payload length of the short MAC CE
  • the first signaling includes dedicated RRC signaling
  • the second information includes MAC CE
  • FIG. 15 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device 1500 shown in FIG. 15 includes a processor 1510 and a memory 1520.
  • the memory 1520 stores a computer program that can run on the processor. When the processor 1510 executes the program, the method in the embodiment of the present application is implemented.
  • the memory 1520 may be an independent device independent of the processor 1510 , or may be integrated in the processor 1510 .
  • the communication device 1500 may further include a transceiver 1530, and the processor 1510 may control the transceiver 1530 to communicate with other devices, specifically, to send information or data to other devices, or Receive information or data from other devices.
  • the transceiver 1530 may include a transmitter and a receiver.
  • the transceiver 1530 may further include antennas, and the number of antennas may be one or more.
  • the communication device 1500 may specifically be the network device of the embodiment of the present application, and the communication device 1500 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, the Let me repeat.
  • the communication device 1500 may specifically be the terminal device of the embodiment of the present application, and the communication device 1500 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. Let me repeat.
  • the embodiment of the present application also provides a computer storage medium, the computer storage medium stores one or more programs, and the one or more programs can be executed by one or more processors, so as to realize the Methods.
  • the computer storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For the sake of brevity, here No longer.
  • the computer storage medium can be applied to the terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the terminal device in the various methods of the embodiments of the present application. For the sake of brevity, here No longer.
  • FIG. 16 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1600 shown in FIG. 16 includes a processor 1610, and the processor 1610 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 1600 may further include a memory 1620 .
  • the processor 1610 can invoke and run a computer program from the memory 1620, so as to implement the method in the embodiment of the present application.
  • the memory 1620 may be an independent device independent of the processor 1610 , or may be integrated in the processor 1610 .
  • the chip 1600 may also include an input interface 1630 .
  • the processor 1610 can control the input interface 1630 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 1600 may also include an output interface 1640 .
  • the processor 1610 can control the output interface 840 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of brevity, details are not repeated here.
  • the chip can be applied to the terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application. For the sake of brevity, details are not repeated here.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the embodiment of the present application also provides a computer program product, the computer program product includes a computer storage medium, the computer storage medium stores a computer program, and the computer program includes instructions executable by at least one processor, when the When the instructions are executed by the at least one processor, the methods in the embodiments of the present application are implemented.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For brevity, This will not be repeated here.
  • the computer program product can be applied to the terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • a computer program product may be referred to as a software product.
  • the embodiment of the present application also provides a computer program, the computer program causes a computer to execute the method in the embodiment of the present application.
  • the computer program can be applied to the network device in the embodiment of the present application, and when the computer program is run on the computer, the computer executes the corresponding process implemented by the network device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the computer program can be applied to the terminal device in the embodiment of the present application. When the computer program is run on the computer, the computer executes the corresponding process implemented by the terminal device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • processors may include any one or more of the following integrations: general-purpose processors, application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), digital signal processors (Digital Signal Processor, DSP), digital signal processing devices (Digital Signal Processing Device, DSPD), Programmable Logic Device (Programmable Logic Device, PLD), Field Programmable Gate Array (Field Programmable Gate Array, FPGA), Central Processing Unit (Central Processing Unit, CPU), Graphics Processing Unit (Graphics Processing Unit, GPU), embedded neural-network processing units (NPU), controller, microcontroller, microprocessor, programmable logic device, discrete gate or transistor logic device, discrete hardware components.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • Field Programmable Gate Array Field Programmable Gate Array
  • FPGA Field Programmable Gate Array
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • NPU embedded neural-network processing units
  • controller microcontroller, microprocess
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory or computer storage medium in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM) , DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM ), synchronous connection dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法、装置、设备、存储介质、芯片、产品及程序,该方法包括:终端设备获取网络设备配置的第一偏移值增量;所述终端设备根据所述第一偏移值增量和小区级公共偏移值确定所述终端设备的专属偏移值;所述终端设备根据所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。

Description

通信方法、装置、设备、存储介质、芯片、产品及程序 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种通信方法、装置、设备、存储介质、芯片、产品及程序。
背景技术
目前第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)正在研究非陆地网络(Non-Terrestrial Networks,NTN)技术,NTN一般采用卫星通信的方式向地面用户提供通信服务。
NTN中终端设备如何确定向网络设备或卫星发送信息的时域资源位置,是本领域一直以来关注的问题。
发明内容
本申请实施例提供一种通信方法、装置、设备、存储介质、芯片、产品及程序。
第一方面,本申请实施例提供一种通信方法,所述方法包括:
终端设备获取网络设备配置的第一偏移值增量;
所述终端设备根据所述第一偏移值增量和小区级公共偏移值确定所述终端设备的专属偏移值;
所述终端设备根据所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
第二方面,本申请实施例提供一种通信方法,所述方法包括:
终端设备确定是否具有所述终端设备的专属偏移值;
根据确定结果,所述终端设备确定基于小区级公共偏移值确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值;
所述终端设备根据确定的所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。第三方面,本申请实施例提供一种通信方法,所述方法包括:
终端设备确定是否具有所述终端设备的专属偏移值;
根据确定结果,所述终端设备确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值;
所述终端设备根据确定的所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。第四方面,本申请实施例提供一种通信方法,所述方法包括:
网络设备向终端设备配置第一偏移值增量;
所述网络设备根据所述第一偏移值增量和小区级公共偏移值确定所述终端设备的专属偏移值;
所述网络设备根据所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
第五方面,本申请实施例提供一种通信方法,所述方法包括:
网络设备确定终端设备是否具有所述终端设备的专属偏移值;
根据确定结果,所述网络设备确定基于小区级公共偏移值确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值;
所述网络设备根据确定的所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
第六方面,本申请实施例提供一种通信方法,所述方法包括:
网络设备确定终端设备是否具有所述终端设备的专属偏移值;
根据确定结果,所述网络设备确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值;
所述网络设备根据确定的所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
第七方面,本申请实施例提供一种通信装置,包括:
获取单元,用于获取网络设备配置的第一偏移值增量;
确定单元,用于根据所述第一偏移值增量和小区级公共偏移值确定所述终端设备的专属偏移值;
所述确定单元,还用于根据所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位 置。
第八方面,本申请实施例提供一种通信装置,包括:
确定单元,用于确定是否具有所述终端设备的专属偏移值;
所述确定单元,还用于根据确定结果,确定基于小区级公共偏移值确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值;
所述确定单元,还用于根据确定的所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
第九方面,本申请实施例提供一种通信装置,包括:
确定单元,用于确定是否具有所述终端设备的专属偏移值;
所述确定单元,还用于根据确定结果,确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值;
所述确定单元,还用于根据确定的所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
第十方面,本申请实施例提供一种通信装置,包括:
配置单元,用于向终端设备配置第一偏移值增量;
确定单元,用于根据所述第一偏移值增量和小区级公共偏移值确定所述终端设备的专属偏移值;
所述确定单元,还用于根据所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
第十一方面,本申请实施例提供一种通信装置,包括:
确定单元,用于确定终端设备是否具有所述终端设备的专属偏移值;
所述确定单元,还用于根据确定结果,确定基于小区级公共偏移值确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值;
所述确定单元,还用于根据确定的所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
第十二方面,本申请实施例提供一种通信装置,包括:
确定单元,用于确定终端设备是否具有所述终端设备的专属偏移值;
所述确定单元,还用于根据确定结果,确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值;
所述确定单元,还用于根据确定的所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
第十三方面,本申请实施例提供一种终端设备,包括:存储器和处理器,
所述存储器存储有可在处理器上运行的计算机程序,
所述处理器执行所述程序时实现上述方法。
第十四方面,本申请实施例提供一种网络设备,包括:存储器和处理器,
所述存储器存储有可在处理器上运行的计算机程序,
所述处理器执行所述程序时实现上述方法。
第十五方面,本申请实施例提供一种计算机存储介质,所述计算机存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现上述方法。
第十六方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,以实现上述方法。
第十七方面,本申请实施例提供一种计算机程序产品,所述计算机程序产品包括计算机存储介质,所述计算机存储介质存储计算机程序,所述计算机程序包括能够由至少一个处理器执行的指令,当所述指令由所述至少一个处理器执行时实现上述方法。
第十八方面,本申请实施例提供一种计算机程序,所述计算机程序使得计算机执行上述方法。
在本申请实施例中,终端设备获取网络设备配置的第一偏移值增量;终端设备根据第一偏移值增量和小区级公共偏移值确定终端设备的专属偏移值;终端设备根据终端设备的专属偏移值,确定终端设备上行传输的时域资源位置。这样,上行传输的时域资源位置是根据终端设备的专属偏移值确定的,从而终端设备能够确定上行传输的时域资源位置,提高了终端设备上行传输的可靠性;另外,由于终端设备的专属偏移值是根据第一偏移值增量和小区级公共偏移值确定的,不仅使得终端设备能够根据配置的第一偏移值及时地使用合适的终端设备的专属偏移值,提高了确定上行传输的时域资源位置的灵活性,而且相较于网络设备直接配置终端设备的专属偏移值的技术来说,第一偏移值增量占用的长度较小,从而能够降低网络设备的资源消耗,有效降低了信令开销。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例的一个应用场景的示意图;
图2为本申请实施例提供的一种通信系统的架构示意图;
图3为本申请实施例提供的另一种通信系统的架构示意图;
图4为本申请实施例提供的基于透传转发卫星的NTN场景的示意图;
图5为本申请实施例提供的基于再生转发卫星的NTN场景的示意图;
图6为网络设备侧的时间同步的方式示意图;
图7为第一种情况下NTN系统的定时关系的示意图;
图8为第二种情况下NTN系统的定时关系的示意图;
图9为本申请实施例提供的一种通信方法的流程示意图;
图10为本申请实施例提供的一种确定上行传输的时域资源位置的示意图;
图11为本申请实施例提供的另一种通信方法的流程示意图;
图12为本申请实施例提供的另一种确定上行传输的时域资源位置的示意图;
图13为本申请实施例提供的又一种通信方法的流程示意图;
图14为本申请实施例提供的又一种确定上行传输的时域资源位置的示意图;
图15为本申请实施例提供的一种通信设备的示意性结构图;
图16为本申请实施例的芯片的示意性结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。本申请实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
图1为本申请实施例的一个应用场景的示意图,如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统(例如6G、7G等通信系统)等。
在图1所示的通信系统100中,网络设备120可以包括与终端设备110通信的接入网设备121。接入网设备121可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110进行通信。
本申请中的终端设备或其它设备,可以称为用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal,MT)、用户单元、用户站、移动站、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备或其它设备可以包括以下之一或者至少两者的组合:物联网(Internet of Things,IoT)设备、卫星终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、服务器、手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、掌上电脑、台式计算机、个人数字助理、便捷式媒体播放器、智能音箱、导航装置、智能手表、智能眼镜、智能项链等可穿戴设备、计步器、数字TV、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线 终端、智慧家庭(smart home)中的无线终端以及车联网系统中的车、车载设备、车载模块、无线调制解调器(modem)、手持设备(handheld)、客户终端设备(Customer Premise Equipment,CPE)、智能家电。
本申请实施例中的网络设备120可以包括接入网设备121和/或核心网设备122。
接入网设备121可以包括以下之一或者至少两者的组合:长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB)、下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备、NR系统中的基站(gNB)、小站、微站、云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器、无线保真(Wireless-Fidelity,Wi-Fi)的接入点、传输接收点(transmission reception point,TRP)、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
核心网设备122可以是5G核心网(5G Core,5GC)设备,核心网设备122可以包括以下之一或者至少两者的组合:接入与移动性管理功能(Access and Mobility Management Function,AMF)、认证服务器功能(Authentication Server Function,AUSF)、用户面功能(User Plane Function,UPF)、会话管理功能(Session Management Function,SMF)、位置管理功能(Location Management Function,LMF)。在另一些实施方式中,核心网络设备也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备122也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。
终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,在一些实施例中,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
3GPP正在研究非地面通信网络设备(Non Terrestrial Network,NTN)技术,NTN一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
NTN技术可以和各种通信系统结合。例如,NTN技术可以和NR系统结合为NR-NTN系统。又例如,NTN技术可以和物联网(Internet of Things,IoT)系统结合为IoT-NTN系统。作为示例,IoT-NTN系统可以包括NB-IoT-NTN系统和eMTC-NTN系统。
图2为本申请实施例提供的一种通信系统的架构示意图,如图2所示,包括终端设备1101和卫星1102,终端设备1101和卫星1102之间可以进行无线通信。终端设备1101和卫星1102之间所形成的网络还可以称为NTN。在图2所示的通信系统的架构中,卫星1102可以具有基站的功能,终端设备1101和卫星1102之间可以直接通信。在系统架构下,可以将卫星1102称为网络设备。在本申请的一些实施例中,通信系统中可以包括多个网络设备1102,并且每个网络设备1102的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
图3为本申请实施例提供的另一种通信系统的架构示意图,如图3所示,包括终端设备1201、卫星1202和基站1203,终端设备1201和卫星1202之间可以进行无线通信,卫星1202与基站1203之间可以通信。终端设备1201、卫星1202和基站1203之间所形成的网络还可以称为NTN。在图3所示的通信系统的架构中,卫星1202可以不具有基站的功能,终端设备1201和基站1203之间的通信需要通过卫星1202的中转。在该种系统架构下,可以将基站1203称为网络设备。在本申请的一些实施例中,通信系统中可以包括多个网络设备1203,并且每个网络设备1203的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。所述网络设备1203可以是图1中的网络设备120。
应理解,上述卫星1102或卫星1202包括但不限于:低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等等。卫星可采用多波束覆盖地面,例如,一颗卫星可以形成几十甚至数百个波束来覆盖地面。换言之,一个卫星波束可以覆盖直径几十至上百公里的地面区域,以保证卫星的覆盖以及提升整个卫星通信系统的系统容量。
作为示例,LEO卫星的高度范围可以为500千米~1500千米,相应轨道周期约可以为1.5小时~2小时,用户间单跳通信的信号传播延迟一般可小于20毫秒,最大卫星可视时间可以为20分钟,LEO卫星的信号传播距离短且链路损耗少,对用户终端的发射功率要求不高。GEO卫星的轨道高度可以35786km,围绕地球旋转周期可以为24小时,用户间单跳通信的信号传播延迟一般可为250毫秒。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
需要说明的是,图1至图3只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”、“协议约定”、“预先确定”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
卫星从其提供的功能上可以分为透传转发(transparent payload)和再生转发(regenerative payload)两种。对于透传转发卫星,只提供无线频率滤波,频率转换和放大的功能,只提供信号的透明转发,不会改变其转发的波形信号。对于再生转发卫星,除了提供无线频率滤波,频率转换和放大的功能,还可以提供解调/解码,路由/转换,编码/调制的功能,其具有基站的部分或者全部功能。
在NTN中,可以包括一个或多个网关(Gateway),用于卫星和终端之间的通信。
图4为本申请实施例提供的基于透传转发卫星的NTN场景的示意图,图5为本申请实施例提供的基于再生转发卫星的NTN场景的示意图。
如图4所示,对于基于透传转发卫星的NTN场景,网关和卫星之间通过馈线链路(Feeder link)进行通信,卫星和终端之间可以通过服务链路(service link)进行通信。如图5所示,对于基于再生转发卫星的NTN场景,卫星和卫星之间通过星间链路(InterStar link)进行通信,网关和卫星之间通过馈线链路(Feeder link)进行通信,卫星和终端之间可以通过服务链路(service link)进行通信。
在图4和图5中,网关用于连接卫星和地面公共网络(例如数据网络)。馈线链路用于网关和卫星之间通信的链路。服务链路用于终端和卫星之间通信的链路。星间链路存在于再生转发网络架构下。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
上行传输的一个重要特征是不同终端设备在时频上正交多址接入,即来自同一小区的不同终端设备的上行传输之间互不干扰。
为了保证上行传输的正交性,避免小区内(intra-cell)干扰,网络设备要求来自同一时刻但不同频域资源的不同终端设备的信号到达网络设备的时间基本上是对齐的。为了保证网络设备侧的时间同步,NR支持上行定时提前的机制。
网络设备侧的上行时钟和下行时钟是相同的,而终端设备侧的上行时钟和下行时钟之间有偏移,并且不同终端设备有各自不同的上行定时提前量。网络设备通过适当地控制每个终端设备的偏移,可以控制来自不同终端设备的上行信号到达网络设备的时间。对于离网络设备较远的终端设备,由于有较大的传输时延,就要比离网络设备较近的终端设备提前发送上行数据。
网络设备基于测量终端设备的上行传输来确定每个终端设备的时间提前量(Timing Advance,TA)值。网络设备通过两种方式给终端设备发送TA命令。
1)初始TA的获取:在随机接入过程,网络设备通过测量接收到的前导码(preamble)来确定TA值,并通过随机接入响应(Random Access Response,RAR)的定时提前命令(Timing Advance Command)字段发送给终端设备。
2)无线资源控制(Radio Resource Control,RRC)连接态TA的调整:虽然在随机接入过程中,终端设备与网络设备取得了上行同步,但上行信号到达网络设备的定时可能会随着时间发生变化,因此,终端设备需要不断地更新其上行定时提前量,以保持上行同步。如果某个终端设备的TA需要校正,则网络设备会发送一个Timing Advance Command给该终端设备,要求其调整上行定时。该Timing Advance Command是通过媒体接入控制控制元素(Media Access Control Control Element,MAC CE)发送给终端设备的。
在载波聚合(Carrier Aggregation,CA)场景下,终端设备可能需要针对不同的上行载波使用不同的TA,因此标准中引入了定时提前组(Timing Advance Group,TAG)的概念。网络设备针对终端设备的每个小区群(cell group)配置最多4个TAG,同时对于每个服务小区配置其关联到的TAG。终端设备针对每个TAG分别维护TA。根据载波的TA值不同可以将载波分成不同的定时提前组,每一个TAG内的载波的TA值相同。
图6为网络设备侧的时间同步的方式示意图,如图6的(a)所示,在靠近网络设备(gNB)的终端设备(UE)处接收到的下行链路(DownLink,DL)符号时序,经过短暂的传播延迟T P1,从而上行链路(UpLink,UL)传输符号时序相较于网络设备(gNB)的下行符号时序延迟T P1,在网络设备(gNB)接收到的UL符号时序相较于UL传输符号时序延迟了T P1。在距离网络设备(gNB)较远的终端设备(UE)处接收到的DL符号时序,在较长的传播延迟T P2,从而UL传输符号时序相较于网络设备(gNB)的下行符号时序延迟T P2,在网络设备(gNB)接收到的UL符号时序相较于UL传输符号时序延迟了T P2。这样,由于网络设备(gNB)的时序错位,从而导致网络设备将在不同的时间上接收到不同的终端设备发送的信息。
如图6的(b)所示,不同的终端设备通常有不同的时间提前量,给靠近网络设备的终端设备设置时间提前量=2T P1,给距离网络设备较远的终端设备设置时间提前量=2T P2,这样DL和UL时序在网络设备(gNB)对齐,使得UL传输在网络设备(gNB)上与时间对齐。
在陆地通信系统中,信号通信的传播时延通常小于1ms。在NTN系统中,由于终端设备和卫星(或者说网络设备)之间的通信距离很远,信号通信的传播时延很大,范围可以从几十毫秒到几百毫秒,具体和卫星轨道高度和卫星通信的业务类型相关。为了处理比较大的传播时延,NTN系统的定时关系相对于NR系统需要增强。
在NTN系统中,和NR系统一样,终端设备在进行上行传输时需要考虑TA的影响。由于系统中的传播时延较大,因此TA值的范围也比较大。当终端设备被调度在时隙n进行上行传输时,该终端设备考虑往返传播时延,在上行传输时提前传输,从而可以信号到达基站侧时在基站侧上行的时隙n上。具体地,NTN系统中的定时关系可能包括两种情况,分别如下图7和图8所示。
图7为第一种情况下NTN系统的定时关系的示意图,如图7所示,和NR系统一样,网络设备侧的下行时隙(gNB DL)和上行时隙(gNB UL)是对齐的。相应地,为了使终端设备的上行传输(UE UL)和网络设备侧的上行时隙对齐,终端设备需要使用一个较大的TA值,TA值是根据延迟确定的,延迟可以为终端UE DL与gNB DL之间的时延。在进行上行传输时,也需要引入一个较大的偏移值例如Koffset。Koffset的值可以为基于TA值确定。
图8为第二种情况下NTN系统的定时关系的示意图,如图8所示,网络设备侧的下行时隙(gNB DL)和上行时隙(gNB UL)之间有一个偏移值,这个偏移值为gNB DL-UL帧定时偏移。在这种情况下,如果想要使终端设备的上行传输(UE UL)和网络设备侧的上行时隙对齐,终端设备只需要使用一个较小的TA值,TA值是根据延迟和gNB DL-UL帧定时偏移确定的,延迟可以为终端UE DL与gNB DL之间的时延。但是,该情况下网络设备可能需要额外的调度复杂度来处理相应的调度时序。
基于目前3GPP针对NTN标准化的进展,对于K offset的配置,形成如下结论:1、对于初始随机接入过程,网络可以通过广播的方式配置小区级的K offset或者卫星波束级别的K offset。2、对于连接态的终端设备,网络可以为终端设备配置专属的K offset。3、如果网络没有配置终端设备专属的K offset, 则终端设备使用广播的K offset。4、使用MAC CE配置终端设备专属K offset,是否可以使用RRC信令配置终端设备专属K offset目前还没有结论。
K offset取值范围与NTN场景相关,目前NTN支持GEO、LEO等多种场景,不同场景下的K offset取值范围(或者称K offset值域)也不相同。
表1提供了一种K offset值域。
表1
Figure PCTCN2021132183-appb-000001
网络主要参考TA来配置K offset取值。比如网络广播的小区公共K offset,网络需要根据小区中支持的最大TA来配置K offset;对于终端设备专属的K offset,网络可以参考该终端设备的TA配置K offset。对于网络广播的小区公共K offset,显然需要配置一个K offset绝对值。对于终端设备专属的K offset配置,一种直观的方式也是配置K offset绝对值。从上表可以看出,对于option1,其对应的K offset的取值范围很大。在保证一定K offset精度要求的情况下,采用这样的方式配置终端设备专属K offset需要使用较多的比特来支持较大的K offset值域,会导致MAC CE的有效载荷大小(payload size)较大。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
在本申请实施例中,终端设备基于网络设备配置的偏移值增量,确定终端设备的专属偏移值,然后根据所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。例如,终端设备可以基于网络设备配置的偏移值增量和获取的偏移值,确定终端设备的专属偏移值。示例性地,获取的偏移值可以是小区级公共偏移值或者终端设备的专用偏移值。
图9为本申请实施例提供的一种通信方法的流程示意图,如图9所示,该方法应用于终端设备或者终端设备中的处理器,该方法包括:
S901、终端设备获取网络设备配置的第一偏移值增量。
终端设备可以接收网络设备发送的第一偏移值增量。在一些实施例中,终端设备可以通过下行信息接收网络设备发送的第一偏移值增量。在另一些实施例中,终端设备可以接收其它设备发送的第一偏移值增量,而其它设备从网络设备接收第一偏移值增量。
第一偏移值增量可以理解为第一偏移值改变量或者第一偏移值调整量。第一偏移值增量用于对小区级公共偏移值进行调整。例如,在一些实施例中,第一偏移值增量用于对小区级公共偏移值调低。在又一些实施例中,第一偏移值增量用于对小区级公共偏移值调高。
第一偏移值增量可以小于或等于终端设备能够使用的最大偏移值与最小偏移值的差值。例如,如果终端设备处于网络设备对应的小区边缘,则终端设备将基于最大偏移值发送上行信息,如果终端设备处于网络设备对应的小于中心,则终端设备将基于最小偏移值发送上行信息,第一偏移值增量可以小于或等于最大偏移值与最小偏移值的差值。
网络设备可以广播小区级公共偏移值,网络设备可以基于终端设备的时延确定终端设备的专属偏移值,然后基于小区级公共偏移值和终端设备的专属偏移值,确定第一偏移值增量,向终端设备发送第一偏移值增量。
在一些实施例中,网络设备可以在确定到终端设备需要更新偏移值的情况下,向终端设备发送第一偏移值增量。在另一些实施例中,终端设备可以在确定终端设备需要更新偏移值的情况下,向网络设备发送请求信息,以使网络设备向终端设备发送第一偏移值增量。在又一些实施例中,网络设备可以每隔预设时长向终端设备发送一次第一偏移值增量;这样,第一偏移值增量可以为0或者不为0。
S902、所述终端设备根据所述第一偏移值增量和小区级公共偏移值确定所述终端设备的专属偏移值。
本申请实施例中的偏移值(例如小区级公共偏移值或者终端设备的专属偏移值)还可以称为定时偏移值、定时偏移量或偏移量等。小区级公共偏移值在另一些实施例中可以称为小区公共偏移值或者公共偏移值。
终端设备中可以存储有小区公共偏移值,从而终端设备可以从自身获取小区公共偏移值。在一些实施例中,在S901之前,终端设备接收网络设备广播的小区公共偏移值,并存储小区公共偏移值。
在一些实施例中,小区公共偏移值可以是终端设备能够使用的最大偏移值。在另一些实施例中,小区公共偏移值可以是终端设备能够使用的最小偏移值。在又一些实施例中,小区公共偏移值可以是终端能够使用的最大偏移值和最小偏移值的平均值。在一些实施例中,小区公共偏移值可以与网络设备的覆盖范围和/或网络设备与地面的距离相关。
在一些实施例中,终端设备可以基于小区公共偏移值和第一偏移值增量之和,确定终端设备的专属偏移值。例如,终端设备的专属偏移值为小区公共偏移值和第一偏移值增量之和。在另一些实施例中,终端设备可以基于小区公共偏移值减去第一偏移值增量的值,确定终端设备的专属偏移值。例如,终端设备的专属偏移值可以为小区公共偏移值减去第一偏移值增量的值。
在一些实施例中,第一偏移值增量、小区级公共偏移值以及终端设备的专属偏移值的单位可以为时隙或符号。例如,第一偏移值增量可以为3个时隙,小区公共偏移值可以为100个时隙,终端设备的专属偏移值为小区公共偏移值减去第一偏移值增量的值,终端设备的专属偏移值可以为97时隙。在另一些实施例中,第一偏移值增量、小区级公共偏移值或者终端设备的专属偏移值的单位可以为无线帧、子帧、时隙、符号的一种或者至少两种的结合。例如,第一偏移值增量可以为1个时隙7个符号,小区公共偏移值可以为100个时隙,终端设备的专属偏移值为小区公共偏移值减去第一偏移值增量的值,终端设备的专属偏移值可以为98个时隙7个符号。
S903、所述终端设备根据所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
在确定上行传输的时域资源位置之后,终端设备可以在上行传输的时域资源位置上,或者,在上行传输的时域资源位置和上行传输的时域资源位置之后的连续的至少一个时域资源位置上发送上行信息。
上行信息可有包括上行链路控制信息(Uplink Control Information,UCI)和/或上行链路数据信息。
在一些实施例中,终端设备可以通过上行链路向网络设备发送上行信息。在另一些实施例中,终端设备可以通过其它设备向网络设备发送上行信息。例如,终端设备可以通过侧行链路向其它设备发送上行信息,以使其它设备向网络设备发送上行信息。
上行传输的时域资源位置可以包括子帧、时隙或符号。例如,上行传输的时域资源位置为时隙。
在一些实施例中,终端设备使用至少两个载波发送上行信息的情况下,网络设备可以向终端设备发送至少两个第一偏移值增量,从而终端设备可以基于至少两个第一偏移值增量和获取的小区公共偏移值,分别确定至少两个终端设备的专属偏移值,然后基于至少两个终端设备的专属偏移值,确定至少两个载波分别对应的上行传输的时域资源位置。
例如,终端设备在使用第一载波和第二载波发送上行信息的情况下,第一偏移值增量可以包括第一子偏移值增量和第二子偏移值增量,第一子偏移值增量对应的第一载波,第二子偏移值增量对应第二载波,终端设备可以基于第一子偏移值增量和小区级公共偏移值,确定第三子偏移值,基于第二子偏移值增量和小区级公共偏移值,确定第四子偏移值,终端设备的专属偏移值包括第三子偏移值和第四子偏移值。这样,终端设备可以基于第三子偏移值,确定第一载波对应的上行传输对应的第一子时域资源位置,基于第四子偏移值,确定第二载波对应的上行传输对应的第二子时域资源位置,第一子时域资源位置和第二子时域资源位置包括在上行传输的时域资源位置中。
网络设备可以为每个终端设备分别配置第一偏移值增量。例如,网络设备可以基于不同终端设备的位置信息,为每个终端设备分别配置第一偏移值增量。为不同终端设备配置的第一偏移值增量可以相同或不同。
在本申请实施例中,终端设备获取网络设备配置的第一偏移值增量;终端设备根据第一偏移值增量和小区级公共偏移值确定终端设备的专属偏移值;终端设备根据终端设备的专属偏移值,确定终端设备上行传输的时域资源位置。这样,上行传输的时域资源位置是根据终端设备的专属偏移值确定的,从而终端设备能够确定上行传输的时域资源位置,提高了终端设备上行传输的可靠性;另外,由于终端设备的专属偏移值是根据第一偏移值增量和小区级公共偏移值确定的,不仅使得终端设备能够根据配置的第一偏移值及时地使用合适的终端设备的专属偏移值,提高了确定上行传输的时域资源位置的灵活性,而且相较于网络设备直接配置终端设备的专属偏移值的技术来说,第一偏移值增量占用的长度较小,从而能够降低网络设备的资源消耗,有效降低了信令开销。
在一些实施例中,所述第一偏移值增量为所述终端设备的专属偏移值与所述小区级公共偏移值之间的增量。
在一些实施例中,所述终端设备根据所述第一偏移值增量和小区级公共偏移值确定所述终端设备的专属偏移值,包括:所述终端设备根据所述小区级公共偏移值与所述第一偏移值增量之和确定所述终端设备的专属偏移值。
在另一些实施例中,所述终端设备根据所述第一偏移值增量和小区级公共偏移值确定所述终端 设备的专属偏移值,包括:所述终端设备根据所述小区级公共偏移值与所述第一偏移值增量的差值确定所述终端设备的专属偏移值。
在一些实施过程中,终端设备可以通过预先配置的方式,确定采用小区级公共偏移值与第一偏移值增量之和或者之差,确定终端设备的专属偏移值。在另一些实施例中,网络设备可以指示采用小区级公共偏移值与第一偏移值增量之和或者之差,确定终端设备的专属偏移值。
在一些实施例中,第一偏移值增量可以为负值或者非正值。在另一些实施例中,所述第一偏移值增量为正值或者非负值。
在一些实施例中,所述小区级公共偏移值由所述网络设备通过广播的方式传输。
在一些实施例中,小区级公共偏移值可以包括在系统信息(System Information,SI)中,或者,通过系统信息指示。在另一些实施例中,小区级公共偏移值可以包括在同步信号块(Synchronization Signal Block,SSB)中,或者,通过SSB指示。
在一些实施例中,所述第一偏移值增量由所述网络设备通过专用信令方式传输。例如,所述第一偏移值增量配置在所述终端设备的专属信令中。
在一些实施例中,所述第一偏移值增量配置在所述终端设备的无线资源控制RRC信令中。在另一些实施例中,所述第一偏移值增量配置在媒体接入控制控制元素MAC CE中。
在本申请实施例中,终端设备在网络设备没有配置第一偏移值增量的情况下,终端设备使用小区级公共偏移值确定上行传输的时域资源位置,然后在该上行传输的时域资源位置上发送上行信息。终端设备每次在网络设备开始配置第一偏移值增量的情况下,终端设备将根据小区级公共偏移值和第一偏移值增量确定终端设备的专属偏移值,然后使用终端设备的专属偏移值确定上行传输的时域资源位置,然后在该上行传输的时域资源位置上发送上行信息。即在本申请实施例中,对于每次网络设备配置的第一偏移值增量,终端设备都基于第一偏移值增量和小区级公共偏移值确定终端设备的专属偏移值。
图10为本申请实施例提供的一种确定上行传输的时域资源位置的示意图,如图10所示,网络设备为连接态的终端设备配置第一K offset增量(即第一偏移值增量),所述第一K offset增量为终端设备专属K offset相对于小区级公共K offset(即小区级公共偏移值)的增量,终端设备基于小区级公共K offset和所述第一K offset增量确定终端设备专属K offset值。具体实施过程如下:
1、连接态的终端设备接收网络的K offset配置信息(包括或指示第一偏移值增量),所述K offset配置信息用于确定终端设备上行传输的时域资源位置。上行传输的时域资源位置基于以下两者确定:
a)小区公共K offset,由网络通过广播的方式指示;
b)第一K offset增量(对应第一偏移值增量),第一K offset增量为终端设备专属K offset(终端设备的专属偏移值)相对于小区级公共K offset(小区级公共偏移值)的增量,所述第一K offset增量通过终端设备专属信令配置,如终端设备专属RRC信令或MAC CE等。
2、在一些实施例中,终端设备基于网络配置,确定终端设备专属的K offset值,方法为:终端设备专属K offset=小区公共K offset+第一K offset增量。示例性地,所述第一K offset增量为负值或者非正值。
在另一些实施例中,终端设备基于网络配置,确定终端设备专属的K offset值,方法为:终端设备专属K offset=小区公共K offset-第一K offset增量。示例性地,所述第一K offset增量为正值或者非负值。
3、终端设备使用终端设备专属K offset确定终端设备上行传输的时域资源位置。
在图10中,在t1至t2时段,网络设备没有给终端设备配置专用偏移值(或者称为UE专属K offset),终端设备使用小区级公共偏移值(或者称小区公共K offset),即基于小区公共K offset确定上行传输的时域资源位置。在t2时刻,网络设备向终端设备配置第一K offset增量,终端设备基于第一K offset增量和小区公共K offset确定终端设备的专用偏移值1(即K offset1),在t2至t3时段,终端设备使用K offset1,即基于终端设备的专用偏移值1确定上行传输的时域资源位置。在t3时刻,网络设备向终端设备配置新的第一K offset增量,终端设备基于新的第一K offset增量和小区公共K offset确定终端设备的专用偏移值2(即K offset2),在t3至t4时段,终端设备使用K offset2,即基于终端设备的专用偏移值2确定上行传输的时域资源位置。
在一些实施例中,终端设备可以对终端设备的专属偏移值进行调整,并基于调整后的终端设备的专属偏移值确定所述终端设备上行传输的时域资源位置。例如,在一些实施例中,终端设备可以基于终端设备的专属偏移值,确定调整后的终端设备的专属偏移值。
在一些实施例中,终端设备可以获得网络设备配置的第二偏移值增量,基于终端设备的专属偏移值和第二偏移值增量,确定调整后的终端设备的专属偏移值。
图11-12的实施方式和图13-14的实施方式,分别说明了两种基于终端设备的专属偏移值确定调整 后的终端设备的专属偏移值的实施方式。
图11为本申请实施例提供的另一种通信方法的流程示意图,如图11所示,该方法应用于终端设备或者终端设备中的处理器,该方法包括:
S1101、终端设备确定是否具有所述终端设备的专属偏移值。
在一些实施例中,终端设备可以确定终端设备中是否存储有终端设备的专属偏移值,确定终端设备确定是否具有所述终端设备的专属偏移值。在存储的情况下,确定终端设备具有所述终端设备的专属偏移值。在没有存储的情况下,确定终端设备不具有所述终端设备的专属偏移值。
在另一些实施例中,终端设备可以确定当前使用的偏移值是否为公共偏移值,确定终端设备确定是否具有所述终端设备的专属偏移值。在终端设备当前使用的偏移值为终端设备的专属偏移值的情况下,确定终端设备具有所述终端设备的专属偏移值。在终端设备当前使用的偏移值为公共偏移值的情况下,确定终端设备不具有所述终端设备的专属偏移值。
终端设备的专属偏移值不同于小区级公共偏移值。终端设备的专属偏移值可以是基于终端设备与网络设备之间的传输时延确定。终端设备与网络设备之间的传输时延可以与终端设备与网络设备之间的距离有关。
终端设备可以在接收到网络设备发送的偏移值增量的情况下,确定是否具有所述终端设备的专属偏移值。网络设备发送的偏移值增量可以是第一偏移值增量或者第二偏移值增量。
在又一些实施例中,网络设备可以指示终端设备使用偏移值增量,以及小区级公共偏移值或终端设备的专属偏移值,确定上行传输的时域资源位置。在网络设备指示终端设备使用偏移值增量和小区级公共偏移值,确定上行传输的时域资源位置的情况下,确定终端设备不具有所述终端设备的专属偏移值。在网络设备指示终端设备使用偏移值增量和终端设备的专属偏移值,确定上行传输的时域资源位置的情况下,确定终端设备不具有所述终端设备的专属偏移值。
不同终端设备的专用偏移值可以相同或不同。
S1102、根据确定结果,所述终端设备确定基于小区级公共偏移值确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值。
确定结果可以包括:具有终端设备的专属偏移值或者不具有终端设备的专属偏移值。
S1103、所述终端设备根据确定的所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
确定的所述终端设备的专属偏移值可以是最新确定的终端设备的专属偏移值。例如,基于小区级公共偏移值确定所述终端设备的专属偏移值为最新确定的终端设备的专属偏移值;或者,调整后的终端设备的专属偏移值为最新确定的终端设备的专属偏移值。
其中,S1103的实施方式可以参照S903的相关描述来实施,此处不作赘述。
在一些实施例中,在S1103之后,终端设备将具有终端设备的专属偏移值,从而在S1103之后,终端设备可以基于终端设备的专属偏移值确定调整后的终端设备的专属偏移值;根据调整后的终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
在一些实施例中,所述终端设备确定基于小区级公共偏移值确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值,包括:在所述终端设备不具有所述终端设备的专属偏移值的情况下,所述终端设备根据所述小区级公共偏移值和第一偏移值增量确定所述终端设备的专属偏移值。
在另一些实施例中,所述终端设备确定基于小区级公共偏移值确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值,包括:在所述终端设备具有所述终端设备的专属偏移值的情况下,所述终端设备根据所述终端设备的专属偏移值和第二偏移值增量确定所述调整后的终端设备的专属偏移值。
第一偏移值增量用于对小区级公共偏移值进行改变。第二偏移值增量用于对终端设备的专属偏移值进行改变。
在一些实施例中,在所述终端设备具有所述终端设备的专属偏移值的情况下,所述终端设备根据所述终端设备的专属偏移值和第二偏移值增量确定所述调整后的终端设备的专属偏移值,包括:
所述终端设备获取网络设备配置的第二偏移值增量,其中,所述第二偏移值增量为所述终端设备的专属偏移值和所述调整后的终端设备的专属偏移值之间的增量;
所述终端设备根据所述终端设备的专属偏移值和所述第二偏移值增量确定所述调整后的终端设备的专属偏移值。
终端设备获取网络设备配置的第二偏移值增量的实施方式可以包括:终端设备接收网络设备发送的第二偏移值增量。
在一些实施例中,所述终端设备根据所述终端设备的专属偏移值和所述第二偏移值增量确定所述调整后的所述终端设备的专属偏移值,包括:所述终端设备根据所述终端设备的专属偏移值和所述第二偏移值增量之和确定所述调整后的终端设备的专属偏移值。
在另一些实施例中,所述终端设备根据所述终端设备的专属偏移值和所述第二偏移值增量确定所述调整后的所述终端设备的专属偏移值,包括:所述终端设备根据所述终端设备的专属偏移值和所述第二偏移值增量的差值确定所述调整后的终端设备的专属偏移值。
在一些实施过程中,终端设备可以通过预先配置的方式,确定采用终端设备的专属偏移值与第二偏移值增量之和或者之差,确定终端设备的专属偏移值。在另一些实施例中,网络设备可以指示采用终端设备的专属偏移值与第二偏移值增量之和或者之差,确定终端设备的专属偏移值。
其中,终端设备的专属偏移值和所述第二偏移值增量的差值,可以是终端设备的专属偏移值减去所述第二偏移值增量的结果。
在一些实施例中,第二偏移值增量可以为负值或者非正值。在另一些实施例中,所述第二偏移值增量为正值或者非负值。
在一些实施例中,所述第二偏移值增量由所述网络设备通过专用信令方式传输。例如,所述第二偏移值增量配置在所述终端设备的专属信令中。
在一些实施例中,所述在所述终端设备不具有所述终端设备的专属偏移值的情况下,所述终端设备根据所述小区级公共偏移值和第一偏移值增量确定所述终端设备的专属偏移值,包括:
所述终端设备获取网络设备配置的第一偏移值增量,其中,所述第一偏移值增量为所述终端设备的专属偏移值与所述终端设备的小区级公共偏移值之间的增量;
所述终端设备根据所述小区级公共偏移值和所述第一偏移值增量确定所述终端设备的专属偏移值。
终端设备获取网络设备配置的第一偏移值增量的实施方式可以包括:终端设备接收网络设备发送的第一偏移值增量。
在一些实施例中,所述终端设备根据所述小区级公共偏移值和所述第一偏移值增量确定所述终端设备的专属偏移值,包括:所述终端设备根据所述小区级公共偏移值与所述第一偏移值增量之和确定所述终端设备的专属偏移值。
在一些实施例中,所述终端设备根据所述小区级公共偏移值和所述第一偏移值增量确定所述终端设备的专属偏移值,包括:所述终端设备根据所述小区级公共偏移值与所述第一偏移值增量的差值确定所述终端设备的专属偏移值。
其中,根据所述小区级公共偏移值与所述第一偏移值增量的差值,可以是小区级公共偏移值减去所述第一偏移值增量的结果。
在一些实施例中,所述第一偏移值增量由所述网络设备通过专用信令方式传输。例如,所述第一偏移值增量配置在所述终端设备的专属信令中。
在一些实施例中,所述第一偏移值增量和/或所述第二偏移值增量配置在所述终端设备的无线资源控制RRC信令中。在另一些实施例中,所述第一偏移值增量和/或所述第二偏移值增量配置在媒体接入控制控制元素MAC CE中。
在本申请实施例中,终端设备在网络设备没有配置第一偏移值增量的情况下,终端设备使用小区级公共偏移值确定上行传输的时域资源位置,然后在该上行传输的时域资源位置上发送上行信息。终端设备在接收到网络设备配置的第一偏移值增量的情况下,终端设备将根据小区级公共偏移值和第一偏移值增量确定终端设备的专属偏移值,然后使用终端设备的专属偏移值确定上行传输的时域资源位置,然后在该上行传输的时域资源位置上发送上行信息。这样,终端设备具有了终端设备的专属偏移值。之后,终端设备每次在网络设备配置第二偏移值增量的情况下,终端设备将根据终端设备的专属偏移值和第二偏移值增量确定调整后的终端设备的专属偏移值,接着使用调整后的终端设备的专属偏移值确定上行传输的时域资源位置,然后在该上行传输的时域资源位置上发送上行信息。
即在本申请实施例中,对于网络设备配置的第一偏移值增量,终端设备都基于第一偏移值增量和小区级公共偏移值确定终端设备的专属偏移值。对于每次网络设备配置的第二偏移值增量,终端设备都基于第二偏移值增量和终端设备的专属偏移值确定调整后的终端设备的专属偏移值。终端设备在不具有终端设备的专属偏移值的情况下,采用小区级公共偏移值确定上行传输的时域资源位置,终端设备在具有终端设备的专属偏移值的情况下,采用最新得到的终端设备的专属偏移值确定上行传输的时域资源位置。
图12为本申请实施例提供的另一种确定上行传输的时域资源位置的示意图,如图12所示,网络设备为连接态的终端设备配置K offset增量(第一偏移值增量或第二偏移值增量),所述K offset增量为调整后的终端设备专属K offset相对于小区级公共K offset(即小区级公共偏移值)的增量(如果终端设备当前没有终端设备专属K offset);或者,K offset增量为调整后的终端设备专属K offset(即终端设备 的第一专用偏移值)相对于终端设备专属K offset的调整量(如果终端设备当前有终端设备专属K offset)。终端设备基于小区级公共K offset/终端设备专属K offset,以及所述K offset增量确定调整后的终端设备专属K offset值。具体实施过程如下:
1、连接态的终端设备接收网络发送的K offset配置信息(包括或指示第一偏移值增量),所述K offset配置信息用于确定终端设备上行传输的时域资源位置。上行传输的时域资源位置基于以下两者确定:
a)小区公共K offset,由网络通过广播的方式指示;
b)K offset增量通过终端设备专属信令配置,如终端设备专属RRC信令或MAC CE等。
2、终端设备基于网络配置,确定终端设备专属的K offset值,方法为:
a)在一些实施例中,如果终端设备在收到信令指示所述第一K offset增量之前,终端设备没有可用的终端设备专属K offset(比如:网络设备没有为终端设备配置终端设备专属的K offset,或者,终端设备没有基于小区级公共偏移值确定终端设备专属的K offset),则终端设备基于小区公共K offset和所述第一K offset增量确定终端设备专属K offset,即:终端设备专属K offset=小区公共K offset+第一K offset增量;示例性地,所述第一K offset增量为负值或者非正值;或者,终端设备专属K offset=小区公共K offset-第一K offset增量;示例性地,所述第一K offset增量为正值或者非负值。
b)在另一些实施例中,如果终端设备在收到信令指示所述第二K offset增量(第二偏移值增量)之前,终端设备有可用的终端设备专属K offset(比如:网络设备为终端设备配置了终端设备专属的K offset,或者,终端设备基于小区级公共偏移值/终端设备专属的K offset确定了终端设备专属的K offset),则终端设备基于当前的终端设备专属的K offset和所述第二K offset增量确定调整后的终端设备专属K offset,即:终端设备专属K offset=终端设备专属K offset+第二K offset增量;或者,终端设备专属K offset=终端设备专属K offset-第二K offset增量。在这种实施例中,第二K offset增量可以为0、正值或者负值。
终端设备使用最新得到的终端设备专属K offset确定终端设备上行传输的时域资源位置。
如图12所示,在t1至t2时段,网络设备没有给终端设备配置专用偏移值(或者称为UE专属K offset),终端设备使用小区级公共偏移值(或者称小区公共K offset),即基于小区公共K offset确定上行传输的时域资源位置。在t2时刻,网络设备向终端设备配置第一K offset增量,终端设备基于第一K offset增量和小区公共K offset确定终端设备的专用偏移值1(即K offset1),在t2至t3时段,终端设备使用专用偏移值1,即基于终端设备的专用偏移值1确定上行传输的时域资源位置。在t3时刻,网络设备向终端设备配置第二K offset增量,终端设备基于第二K offset增量和K offset1确定终端设备的专用偏移值2(即K offset2),在t3至t4时段,终端设备使用K offset2,即基于终端设备的专用偏移值2确定上行传输的时域资源位置。
图13为本申请实施例提供的又一种通信方法的流程示意图,如图13所示,该方法应用于终端设备或者终端设备中的处理器,该方法包括:
S1301、终端设备确定是否具有所述终端设备的专属偏移值。
其中,S1301的实施方式可以参照S1101的相关描述来实施,此处不作赘述。
S1302、根据确定结果,所述终端设备确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值。
确定结果可以包括:具有终端设备的专属偏移值或者不具有终端设备的专属偏移值。
在一些实施例中,所述终端设备确定所述终端设备的专属偏移值,可以包括:终端设备接收网络设备配置的终端设备的专属偏移值。
S1303、所述终端设备根据确定的所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
确定的所述终端设备的专属偏移值可以是最新确定的终端设备的专属偏移值。例如,根据确定结果,所述终端设备确定的所述终端设备的专属偏移值,为最新确定的终端设备的专属偏移值;或者,调整后的终端设备的专属偏移值为最新确定的终端设备的专属偏移值。
其中,S1303的实施方式可以参照S903的相关描述来实施,此处不作赘述。
在一些实施例中,在S1303之后,终端设备将具有终端设备的专属偏移值,从而在S1103之后,终端设备可以基于终端设备的专属偏移值确定调整后的终端设备的专属偏移值;根据调整后的终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
在一些实施例中,所述终端设备确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值,包括:在所述终端设备不具有所述终端设备的专属偏移值的情况下,所述终端设备获取所述终端设备的专属偏移值。
在另一些实施例中,所述终端设备确定所述终端设备的专属偏移值和/或基于所述终端设备的专属 偏移值确定调整后的终端设备的专属偏移值,包括:在所述终端设备具有所述终端设备的专属偏移值的情况下,所述终端设备根据所述终端设备的专属偏移值和第二偏移值增量确定调整后的终端设备的专属偏移值,其中,所述第二偏移值增量为所述终端设备的专属偏移值和所述调整后的终端设备的专属偏移值之间的增量。
在一些实施例中,所述终端设备根据所述终端设备的专属偏移值和第二偏移值增量确定调整后的终端设备的专属偏移值,包括:所述终端设备根据所述终端设备的专属偏移值和所述第二偏移值增量之和确定所述终端设备的专属偏移值。
在另一些实施例中,所述终端设备根据所述终端设备的专属偏移值和第二偏移值增量确定调整后的终端设备的专属偏移值,包括:所述终端设备根据所述终端设备的专属偏移值和所述第二偏移值增量的差值确定所述终端设备的专属偏移值。
在一些实施例中,所述方法还包括:所述终端设备获取网络设备配置的第一信令,其中,所述第一信令用于配置所述终端设备的专属偏移值。
在另一些实施例中,所述方法还包括:所述终端设备获取网络设备配置的第二信令,其中,所述第二信令用于配置所述第二偏移值增量。
在一些实施例中,第一信令可以包括第一MAC CE,第二信令可以包括第二MAC CE。第一MAC CE和第二MAC CE的格式不同。MAC CE的格式可以包括长格式、短格式、固定长度格式和变化长度格式。第一MAC CE的格式和第二MAC CE的格式可以从长格式、短格式、固定长度格式和变化长度格式中选择。例如,在一些实施例中,第一MAC CE的格式为长格式,第二MAC CE的格式为短格式。在另一些实施例中,第一MAC CE的格式为固定长度格式或变化长度格式,第二MAC CE的格式为变化长度格式或固定长度格式。在又一些实施例中,第一MAC CE的格式可以为长格式和固定长度格式的结合,第二MAC CE的格式可以为短格式和固定长度格式的结合。在再一些实施例中,第一MAC CE的格式可以是长格式和变化长度格式的结合,第二MAC CE的格式可以为短格式和固定长度格式的结果。本申请实施例对第一MAC CE的格式和第二MAC CE的格式的确定方式不做限制。
其中,长格式中用于设置偏移值的比特长度(或者称比特数量或者负载长度),大于短格式中用于设置偏移值的比特长度。例如,长格式中用于设置偏移值的比特长度可以大于第一目标值且小于或等于第二目标值,短格式中用于设置偏移值的比特长度可以大于或等于1且小于或等于第一目标值。
其中,固定长度格式中用于设置偏移值的比特长度是固定的。变化长度格式中用于设置偏移值的比特长度是变化的。
在一些实施例中,MAC CE的格式还可以包括第一指示符,第一指示符用于指示偏移值的比特长度。例如,第一指示符指示5的情况下,表明MAC CE中用于设置偏移值的比特长度为5。
在一些实施例中,所述第一信令包括长MAC CE,所述第二信令包括短MAC CE,所述长MAC CE的负载长度大于所述短MAC CE的负载长度。
在一些实施例中,所述第一信令包括专用RRC信令,所述第二信息包括MAC CE。通过这种方式,终端设备根据接收到的信令是RRC信令,确定网络设备发送的是终端设备的专属偏移值;终端设备根据接收到的信令是MAC CE,确定网络设备发送的第二偏移值增量。
在本申请实施例中,终端设备在网络设备没有配置终端设备的专用偏移值的情况下,终端设备使用小区级公共偏移值确定上行传输的时域资源位置,然后在该上行传输的时域资源位置上发送上行信息。终端设备在接收到网络设备配置的终端设备的专用偏移值的情况下,终端设备具有了终端设备的专属偏移值,终端设备将根据终端设备的专属偏移值和第二偏移值增量确定调整后的终端设备的专属偏移值,然后使用调整后的终端设备的专属偏移值确定上行传输的时域资源位置,接着在该上行传输的时域资源位置上发送上行信息。之后,终端设备每次在网络设备配置第二偏移值增量的情况下,终端设备将根据终端设备的专属偏移值和第二偏移值增量确定调整后的终端设备的专属偏移值,接着使用调整后的终端设备的专属偏移值确定上行传输的时域资源位置,然后在该上行传输的时域资源位置上发送上行信息。
对于每次网络设备配置的第二偏移值增量,终端设备都基于第二偏移值增量和终端设备的专属偏移值确定调整后的终端设备的专属偏移值。终端设备在不具有终端设备的专属偏移值的情况下,终端设备接收网络设备配置的终端设备的专属偏移值。终端设备在具有终端设备的专属偏移值的情况下,采用最新得到的终端设备的专属偏移值确定上行传输的时域资源位置。
图14为本申请实施例提供的又一种确定上行传输的时域资源位置的示意图,如图14所示,如果连接态的终端设备当前没有终端设备专属K offset,网络设备为连接态的终端设备配置终端设备专属K offset值或者专属K offset值的绝对值。
如果连接态的终端设备当前有终端设备专属K offset,网络设备为连接态的终端设备配置第二K offset增量,所述第二K offset增量为调整后的终端设备专属K offset相对于当前的终端设备专属K offset 的调整量,终端设备基于所述第二K offset增量确定调整后的终端设备专属K offset值。
具体实施过程如下:
1、连接态的终端设备接收网络发送的专属K offset配置信息(包括或指示第一偏移值增量),所述专属K offset配置信息用于确定终端设备上行传输的时域资源位置。
a)所述终端设备专属K offset的配置信息可以用于指示:终端设备专属K offset的绝对值或者第二K offset增量,所述第二K offset增量为调整后的终端设备专属K offset相对于当前的终端设备专属K offset的调整量。
b)终端设备的专属K offset配置信息通过终端设备专属信令配置,如终端设备专属RRC信令或MAC CE等。
在一些实施方式中,如果是使用MAC CE配置终端设备专属K offset,则对于配置“终端设备专属K offset的绝对值”和配置“第二K offset增量”这两种情况,使用不同的MAC CE格式。比如:定义一种长MAC CE(Long MAC CE)格式(即:对应的MAC CE payload size较大)用于配置“终端设备专属K offset或者专属K offset的绝对值”,定义另一种短MAC CE(Short MAC CE)格式(即:对应的MAC CE payload size较小)用于配置“第二K offset增量”。
对于这种方式,在终端设备当前有可用的终端设备专属K offset(比如:网络设备为终端设备配置了终端设备专属的K offset,或者,基于终端设备专属的K offset确定了终端设备专属的K offset)的情况下,网络才可以使用短MAC CE格式配置“第二K offset增量”。
在另一些实施方式中,使用RRC信令配置终端设备专属K offset的绝对值,使用MAC CE配置第二K offset增量。
2、终端设备可以基于网络配置,确定终端设备专属的K offset值。
a)示例性地,对于使用MAC CE配置所述终端设备专属K offset的情况:
如果终端设备收到第一MAC CE,则将第一MAC CE指示的终端设备专属K offset或者专属K offset的绝对值作为终端设备专属K offset;
如果终端设备收到第二MAC CE,则终端设备根据当前的终端设备专属K offset和所述第二MAC CE指示的第二K offset增量确定调整后的终端设备专属K offset。即:终端设备专属K offset=终端设备专属K offset+第二K offset增量;或者,终端设备专属K offset=终端设备专属K offset-第二K offset增量。在这种实施例中,第二K offset增量可以为0、正值或者负值。
b)示例性地,对于使用终端设备专属RRC信令和MAC CE配置所述终端设备专属K offset的情况:
如果终端设备收到终端设备专属RRC信令配置终端设备专属K offset,则将所述RRC信令指示的所述终端设备专属K offset作为终端设备专属K offset;
如果终端设备收到MAC CE配置终端设备专属K offset(即第二K offset增量),则终端设备根据当前的终端设备专属K offset和所述MAC CE指示的第二K offset增量确定调整后的终端设备专属K offset,即:终端设备专属K offset=终端设备专属K offset+第二K offset增量;或者,终端设备专属K offset=终端设备专属K offset-第二K offset增量。
终端设备使用终端设备专属K offset确定终端设备上行传输的时域资源位置。
如图14所示,在t1至t2时段,网络设备没有给终端设备配置专用偏移值(或者称为UE专属K offset),终端设备使用小区级公共偏移值(或者称小区公共K offset),即基于小区公共K offset确定上行传输的时域资源位置。在t2时刻,网络设备向终端设备配置的终端设备专属K offset或者专属K offse的绝对值(网络配置K offset 1),终端设备将终端设备专属K offset或者专属K offse的绝对值确定为终端设备的专用偏移值1(即K offset1),在t2至t3时段,终端设备使用终端设备的专用偏移值1,即基于终端设备的专用偏移值1确定上行传输的时域资源位置。在t3时刻,网络设备向终端设备配置第二K offset增量,终端设备基于第二K offset增量和K offset1确定终端设备的专用偏移值2(即K offset2),在t3至t4时段终端设备使用K offset2,即基于终端设备的专用偏移值2确定上行传输的时域资源位置。
以下对与图9至图10对应的网络设备侧的通信方法进行说明,其中,与终端设备的执行步骤相同或对应的步骤,可以参照对终端设备的描述进行理解:
本申请实施例提供的一种通信方法,应用于网络设备或者网络设备中的处理器,该方法包括:
网络设备向终端设备配置第一偏移值增量;
所述网络设备根据所述第一偏移值增量和小区级公共偏移值确定所述终端设备的专属偏移值;
所述网络设备根据所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
在一些实施例中,所述第一偏移值增量为所述终端设备的专属偏移值与所述小区级公共偏移值之间的增量。
在一些实施例中,所述网络设备根据所述第一偏移值增量和小区级公共偏移值确定所述终端设备的 专属偏移值,包括:
所述网络设备根据所述小区级公共偏移值与所述第一偏移值增量之和确定所述终端设备的专属偏移值;或,
所述网络设备根据所述小区级公共偏移值与所述第一偏移值增量的差值确定所述终端设备的专属偏移值。
在一些实施例中,所述小区级公共偏移值由所述网络设备通过广播的方式传输。
在一些实施例中,所述第一偏移值增量由所述网络设备通过专用信令方式传输。
以下对与图11至图12对应的网络设备侧的通信方法进行说明,其中,与终端设备的执行步骤相同或对应的步骤,可以参照对终端设备的描述进行理解:
本申请实施例提供的一种通信方法,应用于网络设备或者网络设备中的处理器,该方法包括:
网络设备确定终端设备是否具有所述终端设备的专属偏移值;
根据确定结果,所述网络设备确定基于小区级公共偏移值确定所述终端设备的专属偏移值或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值;
所述网络设备根据确定的所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
在一些实施例中,所述根据确定结果,所述网络设备确定基于小区级公共偏移值确定所述终端设备的专属偏移值或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值,包括:
在所述终端设备不具有所述终端设备的专属偏移值的情况下,所述网络设备根据所述小区级公共偏移值和第一偏移值增量确定所述终端设备的专属偏移值;
在所述终端设备具有所述终端设备的专属偏移值的情况下,所述网络设备根据所述终端设备的专属偏移值和第二偏移值增量确定所述调整后的终端设备的专属偏移值。
在一些实施例中,所述在所述终端设备具有所述终端设备的专属偏移值的情况下,所述网络设备根据所述终端设备的专属偏移值和第二偏移值增量确定所述调整后的终端设备的专属偏移值,包括:
所述网络设备向所述终端设备配置第二偏移值增量,其中,所述第二偏移值增量为所述终端设备的专属偏移值和所述调整后的终端设备的专属偏移值之间的增量;
所述网络设备根据所述终端设备的专属偏移值和所述第二偏移值增量确定所述调整后的终端设备的专属偏移值。
在一些实施例中,所述网络设备根据所述终端设备的专属偏移值和所述第二偏移值增量确定所述调整后的终端设备的专属偏移值,包括:
所述网络设备根据所述终端设备的专属偏移值和所述第二偏移值增量之和确定所述调整后的终端设备的专属偏移值;或,
所述网络设备根据所述终端设备的专属偏移值和所述第二偏移值增量的差值确定所述调整后的终端设备的专属偏移值。
在一些实施例中,所述第二偏移值增量由所述网络设备通过专用信令方式传输。
在一些实施例中,所述在所述终端设备不具有所述终端设备的专属偏移值的情况下,所述网络设备根据所述小区级公共偏移值和第一偏移值增量确定所述终端设备的专属偏移值,包括:
所述网络设备向所述终端设备配置第一偏移值增量,其中,所述第一偏移值增量为所述终端设备的专属偏移值与所述终端设备的小区级公共偏移值之间的增量;
所述网络设备根据所述小区级公共偏移值和所述第一偏移值增量确定所述终端设备的专属偏移值。
在一些实施例中,所述网络设备根据所述小区级公共偏移值和所述第一偏移值增量确定所述终端设备的专属偏移值,包括:
所述网络设备根据所述小区级公共偏移值与所述第一偏移值增量之和确定所述终端设备的专属偏移值;或,
所述网络设备根据所述小区级公共偏移值与所述第一偏移值增量的差值确定所述终端设备的专属偏移值。
在一些实施例中,所述第一偏移值增量由所述网络设备通过专用信令方式传输。
以下对与图13至图14对应的网络设备侧的通信方法进行说明,其中,与终端设备的执行步骤相同或对应的步骤,可以参照对终端设备的描述进行理解:
本申请实施例提供的一种通信方法,应用于网络设备或者网络设备中的处理器,该方法包括:
网络设备确定终端设备是否具有所述终端设备的专属偏移值;
根据确定结果,所述网络设备确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值;
所述网络设备根据确定的所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
在一些实施例中,所述根据确定结果,所述网络设备确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值,包括:
在所述终端设备不具有所述终端设备的专属偏移值的情况下,所述网络设备获取所述终端设备的专属偏移值;
在所述终端设备具有所述终端设备的专属偏移值的情况下,所述网络设备根据所述终端设备的专属偏移值和第二偏移值增量确定调整后的终端设备的专属偏移值,其中,所述第二偏移值增量为所述终端设备的专属偏移值和所述调整后的终端设备的专属偏移值之间的增量。
在一些实施例中,所述网络设备根据所述终端设备的专属偏移值和第二偏移值增量确定调整后的终端设备的专属偏移值,包括:
所述网络设备根据所述终端设备的专属偏移值和所述第二偏移值增量之和确定所述终端设备的专属偏移值;或,
所述网络设备根据所述终端设备的专属偏移值和所述第二偏移值增量的差值确定所述终端设备的专属偏移值。
在一些实施例中,所述方法还包括:
所述网络设备向所述终端设备配置第一信令,其中,所述第一信令用于配置所述终端设备的专属偏移值,和/或,
所述网络设备向所述终端设备配置第二信令,其中,所述第二信令用于配置所述第二偏移值增量。
在一些实施例中,所述第一信令包括长MAC CE,所述第二信令包括短MAC CE,所述长MAC CE的负载长度大于所述短MAC CE的负载长度。
在一些实施例中,所述第一信令包括专用RRC信令,所述第二信息包括MAC CE。
此处以上行传输的时域资源位置包括时隙为例,说明根据终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置的实现方式,该实现方式可以应用于上述任一实施例中,例如,该实现方式可以应用于上述S903、S1103或者S1303的步骤中,和/或,与S903、S1103或者S1303对应的网络设备侧的步骤中:
在一些实施例中,在所述终端设备被在时隙n接收到的下行控制信息(Downlink Control Information,DCI)调度为发送物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的情况下,用于所述PUSCH传输的时隙,或者用于所述PUSCH上的信道状态信息(Channel State Information,CSI)传输的时隙,为
Figure PCTCN2021132183-appb-000002
其中,K 2基于所述PUSCH的子载波间隔确定;
μ PUSCH用于确定为物理下行共享信道(Physical Downlink Share Channel,PDSCH)配置的子载波间隔;
μ PDCCH用于确定为物理下行控制信道(Physical Downlink Control Channel,PDCCH)配置的子载波间隔;
K offset为所述终端设备的专属偏移值。本申请实施例中的K offset可以与K offset作同一理解。
K 2的取值范围可以是0到32。DCI中可以包括K 2的指示信息,该K 2用于确定传输该PUSCH的时隙。
在一些实施例中,在所述终端设备发起物理随机接入信道(Physical Random Access Channel,PRACH)后,且所述终端设备接收到包括随机接入响应授权(grant)的物理下行共享信道PDSCH的结束位置为时隙n的情况下,用于PUSCH传输的时隙为n+K 2+Δ+K offset
其中,K 2和Δ是协议约定的;
K offset为所述终端设备的专属偏移值。
在一些实施例中,所述第一时域资源位置包括时隙;
在所述终端设备接收到PDSCH的结束位置为时隙n,或者,接收到指示半静态调度(Semi-Persistent Scheduling,SPS)PDSCH释放的PDCCH的结束位置为时隙n的情况下,所述终端设备在时隙n+K 1+K offset内的物理上行控制信道(Physical Uplink Control Channel)PUCCH资源上传输混合自动重传请求-确认(Hybrid Automatic Repeat request-ACKnowledge,HARQ-ACK)信息;
其中,K 1基于PDSCH-to-HARQ-timing-indicator确定,或者,K 1基于dl-DataToUL-ACK确定;
K offset为所述终端设备的专属偏移值。
在这种实施例中,对于PUCCH传输的时隙,如果一个PDSCH接收的结束位置在时隙n或一个指示SPS PDSCH释放的PDCCH接收的结束位置在时隙n,UE应在时隙n+K 1+K offset内的PUCCH资源上传输对应的HARQ-ACK信息。其中K 1是时隙个数并且是通过DCI格式中 PDSCH-to-HARQ-timing-indicator信息域来指示的,或是通过dl-DataToUL-ACK参数提供的。K 1=0对应PUCCH传输的最后一个时隙与PDSCH接收或指示SPS PDSCH释放的PDCCH接收的时隙重叠。
在一些实施例中,在包括MAC CE命令的PDSCH对应的HARQ-ACK信息在时隙n上传输的情况下,所述MAC CE命令指示的行为和/或所述终端设备的下行配置,在时隙
Figure PCTCN2021132183-appb-000003
后的第一个时隙生效;
其中,X基于非地面通信网络NTN的所述终端设备的能力确定;X的取值可以不为3;
Figure PCTCN2021132183-appb-000004
为子载波间隔配置μ下每个子帧包括的时隙个数;
K offset为所述终端设备的专属偏移值。
在一些实施例中,上报CSI参考资源上的CSI的时隙n′,是基于时隙
Figure PCTCN2021132183-appb-000005
确定的;
其中,
Figure PCTCN2021132183-appb-000006
μ DL基于下行子载波间隔确定,μ UL基于上行子载波间隔确定;
n CSI_ref基于CSI上报的类型确定;
K offset为所述终端设备的专属偏移值。
在这种实施例中,对于在上行时隙n′上上报CSI的CSI参考资源是根据单个下行时隙
Figure PCTCN2021132183-appb-000007
Figure PCTCN2021132183-appb-000008
确定的,其中,
Figure PCTCN2021132183-appb-000009
μ DL和μ UL分别是下行和上行的子载波间隔配置。n CSI_ref的取值取决于CSI上报的类型。
在一些实施例中,在所述终端设备在时隙n接收到DCI触发传输的非周期探测参考信号(Sounding Reference Signal,SRS)的情况下,所述终端设备在时隙
Figure PCTCN2021132183-appb-000010
上传输每个被触发的SRS资源集合中的非周期SRS;
其中,k是通过所述每个被触发的SRS资源集合中的高层参数slotOffset,以及被触发的SRS传输对应的子载波间隔确定的;
μ SRS基于所述被触发的SRS的子载波间隔确定;
μ PDCCH基于携带触发命令的PDCCH的子载波间隔确定;
K offset为所述终端设备的专属偏移值。
在这种实施例中,如果UE在时隙n上收到DCI触发传输非周期SRS,该UE在时隙
Figure PCTCN2021132183-appb-000011
Figure PCTCN2021132183-appb-000012
上传输每个被触发的SRS资源集合中的非周期SRS,其中k是通过每个被触发的SRS资源集合中的高层参数slotOffset配置的并且是根据被触发的SRS传输对应的子载波间隔确定的,μ SRS和μ PDCCH分别是被触发的SRS传输和携带触发命令的PDCCH的子载波间隔配置。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。又例如,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以和现有技术任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”、“上行”和“侧行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,“侧行”用于表示信号或数据的传输方向为从用户设备1发送至用户设备2的第三方向。例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
以下说明本申请实施例提供的一种通信装置的结构组成示意图,该通信装置可以应用于终端设备,所述通信装置包括:
获取单元,用于获取网络设备配置的第一偏移值增量;
确定单元,用于根据所述第一偏移值增量和小区级公共偏移值确定所述终端设备的专属偏移值;
所述确定单元,还用于根据所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
在一些实施例中,所述第一偏移值增量为所述终端设备的专属偏移值与所述小区级公共偏移值之间的增量。
在一些实施例中,所述确定单元,还用于:
根据所述小区级公共偏移值与所述第一偏移值增量之和确定所述终端设备的专属偏移值;或,
根据所述小区级公共偏移值与所述第一偏移值增量的差值确定所述终端设备的专属偏移值。
在一些实施例中,所述小区级公共偏移值由所述网络设备通过广播的方式传输。
在一些实施例中,所述第一偏移值增量由所述网络设备通过专用信令方式传输。
以下说明本申请实施例提供的另一种通信装置的结构组成示意图,该通信装置可以应用于终端设备,所述通信装置包括:
确定单元,用于确定是否具有所述终端设备的专属偏移值;
所述确定单元,还用于根据确定结果,确定基于小区级公共偏移值确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值;
所述确定单元,还用于根据确定的所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
在一些实施例中,所述确定单元,还用于:
在所述终端设备不具有所述终端设备的专属偏移值的情况下,根据所述小区级公共偏移值和第一偏移值增量确定所述终端设备的专属偏移值;
在所述终端设备具有所述终端设备的专属偏移值的情况下,根据所述终端设备的专属偏移值和第二偏移值增量确定所述调整后的终端设备的专属偏移值。
在一些实施例中,所述确定单元,还用于:
获取网络设备配置的第二偏移值增量,其中,所述第二偏移值增量为所述终端设备的专属偏移值和所述调整后的终端设备的专属偏移值之间的增量;
根据所述终端设备的专属偏移值和所述第二偏移值增量确定所述调整后的终端设备的专属偏移值。
在一些实施例中,所述确定单元,还用于:
根据所述终端设备的专属偏移值和所述第二偏移值增量之和确定所述调整后的终端设备的专属偏移值;或,
根据所述终端设备的专属偏移值和所述第二偏移值增量的差值确定所述调整后的终端设备的专属偏移值。
在一些实施例中,所述第二偏移值增量由所述网络设备通过专用信令方式传输。
在一些实施例中,所述确定单元,还用于:
获取网络设备配置的第一偏移值增量,其中,所述第一偏移值增量为所述终端设备的专属偏移值与所述终端设备的小区级公共偏移值之间的增量;
根据所述小区级公共偏移值和所述第一偏移值增量确定所述终端设备的专属偏移值。
在一些实施例中,所述确定单元,还用于:
根据所述小区级公共偏移值与所述第一偏移值增量之和确定所述终端设备的专属偏移值;或,
根据所述小区级公共偏移值与所述第一偏移值增量的差值确定所述终端设备的专属偏移值。
在一些实施例中,所述第一偏移值增量由所述网络设备通过专用信令方式传输。
以下说明本申请实施例提供的又一种通信装置的结构组成示意图,该通信装置可以应用于终端设备,所述通信装置包括:
确定单元,用于确定是否具有所述终端设备的专属偏移值;
所述确定单元,还用于根据确定结果,确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值;
所述确定单元,还用于根据确定的所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
在一些实施例中,所述确定单元,还用于:
在所述终端设备不具有所述终端设备的专属偏移值的情况下,获取所述终端设备的专属偏移值;
在所述终端设备具有所述终端设备的专属偏移值的情况下,根据所述终端设备的专属偏移值和第二偏移值增量确定调整后的终端设备的专属偏移值,其中,所述第二偏移值增量为所述终端设备的专属偏移值和所述调整后的终端设备的专属偏移值之间的增量。
在一些实施例中,所述确定单元,还用于:
根据所述终端设备的专属偏移值和所述第二偏移值增量之和确定所述终端设备的专属偏移值;或,
根据所述终端设备的专属偏移值和所述第二偏移值增量的差值确定所述终端设备的专属偏移值。
在一些实施例中,所述通信装置还包括获取单元,获取单元用于:
获取网络设备配置的第一信令,其中,所述第一信令用于配置所述终端设备的专属偏移值,和/或,
获取网络设备配置的第二信令,其中,所述第二信令用于配置所述第二偏移值增量。
在一些实施例中,所述第一信令包括长MAC CE,所述第二信令包括短MAC CE,所述长MAC CE的负载长度大于所述短MAC CE的负载长度。
在一些实施例中,所述第一信令包括专用RRC信令,所述第二信息包括MAC CE。
以下说明本申请实施例提供的再一种通信装置的结构组成示意图,该通信装置可以应用于网络设备,所述通信装置包括:
配置单元,用于向终端设备配置第一偏移值增量;
确定单元,用于根据所述第一偏移值增量和小区级公共偏移值确定所述终端设备的专属偏移值;
所述确定单元,还用于根据所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
在一些实施例中,所述第一偏移值增量为所述终端设备的专属偏移值与所述小区级公共偏移值之间的增量。
在一些实施例中,所述确定单元,还用于:
根据所述小区级公共偏移值与所述第一偏移值增量之和确定所述终端设备的专属偏移值;或,
根据所述小区级公共偏移值与所述第一偏移值增量的差值确定所述终端设备的专属偏移值。
在一些实施例中,所述小区级公共偏移值由所述网络设备通过广播的方式传输。
在一些实施例中,所述第一偏移值增量由所述网络设备通过专用信令方式传输。
以下说明本申请另一实施例提供的一种通信装置的结构组成示意图,该通信装置可以应用于网络设备,所述通信装置包括:
确定单元,用于确定终端设备是否具有所述终端设备的专属偏移值;
所述确定单元,还用于根据确定结果,确定基于小区级公共偏移值确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值;
所述确定单元,还用于根据确定的所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
在一些实施例中,所述确定单元,还用于:
在所述终端设备不具有所述终端设备的专属偏移值的情况下,根据所述小区级公共偏移值和第一偏移值增量确定所述终端设备的专属偏移值;
在所述终端设备具有所述终端设备的专属偏移值的情况下,根据所述终端设备的专属偏移值和第二偏移值增量确定所述调整后的终端设备的专属偏移值。
在一些实施例中,所述确定单元,还用于:
向所述终端设备配置第二偏移值增量,其中,所述第二偏移值增量为所述终端设备的专属偏移值和所述调整后的终端设备的专属偏移值之间的增量;
根据所述终端设备的专属偏移值和所述第二偏移值增量确定所述调整后的终端设备的专属偏移值。
在一些实施例中,所述确定单元,还用于:
根据所述终端设备的专属偏移值和所述第二偏移值增量之和确定所述调整后的终端设备的专属偏移值;或,
根据所述终端设备的专属偏移值和所述第二偏移值增量的差值确定所述调整后的终端设备的专属偏移值。
在一些实施例中,所述第二偏移值增量由所述网络设备通过专用信令方式传输。
在一些实施例中,所述确定单元,还用于:
向所述终端设备配置第一偏移值增量,其中,所述第一偏移值增量为所述终端设备的专属偏移值与所述终端设备的小区级公共偏移值之间的增量;
根据所述小区级公共偏移值和所述第一偏移值增量确定所述终端设备的专属偏移值。
在一些实施例中,所述确定单元,还用于:
根据所述小区级公共偏移值与所述第一偏移值增量之和确定所述终端设备的专属偏移值;或,
根据所述小区级公共偏移值与所述第一偏移值增量的差值确定所述终端设备的专属偏移值。
在一些实施例中,所述第一偏移值增量由所述网络设备通过专用信令方式传输。
以下说明本申请又一实施例提供的一种通信装置的结构组成示意图,该通信装置可以应用于网络设备,所述通信装置包括:
确定单元,用于确定终端设备是否具有所述终端设备的专属偏移值;
所述确定单元,还用于根据确定结果,确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值;
所述确定单元,还用于根据确定的所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
在一些实施例中,所述确定单元,还用于:
在所述终端设备不具有所述终端设备的专属偏移值的情况下,获取所述终端设备的专属偏移值;
在所述终端设备具有所述终端设备的专属偏移值的情况下,根据所述终端设备的专属偏移值和第二偏移值增量确定调整后的终端设备的专属偏移值,其中,所述第二偏移值增量为所述终端设备的专属偏移值和所述调整后的终端设备的专属偏移值之间的增量。
在一些实施例中,所述确定单元,还用于:
根据所述终端设备的专属偏移值和所述第二偏移值增量之和确定所述终端设备的专属偏移值;或,
根据所述终端设备的专属偏移值和所述第二偏移值增量的差值确定所述终端设备的专属偏移值。
在一些实施例中,所述通信装置还包括:配置单元;所述配置单元用于:
向所述终端设备配置第一信令,其中,所述第一信令用于配置所述终端设备的专属偏移值,和/或,
向所述终端设备配置第二信令,其中,所述第二信令用于配置所述第二偏移值增量。
在一些实施例中,所述第一信令包括长MAC CE,所述第二信令包括短MAC CE,所述长MAC CE的负载长度大于所述短MAC CE的负载长度。
在一些实施例中,所述第一信令包括专用RRC信令,所述第二信息包括MAC CE。
本领域技术人员应当理解,本申请实施例的上述通信装置的相关描述可以参照本申请实施例的通信方法的相关描述进行理解。
图15为本申请实施例提供的一种通信设备的示意性结构图。该通信设备可以终端设备,也可以是网络设备。图15所示的通信设备1500包括处理器1510和存储器1520,存储器1520存储有可在处理器上运行的计算机程序,所述处理器1510执行所述程序时实现本申请实施例中的方法。
其中,存储器1520可以是独立于处理器1510的一个单独的器件,也可以集成在处理器1510中。
在一些实施例中,如图15所示,通信设备1500还可以包括收发器1530,处理器1510可以控制该收发器1530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1530可以包括发射机和接收机。收发器1530还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,该通信设备1500具体可为本申请实施例的网络设备,并且该通信设备1500可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备1500具体可为本申请实施例的终端设备,并且该通信设备1500可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机存储介质,所述计算机存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现本申请实施例中的方法。
在一些实施例中,该计算机存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图16为本申请实施例的芯片的示意性结构图。图16所示的芯片1600包括处理器1610,处理器1610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图16所示,芯片1600还可以包括存储器1620。其中,处理器1610可以从存储器1620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1620可以是独立于处理器1610的一个单独的器件,也可以集成在处理器1610中。
在一些实施例中,该芯片1600还可以包括输入接口1630。其中,处理器1610可以控制该输入接口1630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些实施例中,该芯片1600还可以包括输出接口1640。其中,处理器1610可以控制该输出接口840与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一些实施例中,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括计算机存储介质,所述计算机存储介质存储计算机程序,所述计算机程序包括能够由至少一个处理器执行的指令,当所述指令由所述至少一个处理器执行时实现本申请实施例中的方法。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。在一些实施例中,计算机程序产品可以称为软件产品。
本申请实施例还提供了一种计算机程序,所述计算机程序使得计算机执行本申请实施例中的方法。
在一些实施例中,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。在一些实施例中,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域技术人员应当理解,本申请实施例的上述通信设备、计算机存储介质、芯片、计算机程序产品、计算机程序的相关描述可以参照本申请实施例的通信方法的相关描述进行理解。
本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以包括以下任一个或多个的集成:通用处理器、特定用途集成电路(Application Specific Integrated Circuit,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理装置(Digital Signal Processing Device,DSPD)、可编程逻辑装置(Programmable Logic Device,PLD)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、中央处理器(Central Processing Unit,CPU)、图形处理器(Graphics Processing Unit,GPU)、嵌入式神经网络处理器(neural-network processing units,NPU)、控制器、微控制器、微处理器、可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器或计算机存储介质可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器或计算机存储介质为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (82)

  1. 一种通信方法,所述方法包括:
    终端设备获取网络设备配置的第一偏移值增量;
    所述终端设备根据所述第一偏移值增量和小区级公共偏移值确定所述终端设备的专属偏移值;
    所述终端设备根据所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
  2. 根据权利要求1所述的方法,其中,所述第一偏移值增量为所述终端设备的专属偏移值与所述小区级公共偏移值之间的增量。
  3. 根据权利要求1或2所述的方法,其中,所述终端设备根据所述第一偏移值增量和小区级公共偏移值确定所述终端设备的专属偏移值,包括:
    所述终端设备根据所述小区级公共偏移值与所述第一偏移值增量之和确定所述终端设备的专属偏移值;或,
    所述终端设备根据所述小区级公共偏移值与所述第一偏移值增量的差值确定所述终端设备的专属偏移值。
  4. 根据权利要求1至3任一项所述的方法,其中,
    所述小区级公共偏移值由所述网络设备通过广播的方式传输。
  5. 根据权利要求1至4任一项所述的方法,其中,
    所述第一偏移值增量由所述网络设备通过专用信令方式传输。
  6. 一种通信方法,所述方法包括:
    终端设备确定是否具有所述终端设备的专属偏移值;
    根据确定结果,所述终端设备确定基于小区级公共偏移值确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值;
    所述终端设备根据确定的所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
  7. 根据权利要求6所述的方法,其中,根据确定结果,所述终端设备确定基于小区级公共偏移值确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值,包括:
    在所述终端设备不具有所述终端设备的专属偏移值的情况下,所述终端设备根据所述小区级公共偏移值和第一偏移值增量确定所述终端设备的专属偏移值;
    在所述终端设备具有所述终端设备的专属偏移值的情况下,所述终端设备根据所述终端设备的专属偏移值和第二偏移值增量确定所述调整后的终端设备的专属偏移值。
  8. 根据权利要求7所述的方法,其中,在所述终端设备具有所述终端设备的专属偏移值的情况下,所述终端设备根据所述终端设备的专属偏移值和第二偏移值增量确定所述调整后的终端设备的专属偏移值,包括:
    所述终端设备获取网络设备配置的第二偏移值增量,其中,所述第二偏移值增量为所述终端设备的专属偏移值和所述调整后的终端设备的专属偏移值之间的增量;
    所述终端设备根据所述终端设备的专属偏移值和所述第二偏移值增量确定所述调整后的终端设备的专属偏移值。
  9. 根据权利要求8所述的方法,其中,所述终端设备根据所述终端设备的专属偏移值和所述第二偏移值增量确定所述调整后的所述终端设备的专属偏移值,包括:
    所述终端设备根据所述终端设备的专属偏移值和所述第二偏移值增量之和确定所述调整后的终端设备的专属偏移值;或,
    所述终端设备根据所述终端设备的专属偏移值和所述第二偏移值增量的差值确定所述调整后的终端设备的专属偏移值。
  10. 根据权利要求7至9任一项所述的方法,其中,
    所述第二偏移值增量由所述网络设备通过专用信令方式传输。
  11. 根据权利要求7至10任一项所述的方法,其中,所述在所述终端设备不具有所述终端设备的专属偏移值的情况下,所述终端设备根据所述小区级公共偏移值和第一偏移值增量确定所述终端设备的专属偏移值,包括:
    所述终端设备获取网络设备配置的第一偏移值增量,其中,所述第一偏移值增量为所述终端设备的专属偏移值与所述终端设备的小区级公共偏移值之间的增量;
    所述终端设备根据所述小区级公共偏移值和所述第一偏移值增量确定所述终端设备的专属偏移值。
  12. 根据权利要求11所述的方法,其中,所述终端设备根据所述小区级公共偏移值和所述第一偏移值增量确定所述终端设备的专属偏移值,包括:
    所述终端设备根据所述小区级公共偏移值与所述第一偏移值增量之和确定所述终端设备的专属偏移值;或,
    所述终端设备根据所述小区级公共偏移值与所述第一偏移值增量的差值确定所述终端设备的专属偏移值。
  13. 根据权利要求7至12任一项所述的方法,其中,
    所述第一偏移值增量由所述网络设备通过专用信令方式传输。
  14. 一种通信方法,所述方法包括:
    终端设备确定是否具有所述终端设备的专属偏移值;
    根据确定结果,所述终端设备确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值;
    所述终端设备根据确定的所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
  15. 根据权利要求14所述的方法,其中,根据确定结果,所述终端设备确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值,包括:
    在所述终端设备不具有所述终端设备的专属偏移值的情况下,所述终端设备获取所述终端设备的专属偏移值;
    在所述终端设备具有所述终端设备的专属偏移值的情况下,所述终端设备根据所述终端设备的专属偏移值和第二偏移值增量确定调整后的终端设备的专属偏移值,其中,所述第二偏移值增量为所述终端设备的专属偏移值和所述调整后的终端设备的专属偏移值之间的增量。
  16. 根据权利要求15所述的方法,其中,所述终端设备根据所述终端设备的专属偏移值和第二偏移值增量确定调整后的终端设备的专属偏移值,包括:
    所述终端设备根据所述终端设备的专属偏移值和所述第二偏移值增量之和确定所述终端设备的专属偏移值;或,
    所述终端设备根据所述终端设备的专属偏移值和所述第二偏移值增量的差值确定所述终端设备的专属偏移值。
  17. 根据权利要求15或16所述的方法,其中,所述方法还包括:
    所述终端设备获取网络设备配置的第一信令,其中,所述第一信令用于配置所述终端设备的专属偏移值,和/或,
    所述终端设备获取网络设备配置的第二信令,其中,所述第二信令用于配置所述第二偏移值增量。
  18. 根据权利要求17所述的方法,其中,所述第一信令包括长MAC CE,所述第二信令包括短MAC CE,所述长MAC CE的负载长度大于所述短MAC CE的负载长度。
  19. 根据权利要求17或18所述的方法,其中,
    所述第一信令包括专用RRC信令,所述第二信息包括MAC CE。
  20. 一种通信方法,所述方法包括:
    网络设备向终端设备配置第一偏移值增量;
    所述网络设备根据所述第一偏移值增量和小区级公共偏移值确定所述终端设备的专属偏移值;
    所述网络设备根据所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
  21. 根据权利要求20所述的方法,其中,所述第一偏移值增量为所述终端设备的专属偏移值与所述小区级公共偏移值之间的增量。
  22. 根据权利要求20或21所述的方法,其中,所述网络设备根据所述第一偏移值增量和小区级公共偏移值确定所述终端设备的专属偏移值,包括:
    所述网络设备根据所述小区级公共偏移值与所述第一偏移值增量之和确定所述终端设备的专属偏移值;或,
    所述网络设备根据所述小区级公共偏移值与所述第一偏移值增量的差值确定所述终端设备的专属偏移值。
  23. 根据权利要求20至22任一项所述的方法,其中,
    所述小区级公共偏移值由所述网络设备通过广播的方式传输。
  24. 根据权利要求20至23任一项所述的方法,其中,
    所述第一偏移值增量由所述网络设备通过专用信令方式传输。
  25. 一种通信方法,所述方法包括:
    网络设备确定终端设备是否具有所述终端设备的专属偏移值;
    根据确定结果,所述网络设备确定基于小区级公共偏移值确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值;
    所述网络设备根据确定的所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
  26. 根据权利要求25所述的方法,其中,所述根据确定结果,所述网络设备确定基于小区级公共偏移值确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值,包括:
    在所述终端设备不具有所述终端设备的专属偏移值的情况下,所述网络设备根据所述小区级公共偏移值和第一偏移值增量确定所述终端设备的专属偏移值;
    在所述终端设备具有所述终端设备的专属偏移值的情况下,所述网络设备根据所述终端设备的专属偏移值和第二偏移值增量确定所述调整后的终端设备的专属偏移值。
  27. 根据权利要求26所述的方法,其中,所述在所述终端设备具有所述终端设备的专属偏移值的情况下,所述网络设备根据所述终端设备的专属偏移值和第二偏移值增量确定所述调整后的终端设备的专属偏移值,包括:
    所述网络设备向所述终端设备配置第二偏移值增量,其中,所述第二偏移值增量为所述终端设备的专属偏移值和所述调整后的终端设备的专属偏移值之间的增量;
    所述网络设备根据所述终端设备的专属偏移值和所述第二偏移值增量确定所述调整后的终端设备的专属偏移值。
  28. 根据权利要求27所述的方法,其中,所述网络设备根据所述终端设备的专属偏移值和所述第二偏移值增量确定所述调整后的终端设备的专属偏移值,包括:
    所述网络设备根据所述终端设备的专属偏移值和所述第二偏移值增量之和确定所述调整后的终端设备的专属偏移值;或,
    所述网络设备根据所述终端设备的专属偏移值和所述第二偏移值增量的差值确定所述调整后的终端设备的专属偏移值。
  29. 根据权利要求26至28任一项所述的方法,其中,
    所述第二偏移值增量由所述网络设备通过专用信令方式传输。
  30. 根据权利要求26至29任一项所述的方法,其中,所述在所述终端设备不具有所述终端设备的专属偏移值的情况下,所述网络设备根据所述小区级公共偏移值和第一偏移值增量确定所述终端设备的专属偏移值,包括:
    所述网络设备向所述终端设备配置第一偏移值增量,其中,所述第一偏移值增量为所述终端设备的专属偏移值与所述终端设备的小区级公共偏移值之间的增量;
    所述网络设备根据所述小区级公共偏移值和所述第一偏移值增量确定所述终端设备的专属偏移值。
  31. 根据权利要求30所述的方法,其中,所述网络设备根据所述小区级公共偏移值和所述第一偏移值增量确定所述终端设备的专属偏移值,包括:
    所述网络设备根据所述小区级公共偏移值与所述第一偏移值增量之和确定所述终端设备的专属偏移值;或,
    所述网络设备根据所述小区级公共偏移值与所述第一偏移值增量的差值确定所述终端设备的专属偏移值。
  32. 根据权利要求26至31任一项所述的方法,其中,
    所述第一偏移值增量由所述网络设备通过专用信令方式传输。
  33. 一种通信方法,所述方法包括:
    网络设备确定终端设备是否具有所述终端设备的专属偏移值;
    根据确定结果,所述网络设备确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值;
    所述网络设备根据确定的所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
  34. 根据权利要求33所述的方法,其中,所述根据确定结果,所述网络设备确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值,包括:
    在所述终端设备不具有所述终端设备的专属偏移值的情况下,所述网络设备获取所述终端设备的专属偏移值;
    在所述终端设备具有所述终端设备的专属偏移值的情况下,所述网络设备根据所述终端设备的专属偏移值和第二偏移值增量确定调整后的终端设备的专属偏移值,其中,所述第二偏移值增量为所述终端设备的专属偏移值和所述调整后的终端设备的专属偏移值之间的增量。
  35. 根据权利要求34所述的方法,其中,所述网络设备根据所述终端设备的专属偏移值和第二偏 移值增量确定调整后的终端设备的专属偏移值,包括:
    所述网络设备根据所述终端设备的专属偏移值和所述第二偏移值增量之和确定所述终端设备的专属偏移值;或,
    所述网络设备根据所述终端设备的专属偏移值和所述第二偏移值增量的差值确定所述终端设备的专属偏移值。
  36. 根据权利要求34或35所述的方法,其中,所述方法还包括:
    所述网络设备向所述终端设备配置第一信令,其中,所述第一信令用于配置所述终端设备的专属偏移值,和/或,
    所述网络设备向所述终端设备配置第二信令,其中,所述第二信令用于配置所述第二偏移值增量。
  37. 根据权利要求36所述的方法,其中,所述第一信令包括长MAC CE,所述第二信令包括短MAC CE,所述长MAC CE的负载长度大于所述短MAC CE的负载长度。
  38. 根据权利要求36或37所述的方法,其中,
    所述第一信令包括专用RRC信令,所述第二信息包括MAC CE。
  39. 一种通信装置,包括:
    获取单元,用于获取网络设备配置的第一偏移值增量;
    确定单元,用于根据所述第一偏移值增量和小区级公共偏移值确定终端设备的专属偏移值;
    所述确定单元,还用于根据所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
  40. 根据权利要求39所述的通信装置,其中,所述第一偏移值增量为所述终端设备的专属偏移值与所述小区级公共偏移值之间的增量。
  41. 根据权利要求39或40所述的通信装置,其中,所述确定单元,还用于:
    根据所述小区级公共偏移值与所述第一偏移值增量之和确定所述终端设备的专属偏移值;或,
    根据所述小区级公共偏移值与所述第一偏移值增量的差值确定所述终端设备的专属偏移值。
  42. 根据权利要求39至41任一项所述的通信装置,其中,所述小区级公共偏移值由所述网络设备通过广播的方式传输。
  43. 根据权利要求39至42任一项所述的通信装置,其中,所述第一偏移值增量由所述网络设备通过专用信令方式传输。
  44. 一种通信装置,包括:
    确定单元,用于确定是否具有终端设备的专属偏移值;
    所述确定单元,还用于根据确定结果,确定基于小区级公共偏移值确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值;
    所述确定单元,还用于根据确定的所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
  45. 根据权利要求44所述的通信装置,其中,所述确定单元,还用于:
    在所述终端设备不具有所述终端设备的专属偏移值的情况下,根据所述小区级公共偏移值和第一偏移值增量确定所述终端设备的专属偏移值;
    在所述终端设备具有所述终端设备的专属偏移值的情况下,根据所述终端设备的专属偏移值和第二偏移值增量确定所述调整后的终端设备的专属偏移值。
  46. 根据权利要求45所述的通信装置,其中,所述确定单元,还用于:
    获取网络设备配置的第二偏移值增量,其中,所述第二偏移值增量为所述终端设备的专属偏移值和所述调整后的终端设备的专属偏移值之间的增量;
    根据所述终端设备的专属偏移值和所述第二偏移值增量确定所述调整后的终端设备的专属偏移值。
  47. 根据权利要求46所述的通信装置,其中,所述确定单元,还用于:
    根据所述终端设备的专属偏移值和所述第二偏移值增量之和确定所述调整后的终端设备的专属偏移值;或,
    根据所述终端设备的专属偏移值和所述第二偏移值增量的差值确定所述调整后的终端设备的专属偏移值。
  48. 根据权利要求45至47任一项所述的通信装置,其中,
    所述第二偏移值增量由所述网络设备通过专用信令方式传输。
  49. 根据权利要求45至48任一项所述的通信装置,其中,所述确定单元,还用于:
    获取网络设备配置的第一偏移值增量,其中,所述第一偏移值增量为所述终端设备的专属偏移值与所述终端设备的小区级公共偏移值之间的增量;
    根据所述小区级公共偏移值和所述第一偏移值增量确定所述终端设备的专属偏移值。
  50. 根据权利要求49所述的通信装置,其中,所述确定单元,还用于:
    根据所述小区级公共偏移值与所述第一偏移值增量之和确定所述终端设备的专属偏移值;或,
    根据所述小区级公共偏移值与所述第一偏移值增量的差值确定所述终端设备的专属偏移值。
  51. 根据权利要求45至50任一项所述的通信装置,其中,
    所述第一偏移值增量由所述网络设备通过专用信令方式传输。
  52. 一种通信装置,包括:
    确定单元,用于确定是否具有终端设备的专属偏移值;
    所述确定单元,还用于根据确定结果,确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值;
    所述确定单元,还用于根据确定的所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
  53. 根据权利要求52所述的通信装置,其中,所述确定单元,还用于:
    在所述终端设备不具有所述终端设备的专属偏移值的情况下,获取所述终端设备的专属偏移值;
    在所述终端设备具有所述终端设备的专属偏移值的情况下,根据所述终端设备的专属偏移值和第二偏移值增量确定调整后的终端设备的专属偏移值,其中,所述第二偏移值增量为所述终端设备的专属偏移值和所述调整后的终端设备的专属偏移值之间的增量。
  54. 根据权利要求53所述的通信装置,其中,所述确定单元,还用于:
    根据所述终端设备的专属偏移值和所述第二偏移值增量之和确定所述终端设备的专属偏移值;或,
    根据所述终端设备的专属偏移值和所述第二偏移值增量的差值确定所述终端设备的专属偏移值。
  55. 根据权利要求53或54所述的通信装置,其中,所述通信装置还包括获取单元,所述获取单元用于:
    获取网络设备配置的第一信令,其中,所述第一信令用于配置所述终端设备的专属偏移值,和/或,
    获取网络设备配置的第二信令,其中,所述第二信令用于配置所述第二偏移值增量。
  56. 根据权利要求55所述的通信装置,其中,所述第一信令包括长MAC CE,所述第二信令包括短MAC CE,所述长MAC CE的负载长度大于所述短MAC CE的负载长度。
  57. 根据权利要求55或56所述的通信装置,其中,
    所述第一信令包括专用RRC信令,所述第二信息包括MAC CE。
  58. 一种通信装置,包括:
    配置单元,用于向终端设备配置第一偏移值增量;
    确定单元,用于根据所述第一偏移值增量和小区级公共偏移值确定所述终端设备的专属偏移值;
    所述确定单元,还用于根据所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
  59. 根据权利要求58所述的通信装置,其中,
    所述第一偏移值增量为所述终端设备的专属偏移值与所述小区级公共偏移值之间的增量。
  60. 根据权利要求58或59所述的通信装置,其中,所述确定单元,还用于:
    根据所述小区级公共偏移值与所述第一偏移值增量之和确定所述终端设备的专属偏移值;或,
    根据所述小区级公共偏移值与所述第一偏移值增量的差值确定所述终端设备的专属偏移值。
  61. 根据权利要求58至60任一项所述的通信装置,其中,
    所述小区级公共偏移值由网络设备通过广播的方式传输。
  62. 根据权利要求58至61任一项所述的通信装置,其中,
    所述第一偏移值增量由所述网络设备通过专用信令方式传输。
  63. 一种通信装置,包括:
    确定单元,用于确定终端设备是否具有所述终端设备的专属偏移值;
    所述确定单元,还用于根据确定结果,确定基于小区级公共偏移值确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值;
    所述确定单元,还用于根据确定的所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
  64. 根据权利要求63所述的通信装置,其中,所述确定单元,还用于:
    在所述终端设备不具有所述终端设备的专属偏移值的情况下,根据所述小区级公共偏移值和第一偏移值增量确定所述终端设备的专属偏移值;
    在所述终端设备具有所述终端设备的专属偏移值的情况下,根据所述终端设备的专属偏移值和第二 偏移值增量确定所述调整后的终端设备的专属偏移值。
  65. 根据权利要求64所述的通信装置,其中,所述确定单元,还用于:
    向所述终端设备配置第二偏移值增量,其中,所述第二偏移值增量为所述终端设备的专属偏移值和所述调整后的终端设备的专属偏移值之间的增量;
    根据所述终端设备的专属偏移值和所述第二偏移值增量确定所述调整后的终端设备的专属偏移值。
  66. 根据权利要求65所述的通信装置,其中,所述确定单元,还用于:
    根据所述终端设备的专属偏移值和所述第二偏移值增量之和确定所述调整后的终端设备的专属偏移值;或,
    根据所述终端设备的专属偏移值和所述第二偏移值增量的差值确定所述调整后的终端设备的专属偏移值。
  67. 根据权利要求64至66任一项所述的通信装置,其中,
    所述第二偏移值增量由网络设备通过专用信令方式传输。
  68. 根据权利要求64至67任一项所述的通信装置,其中,所述确定单元,还用于:
    向所述终端设备配置第一偏移值增量,其中,所述第一偏移值增量为所述终端设备的专属偏移值与所述终端设备的小区级公共偏移值之间的增量;
    根据所述小区级公共偏移值和所述第一偏移值增量确定所述终端设备的专属偏移值。
  69. 根据权利要求68所述的通信装置,其中,所述确定单元,还用于:
    根据所述小区级公共偏移值与所述第一偏移值增量之和确定所述终端设备的专属偏移值;或,
    根据所述小区级公共偏移值与所述第一偏移值增量的差值确定所述终端设备的专属偏移值。
  70. 根据权利要求64至69任一项所述的通信装置,其中,
    所述第一偏移值增量由所述网络设备通过专用信令方式传输。
  71. 一种通信装置,包括:
    确定单元,用于确定终端设备是否具有所述终端设备的专属偏移值;
    所述确定单元,还用于根据确定结果,确定所述终端设备的专属偏移值和/或基于所述终端设备的专属偏移值确定调整后的终端设备的专属偏移值;
    所述确定单元,还用于根据确定的所述终端设备的专属偏移值,确定所述终端设备上行传输的时域资源位置。
  72. 根据权利要求71所述的通信装置,其中,所述确定单元,还用于:
    在所述终端设备不具有所述终端设备的专属偏移值的情况下,获取所述终端设备的专属偏移值;
    在所述终端设备具有所述终端设备的专属偏移值的情况下,根据所述终端设备的专属偏移值和第二偏移值增量确定调整后的终端设备的专属偏移值,其中,所述第二偏移值增量为所述终端设备的专属偏移值和所述调整后的终端设备的专属偏移值之间的增量。
  73. 根据权利要求72所述的通信装置,其中,所述确定单元,还用于:
    根据所述终端设备的专属偏移值和所述第二偏移值增量之和确定所述终端设备的专属偏移值;或,
    根据所述终端设备的专属偏移值和所述第二偏移值增量的差值确定所述终端设备的专属偏移值。
  74. 根据权利要求72或73所述的通信装置,其中,所述通信装置还包括配置单元,所述配置单元,用于:
    向所述终端设备配置第一信令,其中,所述第一信令用于配置所述终端设备的专属偏移值,和/或,
    向所述终端设备配置第二信令,其中,所述第二信令用于配置所述第二偏移值增量。
  75. 根据权利要求74所述的通信装置,其中,所述第一信令包括长MAC CE,所述第二信令包括短MAC CE,所述长MAC CE的负载长度大于所述短MAC CE的负载长度。
  76. 根据权利要求74或75所述的通信装置,其中,
    所述第一信令包括专用RRC信令,所述第二信息包括MAC CE。
  77. 一种终端设备,包括:存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,所述处理器执行所述程序时实现权利要求1至5任一项所述方法,或者,
    所述处理器执行所述程序时实现权利要求6至13任一项所述方法,或者,
    所述处理器执行所述程序时实现权利要求14至19任一项所述方法。
  78. 一种网络设备,包括:存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,所述处理器执行所述程序时实现权利要求20至24任一项所述方法,或者,
    所述处理器执行所述程序时实现权利要求25至32任一项所述方法,或者,
    所述处理器执行所述程序时实现权利要求33至38任一项所述方法。
  79. 一种计算机存储介质,所述计算机存储介质存储有一个或者多个程序,所述一个或者多个程序 可被一个或者多个处理器执行,以实现权利要求1至5任一项、6至13任一项或者14至19任一项所述方法,或者,
    所述一个或者多个程序可被一个或者多个处理器执行,以实现权利要求20至24任一项、25至32任一项或者33至38任一项所述方法。
  80. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,以实现如权利要求1至5任一项、6至13任一项或者14至19任一项所述方法,或者,
    用于从存储器中调用并运行计算机程序,以实现如权利要求20至24任一项、25至32任一项或者33至38任一项所述方法。
  81. 一种计算机程序产品,所述计算机程序产品包括计算机存储介质,所述计算机存储介质存储计算机程序,所述计算机程序包括能够由至少一个处理器执行的指令,当所述指令由所述至少一个处理器执行时实现权利要求1至5任一项、6至13任一项或者14至19任一项所述方法,或者,
    当所述指令由所述至少一个处理器执行时实现权利要求20至24任一项、25至32任一项或者33至38任一项所述方法。
  82. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至5任一项、6至13任一项或者14至19任一项所述方法,或者,
    所述计算机程序使得计算机执行如权利要求20至24任一项、25至32任一项或者33至38任一项所述方法。
PCT/CN2021/132183 2021-11-22 2021-11-22 通信方法、装置、设备、存储介质、芯片、产品及程序 WO2023087326A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/132183 WO2023087326A1 (zh) 2021-11-22 2021-11-22 通信方法、装置、设备、存储介质、芯片、产品及程序
CN202180101906.0A CN117882462A (zh) 2021-11-22 2021-11-22 通信方法、装置、设备、存储介质、芯片、产品及程序

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/132183 WO2023087326A1 (zh) 2021-11-22 2021-11-22 通信方法、装置、设备、存储介质、芯片、产品及程序

Publications (1)

Publication Number Publication Date
WO2023087326A1 true WO2023087326A1 (zh) 2023-05-25

Family

ID=86396089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132183 WO2023087326A1 (zh) 2021-11-22 2021-11-22 通信方法、装置、设备、存储介质、芯片、产品及程序

Country Status (2)

Country Link
CN (1) CN117882462A (zh)
WO (1) WO2023087326A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033094A1 (en) * 2019-08-16 2021-02-25 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling timing for large cells and long propagation delays
CN112911699A (zh) * 2021-01-14 2021-06-04 之江实验室 一种基于非地面通信网络的时间同步方法
CN113347697A (zh) * 2020-02-18 2021-09-03 华为技术有限公司 更新定时偏移量的方法及装置
US20210297149A1 (en) * 2020-03-20 2021-09-23 Nokia Technologies Oy Group timing adjustment for uplink transmission and command activation in non-terrestrial networks
US20210352606A1 (en) * 2020-05-08 2021-11-11 Samsung Electronics Co., Ltd. Methods for timing advance indication and timing relationships indication for non-terrestrial networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033094A1 (en) * 2019-08-16 2021-02-25 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling timing for large cells and long propagation delays
CN113347697A (zh) * 2020-02-18 2021-09-03 华为技术有限公司 更新定时偏移量的方法及装置
US20210297149A1 (en) * 2020-03-20 2021-09-23 Nokia Technologies Oy Group timing adjustment for uplink transmission and command activation in non-terrestrial networks
US20210352606A1 (en) * 2020-05-08 2021-11-11 Samsung Electronics Co., Ltd. Methods for timing advance indication and timing relationships indication for non-terrestrial networks
CN112911699A (zh) * 2021-01-14 2021-06-04 之江实验室 一种基于非地面通信网络的时间同步方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SONY: "Calculation of timing relationship offsets", 3GPP TSG RAN WG1 #104B-E, R1-2103304, 7 April 2021 (2021-04-07), XP052178071 *

Also Published As

Publication number Publication date
CN117882462A (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
CN110381474A (zh) 一种通信方法及通信装置
JP2022550963A (ja) Harqプロセスごとにフィードバックを有効化/無効化するharqコードブック構築
WO2021168661A1 (zh) 信息传输方法、终端设备和网络设备
WO2022205014A1 (zh) 信息传输方法、终端设备和网络设备
CN115066937A (zh) 接收装置、发送装置、接收方法以及发送方法
WO2021155596A1 (zh) 信息指示方法、装置、设备、系统及存储介质
WO2022056854A1 (zh) 无线通信方法和设备
US20230231661A1 (en) Channel transmission method, terminal device and network device
WO2023087326A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
CN115580380A (zh) 无线通信的方法及装置
WO2022266882A1 (zh) 有效期确定方法、装置、设备及存储介质
WO2023108642A1 (zh) 通信方法、装置、设备、芯片、存储介质、产品及程序
CN114642028A (zh) 信息处理方法、装置、设备及存储介质
WO2022241658A1 (zh) 半双工的数据传输方法、终端设备和网络设备
WO2022205002A1 (zh) 传输定时的调整方法、确定方法和终端设备
WO2023077321A1 (zh) 通信方法及终端设备
EP4280714A1 (en) Method and apparatus for reporting timing advance, and terminal device
US11894930B1 (en) Wireless communication method and terminal device
WO2024007336A1 (zh) 信息处理方法、终端设备和网络设备
WO2024092649A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
WO2023097504A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
WO2022217443A1 (zh) 信道估计方法、终端设备、网络设备、芯片和存储介质
WO2023206488A1 (zh) 一种上行传输方法及装置、终端设备、网络设备
WO2022246824A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023010586A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964475

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180101906.0

Country of ref document: CN