WO2024007336A1 - 信息处理方法、终端设备和网络设备 - Google Patents

信息处理方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2024007336A1
WO2024007336A1 PCT/CN2022/104741 CN2022104741W WO2024007336A1 WO 2024007336 A1 WO2024007336 A1 WO 2024007336A1 CN 2022104741 W CN2022104741 W CN 2022104741W WO 2024007336 A1 WO2024007336 A1 WO 2024007336A1
Authority
WO
WIPO (PCT)
Prior art keywords
unified
tci state
trp
tci
transmission
Prior art date
Application number
PCT/CN2022/104741
Other languages
English (en)
French (fr)
Inventor
曹建飞
方昀
刘哲
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/104741 priority Critical patent/WO2024007336A1/zh
Publication of WO2024007336A1 publication Critical patent/WO2024007336A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communications, and more specifically, to an information processing method, terminal equipment and network equipment.
  • TCI Transmission Configuration Indication
  • QCL Quadrature-Co-Location, quasi-co-location
  • NR New Radio, New Wireless
  • the embodiment of the present application provides an information processing method, including:
  • the terminal device uses the unified transmission configuration to indicate the TCI status to perform single transmission reception point TRP transmission and/or multiple TRP transmission.
  • the embodiment of the present application provides an information processing method, including:
  • the network device sends first information, which is used to instruct the terminal device to perform single TRP transmission and/or multi-TRP transmission using a unified TCI state.
  • An embodiment of the present application provides a terminal device, including:
  • a processing unit configured to perform single transmission reception point TRP transmission and/or multi-TRP transmission using the unified transmission configuration to indicate the TCI status.
  • This embodiment of the present application provides a network device, including:
  • the first sending unit is configured to send first information, where the first information is used to instruct the terminal device to use a unified TCI state to perform single TRP transmission and/or multiple TRP transmission.
  • An embodiment of the present application provides a terminal device, including a processor, a memory, and a transceiver.
  • the memory is used to store computer programs
  • the processor is used to control the transceiver to communicate with other devices
  • the processor is used to call and run the computer program stored in the memory so that the terminal device performs the above information processing method.
  • An embodiment of the present application provides a network device, including a processor, a memory, and a transceiver.
  • the memory is used to store computer programs
  • the processor is used to control the transceiver to communicate with other devices
  • the processor is used to call and run the computer program stored in the memory so that the network device performs the above information processing method.
  • An embodiment of the present application provides a chip for implementing the above information processing method.
  • the chip includes: a processor for calling and running a computer program from the memory, so that the device installed with the chip executes the above information processing method.
  • Embodiments of the present application provide a computer-readable storage medium for storing a computer program.
  • the computer program When the computer program is run by a device, it causes the device to perform the above information processing method.
  • Embodiments of the present application provide a computer program product, which includes computer program instructions.
  • the computer program instructions cause a computer to execute the above information processing method.
  • An embodiment of the present application provides a computer program that, when run on a computer, causes the computer to execute the above information processing method.
  • the terminal device flexibly uses the unified TCI state to perform single TRP transmission and/or multiple TRP transmission, thereby realizing dynamic switching of TRP transmission.
  • Figure 1 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of sDCI-mPDSCH.
  • Figure 3 is a schematic diagram of mDCI-mPDSCH.
  • Figure 4 is a timeline of traditional TCI status.
  • Figure 5 is a timeline of unified TCI status.
  • Figure 6 is a schematic flow chart of an information processing method according to an embodiment of the present application.
  • Figure 7 is a schematic flow chart of an information processing method according to another embodiment of the present application.
  • Figure 8 is a schematic flow chart of an information processing method according to another embodiment of the present application.
  • Figure 9 is a schematic flow chart of an information processing method according to an embodiment of the present application.
  • Figure 10 is a schematic flow chart of an information processing method according to another embodiment of the present application.
  • Figure 11 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Figure 12 is a schematic block diagram of a terminal device according to another embodiment of the present application.
  • Figure 13 is a schematic block diagram of a network device according to an embodiment of the present application.
  • Figure 14 is a schematic block diagram of a network device according to another embodiment of the present application.
  • Figure 15 is a schematic diagram of sTRP/mTRP switching based on partial update.
  • Figure 16 is a schematic diagram of MAC CE.
  • Figure 17a is a schematic diagram of switching to sTRP PDSCH.
  • Figure 17b is a schematic diagram of switching to mTRP PDSCH.
  • Figure 18 is a schematic diagram of a first processing method for channels other than PDSCH.
  • Figure 19 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Figure 20 is a schematic block diagram of a chip according to an embodiment of the present application.
  • Figure 21 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA broadband code division multiple access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR system evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum, NR-U) on unlicensed spectrum System, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunication System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (WiFi), Fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR system evolution system of NR system
  • LTE L
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA)Network scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA Standalone
  • the communication system in the embodiment of the present application can be applied to unlicensed spectrum, where the unlicensed spectrum can also be considered as shared spectrum; or, the communication system in the embodiment of the present application can also be applied to licensed spectrum , among which, licensed spectrum can also be considered as non-shared spectrum.
  • the embodiments of this application describe various embodiments in combination with network equipment and terminal equipment.
  • the terminal equipment may also be called user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • User Equipment User Equipment
  • the terminal device can be a station (ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, or a personal digital processing unit.
  • ST station
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites). superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, or an augmented reality (Augmented Reality, AR) terminal.
  • Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones.
  • the network device may be a device used to communicate with mobile devices.
  • the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA.
  • BTS Base Transceiver Station
  • it can be a base station (NodeB, NB) in WCDMA, or an evolutionary base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network network equipment (gNB) or network equipment in the future evolved PLMN network or network equipment in the NTN network, etc.
  • AP Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolution base station
  • gNB NR network network equipment
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • the network device can be a satellite or balloon station.
  • the satellite can be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geosynchronous orbit (geostationary earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite ) satellite, etc.
  • the network device may also be a base station installed on land, water, etc.
  • network equipment can provide services for a cell, and terminal equipment communicates with the network equipment through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell can be a network equipment ( For example, the cell corresponding to the base station), the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • the small cell here can include: urban cell (Metro cell), micro cell (Micro cell), pico cell ( Pico cell), femto cell (Femto cell), etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
  • Figure 1 illustrates a communication system 100.
  • the communication system includes a network device 110 and two terminal devices 120.
  • the communication system 100 may include multiple network devices 110 , and the coverage of each network device 110 may include other numbers of terminal devices 120 , which is not limited in this embodiment of the present application.
  • the communication system 100 may also include other network entities such as Mobility Management Entity (MME), Access and Mobility Management Function (AMF), etc.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • network equipment may include access network equipment and core network equipment. That is, the wireless communication system also includes multiple core networks used to communicate with access network equipment.
  • the access network equipment can be a long-term evolution (long-term evolution, LTE) system, a next-generation (mobile communication system) (next radio, NR) system or authorized auxiliary access long-term evolution (LAA- Evolutionary base station (evolutional node B, abbreviated as eNB or e-NodeB) macro base station, micro base station (also known as "small base station"), pico base station, access point (access point, AP), Transmission point (TP) or new generation base station (new generation Node B, gNodeB), etc.
  • LTE long-term evolution
  • NR next-generation
  • LAA- Evolutionary base station evolutional node B, abbreviated as eNB or e-NodeB
  • eNB next-generation
  • NR next-generation
  • LAA- Evolutionary base station evolutional node B, abbre
  • the communication equipment may include network equipment and terminal equipment with communication functions.
  • the network equipment and terminal equipment may be specific equipment in the embodiments of the present application, which will not be described again here; the communication equipment also It may include other devices in the communication system, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiments of this application.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
  • Unified transmission status indication for example, Unified TCI state
  • TCI state (state) is proposed for downlink spatial domain QCL (Quasi-Co-Location, quasi-co-location) (beam) indication, as well as the transmission of time domain and frequency domain QCL information.
  • QCL quasi-co-located
  • the quasi-co-located (QCL) relationship can be simply described as the relationship of large-scale fading from a source reference signal to a target reference signal.
  • NW network
  • the UE can use the receiving beam that previously received the source reference signal when receiving the target reference signal.
  • the beam in the embodiment of this application may also be called a spatial filter or a reference signal.
  • TCI status indication mechanism is only applicable to downlink channels and/or signals, and its application in NR systems has many limitations.
  • a unified TCI state is proposed. Examples of new functions to unify TCI status are as follows:
  • joint TCI state applies to uplink and downlink channels and signals
  • downlink TCI state DL TCI state
  • uplink TCI state UL TCI state
  • Downlink channels (such as part of PDCCH and PDSCH) and signals (such as aperiodic CSI-RS (Channel State Information Reference Signal, Channel State Information Reference Signal)) use the same downlink transmission indicator beam, and use downlink TCI status or joint TCI state.
  • CSI-RS Channel State Information Reference Signal, Channel State Information Reference Signal
  • Uplink channels such as PUCCH and PUSCH
  • signals such as SRS
  • the unified TCI status can be dynamically updated and indicated using MAC CE (Media Access Control-Control Element, media intervention control element) and/or DCI (Downlink Control Information, downlink control information).
  • MAC CE Media Access Control-Control Element, media intervention control element
  • DCI Downlink Control Information, downlink control information
  • the beam indication on a single CC can be applied to multiple different CCs.
  • the uplink beam indication and uplink power control parameters can be given simultaneously through the uplink TCI state or the combined TCI state.
  • “unification” can be understood to have multiple meanings.
  • the meaning of "unification” can be that the unified TCI status unifies the uplink and downlink beam indication mechanisms. Because the TCI state in the NR standard can only be used for downlink beam indication, uplink beam indication can use signaling based on spatial relationship information (Spatial relation information).
  • “unification” can also mean the unification of beams between different channels. For example, in the configuration of separate uplink TCI state or downlink TCI state (Separate DL/UL TCI state), the UE considers the downlink PDCCH (Physical Downlink Control Channel) (UE exclusive) and PDSCH (Physical Downlink Shared Channel).
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the physical downlink shared channel (UE-specific) is unified into the same beam for transmission.
  • the UE uses the same beam to transmit uplink PUCCH and PUSCH.
  • the UE believes that different uplink and downlink channels and signals can have good beam symmetry guarantee, that is, symmetrical beam pairs are used for uplink and downlink communication.
  • RRC Radio Resource Control, Radio Resource Control
  • the unified TCI state cannot support mTRP (Multiple Transmission Reception Point, multi-transmission reception point, which can also be referred to as Multi-TRP). Therefore, it is necessary to consider how to introduce a unified TCI state under mTRP operation.
  • mTRP Multiple Transmission Reception Point, multi-transmission reception point, which can also be referred to as Multi-TRP. Therefore, it is necessary to consider how to introduce a unified TCI state under mTRP operation.
  • the enhancement of mTRP PDSCH includes multiple scenarios, one is for eMBB (Enhance Mobile Broadband, enhanced mobile broadband) scenario, and the other is for the enhancement of (Ultra-Reliable and Low Latency Communications, low-latency and high-reliability communications).
  • eMBB Enhance Mobile Broadband, enhanced mobile broadband
  • the enhancement of Ultra-Reliable and Low Latency Communications, low-latency and high-reliability communications.
  • multiple mTRP transmission methods can be provided. Specifically, it can be implemented roughly according to the following two different scheduling methods.
  • sDCI-mPDSCH Single-DCI multi-TRP, multi-TRP based on single DCI:
  • the NW uses one DCI to schedule the transmission of two PDSCHs, where this DCI comes from one of the two TRPs.
  • the NW can dynamically adjust which TRP to use to send the DCI.
  • the two PDSCHs are transmitted in different ways through two TRPs, such as SDM (Space Division Multiplexing, space division multiplexing), FDM (Frequency Division Multiplexing, frequency division multiplexing), TDM (Time Division Multiplexing, time division multiplexing) ) and other reuse methods. This method is suitable for ideal backhaul links between TRPs.
  • the scheduled DCI can contain 1 or 2 TCI states to indicate dynamic switching between sTRP and mTRP transmission.
  • TCI state when the code point indicated by the TCI field in DCI is a TCI state, it indicates sTRP transmission.
  • code point indicates 2 TCI states, it indicates mTRP transmission.
  • the TCI state code point activated through MAC CE is divided into the first TCI state and the second TCI state.
  • Each indicated TCI state will be mapped to a specific resource transmitted by TRP as the first TCI state or the second TCI state, such as CDM (Code Division Multiplex, code division multiplexing) group (group), DMRS (Demodulation Reference Signal) , Demodulation Reference Signal) port, number of transmission layers (layers), PTRS (Phase Tracking Reference Signal, Phase Tracking Reference Signal) port, RV (Redundancy Version, redundancy version), etc. related to PDSCH scheduling.
  • CDM Code Division Multiplex, code division multiplexing
  • group group
  • DMRS Demodulation Reference Signal
  • Demodulation Reference Signal Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • RV Redundancy Version, redundancy version
  • this mTRP scheduling mechanism has high flexibility.
  • the NW can choose to send PDCCH scheduling information from TRP1 or TRP2.
  • the CORESET Control ResourceSet, control resource set
  • the CORESETPoolIndex CORESET pool index
  • mDCI-mPDSCH (Multi-DCI multi-TRP, multi-TRP based on multi-DCI): Each TRP independently schedules the PDSCH transmission of the TRP by sending PDCCH. This operation is more suitable for scenarios where there is no ideal backhaul link between TRPs. That is, each TRP works independently as much as possible to reduce the need for interaction between TRPs.
  • the transmission of PDSCH can be completely overlapping, partially overlapping or completely non-overlapping in time-frequency resources.
  • NW can configure the parameter CORESETPoolIndex for each CORESET to divide multiple CORESETs into two groups, each group corresponding to a TRP, as shown in Figure 3. If CORESETPoolIndex is not configured, this parameter can be set to 0 by default.
  • the unified TCI state has strong integration capabilities in one CC, that is, the downlink PDCCH/PDSCH/AP-CSI-RS and the uplink PUCCH/PUSCH/ SRS (Sounding Reference Signal, detection reference signal), etc. are integrated into the same beam.
  • the downlink PDCCH/PDSCH/AP-CSI-RS and the uplink PUCCH/PUSCH/ SRS (Sounding Reference Signal, detection reference signal), etc. are integrated into the same beam.
  • at least two sets of independent uplink and downlink beams are required to correspond to two spatially separated TRPs. Therefore, how to find the TRP of the corresponding update beam when MAC CE or DCI signaling indicates 1 unified TCI state, and how to find the corresponding TRP when MAC CE or DCI signaling indicates 2 unified TCI states. It is particularly important to update the two TRP beams.
  • the TCI status field in one DCI can indicate one or two TCI statuses, thereby indicating whether sTRP transmission or mTRP transmission.
  • the TCI status indicated in the DCI is a valid value.
  • the UE can use the indicated TCI state (new indication beam) to perform corresponding reception, such as error! Reference source not found. shown. Otherwise, the NW can only use the default beam (Default beam), such as the active beam of the CORESET where the DCI is scheduled to transmit PDSCH.
  • the unified TCI status indicated in the DCI with or without PDSCH scheduling information requires a certain beam application time (Beam Application Time, BAT) after the UE sends the HARQ-ACK information of the PDSCH, such as the first time unit after Y time units. time slot will take effect.
  • BAT Beam Application Time
  • Y time units can be 7 symbols, 28 symbols, 42 symbols, 2 time slots, etc.
  • the unified TCI state has not yet taken effect.
  • the application of the beam will still be based on the most recently updated/indicated unified TCI state. effect.
  • the embodiments of this application can provide a specific solution on how to map the relationship between the unified TCI status indicated in the DCI and the variables in the scheduled PDSCH.
  • the variables in the PDSCH may include, for example, DMRS ports, CDM groups, time-frequency resources, etc.
  • Figure 6 is a schematic flow chart of an information processing method 600 according to an embodiment of the present application. This method can optionally be applied to the system shown in Figure 1, but is not limited thereto. The method includes at least part of the following.
  • the terminal device uses the unified TCI state to perform single TRP transmission and/or multiple TRP transmission.
  • the unified TCI state may include at least one of an uplink TCI state, a downlink TCI state, and a combined TCI state.
  • the terminal device can be instructed to receive transmission resources such as PDSCH from one TRP (i.e., single TRP transmission), or the terminal device can be instructed to receive corresponding PDSCH and other transmission resources from multiple TRPs (i.e., multi-TRP transmission).
  • the transmission resources received by the terminal equipment from the TRP may include multiple types, such as PDSCH, PDCCH repeated transmission, PUCCH time domain repeated transmission, PUSCH time domain repeated transmission, multi-panel simultaneous transmission, etc. .
  • performing a single TRP transmission includes receiving a first transmission resource from a first TRP or receiving a second transmission resource from a second TRP.
  • the unified TCI state includes a first unified TCI state, and the terminal device can receive PDSCH #1 from TRP #1 using the first unified TCI state.
  • the unified TCI state includes a second unified TCI state, and the terminal device can use the second unified TCI state to receive PDSCH #2 from TRP #2.
  • performing a multi-TRP transmission includes receiving a first transmission resource from a first TRP and receiving a second transmission resource from a second TRP.
  • the unified TCI state includes a first unified TCI state and a second unified TCI state.
  • the terminal device can use the first unified TCI state to receive PDSCH #1 from TRP #1; and use the second unified TCI state to receive PDSCH # from TRP #2. 2.
  • Receiving two PDSCHs based on two unified TCI states is only an example and not a limitation. In actual application scenarios, more PDSCHs can be received based on more unified TCI states.
  • the method further includes:
  • the terminal device receives the first information.
  • the first information is used to instruct the terminal device to use the unified TCI state to perform single TRP transmission and/or multiple TRP transmission.
  • the terminal device receives a PDCCH from the network device, and the DCI of the PDCCH includes the first information.
  • the first information may enable the terminal device to perform single TRP transmission and/or multi-TRP transmission using a unified TCI state.
  • the first information may also indicate unified TCI status.
  • the unified TCI state indicated by the first information is an unapplied unified TCI state, or is called an unvalidated unified TCI state, a new unified TCI state, etc.
  • the terminal device receives the DCI carrying the first information in the current time slot (for example, time slot 1 where the PDSCH is received), and the (applicable) unified TCI state applied in the current time slot is the same as the unified TCI state not applied in the DCI.
  • the terminal device may send HARQ-ACK, and then apply the unified TCI state carried in the DCI after a certain beam application time.
  • the first information is carried through the first DCI.
  • the terminal device may receive the first PDCCH from the network device, and the first DCI of the first PDCCH carries the first information.
  • the first information is a first field in the first DCI, and the first field is used to instruct the terminal device to perform at least one of the following:
  • the unified TCI status of the application can also be understood as the effective unified TCI status, such as the TCI status that took effect after the last TCI status indication.
  • the unified TCI state used in the current time slot for receiving transmission resources such as PDSCH is the unified TCI state of the above application.
  • Different TRPs can correspond to the unified TCI status of different applications.
  • the first TRP needs to be transmitted, and the first TRP corresponds to the previously indicated unified TCI state of the first application.
  • the second TRP needs to be transmitted, and the second TRP corresponds to the unified TCI status of the second application indicated previously.
  • the first TRP corresponds to the unified TCI status of the first application indicated previously, and the second TRP corresponds to the second application indicated previously.
  • the unified TCI status is necessary to transmit separately through the first TRP and the second TRP, then the first TRP corresponds to the unified TCI status of the first application indicated previously, and the second TRP corresponds to the second application indicated previously. The unified TCI status.
  • a code point indicating the unapplied unified TCI status may be carried. Based on the specific value of the code point in the first domain, the terminal device can be instructed to perform a corresponding action. For example, the code point "00" indicates that the terminal device follows the unified TCI status of the first application. For another example, the code point "01" indicates that the terminal device follows the unified TCI state of the second application. For another example, code point “10” indicates that the terminal device follows the unified TCI state of the first application and the unified TCI state of the second application.
  • the TCI status indicating following is used, for example, the first domain indicates the unified TCI status of the application to follow.
  • the unified TCI status of the application can be the TCI status that took effect after the last TCI status indication.
  • Example of the terminal device performing a single TRP transmission based on the first DCI For example, if the first field in the DCI indicates the unified TCI status following the first application, the terminal device can receive the PDSCH from TRP #3 using the unified TCI status of the first application. 3. As another example, if the first field indication in the DCI follows the unified TCI status of the second application, the terminal device can receive PDSCH #4 from TRP #4 using the unified TCI status of the second application.
  • Example of a terminal device performing multi-TRP transmission based on the first DCI For example, if the first domain in the DCI indicates a unified TCI status following the first application and a unified TCI status of the second application, the terminal device may use the unified TCI of the first application
  • the state receives PDSCH #3 from TRP #3; and, receives PDSCH #4 from TRP #4 using the unified TCI state of the second application.
  • the terminal device uses a unified TCI state to perform single TRP transmission and/or multi-TRP transmission, including at least one of the following:
  • the end device performs a single TRP transmission using the unified TCI state of an application
  • the end device performs multiple TRP transmissions using unified TCI status for multiple applications.
  • the terminal device can implement dynamic switching between single TRP transmission and multi-TRP transmission based on the first information. For example, if the DCI indication received by the terminal device follows the unified TCI state of an application, the PDSCH can be received from a TRP using the unified TCI state of the application. For another example, if the DCI indication received by the terminal device follows the unified TCI status of multiple applications, the unified TCI status of the multiple applications can be used to receive the PDSCH from the corresponding TRP.
  • the unified TCI state of the first application can be used to receive the first PDSCH from the first TRP, and the first PDSCH from the first TRP.
  • the unified TCI state of the second application receives the second PDSCH from the second TRP.
  • the method further includes:
  • the terminal device After receiving the transmission resources using the unified TCI status of the application, the terminal device updates the unified TCI status of the application of the terminal device according to the unified TCI status of the application indicated by the first DCI.
  • the terminal device may first receive the first PDSCH from the first TRP using the unified TCI status of the first application. Then, after receiving the first PDSCH, HARQ ACK information is sent, and after a certain beam application time, the unified TCI state applied by the terminal device is updated to the first unapplied unified TCI state carried by the first DCI.
  • the terminal device may first use the unified TCI state of the first application to receive the first PDSCH from the first TRP, and The second PDSCH is received from the second TRP using the unified TCI state of the second application. Then, after receiving the first PDSCH and the second PDSCH, the HARQ ACK information is sent. After a certain beam application time, the terminal device updates the first applied unified TCI state to the first unapplied unified TCI state, and changes the first applied unified TCI state to the first unapplied unified TCI state. The second applied unified TCI status is updated to the second unapplied unified TCI status.
  • the terminal device may not update the unified TCI status corresponding to the TRP.
  • the method further includes:
  • the terminal device receives second information, where the second information is used to indicate the number of unified TCI states.
  • the second information may include a TCI status field in the DCI, which is used to indicate the number of unified TCI states, such as the number of unapplied unified TCI states. If the number of unified TCI states is one, the terminal device can perform single TRP transmission. If the number of unified TCI states is multiple, the terminal device can perform multiple TRP transmissions.
  • a TCI status field in the DCI which is used to indicate the number of unified TCI states, such as the number of unapplied unified TCI states. If the number of unified TCI states is one, the terminal device can perform single TRP transmission. If the number of unified TCI states is multiple, the terminal device can perform multiple TRP transmissions.
  • the terminal device may perform single TRP transmission and/or multiple TRP transmission using the unified TCI state applied in the current time slot (for example, time slot 1 where the PDSCH is received). After receiving PDSCH from one or more TRPs, HARQ ACK information is sent. After a certain beam application time, the terminal device updates the applied unified TCI state to the unapplied unified TCI state in DCI.
  • the first DCI may also include only the second information and not the first information. In this case, the DCI format may not be changed, but the way the terminal device understands the DCI may be changed.
  • the terminal device can understand the value in the TCI status field of DCI as the number of unified TCI states, perform TRP transmission based on the number of unified TCI states, and update part or all of the unified TCI status of the application.
  • the terminal device uses the unified TCI state to perform at least one TRP transmission, including at least one of the following:
  • the terminal device uses the unified TCI state of one application to perform single TRP transmission;
  • the terminal device uses the unified TCI states of multiple applications to perform multiple TRP transmissions.
  • the terminal device may not use the unified TCI state indicated in the currently received DCI, but use the default unified TCI state.
  • Perform single TRP transmission such as receiving PDSCH from one TRP.
  • the default unified TCI state may be the previously indicated unified TCI state of the first application of the current time slot, or may be the previously indicated unified TCI state of the second application of the current time slot.
  • the terminal device can send HARQ-ACK information to the network device, and then after a certain BAT, update the currently applied unified TCI status corresponding to the TRP to the unified TCI status indicated in the DCI.
  • the terminal device may not use the unified TCI state indicated in the currently received DCI, but use the previously indicated one.
  • Unify TCI status to perform multiple TRP transmissions. For example, a first PDSCH is received from a first TRP using a unified TCI state of a first application, and a second PDSCH is received from a second TRP using a unified TCI state of a second application.
  • the terminal device can send HARQ-ACK information to the network device, and then after a certain BAT, update the currently applied unified TCI status corresponding to the first TRP to the first unified TCI status indicated in the DCI. Update the currently applied unified TCI status corresponding to the first TRP to the second unified TCI status indicated in the DCI.
  • the second information is carried through the first DCI.
  • the first information and the second information may be in the same first DCI.
  • the terminal device may receive the PDCCH carrying the first DCI from the network device. Then the terminal device uses the unified TCI status in the first DCI to perform TRP transmission.
  • the second information includes a second field in the first DCI
  • the relationship between the number of unified TCI states indicated by the second field and the transmission type scheduled by the first DCI includes at least one of the following:
  • the transmission scheduled by the first DCI is a single TRP transmission
  • the transmission scheduled by the first DCI is a multi-TRP transmission.
  • the second domain may be the TCI status domain in DCI.
  • the terminal device may schedule a single TRP transmission based on the first DCI.
  • the first PDSCH is received from the first TRP using the unified TCI state of the first application.
  • the terminal device can schedule multiple TRP transmissions based on the first DCI, receive the first PDSCH from the first TRP using the unified TCI state of the first application, and The second PDSCH is received from the second TRP using the unified TCI state of the second application.
  • the second information includes a third field in the first DCI, and the third field is used to indicate the unified TCI state used when the number of unified TCI states is one.
  • setting the third field to 1 means using the unified TCI state of the first application; setting the third field to 0 means using the unified TCI state of the second application. TCI status.
  • 0 and 1 are only examples of the value of the third field, not a limitation. The value and number of bits of the third field can be flexibly selected according to actual needs.
  • the first DCI is used to update the unified TCI state applied by the terminal device after the terminal device is scheduled to perform single TRP transmission and/or multiple TRP transmission.
  • the first DCI may also include scheduling information, indicating the following unified TCI state and the new unified TCI state required for update (ie, the unapplied unified TCI state) while scheduling the PDSCH.
  • the terminal device may receive the one or more PDSCHs from one or more TRPs after receiving the first DCI. Then, the unified TCI status applied by the terminal device is updated to the unified TCI status carried in the first DCI.
  • This method can realize partial update of the unified TCI status. For example, only one unified TCI status or two unified TCI statuses carried in the first DCI can be updated.
  • the method further includes:
  • the terminal device receives the second DCI.
  • the second DCI is used to schedule the terminal device to perform single TRP transmission and/or multiple TRP transmission after updating the unified TCI state applied by the terminal device.
  • the unified TCI status may also be partially or completely updated before scheduling the PDSCH.
  • the first DCI does not include scheduling information and mainly includes unapplied unified TCI status.
  • the unified TCI status applied by the terminal device is first updated to the unified TCI status carried in the first DCI. Then, if the terminal device receives the second DCI including scheduling information, it may perform single TRP transmission and/or multi-TRP transmission according to the scheduling information, that is, receive PDSCH from one or more TRPs.
  • the first information is carried through MAC CE.
  • the first information used to indicate the unified TCI status can be carried not only through the above-mentioned DCI, but also through MAC CE.
  • the first information includes the fourth field and/or the fifth field of the MAC CE, wherein the fourth field is used to indicate whether the TCI code point includes the first unified TCI state; the fifth field Used to indicate whether the TCI code point includes the second unified TCI state.
  • the terminal device uses a unified TCI state to perform single TRP transmission and/or multi-TRP transmission, including at least one of the following:
  • the terminal device uses the unified TCI state of the first application to receive the third unified TCI state from the first TRP. a transmission resource;
  • the terminal device uses the unified TCI state of the second application to receive the third unified TCI state from the second TRP.
  • the terminal device uses the unified TCI of the first application The state receives the first transmission resource from the first TRP and the unified TCI state of the second application receives the second transmission resource from the second TRP.
  • the fourth domain and/or the fifth domain of the MAC CE can be used in conjunction with the number of unified TCI states indicated by the above-mentioned second information in the DCI.
  • the second information in the DCI indicates that the number of unified TCI states is one
  • the fourth field of the MAC CE indicates that the TCI code point includes the first unified TCI state
  • the fifth field indicates that the TCI code point does not include the second unified TCI state
  • the first PDSCH is received from the first TRP using the unified TCI state of the first application.
  • the second information in the DCI indicates that the number of unified TCI states is one
  • the fourth field of the MAC CE indicates that the TCI code point does not include the first unified TCI state
  • the fifth field indicates that the TCI code point includes the second unified TCI state.
  • the second PDSCH is then received from the second TRP using the unified TCI status of the second application.
  • the second information in the DCI indicates that the number of unified TCI states is two
  • the fourth field of the MAC CE indicates that the TCI code point includes the first unified TCI state
  • the fifth field indicates that the TCI code point includes the second unified TCI state.
  • the first PDSCH is then received from the first TRP using the unified TCI state of the first application
  • the second PDSCH is received from the second TRP using the unified TCI state of the second application.
  • the MAC CE is used to instruct the terminal device to update the unified TCI state of the first application to the first unified TCI state and/or to update the unified TCI state of the second application to the second unified TCI state.
  • the terminal device can update the unified TCI status of the application based on the TCI code point indicated in the MAC CE. If the fourth field of the MAC CE indicates that the TCI code point includes the first unified TCI state, update the TCI state of the first application to the first unified TCI state. If the fifth field of the MAC CE indicates that the TCI code point includes the second unified TCI state, update the TCI state of the second application to the second unified TCI state.
  • MAC CE can also be used to update the unified TCI status first, and then PDSCH and other transmission resources can be scheduled through DCI. For example, if the fourth field of the MAC CE received by the terminal device indicates that the TCI code point includes the first unified TCI state, the terminal device updates the unified TCI state of the first application to the first unified TCI state. If the fifth field of the MAC CE received by the terminal device indicates whether the TCI code point includes the second unified TCI state, the terminal device updates the unified TCI state of the first application to the first unified TCI state. The network device then sends DCI to the terminal device to schedule transmission resources such as PDSCH.
  • the method further includes: when the terminal device receives the PDSCH from the first TRP, using the applied unified TCI state to receive non-PDSCH transmission resources from the second TRP.
  • TRP transmission can also be applied to other transmission resources, such as downlink PDCCH repeated transmission, uplink PUCCH/PUSCH time domain repeated transmission or multi-panel simultaneous transmission. (such as FDM scheme or SDM scheme) etc.
  • each TRP has a corresponding TCI state, that is, different transmit and receive beam directions. If the PDSCH is received from the first TRP using the unified TCI state of the first application or the unapplied unified TCI state, non-PDSCH transmission resources may be received from the second TRP using the unified TCI state of the second application.
  • the method further includes:
  • the terminal device When receiving the PDSCH from the first TRP, the terminal device uses the default TCI state to receive non-PDSCH transmission resources from the second TRP.
  • the default TCI state can be used to receive non-PDSCH transmission resources from the second TRP. If there are many non-PDSCH transmission resources, multiple default TCI states can be used to receive the non-PDSCH transmission resources from multiple corresponding TRPs respectively.
  • the default TCI state is determined by at least one of the following:
  • the terminal equipment uses the downlink TCI status and/or joint TCI status corresponding to the minimum control resource set identifier (CORESET ID) in the latest time slot of the second TRP;
  • the terminal equipment uses the SSB selected when randomly accessing the second TRP as the default beam, or at least one of the uplink TCI state, downlink TCI state or joint TCI state corresponding to the SSB as the default TCI state;
  • the terminal device uses the unified TCI state corresponding to the code point with the smallest ID among the code points of the multiple unified TCI states activated in the MAC CE, and the unified TCI state corresponding to the second TRP as the default TCI state.
  • Figure 9 is a schematic flow chart of an information processing method 900 according to an embodiment of the present application. This method can optionally be applied to the system shown in Figure 1, but is not limited thereto. The method includes at least part of the following.
  • the network device sends first information, where the first information is used to instruct the terminal device to use a unified TCI state to perform single TRP transmission and/or multiple TRP transmission.
  • the first information is carried through the first DCI.
  • the first information includes a first field in the first DCI, and the first field is used to instruct the terminal device to perform at least one of the following:
  • the unapplied unified TCI state is used to update the unified TCI state applied by the terminal device after the terminal device receives transmission resources using the unapplied unified TCI state.
  • the first information is carried through MAC CE.
  • the first information includes the fourth field and/or the fifth field of the MAC CE, wherein the fourth field is used to indicate whether the TCI code point includes the first unified TCI state; the fifth field Used to indicate whether the TCI code point includes the second unified TCI state.
  • the first DCI is used to update the unified TCI state applied by the terminal device after the terminal device is scheduled to perform single TRP transmission and/or multiple TRP transmission.
  • the method further includes:
  • the network device sends a second DCI.
  • the second DCI is used to schedule the terminal device to perform single TRP transmission and/or multiple TRP transmission after updating the unified TCI status applied by the terminal device.
  • the network device execution method 900 in this embodiment please refer to the relevant description of the network device in the above-mentioned method 700. For the sake of brevity, details will not be described again.
  • FIG 11 is a schematic block diagram of a terminal device 1100 according to an embodiment of the present application.
  • the terminal device 1100 may include: a processing unit 1110 configured to perform single transmission reception point TRP transmission and/or multi-TRP transmission using a unified transmission configuration indication TCI status.
  • performing single TRP transmission includes: receiving a first transmission resource from a first TRP, or receiving a second transmission resource from a second TRP.
  • performing multi-TRP transmission includes receiving a first transmission resource from a first TRP and receiving a second transmission resource from a second TRP.
  • the terminal device further includes: a first receiving unit 1210, configured to receive first information, the first information being used to instruct the terminal device to use a unified TCI state to perform single TRP transmission. and/or multiple TRP transmissions.
  • a first receiving unit 1210 configured to receive first information, the first information being used to instruct the terminal device to use a unified TCI state to perform single TRP transmission. and/or multiple TRP transmissions.
  • the first information is carried through the first DCI.
  • the first information includes a first field in the first DCI, and the first field is used to instruct the terminal device to perform at least one of the following:
  • processing unit is further configured to perform at least one of the following:
  • the end device performs a single TRP transmission using the unified TCI state of an application
  • the end device performs multiple TRP transmissions using unified TCI status for multiple applications.
  • the processing unit is further configured to update the unified TCI status of the terminal device application according to the unapplied unified TCI status indicated by the first DCI after receiving the transmission resource using the unified TCI status of the application.
  • the terminal device further includes:
  • the second receiving unit 1220 is configured to receive second information, where the second information is used to indicate the number of unified TCI states.
  • the unified TCI status is the unified TCI status of the application.
  • processing unit is further configured to perform at least one of the following:
  • the terminal device uses the unified TCI state of one application to perform single TRP transmission;
  • the terminal device uses the unified TCI states of multiple applications to perform multiple TRP transmissions.
  • the second information is carried through the first DCI.
  • the second information includes a second field in the first DCI
  • the relationship between the number of unified TCI states indicated by the second field and the transmission type scheduled by the first DCI includes at least one of the following:
  • the transmission scheduled by the first DCI is a single TRP transmission
  • the transmission scheduled by the first DCI is a multi-TRP transmission.
  • the second information includes a third field in the first DCI, and the third field is used to indicate the unified TCI state used when the number of unified TCI states is one.
  • the first DCI is used to update the unified TCI state applied by the terminal device after the terminal device is scheduled to perform single TRP transmission and/or multiple TRP transmission.
  • the terminal device further includes: a third receiving unit 1230, configured to receive a second DCI, the second DCI being used to schedule the terminal device to execute a single TRP after updating the unified TCI status applied by the terminal device. transmission and/or multi-TRP transmission.
  • a third receiving unit 1230 configured to receive a second DCI, the second DCI being used to schedule the terminal device to execute a single TRP after updating the unified TCI status applied by the terminal device. transmission and/or multi-TRP transmission.
  • the first information is carried through MAC CE.
  • the first information includes the fourth field and/or the fifth field of the MAC CE, wherein the fourth field is used to indicate whether the TCI code point includes the first unified TCI state; the fifth field Used to indicate whether the TCI code point includes the second unified TCI state.
  • processing unit is further configured to perform at least one of the following:
  • the terminal device uses the unified TCI state of the first application to receive the third unified TCI state from the first TRP. a transmission resource;
  • the terminal device uses the unified TCI state of the second application to receive the third unified TCI state from the second TRP.
  • the terminal device uses the unified TCI of the first application The state receives the first transmission resource from the first TRP and the unified TCI state of the second application receives the second transmission resource from the second TRP.
  • the MAC CE is used to instruct the terminal device to update the unified TCI state of the first application to the first unified TCI state and/or to update the unified TCI state of the second application to the second unified TCI state.
  • the terminal device further includes: a fourth receiving unit 1240, configured to receive non-PDSCH transmission resources from the second TRP using the applied unified TCI state when receiving the PDSCH from the first TRP.
  • a fourth receiving unit 1240 configured to receive non-PDSCH transmission resources from the second TRP using the applied unified TCI state when receiving the PDSCH from the first TRP.
  • the device further includes: a fifth receiving unit 1250, configured to receive non-PDSCH transmission resources from the second TRP using the default TCI state when receiving the PDSCH from the first TRP.
  • a fifth receiving unit 1250 configured to receive non-PDSCH transmission resources from the second TRP using the default TCI state when receiving the PDSCH from the first TRP.
  • the default TCI state is determined by at least one of the following:
  • the terminal equipment uses the second TRP to identify the downlink TCI state and/or the joint TCI state corresponding to the minimum control resource set ID CORESET ID in the latest time slot;
  • the terminal equipment uses the SSB selected when randomly accessing the second TRP as the default beam, or at least one of the uplink TCI state, downlink TCI state or joint TCI state corresponding to the SSB as the default TCI state;
  • the terminal device uses the unified TCI state corresponding to the code point with the smallest ID among the code points of the multiple unified TCI states activated in the MAC CE, and the unified TCI state corresponding to the second TRP as the default TCI state.
  • the terminal device 1100 in the embodiment of the present application can implement the corresponding functions of the terminal device in the aforementioned method 600 embodiment.
  • each module (sub-module, unit or component, etc.) in the terminal device 1100 please refer to the corresponding description in the above method embodiment, and will not be described again here.
  • the functions described for each module (sub-module, unit or component, etc.) in the terminal device 1100 in the embodiment of the application may be implemented by different modules (sub-module, unit or component, etc.), or may be implemented by the same Module (submodule, unit or component, etc.) implementation.
  • FIG. 13 is a schematic block diagram of a network device 1300 according to an embodiment of the present application.
  • the network device 1300 may include:
  • the first sending unit 1310 is configured to send first information, which is used to instruct the terminal device to use a unified TCI state to perform single TRP transmission and/or multiple TRP transmission.
  • the first information is carried through the first DCI.
  • the first information includes a first field in the first DCI, and the first field is used to instruct the terminal device to perform at least one of the following:
  • the first information is carried through MAC CE.
  • the first information includes the fourth field and/or the fifth field of the MAC CE, wherein the fourth field is used to indicate whether the TCI code point includes the first unified TCI state; the fifth field Used to indicate whether the TCI code point includes the second unified TCI state.
  • the first DCI is used to update the unified TCI state applied by the terminal device after the terminal device is scheduled to perform single TRP transmission and/or multiple TRP transmission.
  • the network device further includes:
  • the second sending unit 1410 is used for the network device to send a second DCI.
  • the second DCI is used to schedule the terminal device to perform single TRP transmission and/or multiple TRP transmission after updating the unified TCI status applied by the terminal device.
  • the network device 1300 in the embodiment of the present application can implement the corresponding functions of the network device in the aforementioned method 900 embodiment.
  • each module (sub-module, unit or component, etc.) in the network device 1300 please refer to the corresponding description in the above method embodiment, and will not be described again here.
  • the functions described for each module (sub-module, unit or component, etc.) in the network device 1300 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or can be implemented by the same module. Module (submodule, unit or component, etc.) implementation.
  • the embodiment of the present application takes into account the beam application time of the unified TCI status (which can also be called the beam effective time), and provides a variety of methods to support single TRP transmission and multi-TRP transmission. Dynamic switching scheme for transmitting downlink data channels. For example, solutions to enhance DCI, solutions to enhance MAC CE, etc.
  • a first and/or second applicable (applicable) unified TCI status solution is provided to support the dynamic switching of sTRP/mTRP PDSCH transmission.
  • each TCI state will correspond to a TRP. If the TCI field in S-DCI indicates 1 TCI status, the UE understands that the NW falls back PDSCH transmission to sTRP transmission. In this embodiment of the present application, the UE may have different understandings of a unified TCI status indicated/updated in S-DCI.
  • Partial update The indicated unified TCI status is only used to update the unified TCI status corresponding to individual TRPs and does not affect the unified TCI status of other TRPs.
  • the reasons for dynamic switching of sTRP/mTRP transmission methods are as follows. If the UE is in an area covered by multiple TRPs, such as a cell edge, and is at a similar distance from multiple TRPs, it is suitable for mTRP transmission to enhance cell edge coverage. If the UE moves to an area that is close to one TRP but far from other TRPs, sTRP transmission is suitable. Therefore, dynamic switching between sTRP/mTRP based on the number of indicated TCI states can be supported.
  • the embodiment of this application proposes a solution that can support dynamic sTRP/mTRP switching.
  • a dynamic switching solution between a single TRP and a multi-TRP transmission scheme can be provided based on the beam application time characteristics of a unified TCI state.
  • a partial update mechanism and/or a full update mechanism of the unified TCI state may be used.
  • the partial update mechanism may be to update only the unified TCI status corresponding to some TRPs. For example, if only one unified TCI state is updated, the code point of the MAC CE can be used to determine whether the first unified TCI state or the second unified TCI state corresponding to the TRP is updated. For another example, in DCI-based TCI update, the code point of MAC CE can be used to determine whether the TCI field in DCI indicates updating the first TCI unified state or the second TCI unified state.
  • the TCI status field in DCI can clearly indicate whether to update the first unified TCI status or the second unified TCI status when updating a unified TCI status, corresponding to the first TRP or the second TCI status respectively.
  • the overall update mechanism may be to update the unified TCI status of all indications.
  • Example 1-1 proposes an enhanced solution based on DCI to solve the BAT problem of unified TCI status indicated in DCI.
  • the DCI-based enhancement scheme adds a field in DCI indicating sTRP/mTRP transmission.
  • Example 1-2 proposes to use the TCI indicated in the TCI domain that has not yet taken effect (or is not yet applied) in the DCI through a preset scheme without modifying the DCI format.
  • the following examples 1-3 propose an enhancement scheme of MAC CE, that is, activating the first unified TCI state and/or the second unified TCI state of a certain TCI status code point in MAC CE.
  • it cooperates with the dynamic instructions of DCI to complete the dynamic switching of sTRP/mTRP PDSCH.
  • Example 2-1 and Example 2-2 provide various solutions based on NW implementation to support sTRP/mTRP PDSCH for all mechanisms for updating TCI status.
  • the following examples 2-3 include: in the case of dynamic switching of sTRP/mTRP PDSCH, other uplink and downlink channels such as PDCCH repeated transmission (repetition), PUCCH/PUSCH repeated transmission or uplink multi-panel (panel) How to maintain mTRP transmission on multiple other channels when transmitting simultaneously.
  • other uplink and downlink channels such as PDCCH repeated transmission (repetition), PUCCH/PUSCH repeated transmission or uplink multi-panel (panel) How to maintain mTRP transmission on multiple other channels when transmitting simultaneously.
  • Example 1 sTRP/mTRP dynamic switching based on unified TCI status partial update
  • the UE has other uplink and downlink channels and signals, such as PDCCH.
  • the PDCCH transmission method here is independent of the PDSCH transmission method and can be configured by the NW as a multi-TRP transmission scheme, such as PDCCH repetition transmission (repetition) and PDCCH SFN supported in Rel.17. If the DCI updates the number of indicated DL/Joint TCI states of the UE from multiple to one, then the PDCCH cannot work according to the multi-TRP transmission scheme. This is why a mechanism for partially updating the unified TCI state is proposed.
  • Partial update mechanisms may include: For channels other than PDSCH, although DCI only indicates a unified TCI state such as DL TCI state/joint TCI state, the UE can understand it as the DL TCI state/joint state maintained by multiple UEs. One of the TCI statuses is updated. In the end, the UE still maintains multiple DL TCI states/joint TCI states instead of updating multiple states to 1 state.
  • the advantage of this is that dynamic switching of sTRP/mTRP can be performed on PDSCH, but it will not affect the transmission methods of other uplink and downlink channels. For example, when the DCI only indicates one DL TCI state/joint TCI state, PDCCH can still maintain the transmission of mTRP configured by RRC signaling, such as PDCCH repeated transmission (repetition), etc.
  • Example 1-1 Dynamic switching solution based on DCI-enhanced sTRP/mTRP
  • the solution in this example can unbind the indicated DL TCI state/joint TCI state and the PDSCH transmission mode. That is, the UE does not need to determine whether the PDSCH is sTRP transmission or mTRP transmission based on the number of indicated DL TCI states/joint TCI states.
  • the UE does not need to determine whether the PDSCH is sTRP transmission or mTRP transmission based on the number of indicated DL TCI states/joint TCI states.
  • a new 2-bit field in downlink scheduling DCI such as DCI formats 1_1 and 1_2
  • 2 bits is only an example, other bit numbers are also possible.
  • the name of the indication may be, for example, FollowIndicatedTCIStatePDSCH (PDSCH following the indicated TCI state).
  • PDSCH following the indicated TCI state For specific codepoint examples of this indication and the corresponding behavior of the UE, please refer to Table 1(0).
  • This field indicates which TRP the UE should receive the PDSCH from, using the currently applied downlink TCI state/joint TCI state (the time slot in which the PDSCH is received).
  • Table 1 DCI new field value and corresponding UE behavior (DCI new field value and corresponding UE behavior)
  • the UE will maintain two applicable (applicable) TCI states such as DL TCI state/joint TCI state.
  • the UE uses the first applicable TCI state (1st applicable TCI state) to receive PDSCH #1 from TRP #1, that is, sTRP transmission.
  • the code point indicated by PDCCH #1 is "10”
  • the UE receives PDSCH #1 and PDSCH #2 from TRP #1 and TRP #2 using the TCI states of the first and second applications (1st and 2nd applicable TCI states) respectively. , that is, mTRP transmission.
  • the DL TCI status/joint TCI status indicated in the DCI will be updated to the applied DL TCI status/joint TCI status.
  • the UE will at least maintain the unified TCI status corresponding to the one or more TRPs until the next update, and can always support mTRP. -Transmission of PDSCH or other mTRP.
  • Example 1-2 Dynamic switching scheme of sTRP/mTRP without DCI modification
  • the format of the downlink scheduling DCI does not need to be changed, that is, no new domain is added.
  • the UE needs to maintain 2 DL TCI states/joint TCI states, and each DL TCI state/joint TCI state corresponds to a TRP. You can also refer to the diagram in Figure 15.
  • the UE can understand that the DCI scheduled transmission is an sTRP transmission.
  • the UE does not use the DL TCI status/joint TCI status indicated in the DCI (and is not valid). Instead, by default or fixedly, the DL TCI status/joint TCI status of the first application (applicable) is used. Among them, the default can also be the DL TCI state/joint TCI state of the second application.
  • the DL TCI state/joint TCI state of the first application is only used as an example for explanation, but is not a limitation.
  • the UE can understand that the DCI scheduled transmission is mTRP transmission.
  • the UE does not use the DL TCI status/joint TCI status indicated in the DCI (and is not valid or applied), but uses the 2 DL TCI status/joint TCI status currently applied (for example, the time slot in which the PDSCH transmission is located) .
  • the UE's understanding of the original TCI status field has changed as described above, and the UE's behavior can also be set accordingly.
  • the NW only indicates one DL TCI state/joint TCI state
  • the TRP for sending the PDSCH is also fixed to the TRP corresponding to the DL TCI state/joint TCI state of the first application, dynamic adjustment may not be possible.
  • the TCI status field in the DCI updates a unified TCI status
  • it can clearly indicate in the DCI whether to update the first unified TCI status or the second unified TCI status, corresponding to the first TRP or the second TCI status respectively.
  • TRP For example, a new field of 1 bit is set in the DCI to indicate a specific updated unified TCI status. If the value of this field is 1, it means using the unified TCI state of the first application corresponding to the first TRP; setting the third field to 0 means using the unified TCI state of the second application corresponding to the second TRP.
  • MAC CE auxiliary indication can also be used, see the solution provided in Example 1-3.
  • Example 1-3 MAC CE enhanced sTRP/mTRP dynamic switching solution
  • Example 1-3 a solution to enhance MAC CE is proposed to support the unified TCI state specified by MAC CE when there is only one TCI state in DCI. For example, when the unified TCI state indicated in the DCI is one, the UE is designated through the MAC CE to use the first DL TCI state/joint TCI state for TRP transmission, or to use the second DL TCI state/joint TCI state for TRP transmission.
  • the MAC CE can also indicate that a certain code point corresponds to the first DL TCI state/joint TCI state and the second DL TCI state/joint TCI state.
  • the specific MAC CE enhancements are shown as C 01 to C 18 in Figure 16.
  • the meanings of the fields in the MAC CE are introduced below.
  • This field indicates the identity of the serving cell used by MAC CE.
  • the field length is 5 bits. If the indicated serving cell is configured as part of a synchronized U-TCI-UpdateList1, a synchronized U-TCI-UpdateList2, a synchronized U-TCI-UpdateList3, or a synchronized U-TCI-UpdateList4, this MAC CE shall be applied to the synchronized U-TCI-UpdateList1 in turn. , synchronize U-TCI-UpdateList2, synchronize U-TCI-UpdateList3, or synchronize all serving cells in the U-TCI-UpdateList4 set.
  • DL BWP ID This field indicates DL BWP.
  • MAC CE applies this DL BWP as the code point of the DCI bandwidth part indication field.
  • the length of the BWP ID field is 2 digits.
  • DL BWP ID This field indicates a DL BWP for which the MAC CE apps as the codepoint of the DCI bandwidth part indicator field as specified in TS 38.212[9].
  • the length of the BWP ID field is 2bits.
  • UL BWP ID This field indicates the UL BWP, and the MAC CE is applied to the UL BWP as the code point of the DCI bandwidth part indication field.
  • the length of the BWP ID field is 2 digits.
  • UL BWP ID This field indicates a UL BWP for which the MAC CE apps as the codepoint of the DCI bandwidth part indicator field as specified in TS 38.212[9].
  • the length of the BWP ID field is 2bits.
  • Pi This field indicates whether each TCI code point has multiple TCI states or a single TCI state. If the Pi field is set to 1, it means that the TCI code point includes the DL TCI state and the UL TCI state. If the Pi field is set to 0, it means that the TCI code point only includes the DL TCI state or the UL TCI state.
  • P i This field indicates whether each TCI codepoint has multiple TCI states or single TCI state. If P i field set to 1,it indicates that i th TCI codepoint includes the DL TCI state and the UL TCI state.If P i field set to 0,it indicates that i th TCI codepoint includes only the DL TCI state or the UL TCI state.
  • C 0i This field is used to indicate whether the TCI code point contains multiple TCI states or one TCI state. If the C 0i field is set to 1, it indicates that the i-th TCI code point contains the first TCI state (i.e., the first unified TCI state); if the C 0i field is set to 0, it indicates that the i-th TCI code point does not contain the first TCI state. TCI status.
  • C 0i This filed indicates whether each TCI codepoint has multiple TCI states or single TCI state. If C 0i field set to 1,it indicates that the i th TCI codepoint includes the 1 st TCI state;If C 0i field set to0, it indicates that the i th TCI codepoint doesn't include the 1 st TCI state.
  • C 1i This field is used to indicate whether the TCI code point contains multiple TCI states or one TCI state. If the C 1i field is set to 1, it indicates that the i-th TCI code point contains the second TCI state (i.e., the second unified TCI state); if the C 1i field is set to 0, it indicates that the i-th TCI code point does not contain the second TCI state. TCI status.
  • C 1i This filed indicates whether each TCI codepoint has multiple TCI states or single TCI state. If C 1i field set to 1,it indicates that the i th TCI codepoint includes the 2 nd TCI state;.If C 1i field set to 0,it indicates that the i th TCI codepoint doesn't include the 2nd TCI state.
  • D/U This field indicates whether the TCI status ID of the same byte is the joint/downlink TCI status or the uplink TCI status. If this field is set to 1, it means that the TCI status ID of the same byte is joint/downstream. If this field is set to 0, it means that the TCI status numbers of the uplinks are the same.
  • D/U This field indicates whether the TCI state ID in the same octet is for joint/downlink or uplink TCI state. If this field is set to 1, the TCI state ID in the same octet is for joint/downlink.If this field is set to 0, the TCI state ID in the same octet is for uplink.
  • TCI State ID This field indicates the TCI state indicated by TCI-StateId. If D/U is set to 1, the TCI state ID, TCI-stateid, is used, with a length of 7 bits. When D/U is 0, the most significant bit of the TCI state ID is a reserved bit, and the remaining 6 bits are UL-TCIState-Id. The maximum value of TCI activation status is 16.
  • TCI state ID This field indicates the TCI state identified by TCI-StateId as specified in TS 38.331[5]. If D/U is set to 1,7-bits length TCI state ID i.e.TCI-StateId as specified in TS 38.331 [5]is used.If D/U is set to 0, the most significant bit of TCI state ID is considered as the reserved bit and remainder 6bits indicate the UL-TCIState-Id as specified in TS 38.331[5]. The maximum number of activated TCI states is 16.
  • MAC CE enhancement can be used with DCI. Specifically, when the number of DL TCI states/joint TCI states indicated in the TCI state field in the DCI is 1, then the UE can understand that the transmission scheduled by the DCI is an sTRP transmission. The UE does not use the DL TCI status/joint TCI status indicated in the DCI (and not valid). Instead, the first or second applicable (applicable) DL TCI status/joint TCI status corresponding to the code point of the TCI domain in the DCI is used.
  • the UE determines whether the i-th code point of the TCI state corresponds to the DL TCI state/joint TCI state of the first or second application through C 0i and C 1i in the above MAC CE. For example, if the value of C 01 is 1 and the value of C 11 is 0, the UE uses the i-th code point corresponding to the DL TCI state/joint TCI state of the first application for TRP transmission, and receives the i-th code point from the first TRP. A PDSCH, and then updates the DL TCI status/joint TCI status of the first application.
  • the UE uses the i-th code point corresponding to the DL TCI state/joint TCI state of the second application for TRP transmission and receives from the second TRP The second PDSCH then updates the DL TCI status/joint TCI status of the second application.
  • the UE When the number of DL TCI states/joint TCI states indicated in the TCI state field in DCI is 2, the UE understands that the DCI scheduled transmission is mTRP transmission. The UE does not use the DL TCI status/joint TCI status indicated in the DCI (and is not valid or applied). Instead, the 2 DL TCI states/joint TCI states currently applied (such as the time slot in which the PDSCH transmission is located) are used for multi-TRP transmission. Then update the 2 DL TCI status/joint TCI status of the current application.
  • Example 2 sTRP/mTRP dynamic switching based on unified TCI status update
  • Example 2-1 Dynamic switching solution 1 of sTRP/mTRP based on NW implementation
  • a solution that does not change the indication mechanism of the unified TCI status can also be provided.
  • the NW and UE accept the fact that the beam application time of the unified TCI state is long and give a certain waiting time.
  • the first type of DCI can be a DCI with or without downlink scheduling (shown on the left side of the dotted line) used to indicate the DL TCI status/joint TCI status.
  • the second type of DCI is used for downlink scheduling of PDSCH.
  • the second type of DCI is the DCI on the left side of the dotted line, which is used to schedule single-TRP transmission (DCI scheduling single-TRP Tx) and single PDSCH. It may include DL TCI status/joint TCI status, or may not include DL TCI status/joint TCI status. .
  • the NW when the NW prepares to switch the UE to the sTRP PDSCH transmission mode, no matter whether the currently applied DL TCI state/joint TCI state (DL/Joint TCI state(s)) is 1 or 2 (or more ), the NW can send the first type of DCI to indicate a DL TCI status/joint TCI status, and perform the complete beam application validation (BAT) process. Then, the NW can send the second type of DCI for data scheduling of sTRP PDSCH. In this way, the currently applied DL TCI state/joint TCI state is just suitable for the PDSCH transmission of sTRP, and is adapted to the scheduling parameters of the other PDSCH.
  • w/wo DL allocation For example, indicating one unified TCI state via DCI (w/wo DL allocation).
  • w/wo DL allocation indicates that two downlink DCIs are supported to indicate the unified TCI status.
  • W DL allocation is DCI with downlink scheduling information (with DL assignment);
  • wo DL allocation is DCI without downlink scheduling information (without DL assignment).
  • PDSCH that is actually scheduled or virtually transmitted through DCI.
  • Y time units such as Y symbols (i.e. Y symbols after the last symbol of PUCCH carrying HARQ-ACK) after sending the last identifier of the PUCCH carrying HARQ-ACK, that is, in BAT (for example, Y symbols (i.e.
  • Y symbols Y symbols
  • Y time units can be 7 symbols, 28 symbols, 42 symbols, 2 time slots, etc.
  • the NW when the NW prepares to switch the UE to the mTRP PDSCH transmission mode, regardless of whether the currently applied DL TCI state/joint TCI state is 1 or 2 (or more), the NW The first type of DCI can be sent to indicate 2 (or more) DL TCI status/joint TCI status, and the process for beam application to take effect is performed. Then, the NW can send the second type of DCI for data scheduling of mTRP PDSCH. In this way, the two currently applied DL TCI states/joint TCI states are just suitable for the PDSCH transmission of mTRP and are adapted to the scheduling parameters of the other two PDSCHs.
  • Y time units such as Y symbols after sending the last identifier of the PUCCH carrying HARQ-ACK, that is, the first slot (1st slot after BAT) after BAT (for example, Y symbols), and then pass A DCI scheduling multi-TRP transmission (DCI scheduling multi-TRP Tx).
  • DCI scheduling multi-TRP Tx For example, Y time units can be 7 symbols, 28 symbols, 42 symbols, 2 time slots, etc.
  • Example 2-2 Dynamic switching solution 2 of sTRP/mTRP based on NW implementation
  • NW can implement a mechanism based on unified TCI status all updates through appropriate control.
  • the fields in the DCI such as followIndicatedTCIStatePDSCH only contain the code points '00' and '01' in Table 1.
  • the fields in the DCI such as FollowIndicatedTCIStatePDSCH can only indicate the code point of the corresponding multi-TRP transmission, that is, '10'.
  • the NW can also implement dynamic switching of sTRP/mTRP through scheduling.
  • the TCI field in DCI can only indicate one DL TCI state/joint TCI state.
  • the TCI field in the DCI can indicate 1 or 2 DL TCI states/joint TCI states.
  • Example 2-3 mTRP transmission on other uplink and downlink channels
  • the embodiments of the present application mainly provide dynamic switching between sTRP and mTRP of PDSCH, because the unified TCI state may bundle multiple channels (such as PDCCH and PDSCH) into the same beam direction, it can also provide mTRP transmission of other uplink and downlink channels.
  • the UE needs to find the available default DL TCI state/joint TCI state for another TRP (for PDSCH there is no available DL TCI state/joint TCI state).
  • the UE understands that for PDSCH, although only one DL TCI state/joint TCI state can be used, for other downlink channels/signals other than PDSCH, such as PDCCH mTRP transmission, In a TRP that has not updated the DL TCI status/joint TCI status, the original DL/Joint TCI state still applies; for PUCCH/PUSCH mTRP transmission, in a TRP that has not updated the DL TCI status/joint TCI status, the original DL TCI state /United TCI status still applies. As shown in Figure 18, the DL TCI status/joint TCI status from TRP #2 can still be applied to other uplink and downlink channels and/or signals except PDSCH.
  • the UE uses the DL TCI state/joint TCI state corresponding to the smallest CORESET ID of the TRP in the latest time slot.
  • the UE uses the SSB selected when randomly accessing the TRP as the default beam, or the DL TCI state/UL TCI state/joint TCI state corresponding to the SSB as the default TCI state.
  • the UE uses the unified TCI state corresponding to the code point with the smallest ID among the multiple code points containing two unified TCI states activated in the MAC CE, and one of the unified TCI states corresponding to the TRP is used as the default TCI state.
  • Figure 19 is a schematic structural diagram of a communication device 1900 according to an embodiment of the present application.
  • the communication device 1900 includes a processor 1910, and the processor 1910 can call and run a computer program from the memory, so that the communication device 1900 implements the method in the embodiment of the present application.
  • communication device 1900 may also include memory 1920.
  • the processor 1910 can call and run the computer program from the memory 1920, so that the communication device 1900 implements the method in the embodiment of the present application.
  • the memory 1920 may be a separate device independent of the processor 1910, or may be integrated into the processor 1910.
  • the communication device 1900 may also include a transceiver 1930, and the processor 1910 may control the transceiver 1930 to communicate with other devices. Specifically, the communication device 1900 may send information or data to other devices, or receive information sent by other devices. information or data.
  • the transceiver 1930 may include a transmitter and a receiver.
  • the transceiver 1930 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1900 may be a network device according to the embodiment of the present application, and the communication device 1900 may implement the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of brevity, the communication device 1900 will not be mentioned here. Again.
  • the communication device 1900 can be a terminal device in the embodiment of the present application, and the communication device 1900 can implement the corresponding processes implemented by the terminal device in the various methods of the embodiment of the present application. For the sake of brevity, this is not mentioned here. Again.
  • Figure 20 is a schematic structural diagram of a chip 2000 according to an embodiment of the present application.
  • the chip 2000 includes a processor 2010, and the processor 2010 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • chip 2000 may also include memory 2020.
  • the processor 2010 can call and run the computer program from the memory 2020 to implement the method executed by the terminal device or the network device in the embodiment of the present application.
  • the memory 2020 may be a separate device independent of the processor 2010 , or may be integrated into the processor 2010 .
  • the chip 2000 may also include an input interface 2030.
  • the processor 2010 can control the input interface 2030 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 2000 may also include an output interface 2040.
  • the processor 2010 can control the output interface 2040 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of simplicity, they will not be described again. .
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, details will not be repeated here. .
  • the chips used in network equipment and terminal equipment can be the same chip or different chips.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • the processor mentioned above can be a general-purpose processor, a digital signal processor (DSP), an off-the-shelf programmable gate array (FPGA), an application specific integrated circuit (ASIC), or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA off-the-shelf programmable gate array
  • ASIC application specific integrated circuit
  • the above-mentioned general processor may be a microprocessor or any conventional processor.
  • non-volatile memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM).
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • Figure 21 is a schematic block diagram of a communication system 2100 according to an embodiment of the present application.
  • the communication system 2100 includes a terminal device 2110 and a network device 2120.
  • the terminal device 2110 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 2120 can be used to implement the corresponding functions implemented by the network device in the above method.
  • no further details will be given here.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted over a wired connection from a website, computer, server, or data center (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means to transmit to another website, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), etc.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.

Abstract

本申请涉及涉及通信领域,更具体地,涉及一种信息处理方法。具体实现方式为:终端设备使用统一传输配置指示TCI状态执行单传输接收点TRP传输和/或多TRP传输。本申请实施例中,终端设备以灵活地使用统一TCI状态进行单TRP传输和/或多TRP传输,实现TRP传输的动态切换。

Description

信息处理方法、终端设备和网络设备 技术领域
本申请涉及通信领域,更具体地,涉及一种信息处理方法、终端设备和网络设备。
背景技术
TCI(Transmission Configuration Indication,传输配置指示)状态(state),可以用于下行的空间域QCL(Quasi-Co-Location,准共址)的指示,以及时域和频域的QCL信息的传递等。但TCI状态在NR(New Radio,新无线)系统中的应用有诸多的限制。在NR系统中提出了统一TCI状态,可以统一上下行的波束指示机制。
发明内容
本申请实施例提供一种信息处理方法,包括:
终端设备使用统一传输配置指示TCI状态执行单传输接收点TRP传输和/或多TRP传输。
本申请实施例提供一种信息处理方法,包括:
网络设备发送第一信息,该第一信息用于指示终端设备使用统一TCI状态执行单TRP传输和/或多TRP传输。
本申请实施例提供一种终端设备,包括:
处理单元,用于使用统一传输配置指示TCI状态执行单传输接收点TRP传输和/或多TRP传输。
本申请实施例提供一种网络设备,包括:
第一发送单元,用于发送第一信息,该第一信息用于指示终端设备使用统一TCI状态执行单TRP传输和/或多TRP传输。
本申请实施例提供一种终端设备,包括处理器、存储器和收发器。该存储器用于存储计算机程序,该处理器用于控制该收发器与其他设备进行通信,该处理器用于调用并运行该存储器中存储的计算机程序,以使该终端设备执行上述的信息处理方法。
本申请实施例提供一种网络设备,包括处理器、存储器和收发器。该存储器用于存储计算机程序,该处理器用于控制该收发器与其他设备进行通信,该处理器用于调用并运行该存储器中存储的计算机程序,以使该网络设备执行上述的信息处理方法。
本申请实施例提供一种芯片,用于实现上述的信息处理方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的信息处理方法。
本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,当该计算机程序被设备运行时使得该设备执行上述的信息处理方法。
本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的信息处理方法。
本申请实施例提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述的信息处理方法。
本申请实施例中,终端设备以灵活地使用统一TCI状态进行单TRP传输和/或多TRP传输,实现TRP传输的动态切换。
附图说明
图1是根据本申请实施例的应用场景的示意图。
图2是sDCI-mPDSCH的示意图。
图3是mDCI-mPDSCH的示意图。
图4是传统TCI状态的时间线。
图5是统一TCI状态的时间线。
图6是根据本申请一实施例的信息处理方法的示意性流程图。
图7是根据本申请另一实施例的信息处理方法的示意性流程图。
图8是根据本申请另一实施例的信息处理方法的示意性流程图。
图9是根据本申请一实施例的信息处理方法的示意性流程图。
图10是根据本申请另一实施例的信息处理方法的示意性流程图。
图11是根据本申请一实施例的终端设备的示意性框图。
图12是根据本申请另一实施例的终端设备的示意性框图。
图13是根据本申请一实施例的网络设备的示意性框图。
图14是根据本申请另一实施例的网络设备的示意性框图。
图15是基于部分更新的sTRP/mTRP切换示意图。
图16是MAC CE的示意图。
图17a是切换到sTRP PDSCH的示意图。
图17b是切换到mTRP PDSCH的示意图。
图18是除PDSCH之外的其他信道的第一种处理方式的示意图。
图19是根据本申请实施例的通信设备示意性框图。
图20是根据本申请实施例的芯片的示意性框图。
图21是根据本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、NR系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
在一种实施方式中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
在一种实施方式中,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为 穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一种通信系统100。该通信系统包括一个网络设备110和两个终端设备120。在一种实施方式中,该通信系统100可以包括多个网络设备110,并且每个网络设备110的覆盖范围内可以包括其它数量的终端设备120,本申请实施例对此不做限定。
在一种实施方式中,该通信系统100还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
其中,网络设备又可以包括接入网设备和核心网设备。即无线通信系统还包括用于与接入网设备进行通信的多个核心网。接入网设备可以是长期演进(long-term evolution,LTE)系统、下一代(移动通信系统)(next radio,NR)系统或者授权辅助接入长期演进(authorized auxiliary access long-term evolution,LAA-LTE)系统中的演进型基站(evolutional node B,简称可以为eNB或e-NodeB)宏基站、微基站(也称为“小基站”)、微微基站、接入站点(access point,AP)、传输站点(transmission point,TP)或新一代基站(new generation Node B,gNodeB)等。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统为例,通信设备可包括具有通信功能的网络设备和终端设备,网络设备和终端设备可以为本申请实施例中的具体设备,此处不再赘述;通信设备还可包括通信系统中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
1.统一传输状态指示(例如,统一TCI状态(Unified TCI state))
在3GPP标准化进展中,提出了TCI状态(state),用于下行的空间域QCL(Quasi-Co-Location,准共址)(波束)的指示,以及时域和频域的QCL信息的传递。具体来说,准共址(QCL)关系可以简单描述为从某一个源参考信号指向一个目标参考信号的大尺度衰落的关系。对于波束指示来说,UE在从NW(network,网络)得到两个源参考信号和目标参考信号的QCL关系后,在对目标参考信号的接 收时可以使用之前接收源参考信号的接收波束。可选的,本申请实施例的波束也可以称为空域滤波器或参考信号。
但该TCI状态的指示机制仅适用于下行的信道和/或信号,且在NR系统中的应用有诸多的限制。为了给NR系统提供一个统一的上下行波束管理机制,提出了统一TCI状态。统一TCI状态的新功能举例如下:
(1)提供了3种统一TCI状态的模式,包括:联合TCI状态(joint TCI state)适用于上下行的信道和信号;下行TCI状态(DL TCI state)仅适用于下行的信道和信号;上行TCI状态(UL TCI state)仅适用于上行的信道和信号。
(2)下行信道(例如部分PDCCH和PDSCH)和信号(例如非周期CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号))使用相同的下行发射指示波束,使用下行TCI状态或联合TCI状态。
(3)上行信道(例如PUCCH和PUSCH)和信号(例如SRS)使用相同的上行发射波束,使用上行TCI状态或联合TCI状态。
(4)统一TCI状态可以使用MAC CE(Media Access Control-Control Element,媒体介入控制控制元素)和/或DCI(Downlink Control Information,下行控制信息)动态更新和指示。
(5)适用于载波聚合的场景,单CC(Component Carrier,分量载波)上的波束指示可以适用于多个不同的CC。
(6)上行的波束指示和上行的功率控制参数可以通过上行TCI状态或联合TCI状态同时给出。
(7)支持小区间的波束管理功能。
在统一TCI状态中,“统一”可以理解为多种含义。第一,“统一”的含义可以为,统一TCI状态统一了上下行的波束指示机制。因为NR标准中TCI状态可以仅用来做下行的波束指示,上行的波束指示可以使用基于空间关系信息(Spatial relation information)的信令。第二,“统一”的含义还可以为,不同信道间的波束统一。例如在分开的上行TCI状态或下行TCI状态(Separate DL/UL TCI state)的配置下,UE认为下行PDCCH(Physical Downlink Control Channel,物理下行控制信道)(UE专属)和PDSCH(Physical Downlink Shared Channel,物理下行共享信道)(UE专属)统一成相同的波束来传输。另外UE将上行PUCCH和PUSCH使用相同的波束来传输。在联合TCI状态的配置下,UE认为上下行的不同信道和信号可以有很好的波束对称性的保证,即对上下行使用对称的波束对来进行通信。
在一种示例中,统一TCI状态的RRC(Radio Resource Control,无线资源控制)的参数配置如下。
Figure PCTCN2022104741-appb-000001
Figure PCTCN2022104741-appb-000002
但是,统一TCI状态并不能支持mTRP(Multiple Transmission Reception Point,多传输接收点,还可以简称Multi-TRP)。因此需要考虑如何在mTRP操作下引入统一TCI状态。
2.mTRP PDSCH的传输方案
在mTRP PDSCH的增强中包括多种场景,一种是为了eMBB(Enhance MobileBroadband,增强型移动宽带)的场景,一种是为了(Ultra-Reliableand Low LatencyCommunications,低时延高可靠通信)的增强。基于上述场景可以提供多种mTRP的传输方式。具体来说,大致可以按照以下两种不同的调度方式来实现。
(1)sDCI-mPDSCH(Single-DCI multi-TRP,基于单DCI的多TRP):NW使用一个DCI来调度2个PDSCH的传输,其中这个DCI来自于两个TRP中的一个。NW可以较为动态地调整使用哪个TRP来发送该DCI。而2个PDSCH是通过两个TRP以不同的方式来传输,比如SDM(Space Division Multiplexing,空分复用)、FDM(Frequency Division Multiplexing,频分复用)、TDM(Time Division Multiplexing,时分复用)等复用方式。这种方式适合TRP之间有较为理想的回程(backhaul)链路。另外,在调度DCI中,可以包含1个或2个TCI状态,用来指示sTRP和mTRP传输之间的动态切换。例如,当DCI中的TCI域指示的码点是一个TCI状态时,表示sTRP传输。当该码点指示2个TCI状态时,表示mTRP传输,通过MAC CE激活的TCI状态码点分为第一TCI状态和第二TCI状态。每个指示的TCI状态都会以第一TCI状态或第二TCI状态的身份映射到TRP传输的特定资源上,比如CDM(Code Division Multiplex,码分复用)组(group)、DMRS(Demodulation Reference Signal,解调参考信号)端口、传输层数(layers)、PTRS(Phase Tracking Reference Signal,相位跟踪参考信号)端口、RV(Redundancy Version,冗余版本)等与PDSCH调度有关内容。
如图2所示,这种mTRP的调度的机制具有很高的灵活性,NW可以选择从TRP1或TRP2来发送PDCCH的调度信息。基于灵活性的考虑,sDCI-mPDSCH操作所使用的CORESET(Control ResourceSet,控制资源集)不会配置CORESETPoolIndex(CORESET池索引)这个RRC参数。
(2)mDCI-mPDSCH(Multi-DCI multi-TRP,基于多DCI的多TRP):每个TRP通过发送PDCCH来独立地调度该TRP的PDSCH传输。这种操作更适合于TRP之间没有较为理想的回程(backhaul)链路的场景。即每个TRP尽量独立工作,减少TRP之间交互的需求。PDSCH的传输可以在时频资源上完全重叠、部分重叠和完全不重叠。在mDCI-mPDSCH的操作下,NW可以为每一个CORESET配置参数CORESETPoolIndex以将多个CORESET分成两个组,每组对应一个TRP,如图3所示。在不配置CORESETPoolIndex的情况下,可以默认该参数为0。
如果直接将统一TCI状态套用到mTRP的场景下,存在以下问题:统一TCI状态在一个CC内有强大的统合能力,即把下行的PDCCH/PDSCH/AP-CSI-RS、上行的PUCCH/PUSCH/SRS(Sounding Reference Signal,探测参考信号)等都统合到相同的波束上。但在mTRP的操作下,至少需要有2套独立的上下行波束来对应两个空间上分隔的TRP。因此,如何在MAC CE或DCI信令指示了1个统一TCI状态的情况下找到对应的更新波束的TRP,以及如何在MAC CE或DCI信令指示了2个统一TCI状态的情况下找到对应的更新两个TRP波束显得格外重要。
另外,在sDCI-mPDSCH的方案中,一个DCI中的TCI状态域可以指示一个或两个TCI状态,由此来指示是sTRP传输还是mTRP传输。UE在收到DCI并且成功解码后,DCI中所指示的TCI状态就是有效值。只要调度DCI和PDSCH之间的时间间隔大于UE能力例如准共址持续时间(timeDurationForQCL),UE就可以使用该被指示的TCI状态(新指示波束)进行对应的接收,如错误!未找到引用源。所示。否则,NW只能使用默认的波束(Default beam),如调度DCI所在的CORESET 的激活波束发送PDSCH。
但不同于传统的TCI状态时间线,统一TCI状态的时间线如图5所示。带有或不带有PDSCH调度信息的DCI中指示的统一TCI状态需要在UE发送PDSCH的HARQ-ACK信息之后经过一定的波束应用时间(Beam Application Time,BAT)例如Y个时间单元之后的第一个时隙才会生效。例如,Y个时间单元可以是7个符号、28个符号、42个符号、2个时隙等。在这种情况下,当UE解码DCI中的统一TCI域之后,在收到所调度的PDSCH之前,该统一TCI状态还未生效,对于波束的应用还是最近一次更新/指示的统一TCI状态来起作用。这样UE就不能直接按照DCI中TCI状态的数量来判断是sTRP PDSCH传输还是mTRP PDSCH传输。本申请实施例可以针对DCI中指示的统一TCI状态和调度PDSCH中变量的关系如何映射,提出具体方案。其中,PDSCH中变量可以包括例如DMRS端口、CDM组(group)、时频资源等。
图6是根据本申请一实施例的信息处理方法600的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S610、终端设备使用统一TCI状态执行单TRP传输和/或多TRP传输。
在本申请实施例中,统一TCI状态可以包括上行TCI状态、下行TCI状态、联合TCI状态的至少之一。通过统一TCI状态可以指示终端设备从一个TRP接收PDSCH等传输资源(即单TRP传输),也可以指示终端设备从多个TRP分别接收对应的PDSCH等传输资源(即多TRP传输)。
在本申请实施例中,终端设备从TRP接收的传输资源可以包括多种,例如,PDSCH、PDCCH重复传输、PUCCH时域的重复传输、PUSCH时域的重复传输、多面板(panel)同时传输等。
在一种实施方式中,执行单TRP传输包括:从第一TRP接收第一传输资源,或者从第二TRP接收第二传输资源。例如,统一TCI状态包括第一统一TCI状态,终端设备可以使用第一统一TCI状态从TRP #1接收PDSCH #1。再如,统一TCI状态包括第二统一TCI状态,终端设备可以使用第二统一TCI状态从TRP #2接收PDSCH #2。
在一种实施方式中,执行多TRP传输包括:从第一TRP接收第一传输资源,并且从第二TRP接收第二传输资源。例如,统一TCI状态包括第一统一TCI状态和第二统一TCI状态,终端设备可以使用第一统一TCI状态从TRP #1接收PDSCH #1;并且使用第二统一TCI状态从TRP #2接收PDSCH #2。基于两个统一TCI状态接收两个PDSCH仅是示例而非限制,在实际应用场景中,可以基于更多的统一TCI状态接收更多PDSCH。
在一种实施方式中,如图7所示,该方法还包括:
S710、终端设备接收第一信息,该第一信息用于指示该终端设备使用统一TCI状态执行单TRP传输和/或多TRP传输。
例如,终端设备从网络设备接收PDCCH,该PDCCH的DCI中包括该第一信息。该第一信息可以该终端设备使用统一TCI状态执行单TRP传输和/或多TRP传输。此外,该第一信息还可以指示统一TCI状态。第一信息指示的统一TCI状态是未应用的统一TCI状态,或称为未生效的统一TCI状态、新的统一TCI状态等。具体例如,终端设备在当前时隙(例如接收PDSCH所在的时隙1)收到携带第一信息的DCI,并且在当前时隙应用的(applicable)统一TCI状态与DCI中未应用的统一TCI状态不同,可以使用应用的统一TCI状态执行单TRP传输和/或多TRP传输。终端设备在从一个或多个TRP收到PDSCH之后,可能发送HARQ-ACK,然后在经过一定的波束应用时间后,应用DCI中携带的统一TCI状态。
在一种实施方式中,该第一信息通过第一DCI承载。例如,终端设备可以从网络设备接收第一PDCCH,该第一PDCCH的第一DCI中携带该第一信息。
在一种实施方式中,该第一信息为该第一DCI中的第一域,该第一域用于指示该终端设备执行以下至少之一:
跟随第一应用的统一TCI状态;
跟随第二应用的统一TCI状态;
跟随第一应用的统一TCI状态和第二应用的统一TCI状态。
在本申请实施例中,应用的统一TCI状态也可以理解为生效的统一TCI状态,例如上一次TCI状态指示后生效的TCI状态。终端设备收到网络设备的本次调度所用的DCI后,在当前接收PDSCH等传输资源的时隙使用的统一TCI状态为上述应用的统一TCI状态。不同的TRP可以对应不同的应用的统一TCI状态。
例如,在单TRP传输中,只需要通过第一TRP传输,则第一TRP对应前次指示的第一应用的统一TCI状态。再如,在单TRP传输中,只需要通过第二TRP传输,则第二TRP对应前次指示的第二应用的统一TCI状态。再如,在多TRP传输中,需要通过第一TRP和第二TRP分别传输,则第一TRP对 应前次指示的第一应用的统一TCI状态,并且第二TRP对应前次指示的第二应用的统一TCI状态。
例如,在第一DCI中的第一域中,可以携带用于指示未应用的统一TCI状态的码点。基于第一域中码点的具体取值,可以指示终端设备执行相应的动作。例如,码点“00”表示终端设备跟随第一应用的统一TCI状态。再如,码点“01”表示终端设备跟随第二应用的统一TCI状态。再如,码点“10”表示终端设备跟随第一应用的统一TCI状态和第二应用的统一TCI状态。其中,跟随可以表示接收某个信道或者发送某个信道的时使用指示跟随的TCI状态例如第一域指示跟随的应用的统一TCI状态。应用的统一TCI状态,可以是上一次TCI状态指示后生效的TCI状态。
终端设备基于第一DCI执行单TRP传输的示例:例如,如果DCI中的第一域指示跟随第一应用的统一TCI状态,终端设备可以使用第一应用的统一TCI状态从TRP #3接收PDSCH #3。再如,如果DCI中的第一域指示跟随第二应用的统一TCI状态,终端设备可以使用第二应用的统一TCI状态从TRP #4接收PDSCH #4。
终端设备基于第一DCI执行多TRP传输的示例:例如,如果DCI中的第一域指示跟随第一应用的统一TCI状态和第二应用的统一TCI状态,终端设备可以使用第一应用的统一TCI状态从TRP #3接收PDSCH #3;并且,使用第二应用的统一TCI状态从TRP #4接收PDSCH #4。
在一种实施方式中,终端设备使用统一TCI状态执行单TRP传输和/或多TRP传输,包括以下至少之一:
该终端设备使用一个应用的统一TCI状态执行单TRP传输;
该终端设备使用多个应用的统一TCI状态执行多TRP传输。
在本申请实施例中,如果终端设备收到第一信息,可以基于该第一信息实现单TRP传输和多TRP传输之间的动态切换。例如,如果终端设备收到的DCI指示跟随一个应用的统一TCI状态,可以使用使用该应用的统一TCI状态从一个TRP接收PDSCH。再如,如果终端设备收到的DCI指示跟随多个应用的统一TCI状态,可以分别使用这多个应用的统一TCI状态从对应的TRP接收PDSCH。再如,如果终端设备收到的DCI指示跟随第一应用的统一TCI状态和第二应用的统一TCI状态,可以使用该第一应用的统一TCI状态从第一TRP接收第一PDSCH,从该第二应用的统一TCI状态从第二TRP接收第二PDSCH。
在一种实施方式中,如图7所示,该方法还包括:
S720、该终端设备使用该应用的统一TCI状态收到传输资源之后,根据该第一DCI指示的应用的统一TCI状态更新该终端设备应用的统一TCI状态。
例如,终端设备收到指示跟随第一应用的统一TCI状态的第一DCI之后,可以先使用第一应用的统一TCI状态从第一TRP接收第一PDSCH。然后,在收到第一PDSCH之后,发送HARQ ACK信息,经过一定的波束应用时间,再将终端设备应用的统一TCI状态更新为第一DCI携带的第一未应用的统一TCI状态。
再如,终端设备收到指示跟随第一应用的统一TCI状态和第二应用的统一TCI状态的第一DCI之后,可以先使用第一应用的统一TCI状态从第一TRP接收第一PDSCH,并使用第二应用的统一TCI状态从第二TRP接收第二PDSCH。然后,在收到第一PDSCH和第二PDSCH之后,发送HARQ ACK信息,经过一定的波束应用时间,终端设备再将第一应用的统一TCI状态更新为第一未应用的统一TCI状态,将第二应用的统一TCI状态更新为第二未应用的统一TCI状态。
此外,如果终端设备未成功通过某个TRP接收PDSCH,则终端设备可以不更新该TRP对应的统一TCI状态。
在一种实施方式中,如图8所示,该方法还包括:
S810、终端设备接收第二信息,该第二信息用于指示统一TCI状态个数。
例如,第二信息可以包括DCI中的TCI状态域,该TCI状态域用于指示统一TCI状态个数例如未应用的统一TCI状态个数。如果统一TCI状态个数为一个,终端设备可以执行单TRP传输。如果统一TCI状态个数为多个,终端设备可以执行多TRP传输。
在本申请实施例中,终端设备可以使用在当前时隙(例如接收PDSCH所在的时隙1)应用的统一TCI状态执行单TRP传输和/或多TRP传输。在从一个或多个TRP收到PDSCH之后,发送HARQ ACK信息,经过一定的波束应用时间,终端设备再将应用的统一TCI状态更新为DCI中未应用的统一TCI状态。当然,第一DCI中也可以只包括第二信息,不包括第一信息,这种情况下,可以不改变DCI格式,而是改变终端设备对DCI的理解方式。终端设备可以将DCI的TCI状态域中的取值理解为统一TCI状态个数,并根据该统一TCI状态个数执行TRP传输,并对应用的统一TCI状态进行部分更新或全部更新。
在一种实施方式中,终端设备使用统一TCI状态执行至少一个TRP传输,包括以下至少之一:
在该统一TCI状态个数为一个的情况下,该终端设备使用一个应用的统一TCI状态执行单TRP传输;
在该统一TCI状态个数为多个的情况下,该终端设备使用多个应用的统一TCI状态执行多TRP传输。
例如,在终端设备收到的第二信息中的统一TCI状态个数为一个的情况下,终端设备可以不使用当前收到的DCI中指示的统一TCI状态,而是使用默认的统一TCI状态,执行单TRP传输,例如从一个TRP接收PDSCH。该默认的统一TCI状态可以是前次指示的当前时隙的第一应用的统一TCI状态,也可以是前次指示的当前时隙的第二应用的统一TCI状态。终端设备在执行单TRP传输之后,可以向网络设备发送HARQ-ACK信息,然后经过一定的BAT后,将该TRP对应的当前应用的统一TCI状态更新为DCI中指示的统一TCI状态。
再如,在终端设备收到的第二信息中的统一TCI状态个数为两个的情况下,终端设备可以不使用当前收到的DCI中指示的统一TCI状态,而是使用前次指示的统一TCI状态执行多TRP传输。例如使用第一应用的统一TCI状态从第一TRP接收第一PDSCH,并使用第二应用的统一TCI状态从第二TRP接收第二PDSCH。终端设备在执行多TRP传输之后,可以向网络设备发送HARQ-ACK信息,然后经过一定的BAT后,将第一TRP对应的当前应用的统一TCI状态更新为DCI中指示的第一统一TCI状态,将第一TRP对应的当前应用的统一TCI状态更新为DCI中指示的第二统一TCI状态。
在一种实施方式中,该第二信息通过第一DCI承载。例如,第一信息和第二信息可以在同一个第一DCI。终端设备可以从网络设备接收携带该第一DCI的PDCCH。然后终端设备再使用该第一DCI中的统一TCI状态执行TRP传输。
在一种实施方式中,该第二信息包括该第一DCI中的第二域,该第二域指示的统一TCI状态个数与该第一DCI调度的传输类型的关系包括以下至少之一:
在该第二域指示的该统一TCI状态个数为一个的情况下,该第一DCI调度的传输是单TRP传输;
在该第二域指示的该统一TCI状态个数为多个的情况下,该第一DCI调度的传输是多TRP传输。
在本申请实施例中,第二域可以为DCI中的TCI状态域。例如,如果该第二域指示的该统一TCI状态个数为一个,终端设备可以基于第一DCI调度单TRP传输。例如,使用第一应用的统一TCI状态从第一TRP接收第一PDSCH。
再如,如果该第二域指示的该统一TCI状态个数为多个,终端设备可以基于第一DCI调度多TRP传输,使用第一应用的统一TCI状态从第一TRP接收第一PDSCH,并使用第二应用的统一TCI状态从第二TRP接收第二PDSCH。
在一种实施方式中,该第二信息包括该第一DCI中的第三域,该第三域用于指示在统一TCI状态个数为一个的情况下使用的统一TCI状态。
例如,如果第一DCI中的第二域指示的统一TCI状态个数为一个,第三域置为1表示使用第一应用的统一TCI状态;第三域置为0表示使用第二应用的统一TCI状态。其中,0、1仅是第三域的取值的示例,而非限制,可以根据实际需求灵活选择第三域的取值和比特数。
在一种实施方式中,该第一DCI用于在调度该终端设备执行单TRP传输和/或多TRP传输之后更新该终端设备应用的统一TCI状态。
在本申请实施例中,第一DCI还可以包括调度信息,在调度PDSCH的同时指示跟随的统一TCI状态以及更新所需的新的统一TCI状态(即未应用的统一TCI状态)。如果第一DCI可以包括用于调度一个或多个PDSCH的调度信息,终端设备在收到第一DCI之后,可以在从一个或多个TRP接收该一个或多个PDSCH。然后,再将该终端设备应用的统一TCI状态更新为第一DCI中携带的统一TCI状态。这种方式可以实现统一TCI状态的部分更新,例如可以仅更新第一DCI中携带的一个统一TCI状态或两个统一TCI状态。
在一种实施方式中,如图8所示,该方法还包括:
S820、该终端设备接收第二DCI,该第二DCI用于在更新该终端设备应用的统一TCI状态之后调度该终端设备执行单TRP传输和/或多TRP传输。
在本申请实施例中,也可以对统一TCI状态进行部分更新或全部更新后再调度PDSCH。例如,第一DCI中不包括调度信息,主要包括未应用的统一TCI状态。在收到第一DCI后,先将该终端设备应用的统一TCI状态更新为第一DCI中携带的统一TCI状态。然后,如果终端设备收到包括调度信息的第二DCI,可以根据调度信息执行单TRP传输和/或多TRP传输,即从一个或多个TRP接收PDSCH。
在一种实施方式中,该第一信息通过MAC CE承载。
在本申请实施例中,用于指示统一TCI状态的第一信息,除了可以通过上述的DCI承载之外,也可以通过MAC CE承载。
在一种实施方式中,该第一信息包括该MAC CE的第四域和/或第五域,其中,该第四域用于指示TCI码点是否包括第一统一TCI状态;该第五域用于指示TCI码点是否包括第二统一TCI状态。
在一种实施方式中,终端设备使用统一TCI状态执行单TRP传输和/或多TRP传输,包括以下至少之一:
在第一DCI指示该统一TCI状态个数为一个的情况下,若该MAC CE指示TCI码点包括第一统一TCI状态,则该终端设备使用第一应用的统一TCI状态从第一TRP接收第一传输资源;
在第一DCI指示该统一TCI状态个数为一个的情况下,若该MAC CE指示TCI码点包括第二统一TCI状态,则该终端设备使用第二应用的统一TCI状态从第二TRP接收第二传输资源;
在第一DCI指示该统一TCI状态个数为多个的情况下,若该MAC CE指示TCI码点包括第一统一TCI状态和第二统一TCI状态,则该终端设备使用第一应用的统一TCI状态从第一TRP接收第一传输资源并且第二应用的统一TCI状态从第二TRP接收第二传输资源。
在本申请实施例中,MAC CE的第四域和/或第五域,可以与DCI中的上述第二信息指示的统一TCI状态个数配合使用。例如,DCI中的第二信息指示统一TCI状态个数为一个,MAC CE的第四域指示TCI码点包括第一统一TCI状态,第五域指示TCI码点不包括第二统一TCI状态,则使用第一应用的统一TCI状态从第一TRP接收第一PDSCH。再如,DCI中的第二信息指示统一TCI状态个数为一个,MAC CE的第四域指示TCI码点不包括第一统一TCI状态,第五域指示TCI码点包括第二统一TCI状态,则使用第二应用的统一TCI状态从第二TRP接收第二PDSCH。再如,DCI中的第二信息指示统一TCI状态个数为两个,MAC CE的第四域指示TCI码点包括第一统一TCI状态,第五域指示TCI码点包括第二统一TCI状态,则使用第一应用的统一TCI状态从第一TRP接收第一PDSCH,并且使用第二应用的统一TCI状态从第二TRP接收第二PDSCH。
在一种实施方式中,该MAC CE用于指示该终端设备将第一应用的统一TCI状态更新为第一统一TCI状态和/或将第二应用的统一TCI状态更新为第二统一TCI状态。
例如,在接收到PDSCH之后,终端设备可以基于MAC CE中指示的TCI码点更新应用的统一TCI状态。如果MAC CE的第四域指示TCI码点包括第一统一TCI状态,将第一应用的TCI状态更新为第一统一TCI状态。如果MAC CE的第五域指示TCI码点包括第二统一TCI状态,将第二应用的TCI状态更新为第二统一TCI状态。
在一种实施方式中,也可以先利用MAC CE更新统一TCI状态,再通过DCI调度PDSCH等传输资源。例如,如果终端设备收到的MAC CE的第四域指示TCI码点包括第一统一TCI状态,则终端设备将第一应用的统一TCI状态更新为第一统一TCI状态。如果终端设备收到的MAC CE的第五域指示TCI码点是否包括第二统一TCI状态,则终端设备将第一应用的统一TCI状态更新为第一统一TCI状态。然后网络设备再向终端设备发送DCI,以调度PDSCH等传输资源。
在一种实施方式中,该方法还包括:该终端设备在从第一TRP接收PDSCH的情况下,使用应用的统一TCI状态从第二TRP接收非PDSCH的传输资源。
在本申请实施例中,TRP传输除了适用于PDSCH之外,还可以适用于其他传输资源,例如,下行的PDCCH重复传输,上行的PUCCH/PUSCH时域的重复传输或多面板(panel)同时传输(例如FDM方案或SDM方案)等。在多TRP传输的场景下,每个TRP具有对应的TCI状态,即不同的收发波束方向。如果使用第一应用的统一TCI状态或未应用的统一TCI状态从第一TRP接收PDSCH,可以使用第二应用的统一TCI状态从第二TRP接收非PDSCH的传输资源。
在一种实施方式中,该方法还包括:
该终端设备在从第一TRP接收PDSCH的情况下,使用默认TCI状态从第二TRP接收非PDSCH的传输资源。
在多TRP传输的场景下,如果使用应用的统一TCI状态从第一TRP接收PDSCH,可以使用默认TCI状态从第二TRP接收非PDSCH的传输资源。如果非PDSCH的传输资源较多,可以使用多个默认TCI状态分别从多个对应的TRP接收非PDSCH的传输资源。
在一种实施方式中,该默认TCI状态的确定方式包括以下至少之一:
该终端设备使用该第二TRP在最近一个时隙内最小控制资源集标识(CORESET ID)对应的下行TCI状态和/或联合TCI状态;
该终端设备使用在随机接入该第二TRP时所选择的SSB作为默认波束,或者该SSB对应的上行TCI状态、下行TCI状态或联合TCI状态的至少之一作为该默认TCI状态;
该终端设备使用MAC CE中激活的多个统一TCI状态的码点中ID最小的码点对应的统一TCI状态中,与该第二TRP对应的统一TCI状态作为该默认TCI状态。
图9是根据本申请一实施例的信息处理方法900的示意性流程图。该方法可选地可以应用于图1 所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S910、网络设备发送第一信息,该第一信息用于指示终端设备使用统一TCI状态执行单TRP传输和/或多TRP传输。
在一种实施方式中,该第一信息通过第一DCI承载。
在一种实施方式中,该第一信息包括该第一DCI中的第一域,该第一域用于指示该终端设备执行以下至少之一:
跟随第一应用的统一TCI状态;
跟随第二应用的统一TCI状态;
跟随第一应用的统一TCI状态和第二应用的统一TCI状态。
在一种实施方式中,该未应用的统一TCI状态用于在该终端设备使用该未应用的统一TCI状态收到传输资源之后更新该终端设备应用的统一TCI状态。
在一种实施方式中,该第一信息通过MAC CE承载。
在一种实施方式中,该第一信息包括该MAC CE的第四域和/或第五域,其中,该第四域用于指示TCI码点是否包括第一统一TCI状态;该第五域用于指示TCI码点是否包括第二统一TCI状态。
在一种实施方式中,该第一DCI用于在调度该终端设备执行单TRP传输和/或多TRP传输之后更新该终端设备应用的统一TCI状态。
在一种实施方式中,如图10所示,该方法还包括:
S1010、该网络设备发送第二DCI,该第二DCI用于在更新该终端设备应用的统一TCI状态之后调度该终端设备执行单TRP传输和/或多TRP传输。
本实施例的网络设备执行方法900的具体示例可以参见上述方法700的中关于网络设备的相关描述,为了简洁,在此不再赘述。
图11是根据本申请一实施例的终端设备1100的示意性框图。该终端设备1100可以包括:处理单元1110,用于使用统一传输配置指示TCI状态执行单传输接收点TRP传输和/或多TRP传输。
在一种实施方式中,该执行单TRP传输包括:从第一TRP接收第一传输资源,或者从第二TRP接收第二传输资源。
在一种实施方式中,该执行多TRP传输包括:从第一TRP接收第一传输资源,并且从第二TRP接收第二传输资源。
在一种实施方式中,如图12所示,该终端设备还包括:第一接收单元1210,用于接收第一信息,该第一信息用于指示该终端设备使用统一TCI状态执行单TRP传输和/或多TRP传输。
在一种实施方式中,该第一信息通过第一DCI承载。
在一种实施方式中,该第一信息包括该第一DCI中的第一域,该第一域用于指示该终端设备执行以下至少之一:
跟随第一应用的统一TCI状态;
跟随第二应用的统一TCI状态;
跟随第一应用的统一TCI状态和第二应用的统一TCI状态。
在一种实施方式中,该处理单元还用于执行以下至少之一:
该终端设备使用一个应用的统一TCI状态执行单TRP传输;
该终端设备使用多个应用的统一TCI状态执行多TRP传输。
在一种实施方式中,该处理单元还用于使用该应用的统一TCI状态收到传输资源之后,根据该第一DCI指示的未应用的统一TCI状态更新该终端设备应用的统一TCI状态。
在一种实施方式中,如图12所示,该终端设备还包括:
第二接收单元1220,用于接收第二信息,该第二信息用于指示统一TCI状态个数。
在一种实施方式中,该统一TCI状态为应用的统一TCI状态。
在一种实施方式中,该处理单元还用于执行以下至少之一:
在该统一TCI状态个数为一个的情况下,该终端设备使用一个应用的统一TCI状态执行单TRP传输;
在该统一TCI状态个数为多个的情况下,该终端设备使用多个应用的统一TCI状态执行多TRP传输。
在一种实施方式中,该第二信息通过第一DCI承载。
在一种实施方式中,该第二信息包括该第一DCI中的第二域,该第二域指示的统一TCI状态个数与该第一DCI调度的传输类型的关系包括以下至少之一:
在该第二域指示的该统一TCI状态个数为一个的情况下,该第一DCI调度的传输是单TRP传输;
在该第二域指示的该统一TCI状态个数为多个的情况下,该第一DCI调度的传输是多TRP传输。
在一种实施方式中,该第二信息包括该第一DCI中的第三域,该第三域用于指示在统一TCI状态个数为一个的情况下使用的统一TCI状态。
在一种实施方式中,该第一DCI用于在调度该终端设备执行单TRP传输和/或多TRP传输之后更新该终端设备应用的统一TCI状态。
在一种实施方式中,该终端设备还包括:第三接收单元1230,用于接收第二DCI,该第二DCI用于在更新该终端设备应用的统一TCI状态之后调度该终端设备执行单TRP传输和/或多TRP传输。
在一种实施方式中,该第一信息通过MAC CE承载。
在一种实施方式中,该第一信息包括该MAC CE的第四域和/或第五域,其中,该第四域用于指示TCI码点是否包括第一统一TCI状态;该第五域用于指示TCI码点是否包括第二统一TCI状态。
在一种实施方式中,该处理单元还用于执行以下至少之一:
在第一DCI指示该统一TCI状态个数为一个的情况下,若该MAC CE指示TCI码点包括第一统一TCI状态,则该终端设备使用第一应用的统一TCI状态从第一TRP接收第一传输资源;
在第一DCI指示该统一TCI状态个数为一个的情况下,若该MAC CE指示TCI码点包括第二统一TCI状态,则该终端设备使用第二应用的统一TCI状态从第二TRP接收第二传输资源;
在第一DCI指示该统一TCI状态个数为多个的情况下,若该MAC CE指示TCI码点包括第一统一TCI状态和第二统一TCI状态,则该终端设备使用第一应用的统一TCI状态从第一TRP接收第一传输资源并且第二应用的统一TCI状态从第二TRP接收第二传输资源。
在一种实施方式中,该MAC CE用于指示该终端设备将第一应用的统一TCI状态更新为第一统一TCI状态和/或将第二应用的统一TCI状态更新为第二统一TCI状态。
在一种实施方式中,该终端设备还包括:第四接收单元1240,用于在从第一TRP接收PDSCH的情况下,使用应用的统一TCI状态从第二TRP接收非PDSCH的传输资源。
在一种实施方式中,该设备还包括:第五接收单元1250,用于在从第一TRP接收PDSCH的情况下,使用默认TCI状态从第二TRP接收非PDSCH的传输资源。
在一种实施方式中,该默认TCI状态的确定方式包括以下至少之一:
该终端设备使用该第二TRP在最近一个时隙内最小控制资源集标识CORESET ID对应的下行TCI状态和/或联合TCI状态;
该终端设备使用在随机接入该第二TRP时所选择的SSB作为默认波束,或者该SSB对应的上行TCI状态、下行TCI状态或联合TCI状态的至少之一作为该默认TCI状态;
该终端设备使用MAC CE中激活的多个统一TCI状态的码点中ID最小的码点对应的统一TCI状态中,与该第二TRP对应的统一TCI状态作为该默认TCI状态。
本申请实施例的终端设备1100能够实现前述的方法600实施例中的终端设备的对应功能。该终端设备1100中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的终端设备1100中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图13是根据本申请一实施例的网络设备1300的示意性框图。该网络设备1300可以包括:
第一发送单元1310,用于发送第一信息,该第一信息用于指示终端设备使用统一TCI状态执行单TRP传输和/或多TRP传输。
在一种实施方式中,该第一信息通过第一DCI承载。
在一种实施方式中,该第一信息包括该第一DCI中的第一域,该第一域用于指示该终端设备执行以下至少之一:
跟随第一应用的统一TCI状态;
跟随第二应用的统一TCI状态;
跟随第一应用的统一TCI状态和第二应用的统一TCI状态。
在一种实施方式中,该第一信息通过MAC CE承载。
在一种实施方式中,该第一信息包括该MAC CE的第四域和/或第五域,其中,该第四域用于指示TCI码点是否包括第一统一TCI状态;该第五域用于指示TCI码点是否包括第二统一TCI状态。
在一种实施方式中,该第一DCI用于在调度该终端设备执行单TRP传输和/或多TRP传输之后更新该终端设备应用的统一TCI状态。
在一种实施方式中,如图14所示,该网络设备还包括:
第二发送单元1410,用于该网络设备发送第二DCI,该第二DCI用于在更新该终端设备应用的统 一TCI状态之后调度该终端设备执行单TRP传输和/或多TRP传输。
本申请实施例的网络设备1300能够实现前述的方法900实施例中的网络设备的对应功能。该网络设备1300中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的网络设备1300中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
在多TRP场景下配置且指示了统一TCI状态的情况下,本申请实施例考虑到统一TCI状态的波束应用时间(也可以称为波束生效时间),提供了多种支持单TRP传输和多TRP传输下行数据信道的动态切换方案。例如增强DCI的方案、增强MAC CE的方案等。另外,在统一TCI状态的不同更新机制下,提供了第一和/或第二应用的(applicable)统一TCI状态的方案来支持sTRP/mTRP PDSCH传输的动态切换。
相关技术中,在mTRP PDSCH传输方式中,如果S-DCI(单DCI)中的TCI域指示2个TCI状态,即mTRP PDSCH传输,每一个TCI状态都会对应一个TRP。如果S-DCI中的TCI域指示1个TCI状态,则UE理解为NW将PDSCH传输回退到sTRP传输。在本申请实施例中,对于S-DCI中指示/更新的一个统一TCI状态,UE可以有不同的理解。
(1)部分更新:指示的统一TCI状态仅用于更新个别TRP对应的统一TCI状态,不影响其他TRP的统一TCI状态。
(2)全部更新:指示的统一TCI状态用于将全部TRP的统一TCI状态更新为该指示的统一TCI状态。
针对上述不同的统一TCI状态的更新行为,可以分为多种情况进行描述,具体可以参见下述的各个示例。
对于sTRP/mTRP传输方式的动态切换的原因如下。如果UE在多个TRP共同覆盖的区域,如小区边缘,距离多个TRP的距离相当,适合mTRP的传输来增强小区边缘的覆盖。如果UE移动到距离一个TRP较近,距离其他TRP较远的区域时,适合sTRP传输。因此,可以支持基于指示的TCI状态个数动态的在sTRP/mTRP之间切换。但考虑到统一TCI状态具有波束应用时间(Beam Application Time,BAT)限制的特性,本申请实施例提出可以支持动态sTRP/mTRP的切换的方案。
在本申请实施例中,在多TRP场景下,可以基于统一TCI状态的波束应用时间特性,提供单TRP和多TRP传输方案间的动态切换方案。
在本申请实施例中,当DCI或MAC CE指示了一个统一TCI状态时,可以采用该统一TCI状态的部分更新机制和/或全部更新机制。
部分更新机制可以为仅更新部分TRP对应的统一TCI状态。例如,如果只更新了1个统一TCI状态,使用MAC CE的码点可以确定更新的是TRP对应的第一统一TCI状态或第二统一TCI状态。再如,在基于DCI的TCI更新中,使用MAC CE的码点可以确定DCI中的TCI域指示的是更新第一TCI统一状态或第二TCI统一状态。但如果没有MAC CE的码点设计,可以在DCI中的TCI状态域在更新1个统一TCI状态时,明确指示是更新第一统一TCI状态还是第二统一TCI状态,分别对应第一TRP或第二TRP。
全部更新机制可以为更新全部指示的统一TCI状态。
在本申请实施例中,下述的示例1-1提出基于DCI的增强方案来解决DCI中所指示的统一TCI状态的BAT问题。例如,基于DCI的增强方案在DCI中添加一个指示sTRP/mTRP传输的域。
在本申请实施例中,下述的示例1-2提出在不修改DCI格式的前提下,通过预先设定的方案来使用DCI中尚未生效(或称为尚未应用)的TCI域中所指示TCI状态数进行sTRP/mTRP PDSCH动态切换指示。
在本申请实施例中,下述的示例1-3提出MAC CE的增强方案,即在MAC CE中激活某一个TCI状态码点的第一统一TCI状态和/或第二统一TCI状态,在此基础上配合DCI的动态指示完成sTRP/mTRP PDSCH动态切换。
在本申请实施例中,下述的示例2-1和示例2-2针对全部更新TCI状态的机制,提供了基于NW实现的多种方案支持sTRP/mTRP PDSCH。
在本申请实施例中,下述的示例2-3包括:在sTRP/mTRP PDSCH进行动态切换的情况下,其他的上下行信道如PDCCH重复传输(repetition),PUCCH/PUSCH重复传输或上行多面板(panel)同时传输的情况下,如何保持多个其他信道的mTRP传输。
示例1:基于统一TCI状态部分更新的sTRP/mTRP动态切换
从系统的角度来看,除了PDSCH的sTRP/mTRP之间的动态切换之外,UE还有其他的上下行信道 和信号,如PDCCH等。这里的PDCCH传输方式是独立于PDSCH的传输方式,可以被NW配置为多TRP的传输方案,如Rel.17中支持的PDCCH重复传输(repetition),PDCCH SFN。如果DCI将UE的被指示的DL/Joint TCI state的数量从多个更新为1个,那么PDCCH也不能按照多TRP的传输方案工作,这也是提出部分更新统一TCI状态的机制的原因。
对于需要其他办法来补充缺失的统一TCI状态,参见后续的示例2。
部分更新的机制可以包括:对于PDSCH以外的其他信道来说,虽然DCI中仅指示了一个统一TCI状态例如DL TCI状态/联合TCI状态,UE可以理解为将多个UE保持的DL TCI状态/联合TCI状态中的一个进行更新。最终UE仍保持多个DL TCI状态/联合TCI状态,而不是将多个状态更新为1个状态。这样的好处是,可以对PDSCH进行sTRP/mTRP的动态切换,但是不会影响其他上下行信道的传输方式。如PDCCH在DCI仅指示了一个DL TCI状态/联合TCI状态的情况下,仍然可以保持RRC信令配置的mTRP的传输,如PDCCH重复传输(repetition)等。
示例1-1:基于DCI增强的sTRP/mTRP的动态切换方案
考虑到DL TCI状态/联合TCI状态的波束应用时间的延后性,本示例中的方案可以解除指示的DL TCI状态/联合TCI状态与PDSCH传输方式的绑定关系。即UE不用基于指示的DL TCI状态/联合TCI状态的个数来判断PDSCH是sTRP传输还是mTRP传输。为了弥补这个功能上的缺失,考虑在下行调度DCI中(如DCI格式1_1和1_2)引入一个新的2比特(bits)的域来指示PDSCH sTRP/mTRP传输。2比特仅是示例,也可以为其他比特数。该指示的名称可以为,比如FollowIndicatedTCIStatePDSCH(跟随指示的TCI状态的PDSCH)。该指示具体的码点(codepoints)示例和UE的对应行为可以参考表1(0)。这个域指示UE应该使用当前(PDSCH接收所在的时隙)正在应用的下行TCI状态/联合TCI状态,接收从哪个TRP发来的PDSCH。
表1:DCI新域值和相应的UE行为(DCI new field value and corresponding UE behavior)
Figure PCTCN2022104741-appb-000003
参见图15,UE会保持2个应用的(applicable)TCI状态例如DL TCI状态/联合TCI状态。当PDCCH #1指示的码点为“00”时,UE使用第一应用的TCI状态(1st applicable TCI state)从TRP #1接收PDSCH #1,即sTRP传输。当PDCCH #1指示的码点为“10”时,UE使用第一和第二应用的TCI状态(1st和2nd applicable TCI states)分别从TRP #1和TRP #2接收PDSCH #1和PDSCH #2,即mTRP传输。
需要指出的是,在sTRP/mTRP PDSCH传输发生后,DCI中所指示的DL TCI状态/联合TCI状态才会更新为应用的DL TCI状态/联合TCI状态。另外,对于部分更新的方案,如果NW指示过一个或多个TRP的统一TCI状态,UE至少会保持该一个或多个TRP对应的统一TCI状态,直到下一次的更新,且总是可以支持mTRP-PDSCH或其他mTRP的传输。
示例1-2:无DCI修改的sTRP/mTRP的动态切换方案
在本示例的方案中,可以不改变下行调度DCI的格式,即不增加新的域。UE需要保持2个DL TCI状态/联合TCI状态,每个DL TCI状态/联合TCI状态对应着一个TRP。同样可以参考图15中的示意。
当DCI中的TCI状态(state)域中指示的DL TCI状态/联合TCI状态个数是1时,UE可以理解为该次DCI调度的传输是sTRP传输。UE并不使用该DCI中指示的(且未生效的)DL TCI状态/联合TCI状态。而是默认地或者说固定地,使用第一应用(applicable)的DL TCI状态/联合TCI状态。其中,默认地也可以是第二应用的DL TCI状态/联合TCI状态,仅以第一应用的DL TCI状态/联合TCI状态为例进行说明,而非限制。
当DCI中的TCI状态域中指示的DL TCI状态/联合TCI状态个数是2时,UE可以理解为该次DCI调度的传输是mTRP传输。UE并不使用该DCI中指示的(且未生效的或未应用的)DL TCI状态/联合TCI状态,而是使用当前(例如PDSCH传输所在时隙)应用的2个DL TCI状态/联合TCI状态。
在本方案中,虽然DCI中没有增加新的域,但是UE对于原有的TCI状态域的理解发生了如上的变化,UE的行为也可以对应地设置。但是,当NW仅指示一个DL TCI状态/联合TCI状态时,如果发送PDSCH的TRP也被固定为第一应用的DL TCI状态/联合TCI状态所对应的TRP,可能无法进行动态地调整。
为了动态调整TCI状态,在DCI中的TCI状态域在更新1个统一TCI状态时,可以在DCI中明确 指示是更新第一统一TCI状态还是第二统一TCI状态,分别对应第一TRP或第二TRP。例如,在DCI中设置1个比特的新的域用于指示具体更新的统一TCI状态。如果该域的取值为1表示使用与第一TRP对应的第一应用的统一TCI状态;第三域置为0表示使用与第二TRP对应的第二应用的统一TCI状态。
为了动态调整TCI状态,也可以采用MAC CE辅助指示,参见示例1-3中提供的方案。
示例1-3:MAC CE增强的sTRP/mTRP的动态切换方案
基于示例1-2的方案可知,sTRP传输采用了默认的第一或第二应用DL TCI状态/联合TCI状态(可能无法动态调整默认的TCI状态),因此该方案在sTRP传输时可能无法指定某个TRP。在示例1-3中,提出增强MAC CE的方案来支持在DCI中仅有一个TCI状态时通过MAC CE指定具体使用的统一TCI状态。例如,在DCI中指示的统一TCI状态为一个时,通过MAC CE指定UE使用第一DL TCI状态/联合TCI状态进行TRP传输,或使用第二DL TCI状态/联合TCI状态进行TRP传输。另外该MAC CE也可以指示某一个码点对应第一DL TCI状态/联合TCI状态和第二DL TCI状态/联合TCI状态。
具体的MAC CE增强如图16中的C 01至C 18所示。下面分别介绍该MAC CE中的字段的含义。
服务小区ID:该域表示MAC CE应用的服务小区的标识。字段长度为5位。如果指示的服务小区被配置为同步U-TCI-UpdateList1、同步U-TCI-UpdateList2、同步U-TCI-UpdateList3或同步U-TCI-UpdateList4的一部分,该MAC CE依次应用于同步U-TCI-UpdateList1、同步U-TCI-UpdateList2、同步U-TCI-UpdateList3或同步U-TCI-UpdateList4集合中的所有服务小区。(Serving Cell ID:This field indicates the identity of the Serving Cell for which the MAC CE applies.The length of the field is 5bits.If the indicated Serving Cell is configured as part of a simultaneousU-TCI-UpdateList1,simultaneousU-TCI-UpdateList2,simultaneousU-TCI-UpdateList3or simultaneousU-TCI-UpdateList4as specified in TS 38.331[5],this MAC CE applies to all the Serving Cells in the set simultaneousU-TCI-UpdateList1,simultaneousU-TCI-UpdateList2,simultaneousU-TCI-UpdateList3or simultaneousU-TCI-UpdateList4,respectively;)
DL BWP ID:该域指示DL BWP,MAC CE应用该DL BWP作为DCI带宽部分指示域的码点。BWP ID字段的长度为2位。(DL BWP ID:This field indicates a DL BWP for which the MAC CE applies as the codepoint of the DCI bandwidth part indicator field as specified in TS 38.212[9].The length of the BWP ID field is 2bits.)
UL BWP ID:该域表示UL BWP,MAC CE应用于该UL BWP作为DCI带宽部分指示域的码点。BWP ID字段的长度为2位。(UL BWP ID:This field indicates a UL BWP for which the MAC CE applies as the codepoint of the DCI bandwidth part indicator field as specified in TS 38.212[9].The length of the BWP ID field is 2bits.)
P i:该域表示每个TCI代码点具有多个TCI状态还是单个TCI状态。如果P i域设置为1,表示该TCI代码点包括DL TCI状态和UL TCI状态。如果P i域设置为0,则表示该TCI代码点只包括DL TCI状态或UL TCI状态。(P i:This field indicates whether each TCI codepoint has multiple TCI states or single TCI state.If P i field set to 1,it indicates that i th TCI codepoint includes the DL TCI state and the UL TCI state.If P i field set to 0,it indicates that i th TCI codepoint includes only the DL TCI state or the UL TCI state.)
C 0i:该域用来指示TCI码点是包含多个TCI状态还是一个TCI状态。如果C 0i域置为1,它指示第i个TCI码点包含第一TCI状态(即第一统一TCI状态);如果C 0i域置为0,它指示第i个TCI码点不包含第一TCI状态。(C 0i:This filed indicates whether each TCI codepoint has multiple TCI states or single TCI state.If C 0i field set to 1,it indicates that the i th TCI codepoint includes the 1 st TCI state;If C 0i field set to0,it indicates that the i th TCI codepoint doesn’t include the 1 st TCI state.)
C 1i:该域用来指示TCI码点是包含多个TCI状态还是一个TCI状态。如果C 1i域置为1,它指示第i个TCI码点包含第二TCI状态(即第二统一TCI状态);如果C 1i域置为0,它指示第i个TCI码点不包含第二TCI状态。(C 1i:This filed indicates whether each TCI codepoint has multiple TCI states or single TCI state.If C 1i field set to 1,it indicates that the i th TCI codepoint includes the 2 nd TCI state;.If C 1i field set to 0,it indicates that the i th TCI codepoint doesn’t include the 2 nd TCI state.)
D/U:该域表示同一字节的TCI状态ID是联合/下行TCI状态还是上行TCI状态。如果该域设置为1,表示同一字节的TCI状态ID为联合/下行。如果该域设置为0,表示上行链路的TCI状态号相同。(D/U:This field indicate whether the TCI state ID in the same octet is for joint/downlink or uplink TCI state.If this field is set to 1,the TCI state ID in the same octet is for joint/downlink.If this field is set to 0,the TCI state ID in the same octet is for uplink.)
TCI状态ID:该域表示由TCI-StateId指示的TCI状态。如果D/U设置为1,则使用TCI状态ID,即TCI-stateid,长度为7位。D/U为0时,TCI状态ID的最有效位为保留位,其余6位为UL-TCIState-Id。TCI激活状态的最大值为16个。(TCI state ID:This field indicates the TCI state identified by TCI-StateId as specified in TS 38.331[5].If D/U is set to 1,7-bits length TCI state ID i.e.TCI-StateId as specified in TS  38.331[5]is used.If D/U is set to 0,the most significant bit of TCI state ID is considered as the reserved bit and remainder 6bits indicate the UL-TCIState-Id as specified in TS 38.331[5].The maximum number of activated TCI states is 16.)
R:保留位,设置为0。(R:Reserved bit,set to 0.)
与示例1-2中的方案结合,可以将MAC CE增强与DCI配合使用。具体来说,当DCI中的TCI state域中指示的DL TCI状态/联合TCI状态个数是1时,那么UE可以理解为该次DCI调度的传输是sTRP传输。UE并不使用该DCI中指示的(且未生效的)DL TCI状态/联合TCI状态。而是使用该DCI中TCI域的码点所对应的第一或第二应用的(applicable)DL TCI状态/联合TCI状态。UE通过上述MAC CE中的C 0i和C 1i来判断TCI状态第i个码点对应的是第一还是第二应用的DL TCI状态/联合TCI状态。例如,如果C 01的取值为1,C 11的取值为0,UE使用第i个码点对应的是第一应用的DL TCI状态/联合TCI状态进行TRP传输,从第一TRP接收第一PDSCH,然后更新第一应用的DL TCI状态/联合TCI状态。再如,如果C 01的取值为1,C 11的取值为0,UE使用第i个码点对应的是第二应用的DL TCI状态/联合TCI状态进行TRP传输,从第二TRP接收第二PDSCH,然后更新第二应用的DL TCI状态/联合TCI状态。
当DCI中的TCI状态域中指示的DL TCI状态/联合TCI状态个数是2时,UE理解为该次DCI调度的传输是mTRP传输。UE并不使用该DCI中指示的(且未生效的或未应用的)DL TCI状态/联合TCI状态。而是使用当前(例如PDSCH传输所在时隙)应用的2个DL TCI状态/联合TCI状态进行多TRP传输。然后更新当前应用的2个DL TCI状态/联合TCI状态。
示例2:基于统一TCI状态全部更新的sTRP/mTRP动态切换
示例2-1:基于NW实现的sTRP/mTRP的动态切换方案1
在本实施例中,还可以提供一个对统一TCI状态的指示机制不进行改动的方案。具体来说,NW和UE接受统一TCI状态的波束应用时间较长的这个事实,并给予一定的等待时间。
对于DCI的功能性划分,可以分成两种情况来考虑。参见图17a,第一类DCI可以是带有下行调度或不带下行调度的DCI(虚线左边所示)用来做DL TCI状态/联合TCI状态的指示。第二类DCI用来做PDSCH的下行调度。如第二类DCI为虚线左边的DCI,用于调度单TRP传输(DCI scheduling single-TRP Tx)和单PDSCH,可以包含DL TCI状态/联合TCI状态,也可以不包含DL TCI状态/联合TCI状态。
如错误!未找到引用源。a所示,当NW准备将UE切换到sTRP PDSCH的传输模式时,不管目前正在应用的DL TCI状态/联合TCI状态(DL/Joint TCI state(s))是1个还是2个(还是更多个),NW都可以发送第一类DCI来指示1个DL TCI状态/联合TCI状态,并且执行完整的波束应用生效(BAT)的流程。然后,NW可以发送第二类DCI来进行sTRP PDSCH的数据调度。这样1个正在应用的DL TCI状态/联合TCI状态正好适合sTRP的PDSCH传输,且与其他1个PDSCH的调度参数适配。例如,通过DCI(w/wo DL分配)指示1个统一TCI状态(indicating one unified TCI state)。其中,w/wo DL分配表示支持两种下行DCI来指示统一TCI状态。W DL分配是带有下行调度(with DL assignment)信息的DCI;wo DL分配是不带有下行调度信息(without DL assignment)的DCI。通过DCI实际调度或虚拟传输的(actually scheduled or virtually transmitted)PDSCH。发送对于实际或虚拟(for actual or virtual PDSCH)PDSCH的HARQ-ACK。在发送携带HARQ-ACK的PUCCH的最后一个标识之后的Y个时间单元例如Y个符号(Y symbols after the last symbol of PUCCH carrying HARQ-ACK),也即在BAT(例如,Y个符号(i.e.Y symbols))之后的第一个时隙(1st slot after BAT),再通过一个DCI调度单TRP传输(DCI scheduling single-TRP Tx)。例如,Y个时间单元可以是7个符号、28个符号、42个符号、2个时隙等。
类似的,如图17b所示,当NW准备将UE切换到mTRP PDSCH的传输模式时,不管目前正在应用的DL TCI状态/联合TCI状态是1个还是2个(还是更多个),NW都可以发送第一类DCI来指示2个(或更多个)DL TCI状态/联合TCI状态,并且执行波束应用生效的流程。然后,NW可以发送第二类DCI来进行mTRP PDSCH的数据调度。这样2个正在应用的DL TCI状态/联合TCI状态正好适合mTRP的PDSCH传输,且与其他2个PDSCH的调度参数适配。例如,通过DCI(w/wo DL分配)指示2个统一TCI状态(indicating two unified TCI states)。通过DCI实际调度或虚拟传输的(actually scheduled or virtually transmitted)PDSCH。发送对于实际或虚拟(for actual or virtual PDSCH)PDSCH的HARQ-ACK。在发送携带HARQ-ACK的PUCCH的最后一个标识之后的Y个时间单元例如Y个符号,也即在BAT(例如,Y个符号)之后的第一个时隙(1st slot after BAT),再通过一个DCI调度多TRP传输(DCI scheduling multi-TRP Tx)。例如,Y个时间单元可以是7个符号、28个符号、42个符号、2个时隙等。例如,使用应用的DL TCI状态/联合TCI状态#1从TRP#1接收PDSCH#1,使用应用的DL TCI状态/联合TCI状态#2从TRP#2接收PDSCH#2。
示例2-2:基于NW实现的sTRP/mTRP的动态切换方案2
对于示例1-1中的方案(即增强DCI的方案),NW可以通过适当的控制,来实现基于统一TCI状态全部更新的机制。具体来说,当仅有一个统一TCI状态处于应用状态时,DCI中的域例如FollowIndicatedTCIStatePDSCH仅包含表1中的码点‘00’和‘01’。同理,当有两个统一TCI状态处于应用状态时,DCI中的域例如FollowIndicatedTCIStatePDSCH仅可以指示对应的多TRP传输的码点,即‘10’。
类似地,对于示例1-2和示例1-3中的方案(即不改变DCI的格式),NW也可以通过调度来实现sTRP/mTRP的动态切换。具体来说,当仅有一个统一TCI状态处于应用状态时,DCI中的TCI域只能指示一个DL TCI状态/联合TCI状态。当有两个统一TCI状态处于应用状态时,DCI中的TCI域可以指示1个或2个DL TCI状态/联合TCI状态。
示例2-3:其他上下行的信道mTRP传输
虽然本申请实施例主要提供了在PDSCH的sTRP和mTRP之间的动态切换,但因为统一TCI状态可能会将多个信道(如PDCCH和PDSCH)捆包到相同的波束方向上,因此也可以提供其他的上下行信道的mTRP传输。
如果DCI中仅指示一个DL TCI状态/联合TCI状态用来给PDSCH切换为sTRP传输,但是系统中可能仍有其他的信道需要进行mTRP的传输。如在下行的PDCCH重复传输(repetition),上行的PUCCH/PUSCH时域的repetition或多panel同时传输(FDM方案或SDM方案)。这种情况下,UE需要为另外一个TRP(对于PDSCH来说没有可用的DL TCI状态/联合TCI状态)找到可用的默认(default)DL TCI状态/联合TCI状态。
在第一种方式中,UE理解可以是:对于PDSCH来说虽然仅有一个DL TCI状态/联合TCI状态可以使用,但是对于除PDSCH之外的其他下行信道/信号,如PDCCH mTRP传输来说,在未被更新DL TCI状态/联合TCI状态的TRP,原DL/Joint TCI state仍然适用;对于PUCCH/PUSCH mTRP传输来说,在未被更新DL TCI状态/联合TCI状态的TRP,原DL TCI状态/联合TCI状态仍然适用。如图18所示,来自TRP #2的DL TCI状态/联合TCI状态仍可以适用于除PDSCH之外的其他上下行信道和/或信号。
在第二种方式中,即使对于PDCCH/PUCCH/PUSCH来说,未被更新DL TCI状态/联合TCI状态的TRP,原DL TCI状态/联合TCI状态变得不再适用。这种情况下,需要按照传统寻找默认方式,为缺失了统一TCI状态对应的TRP来找到默认波束。具体方案的示例如下:
(1)UE使用该TRP在最近一个时隙内最小CORESET ID所对应的DL TCI状态/联合TCI状态。
(2)UE使用在随机接入该TRP时所选择的SSB作为默认波束,或者该SSB对应的DL TCI状态/UL TCI状态/联合TCI状态作为默认TCI状态。
(3)UE使用MAC CE中激活的多个包含2个统一TCI状态的码点中ID最小的码点所对应的统一TCI状态,其中一个对应着该TRP的统一TCI状态作为默认TCI状态。
图19是根据本申请实施例的通信设备1900示意性结构图。该通信设备1900包括处理器1910,处理器1910可以从存储器中调用并运行计算机程序,以使通信设备1900实现本申请实施例中的方法。
在一种实施方式中,通信设备1900还可以包括存储器1920。其中,处理器1910可以从存储器1920中调用并运行计算机程序,以使通信设备1900实现本申请实施例中的方法。
其中,存储器1920可以是独立于处理器1910的一个单独的器件,也可以集成在处理器1910中。
在一种实施方式中,通信设备1900还可以包括收发器1930,处理器1910可以控制该收发器1930与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1930可以包括发射机和接收机。收发器1930还可以进一步包括天线,天线的数量可以为一个或多个。
在一种实施方式中,该通信设备1900可为本申请实施例的网络设备,并且该通信设备1900可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一种实施方式中,该通信设备1900可为本申请实施例的终端设备,并且该通信设备1900可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图20是根据本申请实施例的芯片2000的示意性结构图。该芯片2000包括处理器2010,处理器2010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一种实施方式中,芯片2000还可以包括存储器2020。其中,处理器2010可以从存储器2020中调用并运行计算机程序,以实现本申请实施例中由终端设备或者网络设备执行的方法。
其中,存储器2020可以是独立于处理器2010的一个单独的器件,也可以集成在处理器2010中。
在一种实施方式中,该芯片2000还可以包括输入接口2030。其中,处理器2010可以控制该输入接口2030与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一种实施方式中,该芯片2000还可以包括输出接口2040。其中,处理器2010可以控制该输出 接口2040与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一种实施方式中,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一种实施方式中,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应用于网络设备和终端设备的芯片可以是相同的芯片或不同的芯片。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图21是根据本申请实施例的通信系统2100的示意性框图。该通信系统2100包括终端设备2110和网络设备2120。
其中,该终端设备2110可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备2120可以用于实现上述方法中由网络设备实现的相应的功能。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例中的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (62)

  1. 一种信息处理方法,包括:
    终端设备使用统一传输配置指示TCI状态执行单传输接收点TRP传输和/或多TRP传输。
  2. 根据权利要求1所述的方法,其中,所述执行单TRP传输包括:从第一TRP接收第一传输资源,或者从第二TRP接收第二传输资源。
  3. 根据权利要求1或2所述的方法,其中,所述执行多TRP传输包括:从第一TRP接收第一传输资源,并且从第二TRP接收第二传输资源。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述方法还包括:
    所述终端设备接收第一信息,所述第一信息用于指示所述终端设备使用统一TCI状态执行单TRP传输和/或多TRP传输。
  5. 根据权利要求4所述的方法,其中,所述第一信息通过第一DCI承载。
  6. 根据权利要求5所述的方法,其中,所述第一信息包括所述第一DCI中的第一域,所述第一域用于指示所述终端设备执行以下至少之一:
    跟随第一应用的统一TCI状态;
    跟随第二应用的统一TCI状态;
    跟随第一应用的统一TCI状态和第二应用的统一TCI状态。
  7. 根据权利要求6所述的方法,其中,终端设备使用统一TCI状态执行单TRP传输和/或多TRP传输,包括以下至少之一:
    所述终端设备使用一个应用的统一TCI状态执行单TRP传输;
    所述终端设备使用多个应用的统一TCI状态执行多TRP传输。
  8. 根据权利要求1至5中任一项所述的方法,其中,所述方法还包括:
    所述终端设备接收第二信息,所述第二信息用于指示统一TCI状态个数。
  9. 根据权利要求8所述的方法,其中,终端设备使用统一TCI状态执行单TRP传输和/或多TRP传输,包括以下至少之一:
    在所述统一TCI状态个数为一个的情况下,所述终端设备使用一个应用的统一TCI状态执行单TRP传输;
    在所述统一TCI状态个数为多个的情况下,所述终端设备使用多个应用的统一TCI状态执行多TRP传输。
  10. 根据权利要求8或9所述的方法,其中,所述第二信息通过第一DCI承载。
  11. 根据权利要求10所述的方法,其中,所述第二信息包括第一DCI中的第二域,所述第二域指示的统一TCI状态个数与所述第一DCI调度的传输类型的关系包括以下至少之一:
    在所述第二域指示的所述统一TCI状态个数为一个的情况下,所述第一DCI调度的传输是单TRP传输;
    在所述第二域指示的所述统一TCI状态个数为多个的情况下,所述第一DCI调度的传输是多TRP传输。
  12. 根据权利要求11所述的方法,其中,所述第二信息包括所述第一DCI中的第三域,所述第三域用于指示在统一TCI状态个数为一个的情况下使用的统一TCI状态。
  13. 根据权利要求5至7、10至12中任一项所述的方法,其中,所述第一DCI用于在调度所述终端设备执行单TRP传输和/或多TRP传输之后更新所述终端设备应用的统一TCI状态。
  14. 根据权利要求1至12中任一项所述的方法,其中,所述方法还包括:
    所述终端设备接收第二DCI,所述第二DCI用于在更新所述终端设备应用的统一TCI状态之后调度所述终端设备执行单TRP传输和/或多TRP传输。
  15. 根据权利要求4所述的方法,其中,所述第一信息通过MAC CE承载。
  16. 根据权利要求15所述的方法,其中,所述第一信息包括所述MAC CE的第四域和/或第五域,其中,
    所述第四域用于指示TCI码点是否包括第一统一TCI状态;
    所述第五域用于指示TCI码点是否包括第二统一TCI状态。
  17. 根据权利要求16所述的方法,其中,终端设备使用统一TCI状态执行单TRP传输和/或多TRP传输,包括以下至少之一:
    在第一DCI指示所述统一TCI状态个数为一个的情况下,若所述MAC CE指示TCI码点包括第一统一TCI状态,则所述终端设备使用第一应用的统一TCI状态从第一TRP接收第一传输资源;
    在第一DCI指示所述统一TCI状态个数为一个的情况下,若所述MAC CE指示TCI码点包括第二 统一TCI状态,则所述终端设备使用第二应用的统一TCI状态从第二TRP接收第二传输资源;
    在第一DCI指示所述统一TCI状态个数为多个的情况下,若所述MAC CE指示TCI码点包括第一统一TCI状态和第二统一TCI状态,则所述终端设备使用第一应用的统一TCI状态从第一TRP接收第一传输资源并且第二应用的统一TCI状态从第二TRP接收第二传输资源。
  18. 根据权利要求16或17所述的方法,其中,所述MAC CE用于指示所述终端设备将第一应用的统一TCI状态更新为第一统一TCI状态和/或将第二应用的统一TCI状态更新为第二统一TCI状态。
  19. 根据权利要求1至18中任一项所述的方法,其中,所述方法还包括:
    所述终端设备在从第一TRP接收PDSCH的情况下,使用应用的统一TCI状态从第二TRP接收非PDSCH的传输资源。
  20. 根据权利要求1至18中任一项所述的方法,其中,所述方法还包括:
    所述终端设备在从第一TRP接收PDSCH的情况下,使用默认TCI状态从第二TRP接收非PDSCH的传输资源。
  21. 根据权利要求20所述的方法,其中,所述默认TCI状态的确定方式包括以下至少之一:
    所述终端设备使用所述第二TRP在最近一个时隙内最小控制资源集标识CORESET ID对应的下行TCI状态和/或联合TCI状态;
    所述终端设备使用在随机接入所述第二TRP时所选择的SSB作为默认波束,或者所述SSB对应的上行TCI状态、下行TCI状态或联合TCI状态的至少之一作为所述默认TCI状态;
    所述终端设备使用MAC CE中激活的多个统一TCI状态的码点中ID最小的码点对应的统一TCI状态中,与所述第二TRP对应的统一TCI状态作为所述默认TCI状态。
  22. 一种信息处理方法,包括:
    网络设备发送第一信息,所述第一信息用于指示终端设备使用统一TCI状态执行单TRP传输和/或多TRP传输。
  23. 根据权利要求22所述的方法,其中,所述第一信息通过第一DCI承载。
  24. 根据权利要求23所述的方法,其中,所述第一信息包括所述第一DCI中的第一域,所述第一域用于指示所述终端设备执行以下至少之一:
    跟随第一应用的统一TCI状态;
    跟随第二应用的统一TCI状态;
    跟随第一应用的统一TCI状态和第二应用的统一TCI状态。
  25. 根据权利要求23或24所述的方法,其中,所述第一DCI用于在调度所述终端设备执行单TRP传输或多TRP传输之后更新所述终端设备应用的统一TCI状态。
  26. 根据权利要求22至25中任一项所述的方法,其中,所述方法还包括:
    所述网络设备发送第二DCI,所述第二DCI用于在更新所述终端设备应用的统一TCI状态之后调度所述终端设备执行单TRP传输和/或多TRP传输。
  27. 根据权利要求22至26中任一项所述的方法,其中,所述第一信息通过MAC CE承载。
  28. 根据权利要求27所述的方法,其中,所述第一信息包括所述MAC CE的第四域和/或第五域,其中,
    所述第四域用于指示TCI码点是否包括第一统一TCI状态;
    所述第五域用于指示TCI码点是否包括第二统一TCI状态。
  29. 一种终端设备,包括:
    处理单元,用于使用统一TCI状态执行单TRP传输和/或多TRP传输。
  30. 根据权利要求29所述的设备,其中,所述执行单TRP传输包括:从第一TRP接收第一传输资源,或者从第二TRP接收第二传输资源。
  31. 根据权利要求29或30所述的设备,其中,所述执行多TRP传输包括:从第一TRP接收第一传输资源,并且从第二TRP接收第二传输资源。
  32. 根据权利要求29至31中任一项所述的设备,其中,所述设备还包括:
    第一接收单元,用于接收第一信息,所述第一信息用于指示所述终端设备使用统一TCI状态执行单TRP传输和/或多TRP传输。
  33. 根据权利要求32所述的设备,其中,所述第一信息通过第一DCI承载。
  34. 根据权利要求33所述的设备,其中,所述第一信息包括所述第一DCI中的第一域,所述第一域用于指示所述终端设备执行以下至少之一:
    跟随第一应用的统一TCI状态;
    跟随第二应用的统一TCI状态;
    跟随第一应用的统一TCI状态和第二应用的统一TCI状态。
  35. 根据权利要求34所述的设备,其中,所述处理单元还用于执行以下至少之一:
    所述终端设备使用一个应用的统一TCI状态执行单TRP传输;
    所述终端设备使用多个应用的统一TCI状态执行多TRP传输。
  36. 根据权利要求29至33中任一项所述的设备,其中,所述设备还包括:
    第二接收单元,用于接收第二信息,所述第二信息用于指示统一TCI状态个数。
  37. 根据权利要求36所述的设备,其中,所述处理单元还用于执行以下至少之一:
    在所述统一TCI状态个数为一个的情况下,所述终端设备使用一个应用的统一TCI状态执行单TRP传输;
    在所述统一TCI状态个数为多个的情况下,所述终端设备使用多个应用的统一TCI状态执行多TRP传输。
  38. 根据权利要求36或37所述的设备,其中,所述第二信息通过第一DCI承载。
  39. 根据权利要求38所述的设备,其中,所述第二信息包括所述第一DCI中的第二域,所述第二域指示的统一TCI状态个数与所述第一DCI调度的传输类型的关系包括以下至少之一:
    在所述第二域指示的所述统一TCI状态个数为一个的情况下,所述第一DCI调度的传输是单TRP传输;
    在所述第二域指示的所述统一TCI状态个数为多个的情况下,所述第一DCI调度的传输是多TRP传输。
  40. 根据权利要求39所述的设备,其中,所述第二信息包括所述第一DCI中的第三域,所述第三域用于指示在统一TCI状态个数为一个的情况下使用的统一TCI状态。
  41. 根据权利要求33至35、38至40中任一项所述的设备,其中,所述第一DCI用于在调度所述终端设备执行单TRP传输和/或多TRP传输之后更新所述终端设备应用的统一TCI状态。
  42. 根据权利要求29至41中任一项所述的设备,其中,所述设备还包括:
    第三接收单元,用于接收第二DCI,所述第二DCI用于在更新所述终端设备应用的统一TCI状态之后调度所述终端设备执行单TRP传输和/或多TRP传输。
  43. 根据权利要求32所述的设备,其中,所述第一信息通过MAC CE承载。
  44. 根据权利要求43所述的设备,其中,所述第一信息包括所述MAC CE的第四域和/或第五域,其中,
    所述第四域用于指示TCI码点是否包括第一统一TCI状态;
    所述第五域用于指示TCI码点是否包括第二统一TCI状态。
  45. 根据权利要求44所述的设备,其中,所述处理单元还用于执行以下至少之一:
    在第一DCI指示所述统一TCI状态个数为一个的情况下,若所述MAC CE指示TCI码点包括第一统一TCI状态,则所述终端设备使用第一应用的统一TCI状态从第一TRP接收第一传输资源;
    在第一DCI指示所述统一TCI状态个数为一个的情况下,若所述MAC CE指示TCI码点包括第二统一TCI状态,则所述终端设备使用第二应用的统一TCI状态从第二TRP接收第二传输资源;
    在第一DCI指示所述统一TCI状态个数为多个的情况下,若所述MAC CE指示TCI码点包括第一统一TCI状态和第二统一TCI状态,则所述终端设备使用第一应用的统一TCI状态从第一TRP接收第一传输资源并且第二应用的统一TCI状态从第二TRP接收第二传输资源。
  46. 根据权利要求44或45所述的设备,其中,所述MAC CE用于指示所述终端设备将第一应用的统一TCI状态更新为第一统一TCI状态和/或将第二应用的统一TCI状态更新为第二统一TCI状态。
  47. 根据权利要求32至46中任一项所述的设备,其中,所述设备还包括:
    第四接收单元,用于在从第一TRP接收PDSCH的情况下,使用应用的统一TCI状态从第二TRP接收非PDSCH的传输资源。
  48. 根据权利要求32至46中任一项所述的设备,其中,所述设备还包括:
    第五接收单元,用于在从第一TRP接收PDSCH的情况下,使用默认TCI状态从第二TRP接收非PDSCH的传输资源。
  49. 根据权利要求48所述的设备,其中,所述默认TCI状态的确定方式包括以下至少之一:
    所述终端设备使用所述第二TRP在最近一个时隙内最小控制资源集标识CORESET ID对应的下行TCI状态和/或联合TCI状态;
    所述终端设备使用在随机接入所述第二TRP时所选择的SSB作为默认波束,或者所述SSB对应的上行TCI状态、下行TCI状态或联合TCI状态的至少之一作为所述默认TCI状态;
    所述终端设备使用MAC CE中激活的多个统一TCI状态的码点中ID最小的码点对应的统一TCI 状态中,与所述第二TRP对应的统一TCI状态作为所述默认TCI状态。
  50. 一种网络设备,包括:
    第一发送单元,用于发送第一信息,所述第一信息用于指示终端设备使用统一TCI状态执行单TRP传输和/或多TRP传输。
  51. 根据权利要求50所述的设备,其中,所述第一信息通过第一DCI承载。
  52. 根据权利要求51所述的设备,其中,所述第一信息包括所述第一DCI中的第一域,所述第一域用于指示所述终端设备执行以下至少之一:
    跟随第一应用的统一TCI状态;
    跟随第二应用的统一TCI状态;
    跟随第一应用的统一TCI状态和第二应用的统一TCI状态。
  53. 根据权利要求51或52所述的设备,其中,所述第一DCI用于在调度所述终端设备执行单TRP传输和/或多TRP传输之后更新所述终端设备应用的统一TCI状态。
  54. 根据权利要求50至53中任一项所述的设备,其中,所述设备还包括:
    第二发送单元,用于发送第二DCI,所述第二DCI用于在更新所述终端设备应用的统一TCI状态之后调度所述终端设备执行单TRP传输和/或多TRP传输。
  55. 根据权利要求50至26中任一项所述的设备,其中,所述第一信息通过MAC CE承载。
  56. 根据权利要求55所述的设备,其中,所述第一信息包括所述MAC CE的第四域和/或第五域,其中,
    所述第四域用于指示TCI码点是否包括第一统一TCI状态;
    所述第五域用于指示TCI码点是否包括第二统一TCI状态。
  57. 一种终端设备,包括:处理器、存储器和收发器,所述存储器用于存储计算机程序,所述处理器用于控制所述收发器与其他设备进行通信,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述终端设备执行如权利要求1至21中任一项所述的方法。
  58. 一种网络设备,包括:处理器、存储器和收发器,所述存储器用于存储计算机程序,所述处理器用于控制所述收发器与其他设备进行通信,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述网络设备执行如权利要求22至28中任一项所述的方法。
  59. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至21、22至28中任一项所述的方法。
  60. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求1至21、22至28中任一项所述的方法。
  61. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至21、22至28中任一项所述的方法。
  62. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至21、22至28中任一项所述的方法。
PCT/CN2022/104741 2022-07-08 2022-07-08 信息处理方法、终端设备和网络设备 WO2024007336A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/104741 WO2024007336A1 (zh) 2022-07-08 2022-07-08 信息处理方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/104741 WO2024007336A1 (zh) 2022-07-08 2022-07-08 信息处理方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2024007336A1 true WO2024007336A1 (zh) 2024-01-11

Family

ID=89454637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104741 WO2024007336A1 (zh) 2022-07-08 2022-07-08 信息处理方法、终端设备和网络设备

Country Status (1)

Country Link
WO (1) WO2024007336A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586862A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 信息指示的方法及装置
CN111586846A (zh) * 2019-02-15 2020-08-25 成都华为技术有限公司 传输配置编号状态指示的方法和通信装置
WO2021198988A1 (en) * 2020-04-01 2021-10-07 Telefonaktiebolaget Lm Ericsson (Publ) Pusch multiple trp reliability with ul tci indication
CN113597779A (zh) * 2021-06-18 2021-11-02 北京小米移动软件有限公司 信息指示方法、装置、用户设备、基站及存储介质
CN113767697A (zh) * 2021-08-05 2021-12-07 北京小米移动软件有限公司 一种传输配置指示tci状态配置的方法及其装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586862A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 信息指示的方法及装置
CN111586846A (zh) * 2019-02-15 2020-08-25 成都华为技术有限公司 传输配置编号状态指示的方法和通信装置
WO2021198988A1 (en) * 2020-04-01 2021-10-07 Telefonaktiebolaget Lm Ericsson (Publ) Pusch multiple trp reliability with ul tci indication
CN113597779A (zh) * 2021-06-18 2021-11-02 北京小米移动软件有限公司 信息指示方法、装置、用户设备、基站及存储介质
CN113767697A (zh) * 2021-08-05 2021-12-07 北京小米移动软件有限公司 一种传输配置指示tci状态配置的方法及其装置

Similar Documents

Publication Publication Date Title
WO2022011555A1 (zh) 用于确定上行传输参数的方法和终端设备
WO2021217378A1 (zh) 无线通信方法、终端设备和网络设备
WO2021164684A1 (zh) 上行反馈资源的确定方法和终端设备
WO2024007336A1 (zh) 信息处理方法、终端设备和网络设备
WO2024026678A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023035144A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023115583A1 (zh) 通信方法、终端设备和网络设备
WO2023197260A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023108638A1 (zh) 无线通信的方法、终端设备和网络设备
US20230217433A1 (en) Resource scheduling method, terminal device, and network device
WO2024026839A1 (zh) 无线通信的方法和终端设备
WO2022016342A1 (zh) 信道加扰方法和终端设备
WO2024011553A1 (zh) 无线通信的方法、终端设备和网络设备
US20240023076A1 (en) Method for channel estimation, terminal device, and network device
WO2023279399A1 (zh) 侧行传输资源的确定方法、发送方法、装置、设备及介质
WO2024031237A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023102848A1 (zh) 无线通信的方法和终端设备
WO2023004789A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023206004A1 (zh) 无线通信的方法、终端设备和网络设备
US20230099072A1 (en) Information processing method, terminal device and network device
WO2023039811A1 (zh) 通信方法及通信装置
WO2023123399A1 (zh) 无线通信的方法、终端设备和网络设备
WO2019028962A1 (zh) 无线通信方法、终端设备、网络设备和网络节点
WO2023108555A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024059986A1 (zh) 通信方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949917

Country of ref document: EP

Kind code of ref document: A1