WO2021128318A1 - 上行mac ce传输的方法和装置 - Google Patents

上行mac ce传输的方法和装置 Download PDF

Info

Publication number
WO2021128318A1
WO2021128318A1 PCT/CN2019/129378 CN2019129378W WO2021128318A1 WO 2021128318 A1 WO2021128318 A1 WO 2021128318A1 CN 2019129378 W CN2019129378 W CN 2019129378W WO 2021128318 A1 WO2021128318 A1 WO 2021128318A1
Authority
WO
WIPO (PCT)
Prior art keywords
mac
terminal device
target
transmissions
transmission
Prior art date
Application number
PCT/CN2019/129378
Other languages
English (en)
French (fr)
Inventor
卢前溪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/129378 priority Critical patent/WO2021128318A1/zh
Priority to CN201980100536.1A priority patent/CN114557100A/zh
Publication of WO2021128318A1 publication Critical patent/WO2021128318A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • This application relates to the field of communications, and specifically to a method and device for uplink MAC CE transmission.
  • the 5th generation (5G) mobile communication system has high requirements for transmission delay and transmission reliability.
  • MAC Media Access Control
  • CE Control Element
  • the network equipment can learn the transmission requirements of the downlink MAC CE, and thus can ensure the transmission delay and transmission reliability of the downlink MAC CE through scheduling.
  • the network equipment does not know the transmission requirements of the uplink MAC CE. Therefore, how to ensure the transmission delay and transmission reliability of the uplink MAC CE is an urgent problem to be solved.
  • the embodiments of the present application provide a method and device for uplink MAC CE transmission, which can reduce the transmission delay of the uplink MAC CE and improve transmission reliability.
  • a method for uplink MAC CE transmission includes: a terminal device receives indication information, the indication information is used to indicate that the hybrid automatic repeat request HARQ function corresponding to uplink transmission is in an on or off state
  • the terminal device determines the target MAC CE from at least one MAC CE according to the indication information, wherein, when the indication information indicates that the HARQ function corresponding to uplink transmission is in the on state, the transmission attribute of the target MAC CE is Enable HARQ feedback; when the indication information indicates that the HARQ function corresponding to uplink transmission is in the off state, the transmission attribute of the target MAC CE is to enable HARQ feedback or disable HARQ feedback; the terminal device sends the target MAC CE.
  • a method for uplink MAC CE transmission includes: a terminal device sends a target MAC CE; when the number of transmissions of the target MAC CE is less than the maximum number of transmissions, and/or when the first timing When the timer times out, the terminal device triggers the retransmission of the target MAC CE.
  • a method for uplink MAC CE transmission includes: a network device sends indication information, the indication information is used to indicate an uplink transmission resource; the network device sends third configuration information, and the first The third configuration information is used to configure the first timer, and the first timer is used to trigger the retransmission of the target MAC CE on the uplink transmission resource.
  • a device for uplink MAC CE transmission is provided, which is used to execute the method in the first aspect or its implementation manners.
  • the device for uplink MAC CE transmission includes a functional module for executing the method in the foregoing first aspect or each of its implementation manners.
  • a device for uplink MAC CE transmission is provided, which is used to execute the method in the second aspect or its implementation manners.
  • the device for uplink MAC CE transmission includes a functional module for executing the method in the second aspect or its implementation manners.
  • an uplink MAC CE transmission device is provided, which is used to execute the method in the third aspect or its implementation manners.
  • the device for uplink MAC CE transmission includes a functional module for executing the method in the foregoing third aspect or each of its implementation manners.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation modes.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect or its implementation manners.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, and execute the method in the third aspect or its implementation manners.
  • a chip is provided, which is used to implement any one of the foregoing first to third aspects or the method in each of its implementation manners.
  • the device includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes any one of the above-mentioned first aspect to the third aspect or any of the implementation modes thereof method.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the above-mentioned first to third aspects or the method in each implementation manner thereof.
  • a computer program product including computer program instructions that cause a computer to execute any one of the above-mentioned first to third aspects or the method in each implementation manner thereof.
  • a computer program which, when run on a computer, causes the computer to execute any one of the above-mentioned first to third aspects or the method in each implementation manner thereof.
  • the terminal device uses the uplink transmission with the HARQ function enabled to carry the uplink MAC CE.
  • the network device or other terminal equipment does not receive the uplink MAC CE, it can feedback to the terminal device through HARQ feedback, which can improve the uplink MAC CE transmission reliability.
  • the terminal equipment uses the uplink transmission with the HARQ function disabled to carry the uplink MAC CE, which can reduce the transmission delay of the uplink MAC CE.
  • Fig. 1 is a schematic diagram of a communication system architecture according to an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a method for uplink MAC CE transmission according to an embodiment of the present application.
  • Figures 3-5 are schematic diagrams of uplink MAC CE transmission according to an embodiment of the present application.
  • Fig. 6 is a schematic diagram of another uplink MAC CE transmission method according to an embodiment of the present application.
  • Fig. 7 is a schematic diagram of another uplink MAC CE transmission method according to an embodiment of the present application.
  • Figures 8-10 are schematic block diagrams of devices for uplink MAC CE transmission according to an embodiment of the present application.
  • Fig. 11 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of a chip according to an embodiment of the present application.
  • Fig. 13 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a communication system suitable for this application.
  • the communication system 100 includes a network device 110 and a terminal device 120.
  • the terminal device 120 communicates with the network device 110 through electromagnetic waves.
  • the terminal device 120 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem, for example, the third generation partnership program (3rd generation partnership project).
  • 3rd generation partnership project 3rd generation partnership project
  • UE user equipment
  • MS mobile station
  • soft terminal home gateway
  • set-top box etc.
  • the network device 110 may be a base station defined by 3GPP, for example, a base station (gNB) in a 5G mobile communication system.
  • the network device 110 may also be a non-3GPP (non-3GPP) access network device, such as an access gateway (AG).
  • the network device 110 may also be a relay station, an access point, a vehicle-mounted device, a wearable device, and other types of devices.
  • the terminal devices 120 may perform direct terminal connection (Device to Device, D2D) communication.
  • D2D Direct terminal connection
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • the communication system 100 is only an example, and the communication system applicable to the present application is not limited to this.
  • the number of network devices and terminal devices included in the communication system 100 may also be other numbers.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 having a communication function and a terminal device 120.
  • the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiment of the present application.
  • the communication system 100 shown in FIG. 1 may also be an NTN system, that is, the network device 110 in FIG. 1 may be a satellite.
  • Non-Terrestrial Communication Network (Non-Terrestrial Network, NTN)
  • NTN technology generally uses satellite communication to provide communication services to ground users.
  • satellite communication has many unique advantages.
  • satellite communication is not restricted by the user area.
  • ordinary terrestrial communications cannot cover areas such as oceans, mountains, deserts, etc.
  • communication equipment cannot be installed or communication coverage is not available due to sparse population, normal communication cannot be carried out in these areas.
  • satellite communications since a satellite can cover a larger ground and the satellite can orbit the earth, theoretically every corner of the earth can be covered by satellite communications.
  • satellite communication has greater social value.
  • Satellite communication can be covered at a lower cost in remote mountainous areas, poor and backward countries or regions, so that people in these areas can enjoy advanced voice communication and mobile Internet technology, which is conducive to narrowing the digital gap with developed areas and promoting The development of these areas. Again, the satellite communication distance is long, and the communication distance increases and the cost of communication does not increase significantly. Finally, the stability of satellite communication is high, and it is not restricted by natural disasters.
  • communication satellites can be divided into Low-Earth Orbit (LEO) satellites, Medium-Earth Orbit (MEO) satellites, Geostationary Earth Orbit (GEO) satellites, and high High Elliptical Orbit (HEO) satellites, etc.
  • LEO Low-Earth Orbit
  • MEO Medium-Earth Orbit
  • GEO Geostationary Earth Orbit
  • HEO High Elliptical Orbit
  • the altitude range of the LEO satellite is 500km to 1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms.
  • the maximum satellite viewing time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the requirement for the transmission power of the user terminal is not high.
  • the orbital height of the GEO satellite is 35786km, and the period of rotation around the earth is 24 hours.
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • satellites In order to ensure the coverage of satellites and increase the system capacity of the entire satellite communication system, satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. Ground area.
  • NR has two levels of retransmission mechanisms: the HARQ mechanism of the MAC layer and the automatic repeat-reQuest (ARQ) mechanism of the radio link control (Radio Link Control, RLC) layer.
  • ARQ automatic repeat-reQuest
  • the retransmission of lost or erroneous data is mainly handled by the HARQ mechanism of the MAC layer and supplemented by the retransmission function of the RLC layer.
  • the HARQ mechanism of the MAC layer can provide fast retransmission, and the ARQ mechanism of the RLC layer can provide reliable data transmission.
  • HARQ uses Stop-and-Wait Protocol to send data.
  • the stop-and-wait protocol after the sender sends a Transport Block (TB), it stops and waits for the confirmation message. In this way, the sender will stop and wait for confirmation after each transmission, which will result in very low user throughput. Therefore, NR uses multiple parallel HARQ processes. When one HARQ process is waiting for confirmation information, the sender can use another HARQ process to continue sending data. These HARQ processes together form a HARQ entity, which combines the stop-and-wait protocol to allow continuous data transmission.
  • TB Transport Block
  • HARQ is divided into uplink HARQ and downlink HARQ. Among them, uplink HARQ is for uplink data transmission, and downlink HARQ is for downlink data transmission, and the two are independent of each other.
  • each serving cell corresponding to a terminal device has its own HARQ entity.
  • Each HARQ entity maintains a set of parallel downlink HARQ processes and a set of parallel uplink HARQ processes.
  • the network device can indicate the maximum number of HARQ processes to the terminal device through radio resource control (Radio Resource Control, RRC) signaling according to the network deployment situation. If the network device does not provide corresponding configuration parameters, the default number of HARQ processes in the downlink is 8, and the maximum number of HARQ processes supported by each carrier in the uplink is always 16.
  • Each HARQ process can correspond to a HARQ process ID.
  • the broadcast control channel Broadcast Control Channel, BCCH
  • BCCH Broadcast Control Channel
  • the HARQ ID 0 is used for message 3 (Msg3) transmission in the random process.
  • each downlink HARQ process can only process 1 Transport Block (TB) at the same time; for terminals that support downlink space division multiplexing, each downlink HARQ process can process 1 at the same time Or 2 TB. Each uplink HARQ process of the terminal can handle 1 TB at the same time.
  • Transport Block TB
  • each uplink HARQ process of the terminal can handle 1 TB at the same time.
  • HARQ is divided into two types, synchronous and asynchronous in the time domain, and divided into two types, non-adaptive and adaptive in the frequency domain.
  • Both NR uplink and downlink use asynchronous adaptive HARQ mechanism.
  • Asynchronous HARQ that is, retransmission can occur at any time, and the time interval between the retransmission of the same TB and the previous transmission is not fixed.
  • Adaptive HARQ can change the frequency domain resources and MCS used for retransmission.
  • NR logical channel priority (Logical Channel Prioritization, LCP)
  • network equipment allocates uplink transmission resources based on each user (per-UE) instead of each bearer (per-bearer), which radio bearer data can be put into the allocated uplink transmission resources The transmission is determined by the terminal device.
  • the terminal device Based on the uplink transmission resources configured by the network device, the terminal device needs to determine the amount of transmission data for each logical channel in the initial transmission MAC protocol data unit (PDU). In some cases, the terminal device also needs to be MAC CE resource allocation. In order to realize the multiplexing of uplink logical channels, each uplink logical channel needs to be assigned a priority. For a MAC PDU of a given size, when there are multiple uplink logical channels with data transmission requirements at the same time, the terminal device can allocate the MAC PDU in order according to the logical channel priority corresponding to each uplink logical channel. Resources.
  • PDU initial transmission MAC protocol data unit
  • PBR Prioritized Bit Rate
  • network equipment can usually configure the following parameters for each uplink logical channel through RRC:
  • PBR which means the minimum rate that the logical channel needs to guarantee
  • BSD Bucket Size Duration
  • the MAC layer of the terminal device uses the token bucket mechanism to implement uplink logical channel multiplexing. Specifically, the terminal device maintains a variable Bj for each uplink logical channel j, which indicates the number of tokens currently available in the token bucket, and the method is as follows:
  • the terminal equipment increases Bj by PBR*T before each LCP process, where T is the time interval from the time when Bj was last increased to the current time;
  • step 3 If the updated Bj according to step 2 is greater than the maximum capacity of the token bucket (ie PBR*BSD), then Bj is set as the maximum capacity of the token bucket.
  • the terminal device When the terminal device receives an uplink (UL) grant indicating a new transmission, the terminal device can perform LCP processing according to the following steps.
  • UL uplink
  • Step 1 For all logical channels with Bj>0, resources are allocated in order of priority from high to low.
  • the resources allocated for each logical channel can only meet the requirements of PBR, that is, according to the PBR token bucket corresponding to the logical channel The number of tokens allocates resources for the logical channel.
  • PBR Packet Control Protocol
  • the PBR of a certain logical channel is set to infinity, only when the resources of this logical channel are satisfied, other logical channels with lower priority than it will be considered.
  • Step 2 Subtract the size of all the MAC service data units (SDU) of the logical channel j multiplexed into the MAC PDU in step 1 from Bj.
  • SDU MAC service data units
  • Step 3 If there are remaining uplink resources after performing steps 1 and 2, regardless of the size of the Bj of each logical channel (that is, whether greater than 0, equal to 0, or less than 0), follow the priority of the logical channel from high to low The remaining resources are allocated to each logical channel in sequence. Only when the data of the high-priority logical channels are all sent and the UL grant has not been exhausted, the low-priority logical channels can be served. That is, at this time, the terminal device maximizes the data transmission of the high priority logical channel.
  • the terminal equipment should also follow the following principles: if the entire RLC SDU can be filled in the remaining resources, the RLC SDU should not be segmented; if the UE segments the RLC SDU in the logical channel, it should According to the size of the remaining resources, try to fill in the largest segment; the UE should maximize the data transmission; if the UL grant size is greater than or equal to 8 bytes, and the UE has data transmission needs, the UE cannot only send the padding buffer status Report (Buffer Status Report, BSR) or send only padding.
  • Buffer Status Report Buffer Status Report
  • the terminal equipment For different signals and/or logical channels, the terminal equipment also needs to follow the following priority order (arranged in order of priority from high to low) when performing LCP processing:
  • C-RNTI Cell-Radio Network Temporary Identifier
  • CCCH UL common control channel
  • BSR MAC CE used for padding BSR.
  • 3GPP is discussing the introduction of the HARQ function that disables the uplink/downlink HARQ process to reduce the data transmission delay, and agrees that the HARQ function can be disabled based on the HARQ process Configuration.
  • the network device can not wait to receive the uplink transmission of the terminal device (for uplink HARQ, it is the uplink data transmission, and for the downlink HARQ, it is the terminal device's downlink data transmission for the HARQ. ACK/NACK feedback) and continuously schedule the HARQ process for data transmission, thereby reducing the MAC transmission delay; but on the other hand, the network device can also improve the MAC by configuring bundling repetition transmission or blind scheduling retransmission. Transmission reliability. Among them, whether to configure bundling repetition transmission or blind scheduling depends on the implementation of network equipment.
  • QoS Quality of Service
  • some services are sensitive to delay, and some services have strict requirements on packet loss rates.
  • QoS Quality of Service
  • MAC CE For MAC CE, it is usually necessary to ensure a small transmission delay. At the same time, because MAC CE does not have a corresponding RLC entity, the RLC ARQ mechanism cannot be used to improve transmission reliability. Its transmission reliability can only be guaranteed by MAC transmission. For the downlink MAC CE, since the network equipment can learn the transmission requirements of the downlink MAC CE, the network equipment can ensure the transmission delay and transmission reliability of the downlink MAC CE through scheduling. For the upstream MAC CE, the network equipment does not know the transmission requirements of the upstream MAC CE. Therefore, how to ensure the transmission delay and transmission reliability of the uplink MAC CE is an urgent problem to be solved.
  • the embodiment of the present application proposes a method for uplink MAC CE transmission, which can reduce the transmission delay of the uplink MAC CE and improve transmission reliability.
  • FIG. 2 is a schematic flowchart of a method 200 for uplink MAC CE transmission according to an embodiment of the present application.
  • the method described in FIG. 2 may be executed by a terminal device, and the terminal device may be, for example, the terminal device 120 shown in FIG. 1.
  • the method 200 may include at least part of the following content.
  • the method 200 can be applied to NTN scenarios such as long-distance communications such as satellite communications.
  • the network device can be a satellite.
  • the method 200 can also be applied to other communications scenarios, such as terrestrial cellular network communications, car networking communications, etc. The embodiments of this application do not limit this.
  • the terminal device receives indication information, which is used to indicate that the HARQ function corresponding to the uplink transmission is in an on or off state.
  • the network device can send instruction information to the terminal device.
  • other terminal devices may send instruction information to the terminal device.
  • the terminal device determines the target MAC CE from at least one MAC CE according to the instruction information.
  • At least one MAC CE may be the MAC CE of the terminal device.
  • the transmission attribute of the target MAC CE is to enable HARQ feedback.
  • the transmission attribute of the target MAC CE is to enable HARQ feedback or disable HARQ feedback.
  • the terminal device sends the target MAC CE.
  • At least one MAC CE in the above content may include, but is not limited to, one or more of the following MAC CEs: BSR MAC CE, Configured Grant Confirmation MAC CE, Single Entry PHR MAC CE, Multiple Entry PHR MAC CE, Recommended bit rate MAC CE.
  • the transmission attribute of the MAC CE can be "only allowed to use the uplink transmission resources with the HARQ function disabled for transmission", that is, the transmission attribute of the MAC CE is HARQ feedback disabled; or the transmission attribute of the MAC CE can be "allowed to use only Enable the uplink transmission resources of the HARQ function for transmission", that is, the transmission attribute of the MAC CE is to enable HARQ feedback.
  • the embodiments of the present application do not limit the names of opening and closing, that is, they can also be expressed as other names.
  • turning on can also be expressed as enabling
  • turning off can also be expressed as disabling or disabling, that is, the HARQ function corresponding to uplink transmission can be in an enabled state or a disabled state.
  • the terminal device determines the target MAC CE from at least one MAC CE according to the instruction information, which may include: the terminal device determines the transmission attribute of the at least one MAC CE, and then the terminal device determines the transmission attribute of the at least one MAC CE according to the instruction information and the transmission attribute of the at least one MAC CE.
  • the target MAC CE is determined in the CE.
  • the terminal device may receive first configuration information, where the first configuration information is used to configure the transmission attribute of at least one MAC CE.
  • the first configuration information may be carried in RRC signaling. Therefore, the terminal device can determine the transmission attribute of at least one MAC CE according to the first configuration information.
  • the transmission attribute of at least one MAC CE may be pre-configured on the terminal device.
  • the terminal device receives the indication information. If the indication information indicates the HARQ ID used for this uplink transmission, and the HARQ function of the HARQ process is in the on state, or the indication information indicates that the HARQ function is enabled for this uplink transmission, then The terminal device can determine the target MAC CE in the MAC CE whose transmission attribute is HARQ feedback enabled.
  • the terminal device receives the indication information. If the indication information indicates the HARQ ID used for this uplink transmission and the HARQ function of the HARQ process is in the disabled state, or the indication information indicates that the HARQ function is disabled for this uplink transmission, the terminal device can
  • the target MAC CE is determined by the following two methods:
  • the terminal device can determine the target MAC CE in the MAC CE whose transmission attribute is HARQ feedback turned off.
  • the terminal device can determine the target MAC CE in the at least one MAC CE.
  • the terminal device may first determine the candidate MAC CE among at least one MAC CE, and then select the target MAC CE among the candidate MAC CEs. Among them, the number of candidate MAC CEs is greater than or equal to 1.
  • the terminal device may determine the candidate MAC CE in a manner: after the terminal device receives the indication information, if the indication information indicates the HARQ ID used for this uplink transmission, and the HARQ function of the HARQ process is turned on, or If the indication information indicates that the HARQ function is enabled for this uplink transmission, the terminal device can determine the MAC CE whose transmission attribute is enabling HARQ feedback as a candidate MAC CE.
  • the terminal device may determine all MAC CEs whose transmission attribute is to enable HARQ feedback as candidate MAC CEs.
  • the terminal device may determine the candidate MAC CE according to the transmission attribute for the uplink transmission resources required for the uplink transmission of the MAC CE fed back by HARQ.
  • the terminal device can determine the MAC CE whose transmission attribute is HARQ feedback turned off as the candidate MAC CE.
  • the terminal device may determine the at least one MAC CE as a candidate MAC CE.
  • the terminal device After the terminal device determines the candidate MAC CE, the terminal device can also allocate resources for the candidate MAC CE according to the size of the uplink transmission resources.
  • the priority of the uplink transmission resources occupied by the candidate MAC CE may be positively correlated with the priority of the candidate MAC CE.
  • the higher the priority of the candidate MAC CE the higher the priority of the uplink transmission resources occupied by the candidate MAC CE.
  • the terminal equipment may allocate more uplink transmission resources for MAC CE1 than for MAC CE2.
  • the terminal device may sequentially allocate resources according to the priority of the candidate MAC CE from high to low.
  • the terminal device may allocate resources for the candidate MAC CE according to the transmission requirements of the candidate MAC CE.
  • the terminal device After the terminal device determines the candidate MAC CE, the terminal device can determine the target MAC CE among the candidate MAC CEs.
  • the terminal device can determine the target MAC CE from the candidate MAC CE according to at least one of the following information: the transmission requirement of the candidate MAC CE, the priority ranking of each MAC CE in the candidate MAC CE, and the uplink of this uplink transmission Transmission resource size.
  • the candidate MAC CE includes two MAC CEs, namely: Configured Grant Confirmation MAC CE and Multiple Entry PHP MAC CE. Since the priority of Configured Grant Confirmation MAC CE is higher than the priority of Multiple Entry PHP MAC CE, the terminal equipment The Configured Grant Confirmation MAC CE can be determined as the target MAC CE.
  • the candidate MAC CE includes 3 MAC CEs, namely Configured Grant Confirmation MAC CE 1, Configured Grant Confirmation MAC CE 2 and Multiple Entry PHP MAC CE.
  • the uplink transmission resource required for the transmission of Configured Grant Confirmation MAC CE 1 is 100 bits for transmission.
  • Configured Grant Confirmation MAC CE 2 requires an uplink transmission resource of 200 bits, and the uplink transmission resource for this uplink transmission is 150 bits.
  • the terminal device can determine the Configured Grant Confirmation MAC CE 1 as the target MAC CE according to the priority of the MAC CE and the size of the uplink transmission resources for this uplink transmission.
  • the terminal device may also determine the candidate logical channel for uplink transmission in at least one logical channel according to the indication information, and then determine the target logical channel among the candidate logical channels.
  • At least one logical channel is a logical channel that currently has data to be transmitted.
  • the determined candidate logical channels are regarded as a set and referred to as a candidate logical channel set.
  • the number of logical channels included in the candidate logical channel set is greater than or equal to one.
  • the specific implementation manner for the terminal device to determine the candidate logical channel may be: if the HARQ function corresponding to uplink transmission is in the on state, the terminal device may determine the logical channel with the first attribute in the at least one logical channel as the candidate logical channel set For the candidate logical channel, the first attribute is to allow the use of the uplink transmission resource transmission with the HARQ function in the on state. On the contrary, if the HARQ function corresponding to the uplink transmission is in the off state, the terminal device may determine the logical channel with the second attribute in the at least one logical channel as the candidate logical channel in the candidate logical channel set, and the second attribute is allowed Use the uplink transmission resource transmission with the HARQ function in the off state.
  • the terminal device may also allocate resources to the candidate logical channels in the candidate logical channel set.
  • the terminal device may allocate resources to the candidate logical channels in the first candidate logical channel set according to the priority of the candidate logical channels in the first candidate logical channel set.
  • the network device may configure a priority for it. For example, the smaller the value of the priority, the higher the priority of the corresponding logical channel. In order to distinguish, this priority is referred to as the configuration priority of the logical channel here.
  • the terminal device performs the first round of resource allocation, that is, the terminal device determines at least one candidate logical channel whose token number Bj is greater than 0 in the first candidate logical channel set; and, the terminal device according to the at least one candidate logical channel
  • the configuration priority of the logical channels is from high to low, and resources are allocated for the at least one candidate logical channel, and the allocated resources meet the PBR requirements of the selected logical channel, that is, the resources allocated for each candidate logical channel can only meet the PBR For example, according to the number of tokens Bj in the PBR token bucket corresponding to the logical channel j, resources are allocated to the logical channel j.
  • the number of tokens Bj minus the logical channel j is multiplexed into all the MACs of the MAC PDU in the first round of resource allocation.
  • the size of the SDU is the size of the SDU.
  • the size of the number of tokens Bj of each candidate logical channel set in a candidate logical channel set, and the terminal device is the first candidate logical channel set according to the order of the configuration priority of the candidate logical channels in the first candidate logical channel set from high to low.
  • the candidate logical channels in the candidate logical channel set allocate the remaining resources until all remaining resources are allocated.
  • the terminal device can maximize the data transmission of the candidate logical channel with high priority.
  • Step 1 The terminal device receives the first configuration information sent by the network device.
  • the first configuration information configures the first transmission attributes for them; for MAC CE3 and MAC CE4, the first configuration information is not configured for them The first transmission attribute.
  • the first transmission attribute is "only allowed to use the uplink transmission resources with the HARQ function disabled for transmission".
  • Step 2 The terminal device receives the UL grant1 from the network device to indicate the initial uplink transmission, and at the same time indicates that the HARQ function corresponding to this uplink transmission is in the on state, then the terminal device selects the logical channel (LC) 1 and LC2 of the data to be transmitted As the candidate logical channel for this uplink transmission, at the same time, for the triggered MAC CE1, MAC CE2, MAC CE3, and MAC CE4, the terminal device selects MAC CE3 and MAC CE4 that are not configured with the first transmission attribute as the candidate MAC for this transmission CE.
  • LC logical channel
  • the terminal device can allocate resources in the order of the logical channel and the MAC CE resource allocation priority according to the size of the uplink transmission resources indicated by UL grant1 for this transmission. .
  • Step 3 The terminal device receives the UL grant2 from the network device to indicate the initial uplink transmission, and at the same time indicates that the HARQ function corresponding to this uplink transmission is off, then the terminal device selects the LC1 of the data to be transmitted as the candidate logical channel for this uplink transmission . At the same time, the terminal device regards the triggered MAC CE1, MAC CE2, MAC CE3, and MAC CE4 as candidate MAC CEs for this transmission.
  • the terminal device allocates resources according to the uplink transmission resource size of this transmission indicated by UL grant2, and the terminal device allocates resources in the order of the logical channel and MAC CE resource allocation priority from high to low. .
  • the uplink MAC CE by restricting the uplink MAC CE to use the uplink transmission bearer with the HARQ function turned off, the transmission delay of the uplink MAC CE can be guaranteed. At the same time, it can rely on the blindly scheduled retransmission of the network equipment to improve the uplink MAC CE. Transmission reliability.
  • the terminal device may also trigger the retransmission of the MAC CE.
  • the terminal device can automatically trigger the retransmission of the MAC CE. Specifically, after the terminal device sends a certain MAC CE (referred to as the first MAC CE for the convenience of description), the terminal device receives the UL grant from the network device indicating the uplink initial transmission, or the terminal device is on the configured UL grant Get an opportunity for uplink transmission. At this time, if the number of transmissions of the first MAC CE is less than the maximum number of transmissions, the terminal device can trigger the retransmission of the first MAC CE, and the terminal device can use the first MAC CE as a candidate MAC CE for this uplink transmission.
  • the first MAC CE referred to as the first MAC CE for the convenience of description
  • the first MAC CE may be any MAC CE among the triggered MAC CEs of the terminal device.
  • the first MAC CE may be the target MAC CE.
  • the maximum number of transmissions in the embodiment of the present application may also be referred to as the maximum number of repeated transmissions
  • the number of transmissions of the first MAC CE may also be referred to as the number of repeated transmissions of the first MAC CE.
  • the network device may send second configuration information to the terminal device, where the second configuration information is used to configure the maximum number of transmissions.
  • the network device may configure a maximum number of transmission times for all MAC CEs in at least one MAC CE, or configure a maximum number of transmission times for each MAC CE in at least one MAC CE.
  • the maximum number of transmission times corresponding to different MAC CEs may be the same or different, which is not limited in the embodiment of the present application.
  • the maximum number of transmissions may be preset on the terminal device.
  • the number of transmissions of the first MAC CE may include the number of bundling repetition transmissions of the transport block (Transport Block, TB) carrying the first MAC CE.
  • Manner 3 For bundling repetition transmission of the same MAC PDU, if the MAC PDU carries the first MAC CE, then one transmission of the MAC PDU may be one transmission of the first MAC CE.
  • the terminal device triggers the retransmission of the first MAC CE, it is uncertain whether the terminal device can retransmit the target MAC CE. Whether the terminal device can retransmit the first MAC CE depends on a series of resources such as resource allocation. factor.
  • FIG. 4 An example diagram of a specific implementation of Embodiment 1 may be shown in FIG. 4.
  • the implementation steps of Figure 4 can be:
  • Step 1 The terminal device receives second configuration information sent by the network device, and the second configuration information may be used to configure the following information:
  • PUSCH physical uplink shared channel
  • Step 2 The terminal device triggers the first MAC CE.
  • Step 3 The terminal device receives the UL grant from the network device to indicate the initial uplink transmission, and at the same time indicates that the HARQ process ID 0 is used for this uplink transmission, then the terminal device transmits TB1 on the uplink transmission resource indicated by the UL grant, and TB1 carries the first MAC CE, TB1 use bundling to transmit twice. Therefore, the number of transmissions of the first MAC CE is 2.
  • Step 4 The terminal device receives the UL grant from the network device to indicate the retransmission of TB1, and the terminal device retransmits TB1 on the uplink transmission resource indicated by the UL grant.
  • TB1 uses bundling to transmit twice, then the number of repetitions of the first MAC CE is 4.
  • Step 5 The terminal device receives the UL grant from the network device to indicate the initial uplink transmission, and at the same time indicates that the HARQ process ID 1 is used for this uplink transmission, then the terminal device transmits TB2 on the uplink transmission resource indicated by the UL grant, and TB2 carries the first MAC CE and TB2 are transmitted twice using bundling, and the number of repetitions of the first MAC CE is 6.
  • Step 6 The terminal device receives the UL grant from the network device to indicate the retransmission of TB2, then the terminal device retransmits TB2 on the uplink transmission resource indicated by the UL grant, and TB2 uses bundling to transmit twice, then the number of repetitions of the first MAC CE is 8.
  • Step 7 Since the number of repetitions of the first MAC CE has reached the maximum number of repetitions, after that, if the terminal device receives the UL grant from the network device again to indicate the initial transmission, the terminal device will no longer carry the first transmission on the newly transmitted TB. MAC CE.
  • Embodiment 1 since the terminal device automatically triggers the retransmission of the uplink MAC CE, the rate of triggering the retransmission of the uplink MAC CE is faster, but unnecessary retransmissions may occur, thereby causing a problem of resource waste.
  • the terminal device may trigger the retransmission of the target MAC CE based on the first timer. Specifically, the terminal device may restart or start the first timer when sending the first MAC CE, and when the first timer expires, the terminal device may trigger the retransmission of the first MAC CE. In other words, the first timer can be used to trigger the retransmission of the MAC CE.
  • the terminal device When the terminal device receives the UL grant from the network device to indicate the initial uplink transmission, or the terminal device obtains an uplink transmission opportunity on the configured UL grant, at this time, for the first MAC CE that has triggered the retransmission, the terminal device can Take it as the candidate MAC CE for this uplink transmission.
  • the terminal device starts or restarts the first timer when sending the first MAC CE.
  • the terminal device can trigger the retransmission of the first MAC CE.
  • the response message for the first MAC CE may be used to configure the time-frequency resources for the terminal device.
  • the response message for the first MAC CE may be the ACK/NACK sent by the network device.
  • the network device can send a response message for the first MAC CE to the terminal device, and the terminal device can stop the first timer after receiving the response message .
  • the network device may send third configuration information to the terminal device, where the third configuration information is used to configure the first timer.
  • the third configuration information may be used to configure a first timer for all MAC CEs in at least one MAC CE. Alternatively, the third configuration information may be used to configure a first timer for each MAC CE of the at least one MAC CE.
  • the parameters of the first timer configured by the third configuration information for each MAC CE may be the same or different The embodiments of this application do not specifically limit this.
  • the third configuration information is that the duration of the first timer configured for the first MAC CE is 10 ms, and the duration of the first timer configured for other MAC CEs is 5 ms.
  • the network device may also send second configuration information to the terminal device, where the second configuration information is used to configure the maximum number of transmissions.
  • the terminal device can trigger the retransmission of the first MAC CE.
  • the second configuration information and the third configuration information may be the same information.
  • the network device can configure the maximum number of transmissions for the terminal device while configuring the first timer for the terminal device.
  • FIG. 5 An example diagram of a specific implementation of Embodiment 2 may be shown in FIG. 5.
  • the implementation steps of Figure 5 can be:
  • Step 1 The terminal device receives second configuration information sent by the network device, and the second configuration information may be used to configure the following information:
  • Step 2 The terminal device triggers the first MAC CE.
  • Step 3 The terminal device receives the UL grant from the network device to indicate the initial uplink transmission, and at the same time indicates that the HARQ process ID 0 is used for this uplink transmission, then the terminal device transmits TB1 on the uplink transmission resource indicated by the UL grant, and TB1 carries the first MAC CE, TB1 use bundling to transmit twice. Therefore, the number of transmissions of the target MAC CE is 2.
  • the terminal device starts the first timer after transmitting TB1 for the first time.
  • Step 4 The terminal device receives the UL grant from the network device to indicate the initial uplink transmission, and at the same time indicates that the HARQ process ID 1 is used for this uplink transmission, then the terminal device transmits TB2 on the uplink transmission resource indicated by the UL grant. At this time, the first timer is running, so the terminal device does not transmit the first MAC CE on TB2.
  • Step 5 After the first timer expires, the terminal device receives the UL grant from the network to indicate the initial uplink transmission, and at the same time indicates that the HARQ process ID 2 is used for this uplink transmission, then the terminal device transmits TB3 on the uplink transmission resource indicated by the UL grant.
  • TB3 carries the first MAC CE, and TB3 uses bundling to transmit twice. Therefore, the number of transmissions of the first MAC CE is 4.
  • Step 6 Since the number of repetitions of the first MAC CE has reached the maximum number of repetitions, after that, if the terminal device receives the UL grant from the network device again to indicate the initial transmission, the terminal device will no longer carry the first MAC on the newly transmitted TB CE.
  • Embodiment 1 can be applied to Embodiment 2, and for the sake of brevity of content, it will not be repeated here.
  • Embodiment 2 introduces a retransmission mechanism to the uplink MAC CE, which can avoid unnecessary retransmissions, thereby reducing resource overhead.
  • the terminal device may determine the target MAC CE in the MAC CE that triggered the retransmission.
  • the uplink MAC CE of the terminal device includes MAC CE1, MAC CE2, MAC CE3, and MAC CE4.
  • the terminal device triggers the retransmission of MAC CE1, MAC CE3, and MAC CE4, and the network device configures the first transmission for MAC CE1 and MAC CE2.
  • the first transmission attribute is not configured for MAC CE3 and MAC CE4, where the first transmission attribute is "only allowed to use the uplink transmission resources with the HARQ function disabled for transmission".
  • the terminal device receives the indication information indicating that the HARQ function corresponding to the uplink transmission is in the off state, and the terminal device can determine the MAC CE1 as the target MAC CE.
  • FIG. 6 is a schematic flowchart of another method 300 for uplink MAC CE transmission according to an embodiment of the present application.
  • the method described in FIG. 6 may be executed by a terminal device, and the terminal device may be, for example, the terminal device 120 shown in FIG. 1.
  • the method 300 may include at least part of the following content.
  • the method 300 can be applied to NTN scenarios such as long-distance communications such as satellite communications.
  • NTN scenarios such as long-distance communications such as satellite communications.
  • the method 300 can also be applied to other communication scenarios, such as terrestrial cellular network communication, Internet of Vehicles communication, and so on.
  • the terminal device sends the target MAC CE.
  • the terminal device when the number of transmissions of the target MAC CE is less than the maximum number of transmissions, and/or when the first timer expires, the terminal device triggers the retransmission of the target MAC CE.
  • the number of transmissions of the target MAC CE includes the number of binding transmissions of the transport block carrying the target MAC CE.
  • the maximum number of transmissions is the maximum number of transmissions of the target MAC CE, or the maximum number of transmissions is the maximum number of transmissions of all MAC CEs in at least one MAC CE, so
  • the at least one MAC CE is the MAC CE of the terminal device, and the at least one MAC CE includes the target MAC CE.
  • the method 300 further includes: the terminal device receives second configuration information, where the second configuration information is used to configure the maximum number of transmissions.
  • the method 300 further includes: the terminal device receives third configuration information, where the third configuration information is used to configure the first timer.
  • the third configuration information is used to separately configure the first timer for the target MAC CE.
  • the third configuration information is used to configure the first timer for all MAC CEs in at least one MAC CE, and the at least one MAC CE is the terminal device's MAC CE, the at least one MAC CE includes the target MAC CE.
  • the method 300 further includes: when the terminal device sends the target MAC CE, starting or restarting the first timer.
  • the terminal device when the first timer expires, the terminal device triggers the retransmission of the target MAC CE, including: when the first timer expires and the terminal device does not When receiving the response message for the target MAC CE, the terminal device triggers the retransmission of the target MAC CE.
  • the method 300 further includes: the terminal device receives a response message for the target MAC CE; and the terminal device stops the first timer based on the response message .
  • the method 300 before the terminal device sends the target MAC CE, the method 300 further includes: the terminal device receives indication information, the indication information is used to indicate the corresponding uplink transmission The HARQ function of hybrid automatic repeat request is on or off; the terminal device determines the target MAC CE from at least one MAC CE according to the indication information, wherein, when the indication information indicates the HARQ corresponding to the uplink transmission When the function is on, the transmission attribute of the target MAC CE is to enable HARQ feedback; when the indication information indicates that the HARQ function corresponding to uplink transmission is off, the transmission attribute of the target MAC CE is to enable HARQ feedback or off HARQ feedback.
  • the method 300 further includes: the terminal device determines the transmission attribute of the at least one MAC CE; the terminal device determines from the at least one MAC CE according to the indication information
  • the target MAC CE includes: the terminal device determines the target MAC CE from the at least one MAC CE according to the indication information and the transmission attribute of the at least one MAC CE.
  • determining the transmission attribute of the at least one MAC CE by the terminal device includes: the terminal device receives first configuration information, and the first configuration information is used to configure the at least one MAC CE.
  • the transmission attribute of one MAC CE; the terminal device determines the transmission attribute of the at least one MAC CE according to the first configuration information.
  • the terminal device determining the target MAC CE from at least one MAC CE according to the indication information includes: the terminal device determining the uplink from the at least one MAC CE For the transmitted candidate MAC CE, the number of the candidate MAC CE is greater than or equal to 1, and the terminal device determines the target MAC CE from the candidate MAC CE.
  • the candidate MAC CE includes at least two MAC CEs, and the priority of the at least two MAC CEs is equal to the priority of the uplink transmission resources occupied by the at least two MAC CEs.
  • the at least one uplink MAC CE includes at least one of the following MAC CEs: BSR MAC CE, Configured Grant Confirmation MAC CE, Single Entry PHR MAC CE, Multiple Entry PHR MAC CE, Recommended bit rate MAC CE.
  • FIG. 7 is a schematic flowchart of another method 400 for uplink MAC CE transmission according to an embodiment of the present application.
  • the method described in FIG. 7 may be executed by a network device, and the network device may be, for example, the network device 110 shown in FIG. 1.
  • the method 400 may include at least part of the following content.
  • the method 400 can be applied to NTN scenarios such as long-distance communications such as satellite communications.
  • NTN scenarios such as long-distance communications such as satellite communications.
  • the method 400 can also be applied to other communication scenarios, such as terrestrial cellular network communication, Internet of Vehicles communication, and so on.
  • the network device sends indication information, where the indication information is used to indicate uplink transmission resources.
  • the network device sends third configuration information, where the third configuration information is used to configure a first timer, and the first timer is used to trigger retransmission of the target MAC CE on the uplink transmission resource.
  • the third configuration information is used to separately configure the first timer for the target MAC CE.
  • the third configuration information is used to configure the first timer for all MAC CEs in at least one MAC CE, and the at least one MAC CE is the terminal device's MAC CE, the at least one MAC CE includes the target MAC CE.
  • the method 400 further includes: the network device sending second configuration information, where the second configuration information is used to configure the maximum number of transmissions.
  • the maximum number of transmissions is the maximum number of transmissions of the target MAC CE, or the maximum number of transmissions is the maximum number of transmissions of all MAC CEs in at least one MAC CE, so
  • the at least one MAC CE is a MAC CE triggered by the terminal device, and the at least one MAC CE includes the target MAC CE.
  • the number of transmissions of the target MAC CE includes the number of binding transmissions of the transport block carrying the target MAC CE.
  • the method 400 further includes: if the network device receives the target MAC CE during the operation of the first timer, the network device sends the The response message of the target MAC CE.
  • the indication information is also used to indicate that the HARQ function of the hybrid automatic repeat request corresponding to the uplink transmission is in the on or off state.
  • the method 400 further includes: the network device sends first configuration information, where the first configuration information is used to configure the transmission attributes of at least one MAC CE, and the MAC CE
  • the transmission attribute includes turning on HARQ feedback or turning off HARQ
  • the at least one MAC CE is the MAC CE of the terminal device
  • the at least one MAC CE includes the target MAC CE.
  • the at least one uplink MAC CE includes at least one of the following MAC CEs: BSR MAC CE, Configured Grant Confirmation MAC CE, Single Entry PHR MAC CE, Multiple Entry PHR MAC CE, Recommended bit rate MAC CE.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not be implemented in this application.
  • the implementation process of the example constitutes any limitation.
  • FIG. 8 shows a schematic block diagram of a device 500 for uplink MAC CE transmission according to an embodiment of the present application. As shown in FIG. 8, the device 500 includes:
  • the communication unit 510 is configured to receive indication information, where the indication information is used to indicate that the HARQ function corresponding to uplink transmission is in an on or off state.
  • the processing unit 520 is configured to determine a target MAC CE from at least one MAC CE according to the indication information, wherein when the indication information indicates that the HARQ function corresponding to uplink transmission is in the on state, the transmission attribute of the target MAC CE To enable HARQ feedback; when the indication information indicates that the HARQ function corresponding to uplink transmission is in the off state, the transmission attribute of the target MAC CE is to enable HARQ feedback or disable HARQ feedback.
  • the communication unit 510 is further configured to send the target MAC CE.
  • the processing unit 520 is further configured to: determine the transmission attribute of the at least one MAC CE;
  • the processing unit 520 is specifically configured to determine the target MAC CE from the at least one MAC CE according to the indication information and the transmission attribute of the at least one MAC CE.
  • the communication unit 510 is further configured to: receive first configuration information, where the first configuration information is used to configure the transmission attributes of the at least one MAC CE; the processing unit 520 Specifically, it is used to determine the transmission attribute of the at least one MAC CE according to the first configuration information.
  • the processing unit 520 is specifically configured to: determine the candidate MAC CE for uplink transmission from the at least one MAC CE according to the indication information, and the candidate MAC CE The number is greater than or equal to 1; the target MAC CE is determined from the candidate MAC CE.
  • the candidate MAC CE includes at least two MAC CEs, and the priority of the at least two MAC CEs is equal to the priority of the uplink transmission resources occupied by the at least two MAC CEs.
  • the indication information is also used to indicate the uplink transmission resource of the uplink transmission
  • the processing unit 520 is further configured to: when the number of transmissions of the target MAC CE is less than the maximum number of transmissions And/or when the first timer expires, trigger the retransmission of the target MAC CE.
  • the number of transmissions of the target MAC CE includes the number of binding transmissions of the transport block carrying the target MAC CE.
  • the maximum number of transmissions is the maximum number of transmissions of the target MAC CE, or the maximum number of transmissions is the maximum number of transmissions of all MAC CEs in the at least one MAC CE .
  • the communication unit 510 is further configured to: receive second configuration information, where the second configuration information is used to configure the maximum number of transmissions.
  • the communication unit 510 is further configured to receive third configuration information, where the third configuration information is used to configure the first timer.
  • the third configuration information is used to separately configure the first timer for the target MAC CE.
  • the third configuration information is used to configure one first timer for all MAC CEs in the at least one MAC CE.
  • the processing unit 520 is further configured to: when the communication unit 510 sends the target MAC CE, start or restart the first timer.
  • the processing unit 520 is specifically configured to trigger when the first timer expires and the communication unit 510 does not receive a response message for the target MAC CE Retransmission of the target MAC CE.
  • the communication unit 510 is further configured to: receive a response message for the target MAC CE; the processing unit 520 is further configured to: stop the second message based on the response message A timer.
  • the at least one uplink MAC CE includes at least one of the following MAC CEs: BSR MAC CE, configuration authorization confirmation MAC CE, single PHR MAC CE, multiple PHR MAC CE, recommended bit rate MAC CE.
  • the device 500 is applied to NTN.
  • the apparatus 500 may correspond to the terminal device in the method 200, and can implement the corresponding operation of the terminal device in the method 200. For the sake of brevity, details are not described herein again.
  • FIG. 9 shows a schematic block diagram of a device 600 for uplink MAC CE transmission according to an embodiment of the present application. As shown in FIG. 9, the device 600 includes:
  • the communication unit 610 is configured to send the target MAC CE.
  • the processing unit 620 is configured to trigger retransmission of the target MAC CE when the number of transmissions of the target MAC CE is less than the maximum number of transmissions, and/or when the first timer expires.
  • the number of transmissions of the target MAC CE includes the number of binding transmissions of the transport block carrying the target MAC CE.
  • the maximum number of transmissions is the maximum number of transmissions of the target MAC CE, or the maximum number of transmissions is the maximum number of transmissions of all MAC CEs in at least one MAC CE, so
  • the at least one MAC CE is a MAC CE triggered by the terminal device, and the at least one MAC CE includes the target MAC CE.
  • the communication unit 610 is further configured to receive second configuration information, where the second configuration information is used to configure the maximum number of transmissions.
  • the communication unit 610 is further configured to receive third configuration information, where the third configuration information is used to configure the first timer.
  • the third configuration information is used to separately configure the first timer for the target MAC CE.
  • the third configuration information is used to configure the first timer for all MAC CEs in at least one MAC CE, and the at least one MAC CE is triggered by the terminal device MAC CE, the at least one MAC CE includes the target MAC CE.
  • the processing unit 620 is further configured to: when the communication unit 610 sends the target MAC CE, start or restart the first timer.
  • the processing unit 620 when the first timer expires, is specifically configured to: when the first timer expires and the communication unit 610 does not receive the target When the MAC CE responds, it triggers the retransmission of the target MAC CE.
  • the communication unit 610 is further configured to: receive a response message for the target MAC CE; the processing unit 620 is further configured to: stop the first response message based on the response message A timer.
  • the communication unit 610 before the communication unit 610 sends the target MAC CE, the communication unit 610 is further configured to: receive indication information, where the indication information is used to indicate the HARQ corresponding to the uplink transmission The function is on or off;
  • the processing unit 620 is further configured to determine the target MAC CE from at least one MAC CE according to the indication information, wherein, when the indication information indicates that the HARQ function corresponding to uplink transmission is in an on state, the target The transmission attribute of the MAC CE is to enable HARQ feedback; when the indication information indicates that the HARQ function corresponding to uplink transmission is in an off state, the transmission attribute of the target MAC CE is to enable HARQ feedback or disable HARQ feedback.
  • the processing unit 620 is further configured to: determine the transmission attribute of the at least one MAC CE; the processing unit 620 is specifically configured to: according to the indication information and the at least one The transmission attribute of the MAC CE, and the target MAC CE is determined from the at least one MAC CE.
  • the communication unit 610 is further configured to: receive first configuration information, where the first configuration information is used to configure the transmission attributes of the at least one MAC CE; the processing unit 620 Specifically used for:
  • the processing unit 620 is specifically configured to: determine the candidate MAC CE for uplink transmission from the at least one MAC CE, and the number of the candidate MAC CE is greater than or equal to one; The target MAC CE is determined from the candidate MAC CE.
  • the candidate MAC CE includes at least two MAC CEs, and the priority of the at least two MAC CEs is equal to the priority of the uplink transmission resources occupied by the at least two MAC CEs.
  • the at least one uplink MAC CE includes at least one of the following MAC CEs: BSR MAC CE, configuration authorization confirmation MAC CE, single PHR MAC CE, multiple PHR MAC CE, recommended bit rate MAC CE.
  • the device 600 is applied to NTN.
  • the apparatus 600 may correspond to the terminal device in the method 300, and can implement the corresponding operations of the terminal device in the method 300. For the sake of brevity, details are not described herein again.
  • FIG. 10 shows a schematic block diagram of a device 700 for uplink MAC CE transmission according to an embodiment of the present application. As shown in FIG. 10, the device 700 includes:
  • the communication unit 710 is configured to send indication information, where the indication information is used to indicate uplink transmission resources.
  • the communication unit 710 is further configured to send third configuration information, where the third configuration information is used to configure a first timer, and the first timer is used to trigger retransmission of the target MAC CE on the uplink transmission resource. .
  • the third configuration information is used to separately configure the first timer for the target MAC CE.
  • the third configuration information is used to configure the first timer for all MAC CEs in at least one MAC CE, and the at least one MAC CE is the terminal device's MAC CE, the at least one MAC CE includes the target MAC CE.
  • the communication unit 710 is further configured to send second configuration information, where the second configuration information is used to configure the maximum number of transmissions.
  • the maximum number of transmissions is the maximum number of transmissions of the target MAC CE, or the maximum number of transmissions is the maximum number of transmissions of all MAC CEs in at least one MAC CE, so
  • the at least one MAC CE is a MAC CE triggered by the terminal device, and the at least one MAC CE includes the target MAC CE.
  • the number of transmissions of the target MAC CE includes the number of binding transmissions of the transport block carrying the target MAC CE.
  • the communication unit 710 is further configured to: if the target MAC CE is received during the operation of the first timer, send a response message for the target MAC CE .
  • the indication information is also used to indicate that the HARQ function corresponding to uplink transmission is in an on or off state.
  • the communication unit 710 is further configured to send first configuration information, where the first configuration information is used to configure the transmission attributes of at least one MAC CE, and the transmission attributes of the MAC CE Including turning on HARQ feedback or turning off HARQ, the at least one MAC CE is the MAC CE of the terminal device, and the at least one MAC CE includes the target MAC CE.
  • the at least one uplink MAC CE includes at least one of the following MAC CEs: BSR MAC CE, configuration authorization confirmation MAC CE, single PHR MAC CE, multiple PHR MAC CE, recommended bit rate MAC CE.
  • the device 700 is applied to NTN.
  • the apparatus 700 may correspond to the network equipment in the method 400, and can implement the corresponding operations of the final network equipment in the method 400. For the sake of brevity, details are not repeated here.
  • FIG. 11 is a schematic structural diagram of a communication device 800 provided by an embodiment of the present application.
  • the communication device 800 shown in FIG. 11 includes a processor 810, and the processor 810 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 800 may further include a memory 820.
  • the processor 810 may call and run a computer program from the memory 820 to implement the method in the embodiment of the present application.
  • the memory 820 may be a separate device independent of the processor 810, or may be integrated in the processor 810.
  • the communication device 800 may further include a transceiver 830, and the processor 810 may control the transceiver 830 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 830 may include a transmitter and a receiver.
  • the transceiver 830 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 800 may specifically be a network device in an embodiment of the present application, and the communication device 800 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, it will not be repeated here. .
  • the communication device 800 may specifically be a terminal device of an embodiment of the present application, and the communication device 800 may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • FIG. 12 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 900 shown in FIG. 12 includes a processor 910, and the processor 910 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 900 may further include a memory 920.
  • the processor 910 may call and run a computer program from the memory 920 to implement the method in the embodiment of the present application.
  • the memory 920 may be a separate device independent of the processor 910, or may be integrated in the processor 910.
  • the chip 900 may further include an input interface 930.
  • the processor 910 can control the input interface 930 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 900 may further include an output interface 940.
  • the processor 910 can control the output interface 940 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments may be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • FIG. 13 is a schematic block diagram of a communication system 1000 according to an embodiment of the present application. As shown in FIG. 13, the communication system 1000 includes a terminal device 1010 and a network device 1020.
  • the terminal device 1010 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 1020 can be used to implement the corresponding function implemented by the network device in the above method. For brevity, it will not be repeated here. .
  • the embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the sake of brevity it is not here. Go into details again.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program is run on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及一种上行MAC CE传输的方法和装置,可以减小上行MAC CE的传输时延并提高传输可靠性。该方法包括:终端设备接收指示信息,所述指示信息用于指示上行传输对应的HARQ功能处于开启状态或关闭状态;所述终端设备根据所述指示信息,从至少一个MAC CE中确定目标MAC CE,其中,当所述指示信息指示上行传输对应的HARQ功能处于开启状态时,所述目标MAC CE的传输属性为开启HARQ反馈;当所述指示信息指示上行传输对应的HARQ功能处于关闭状态时,所述目标MAC CE的传输属性为开启HARQ反馈或关闭HARQ反馈;所述终端设备发送所述目标MAC CE。

Description

上行MAC CE传输的方法和装置 技术领域
本申请涉及通信领域,具体涉及一种上行MAC CE传输的方法和装置。
背景技术
第5代(the 5th generation,5G)移动通信系统对传输时延和传输可靠性的要求较高。对于媒体接入控制(Media Access Control,MAC)控制单元(Control Element,CE)来说,通常需要保证较小的传输时延和较高的传输可靠性。
对于下行MAC CE,网络设备可以获知下行MAC CE的传输需求,从而可以通过调度实现来确保下行MAC CE的传输时延和传输可靠性。对于上行MAC CE,网络设备是不知道上行MAC CE的传输需求的,因此,如何保证上行MAC CE的传输时延和传输可靠性,是一项亟待解决的问题。
发明内容
本申请实施例提供一种上行MAC CE传输的方法和装置,可以减小上行MAC CE的传输时延并提高传输可靠性。
第一方面,提供了一种上行MAC CE传输的方法,所述方法包括:终端设备接收指示信息,所述指示信息用于指示上行传输对应的混合自动重传请求HARQ功能处于开启状态或关闭状态;所述终端设备根据所述指示信息,从至少一个MAC CE中确定目标MAC CE,其中,当所述指示信息指示上行传输对应的HARQ功能处于开启状态时,所述目标MAC CE的传输属性为开启HARQ反馈;当所述指示信息指示上行传输对应的HARQ功能处于关闭状态时,所述目标MAC CE的传输属性为开启HARQ反馈或关闭HARQ反馈;所述终端设备发送所述目标MAC CE。
第二方面,提供了一种上行MAC CE传输的方法,所述方法包括:终端设备发送目标MAC CE;当所述目标MAC CE的传输次数小于最大传输次数时,和/或,当第一定时器超时时,所述终端设备触发所述目标MAC CE的重传。
第三方面,提供了一种上行MAC CE传输的方法,所述方法包括:网络设备发送指示信息,所述指示信息用于指示上行传输资源;所述网络设备发送第三配置信息,所述第三配置信息用于配置第一定时器,所述第一定时器用于触发目标MAC CE在所述上行传输资源上的重传。
第四方面,提供了一种上行MAC CE传输的装置,用于执行上述第一方面或其各实现方式中的方法。
具体地,该上行MAC CE传输的装置包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种上行MAC CE传输的装置,用于执行上述第二方面或其各实现方式中的方法。
具体地,该上行MAC CE传输的装置包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第六方面,提供了一种上行MAC CE传输的装置,用于执行上述第三方面或其各实现方式中的方法。
具体地,该上行MAC CE传输的装置包括用于执行上述第三方面或其各实现方式中的方法的功能模块。
第七方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第八方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第九方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第三方面或其各实现方式中的方法。
第十方面,提供了一种芯片,用于实现上述第一方面至第三方面中的任一方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第三方面中的任一方面或其各实现方式中的方法。
第十一方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第三方面中的任一方面或其各实现方式中的方法。
第十二方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机 执行上述第一方面至第三面中的任一方面或其各实现方式中的方法。
第十三方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第三方面中的任一方面或其各实现方式中的方法。
上述技术方案,终端设备使用开启HARQ功能的上行传输承载上行MAC CE,这样的话,如果网络设备或其他终端设备没有接收到上行MAC CE,可以通过HARQ反馈向终端设备进行反馈,如此可以提高上行MAC CE的传输可靠性。另一反面,终端设备使用关闭HARQ功能的上行传输承载上行MAC CE,从而可以减小上行MAC CE的传输时延。
附图说明
图1是根据本申请实施例的一种通信系统架构的示意性图。
图2是根据本申请实施例的上行MAC CE传输的方法的示意性图。
图3-5是根据本申请实施例的一种上行MAC CE传输的示意图。
图6是根据本申请实施例的另一种上行MAC CE传输的方法的示意性图。
图7是根据本申请实施例的另一种上行MAC CE传输的方法的示意性图。
图8-10是根据本申请实施例的上行MAC CE传输的装置的示意性框图。
图11是根据本申请实施例的通信设备的示意性框图。
图12是根据本申请实施例的芯片的示意性框图。
图13是根据本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
首先介绍本申请的应用场景,图1是一种适用于本申请的通信系统的示意图。
通信系统100包括网络设备110和终端设备120。终端设备120通过电磁波与网络设备110进行通信。
在本申请中,终端设备120可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,例如,第三代合作伙伴计划(3rd generation partnership project,3GPP)所定义的用户设备(user equipment,UE),移动台(mobile station,MS),软终端,家庭网关,机顶盒等等。
网络设备110可以是3GPP所定义的基站,例如,5G移动通信系统中的基站(gNB)。网络设备110也可以是非3GPP(non-3GPP)的接入网设备,例如接入网关(access gateway,AG)。网络设备110还可以是中继站、接入点、车载设备、可穿戴设备以及其它类型的设备。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
通信系统100仅是举例说明,适用本申请的通信系统不限于此,例如,通信系统100中包含的网络设备和终端设备的数量还可以是其它的数量。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
还应理解,图1所示的通信系统100还可以是NTN系统,也就是说,图1中的网络设备110可以是卫星。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。
为了方便对本申请实施例的理解,下面先对几个术语进行介绍。
1、非地面通信网络(Non-Terrestrial Network,NTN)
NTN技术一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等区域由于无法搭设通信设备或由于人口稀少而不做通信覆盖,导致这些区域不能进行正常的通信。而对于卫星通信来说,由于一颗卫星可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信具有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再 次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加。最后,卫星通信的稳定性高,不受自然灾害的限制。
按照轨道高度的不同,通信卫星可以分为低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。
例如,LEO卫星的高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间为20分钟。信号传播距离短,链路损耗少,对用户终端的发射功率要求不高。
又例如,GEO卫星的轨道高度为35786km,围绕地球旋转周期为24小时。用户间单跳通信的信号传播延迟一般为250ms。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
2、混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)机制
NR有两级重传机制:MAC层的HARQ机制和无线链路控制(Radio Link Control,RLC)层的自动重传请求(Automatic Repeat-reQuest,ARQ)机制。其中,丢失或出错的数据的重传主要是由MAC层的HARQ机制处理的,并由RLC层的重传功能进行补充。MAC层的HARQ机制能够提供快速重传,RLC层的ARQ机制能够提供可靠的数据传输。
HARQ使用停等协议(Stop-and-Wait Protocol)来发送数据。在停等协议中,发送端发送一个传输块(Transport Block,TB)后,就停下来等待确认信息。这样,每次传输后发送端就停下来等待确认,会导致用户吞吐量很低。因此,NR使用多个并行的HARQ进程,当一个HARQ进程在等待确认信息时,发送端可以使用另一个HARQ进程来继续发送数据。这些HARQ进程共同组成了一个HARQ实体,这个实体结合了停等协议,允许数据连续传输。
HARQ有上行HARQ和下行HARQ之分,其中,上行HARQ针对上行数据传输,下行HARQ针对下行数据传输,两者相互独立。
基于目前NR协议的规定,终端设备对应的每个服务小区都有各自的HARQ实体。每个HARQ实体维护一组并行的下行HARQ进程和一组并行的上行HARQ进程。目前,每个上下行载波可以支持的HARQ进程数最大为16个。网络设备可以根据网络部署情况通过无线资源控制(Radio Resource Control,RRC)信令向终端设备指示最大的HARQ进程数。如果网络设备没有提供相应的配置参数,则下行缺省的HARQ进程数为8,上行每个载波支持的最大HARQ进程数始终为16。每个HARQ进程可以对应一个HARQ进程ID。对于下行,广播控制信道(Broadcast Control Channel,BCCH)可以使用一个专用的广播HARQ进程。对于上行,随机过程中的消息3(Msg3)传输使用HARQ ID 0。
对于不支持下行空分复用的终端,每个下行HARQ进程只能同时处理1个传输块(Transport Block,TB);对于支持下行空分复用的终端,每个下行HARQ进程可以同时处理1个或者2个TB。终端的每个上行HARQ进程可以同时处理1个TB。
HARQ在时域上分为同步和异步两类,在频域上分为非自适应和自适应两类。NR上下行均使用异步自适应HARQ机制。异步HARQ即重传可以发生在任意时刻,同一个TB的重传与上一次传输的时间间隔是不固定的。自适应HARQ即可以改变重传所使用的频域资源和MCS。
3、NR逻辑信道优先级(Logical Channel Prioritization,LCP)
与LTE相同,在NR中,网络设备是基于每个用户(per-UE)而不是每个承载(per-bearer)分配上行传输资源的,哪些无线承载的数据能够放入分配的上行传输资源中传输是由终端设备决定的。
基于网络设备配置的上行传输资源,终端设备需要决定在初传MAC协议数据单元(Protocol Data Unit,PDU)中的每个逻辑信道的传输数据量,在某些情况下终端设备还要为MAC CE分配资源。为了实现上行逻辑信道的复用,需要为每个上行逻辑信道分配一个优先级。对于一个给定大小的MAC PDU,终端设备可以在有多个上行逻辑信道同时有数据传输需求的情况下,按照各个上行逻辑信道对应的逻辑信道优先级从大到小的顺序依次分配该MAC PDU的资源。
同时,为了兼顾不同逻辑信道之间的公平性,引入了优先比特速率(Prioritized Bit Rate,PBR)的概率,在终端设备进行逻辑信道复用时,需要先保证各个逻辑信道的最小数据速率需求,从而避免由于优先级高的上行逻辑信道始终占据网络分配给终端设备的上行资源导致该UE的其他优先级低的上行逻辑信道被“饿死”的情况。
为了实现上行逻辑信道的复用,网络设备通常可以通过RRC为每个上行逻辑信道配置以下参数:
逻辑信道优先级(priority):优先级的取值越小,对应的优先级越高;
PBR,表示该逻辑信道需要保证的最小速率;
令牌桶容量(Bucket Size Duration,BSD):该参数决定令牌桶的深度。
终端设备的MAC层使用令牌桶机制实现上行逻辑信道复用。具体地,终端设备为每个上行逻辑信道j维护一个变量Bj,该变量指示了令牌桶里当前可用的令牌数,方法如下:
1)终端设备在建立逻辑信道j时,初始化Bj为0;
2)终端设备在每次LCP过程之前,将Bj增加PBR*T,其中T为上次增加Bj的时刻到当前时刻的时间间隔;
3)如果按照步骤2更新后的Bj大于令牌桶最大容量(即PBR*BSD),则将Bj设置为该令牌桶的最大容量。
当终端设备收到指示新传的上行(uplink,UL)授权(grant)时,终端设备可以按照如下步骤进行LCP处理。
步骤1:对于所有Bj>0的逻辑信道,按照优先级从高到低的顺序分配资源,每个逻辑信道分配的资源只能满足PBR的要求,即根据逻辑信道对应的PBR令牌桶中的令牌数为该逻辑信道分配资源。当某个逻辑信道的PBR设置为无穷大时,只有当这个逻辑信道的资源得到满足后,才会考虑比它优先级低的其他逻辑信道。
步骤2:将Bj减去逻辑信道j在步骤1里复用到MAC PDU的所有MAC服务数据单元(service data unit,SDU)的大小。
步骤3:如果执行完步骤1和步骤2之后还有剩余的上行资源,则不管各个逻辑信道的Bj的大小(即无论大于0、等于0或者小于0),按照逻辑信道优先级从高到低的顺序,把剩余的资源依次分配给各个逻辑信道。只有当高优先级的逻辑信道的数据都发送完毕且UL grant还未耗尽的情况下,低优先级的逻辑信道才能得到服务。即此时终端设备最大化高优先级的逻辑信道的数据传输。
与此同时,终端设备还应遵循如下原则:如果整个RLC SDU能够填入剩余的资源中,则不应该对该RLC SDU进行分段;如果UE对逻辑信道中的RLC SDU进行分段,则应根据剩余资源的大小,尽量填入最大分段;UE应该最大化数据的传输;如果UL grant大小大于或者等于8bytes,并且UE有数据传输的需求,则UE不能只发送填充(padding)缓冲区状态报告(Buffer Status Report,BSR)或者只发送padding。
对于不同的信号和/或逻辑信道,终端设备在进行LCP处理时,还需要遵循以下优先级顺序(按照优先级从高到低的顺序排列):
小区无线网络临时标识(Cell-Radio Network Temporary Identifier,C-RNTI)MAC CE或来自UL公共控制信道(common control channel,CCCH)的数据;
配置授权确认(Configured Grant Confirmation)MAC CE;
用于除padding BSR之外的BSR MAC CE;
单条(Single Entry)功率余量报告(Power Headroom Report,PHR)MAC CE或者多条(Multiple Entry)PHR MAC CE;
来自除UL-CCCH之外的任意逻辑信道的数据;
用于推荐比特速率查询(Recommended bit rate query)的MAC CE;
用于padding BSR的BSR MAC CE。
针对NTN系统中BSR与卫星之间的无线信号传输时延较大的特性,3GPP正在讨论引入关闭上行/下行HARQ进程的HARQ功能以降低数据传输时延,并且同意可以基于HARQ进程进行关闭HARQ功能的配置。
将某个HARQ进程的HARQ功能配置为关闭状态,一方面,网络设备可以不等待接收终端设备的上行传输(对于上行HARQ为上行数据传输,对于下行HARQ为终端设备针对该HARQ的下行数据传输的ACK/NACK反馈)而持续调度该HARQ进程进行数据传输,从而降低MAC传输时延;但另一方面,网络设备也可以通过配置绑定重复(bundling repetition)传输或者盲调度重传的方式提升MAC传输可靠性。其中,是否配置bundling repetition传输或者盲调度取决于网络设备的实现。
由于不同的业务有不同的服务质量(Quality of Service,QoS)要求,比如有些业务对时延敏感,有些业务对丢包率有严格的要求。对于时延敏感的业务,可以使用关闭HARQ功能的HARQ进程进行传输,从而可以降低传输时延;对于对丢包率有严格要求的业务,可以使用开启HARQ功能的HARQ进程进行传输,从而可以提高传输可靠性。
对于MAC CE,通常需要保证较小的传输时延,同时由于MAC CE没有对应的RLC实体,不能通过RLC ARQ机制来提升传输可靠性,其传输可靠性只能通过MAC传输来保证。对于下行MAC CE,由于网络设备是可以获知下行MAC CE的传输需求的,因此网络设备可以通过调度实现来确保下行 MAC CE的传输时延和传输可靠性。对于上行MAC CE,网络设备是不知道上行MAC CE的传输需求的。因此,如何保证上行MAC CE的传输时延和传输可靠性,是一项亟待解决的问题。
鉴于此,本申请实施例提出了一种上行MAC CE传输的方法,可以减小上行MAC CE的传输时延并提高传输可靠性。
图2是根据本申请实施例的上行MAC CE传输的方法200的示意性流程图。图2所述的方法可以由终端设备执行,该终端设备例如可以为图1中所示的终端设备120。如图2所示,该方法200可以包括以下内容中的至少部分内容。
应理解,方法200可以应用于例如远距离通讯如卫星通讯等NTN场景,此时网络设备可以为卫星,当然,方法200还可以应用于其它通信场景中,如地面蜂窝网通信、车联网通信等,本申请实施例对此不做限定。
在210中,终端设备接收指示信息,该指示信息用于指示上行传输对应的HARQ功能处于开启状态或关闭状态。
相应地,网络设备可以向终端设备发送指示信息。或者,其他的终端设备可以向该终端设备发送指示信息。
在220中,终端设备根据指示信息,从至少一个MAC CE中确定目标MAC CE。
其中,至少一个MAC CE可以为终端设备的MAC CE。
当指示信息指示上行传输对应的HARQ功能处于开启状态时,目标MAC CE的传输属性为开启HARQ反馈。当指示信息指示上行传输对应的HARQ功能处于关闭状态时,目标MAC CE的传输属性为开启HARQ反馈或关闭HARQ反馈。
在230中,终端设备发送目标MAC CE。
其中,上述内容中的至少一个MAC CE可以包括但不限于以下MAC CE中的一个或者多个MAC CE:BSR MAC CE、Configured Grant Confirmation MAC CE、Single Entry PHR MAC CE、Multiple Entry PHR MAC CE、Recommended bit rate MAC CE。
可选地,MAC CE的传输属性可以为“只允许使用关闭HARQ功能的上行传输资源进行传输”,即MAC CE的传输属性为关闭HARQ反馈;或者,MAC CE的传输属性可以为“只允许使用开启HARQ功能的上行传输资源进行传输”,即MAC CE的传输属性为开启HARQ反馈。
本申请实施例对开启和关闭的名称并不限定,也就是说,它们也可以表述为其他名称。例如,开启也可以表述为使能,关闭也可以表述为不使能或去使能,即上行传输对应的HARQ功能可以处于使能状态,也可以处于去使能状态。
下面,将进一步介绍本申请实施例提供的确定目标MAC CE的方法。
终端设备根据指示信息从至少一个MAC CE中确定目标MAC CE,可以包括:终端设备确定至少一个MAC CE的传输属性,然后终端设备根据指示信息和该至少一个MAC CE的传输属性,从至少一个MAC CE中确定目标MAC CE。
可选地,终端设备可以接收第一配置信息,该第一配置信息用于配置至少一个MAC CE的传输属性。示例性地,第一配置信息可以承载在RRC信令中。从而终端设备可以根据第一配置信息确定至少一个MAC CE的传输属性。
可选地,至少一个MAC CE的传输属性可以是预先配置在终端设备上的。
具体而言,终端设备接收指示信息,如果该指示信息指示本次上行传输使用的HARQ ID,且该HARQ进程的HARQ功能处于开启状态,或者,该指示信息指示本次上行传输开启HARQ功能,则终端设备可以在传输属性为开启HARQ反馈的MAC CE中确定目标MAC CE。
或者,终端设备接收指示信息,如果指示信息指示本次上行传输使用的HARQ ID,且该HARQ进程的HARQ功能处于关闭状态,或者,该指示信息指示本次上行传输关闭HARQ功能,则终端设备可以通过以下两种方式确定目标MAC CE:
a)终端设备可以在传输属性为关闭HARQ反馈的MAC CE中确定目标MAC CE。
b)终端设备可以在该至少一个MAC CE中确定目标MAC CE。
在一种实现方式中,终端设备可以先在至少一个MAC CE中确定候选MAC CE,然后再在候选MAC CE中选择目标MAC CE。其中,候选MAC CE的数量大于或等于1。
作为一种示例,终端设备确定候选MAC CE的方式可以为:终端设备到接收指示信息后,如果该指示信息指示本次上行传输使用的HARQ ID,且该HARQ进程的HARQ功能处于开启状态,或者,该指示信息指示本次上行传输开启HARQ功能,则终端设备可以将传输属性为开启HARQ反馈的MAC CE确定为候选MAC CE。
可选地,终端设备可以将传输属性为开启HARQ反馈的所有MAC CE都确定为候选MAC CE。
可选地,终端设备可以根据传输属性为开启HARQ反馈的MAC CE上行传输所需的上行传输资源,确定候选MAC CE。
作为另一种示例,终端设备接收到指示信息后,如果该指示信息指示本次上行传输使用的HARQ ID,且该HARQ进程的HARQ功能处于关闭状态,或者,该指示信息指示本次上行传输关闭HARQ功能,则终端设备可以将传输属性为关闭HARQ反馈的MAC CE确定为候选MAC CE。
或者,终端设备可以将该至少一个MAC CE都确定为候选MAC CE。
终端设备确定了候选MAC CE后,终端设备还可以根据上行传输资源的大小,为候选MAC CE分配资源。
可选地,候选MAC CE占用的上行传输资源的优先级可以与候选MAC CE的优先级是正相关的。也就是说,候选MAC CE的优先级越高,候选MAC CE占用的上行传输资源的优先级越高。如果候选MAC CE包括MAC CE1和MAC CE2,MAC CE1的优先级高于MAC CE2的优先级,则终端设备为MAC CE1分配的上行传输资源可能多于为MAC CE2分配的上行传输资源。
示例性地,终端设备可以根据候选MAC CE的优先级从高到低的顺序依次分配资源。
再示例性地,终端设备可以根据候选MAC CE的传输需求为候选MAC CE分配资源。
在终端设备确定了候选MAC CE后,终端设备可以在候选MAC CE中确定目标MAC CE。
作为一种示例,终端设备可以根据以下至少一个信息,从候选MAC CE中确定目标MAC CE:候选MAC CE的传输需求、候选MAC CE中每个MAC CE的优先级排序以及本次上行传输的上行传输资源大小。
举例说明,候选MAC CE包括两个MAC CE,分别为:Configured Grant Confirmation MAC CE和Multiple Entry PHP MAC CE,由于Configured Grant Confirmation MAC CE的优先级高于Multiple Entry PHP MAC CE的优先级,则终端设备可以将Configured Grant Confirmation MAC CE确定为目标MAC CE。
再例如,候选MAC CE包括3个MAC CE,分别为Configured Grant Confirmation MAC CE 1、Configured Grant Confirmation MAC CE 2和Multiple Entry PHP MAC CE,传输Configured Grant Confirmation MAC CE 1所需的上行传输资源为100bits传输Configured Grant Confirmation MAC CE 2所需的上行传输资源为200bits,本次上行传输的上行传输资源为150bits。终端设备根据MAC CE的优先级和本次上行传输的上行传输资源的大小,可以将Configured Grant Confirmation MAC CE 1确定为目标MAC CE。
进一步地,在本申请实施例中,终端设备还可以根据指示信息,在至少一个逻辑信道中确定上行传输的候选逻辑信道,然后在候选逻辑信道中确定目标逻辑信道。
其中,至少一个逻辑信道为当前有待传输数据的逻辑信道。为了便于区别,这里将确定的候选逻辑信道看作一个集合,并称为候选逻辑信道集合,候选逻辑信道集合中包括的逻辑信道的数量大于或等于1。
终端设备确定候选逻辑信道的具体实现方式可以为:若上行传输对应的HARQ功能处于开启状态,终端设备可以将该至少一个逻辑信道中具有第一属性的逻辑信道确定为该候选逻辑信道集合中的候选逻辑信道,该第一属性为允许使用HARQ功能处于开启状态的上行传输资源传输。相反的,若上行传输对应的HARQ功能处于关闭状态,终端设备可以将该至少一个逻辑信道中具有第二属性的逻辑信道确定为该候选逻辑信道集合中的候选逻辑信道,该第二属性为允许使用HARQ功能处于关闭状态的上行传输资源传输。
当然,终端设备在确定了候选逻辑信道集合后,也可以为候选逻辑信道集合中的候选逻辑信道分配资源。
例如,该终端设备可以根据该第一候选逻辑信道集合中候选逻辑信道的优先级,为该第一候选逻辑信道集合中的候选逻辑信道分配资源。其中,对于终端设备的任意一个逻辑信道,网络设备可以为其配置优先级,例如,优先级的取值越小,对应的逻辑信道的优先级越高。为了区别,这里将该优先级称为逻辑信道的配置优先级。
具体地,首先,终端设备执行第一轮资源分配,即终端设备在该第一候选逻辑信道集合中确定令牌数Bj大于0的至少一个候选逻辑信道;并且,该终端设备按照该至少一个候选逻辑信道的配置优先级从高到低的顺序,为该至少一个候选逻辑信道分配资源,且分配的资源满足该选逻辑信道的PBR要求,也就是每个候选逻辑信道分配的资源只能满足PBR的要求,例如,根据逻辑信道j对应的PBR令牌桶中的令牌数Bj为该逻辑信道j分配资源。
其中,对于在该第一轮资源分配过程中分配到资源的候选逻辑信道j,将其的令牌数Bj减去逻辑信道j在该第一轮资源分配过程中复用到MAC PDU的所有MAC SDU的大小。
在执行第一轮资源分配之后,也就是在为该至少一个候选逻辑信道分配完满足PBR要求的资源之后,若上行传输资源中仍然存在剩余资源,则继续执行第二轮资源分配,即不管第一候选逻辑信道集合中每个候选逻辑信道集合的令牌数Bj的大小,该终端设备按照该第一候选逻辑信道集合中候选逻辑信道的配置优先级从高到低的顺序,为该第一候选逻辑信道集合中的候选逻辑信道分配该剩余资源,直至剩余资源全部分配完结束。也就是说,只有当第一候选逻辑信道集合中具有高的配置优先级的候选逻辑信道的数据都发送完毕,且上行传输资源还未耗尽的情况下,低的配置优先级的候选逻辑信道才能得到服务,以使得终端设备最大化高优先级的候选逻辑信道的数据传输。
下面结合图3,举例描述该技术方案。
步骤1:终端设备接收网络设备发送的第一配置信息,对于上行MAC CE1和MAC CE2,第一配置信息为其配置第一传输属性;对于MAC CE3和MAC CE4,第一配置信息没有为其配置第一传输属性。其中,第一传输属性为“只允许使用关闭HARQ功能的上行传输资源进行传输”。
步骤2:终端设备接收来自网络设备的UL grant1指示上行初传,同时指示本次上行传输对应的HARQ功能处于开启状态,则终端设备选择待传数据的逻辑信道(Logical Channel,LC)1和LC2作为本次上行传输的候选逻辑信道,同时,对于已经触发的MAC CE1、MAC CE2、MAC CE3和MAC CE4,终端设备选择未配置第一传输属性的MAC CE3和MAC CE4作为本次传输的候选MAC CE。
进一步地,对于候选MAC CE和候选逻辑信道,终端设备可以根据UL grant1指示的本次传输的上行传输资源的大小,按照逻辑信道和MAC CE的资源分配优先级由高到低的顺序依次分配资源。
步骤3:终端设备接收到来自网络设备的UL grant2指示上行初传,同时指示本次上行传输对应的HARQ功能处于关闭状态,则终端设备选择待传数据的LC1作为本次上行传输的候选逻辑信道。同时,终端设备将已经触发的MAC CE1、MAC CE2、MAC CE3和MAC CE4作为本次传输的候选MAC CE。
进一步地,对于候选MAC CE和候选逻辑信道,终端设备根据UL grant2指示的本次传输的上行传输资源大小,终端设备按照逻辑信道和MAC CE的资源分配优先级由高到低的顺序依次分配资源。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本申请实施例的范围。
在上述技术方案中,通过限制上行MAC CE使用关闭HARQ功能的上行传输承载,从而可以保证上行MAC CE的传输时延,同时可以依赖于网络设备盲调度的重传的方式来提升上行MAC CE的传输可靠性。
为了提高上行MAC CE的传输可靠性,可选地,在本申请实施例中,终端设备还可以触发MAC CE的重传。
应理解,本申请实施例的各种实施方式可以单独实施,也可以结合实施,本申请实施例对此并不限定。例如,本申请实施例中的根据指示信息确定目标MAC CE的实施方式与触发MAC CE重传的实施方式分别可以单独实施,也可以结合实施。下面单独描述触发MAC CE重传的实施方式。应理解,除以下描述外,下述实施例还可以参考各实施例中的相关描述,以下为了简洁,不再赘述。
下面结合两个实施例2详细描述终端设备触发MAC CE重传的实施方式。
实施例1
终端设备可以自动触发MAC CE的重传。具体而言,在终端设备发送某个MAC CE(为了描述方便,称为第一MAC CE)后,终端设备接收到来自网络设备的UL grant指示上行初传,或者终端设备在配置的UL grant上获得一次上行传输机会。此时,如果第一MAC CE的传输次数小于最大传输次数,则终端设备可以触发第一MAC CE的重传,终端设备可以将第一MAC CE作为本次上行传输的候选MAC CE。
其中,第一MAC CE可以为终端设备的已经触发的MAC CE中的任意MAC CE。例如,第一MAC CE可以为目标MAC CE。
应理解,本申请实施例中的最大传输次数也可以称为最大重复传输次数,第一MAC CE的传输次数也可以称为第一MAC CE的重复传输次数。
可选地,网络设备可以向终端设备发送第二配置信息,该第二配置信息用于配置最大传输次数。
其中,网络设备可以为至少一个MAC CE中的所有MAC CE配置一个最大传输次数,也可以针对至少一个MAC CE中的每个MAC CE分别配置一个最大传输次数。
当网络设备为每个MAC CE分别配置一个最大传输次数时,不同的MAC CE对应的最大传输次数可以相同,也可以不同,本申请实施例对此不作限定。
可选地,最大传输次数可以是预设在终端设备上的。
在本申请实施例中,对于第一MAC CE传输次数的累加方式可以有以下三种方式。
方式1:对于不同的MAC PDU传输,该不同的MAC PDU都承载了第一MAC CE,则对于每个承载了MAC CE的MAC PDU的一次传输都可以作为第一MAC CE的一次传输。
方式2:第一MAC CE的传输次数可以包括承载第一MAC CE的传输块(Transport Block,TB)的bundling repetition传输次数。
方式3:对于同一个MAC PDU的bundling repetition传输,该MACPDU承载了第一MAC CE,则该MAC PDU的一次传输可以为第一MAC CE的一次传输。
方式4:对于网络调度的MAC PDU的传输,该MAC PDU承载了第一MAC CE,则该MAC PDU的一次传输作为第一MAC CE的一次传输。
需要说明的是,虽然终端设备触发了第一MAC CE的重传,但终端设备是否可以重传目标MAC CE是不确定的,终端设备是否可以重传第一MAC CE取决于资源分配等一系列因素。
实施例1的一种具体实现的示例图可以如图4所示。图4的实现步骤可以为:
步骤1:终端设备接收网络设备发送的第二配置信息,该第二配置信息可以用于配置以下信息:
a)为终端设备配置物理上行共享信道(Physical Uplink Shared Channel,PUSCH)bundling传输,bundling repetition次数为2;
b)配置上行MAC CE的最大传输次数为8次,其中,该上行MAC CE的最大传输次数适用于该终端设备的所有上行MAC CE。
步骤2:终端设备触发了第一MAC CE。
步骤3:终端设备接收来自网络设备的UL grant指示上行初传,同时指示本次上行传输使用HARQ进程ID 0,则终端设备在UL grant指示的上行传输资源上传输TB1,TB1承载了第一MAC CE,TB1使用bundling传输2次。因此,第一MAC CE的传输次数为2。
步骤4:终端设备接收来自网络设备的UL grant指示TB1的重传,则终端设备在UL grant指示的上行传输资源上重传TB1,TB1使用bundling传输2次,则第一MAC CE的重复次数为4。
步骤5:终端设备接收来自网络设备的UL grant指示上行初传,同时指示本次上行传输使用HARQ进程ID 1,则终端设备在UL grant指示的上行传输资源上传输TB2,TB2承载了第一MAC CE,TB2使用bundling传输2次,则第一MAC CE的重复次数为6。
步骤6:终端设备接收来自网络设备的UL grant指示TB2的重传,则终端设备在UL grant指示的上行传输资源上重传TB2,TB2使用bundling传输2次,则第一MAC CE的重复次数为8。
步骤7:由于第一MAC CE的重复次数达到了最大重复次数,则此后,如果终端设备再接收到来自网络设备的UL grant指示初传,则终端设备不再在新传的TB上承载第一MAC CE。
从上述描述可以看出,第一MAC CE的重传和初传可以使用不同的HARQ进程。
在实施例1的技术方案中,由于终端设备自动触发上行MAC CE的重传,因此触发上行MAC CE重传的速率较快,然而可能会产生不必要的重传,从而出现资源浪费的问题。
实施例2
终端设备可以基于第一定时器触发目标MAC CE的重传。具体而言,终端设备发送第一MAC CE时可以重启或启动第一定时器,当第一定时器超时时,终端设备可以触发第一MAC CE的重传。换句话说,第一定时器可以用于触发MAC CE的重传。
在终端设备接收到来自网络设备的UL grant指示上行初传,或者终端设备在配置的UL grant上获得一次上行传输机会时,此时,对于已经触发了重传的第一MAC CE,终端设备可以将其作为本次上行传输的候选MAC CE。
在实施例2中,对于一个已经发送过的MAC CE,如第一MAC CE,终端设备在发送第一MAC CE时启动或重启第一定时器,当第一定时器超时,且终端设备没有接收到针对第一MAC CE的响应消息时,终端设备可以触发第一MAC CE的重传。
示例性地,若终端设备向网络设备发送第一MAC CE,以请求时频资源,则针对第一MAC CE的响应消息可以用于为终端设备配置时频资源。
再示例性地,若上行传输对应的HARQ功能处于开启状态,则针对第一MAC CE的响应消息可以为网络设备发送的ACK/NACK。
若在第一定时器运行期间,网络设备接收到了第一MAC CE,则网络设备可以向终端设备发送针对第一MAC CE的响应消息,终端设备接收到该响应消息后,可以停止第一定时器。
可选地,网络设备可以向终端设备发送第三配置信息,该第三配置信息用于配置第一定时器。
其中,第三配置信息可以用于为至少一个MAC CE中所有的MAC CE配置一个第一定时器。或者,第三配置信息可以用于为至少一个MAC CE中的每个MAC CE分别配置一个第一定时器。
在第三配置信息用于为至少一个MAC CE中的每个MAC CE分别配置一个第一定时器时,第三 配置信息为每个MAC CE配置的第一定时器的参数可以相同,也可以不同,本申请实施例对此不作具体限定。例如,第三配置信息为第一MAC CE配置的第一定时器的时长为10ms,为其他MAC CE配置的第一定时器的时长为5ms。
进一步地,在本申请实施例中,网络设备还可以向终端设备发送第二配置信息,该第二配置信息用于配置最大传输次数。
在该情况下,如果第一定时器超时,且第一MAC CE的传输次数没有达到最大传输次数,则终端设备可以触发第一MAC CE的重传。
可选地,第二配置信息和第三配置信息可以为同一个信息。也就是说,网络设备在为终端设备配置第一定时器的同时可以为终端设备配置最大传输次数。
实施例2的一种具体实现的示例图可以如图5所示。图5的实现步骤可以为:
步骤1:终端设备接收网络设备发送的第二配置信息,该第二配置信息可以用于配置以下信息:
a)为终端设备配置PUSCH bundling传输,bundling repetition次数为2;
b)配置上行MAC CE的最大传输次数为4次,其中,该上行MAC CE的最大传输次数适用于该终端设备的所有上行MAC CE;
c)配置第一定时器。
步骤2:终端设备触发了第一MAC CE。
步骤3:终端设备接收来自网络设备的UL grant指示上行初传,同时指示本次上行传输使用HARQ进程ID 0,则终端设备在UL grant指示的上行传输资源上传输TB1,TB1承载了第一MAC CE,TB1使用bundling传输2次。因此,目标MAC CE的传输次数为2。终端设备在第一次传输TB1之后启动第一定时器。
步骤4:终端设备接收来自网络设备的UL grant指示上行初传,同时指示本次上行传输使用HARQ进程ID 1,则终端设备在UL grant指示的上行传输资源上传输TB2。此时第一定时器正在运行,因此终端设备不在TB2上传输第一MAC CE。
步骤5:第一定时器超时后,终端设备接收来自网络的UL grant指示上行初传,同时指示本次上行传输使用HARQ进程ID 2,则终端设备在UL grant指示的上行传输资源上传输TB3,TB3承载了第一MAC CE,TB3使用bundling传输2次。因此,第一MAC CE的传输次数为4。
步骤6:由于第一MAC CE的重复次数达到了最大重复次数,此后,如果终端设备再接收到来自网络设备的UL grant指示初传,则终端设备不再在新传的TB上承载第一MAC CE。
应理解,实施例1中的相关描述可以适用于实施例2中,为了内容的简洁,此处不再赘述。
实施例2的技术方案对上行MAC CE引入的重传机制,可以避免产生不必要的重传,从而可以减小资源开销。
在本申请实施例的根据指示信息确定目标MAC CE的实施方式与触发MAC CE重传的实施方式结合实施时,可选地,终端设备可以在触发了重传的MAC CE中确定目标MAC CE。例如,终端设备的上行MAC CE包括MAC CE1、MAC CE2、MAC CE3和MAC CE4,终端设备触发了MAC CE1、MAC CE3和MAC CE4的重传,网络设备为MAC CE1和MAC CE2配置了第一传输属性,没有为MAC CE3和MAC CE4配置第一传输属性,其中,第一传输属性为“只允许使用关闭HARQ功能的上行传输资源进行传输”。终端设备接收到指示信息,该指示信息指示上行传输对应的HARQ功能处于关闭状态,则终端设备可以将MAC CE1确定为目标MAC CE。
图6是根据本申请实施例的另一种上行MAC CE传输的方法300的示意性流程图。图6所述的方法可以由终端设备执行,该终端设备例如可以为图1中所示的终端设备120。如图6所示,该方法300可以包括以下内容中的至少部分内容。
应理解,方法300可以应用于例如远距离通讯如卫星通讯等NTN场景。当然,方法300还可以应用于其它通信场景中,如地面蜂窝网通信、车联网通信等。
在310中,终端设备发送目标MAC CE。
在320中,当目标MAC CE的传输次数小于最大传输次数时,和/或,当第一定时器超时时,所述终端设备触发所述目标MAC CE的重传。
可选地,在本申请实施例中,所述目标MAC CE的传输次数包括承载所述目标MAC CE的传输块的绑定传输次数。
可选地,在本申请实施例中,所述最大传输次数为所述目标MAC CE的最大传输次数,或者,所述最大传输次数为至少一个MAC CE中所有的MAC CE的最大传输次数,所述至少一个MAC CE为所述终端设备的MAC CE,所述至少一个MAC CE包括所述目标MAC CE。
可选地,在本申请实施例中,所述方法300还包括:所述终端设备接收第二配置信息,所述第二 配置信息用于配置所述最大传输次数。
可选地,在本申请实施例中,所述方法300还包括:所述终端设备接收第三配置信息,所述第三配置信息用于配置所述第一定时器。
可选地,在本申请实施例中,所述第三配置信息用于为所述目标MAC CE单独配置所述第一定时器。
可选地,在本申请实施例中,所述第三配置信息用于为至少一个MAC CE中所有的MAC CE配置一个所述第一定时器,所述至少一个MAC CE为所述终端设备的MAC CE,所述至少一个MAC CE包括所述目标MAC CE。
可选地,在本申请实施例中,所述方法300还包括:所述终端设备在发送所述目标MAC CE时,启动或重启所述第一定时器。
可选地,在本申请实施例中,当第一定时器超时时,所述终端设备触发所述目标MAC CE的重传,包括:当所述第一定时器超时,且所述终端设备未接收到针对所述目标MAC CE的响应消息时,所述终端设备触发所述目标MAC CE的重传。
可选地,在本申请实施例中,所述方法300还包括:所述终端设备接收针对所述目标MAC CE的响应消息;所述终端设备基于所述响应消息,停止所述第一定时器。
可选地,在本申请实施例中,在所述终端设备发送所述目标MAC CE之前,所述方法300还包括:所述终端设备接收指示信息,所述指示信息用于指示上行传输对应的混合自动重传请求HARQ功能处于开启状态或关闭状态;所述终端设备根据所述指示信息,从至少一个MAC CE中确定所述目标MAC CE,其中,当所述指示信息指示上行传输对应的HARQ功能处于开启状态时,所述目标MAC CE的传输属性为开启HARQ反馈;当所述指示信息指示上行传输对应的HARQ功能处于关闭状态时,所述目标MAC CE的传输属性为开启HARQ反馈或关闭HARQ反馈。
可选地,在本申请实施例中,所述方法300还包括:所述终端设备确定所述至少一个MAC CE的传输属性;所述终端设备根据所述指示信息,从至少一个MAC CE中确定目标MAC CE,包括:所述终端设备根据所述指示信息和所述至少一个MAC CE的传输属性,从所述至少一个MAC CE中确定所述目标MAC CE。
可选地,在本申请实施例中,所述终端设备确定所述至少一个MAC CE的传输属性,包括:所述终端设备接收第一配置信息,所述第一配置信息用于配置所述至少一个MAC CE的传输属性;所述终端设备根据所述第一配置信息确定所述至少一个MAC CE的传输属性。
可选地,在本申请实施例中,所述终端设备根据所述指示信息,从至少一个MAC CE中确定目标MAC CE,包括:所述终端设备从所述至少一个MAC CE中确定所述上行传输的候选MAC CE,所述候选MAC CE的数量大于或等于1;所述终端设备从所述候选MAC CE中确定所述目标MAC CE。
可选地,在本申请实施例中,所述候选MAC CE包括至少两个MAC CE,所述至少两个MAC CE的优先级与所述至少两个MAC CE占用的上行传输资源的优先级正相关。
可选地,在本申请实施例中,所述至少一个上行MAC CE包括以下至少一个MAC CE:BSR MAC CE、Configured Grant Confirmation MAC CE、Single Entry PHR MAC CE、Multiple Entry PHR MAC CE、Recommended bit rate MAC CE。
图7是根据本申请实施例的另一种上行MAC CE传输的方法400的示意性流程图。图7所述的方法可以由网络设备执行,该网络设备例如可以为图1中所示的网络设备110。如图7所示,该方法400可以包括以下内容中的至少部分内容。
应理解,方法400可以应用于例如远距离通讯如卫星通讯等NTN场景。当然,方法400还可以应用于其它通信场景中,如地面蜂窝网通信、车联网通信等。
在410中,网络设备发送指示信息,所述指示信息用于指示上行传输资源。
在420中,所述网络设备发送第三配置信息,所述第三配置信息用于配置第一定时器,所述第一定时器用于触发目标MAC CE在所述上行传输资源上的重传。
可选地,在本申请实施例中,所述第三配置信息用于为所述目标MAC CE单独配置所述第一定时器。
可选地,在本申请实施例中,所述第三配置信息用于为至少一个MAC CE中所有的MAC CE配置一个所述第一定时器,所述至少一个MAC CE为所述终端设备的MAC CE,所述至少一个MAC CE包括所述目标MAC CE。
可选地,在本申请实施例中,所述方法400还包括:所述网络设备发送第二配置信息,所述第二配置信息用于配置最大传输次数。
可选地,在本申请实施例中,所述最大传输次数为所述目标MAC CE的最大传输次数,或者, 所述最大传输次数为至少一个MAC CE中所有的MAC CE的最大传输次数,所述至少一个MAC CE为所述终端设备触发的MAC CE,所述至少一个MAC CE包括所述目标MAC CE。
可选地,在本申请实施例中,所述目标MAC CE的传输次数包括承载所述目标MAC CE的传输块的绑定传输次数。
可选地,在本申请实施例中,所述方法400还包括:若在所述第一定时器的运行期间,所述网络设备接收到所述目标MAC CE,所述网络设备发送针对所述目标MAC CE的响应消息。
可选地,在本申请实施例中,所述指示信息还用于指示上行传输对应的混合自动重传请求HARQ功能处于开启状态或关闭状态。
可选地,在本申请实施例中,所述方法400还包括:所述网络设备发送第一配置信息,所述第一配置信息用于配置至少一个MAC CE的传输属性,所述MAC CE的传输属性包括开启HARQ反馈或关闭HARQ关闭,所述至少一个MAC CE为所述终端设备的MAC CE,所述至少一个MAC CE包括所述目标MAC CE。
可选地,在本申请实施例中,所述至少一个上行MAC CE包括以下至少一个MAC CE:BSR MAC CE、Configured Grant Confirmation MAC CE、Single Entry PHR MAC CE、Multiple Entry PHR MAC CE、Recommended bit rate MAC CE。
应理解,以上虽然分别描述了方法200-400,但是这并不意味着方法200-400是独立的,各个方法的描述可以相互参考。在不矛盾的情况下,各个方法的可选方案可以结合使用。例如,方法200中的相关描述可以适用于方法300和400。
还应理解,在本申请实施例中,“第一”、“第二”和“第三”仅仅为了区分不同的对象,但并不对本申请实施例的范围构成限制。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的上行MAC CE传输的方法,下面将结合图8至图11,描述根据本申请实施例的通信装置,方法实施例所描述的技术特征适用于以下装置实施例。
图8示出了本申请实施例的上行MAC CE传输的装置500的示意性框图。如图8所示,该装置500包括:
通信单元510,用于接收指示信息,所述指示信息用于指示上行传输对应的HARQ功能处于开启状态或关闭状态。
处理单元520,用于根据所述指示信息,从至少一个MAC CE中确定目标MAC CE,其中,当所述指示信息指示上行传输对应的HARQ功能处于开启状态时,所述目标MAC CE的传输属性为开启HARQ反馈;当所述指示信息指示上行传输对应的HARQ功能处于关闭状态时,所述目标MAC CE的传输属性为开启HARQ反馈或关闭HARQ反馈。
所述通信单元510还用于,发送所述目标MAC CE。
可选地,在本申请实施例中,所述处理单元520还用于:确定所述至少一个MAC CE的传输属性;
所述处理单元520具体用于:根据所述指示信息和所述至少一个MAC CE的传输属性,从所述至少一个MAC CE中确定所述目标MAC CE。
可选地,在本申请实施例中,所述通信单元510还用于:接收第一配置信息,所述第一配置信息用于配置所述至少一个MAC CE的传输属性;所述处理单元520具体用于:根据所述第一配置信息确定所述至少一个MAC CE的传输属性。
可选地,在本申请实施例中,所述处理单元520具体用于:根据所述指示信息,从所述至少一个MAC CE中确定所述上行传输的候选MAC CE,所述候选MAC CE的数量大于或等于1;从所述候选MAC CE中确定所述目标MAC CE。
可选地,在本申请实施例中,所述候选MAC CE包括至少两个MAC CE,所述至少两个MAC CE的优先级与所述至少两个MAC CE占用的上行传输资源的优先级正相关。
可选地,在本申请实施例中,所述指示信息还用于指示所述上行传输的上行传输资源,所述处理单元520还用于:当所述目标MAC CE的传输次数小于最大传输次数时,和/或,当第一定时器超时时,触发所述目标MAC CE的重传。
可选地,在本申请实施例中,所述目标MAC CE的传输次数包括承载所述目标MAC CE的传输块的绑定传输次数。
可选地,在本申请实施例中,所述最大传输次数为所述目标MAC CE的最大传输次数,或者,所述最大传输次数为所述至少一个MAC CE中所有的MAC CE的最大传输次数。
可选地,在本申请实施例中,所述通信单元510还用于:接收第二配置信息,所述第二配置信息用于配置所述最大传输次数。
可选地,在本申请实施例中,所述通信单元510还用于:接收第三配置信息,所述第三配置信息用于配置所述第一定时器。
可选地,在本申请实施例中,所述第三配置信息用于为所述目标MAC CE单独配置所述第一定时器。
可选地,在本申请实施例中,所述第三配置信息用于为所述至少一个MAC CE中所有的MAC CE配置一个所述第一定时器。
可选地,在本申请实施例中,所述处理单元520还用于:在所述通信单元510发送所述目标MAC CE时,启动或重启所述第一定时器。
可选地,在本申请实施例中,所述处理单元520具体用于:当所述第一定时器超时,且所述通信单元510未接收到针对所述目标MAC CE的响应消息时,触发所述目标MAC CE的重传。
可选地,在本申请实施例中,所述通信单元510还用于:接收针对所述目标MAC CE的响应消息;所述处理单元520还用于:基于所述响应消息,停止所述第一定时器。
可选地,在本申请实施例中,所述至少一个上行MAC CE包括以下至少一个MAC CE:BSR MAC CE、配置授权确认MAC CE、单条PHR MAC CE、多条PHR MAC CE、推荐比特率MAC CE。
可选地,在本申请实施例中,所述装置500应用于NTN中。
应理解,该装置500可对应于方法200中的终端设备,可以实现该方法200中的终端设备的相应操作,为了简洁,在此不再赘述。
图9示出了本申请实施例的上行MAC CE传输的装置600的示意性框图。如图9所示,该装置600包括:
通信单元610,用于发送目标MAC CE。
处理单元620,用于当目标MAC CE的传输次数小于最大传输次数时,和/或,当第一定时器超时时,触发所述目标MAC CE的重传。
可选地,在本申请实施例中,所述目标MAC CE的传输次数包括承载所述目标MAC CE的传输块的绑定传输次数。
可选地,在本申请实施例中,所述最大传输次数为所述目标MAC CE的最大传输次数,或者,所述最大传输次数为至少一个MAC CE中所有的MAC CE的最大传输次数,所述至少一个MAC CE为所述终端设备触发的MAC CE,所述至少一个MAC CE包括所述目标MAC CE。
可选地,在本申请实施例中,所述通信单元610还用于:接收第二配置信息,所述第二配置信息用于配置所述最大传输次数。
可选地,在本申请实施例中,所述通信单元610还用于:接收第三配置信息,所述第三配置信息用于配置所述第一定时器。
可选地,在本申请实施例中,所述第三配置信息用于为所述目标MAC CE单独配置所述第一定时器。
可选地,在本申请实施例中,所述第三配置信息用于为至少一个MAC CE中所有的MAC CE配置一个所述第一定时器,所述至少一个MAC CE为所述终端设备触发的MAC CE,所述至少一个MAC CE包括所述目标MAC CE。
可选地,在本申请实施例中,所述处理单元620还用于:在所述通信单元610发送所述目标MAC CE时,启动或重启所述第一定时器。
可选地,在本申请实施例中,当第一定时器超时时,所述处理单元620具体用于:当所述第一定时器超时,且所述通信单元610未接收到针对所述目标MAC CE的响应消息时,触发所述目标MAC CE的重传。
可选地,在本申请实施例中,所述通信单元610还用于:接收针对所述目标MAC CE的响应消息;所述处理单元620还用于:基于所述响应消息,停止所述第一定时器。
可选地,在本申请实施例中,在所述通信单元610发送所述目标MAC CE之前,所述通信单元610还用于:接收指示信息,所述指示信息用于指示上行传输对应的HARQ功能处于开启状态或关闭状态;
所述处理单元620还用于:根据所述指示信息,从至少一个MAC CE中确定所述目标MAC CE,其中,当所述指示信息指示上行传输对应的HARQ功能处于开启状态时,所述目标MAC CE的传输属性为开启HARQ反馈;当所述指示信息指示上行传输对应的HARQ功能处于关闭状态时,所述目标MAC CE的传输属性为开启HARQ反馈或关闭HARQ反馈。
可选地,在本申请实施例中,所述处理单元620还用于:确定所述至少一个MAC CE的传输属性;所述处理单元620具体用于:根据所述指示信息和所述至少一个MAC CE的传输属性,从所述至少一个MAC CE中确定所述目标MAC CE。
可选地,在本申请实施例中,所述通信单元610还用于:接收第一配置信息,所述第一配置信息用于配置所述至少一个MAC CE的传输属性;所述处理单元620具体用于:
根据所述第一配置信息确定所述至少一个MAC CE的传输属性。
可选地,在本申请实施例中,所述处理单元620具体用于:从所述至少一个MAC CE中确定所述上行传输的候选MAC CE,所述候选MAC CE的数量大于或等于1;从所述候选MAC CE中确定所述目标MAC CE。
可选地,在本申请实施例中,所述候选MAC CE包括至少两个MAC CE,所述至少两个MAC CE的优先级与所述至少两个MAC CE占用的上行传输资源的优先级正相关。
可选地,在本申请实施例中,所述至少一个上行MAC CE包括以下至少一个MAC CE:BSR MAC CE、配置授权确认MAC CE、单条PHR MAC CE、多条PHR MAC CE、推荐比特率MAC CE。
可选地,在本申请实施例中,所述装置600应用于NTN中。
应理解,该装置600可对应于方法300中的终端设备,可以实现该方法300中的终端设备的相应操作,为了简洁,在此不再赘述。
图10示出了本申请实施例的上行MAC CE传输的装置700的示意性框图。如图10所示,该装置700包括:
通信单元710,用于发送指示信息,所述指示信息用于指示上行传输资源。
所述通信单元710还用于,发送第三配置信息,所述第三配置信息用于配置第一定时器,所述第一定时器用于触发目标MAC CE在所述上行传输资源上的重传。
可选地,在本申请实施例中,所述第三配置信息用于为所述目标MAC CE单独配置所述第一定时器。
可选地,在本申请实施例中,所述第三配置信息用于为至少一个MAC CE中所有的MAC CE配置一个所述第一定时器,所述至少一个MAC CE为所述终端设备的MAC CE,所述至少一个MAC CE包括所述目标MAC CE。
可选地,在本申请实施例中,所述通信单元710还用于:发送第二配置信息,所述第二配置信息用于配置最大传输次数。
可选地,在本申请实施例中,所述最大传输次数为所述目标MAC CE的最大传输次数,或者,所述最大传输次数为至少一个MAC CE中所有的MAC CE的最大传输次数,所述至少一个MAC CE为所述终端设备触发的MAC CE,所述至少一个MAC CE包括所述目标MAC CE。
可选地,在本申请实施例中,所述目标MAC CE的传输次数包括承载所述目标MAC CE的传输块的绑定传输次数。
可选地,在本申请实施例中,所述通信单元710还用于:若在所述第一定时器的运行期间,接收到所述目标MAC CE,发送针对所述目标MAC CE的响应消息。
可选地,在本申请实施例中,所述指示信息还用于指示上行传输对应的HARQ功能处于开启状态或关闭状态。
可选地,在本申请实施例中,所述通信单元710还用于:发送第一配置信息,所述第一配置信息用于配置至少一个MAC CE的传输属性,所述MAC CE的传输属性包括开启HARQ反馈或关闭HARQ关闭,所述至少一个MAC CE为所述终端设备的MAC CE,所述至少一个MAC CE包括所述目标MAC CE。
可选地,在本申请实施例中,所述至少一个上行MAC CE包括以下至少一个MAC CE:BSR MAC CE、配置授权确认MAC CE、单条PHR MAC CE、多条PHR MAC CE、推荐比特率MAC CE。
可选地,在本申请实施例中,所述装置700应用于NTN中。
应理解,该装置700可对应于方法400中的网络设备,可以实现该方法400中的终网络设备的相 应操作,为了简洁,在此不再赘述。
图11是本申请实施例提供的一种通信设备800示意性结构图。图11所示的通信设备800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,通信设备800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
可选地,如图11所示,通信设备800还可以包括收发器830,处理器810可以控制该收发器830与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器830可以包括发射机和接收机。收发器830还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备800具体可为本申请实施例的网络设备,并且该通信设备800可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备800具体可为本申请实施例的终端设备,并且该通信设备800可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图12是本申请实施例的芯片的示意性结构图。图12所示的芯片900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,芯片900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,该芯片900还可以包括输入接口930。其中,处理器910可以控制该输入接口930与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片900还可以包括输出接口940。其中,处理器910可以控制该输出接口940与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动 态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图13是本申请实施例提供的一种通信系统1000的示意性框图。如图13所示,该通信系统1000包括终端设备1010和网络设备1020。
其中,该终端设备1010可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1020可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选地,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (105)

  1. 一种上行媒体接入控制控制单元MAC CE传输的方法,其特征在于,所述方法包括:
    终端设备接收指示信息,所述指示信息用于指示上行传输对应的混合自动重传请求HARQ功能处于开启状态或关闭状态;
    所述终端设备根据所述指示信息,从至少一个MAC CE中确定目标MAC CE,其中,当所述指示信息指示上行传输对应的HARQ功能处于开启状态时,所述目标MAC CE的传输属性为开启HARQ反馈;当所述指示信息指示上行传输对应的HARQ功能处于关闭状态时,所述目标MAC CE的传输属性为开启HARQ反馈或关闭HARQ反馈;
    所述终端设备发送所述目标MAC CE。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定所述至少一个MAC CE的传输属性;
    所述终端设备根据所述指示信息,从至少一个MAC CE中确定目标MAC CE,包括:
    所述终端设备根据所述指示信息和所述至少一个MAC CE的传输属性,从所述至少一个MAC CE中确定所述目标MAC CE。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备确定所述至少一个MAC CE的传输属性,包括:
    所述终端设备接收第一配置信息,所述第一配置信息用于配置所述至少一个MAC CE的传输属性;
    所述终端设备根据所述第一配置信息确定所述至少一个MAC CE的传输属性。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述终端设备根据所述指示信息,从至少一个MAC CE中确定目标MAC CE,包括:
    所述终端设备根据所述指示信息,从所述至少一个MAC CE中确定所述上行传输的候选MACCE,所述候选MAC CE的数量大于或等于1;
    所述终端设备从所述候选MAC CE中确定所述目标MAC CE。
  5. 根据权利要求4所述的方法,其特征在于,所述候选MAC CE包括至少两个MAC CE,所述至少两个MAC CE的优先级与所述至少两个MAC CE占用的上行传输资源的优先级正相关。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    当所述目标MAC CE的传输次数小于最大传输次数时,和/或,当第一定时器超时时,所述终端设备触发所述目标MAC CE的重传。
  7. 根据权利要求6所述的方法,其特征在于,所述目标MAC CE的传输次数包括承载所述目标MAC CE的传输块的绑定传输次数。
  8. 根据权利要求6或7所述的方法,其特征在于,所述最大传输次数为所述目标MAC CE的最大传输次数,或者,所述最大传输次数为所述至少一个MAC CE中所有的MAC CE的最大传输次数。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第二配置信息,所述第二配置信息用于配置所述最大传输次数。
  10. 根据权利要求6至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第三配置信息,所述第三配置信息用于配置所述第一定时器。
  11. 根据权利要求10所述的方法,其特征在于,所述第三配置信息用于为所述目标MAC CE单独配置所述第一定时器。
  12. 根据权利要求10所述的方法,其特征在于,所述第三配置信息用于为所述至少一个MAC CE中所有的MAC CE配置一个所述第一定时器。
  13. 根据权利要求6至12中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备在发送所述目标MAC CE时,启动或重启所述第一定时器。
  14. 根据权利要求13所述的方法,其特征在于,当第一定时器超时时,所述终端设备触发所述目标MAC CE的重传,包括:
    当所述第一定时器超时,且所述终端设备未接收到针对所述目标MAC CE的响应消息时,所述终端设备触发所述目标MAC CE的重传。
  15. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收针对所述目标MAC CE的响应消息;
    所述终端设备基于所述响应消息,停止所述第一定时器。
  16. 根据权利要求1至15中任一项所述的方法,其特征在于,所述至少一个上行MAC CE包括 以下至少一个MAC CE:
    缓存状态报告BSR MAC CE;
    配置授权确认MAC CE;
    单条功率余量报告PHR MAC CE;
    多条PHR MAC CE;
    推荐比特率MAC CE。
  17. 根据权利要求1至16中任一项所述的方法,其特征在于,所述方法应用于非地面通信网络NTN中。
  18. 一种上行媒体接入控制控制单元MAC CE传输的方法,其特征在于,所述方法包括:
    终端设备发送目标MAC CE;
    当所述目标MAC CE的传输次数小于最大传输次数时,和/或,当第一定时器超时时,所述终端设备触发所述目标MAC CE的重传。
  19. 根据权利要求18所述的方法,其特征在于,所述目标MAC CE的传输次数包括承载所述目标MAC CE的传输块的绑定传输次数。
  20. 根据权利要求18或19所述的方法,其特征在于,所述最大传输次数为所述目标MAC CE的最大传输次数,或者,所述最大传输次数为至少一个MAC CE中所有的MAC CE的最大传输次数,所述至少一个MAC CE为所述终端设备的MAC CE,所述至少一个MAC CE包括所述目标MAC CE。
  21. 根据权利要求18至20中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第二配置信息,所述第二配置信息用于配置所述最大传输次数。
  22. 根据权利要求18至21中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第三配置信息,所述第三配置信息用于配置所述第一定时器。
  23. 根据权利要求22所述的方法,其特征在于,所述第三配置信息用于为所述目标MAC CE单独配置所述第一定时器。
  24. 根据权利要求22所述的方法,其特征在于,所述第三配置信息用于为至少一个MAC CE中所有的MAC CE配置一个所述第一定时器,所述至少一个MAC CE为所述终端设备的MAC CE,所述至少一个MAC CE包括所述目标MAC CE。
  25. 根据权利要求18至24中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备在发送所述目标MAC CE时,启动或重启所述第一定时器。
  26. 根据权利要求25所述的方法,其特征在于,当第一定时器超时时,所述终端设备触发所述目标MAC CE的重传,包括:
    当所述第一定时器超时,且所述终端设备未接收到针对所述第一MAC CE的响应消息时,所述终端设备触发所述目标MAC CE的重传。
  27. 根据权利要求25所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收针对所述目标MAC CE的响应消息;
    所述终端设备基于所述响应消息,停止所述第一定时器。
  28. 根据权利要求18至27中任一项所述的方法,其特征在于,在所述终端设备发送所述目标MAC CE之前,所述方法还包括:
    所述终端设备接收指示信息,所述指示信息用于指示上行传输对应的混合自动重传请求HARQ功能处于开启状态或关闭状态;
    所述终端设备根据所述指示信息,从至少一个MAC CE中确定所述目标MAC CE,其中,当所述指示信息指示上行传输对应的HARQ功能处于开启状态时,所述目标MAC CE的传输属性为开启HARQ反馈;当所述指示信息指示上行传输对应的HARQ功能处于关闭状态时,所述目标MAC CE的传输属性为开启HARQ反馈或关闭HARQ反馈。
  29. 根据权利要求28所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定所述至少一个MAC CE的传输属性;
    所述终端设备根据所述指示信息,从至少一个MAC CE中确定目标MAC CE,包括:
    所述终端设备根据所述指示信息和所述至少一个MAC CE的传输属性,从所述至少一个MAC CE中确定所述目标MAC CE。
  30. 根据权利要求29所述的方法,其特征在于,所述终端设备确定所述至少一个MAC CE的传输属性,包括:
    所述终端设备接收第一配置信息,所述第一配置信息用于配置所述至少一个MAC CE的传输属性;
    所述终端设备根据所述第一配置信息确定所述至少一个MAC CE的传输属性。
  31. 根据权利要求28至30中任一项所述的方法,其特征在于,所述终端设备根据所述指示信息,从至少一个MAC CE中确定目标MAC CE,包括:
    所述终端设备从所述至少一个MAC CE中确定所述上行传输的候选MAC CE,所述候选MAC CE的数量大于或等于1;
    所述终端设备从所述候选MAC CE中确定所述目标MAC CE。
  32. 根据权利要求31所述的方法,其特征在于,所述候选MAC CE包括至少两个MAC CE,所述至少两个MAC CE的优先级与所述至少两个MAC CE占用的上行传输资源的优先级正相关。
  33. 根据权利要求20、24、28至32中任一项所述的方法,其特征在于,所述至少一个上行MACCE包括以下至少一个MAC CE:
    缓存状态报告BSR MAC CE;
    配置授权确认MAC CE;
    单条功率余量报告PHR MAC CE;
    多条PHR MAC CE;
    推荐比特率MAC CE。
  34. 根据权利要求18至33中任一项所述的方法,其特征在于,所述方法应用于非地面通信网络NTN中。
  35. 一种上行媒体接入控制控制单元MAC CE传输的方法,其特征在于,所述方法包括:
    网络设备发送指示信息,所述指示信息用于指示上行传输资源;
    所述网络设备发送第三配置信息,所述第三配置信息用于配置第一定时器,所述第一定时器用于触发目标MAC CE在所述上行传输资源上的重传。
  36. 根据权利要求35所述的方法,其特征在于,所述第三配置信息用于为所述目标MAC CE单独配置所述第一定时器。
  37. 根据权利要求35所述的方法,其特征在于,所述第三配置信息用于为至少一个MAC CE中所有的MAC CE配置一个所述第一定时器,所述至少一个MAC CE为所述终端设备的MAC CE,所述至少一个MAC CE包括所述目标MAC CE。
  38. 根据权利要求35至37中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第二配置信息,所述第二配置信息用于配置最大传输次数。
  39. 根据权利要求38所述的方法,其特征在于,所述最大传输次数为所述目标MAC CE的最大传输次数,或者,所述最大传输次数为至少一个MAC CE中所有的MAC CE的最大传输次数,所述至少一个MAC CE为所述终端设备触发的MAC CE,所述至少一个MAC CE包括所述目标MAC CE。
  40. 根据权利要求35至39中任一项所述的方法,其特征在于,所述目标MAC CE的传输次数包括承载所述目标MAC CE的传输块的绑定传输次数。
  41. 根据权利要求35至40中任一项所述的方法,其特征在于,所述方法还包括:
    若在所述第一定时器的运行期间,所述网络设备接收到所述目标MAC CE,所述网络设备发送针对所述目标MAC CE的响应消息。
  42. 根据权利要求35至41中任一项所述的方法,其特征在于,所述指示信息还用于指示上行传输对应的混合自动重传请求HARQ功能处于开启状态或关闭状态。
  43. 根据权利要求42所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第一配置信息,所述第一配置信息用于配置至少一个MAC CE的传输属性,所述MAC CE的传输属性包括开启HARQ反馈或关闭HARQ关闭,所述至少一个MAC CE为所述终端设备的MAC CE,所述至少一个MAC CE包括所述目标MAC CE。
  44. 根据权利要求37、39或43所述的方法,其特征在于,所述至少一个上行MAC CE包括以下至少一个MAC CE:
    缓存状态报告BSR MAC CE;
    配置授权确认MAC CE;
    单条功率余量报告PHR MAC CE;
    多条PHR MAC CE;
    推荐比特率MAC CE。
  45. 根据权利要求35至44中任一项所述的方法,其特征在于,所述方法应用于非地面通信网络NTN中。
  46. 一种上行媒体接入控制控制单元MAC CE传输的装置,其特征在于,包括:
    通信单元,用于接收指示信息,所述指示信息用于指示上行传输对应的混合自动重传请求HARQ功能处于开启状态或关闭状态;
    处理单元,用于根据所述指示信息,从至少一个MAC CE中确定目标MAC CE,其中,当所述指示信息指示上行传输对应的HARQ功能处于开启状态时,所述目标MAC CE的传输属性为开启HARQ反馈;当所述指示信息指示上行传输对应的HARQ功能处于关闭状态时,所述目标MAC CE的传输属性为开启HARQ反馈或关闭HARQ反馈;
    所述通信单元还用于,发送所述目标MAC CE。
  47. 根据权利要求46所述的装置,其特征在于,所述处理单元还用于:
    确定所述至少一个MAC CE的传输属性;
    所述处理单元具体用于:
    根据所述指示信息和所述至少一个MAC CE的传输属性,从所述至少一个MAC CE中确定所述目标MAC CE。
  48. 根据权利要求47所述的装置,其特征在于,所述通信单元还用于:
    接收第一配置信息,所述第一配置信息用于配置所述至少一个MAC CE的传输属性;
    所述处理单元具体用于:
    根据所述第一配置信息确定所述至少一个MAC CE的传输属性。
  49. 根据权利要求46至48中任一项所述的装置,其特征在于,所述处理单元具体用于:
    根据所述指示信息,从所述至少一个MAC CE中确定所述上行传输的候选MAC CE,所述候选MAC CE的数量大于或等于1;
    从所述候选MAC CE中确定所述目标MAC CE。
  50. 根据权利要求49所述的装置,其特征在于,所述候选MAC CE包括至少两个MAC CE,所述至少两个MAC CE的优先级与所述至少两个MAC CE占用的上行传输资源的优先级正相关。
  51. 根据权利要求46至50中任一项所述的装置,其特征在于,所述处理单元还用于:
    当所述目标MAC CE的传输次数小于最大传输次数时,和/或,当第一定时器超时时,触发所述目标MAC CE的重传。
  52. 根据权利要求51所述的装置,其特征在于,所述目标MAC CE的传输次数包括承载所述目标MAC CE的传输块的绑定传输次数。
  53. 根据权利要求51或52所述的装置,其特征在于,所述最大传输次数为所述目标MAC CE的最大传输次数,或者,所述最大传输次数为所述至少一个MAC CE中所有的MAC CE的最大传输次数。
  54. 根据权利要求51至53中任一项所述的装置,其特征在于,所述通信单元还用于:
    接收第二配置信息,所述第二配置信息用于配置所述最大传输次数。
  55. 根据权利要求51至54中任一项所述的装置,其特征在于,所述通信单元还用于:
    接收第三配置信息,所述第三配置信息用于配置所述第一定时器。
  56. 根据权利要求55所述的装置,其特征在于,所述第三配置信息用于为所述目标MAC CE单独配置所述第一定时器。
  57. 根据权利要求55所述的装置,其特征在于,所述第三配置信息用于为所述至少一个MAC CE中所有的MAC CE配置一个所述第一定时器。
  58. 根据权利要求51至57中任一项所述的装置,其特征在于,所述处理单元还用于:
    在所述通信单元发送所述目标MAC CE时,启动或重启所述第一定时器。
  59. 根据权利要求58所述的装置,其特征在于,所述处理单元具体用于:
    当所述第一定时器超,且所述通信单元未接收到针对所述目标MAC CE的响应消息时,触发所述目标MAC CE的重传。
  60. 根据权利要求58所述的装置,其特征在于,所述通信单元还用于:
    接收针对所述目标MAC CE的响应消息;
    所述处理单元还用于:
    基于所述响应消息,停止所述第一定时器。
  61. 根据权利要求46至60中任一项所述的装置,其特征在于,所述至少一个上行MAC CE包括以下至少一个MAC CE:
    缓存状态报告BSR MAC CE;
    配置授权确认MAC CE;
    单条功率余量报告PHR MAC CE;
    多条PHR MAC CE;
    推荐比特率MAC CE。
  62. 根据权利要求46至61中任一项所述的装置,其特征在于,所述装置应用于非地面通信网络NTN中。
  63. 一种上行媒体接入控制控制单元MAC CE传输的装置,其特征在于,包括:
    通信单元,用于发送目标MAC CE;
    处理单元,用于当所述目标MAC CE的传输次数小于最大传输次数时,和/或,当第一定时器超时时,触发所述目标MAC CE的重传。
  64. 根据权利要求63所述的装置,其特征在于,所述目标MAC CE的传输次数包括承载所述目标MAC CE的传输块的绑定传输次数。
  65. 根据权利要求63或64所述的装置,其特征在于,所述最大传输次数为所述目标MAC CE的最大传输次数,或者,所述最大传输次数为至少一个MAC CE中所有的MAC CE的最大传输次数,所述至少一个MAC CE为所述终端设备触发的MAC CE,所述至少一个MAC CE包括所述目标MACCE。
  66. 根据权利要求63至65中任一项所述的装置,其特征在于,所述通信单元还用于:
    接收第二配置信息,所述第二配置信息用于配置所述最大传输次数。
  67. 根据权利要求63至66中任一项所述的装置,其特征在于,所述通信单元还用于:
    接收第三配置信息,所述第三配置信息用于配置所述第一定时器。
  68. 根据权利要求67所述的装置,其特征在于,所述第三配置信息用于为所述目标MAC CE单独配置所述第一定时器。
  69. 根据权利要求67所述的装置,其特征在于,所述第三配置信息用于为至少一个MAC CE中所有的MAC CE配置一个所述第一定时器,所述至少一个MAC CE为所述终端设备触发的MAC CE,所述至少一个MAC CE包括所述目标MAC CE。
  70. 根据权利要求63至69中任一项所述的装置,其特征在于,所述处理单元还用于:
    在所述通信单元发送所述目标MAC CE时,启动或重启所述第一定时器。
  71. 根据权利要求70所述的装置,其特征在于,当第一定时器超时时,所述处理单元具体用于:
    当所述第一定时器超时,且所述通信单元未接收到针对所述目标MAC CE的响应消息时,触发所述目标MAC CE的重传。
  72. 根据权利要求70所述的装置,其特征在于,所述通信单元还用于:
    接收针对所述目标MAC CE的响应消息;
    所述处理单元还用于:
    基于所述响应消息,停止所述第一定时器。
  73. 根据权利要求63至72中任一项所述的装置,其特征在于,在所述通信单元发送所述目标MAC CE之前,所述通信单元还用于:
    接收指示信息,所述指示信息用于指示上行传输对应的混合自动重传请求HARQ功能处于开启状态或关闭状态;
    所述处理单元还用于:
    根据所述指示信息,从至少一个MAC CE中确定所述目标MAC CE,其中,当所述指示信息指示上行传输对应的HARQ功能处于开启状态时,所述目标MAC CE的传输属性为开启HARQ反馈;当所述指示信息指示上行传输对应的HARQ功能处于关闭状态时,所述目标MAC CE的传输属性为开启HARQ反馈或关闭HARQ反馈。
  74. 根据权利要求73所述的装置,其特征在于,所述处理单元还用于:
    确定所述至少一个MAC CE的传输属性;
    所述处理单元具体用于:
    根据所述指示信息和所述至少一个MAC CE的传输属性,从所述至少一个MAC CE中确定所述目标MAC CE。
  75. 根据权利要求74所述的装置,其特征在于,所述通信单元还用于:
    接收第一配置信息,所述第一配置信息用于配置所述至少一个MAC CE的传输属性;
    所述处理单元具体用于:
    根据所述第一配置信息确定所述至少一个MAC CE的传输属性。
  76. 根据权利要求73至75中任一项所述的装置,其特征在于,所述处理单元具体用于:
    从所述至少一个MAC CE中确定所述上行传输的候选MAC CE,所述候选MAC CE的数量大于 或等于1;
    从所述候选MAC CE中确定所述目标MAC CE。
  77. 根据权利要求76所述的装置,其特征在于,所述候选MAC CE包括至少两个MAC CE,所述至少两个MAC CE的优先级与所述至少两个MAC CE占用的上行传输资源的优先级正相关。
  78. 根据权利要求65、69、73至77中任一项所述的装置,其特征在于,所述至少一个上行MACCE包括以下至少一个MAC CE:
    缓存状态报告BSR MAC CE;
    配置授权确认MAC CE;
    单条功率余量报告PHR MAC CE;
    多条PHR MAC CE;
    推荐比特率MAC CE。
  79. 根据权利要求63至78中任一项所述的装置,其特征在于,所述装置应用于非地面通信网络NTN中。
  80. 一种上行媒体接入控制控制单元MAC CE传输的装置,其特征在于,包括:
    通信单元,用于发送指示信息,所述指示信息用于指示上行传输资源;
    所述通信单元还用于,发送第三配置信息,所述第三配置信息用于配置第一定时器,所述第一定时器用于触发目标MAC CE在所述上行传输资源上的重传。
  81. 根据权利要求80所述的装置,其特征在于,所述第三配置信息用于为所述目标MAC CE单独配置所述第一定时器。
  82. 根据权利要求80所述的装置,其特征在于,所述第三配置信息用于为至少一个MAC CE中所有的MAC CE配置一个所述第一定时器,所述至少一个MAC CE为所述终端设备的MAC CE,所述至少一个MAC CE包括所述目标MAC CE。
  83. 根据权利要求80至82中任一项所述的装置,其特征在于,所述通信单元还用于:
    发送第二配置信息,所述第二配置信息用于配置最大传输次数。
  84. 根据权利要求83所述的装置,其特征在于,所述最大传输次数为所述目标MAC CE的最大传输次数,或者,所述最大传输次数为至少一个MAC CE中所有的MAC CE的最大传输次数,所述至少一个MAC CE为所述终端设备触发的MAC CE,所述至少一个MAC CE包括所述目标MAC CE。
  85. 根据权利要求80至84中任一项所述的装置,其特征在于,所述目标MAC CE的传输次数包括承载所述目标MAC CE的传输块的绑定传输次数。
  86. 根据权利要求80至85中任一项所述的装置,其特征在于,所述通信单元还用于:
    若在所述第一定时器的运行期间,接收到所述目标MAC CE,发送针对所述目标MAC CE的响应消息。
  87. 根据权利要求80至86中任一项所述的装置,其特征在于,所述指示信息还用于指示上行传输对应的混合自动重传请求HARQ功能处于开启状态或关闭状态。
  88. 根据权利要求87所述的装置,其特征在于,所述通信单元还用于:
    发送第一配置信息,所述第一配置信息用于配置至少一个MAC CE的传输属性,所述MAC CE的传输属性包括开启HARQ反馈或关闭HARQ关闭,所述至少一个MAC CE为所述终端设备的MACCE,所述至少一个MAC CE包括所述目标MAC CE。
  89. 根据权利要求82、84或88所述的装置,其特征在于,所述至少一个上行MAC CE包括以下至少一个MAC CE:
    缓存状态报告BSR MAC CE;
    配置授权确认MAC CE;
    单条功率余量报告PHR MAC CE;
    多条PHR MAC CE;
    推荐比特率MAC CE。
  90. 根据权利要求80至89中任一项所述的装置,其特征在于,所述装置应用于非地面通信网络NTN中。
  91. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至17中任一项所述的方法。
  92. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求18至34中任一项所述的 方法。
  93. 一种网络设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求35至45中任一项所述的方法。
  94. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至17中任一项所述的方法。
  95. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求18至34中任一项所述的方法。
  96. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求35至45中任一项所述的方法。
  97. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至17中任一项所述的方法。
  98. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求18至34中任一项所述的方法。
  99. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求35至45中任一项所述的方法。
  100. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至17中任一项所述的方法。
  101. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求18至34中任一项所述的方法。
  102. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求35至45中任一项所述的方法。
  103. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至17中任一项所述的方法。
  104. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求18至34中任一项所述的方法。
  105. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求35至45中任一项所述的方法。
PCT/CN2019/129378 2019-12-27 2019-12-27 上行mac ce传输的方法和装置 WO2021128318A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/129378 WO2021128318A1 (zh) 2019-12-27 2019-12-27 上行mac ce传输的方法和装置
CN201980100536.1A CN114557100A (zh) 2019-12-27 2019-12-27 上行mac ce传输的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/129378 WO2021128318A1 (zh) 2019-12-27 2019-12-27 上行mac ce传输的方法和装置

Publications (1)

Publication Number Publication Date
WO2021128318A1 true WO2021128318A1 (zh) 2021-07-01

Family

ID=76575413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129378 WO2021128318A1 (zh) 2019-12-27 2019-12-27 上行mac ce传输的方法和装置

Country Status (2)

Country Link
CN (1) CN114557100A (zh)
WO (1) WO2021128318A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022019833A1 (en) * 2020-07-21 2022-01-27 Mediatek Singapore Pte. Ltd. Methods for selectively enabling and disabling ul harq retransmission in ntn communications and communication apparatus utilizing the same
WO2023193228A1 (en) * 2022-04-08 2023-10-12 Nokia Shanghai Bell Co., Ltd. Devices, methods, apparatuses, and computer readable media for medium access control-control element transmission

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024108387A1 (zh) * 2022-11-22 2024-05-30 Oppo广东移动通信有限公司 一种harq实现方法及装置、终端设备、网络设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014040301A1 (zh) * 2012-09-17 2014-03-20 华为技术有限公司 调度方法、基站、用户设备和系统
WO2019074437A1 (en) * 2017-10-12 2019-04-18 Telefonaktiebolaget Lm Ericsson (Publ) METHODS AND APPARATUS FOR TRIGGERING CONTROL INFORMATION IN WIRELESS NETWORKS
CN110351684A (zh) * 2018-04-04 2019-10-18 华为技术有限公司 传输数据的方法及其装置和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014040301A1 (zh) * 2012-09-17 2014-03-20 华为技术有限公司 调度方法、基站、用户设备和系统
WO2019074437A1 (en) * 2017-10-12 2019-04-18 Telefonaktiebolaget Lm Ericsson (Publ) METHODS AND APPARATUS FOR TRIGGERING CONTROL INFORMATION IN WIRELESS NETWORKS
CN110351684A (zh) * 2018-04-04 2019-10-18 华为技术有限公司 传输数据的方法及其装置和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on HARQ for NTN", 3GPP DRAFT; R1-1911861, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051823043 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022019833A1 (en) * 2020-07-21 2022-01-27 Mediatek Singapore Pte. Ltd. Methods for selectively enabling and disabling ul harq retransmission in ntn communications and communication apparatus utilizing the same
WO2023193228A1 (en) * 2022-04-08 2023-10-12 Nokia Shanghai Bell Co., Ltd. Devices, methods, apparatuses, and computer readable media for medium access control-control element transmission

Also Published As

Publication number Publication date
CN114557100A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2021031089A1 (zh) 资源配置的方法、终端设备和网络设备
WO2021128318A1 (zh) 上行mac ce传输的方法和装置
WO2021081908A1 (zh) 为上行逻辑信道分配资源的方法和终端设备
CN113678531B (zh) 上行逻辑信道复用的方法和终端设备
CN113647182B (zh) 无线通信的方法和设备
WO2021184266A1 (zh) 一种数据包重组方法、电子设备及存储介质
CN113557779B (zh) 调度请求传输的方法和设备
CN116134906A (zh) 一种随机接入方法、电子设备及存储介质
CN115767754A (zh) 数据传输方法、装置及设备
CN116192337A (zh) 无线通信的方法及装置
WO2023065303A1 (zh) 一种控制方法、设备及存储介质
WO2022120747A1 (zh) 无线通信的方法和终端设备
WO2021184317A1 (zh) 生效时间的确定方法、终端及网络设备
WO2021068224A1 (zh) 无线通信方法、终端设备和网络设备
CN113647171B (zh) 无线通信的方法和设备
WO2022040848A1 (zh) 信息传输方法、装置、设备及存储介质
EP4090110B1 (en) Channel processing method, apparatus, device and storage medium
CN114667789B (zh) 一种定时器控制方法、终端设备、网络设备
WO2022236505A1 (zh) 一种定时提前的上报方法及装置、终端设备
WO2023108642A1 (zh) 通信方法、装置、设备、芯片、存储介质、产品及程序
WO2022246824A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023130473A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021087903A1 (zh) 无线通信方法及设备、终端设备和网络设备
WO2021026847A1 (zh) 无线通信的方法和设备
TW202239170A (zh) 混合自動重複請求(harq)程序選擇技術

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957974

Country of ref document: EP

Kind code of ref document: A1