WO2022135052A1 - 无线通信方法与装置、终端和网络设备 - Google Patents

无线通信方法与装置、终端和网络设备 Download PDF

Info

Publication number
WO2022135052A1
WO2022135052A1 PCT/CN2021/133750 CN2021133750W WO2022135052A1 WO 2022135052 A1 WO2022135052 A1 WO 2022135052A1 CN 2021133750 W CN2021133750 W CN 2021133750W WO 2022135052 A1 WO2022135052 A1 WO 2022135052A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
pdcch
monitoring occasions
terminal
carrier
Prior art date
Application number
PCT/CN2021/133750
Other languages
English (en)
French (fr)
Inventor
雷珍珠
赵思聪
周化雨
Original Assignee
展讯半导体(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯半导体(南京)有限公司 filed Critical 展讯半导体(南京)有限公司
Publication of WO2022135052A1 publication Critical patent/WO2022135052A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a wireless communication method and device, a terminal, and a network device.
  • the 3rd generation partnership project (3GPP) is developing protocol standards for non-terrestrial network (NTN) communications, and the protocol standards mainly involve spaceborne vehicles or airborne equipment.
  • NTN non-terrestrial network
  • the protocol standards mainly involve spaceborne vehicles or airborne equipment.
  • airborne vehicle such as geostationary earth orbit satellites, low earth orbit satellites, highly elliptical orbit satellites, high-altitude platform stations (HAPS), etc.
  • the existing narrow-band internet of things (NB-IoT) or enhanced machine-type communication (enhanced machine-type communication, eMTC) uses repeated transmission of technology.
  • NB-IoT narrow-band internet of things
  • eMTC enhanced machine-type communication
  • the propagation distance (ie, propagation delay) between the terminal and the satellite is often large. If the NTN communication system also considers the repeated transmission technology in the IoT protocol (ie, the satellite IoT scenario), it may result in a longer duration of one data transmission of the terminal.
  • the terminal may perform beam switching during this data transmission process, so as to receive the beam switching instruction issued by the network during this data transmission process (that is, monitor the physical downlink control channel during a data transmission process). ).
  • beam switching may be implemented in the future by means of carrier switching, that is, different beams correspond to different carriers.
  • the terminal may need to perform carrier switching during the first data transmission, so as to receive the carrier switching instruction issued by the network during the first data transmission (that is, during the first data transmission).
  • Monitoring the physical downlink control channel is a problem that needs to be solved at present.
  • Embodiments of the present application provide a wireless communication method and device, a terminal, and a network device, so as to expect to send a first DCI carrying first indication information to the terminal through the network device, so as to ensure a period of repeated data transmission in a non-terrestrial network communication system
  • an embodiment of the present application provides a wireless communication method, which is applied to a terminal in a non-terrestrial network communication system, where the non-terrestrial network communication system includes the terminal and a network device; the method includes:
  • J PDCCH monitoring occasions for monitoring the target physical downlink control channel PDCCH during the repeated transmission period of the data scheduled by the first DCI, where the value of J is greater than 1 an integer; or,
  • an embodiment of the present application provides a wireless communication method, which is applied to a network device in a non-terrestrial network communication system, where the non-terrestrial network communication system includes the network device and a terminal; the method includes:
  • the first indication information is used by the terminal to determine whether there are J PDCCH monitoring occasions for monitoring the target physical downlink control channel PDCCH during the repeated transmission period of the data scheduled by the first DCI, and the value of J is value is an integer greater than 1; or,
  • the first indication information is used for the terminal to determine whether to monitor the target PDCCH on the J PDCCH monitoring occasions during the repeated transmission period of the data scheduled by the first DCI.
  • an embodiment of the present application provides a wireless communication apparatus, which is applied to a terminal in a non-terrestrial network communication system, where the non-terrestrial network system includes the terminal and a network device; the apparatus includes a processing unit and a communication unit, The processing unit is used to:
  • an embodiment of the present application provides a wireless communication device, which is applied to a network device in a non-terrestrial network communication system, where the non-terrestrial network communication system includes the network device and a terminal; the device includes a processing unit and a communication unit, the processing unit is used to:
  • the first DCI carries first indication information; the first indication information is used by the terminal to determine that the first DCI is scheduled in the first DCI Whether there are J PDCCH monitoring occasions for monitoring the target physical downlink control channel PDCCH during the repeated transmission of the data, the value of J is an integer greater than 1; or, the first indication information is used for the terminal It is determined whether the target PDCCH is monitored on the J PDCCH listening occasions within the repeated transmission period of the data scheduled by the first DCI.
  • an embodiment of the present application provides a terminal, including a processor, a memory, a communication interface, and one or more programs, wherein the one or more programs are stored in the memory and configured by the The processor is executed, and the one or more programs include instructions for executing steps in any method in the first aspect of the embodiments of this application.
  • embodiments of the present application provide a network device, including a processor, a memory, a communication interface, and one or more programs, wherein the one or more programs are stored in the memory and configured by The processor executes, and the one or more programs include instructions for executing steps in any of the methods in the second aspect of the embodiments of the present application.
  • an embodiment of the present application provides a chip, including a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the first aspect or the second aspect of the embodiment of the present application Some or all of the steps described in any method.
  • an embodiment of the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes a computer to execute the implementation of the present application Examples include some or all of the steps described in any of the methods of the first aspect or the second aspect.
  • an embodiment of the present application provides a computer program, wherein the computer program is operable to cause a computer to execute part or all of the steps described in any of the methods in the first aspect or the second aspect of the embodiments of the present application .
  • the computer program may be a software installation package.
  • the network device sends the first DCI carrying the first indication information to the terminal, so as to facilitate the realization by the network to indicate to the terminal whether there is a target PDCCH for monitoring the target PDCCH during the repeated transmission period of the data scheduled by the first DCI or, the network indicates to the terminal whether to monitor the target PDCCH on the J PDCCH monitoring occasions during the repeated transmission period of the data scheduled by the first DCI, and it is beneficial to ensure that the target PDCCH is monitored once in the non-terrestrial network communication system. Rationality and flexibility of the PDCCH listening occasion configuration process during repeated data transmission.
  • FIG. 1 is a schematic diagram of the architecture of a non-terrestrial network communication system provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of the architecture of a transparent satellite communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of comparing signal reception quality between a terrestrial network communication system and a non-terrestrial network communication system provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of an architecture comparison of a non-terrestrial network communication system provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of inserting a PDCCH listening opportunity during the repeated transmission period of data scheduled by the first DCI provided by an embodiment of the present application;
  • FIG. 7 is a schematic structural diagram of a kind of 1-bit information provided by an embodiment of the present application used to indicate whether there is a PDCCH monitoring opportunity within the repeated transmission period of a data scheduled by the first DCI;
  • FIG. 8 is a schematic structural diagram in which another 1-bit information provided by an embodiment of the present application is used to indicate whether there is a PDCCH monitoring opportunity within the repeated transmission period of a data scheduled by the first DCI;
  • FIG. 9 is a schematic structural diagram of a kind of 1-bit information provided by an embodiment of the present application used to indicate whether to monitor the target PDCCH on the PDCCH monitoring opportunity within the repeated transmission period of a data scheduled by the first DCI;
  • FIG. 10 is a schematic structural diagram of another kind of 1-bit information provided by the embodiment of the present application for indicating whether to monitor the target PDCCH on the PDCCH monitoring opportunity within the repeated transmission period of the first data scheduled by the first DCI;
  • FIG. 11 is a schematic diagram of the architecture of a non-terrestrial network communication scenario provided by an embodiment of the present application.
  • FIG. 12 is a block diagram of functional units of a wireless communication device provided by an embodiment of the present application.
  • FIG. 13 is a block diagram of functional units of another wireless communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • non-terrestrial network non-terrestrial network
  • NTN non-terrestrial network
  • the non-terrestrial network communication system 10 may include a terminal 110, an intra-cell reference point 120, a satellite 130, a non-terrestrial network gateway (NTN gateway) 140, and a network device 150.
  • the terminal 110, the non-terrestrial network gateway 140 and the network device 150 may be located on the earth's surface, while the satellite 130 is located in the earth's orbit.
  • the satellites 130 can provide communication services to the geographic area covered by the signal, and can communicate with the terminals 110 located within the signal coverage area.
  • the terminal 110 is located in a certain cell, and the cell includes an intra-cell reference point 120 .
  • the wireless communication link between the terminal 110 and the satellite 130 is called a service link
  • the wireless communication link between the satellite 130 and the non-terrestrial network gateway (NTN gateway) 140 is called a supply link ( feeder link).
  • NTN gateway non-terrestrial network gateway
  • the network device 150 may be integrated into the same device, or may be separate devices, which are not specifically limited.
  • the terminal in this embodiment of the present application may be a user equipment (user equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a smart Terminal, wireless communication device, user agent or user equipment.
  • UE user equipment
  • an access terminal a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a smart Terminal, wireless communication device, user agent or user equipment.
  • the terminal may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication function handheld devices, computing devices or other processing devices connected to wireless modems, relay devices, in-vehicle devices, wearable devices, IoT devices, terminals in next-generation communication systems such as NR networks or future evolving public land mobile communication networks (public land mobile network, PLMN) terminals, etc., which are not specifically limited.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle; can be deployed on water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal may be a mobile phone (mobile phone), a tablet computer, a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, an industrial control (industrial control) wireless terminal equipment in , autonomous driving (self driving) in-vehicle equipment, remote medical (remote medical) wireless terminal equipment, smart grid (smart grid) wireless terminal equipment, transportation safety (transportation safety) in Wireless terminal equipment, wireless terminal equipment in a smart city or wireless terminal equipment in a smart home, etc.
  • VR virtual reality
  • AR augmented reality
  • industrial control wireless terminal equipment in autonomous driving (self driving) in-vehicle equipment
  • remote medical remote medical
  • smart grid smart grid wireless terminal equipment
  • transportation safety transportation safety
  • the satellite in the embodiment of the present application may be a spacecraft carrying a bent pipe payload or a regenerative payload signal transmitter, which usually operates at an altitude between 300 and 1500 km.
  • Low Earth Orbit (LEO) Low Earth Orbit (LEO) at altitudes between 7000 and 25000km
  • High elliptical orbit (HEO) at altitudes between 50,000km.
  • the satellites may be LEO satellites, MEO satellites, GEO satellites, or HEO satellites, etc. according to different orbital altitudes.
  • the signals sent by the satellites in the embodiments of the present application generally generate one or more beams (beams, or referred to as “given service areas”) on a given service area (given service area) bounded by its field of view (field of view).
  • beams beams, or referred to as “given service areas”
  • given service area bounded by its field of view (field of view).
  • beam footprint the shape of a beam on the ground can be elliptical, and the field of view of the satellite depends on the antenna and the minimum elevation angle, etc.
  • the non-terrestrial network gateway in this embodiment of the present application may be an earth station or gateway located on the earth's surface, and can provide enough radio frequency (RF) power and RF sensitivity to connect satellites.
  • the non-terrestrial network gateway may be a transport network layer (TNL) node.
  • RF radio frequency
  • TNL transport network layer
  • the network device in the embodiment of the present application may be a base transceiver station (base transceiver station in a global system of mobile communication, GSM) communication system or a code division multiple access (code division multiple access, CDMA) communication system, BTS), base stations (nodeB, NB) in wideband code division multiple access (WCDMA) communication systems, and evolved base stations (evolutional node B, eNB) in long term evolution (long term evolution, LTE) communication systems or eNodeB) or a base station (gNB) in a new radio (NR) communication system.
  • the network device may also be an access point (access point, AP) in a wireless local area network (WLAN), a relay station, a network device in a future evolved PLMN network, or a network device in an NTN communication system, and the like.
  • the gNB may include a centralized unit (CU) and a distributed unit (DU), and the gNB may also include an active antenna unit (AAU) .
  • the CU can implement part of the functions of the gNB, and the DU can also implement part of the functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, implementing the functions of the radio resource control (RRC) layer and the packet data convergence protocol (PDCP) layer;
  • the DU is responsible for processing physical layer protocols and real-time services.
  • RLC radio link control
  • MAC medium access control
  • PHY physical
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or converted from the information of the PHY layer, the higher-layer signaling (such as the RRC layer signaling) can be considered to be sent by the DU, or by the DU and AAU sent.
  • the network device may include one or more devices of a CU node, a DU node, and an AAU node.
  • the CU may be divided into network devices in an access network (radio access network, RAN), and the CU may also be divided into network devices in a core network (core network, CN), which is not specifically limited.
  • an embodiment of the present application provides a schematic diagram of the architecture of a communication system with a transparent satellite (transparent satellite), as shown in FIG. 2 .
  • terminals, non-terrestrial network gateways and gNBs are located on the earth's surface, while satellites are located in earth orbit.
  • satellites, non-terrestrial network gateways and gNBs can act as 5G radio access network (NG-radio access network, NG-RAN), and NG-RAN is connected to 5G core network through NG interface.
  • NG-radio access network NG-radio access network
  • NG-RAN 5G radio access network
  • NG-RAN 5G radio access network
  • NG-RAN 5G radio access network
  • NG-RAN 5G core network
  • the satellite payload implements frequency conversion and RF amplifiers in both uplink and downlink directions, and the satellite corresponds to an analog RF repeater.
  • different transparent satellites can be connected to the same gNB on the ground.
  • NB-IoT narrowband internet of things
  • the NB-IoT single-frequency cell has only a bandwidth of 180kHz, in addition to the narrow-band primary synchronization signal (NPSS), narrow-band secondary synchronization signal (NSSS) and narrow-band system
  • NPSS narrow-band primary synchronization signal
  • NSSS narrow-band secondary synchronization signal
  • SIB-NB system information block narrow-band
  • NB-IoT supports multi-carrier configuration, and its carriers can be divided into two categories: anchor carrier and non-anchor carrier. Meanwhile, the same cell may include one anchor carrier and several non-anchor carriers, and the spectrum bandwidth of each carrier is 180 kHz, and the maximum spectrum span of all carriers in the cell does not exceed 20 MHz.
  • Anchor carrier There is only one carrier in a multi-carrier cell that supports carrying NPSS, NSSS, narrow-band physical broadcast channel (NPBCH), and narrow-band physical downlink control channel (NPDCCH) at the same time ) and a narrow-band physical downlink share channel (NPDSCH), the carrier is called the anchor carrier. Therefore, the terminal can monitor NPSS, NSSS, NPBCH, NPDCCH and NPDSCH information on the anchor carrier.
  • NPBCH narrow-band physical broadcast channel
  • NPDCCH narrow-band physical downlink control channel
  • NPDSCH narrow-band physical downlink share channel
  • Non-anchor carrier In a multi-carrier cell, there may be several carriers that only carry NPDCCH and NPDSCH, but do not carry NPSS, NSSS and NPBCH, which are called non-anchor carriers. Therefore, the terminal can transmit or receive data on the non-anchor carrier. In addition, before the terminal enters the connected state, the network will designate a carrier for subsequent downlink data transmission through a message (Msg4) in the random access process. When the terminal is in an idle state, the terminal can perform paging monitoring on the non-anchor carrier.
  • Msg4 message
  • the satellite In the NTN communication system, the satellite usually generates one or more beams (beam, or beam footprint) on the ground, and the shape of a beam on the ground can be an ellipse.
  • the beams generated by some satellites (such as LEO satellites) on the ground will also move on the ground with the movement of the satellites in their orbits; or, some satellites (such as LEO satellites or GEO satellites) generated on the ground.
  • the beam or cell does not move on the ground as the satellite moves in its orbit.
  • the difference in propagation distance between terminals such as UE in different geographical locations and the satellite is small ( That is, the path loss difference of signals corresponding to terminals in different geographical locations within the coverage of the same cell is small), which leads to the signal reception quality corresponding to terminals in different geographical locations within the coverage of the same beam/cell (including the downlink of the terminal).
  • the difference in reception quality or uplink reception quality of the base station is very small, as shown in Figure 3.
  • the architecture of the NTN communication system in the embodiment of the present application mainly includes an NTN communication architecture (ie, a transparent forwarding mode) with a transparent satellite (or called bent pipe payload) and a regenerative satellite (regenerative satellite). ) of the NTN communication architecture (ie regenerative signal mode), see Figure 4. Among them, (a) in FIG. 4 illustrates the NTN communication architecture with transparent satellites, and (b) in FIG. 4 illustrates the NTN communication architecture with regenerative satellites. In (a) of FIG. 4, the satellite 410 in the transparent repeater mode generates at least one beam 420 on the ground, and the at least one beam 420 can form a cell on the ground.
  • the terminal 430 located in the cell can measure one beam among all the beams in the cell, and establish a communication connection with the satellite 410 through the beam.
  • the satellite 440 regenerating the signal pattern generates at least one beam 450 on the ground, and the at least one beam 450 can form a cell on the ground.
  • the terminal 460 located in the cell can measure one beam among all the beams of the cell, and establish a communication connection with the satellite 440 through the beam.
  • the existing narrow-band internet of things (NB-IoT) or enhanced machine-type communication (eMTC) adopts the technology of repeated transmission.
  • the maximum number of repeated transmissions for downlink transmission is 2048 times
  • the maximum number of repeated transmissions for uplink transmission is 128 times.
  • the number of repeated transmissions of the physical downlink share channel (PDSCH) or physical uplink shared channel (PUSCH) can be dynamically indicated by the downlink control information (DCI) scheduled by it, that is, There is a specific bit field in the DCI to indicate the number of repeated transmissions of the PDSCH or PUSCH.
  • the maximum number of repetitions (ie, Rmax) of the physical downlink control channel (PDCCH) may be semi-statically configured by RRC signaling or a system information block (SIB).
  • the network can dynamically indicate the number of repeated transmissions of the PDSCH/PUSCH through a specific bit field in the DCI that schedules the PDSCH/PUSCH.
  • the NTN communication system Since the satellites in the NTN communication system are very far away from the ground, and the satellites also move continuously along a fixed orbit, the propagation distance (ie, propagation delay) between the terminal and the satellite is often large. If the NTN communication system also considers the repeated transmission technology in the IoT protocol (ie, the satellite IoT scenario), it may result in a longer duration of one data transmission of the terminal. Due to the rapid movement of the satellite, the terminal may switch beams (ie, carriers) during this data transmission process, so how to receive the carrier switching instruction issued by the network during this data transmission process (ie, monitor during a data transmission). PDCCH) is a problem that needs to be solved at present.
  • an embodiment of the present application provides a schematic flowchart of a wireless communication method, which is applied to a non-terrestrial network communication system, please refer to FIG. 5 .
  • the method includes:
  • the network device sends the first DCI to the terminal, where the first DCI carries the first indication information.
  • the first indication information is used by the terminal to determine whether there are J PDCCH monitoring occasions for monitoring the target PDCCH during the repeated transmission period of the data scheduled by the first DCI, and the value of J is an integer greater than 1;
  • An indication message is used for the terminal to determine whether to monitor the target PDCCH on the J PDCCH monitoring occasions during the repeated transmission period of the data scheduled by the first DCI.
  • NB-IOT/eMTC adopts the technology of repeated transmission.
  • the NTN communication system also considers the repeated transmission technology in the IoT protocol, it may result in a longer duration of one data transmission of the terminal.
  • the terminal may switch beams (ie, carriers) during this data transmission process, so how to receive the carrier switching instruction issued by the network during this data transmission process (ie, monitor during a data transmission).
  • PDCCH is a problem that needs to be solved at present.
  • the embodiment of the present application considers that the network device sends the first DCI carrying the first indication information to the terminal, so that the network can indicate to the terminal whether there is a target for monitoring during the repeated transmission period of the data scheduled by the first DCI J monitoring occasions of the PDCCH; or, the network indicates to the terminal whether to monitor the target PDCCH on the J PDCCH monitoring occasions within the repeated transmission period of the data scheduled by the first DCI.
  • the technical solutions in the embodiments of the present application are applicable to both the transparent forwarding mode and the regeneration signal mode.
  • the transparent forwarding mode the first DCI is sent by the network equipment located on the ground.
  • the regenerative signal mode since the network equipment is located at the satellite, the first DCI is sent by the network equipment located at the satellite.
  • the "first DCI" and "second DCI” in the embodiments of the present application are mainly used to distinguish the DCIs delivered by the network device at different times, and the indication fields and indication information carried by the DCIs delivered at different times exist. There are no specific restrictions on this in case of different control purposes.
  • J PDCCH monitoring occasions PDCCH monitoring occasions
  • the value of J is an integer greater than 1.
  • the interval between two adjacent PDCCH monitoring occasions among the J PDCCH monitoring occasions satisfies one of the following methods: the interval between two adjacent PDCCH monitoring occasions is K repetition units, and the interval between two adjacent PDCCH monitoring occasions is The interval between the occasions is K subframes, the interval between two adjacent PDCCH monitoring occasions is K time slots, and the interval between two adjacent PDCCH monitoring occasions is K radio resource units (RUs), The interval between two adjacent PDCCH monitoring opportunities is K milliseconds; the value of K is an integer greater than or equal to 1.
  • each PDCCH monitoring occasion is used to monitor the target PDCCH.
  • the value of K is configured by the network device through RRC signaling or SIB.
  • the duration of the PDCCH listening opportunity is configured by the network device through RRC signaling or SIB.
  • the duration of the PDCCH listening opportunity is independently configured by the network device for each carrier.
  • a satellite in an NTN communication system will generate one or more beams on the ground to form a cell, and a terminal located in the cell can be within the coverage of any one of all beams in the cell. Therefore, in this embodiment of the present application, the durations of different beams corresponding to different PDCCH monitoring occasions are considered.
  • the duration of the PDCCH listening opportunity may be applied to all carriers in a cell.
  • the durations of the PDCCHs of all beams in the cell are the same.
  • the unit of the duration of the PDCCH listening opportunity may be a subframe, a frame, a time slot, or a millisecond, etc., which is not specifically limited.
  • the first indication information may be an indication field carried by the first DCI.
  • the indication field may be a new or specific field in the DCI specified by the existing standard.
  • the first indication information may be used to indicate whether there are J PDCCH listening occasions during the repeated transmission period of the data scheduled by the first DCI; Whether the target PDCCH is monitored on J PDCCH monitoring occasions during the repeated data transmission period.
  • J PDCCH monitoring opportunities during the repeated transmission of the data scheduled by the first DCI can be understood as whether the network inserts or configures J PDCCH monitoring opportunities during the repeated transmission of the data scheduled by the first DCI.
  • PDCCH listening timing As to whether the target PDCCH is monitored on the J PDCCH monitoring occasions during the repeated transmission period of the data scheduled by the first DCI, it can be understood that the network has inserted or configured J during the repeated transmission period of the data scheduled by the first DCI. At this time, the network sends first indication information to indicate whether the terminal needs to monitor the target PDCCH on the J PDCCH monitoring occasions.
  • the first indication information indicates to the terminal whether the configuration for the J PDCCH listening occasions takes effect during the repeated transmission period of the data scheduled by the first DCI. That is to say, whether the interval K between the above-mentioned two adjacent PDCCH monitoring occasions and the duration of each PDCCH monitoring occasion are valid.
  • the length of the first indication information may be 1 bit (bit).
  • the length of the first indication information in the first DCI sent by the network device to the terminal may be 1 bit (bit).
  • the first indication information may be 1-bit information, and the bit value manner of the 1-bit includes 1 and 0.
  • the terminal may determine whether the data scheduled by the first DCI exists during the repeated transmission period of the data scheduled by the first DCI by using the bit value in the first indication information.
  • the J PDCCH monitoring occasions used to monitor the target PDCCH, or, the terminal may determine whether the J PDCCH monitoring occasions during the repeated transmission period of the data scheduled by the first DCI can be determined by the bit value in the first indication information. Monitor the target PDCCH. An example of this is given below.
  • the example illustrates that the network device schedules data once through the first DCI, and the first DCI carries 1-bit information, where the 1-bit indication is used to indicate that the first DCI schedules the repeated transmission period of the one-time data Whether there are J PDCCH listening occasions. If the value of the bit in the 1-bit information is 1, the 1-bit information is used to indicate that there are J PDCCH monitoring occasions (that is, for J PDCCH monitoring) during the repeated transmission of the data scheduled by the first DCI The configuration of the timing takes effect), as shown in Figure 7; if the value of the bit in the 1-bit information is 0, the 1-bit information is used to indicate that the data scheduled by the first DCI will not be transmitted during the repeated transmission period.
  • J PDCCH monitoring occasions that is, the configuration for the J PDCCH monitoring occasions does not take effect
  • the 1-bit information is used to indicate that there are J PDCCH listening opportunities during the repeated transmission of the data scheduled by the first DCI
  • the 1-bit information is used to indicate that there are no J PDCCH monitoring opportunities during the repeated transmission period of the data scheduled by the first DCI, which is not specifically limited.
  • the example illustrates that the network device schedules data once through the first DCI, and the first DCI carries 1-bit information, where the 1-bit indication is used to indicate that the terminal is within the repeated transmission period of the data scheduled by the first DCI Whether to monitor the target PDCCH on the J PDCCH monitoring occasions.
  • the 1-bit information is used to instruct the terminal to monitor the target PDCCH on J PDCCH monitoring occasions during the repeated transmission period of the data scheduled by the first DCI, such as As shown in Figure 9; if the value of the bit in the 1-bit information is 0, the 1-bit information is used to indicate that the terminal does not monitor the J PDCCHs during the repeated transmission period of the data scheduled by the first DCI monitor the target PDCCH, as shown in Figure 10.
  • the 1-bit information is used to instruct the terminal to monitor the target PDCCH on J PDCCH monitoring opportunities during the repeated transmission period of the data scheduled by the first DCI If the value of the bit in the 1-bit information is 1, then the 1-bit information is used to instruct the terminal not to monitor the target PDCCH on the J PDCCH monitoring opportunities during the repeated transmission period of the data scheduled by the first DCI , without any specific restrictions.
  • the embodiment of the present application uses the first indication information carried by the first DCI to flexibly configure the J PDCCH listening opportunities during the repeated transmission of data scheduled by the first DCI, so that the NTN communication system also considers the In the case of the repeated transmission technology in the networking protocol, the flexibility of the NTN communication system is guaranteed.
  • the terminal located in the cell can be within the coverage of any one of all the beams in the cell, so with the The satellite moves continuously along a fixed orbit, and the beam generated by the satellite on the ground also moves on the ground with the movement of the satellite.
  • the terminal may need to perform beam switching frequently.
  • beam switching can be carried out by means of carrier switching, that is, each beam in all the beams in the cell corresponds to one or more carriers (ie, one carrier corresponds to one beam), and the beam switching is realized by carrier switching.
  • this application considers the scenario of the NTN communication system combined with the repeated transmission technology in the Internet of Things protocol.
  • the repeated transmission of data between the terminal and the satellite may have a long duration, so in this data
  • the present application can consider the following two ways: one way is that the network guarantees the scheduled data when scheduling data through DCI (that is, scheduling DCI). It can be transmitted on the current carrier (the carrier that transmits the DCI), and this method will severely restrict network scheduling; another method is to support cross-carrier scheduling, but the NTN communication system needs to support cross-carrier scheduling. DCI designs a new indication field or indication information to indicate whether to switch across carriers.
  • the embodiment of the present application considers inserting or configuring J PDCCH monitoring occasions during the repeated transmission of data scheduled by the first DCI, and monitoring the second indication in the second DCI in the J PDCCH monitoring occasions Therefore, the second indication information is used to solve the cross-carrier problem during the repeated transmission of data scheduled by the first DCI, and to realize the purpose of performing cross-carrier switching during one repeated transmission of data. This will be specifically described below.
  • the target PDCCH is used to carry the second DCI.
  • the embodiment of the present application considers that the target PDCCH monitored by the terminal on the J PDCCH monitoring occasions carries the second DCI.
  • the second DCI carries second indication information, and the second indication information is used to indicate whether to perform carrier switching during the repeated transmission period of the data scheduled by the first DCI.
  • the terminal can determine whether the data scheduled by the first DCI is repeated according to the second indication information. Carrier switching is performed during transmission.
  • the second indication information may be an indication field carried by the second DCI.
  • the indication field may be a new or specific field in the DCI specified by the existing standard.
  • the following embodiments of the present application will specifically describe whether the second indication information is used to indicate whether carrier switching is performed during the repeated transmission period of the data scheduled by the first DCI.
  • the second indication information is specifically used to indicate whether the current carrier is switched to the target carrier to repeatedly transmit the data during the repeated transmission period of the data scheduled by the first DCI.
  • the current carrier is a carrier used for transmitting the first DCI and the second DCI, and the index (index) of the target carrier is indicated by the second DCI.
  • the terminal can determine the target carrier by the index of the target carrier indicated by the second DCI, so that the network can configure or indicate the target carrier to be switched to the terminal during the repeated transmission of the data scheduled by the first DCI. .
  • the embodiment of the present application considers that the current position of the terminal is approximately fixed for a period of time, and mainly analyzes the situation of beam switching caused by the constant movement of the satellite.
  • the embodiment of the present application considers beam switching to perform beam management by means of carrier switching, that is, each beam in all the beams in the cell corresponds to one or more carriers (that is, one carrier corresponds to One beam), and realize beam switching through carrier switching.
  • the embodiment of the present application considers that the terminal obtains the second indication information in the second DCI by monitoring the target PDCCH, and then the terminal determines whether the The current carrier is switched to the target carrier to repeatedly transmit the data, thereby realizing beam switching management (that is, whether to switch from the beam corresponding to the current carrier to the beam corresponding to the target carrier) through carrier switching management (that is, whether to switch from the current carrier to the target carrier), It is beneficial to avoid the interruption of the NTN network communication caused by the movement of the satellite, and to improve the reliability of the NTN network communication.
  • the current carrier and the target carrier respectively correspond to different beams.
  • the beam is a beam among all beams in the serving cell where the terminal is located.
  • the satellite in the NTN communication system will generate one or more beams on the ground to form a cell, and the terminal located in the cell can be covered by any one of all the beams in the cell. within the range.
  • the cell is called the serving cell where the terminal is located.
  • the second indication information may be 1-bit information or X-bit information, where the value of X is an integer greater than 1; wherein, the 1-bit information may be used to determine whether to switch from the current carrier to the target carrier by way of bit value , or, 1-bit information can be used to determine whether to switch from the current carrier to the target carrier by bit inversion; X-bit information can be used to determine whether to switch from the current carrier to the target carrier by bit coding.
  • the value of X may be configured by the network device through RRC dedicated signaling.
  • the length of the second indication information in the second DCI obtained by the terminal monitoring the target PDCCH may be 1 bit (bit) or X bits (bits).
  • the second indication information when the length of the second indication information is 1 bit, the second indication information may be referred to as 1-bit information, and the bit value manner of the 1-bit information includes 1 and 0, or the bits of the 1-bit information
  • the flipping mode includes bit flipping (eg, 1 is converted to 0, 0 is converted to 1) and bits are not flipped.
  • the second indication information may be referred to as X-bit information, and the bit encoding manner of the X-bit information includes any encoding combination of X bits.
  • the bit coding modes of 2-bit information include 00, 01, 10 and 11.
  • the terminal may determine whether to switch from the current carrier to the target carrier through the bit value in the second indication information; or, the terminal may use the bits in the second indication information to determine whether to switch from the current carrier to the target carrier.
  • the switching method is used to determine whether to switch from the current carrier to the target carrier; or, the terminal can determine whether to switch from the current carrier to the target carrier through the bit coding method in the X-bit information. An example of this is given below.
  • the terminal monitors the target PDCCH to obtain 1-bit information in the second DCI. If the value of the bit in the 1-bit information is 1, the 1-bit information is used to instruct the terminal to switch from the current carrier to the target carrier to repeatedly transmit the data during the repeated transmission period of the data scheduled by the first DCI; If the value of a bit in the 1-bit information is 0, the 1-bit information is used to instruct the terminal to repeatedly transmit the data on the current carrier during the repeated transmission period of the data scheduled by the first DCI without performing carrier switching. . Or, if the value of the bit in the 1-bit information is 0, the 1-bit information is used to instruct the terminal to switch from the current carrier to the target carrier to repeatedly transmit the data during the repeated transmission period of the data scheduled by the first DCI. data; if the value of a bit in the 1-bit information is 1, the 1-bit information is used to instruct the terminal to repeatedly transmit the data by switching the current carrier during the repeated transmission period of the data scheduled by the first DCI, without Perform carrier switching.
  • the terminal monitors the target PDCCH to obtain 1-bit information in the second DCI. If the bits in the 1-bit information are flipped (for example, 1 is converted into 0, 0 is converted into 1), the 1-bit information is used to indicate that the terminal transmits data from the current carrier during the repeated transmission period of the data scheduled by the first DCI. Switch to the target carrier to repeatedly transmit the data; if the bits in the 1-bit information are not inverted, the 1-bit information is used to instruct the terminal to switch and repeat the current carrier during the repeated transmission of the data scheduled by the first DCI This data is transmitted without performing carrier switching.
  • the 1-bit information is used to instruct the terminal to switch from the current carrier to the target carrier to repeatedly transmit the data during the repeated transmission period of the data scheduled by the first DCI; If a bit in the 1-bit information is inverted, the 1-bit information is used to instruct the terminal to repeatedly transmit the data by the current carrier switching during the repeated transmission period of the data scheduled by the first DCI without performing carrier switching.
  • the terminal monitors the target PDCCH to obtain 2-bit information in the second DCI. If the bit coding mode in the 2-bit information is 00, the 2-bit information is used to instruct the terminal to repeatedly transmit the data by the current carrier switching during the repeated transmission period of the data scheduled by the first DCI without performing carrier switching ; If the bit coding mode in the 2-bit information is not 00 (such as 01, 10 or 11), then the 2-bit information is used to indicate that the terminal is switched by the current carrier during the repeated transmission of the data scheduled by the first DCI to the target carrier for repeated transmission of the data.
  • the terminal acquires the first DCI from the network device.
  • the following embodiments of the present application will specifically describe how the above-mentioned terminal determines the target carrier through the index of the target carrier indicated by the second DCI.
  • the second DCI further carries third indication information, where the third indication information is used to indicate the index of the target carrier.
  • the second DCI carries the second indication information and the third indication information
  • the terminal can determine the target carrier through the index of the target carrier indicated by the third indication information, so as to realize the first DCI in the first DCI.
  • the target carrier to be switched is configured or indicated by the network to the terminal during the repeated transmission of the scheduled data.
  • the index of the target carrier is in the carrier index set information.
  • the carrier index set information includes the indices of the M carriers and a candidate carrier index set associated with each carrier index in the indices of the M carriers, the indices of the M carriers include the index of the current carrier, and the index of the target carrier is specifically in the current In the candidate carrier index set associated with the carrier index; the index of each carrier in the carrier index set information corresponds to a beam, and the value of M is an integer greater than 1; the candidate carrier index set consists of N in the indices of the M carriers The index of the carrier is formed, and the value of N is less than or equal to the value of M.
  • the carrier index set information may be configured by the network device through RRC dedicated signaling; or, the carrier index set information is pre-configured.
  • the embodiment of the present application considers configuring the index of M carriers and a candidate carrier index set associated with each carrier index in the indices of the M carriers to the terminal, that is, carrier index set information. Wherein, there is no arrangement order among the carrier indexes in the indexes of the M carriers and among the carrier indexes in the candidate carrier index set. Then, the network device may transmit the first DCI to the terminal through a certain carrier (ie, the current carrier). Finally, the terminal acquires the second DCI by monitoring the target PDCCH.
  • the index of each carrier in the carrier index set information is associated with a candidate carrier index set, and the index of the target carrier is specifically in the candidate carrier index set associated with the index of the current carrier, it is necessary to consider the index associated with the current carrier.
  • the carrier index set information may satisfy at least one of the following manners: the indices of the M carriers in the carrier index set information are determined by the current location information of the terminal and the preset satellite ephemeris, and the candidate carrier index in the carrier index set information The indices of the N carriers in the set are determined by the distribution of the beams corresponding to the indices of the M carriers.
  • the terminal can obtain the current location information through its own global navigation satellite system (Global Navigation Satellite System, GNSS) calculation, and then send it to the network device. Then, the network device can determine the indices of the M carriers in the carrier index set information according to the current location information of the terminal and the preset satellite ephemeris, so as to establish the current location of the terminal and the running track of the satellite and the carrier in the carrier index set information The mapping relationship between indexes.
  • GNSS Global Navigation Satellite System
  • the embodiment of the present application considers that the network device determines the carrier index in the candidate carrier index set associated with the indices of the M carriers according to the distribution of the beams corresponding to the indices of the M carriers.
  • the indices of the N carriers are determined by the distribution of the beams corresponding to the indices of the M carriers, which may specifically include the following steps: determining the respective adjacent beams of the beams corresponding to the indices of the M carriers, and using the corresponding adjacent beams
  • the carriers make up the indices of N carriers. Specific examples are described below.
  • the satellite 1110 sequentially generates 10 beams on the ground along a fixed running trajectory, and each of the 10 beams corresponds to one carrier, ie, 10 carriers.
  • the current position of the terminal 1120 is in the area corresponding to the carrier index C3, so that the satellite 1110 and the terminal 1120 communicate through the carrier index C3 (ie, the index of the current carrier).
  • the network device determines the carrier index set ⁇ C3, C4, C5, C6, C7, C8, C9 ⁇ and the carrier index set ⁇ C3, C4, C5, C6, C7, C8, C9 ⁇ associated with each carrier index in the carrier index set according to the current location information of the terminal 1120 and the preset satellite ephemeris.
  • Candidate carrier index set (ie, carrier index set information).
  • the set of candidate carrier indexes associated with carrier index C3 is ⁇ C4, C5, C6 ⁇ .
  • the set of candidate carrier indices associated with carrier index C4 is ⁇ C5, C9 ⁇
  • the set of candidate carrier indices associated with carrier index C5 is ⁇ C7, C8, C9 ⁇ , and so on.
  • the network device delivers the carrier index set and the candidate carrier index set associated with each carrier index in the carrier index set to the terminal through RRC dedicated signaling.
  • the third indication information will be specifically introduced in the following embodiments of the present application.
  • the third indication information may be Y-bit information, and the value of Y is an integer greater than 1.
  • the Y-bit information may have an index used to indicate the target carrier in a bit-coded manner.
  • the value of Y may be configured by the network device through RRC dedicated signaling.
  • the third indication information when the length of the third indication information is Y bits, the third indication information may be referred to as Y bits information, and the bit encoding manner of the Y bits includes any encoding combination of the Y bits.
  • the 2-bit bit encoding scheme when Y is 2, the 2-bit bit encoding scheme includes 00, 01, 10, and 11.
  • the terminal may indicate the index of the target carrier through a bit coding manner in the Y-bit information.
  • the value of Y satisfies at least one of the following ways: the value of Y is determined by the number of carrier indexes in the candidate carrier index set associated with the index of the current carrier, and the value of Y and the value of N have a mapping relationship. .
  • the network device can configure the value of Y through the number of carrier indexes in the candidate carrier index set in the carrier index set information, so that the network can configure the Y-bit information to indicate the index of the target carrier and avoid signaling. Excessive overhead.
  • there may be reserved bits in the Y-bit information For example, if the number of carrier indices in the candidate carrier index set associated with the current carrier index is 3, the value of Y can be 2; if the number of carrier indices in the candidate carrier index set associated with the current carrier index is 3 is 5, then the value of Y can be 3.
  • the example illustrates that, first, the network device delivers the carrier index set ⁇ C3, C4, C5, C6, C7, C8, C9 ⁇ and the candidate carrier index associated with each carrier index in the carrier index set to the terminal through RRC dedicated signaling gather.
  • the carrier corresponding to the carrier index C3 is the carrier that transmits the first DCI and the second DCI (that is, the current carrier is the carrier corresponding to the carrier index C3)
  • the candidate carrier index set associated with the carrier index C3 is ⁇ C4, C5, C6 ⁇ .
  • the terminal monitors the target PDCCH to obtain the second indication information and the third indication information in the second DCI.
  • the second indication information is 1-bit information
  • the third indication information is 2-bit information.
  • the value of the bit in the 1-bit information is 1, so the 1-bit information is used to instruct the terminal to switch from the current carrier to the target carrier to repeatedly transmit the data during the repeated transmission period of the data scheduled by the first DCI. .
  • the 2-bit information is used to indicate the index of the target carrier by means of bit coding.
  • the 2-bit information is used to indicate the first carrier index in the candidate carrier index set ⁇ C4, C5, C6 ⁇ associated with the carrier index C3 (that is, C4); if the bit coding mode in the 2-bit information is 01, the 2-bit information is used to indicate the second carrier index in the candidate carrier index set ⁇ C4, C5, C6 ⁇ associated with the carrier index C3 ( That is, C5); if the bit coding mode in the 2-bit information is 10, the 2-bit information is used to indicate the third carrier index in the candidate carrier index set ⁇ C4, C5, C6 ⁇ associated with the carrier index C3 (ie C6); if the bit coding mode in the 2-bit information is 11, the 2-bit information is used as reserved bits.
  • the index of the target carrier is the carrier index C4.
  • the current carrier is the carrier corresponding to the carrier index C3
  • the target carrier is the index corresponding to the carrier index C4.
  • the second indication information in the second DCI indicates whether the current carrier is switched to the target carrier for repeated transmission of the data during the repeated transmission period of the data scheduled by the first DCI, and the third indication in the second DCI is used. information to indicate the index of the target carrier, so as to realize cross-carrier data transmission in the process of repeated data transmission scheduled by the first DCI.
  • the terminal determines, according to the first indication information, whether there are J PDCCH monitoring occasions for monitoring the target PDCCH during the repeated transmission period of the data scheduled by the first DCI; Whether to monitor the target PDCCH on the J PDCCH monitoring occasions during the repeated transmission of the data.
  • the network device sends the first DCI carrying the first indication information to the terminal, so as to facilitate the realization by the network to indicate to the terminal whether there is a target PDCCH for monitoring the target PDCCH during the repeated transmission period of the data scheduled by the first DCI or, the network indicates to the terminal whether to monitor the target PDCCH on the J PDCCH monitoring occasions during the repeated transmission period of the data scheduled by the first DCI, and it is beneficial to ensure that the target PDCCH is monitored once in the non-terrestrial network communication system. Rationality and flexibility of the PDCCH listening occasion configuration process during repeated data transmission.
  • the terminal or network device includes corresponding hardware structures and/or software modules for executing each function.
  • the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software-driven hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the terminal or network device may be divided into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated units can be implemented in the form of hardware, and can also be implemented in the form of software program modules. It should be noted that, the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division manners in actual implementation.
  • FIG. 12 provides a block diagram of functional units of a wireless communication device.
  • the wireless communication apparatus 1200 is applied to a terminal in a non-terrestrial network communication system, and specifically includes: a processing unit 1202 and a communication unit 1203 .
  • the processing unit 1202 is used to control and manage the actions of the terminal.
  • the processing unit 1202 is used to support the terminal to perform the steps in FIG. 5 and other processes used in the technical solutions described in this application.
  • the communication unit 1203 is used to support communication between the terminal and other devices in the non-terrestrial network communication system.
  • the wireless communication device 1200 may further include a storage unit 1201 for storing program codes and data of the terminal.
  • the processing unit 1202 may be a processor or a controller, such as a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), or an application-specific integrated circuit (application-specific integrated circuit). integrated circuit, ASIC), field programmable gate array (FPGA), or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • the processing unit 1202 may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 1203 may be a communication interface, a transceiver, a transceiver circuit, etc., and the storage unit 1201 may be a memory.
  • the processing unit 1202 is a processor
  • the communication unit 1203 is a communication interface
  • the storage unit 1201 is a memory
  • the wireless communication apparatus 1200 involved in this embodiment of the present application may be the terminal shown in FIG. 14 .
  • the processing unit 1202 is configured to perform any step performed by the terminal in the above method embodiments, and when performing data transmission such as sending, the communication unit 1203 can be selectively invoked to complete corresponding operations. A specific description will be given below.
  • the processing unit 1202 is configured to: obtain the first downlink control information DCI from the network device, where the first DCI carries the first indication information; and determine whether there is a duplicate transmission period of the data scheduled by the first DCI according to the first indication information J PDCCH monitoring occasions used to monitor the target physical downlink control channel PDCCH, where the value of J is an integer greater than 1; or, according to the first indication information, determine J during the repeated transmission period of the data scheduled by the first DCI Whether to monitor the target PDCCH at the PDCCH monitoring occasion.
  • the network device sends the first DCI carrying the first indication information to the terminal, so as to facilitate the realization by the network to indicate to the terminal whether there is a target PDCCH for monitoring the target PDCCH during the repeated transmission period of the data scheduled by the first DCI or, the network indicates to the terminal whether to monitor the target PDCCH on the J PDCCH monitoring occasions during the repeated transmission period of the data scheduled by the first DCI, and it is beneficial to ensure that the target PDCCH is monitored once in the non-terrestrial network communication system. Rationality and flexibility of the PDCCH listening occasion configuration process during repeated data transmission.
  • the interval between two adjacent PDCCH monitoring occasions among the J PDCCH monitoring occasions satisfies one of the following ways: the interval between two adjacent PDCCH monitoring occasions is K repetition units, adjacent The interval between two PDCCH monitoring occasions is K subframes, the interval between two adjacent PDCCH monitoring occasions is K time slots, the interval between two adjacent PDCCH monitoring occasions is K radio resource units, and the phase The interval between two adjacent PDCCH monitoring occasions is K milliseconds; the value of K is an integer greater than or equal to 1.
  • the value of K is configured by the network device through radio resource control RRC signaling or system information block SIB.
  • the duration of the PDCCH listening opportunity is configured by the network device through RRC signaling or SIB.
  • the duration of the PDCCH listening opportunity is individually configured by the network device for each carrier.
  • the duration of the PDCCH listening opportunity applies to all carriers in a cell.
  • the first indication information is used to indicate whether there are J PDCCH listening occasions during the repeated transmission period of the data scheduled by the first DCI; Whether to monitor the target PDCCH on the J PDCCH monitoring occasions during the repeated transmission of the scheduled data.
  • the target PDCCH is used to carry the second DCI.
  • the second DCI carries second indication information, where the second indication information is used to indicate whether to perform carrier switching during the repeated transmission of the data scheduled by the first DCI.
  • the first indication information is specifically used to indicate whether the current carrier is switched to the target carrier to repeatedly transmit the data during the repeated transmission period of the data scheduled by the first DCI; the current carrier is used for transmitting the first DCI.
  • the carrier of the DCI, the index of the target carrier is indicated by the second DCI.
  • the current carrier and the target carrier each correspond to different beams.
  • the second indication information may be 1-bit information or X-bit information, where the value of X is an integer greater than 1; wherein, the 1-bit information may be used to determine whether the current carrier Switch to the target carrier, or, 1-bit information can be used to determine whether to switch from the current carrier to the target carrier by bit flipping; X-bit information can be used to determine whether to switch from the current carrier to the target carrier by bit coding.
  • the value of X may be configured by the network device through dedicated RRC signaling.
  • the second DCI further carries third indication information, where the third indication information is used to indicate the index of the target carrier.
  • the index of the target carrier is in the carrier index set information;
  • the carrier index set information includes the indices of M carriers and a candidate carrier index set associated with each carrier index in the indices of the M carriers, M
  • the index of the carrier includes the index of the current carrier, and the index of the target carrier is specifically in the candidate carrier index set associated with the index of the current carrier;
  • the index of each carrier in the carrier index set information corresponds to a beam, and the value of M is greater than 1
  • the candidate carrier index set consists of indices of N carriers among the indices of M carriers, and the value of N is less than or equal to the value of M.
  • the carrier index set information may be configured by the network device through RRC dedicated signaling; or, the carrier index set information is pre-configured.
  • the carrier index set information may satisfy at least one of the following manners: the indices of the M carriers in the carrier index set information are determined by the current location information of the terminal and the preset satellite ephemeris, and the carrier index set information The indices of the N carriers in the candidate carrier index set of , are determined by the distribution of the beams corresponding to the indices of the M carriers.
  • the third indication information is Y-bit information, where the value of Y is an integer greater than 1; the Y-bit information has an index used to indicate the target carrier through a bit-coded manner.
  • the value of Y may be configured by the network device through RRC dedicated signaling.
  • the value of Y satisfies at least one of the following ways: the value of Y is determined by the number of carrier indexes in the candidate carrier index set associated with the index of the current carrier, the value of Y and the value of N Values have a mapping relationship.
  • FIG. 13 provides a block diagram of functional units of another wireless communication device.
  • the wireless communication apparatus 1300 is applied to network equipment in a non-terrestrial network communication system, and specifically includes: a processing unit 1302 and a communication unit 1303 .
  • the processing unit 1302 is configured to control and manage the actions of the network device.
  • the processing unit 1302 is configured to support the network device to perform the steps in FIG. 5 and other processes used in the technical solutions described in this application.
  • the communication unit 1303 is used to support communication between the network device and other devices in the non-terrestrial network communication system.
  • the wireless communication apparatus 1300 may further include a storage unit 1301 for storing program codes and data of the network device.
  • the processing unit 1302 may be a processor or a controller, for example, a CPU, DSP, ASIC, FPGA or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • the processing unit 1302 may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 1303 may be a communication interface, a transceiver, a transceiver circuit, etc., and the storage unit 1301 may be a memory. When the processing unit 1302 is a processor, the communication unit 1303 is a communication interface, and the storage unit 1301 is a memory, the wireless communication apparatus 1300 involved in this embodiment of the present application may be the network device shown in FIG. 15 .
  • the processing unit 1302 is configured to perform any step performed by the network device in the above method embodiments, and when performing data transmission such as sending, the communication unit 1303 can be selectively invoked to complete corresponding operations. A detailed description will be given below.
  • the processing unit 1302 is configured to: send the first downlink control information DCI to the terminal, where the first DCI carries the first indication information; the first indication information is used to determine whether there is any useful information during the repeated transmission period of the data scheduled by the first DCI.
  • the value of J is an integer greater than 1; or, the first indication information is used to determine J during the repeated transmission period of the data scheduled by the first DCI Whether to monitor the target PDCCH at the PDCCH monitoring occasion.
  • the network device sends the first DCI carrying the first indication information to the terminal, so as to facilitate the realization by the network to indicate to the terminal whether there is a target PDCCH for monitoring the target PDCCH during the repeated transmission period of the data scheduled by the first DCI or, the network indicates to the terminal whether to monitor the target PDCCH on the J PDCCH monitoring occasions during the repeated transmission period of the data scheduled by the first DCI, and it is beneficial to ensure that the target PDCCH is monitored once in the non-terrestrial network communication system. Rationality and flexibility of the PDCCH listening occasion configuration process during repeated data transmission.
  • the interval between two adjacent PDCCH monitoring occasions among the J PDCCH monitoring occasions satisfies one of the following ways: the interval between two adjacent PDCCH monitoring occasions is K repetition units, adjacent The interval between two PDCCH monitoring occasions is K subframes, the interval between two adjacent PDCCH monitoring occasions is K time slots, the interval between two adjacent PDCCH monitoring occasions is K radio resource units, and the phase The interval between two adjacent PDCCH monitoring occasions is K milliseconds; the value of K is an integer greater than or equal to 1.
  • the value of K is configured by the network device through radio resource control RRC signaling or system information block SIB.
  • the duration of the PDCCH listening opportunity is configured by the network device through RRC signaling or SIB.
  • the duration of the PDCCH listening opportunity is individually configured by the network device for each carrier.
  • the duration of the PDCCH listening opportunity applies to all carriers in a cell.
  • the first indication information is used to indicate whether there are J PDCCH listening occasions during the repeated transmission period of the data scheduled by the first DCI; Whether to monitor the target PDCCH on the J PDCCH monitoring occasions during the repeated transmission of the scheduled data.
  • the target PDCCH is used to carry the second DCI.
  • the second DCI carries second indication information, where the second indication information is used to indicate whether to perform carrier switching during the repeated transmission of the data scheduled by the first DCI.
  • the first indication information is specifically used to indicate whether the current carrier is switched to the target carrier to repeatedly transmit the data during the repeated transmission period of the data scheduled by the first DCI; the current carrier is used for transmitting the first DCI.
  • the carrier of the DCI, the index of the target carrier is indicated by the second DCI.
  • the current carrier and the target carrier each correspond to different beams.
  • the second indication information may be 1-bit information or X-bit information, where the value of X is an integer greater than 1; wherein, the 1-bit information may be used to determine whether the current carrier Switch to the target carrier, or, 1-bit information can be used to determine whether to switch from the current carrier to the target carrier by bit flipping; X-bit information can be used to determine whether to switch from the current carrier to the target carrier by bit coding.
  • the value of X may be configured by the network device through dedicated RRC signaling.
  • the second DCI further carries third indication information, where the third indication information is used to indicate the index of the target carrier.
  • the index of the target carrier is in the carrier index set information;
  • the carrier index set information includes the indices of M carriers and a candidate carrier index set associated with each carrier index in the indices of the M carriers, M
  • the index of the carrier includes the index of the current carrier, and the index of the target carrier is specifically in the candidate carrier index set associated with the index of the current carrier;
  • the index of each carrier in the carrier index set information corresponds to a beam, and the value of M is greater than 1
  • the candidate carrier index set consists of indices of N carriers among the indices of M carriers, and the value of N is less than or equal to the value of M.
  • the carrier index set information may be configured by the network device through RRC dedicated signaling; or, the carrier index set information is pre-configured.
  • the carrier index set information may satisfy at least one of the following manners: the indices of the M carriers in the carrier index set information are determined by the current location information of the terminal and the preset satellite ephemeris, and the carrier index set information The indices of the N carriers in the candidate carrier index set of , are determined by the distribution of the beams corresponding to the indices of the M carriers.
  • the third indication information is Y-bit information, where the value of Y is an integer greater than 1; the Y-bit information has an index used to indicate the target carrier through a bit-coded manner.
  • the value of Y may be configured by the network device through RRC dedicated signaling.
  • the value of Y satisfies at least one of the following ways: the value of Y is determined by the number of carrier indexes in the candidate carrier index set associated with the index of the current carrier, the value of Y and the value of N Values have a mapping relationship.
  • FIG. 14 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • the terminal 1400 includes a processor 1410 , a memory 1420 , a communication interface 1430 and at least one communication bus for connecting the processor 1410 , the memory 1420 , and the communication interface 1430 .
  • the memory 1420 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM) or A portable read-only memory (compact disc read-only memory, CD-ROM), the memory 1420 is used for related instructions and data.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • Communication interface 1430 is used to receive and transmit data.
  • the processor 1410 may be one or more CPUs, and if the processor 1410 is one CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 1410 in the terminal 1400 is configured to read one or more programs 1421 stored in the memory 1420 to perform the following steps: obtain the first downlink control information DCI from the network device, and the first DCI carries the first indication information; Determine, according to the first indication information, whether there are J PDCCH monitoring occasions for monitoring the target physical downlink control channel PDCCH during the repeated transmission period of the data scheduled by the first DCI, where the value of J is an integer greater than 1; or, according to The first indication information determines whether to monitor the target PDCCH on J PDCCH monitoring occasions within the repeated transmission period of the data scheduled by the first DCI.
  • the network device sends the first DCI carrying the first indication information to the terminal, so as to facilitate the realization by the network to indicate to the terminal whether there is a target PDCCH for monitoring the target PDCCH during the repeated transmission period of the data scheduled by the first DCI or, the network indicates to the terminal whether to monitor the target PDCCH on the J PDCCH monitoring occasions during the repeated transmission period of the data scheduled by the first DCI, and it is beneficial to ensure that the target PDCCH is monitored once in the non-terrestrial network communication system. Rationality and flexibility of the PDCCH listening occasion configuration process during repeated data transmission.
  • the interval between two adjacent PDCCH monitoring occasions among the J PDCCH monitoring occasions satisfies one of the following ways: the interval between two adjacent PDCCH monitoring occasions is K repetition units, adjacent The interval between two PDCCH monitoring occasions is K subframes, the interval between two adjacent PDCCH monitoring occasions is K time slots, the interval between two adjacent PDCCH monitoring occasions is K radio resource units, and the phase The interval between two adjacent PDCCH monitoring occasions is K milliseconds; the value of K is an integer greater than or equal to 1.
  • the value of K is configured by the network device through radio resource control RRC signaling or system information block SIB.
  • the duration of the PDCCH listening opportunity is configured by the network device through RRC signaling or SIB.
  • the duration of the PDCCH listening opportunity is individually configured by the network device for each carrier.
  • the duration of the PDCCH listening opportunity applies to all carriers in a cell.
  • the first indication information is used to indicate whether there are J PDCCH listening occasions during the repeated transmission period of the data scheduled by the first DCI; Whether to monitor the target PDCCH on the J PDCCH monitoring occasions during the repeated transmission of the scheduled data.
  • the target PDCCH is used to carry the second DCI.
  • the second DCI carries second indication information, where the second indication information is used to indicate whether to perform carrier switching during the repeated transmission of the data scheduled by the first DCI.
  • the first indication information is specifically used to indicate whether the current carrier is switched to the target carrier to repeatedly transmit the data during the repeated transmission period of the data scheduled by the first DCI; the current carrier is used for transmitting the first DCI.
  • the carrier of the DCI, the index of the target carrier is indicated by the second DCI.
  • the current carrier and the target carrier each correspond to different beams.
  • the second indication information may be 1-bit information or X-bit information, where the value of X is an integer greater than 1; wherein, the 1-bit information may be used to determine whether the current carrier Switch to the target carrier, or, 1-bit information can be used to determine whether to switch from the current carrier to the target carrier by bit flipping; X-bit information can be used to determine whether to switch from the current carrier to the target carrier by bit coding.
  • the value of X may be configured by the network device through dedicated RRC signaling.
  • the second DCI further carries third indication information, where the third indication information is used to indicate the index of the target carrier.
  • the index of the target carrier is in the carrier index set information;
  • the carrier index set information includes the indices of M carriers and a candidate carrier index set associated with each carrier index in the indices of the M carriers, M
  • the index of the carrier includes the index of the current carrier, and the index of the target carrier is specifically in the candidate carrier index set associated with the index of the current carrier;
  • the index of each carrier in the carrier index set information corresponds to a beam, and the value of M is greater than 1
  • the candidate carrier index set consists of indices of N carriers among the indices of M carriers, and the value of N is less than or equal to the value of M.
  • the carrier index set information may be configured by the network device through RRC dedicated signaling; or, the carrier index set information is pre-configured.
  • the carrier index set information may satisfy at least one of the following manners: the indices of the M carriers in the carrier index set information are determined by the current location information of the terminal and the preset satellite ephemeris, and the carrier index set information The indices of the N carriers in the candidate carrier index set of , are determined by the distribution of the beams corresponding to the indices of the M carriers.
  • the third indication information is Y-bit information, where the value of Y is an integer greater than 1; the Y-bit information has an index used to indicate the target carrier through a bit-coded manner.
  • the value of Y may be configured by the network device through RRC dedicated signaling.
  • the value of Y satisfies at least one of the following ways: the value of Y is determined by the number of carrier indexes in the candidate carrier index set associated with the index of the current carrier, the value of Y and the value of N Values have a mapping relationship.
  • FIG. 15 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device 1500 includes a processor 1510 , a memory 1520 , a communication interface 1530 and at least one communication bus for connecting the processor 1510 , the memory 1520 , and the communication interface 1530 .
  • the memory 1520 includes, but is not limited to, RAM, ROM, PROM or CD-ROM, and the memory 1520 is used to store related instructions and data.
  • Communication interface 1530 is used to receive and transmit data.
  • the processor 1510 may be one or more CPUs, and if the processor 1510 is one CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 1510 in the network device 1500 is configured to read one or more programs 1521 stored in the memory 1520 to perform the following steps: send the first downlink control information DCI to the terminal, and the first DCI carries the first indication information; An indication message is used to determine whether there are J PDCCH monitoring occasions for monitoring the PDCCH of the target physical downlink control channel during the repeated transmission period of the data scheduled by the first DCI, and the value of J is an integer greater than 1; An indication message is used to determine whether to monitor the target PDCCH on the J PDCCH monitoring occasions during the repeated transmission period of the data scheduled by the first DCI.
  • the network device sends the first DCI carrying the first indication information to the terminal, so as to facilitate the realization by the network to indicate to the terminal whether there is a target PDCCH for monitoring the target PDCCH during the repeated transmission period of the data scheduled by the first DCI or, the network indicates to the terminal whether to monitor the target PDCCH on the J PDCCH monitoring occasions during the repeated transmission period of the data scheduled by the first DCI, and it is beneficial to ensure that the target PDCCH is monitored once in the non-terrestrial network communication system. Rationality and flexibility of the PDCCH listening occasion configuration process during repeated data transmission.
  • the interval between two adjacent PDCCH monitoring occasions among the J PDCCH monitoring occasions satisfies one of the following ways: the interval between two adjacent PDCCH monitoring occasions is K repetition units, adjacent The interval between two PDCCH monitoring occasions is K subframes, the interval between two adjacent PDCCH monitoring occasions is K time slots, the interval between two adjacent PDCCH monitoring occasions is K radio resource units, and the phase The interval between two adjacent PDCCH monitoring occasions is K milliseconds; the value of K is an integer greater than or equal to 1.
  • the value of K is configured by the network device through radio resource control RRC signaling or system information block SIB.
  • the duration of the PDCCH listening opportunity is configured by the network device through RRC signaling or SIB.
  • the duration of the PDCCH listening opportunity is individually configured by the network device for each carrier.
  • the duration of the PDCCH listening opportunity applies to all carriers in a cell.
  • the first indication information is used to indicate whether there are J PDCCH listening opportunities during the repeated transmission period of the data scheduled by the first DCI; Whether to monitor the target PDCCH on the J PDCCH monitoring occasions during the repeated transmission of the scheduled data.
  • the target PDCCH is used to carry the second DCI.
  • the second DCI carries second indication information, where the second indication information is used to indicate whether to perform carrier switching during the repeated transmission of the data scheduled by the first DCI.
  • the first indication information is specifically used to indicate whether the current carrier is switched to the target carrier to repeatedly transmit the data during the repeated transmission period of the data scheduled by the first DCI; the current carrier is used for transmitting the first DCI.
  • the carrier of the DCI, the index of the target carrier is indicated by the second DCI.
  • the current carrier and the target carrier each correspond to different beams.
  • the second indication information may be 1-bit information or X-bit information, where the value of X is an integer greater than 1; wherein, the 1-bit information may be used to determine whether the current carrier Switch to the target carrier, or, 1-bit information can be used to determine whether to switch from the current carrier to the target carrier by bit flipping; X-bit information can be used to determine whether to switch from the current carrier to the target carrier by bit coding.
  • the value of X may be configured by the network device through dedicated RRC signaling.
  • the second DCI further carries third indication information, where the third indication information is used to indicate the index of the target carrier.
  • the index of the target carrier is in the carrier index set information;
  • the carrier index set information includes the indices of M carriers and a candidate carrier index set associated with each carrier index in the indices of the M carriers, M
  • the index of the carrier includes the index of the current carrier, and the index of the target carrier is specifically in the candidate carrier index set associated with the index of the current carrier;
  • the index of each carrier in the carrier index set information corresponds to a beam, and the value of M is greater than 1
  • the candidate carrier index set consists of indices of N carriers among the indices of M carriers, and the value of N is less than or equal to the value of M.
  • the carrier index set information may be configured by the network device through RRC dedicated signaling; or, the carrier index set information is pre-configured.
  • the carrier index set information may satisfy at least one of the following manners: the indices of the M carriers in the carrier index set information are determined by the current location information of the terminal and the preset satellite ephemeris, and the carrier index set information The indices of the N carriers in the candidate carrier index set of , are determined by the distribution of the beams corresponding to the indices of the M carriers.
  • the third indication information is Y-bit information, where the value of Y is an integer greater than 1; the Y-bit information has an index used to indicate the target carrier through a bit-coded manner.
  • the value of Y may be configured by the network device through RRC dedicated signaling.
  • the value of Y satisfies at least one of the following ways: the value of Y is determined by the number of carrier indexes in the candidate carrier index set associated with the index of the current carrier, the value of Y and the value of N Values have a mapping relationship.
  • An embodiment of the present application further provides a chip, wherein the chip includes a processor, configured to call and run a computer program from a memory, so that the device installed with the chip executes the execution of the terminal or network device in the above method embodiments. some or all of the steps described.
  • Embodiments of the present application further provide a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute the terminal as described in the foregoing method embodiments or some or all of the steps described by the network device.
  • the embodiments of the present application further provide a computer program product, wherein the computer program product includes a computer program, and the computer program is operable to cause the computer to execute part or all of the description of the terminal or network device in the foregoing method embodiments step.
  • the computer program product may be a software installation package.
  • the steps of the method or algorithm described in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in RAM, flash memory, ROM, erasable programmable read-only memory (erasable programmable read-only memory, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM), or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in a terminal or network device.
  • the processor and the storage medium may also exist in the terminal or network device as discrete components.
  • the functions described in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website site, computer, server, or data center via wired (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) means To another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, digital video disc (DVD)), or semiconductor media (eg, solid state disk (SSD)), etc. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种无线通信方法与装置、终端和网络设备,应用于非地面网络通信系统,该非地面网络通信系统包括终端和网络设备。该方法包括:网络设备向终端发送第一DCI,该第一DCI携带有第一指示信息;终端获取该第一DCI,并根据该第一DCI中的第一指示信息确定在该第一DCI所调度的数据的重复传输期间内是否存在用于监听目标PDCCH的J个PDCCH监听时机;或者,根据该第一指示信息确定在该第一DCI所调度的数据的重复传输期间内的J个PDCCH监听时机上是否监听目标PDCCH,从而有利于保证非地面网络通信系统中一次数据的重复传输期间内的PDCCH监听时机配置过程的合理性和灵活性。

Description

无线通信方法与装置、终端和网络设备 技术领域
本申请涉及通信技术领域,尤其涉及一种无线通信方法与装置、终端和网络设备。
背景技术
目前,第三代合作伙伴计划(3rd generation partnership project,3GPP)正在制定关于非地面网络(non-terrestrial network,NTN)通信的协议标准,其协议标准主要涉及有航天设备(spaceborne vehicle)或者空运设备(airborne vehicle),例如同步地球轨道卫星、近地轨道卫星、高椭圆轨道卫星、高空平台站(high-altitude platform stations,HAPS)等。
另外,在物联网协议中,为了保证通信覆盖范围,现有窄带物联网(narrow band internet of things,NB-IoT)或增强型机器类型通信(enhanced machine-type communication,eMTC)采用了重复传输的技术。然而,由于NTN通信系统中的卫星相对于地面的距离非常远,并且卫星还会沿着固定的轨道不断运动,因此终端与卫星之间的传播距离(即传播时延)时常较大。如果NTN通信系统也考虑物联网协议中的重复传输技术(即卫星物联网场景),则可能导致终端一次数据传输持续时间较长。由于卫星的快速移动,因此在该次数据传输过程中终端可能执行波束的切换,从而在该一次数据传输过程中如何接收网络下发的波束切换指示(即在一次数据传输期间监听物理下行控制信道)。此外,关于波束切换问题,未来可能会通过载波切换的方式实现波束的切换,即不同的波束对应不同载波。换而言之,由于卫星的快速移动,在该一次数据传输过程中终端可能需要执行载波的切换,从而在该一次数据传输过程中如何接收网络下发的载波切换指示(即在一次数据传输期间监听物理下行控制信道)是目前需要解决的问题。
发明内容
本申请实施例提供一种无线通信方法与装置、终端和网络设备,以期望通过网络设备向终端发送携带有第一指示信息的第一DCI,保证非地面网络通信系统中一次数据的重复传输期间内的PDCCH监听时机配置过程的合理性和灵活性。
第一方面,本申请实施例提供一种无线通信方法,应用于非地面网络通信系统中的终端,所述非地面网络通信系统包括所述终端和网络设备;所述方法包括:
获取来自网络设备的第一下行控制信息DCI,所述第一DCI携带有第一指示信息;
根据所述第一指示信息确定在所述第一DCI所调度的数据的重复传输期间内是否存在用于监听目标物理下行控制信道PDCCH的J个PDCCH监听时机,所述J的取值为大于1的整数;或者,
根据所述第一指示信息确定在所述第一DCI所调度的数据的重复传输期间内的所述J个PDCCH监听时机上是否监听所述目标PDCCH。
第二方面,本申请实施例提供一种无线通信方法,应用于非地面网络通信系统中的网络设备,所述非地面网络通信系统包括所述网络设备和终端;所述方法包括:
向所述终端发送第一下行控制信息DCI,所述第一DCI携带有第一指示信息;
所述第一指示信息用于所述终端确定在所述第一DCI所调度的数据的重复传输期间内是否存在用于监听目标物理下行控制信道PDCCH的J个PDCCH监听时机,所述J的取值为大于1的整数;或者,
所述第一指示信息用于所述终端确定在所述第一DCI所调度的数据的重复传输期间内的所述J个PDCCH监听时机上是否监听所述目标PDCCH。
第三方面,本申请实施例提供一种无线通信装置,应用于非地面网络通信系统中的终端,所述非地面网络系统包括所述终端和网络设备;所述装置包括处理单元和通信单元,所述处理单元用于:
通过所述通信单元获取来自网络设备的第一下行控制信息DCI,所述第一DCI携带有第一指示信息;
根据所述第一指示信息确定在所述第一DCI所调度的数据的重复传输期间内是否存在用于监听目标物理下行控制信道PDCCH的J个PDCCH监听时机,所述J的取值为大于1的整数;或者,根据所述第一指示信息确定在所述第一DCI所调度的数据的重复传输期间内的所述J个PDCCH监听时机上是否监听所述目标PDCCH。
第四方面,本申请实施例提供一种无线通信装置,应用于非地面网络通信系统中的网络设备,所述非地面网络通信系统包括所述网络设备和终端;所述装置包括处理单元和通信单元,所述处理单元用于:
通过所述通信单元向所述终端发送第一下行控制信息DCI,所述第一DCI携带有第一指示信息;所述第一指示信息用于所述终端确定在所述第一DCI所调度的数据的重复传输期间内是否存在用于监听目标物理下行控制信道PDCCH的J个PDCCH监听时机,所述J的取值为大于1的整数;或者,所述第一指示信息用于所述终端确定在所述第一DCI所调度的数据的重复传输期间内的所述J个PDCCH监听时机上是否监听所述目标PDCCH。
第五方面,本申请实施例提供一种终端,包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述一个或多个程序包括用于执行本申请实施例第一方面任一方法中的步骤的指令。
第六方面,本申请实施例提供一种网络设备,包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述一个或多个程序包括用于执行本申请实施例第二方面任一方法中的步骤的指令。
第七方面,本申请实施例提供了一种芯片,包括处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如本申请实施例第一方面或第二方面任一方法中所描述的部分或全部步骤。
第八方面,本申请实施例提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如本申请实施例第一方面或第二方面任一方法中所描述的部分或全部步骤。
第九方面,本申请实施例提供了一种计算机程序,其中,所述计算机程序可操作来使计算机执行如本申请实施例第一方面或第二方面任一方法中所描述的部分或全部步骤。该计算机程序可以为一个软件安装包。
可以看出,本申请实施例中,在NTN通信系统也考虑物联网协议中的重复传输技术的情况下,由于终端与卫星之间的数据的重复传输会存在持续时间较长的现象,因此本申请实施例考虑由网络设备向终端发送携带有第一指示信息的第一DCI,从而有利于实现由网络向终端指示在第一DCI所调度的数据的重复传输期间内是否存在用于监听目标PDCCH的J个监听时机;或者,实现由网络向终端指示在 第一DCI所调度的数据的重复传输期间内的J个PDCCH监听时机上是否监听目标PDCCH,以及有利于保证非地面网络通信系统中一次数据的重复传输期间内的PDCCH监听时机配置过程的合理性和灵活性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种非地面网络通信系统的架构示意图;
图2是本申请实施例提供的一种具有透明卫星通信系统的架构示意图;
图3是本申请实施例提供的一种陆地网通信系统与非地面网络通信系统之间比较信号接收质量的结构示意图;
图4是本申请实施例提供的一种非地面网络通信系统的架构比较的架构示意图;
图5是本申请实施例提供的一种无线通信方法的流程示意图;
图6是本申请实施例提供的一种在第一DCI所调度的数据的重复传输期间内插入PDCCH监听时机的结构示意图;
图7是本申请实施例提供的一种1比特信息用于指示第一DCI所调度的一次数据的重复传输期限内是否存在PDCCH监听时机的结构示意图;
图8是本申请实施例提供的又一种1比特信息用于指示第一DCI所调度的一次数据的重复传输期限内是否存在PDCCH监听时机的结构示意图;
图9是本申请实施例提供的一种1比特信息用于指示第一DCI所调度的一次数据的重复传输期限内的PDCCH监听时机上是否监听目标PDCCH的结构示意图;
图10是本申请实施例提供的又一种1比特信息用于指示第一DCI所调度的一次数据的重复传输期限内的PDCCH监听时机上是否监听目标PDCCH的结构示意图;
图11是本申请实施例提供的一种非地面网络通信场景的架构示意图;
图12是本申请实施例提供的一种无线通信装置的功能单元组成框图;
图13是本申请实施例提供的又一种无线通信装置的功能单元组成框图;
图14是本申请实施例提供的一种终端的结构示意图;
图15是本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于非地面网络(non-terrestrial network,NTN)通信系统中,而NTN通信系统一般采用卫星通信的方式向地面终端提供通信服务。
示例性的,本申请实施例应用的非地面网络通信系统,如图1所示。非地面网络通信系统10可以 包括终端110、小区内参考点(reference point)120、卫星130、非地面网络网关(NTN gateway)140和网络设备150。其中,终端110、非地面网络网关140和网络设备150可以位于地球表面,而卫星130位于地球轨道。卫星130可以向信号覆盖的地理区域提供通信服务,并且可以与位于信号覆盖区域内的终端110进行通信。同时,终端110位于某个小区内,并且该小区包括一个小区内参考点120。此外,终端110与卫星130之间的无线通信链路称为服务链路(service link),而卫星130与非地面网络网关(NTN gateway)140之间的无线通信链路称为供给链路(feeder link)。需要说明的是,非地面网络网关(NTN gateway)140与网络设备150可以集成到同一个设备,也可以为分离的不同设备,对此不作具体限制。
本申请实施例结合终端、卫星和网络设备描述了各个实施例。下面对其进行具体介绍。
具体的,本申请实施例中的终端可以是用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、智能终端、无线通信设备、用户代理或用户装置。终端还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、中继设备、车载设备、可穿戴设备、物联网设备、下一代通信系统例如NR网络中的终端或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端等,对此不作具体限定。
进一步的,终端可以部署在陆地上,包括室内或室外、手持、穿戴或车载;可以部署在水面上(如轮船等);还可以部署在空中(如飞机、气球和卫星等)。
进一步的,终端可以是手机(mobile phone)、平板电脑、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的车载设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
具体的,本申请实施例中的卫星可以是载有弯管有效载荷(bent pipe payload)或再生有效载荷(regenerative payload)信号发射机的航天器,其通常运行在300至1500km之间的高度的近地轨道(low earth orbit,LEO)、在7000至25000km之间的高度的中地轨道(medium earth orbit,MEO)、在35786km的高度的同步地球轨道(geostationary earth orbit,GEO)或者在400至50000km之间的高度的高椭圆轨道(high elliptical orbit,HEO)。也就是说,卫星按照轨道高度的不同可以为LEO卫星、MEO卫星、GEO卫星或者HEO卫星等。
进一步的,本申请实施例中的卫星发送的信号通常会在以其视场(field of view)为边界的给定服务区域(given service area)上产生一个或多个波束(beam,或者称为beam footprint)。同时,一个波束在地面上的形状可以为椭圆形,而卫星的视场取决于天线和最小仰角等。
具体的,本申请实施例中的非地面网络网关可以是位于地球表面的地球站或网关,并能够提供足够的无线射频(radio frequency,RF)功率和RF灵敏度以连接卫星。同时,非地面网络网关可以是传输网络层(transport network layer,TNL)节点。
具体的,本申请实施例中的网络设备可以是全球移动通讯(global system of mobile communication, GSM)通信系统或者码分多址(code division multiple access,CDMA)通信系统中的基站(base transceiver station,BTS)、宽带码分多址(wideband code division multiple access,WCDMA)通信系统中的基站(nodeB,NB)、长期演进(long term evolution,LTE)通信系统中的演进型基站(evolutional node B,eNB或eNodeB)或者新无线(new radio,NR)通信系统中的基站(gNB)。网络设备还可以是无线局域网WLAN中的接入点(access point,AP)、中继站、未来演进的PLMN网络中的网络设备或者NTN通信系统中的网络设备等。
需要说明的是,在一些网络部署中,gNB可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),而gNB还可以包括有源天线单元(active antenna unit,AAU)。其中,CU可以实现gNB的部分功能,而DU也可以实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC)层和分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能;DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。另外,AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因此,高层信令(如RRC层信令)可以认为是由DU发送的,或者由DU和AAU发送的。可以理解的是,网络设备可以包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,对此不做具体限制。
示例性的,本申请实施例提供一种具有透明卫星(transparent satellite)通信系统的架构示意图,如图2所示。其中,终端、非地面网络网关和gNB位于地球表面,而卫星位于地球轨道。同时,卫星、非地面网络网关和gNB可以作为5G无线接入网(NG-radio access network,NG-RAN),并且NG-RAN通过NG接口连接5G核心网。需要说明的是,卫星有效载荷在上行链路和下行链路方向都实现了频率转换和射频放大器,该卫星对应于模拟RF中继器。此外,不同的透明卫星可以连接到地面上的同一个gNB上。
在对本申请实施例提供的载波切换方法进行详细介绍之前,再对本申请所涉及的相关通信技术进行介绍。
1、窄带物理网通信(narrow band internet of things,NB-IoT)中的多载波
由于NB-IoT单频点小区只有180kHz的带宽,而该带宽上除了窄带主同步信号(narrow-band primary synchronization signal,NPSS)、窄带辅同步信号(narrow-band secondary synchronization signal,NSSS)和窄带系统信息块(system information block narrow-band,SIB-NB)的开销外,剩余业务信道容量很小,因此为了支持海量终端,需要采用多个频点来提高网络容量。
NB-IoT支持多载波配置,其载波可分为两类:锚定载波(anchor carrier)和非锚定载波(non-anchor carrier)。同时,同一个小区可以包括一个锚定载波和若干个非锚定载波,而每个载波的频谱带宽为180kHz,并且该小区内所有载波的最大频谱跨度不超过20MHz。
锚定载波:多载波小区中有且只有一个载波支持同时承载NPSS、NSSS、窄带物理广播信道(narrow-band physical broadcast channel,NPBCH)、窄带物理下行控制信道(narrow-band physical downlink control channel,NPDCCH)和窄带物理下行共享信道(narrow-band physical downlink share  channel,NPDSCH),该载波称为锚定载波。因此,终端可以在锚定载波上监听NPSS、NSSS、NPBCH、NPDCCH和NPDSCH信息。
非锚定载波:多载波小区中可以有若干个只承载NPDCCH、NPDSCH,但不承载NPSS、NSSS和NPBCH的载波,该载波称为非锚定载波。因此,终端可以在非锚定载波上进行数据发送或接收。另外,在终端进入连接态之前,网络会通过随机接入过程中的消息(Msg4)指定一个载波用后续的下行数据传输。当终端处于空闲态时,终端可以在非锚定载波上进行寻呼(paging)的监听。
2、NTN通信系统
在NTN通信系统中,卫星通常会在地面上产生一个或多个波束(beam,或者称为beam footprint),而一个波束在地面上的形状可以为椭圆形。其中,部分卫星(例如LEO卫星)在地面上产生的波束也会随着该卫星在其轨道上的运动而在地面上移动;或者,部分卫星(例如LEO卫星或者GEO卫星)在地面上产生的波束或者小区不会随着该卫星在其轨道上的运动而在地面上移动。
由于卫星相对于地面的距离非常远(例如,GEO卫星是35786km),因此在同一个波束或者小区的覆盖范围内,不同地理位置的终端(如UE)与卫星之间的传播距离差异较小(即同一个小区的覆盖范围内不同地理位置的终端对应的信号的路损差异较小),进而导致同一个波束/小区的覆盖范围内不同地理位置的终端对应的信号接收质量(包括终端的下行接收质量或者基站的上行接收质量)差异非常小,如图3所示。
在图3中的(a)所示的陆地网通信系统中,同一个小区的覆盖范围内具有不同地理位置的终端3201和终端3202。由于网络设备310到终端3201的传播距离与到终端3202的传播距离之间存在较大差异,因此导致终端3201对应的信号接收质量与终端3202对应的信号接收质量之间存在较大差异。而在图3中的(b)所示的NTN通信系统中,同一个波束/小区的覆盖范围内具有不同地理位置的终端3401和终端3402。由于卫星330到地面的距离非常远,因此卫星330到终端3401的传播距离与到终端3402的传播距离之间存在较小差异,从而导致终端3401对应的信号接收质量与终端3402对应的信号接收质量之间存在较小差异。
3、NTN通信系统的架构
本申请实施例中NTN通信系统的架构主要包括具有透明卫星(transparent satellite)(或称为弯管有效载荷(bent pipe payload))的NTN通信架构(即透明转发模式)和具有再生卫星(regenerative satellite)的NTN通信架构(即再生信号模式),请参阅图4。其中,图4中的(a)示例出具有透明卫星的NTN通信架构,而图4中的(b)示例出具有再生卫星的NTN通信架构。在图4中的(a)中,透明转发模式的卫星410在地面上产生至少一个波束420,并且该至少一个波束420可以在地面上形成一个小区。此时,位于该小区内的终端430可以测量到该小区的所有波束中的一个波束,并通过该波束与卫星410建立通信连接。同理,在图4中的(b)中,再生信号模式的卫星440在地面上产生至少一个波束450,并且该至少一个波束450可以在地面上形成一个小区。此时,位于该小区内的终端460可以测量到该小区的所有波束中的一个波束,并通过该波束与卫星440建立通信连接。
4、数据的重复传输
为了保证通信覆盖范围,现有窄带物联网(narrow band internet of things,NB-IoT)或增强型机器类型通信(enhanced machine-type communication,eMTC)采用了重复传输的技术。其中,针对下行传 输的最大重复传输次数是2048次,而针对上行传输的最大重复传输次数为128次。另外,物理下行共享信道(physical downlink share channel,PDSCH)或物理上行共享信道(physical uplink share channel,PUSCH)的重复传输次数可以由其调度的下行控制信息(downlink control information,DCI)动态指示,即DCI存在特定的比特域用于指示PDSCH或PUSCH的重复传输次数。同时,物理下行控制信道(physical downlink control channel,PDCCH)的最大重复次数(即Rmax)可以由RRC信令或者系统信息块(system information block,SIB)半静态配置。
在陆地网通信系统(如图3所示)中,由于同一个小区的覆盖范围内不同地理位置的终端与基站之间的传播距离存在较大差异,因此在终端接收或者发送数据时,位于不同地理位置(比如小区中心或者小区边缘)的终端需要不同的数据的重复传输次数(即PDSCH/PUSCH/PRACH/PDCCH的重复传输次数)。目前,针对陆地网通信中的重复传输次数问题,网络可以通过由调度PDSCH/PUSCH的DCI中的特定比特域动态指示该PDSCH/PUSCH的重复传输次数。
由于NTN通信系统中的卫星相对于地面的距离非常远,并且卫星还会沿着固定的轨道不断运动,因此终端与卫星之间的传播距离(即传播时延)时常较大。如果NTN通信系统也考虑物联网协议中的重复传输技术(即卫星物联网场景),则可能导致终端一次数据传输持续时间较长。由于卫星的快速移动,因此在该次数据传输过程中终端可能发生波束(即载波)的切换,从而在该次数据传输过程中如何接收网络下发的载波切换指示(即在一次数据传输期间监听PDCCH)是目前需要解决的问题。
结合上述描述,本申请实施例提供一种无线通信方法的流程示意图,其应用于非地面网络通信系统,请参阅图5。该方法包括:
S510、网络设备向终端发送第一DCI,该第一DCI携带有第一指示信息。
其中,第一指示信息用于终端确定在第一DCI所调度的数据的重复传输期间内是否存在用于监听目标PDCCH的J个PDCCH监听时机,J的取值为大于1的整数;或者,第一指示信息用于终端确定在第一DCI所调度的数据的重复传输期间内的J个PDCCH监听时机上是否监听目标PDCCH。
需要说明的是,为了保证通信覆盖范围,NB-IOT/eMTC采用了重复传输的技术。在NTN通信系统也考虑物联网协议中的重复传输技术的情况下,可能导致终端一次数据传输持续时间较长。由于卫星的快速移动,因此在该次数据传输过程中终端可能发生波束(即载波)的切换,从而在该次数据传输过程中如何接收网络下发的载波切换指示(即在一次数据传输期间监听PDCCH)是目前需要解决的问题。因此,本申请实施例考虑由网络设备向终端发送携带有第一指示信息的第一DCI,从而实现由网络向终端指示在第一DCI所调度的数据的重复传输期间内是否存在用于监听目标PDCCH的J个监听时机;或者,实现由网络向终端指示在第一DCI所调度的数据的重复传输期间内的J个PDCCH监听时机上是否监听目标PDCCH。
进一步需要说明的是,本申请实施例中的技术方案既适用于透明转发模式也适用于再生信号模式。在透明转发模式下,第一DCI由位于地面的网络设备发送。在再生信号模式下,由于网络设备位于卫星,因此第一DCI由位于卫星的网络设备发送。另外,本申请实施例中的“第一DCI”、“第二DCI”主要用于区别网络设备在不同时刻下发的DCI,并且不同时刻下发的DCI所携带的指示域、指示信息等存在控制用途不同的情况,对此不作具体限制。
下面本申请实施例将对J个PDCCH监听时机(PDCCH monitoring occasion)的资源配置进行具体说明。其中,J的取值为大于1的整数。
具体的,J个PDCCH监听时机中的相邻两个PDCCH监听时机之间的间隔满足以下一种方式:相邻两个PDCCH监听时机之间的间隔为K个重复单元、相邻两个PDCCH监听时机之间的间隔为K个子帧、相邻两个PDCCH监听时机之间的间隔为K个时隙、相邻两个PDCCH监听时机之间的间隔为K个无线资源单元(resourceunit,RU)、相邻两个PDCCH监听时机之间的间隔为K毫秒;K的取值为大于或等于1的整数。
可以理解的是,在第一DCI所调度的数据的重复传输期间内,网络会以每隔K个重复单元(每K个子帧、每K个时隙、每K个RU或者每K毫秒)的方式插入或配置一个PDCCH监听时机,如图6所示。其中,每个PDCCH监听时机用于监听目标PDCCH。
其中,K的取值由网络设备通过RRC信令或SIB配置。
具体的,PDCCH监听时机的时长由网络设备通过RRC信令或SIB配置。
具体的,PDCCH监听时机的时长是由网络设备为每个载波单独配置的。
需要说明的是,NTN通信系统中的卫星会在地面上产生一个或多个波束以形成小区,而位于该小区内的终端可以处于该小区内的所有波束中任一波束的覆盖范围内。因此,本申请实施例考虑不同波束对应不同的PDCCH监听时机的时长。
具体的,PDCCH监听时机的时长可以应用于一个小区内的所有载波。
需要说明的是,小区内的所有波束的PDCCH的时长是一样的。具体的,PDCCH监听时机的时长的单位可以是子帧、帧、时隙或毫秒等,对此不作具体限制。
下面本申请实施例将对第一指示信息进行具体说明。
具体的,第一指示信息可以为第一DCI携带的一个指示域。另外,该指示域可以为现有标准规定的DCI中新增或特定的一个域。
具体的,第一指示信息可以用于指示在第一DCI所调度的数据的重复传输期间内是否存在J个PDCCH监听时机;或者,第一指示信息可以用于指示终端在第一DCI所调度的数据的重复传输期间内的J个PDCCH监听时机上是否监听目标PDCCH。
需要说明的是,对于第一DCI所调度的数据的重复传输期间内是否存在J个PDCCH监听时机,可以理解为,网络是否在第一DCI所调度的数据的重复传输期间内插入或配置J个PDCCH监听时机。另外,对于第一DCI所调度的数据的重复传输期间内的J个PDCCH监听时机上是否监听目标PDCCH,可以理解为,网络已在第一DCI所调度的数据的重复传输期间内插入或配置J个PDCCH监听时机,此时,由网络下发第一指示信息来指示终端是否需要在该J个PDCCH监听时机上监听目标PDCCH。
进一步需要说明的是,对于第一DCI所调度的数据的重复传输期间内是否存在J个PDCCH监听时机,也可以理解为,在通过第一DCI调度数据时,网络设备可以通过该第一DCI中的第一指示信息向终端指示在该第一DCI所调度的数据的重复传输期间内针对J个PDCCH监听时机的配置是否生效。也就是说,上述相邻两个PDCCH监听时机之间的间隔K和每个PDCCH监听时机的时长是否生效。
其中,该第一指示信息的长度可以是1比特(bit)。
需要说明的是,网络设备向终端发送的第一DCI中第一指示信息的长度可以是1比特(bit)。此 时,该第一指示信息可以为1比特信息,并且该1比特的比特位取值方式包括1和0。另外,在终端获取来自网络设备的第一DCI中的第一指示信息之后,终端可以通过第一指示信息中的比特位取值方式确定在第一DCI所调度的数据的重复传输期间内是否存在用于监听目标PDCCH的J个PDCCH监听时机,或者,终端可以通过第一指示信息中的比特位取值方式确定在第一DCI所调度的数据的重复传输期间内的J个PDCCH监听时机上是否监听目标PDCCH。下面对其进行示例说明。
示例说明,网络设备通过第一DCI调度了一次数据,并在该第一DCI中携带有1比特信息,该1比特指示用于指示在该第一DCI所调度的该一次数据的重复传输期间内是否存在J个PDCCH监听时机。若该1比特信息中的比特位的取值为1,则该1比特信息用于指示在该第一DCI所调度的数据的重复传输期间内存在J个PDCCH监听时机(即针对J个PDCCH监听时机的配置生效),如图7所示;若该1比特信息中的比特位的取值为0,则该1比特信息用于指示在该第一DCI所调度的数据的重复传输期间内不存在J个PDCCH监听时机(即针对J个PDCCH监听时机的配置不生效),如图8所示。或者,若该1比特信息中的比特位的取值为0,则该1比特信息用于指示在该第一DCI所调度的数据的重复传输期间内存在J个PDCCH监听时机;若该1比特信息中的比特位的取值为1,则该1比特信息用于指示在该第一DCI所调度的数据的重复传输期间内不存在J个PDCCH监听时机,对此不作具体限制。
示例说明,网络设备通过第一DCI调度了一次数据,并在该第一DCI中携带有1比特信息,该1比特指示用于指示终端在第一DCI所调度的该一次数据的重复传输期间内的J个PDCCH监听时机上是否监听目标PDCCH。若该1比特信息中的比特位的取值为1,则该1比特信息用于指示终端在该第一DCI所调度的数据的重复传输期间内的J个PDCCH监听时机上监听目标PDCCH,如图9所示;若该1比特信息中的比特位的取值为0,则该1比特信息用于指示终端在该第一DCI所调度的数据的重复传输期间内的J个PDCCH不监听时机上监听目标PDCCH,如图10所示。或者,若该1比特信息中的比特位的取值为0,则该1比特信息用于指示终端在该第一DCI所调度的数据的重复传输期间内的J个PDCCH监听时机上监听目标PDCCH;若该1比特信息中的比特位的取值为1,则该1比特信息用于指示终端在该第一DCI所调度的数据的重复传输期间内的J个PDCCH监听时机上不监听目标PDCCH,对此不作具体限制。
综上所述,本申请实施例通过第一DCI携带的第一指示信息来灵活配置由第一DCI所调度的数据的重复传输期间内的J个PDCCH监听时机,从而在NTN通信系统也考虑物联网协议中的重复传输技术的情况下,保证NTN通信系统的灵活性。
下面本申请实施例再对目标PDCCH的作用进行具体说明。
由于NTN通信系统中的卫星通常会在地面上产生一个或多个波束以形成小区,而位于该小区内的终端可以处于该小区内的所有波束中任一波束的覆盖范围内,因此随着该卫星沿着固定的轨道不断运动,该卫星在地面上产生的波束也会随着该卫星的运动而在地面上移动。为了保证终端与该卫星之间的通信连接不中断,终端可能需要频繁进行波束切换。其中,波束切换可以通过载波切换的方式进行波束管理,即小区内的所有波束中的每个波束对应一个或多个载波(即一个载波对应一个波束),并通过载波切换实现波束切换。
另外,本申请考虑NTN通信系统结合物联网协议中的重复传输技术的场景,由于在该场景下终端与卫星之间的一次数据的重复传输可能存在持续时间较长的现象,因此在该次数据的重复传输期间内也 可能存在载波切换的问题。
针对DCI所调度的一次数据的重复传输期间内可能发生载波切换的问题,本申请可以考虑以下两种方式:一种方式是网络在通过DCI(即调度DCI)调度数据的时候保证所调度的数据可以在当前载波(传输该DCI的载波)上传输完,而这种方式会对网络调度产生严重的限制;另一种方式是支持跨载波调度,但是NTN通信系统为了支持跨载波调度,需要针对DCI设计新的指示域或指示信息以指示是否跨载波切换。
结合上述描述,本申请实施例考虑在第一DCI所调度的数据的重复传输期间内插入或配置J个PDCCH监听时机,并在该J个PDCCH监听时机内监听承载第二DCI中的第二指示信息的目标PDCCH,从而通过第二指示信息来解决由第一DCI所调度的数据的重复传输期间内的跨载波问题,以及实现在一次数据的重复传输期间内执行跨载波切换的目的。下面对其进行具体说明。
具体的,目标PDCCH用于承载第二DCI。
需要说明的是,由于PDCCH信道可以承载调度DCI或非调度DCI,因此本申请实施例考虑终端在J个PDCCH监听时机上监听到的目标PDCCH承载有第二DCI。
进一步的,第二DCI携带有第二指示信息,第二指示信息用于指示第一DCI所调度的数据的重复传输期间内是否执行载波切换。
需要说明的是,由于第一DCI所调度的数据的重复传输可能存在持续时间较长的现象,因此在该数据的重复传输期间内也可能存在载波切换的情况。为此,结合上述描述,当J个PDCCH监听时机存在于第一DCI所调度的数据的重复传输期间内时,如果终端在该J个PDCCH监听时机上监听到目标PDCCH,则说明该目标PDCCH本身也存在于第一DCI所调度的数据的重复传输期间内。此时,当终端在该J个PDCCH监听时机内接收到由目标PDCCH承载的第二DCI中的第二指示信息时,终端可以根据第二指示信息确定是否在第一DCI所调度的数据的重复传输期间内执行载波切换。
其中,第二指示信息可以为第二DCI携带的一个指示域。另外,该指示域可以为现有标准规定的DCI中新增或特定的一个域。
下面本申请实施例将对第二指示信息用于指示第一DCI所调度的数据的重复传输期间内是否执行载波切换进行具体说明。
在一个可能的示例中,第二指示信息具体用于指示第一DCI所调度的数据的重复传输期间内是否由当前载波切换到目标载波以重复传输该数据。
其中,该当前载波为用于传输第一DCI和第二DCI的载波,该目标载波的索引(index)由第二DCI指示。
需要说明的是,终端可以通过第二DCI所指示的目标载波的索引确定该目标载波,从而实现在第一DCI所调度的数据的重复传输期间内由网络向终端配置或指示待切换的目标载波。
进一步需要说明的是,由于卫星相对于地面的距离非常远,因此在一段时间内即便终端存在不断运动(即终端的位置不断变化)的情况,该终端与卫星之间的传播距离也变化较小。也就是说,相对于卫星的运动变化,该终端的运动变化较小。基于此,本申请实施例考虑将一段时间内终端的当前位置近似为固定不变,而主要分析由卫星的不断运动而导致波束切换的情况。
为了解决NTN通信系统中的波束切换问题,本申请实施例考虑将波束切换通过载波切换的方式进 行波束管理,即小区内的所有波束中的每个波束对应一个或多个载波(即一个载波对应一个波束),并通过载波切换实现波束切换。为此,本申请实施例考虑由终端通过监听目标PDCCH以获取第二DCI中的第二指示信息,再由终端根据第二指示信息确定在第一DCI所调度的数据的重复传输期间内是否由当前载波切换到目标载波以重复传输该数据,从而通过载波切换管理(即是否由当前载波切换到目标载波)实现波束切换管理(即是否由当前载波对应的波束切换到目标载波对应的波束),有利于避免因卫星的运动而导致NTN网络通信的中断,以及提高NTN网络通信的可靠性。
进一步的,该当前载波和目标载波各自对应不同波束。其中,该波束为终端所处服务小区内的所有波束中的波束。
需要说明的是,基于上述可知,NTN通信系统中的卫星会在地面上产生一个或多个波束以形成小区,而位于该小区内的终端可以处于该小区内的所有波束中任一波束的覆盖范围内。此时,该小区称为终端所处服务小区。
具体的,第二指示信息可以为1比特信息或者X比特信息,X的取值为大于1的整数;其中,1比特信息可以用于通过比特位取值方式确定是否由当前载波切换到目标载波,或者,1比特信息可以用于通过比特位翻转方式确定是否由当前载波切换到目标载波;X比特信息可以用于通过比特位编码方式确定是否由当前载波切换到目标载波。
其中,X的取值可以由网络设备通过RRC专用信令配置。
需要说明的是,终端监听目标PDCCH获取的第二DCI中的第二指示信息的长度可以是1比特(bit)或者X比特(bits)。其中,当第二指示信息的长度是1比特时,该第二指示信息可以称为1比特信息,并且该1比特信息的比特位取值方式包括1和0,或者该1比特信息的比特位翻转方式包括比特位翻转(如1转换成0、0转换成1)和比特位未翻转。
当第二指示信息的长度是X比特时,该第二指示信息可以称为X比特信息,并且该X比特信息的比特位编码方式包括X比特位的任意编码组合。例如,当X为2时,2比特信息的比特位编码方式包括00、01、10和11。
为此,在终端获取第二指示信息之后,终端可以通过第二指示信息中的比特位取值方式来确定是否由当前载波切换到目标载波;或者,终端可以通过第二指示信息中的比特位翻转方式来确定是否由当前载波切换到目标载波;或者,终端可以通过X比特信息中的比特位编码方式确定是否由当前载波切换到目标载波。下面对其进行示例说明。
示例说明,终端监听目标PDCCH以获取第二DCI中的1比特信息。若该1比特信息中的比特位的取值为1,则该1比特信息用于指示终端在第一DCI所调度的数据的重复传输期间内由当前载波切换到目标载波以重复传输该数据;若该1比特信息中的比特位的取值为0,则该1比特信息用于指示终端在第一DCI所调度的数据的重复传输期间内由当前载波重复传输该数据,而不执行载波切换。或者,若该1比特信息中的比特位的取值为0,则该1比特信息用于指示终端在第一DCI所调度的数据的重复传输期间内由当前载波切换到目标载波以重复传输该数据;若该1比特信息中的比特位的取值为1,则该1比特信息用于指示终端在第一DCI所调度的数据的重复传输期间内由当前载波切换重复传输该数据,而不执行载波切换。
示例说明,终端监听目标PDCCH以获取第二DCI中的1比特信息。若该1比特信息中的比特位 发生了翻转(如1转换成0、0转换成1),则该1比特信息用于指示终端在第一DCI所调度的数据的重复传输期间内由当前载波切换到目标载波以重复传输该数据;若该1比特信息中的比特位未发生翻转,则该1比特信息用于指示终端在第一DCI所调度的数据的重复传输期间内由当前载波切换重复传输该数据,而不执行载波切换。或者,若该1比特信息中的比特位未发生翻转,则该1比特信息用于指示终端在第一DCI所调度的数据的重复传输期间内由当前载波切换到目标载波以重复传输该数据;若该1比特信息中的比特位发生了翻转,则该1比特信息用于指示终端在第一DCI所调度的数据的重复传输期间内由当前载波切换重复传输该数据,而不执行载波切换。
示例说明,终端监听目标PDCCH以获取第二DCI中的2比特信息。若该2比特信息中的比特位编码方式为00,则该2比特信息用于指示终端在第一DCI所调度的数据的重复传输期间内由当前载波切换重复传输该数据,而不执行载波切换;若该2比特信息中的比特位编码方式不为00(如01、10或11),则该2比特信息用于指示终端在第一DCI所调度的数据的重复传输期间内由当前载波切换到目标载波以重复传输该数据。
S520、终端获取来自网络设备的第一DCI。
结合上述描述,下面本申请实施例将针对上述终端如何通过第二DCI指示的目标载波的索引以确定目标载波进行具体说明。
具体的,第二DCI还携带有第三指示信息,第三指示信息用于指示目标载波的索引。
需要说明的是,本申请实施例考虑第二DCI携带有第二指示信息和第三指示信息,而终端可以通过第三指示信息所指示的目标载波的索引确定目标载波,从而实现在第一DCI所调度的数据的重复传输期间内由网络向终端配置或指示待切换的目标载波。
进一步的,目标载波的索引处于载波索引集合信息中。
其中,载波索引集合信息包括M个载波的索引和M个载波的索引中的每个载波索引关联的一个候选载波索引集合,M个载波的索引包括当前载波的索引,目标载波的索引具体处于当前载波的索引所关联的候选载波索引集合中;载波索引集合信息中的每个载波的索引对应一个波束,M的取值为大于1的整数;候选载波索引集合由M个载波的索引中的N个载波的索引组成,N的取值小于或等于M的取值。
进一步的,载波索引集合信息可以由网络设备通过RRC专用信令配置;或者,载波索引集合信息是由预配置的。
需要说明的是,本申请实施例考虑向终端配置M个载波的索引和M个载波的索引中的每个载波索引关联的一个候选载波索引集合,即载波索引集合信息。其中,M个载波的索引中的载波索引之间以及候选载波索引集合中的载波索引之间不存在排列顺序。然后,网络设备可以通过某个载波(即当前载波)向终端传输第一DCI。最后,终端通过监听目标PDCCH以获取第二DCI。另外,由于载波索引集合信息中的每个载波的索引关联一个候选载波索引集合,并且目标载波的索引具体处于当前载波的索引所关联的候选载波索引集合中,因此需要考虑当前载波的索引所关联的候选载波索引集合内的载波索引。
下面本申请实施例将具体介绍M个载波的索引和候选载波索引集合中的N个载波的索引是如何确定的。
具体的,载波索引集合信息可以满足以下至少一种方式:载波索引集合信息中的M个载波的索引 由终端的当前位置信息和预设卫星星历表确定、载波索引集合信息中的候选载波索引集合内的N个载波的索引由M个载波的索引对应的波束的分布确定。
需要说明的是,终端可以通过自身的全球导航卫星系统(global navigation satellite system,GNSS)计算得到当前位置信息,再将其发送给网络设备。然后,网络设备可以根据终端的当前位置信息和预设卫星星历表确定载波索引集合信息中的M个载波的索引,从而建立终端的当前位置以及卫星的运行轨迹与载波索引集合信息中的载波索引之间的映射关系。
另外,NTN通信系统中的卫星在地面上产生的一个或多个波束之间存在波束分布的情况,而该波束分布称为波束地面分布图。因此,本申请实施例考虑由网络设备根据M个载波的索引对应的波束的分布确定M个载波的索引所关联的候选载波索引集合内的载波索引。
具体的,N个载波的索引由M个载波的索引对应的波束的分布确定,具体可以包括以下步骤:确定M个载波的索引对应的波束的各自相邻波束,并由各自相邻波束对应的载波组成N个载波的索引。下面进行具体示例说明。
示例说明,在图11中,卫星1110沿着固定的运行轨迹在地面上依次产生10个波束,并且该10个波束中的每个波束对应一个载波,即10个载波。此时,终端1120的当前位置处于载波索引C3对应的区域,从而卫星1110与终端1120之间通过载波索引C3(即当前载波的索引)进行通信。然后,网络设备根据终端1120的当前位置信息和预设卫星星历表确定出载波索引集合{C3,C4,C5,C6,C7,C8,C9}和载波索引集合中的每个载波索引关联的候选载波索引集合(即载波索引集合信息)。其中,由于载波索引C3对应的波束其相邻的载波索引有载波索引C0、载波索引C1、载波索引C2、载波索引C4、载波索引C5和载波索引C6,并且卫星1110将沿着图中所示的“卫星运动方向”进行运行,因此载波索引C3所关联的候选载波索引集合为{C4,C5,C6}。同理,载波索引C4所关联的候选载波索引集合为{C5,C9},载波索引C5所关联的候选载波索引集合为{C7,C8,C9},依次类推。最后,网络设备通过RRC专用信令将该载波索引集合和该载波索引集合中的每个载波索引所关联的候选载波索引集合下发给终端。
下面本申请实施例再对第三指示信息进行具体介绍。
具体的,第三指示信息可以为Y比特信息,Y的取值为大于1的整数。其中,Y比特信息可以具有用于通过比特位编码方式指示目标载波的索引。
进一步的,Y的取值可以由网络设备通过RRC专用信令配置。
需要说明的是,当第三指示信息的长度是Y比特时,该第三指示信息可以称为Y比特信息,并且该Y比特的比特位编码方式包括Y比特的任意编码组合。例如,当Y为2时,2比特的比特位编码方式包括00、01、10和11。为此,终端可以通过Y比特信息中的比特位编码方式指示目标载波的索引。
进一步的,Y的取值满足以下至少一种方式:Y的取值由当前载波的索引所关联的候选载波索引集合内的载波索引个数确定、Y的取值与N的取值具有映射关系。
可以理解的是,网络设备可以通过载波索引集合信息中的候选载波索引集合内的载波索引个数来配置Y的取值,从而实现由网络配置Y比特信息来指示目标载波的索引,避免信令开销过大。同时,Y比特信息中可能存在预留比特情况。例如,若当前载波的索引所关联的候选载波索引集合内的载波索引个数为3,则Y的取值可以为2;若当前载波的索引所关联的候选载波索引集合内的载波索引个数为5,则Y的取值可以为3。此时,该3比特信息中可能存在预留比特的情况。下面结合第二指示信息、第三 指示信息和图11进行示例说明。
示例说明,首先,网络设备通过RRC专用信令向终端下发载波索引集合{C3,C4,C5,C6,C7,C8,C9}和载波索引集合中的每个载波索引所关联的候选载波索引集合。其中,载波索引C3对应的载波为传输第一DCI和第二DCI的载波(即当前载波为载波索引C3对应的载波),并且载波索引C3所关联的候选载波索引集合为{C4,C5,C6}。
其次,终端监听目标PDCCH以获取第二DCI中的第二指示信息和第三指示信息。其中,第二指示信息为1比特信息,第三指示信息为2比特信息。
再次,该1比特信息中的比特位的取值为1,因此该1比特信息用于指示终端在第一DCI所调度的数据的重复传输期间内由当前载波切换到目标载波以重复传输该数据。同时,该2比特信息用于通过比特位编码方式指示目标载波的索引。其中,若该2比特信息中的比特位编码方式为00,则该2比特信息用于指示载波索引C3所关联的候选载波索引集合{C4,C5,C6}中的第一个载波索引(即C4);若该2比特信息中的比特位编码方式为01,则该2比特信息用于指示载波索引C3所关联的候选载波索引集合{C4,C5,C6}中的第二个载波索引(即C5);若该2比特信息中的比特位编码方式为10,则该2比特信息用于指示载波索引C3所关联的候选载波索引集合{C4,C5,C6}中的第三个载波索引(即C6);若该2比特信息中的比特位编码方式为11,则该2比特信息作为预留比特。
最后,当该2比特信息用于指示候选载波索引集合{C4,C5,C6}中的第一个载波索引时,目标载波的索引为载波索引C4。此时,当前载波为载波索引C3对应的载波,而目标载波为载波索引C4对应的索引。
可见,通过第二DCI中的第二指示信息来指示第一DCI所调度的数据的重复传输期间内是否由当前载波切换到目标载波以重复传输该数据,以及通过第二DCI中的第三指示信息来指示目标载波的索引,实现在第一DCI所调度的数据重复传输过程中的跨载波数据传输。
S530、终端根据第一指示信息确定在第一DCI所调度的数据的重复传输期间内是否存在用于监听目标PDCCH的J个PDCCH监听时机;或者,根据第一指示信息确定在第一DCI所调度的数据的重复传输期间内的J个PDCCH监听时机上是否监听目标PDCCH。
可以看出,本申请实施例中,在NTN通信系统也考虑物联网协议中的重复传输技术的情况下,由于终端与卫星之间的数据的重复传输会存在持续时间较长的现象,因此本申请实施例考虑由网络设备向终端发送携带有第一指示信息的第一DCI,从而有利于实现由网络向终端指示在第一DCI所调度的数据的重复传输期间内是否存在用于监听目标PDCCH的J个监听时机;或者,实现由网络向终端指示在第一DCI所调度的数据的重复传输期间内的J个PDCCH监听时机上是否监听目标PDCCH,以及有利于保证非地面网络通信系统中一次数据的重复传输期间内的PDCCH监听时机配置过程的合理性和灵活性。
上述主要从方法侧中各个网元之间交互的角度对本申请实施例的方案进行了介绍。可以理解的是,终端或网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件与计算机软件的结合形式来实现。某个功能究竟以硬件或计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用使用不同方法来实 现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端或网络设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,只是一种逻辑功能划分,而实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图12提供了一种无线通信装置的功能单元组成框图。无线通信装置1200应用于非地面网络通信系统中的终端,具体包括:处理单元1202和通信单元1203。处理单元1202用于对终端的动作进行控制管理,例如,处理单元1202用于支持终端执行图5中的步骤以及用于本申请所描述的技术方案的其它过程。通信单元1203用于支持终端与非地面网络通信系统中的其他设备之间的通信。无线通信装置1200还可以包括存储单元1201,用于存储终端的程序代码和数据。
其中,处理单元1202可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU)、通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框、模块和电路。处理单元1202也可以是实现计算功能的组合,例如包含一个或多个微处理器组合、DSP和微处理器的组合等等。通信单元1203可以是通信接口、收发器、收发电路等,存储单元1201可以是存储器。当处理单元1202为处理器,通信单元1203为通信接口,存储单元1201为存储器时,本申请实施例所涉及的无线通信装置1200可以为图14所示的终端。
具体实现时,处理单元1202用于执行如上述方法实施例中由终端执行的任一步骤,且在执行诸如发送等数据传输时,可选择的调用通信单元1203来完成相应操作。下面进行具体说明。
处理单元1202用于:获取来自网络设备的第一下行控制信息DCI,第一DCI携带有第一指示信息;根据第一指示信息确定在第一DCI所调度的数据的重复传输期间内是否存在用于监听目标物理下行控制信道PDCCH的J个PDCCH监听时机,J的取值为大于1的整数;或者,根据第一指示信息确定在第一DCI所调度的数据的重复传输期间内的J个PDCCH监听时机上是否监听目标PDCCH。
需要说明的是,图12所述实施例中各个操作的具体实现可以详见上述图5所示的方法实施例中的描述,在此不再具体赘述。
可以看出,本申请实施例中,在NTN通信系统也考虑物联网协议中的重复传输技术的情况下,由于终端与卫星之间的数据的重复传输会存在持续时间较长的现象,因此本申请实施例考虑由网络设备向终端发送携带有第一指示信息的第一DCI,从而有利于实现由网络向终端指示在第一DCI所调度的数据的重复传输期间内是否存在用于监听目标PDCCH的J个监听时机;或者,实现由网络向终端指示在第一DCI所调度的数据的重复传输期间内的J个PDCCH监听时机上是否监听目标PDCCH,以及有利于保证非地面网络通信系统中一次数据的重复传输期间内的PDCCH监听时机配置过程的合理性和灵活性。
在一个可能的示例中,J个PDCCH监听时机中的相邻两个PDCCH监听时机之间的间隔满足以下一种方式:相邻两个PDCCH监听时机之间的间隔为K个重复单元、相邻两个PDCCH监听时机之间的间隔为K个子帧、相邻两个PDCCH监听时机之间的间隔为K个时隙、相邻两个PDCCH监听时机之 间的间隔为K个无线资源单元、相邻两个PDCCH监听时机之间的间隔为K毫秒;K的取值为大于或等于1的整数。
在一个可能的示例中,K的取值由网络设备通过无线资源控制RRC信令或者系统信息块SIB配置。
在一个可能的示例中,PDCCH监听时机的时长由网络设备通过RRC信令或者SIB配置。
在一个可能的示例中,PDCCH监听时机的时长是由网络设备为每个载波单独配置的。
在一个可能的示例中,PDCCH监听时机的时长应用于一个小区内的所有载波。
在一个可能的示例中,第一指示信息用于指示在第一DCI所调度的数据的重复传输期间内是否存在J个PDCCH监听时机;或者,第一指示信息用于指示终端在第一DCI所调度的数据的重复传输期间内的J个PDCCH监听时机上是否监听目标PDCCH。
在一个可能的示例中,目标PDCCH用于承载第二DCI。
在一个可能的示例中,第二DCI携带有第二指示信息,第二指示信息用于指示第一DCI所调度的数据的重复传输期间内是否执行载波切换。
在一个可能的示例中,第一指示信息具体用于指示第一DCI所调度的数据的重复传输期间内是否由当前载波切换到目标载波以重复传输该数据;该当前载波为用于传输第一DCI的载波,该目标载波的索引(index)由第二DCI指示。
在一个可能的示例中,当前载波和目标载波各自对应不同波束。
在一个可能的示例中,第二指示信息可以为1比特信息或者X比特信息,X的取值为大于1的整数;其中,1比特信息可以用于通过比特位取值方式确定是否由当前载波切换到目标载波,或者,1比特信息可以用于通过比特位翻转方式确定是否由当前载波切换到目标载波;X比特信息可以用于通过比特位编码方式确定是否由当前载波切换到目标载波。
在一个可能的示例中,X的取值可以由网络设备通过RRC专用信令配置。
在一个可能的示例中,第二DCI还携带有第三指示信息,第三指示信息用于指示目标载波的索引。
在一个可能的示例中,目标载波的索引处于载波索引集合信息中;载波索引集合信息包括M个载波的索引和M个载波的索引中的每个载波索引关联的一个候选载波索引集合,M个载波的索引包括当前载波的索引,目标载波的索引具体处于当前载波的索引所关联的候选载波索引集合中;载波索引集合信息中的每个载波的索引对应一个波束,M的取值为大于1的整数;候选载波索引集合由M个载波的索引中的N个载波的索引组成,N的取值小于或等于M的取值。
在一个可能的示例中,载波索引集合信息可以由网络设备通过RRC专用信令配置;或者,载波索引集合信息是由预配置的。
在一个可能的示例中,载波索引集合信息可以满足以下至少一种方式:载波索引集合信息中的M个载波的索引由终端的当前位置信息和预设卫星星历表确定、载波索引集合信息中的候选载波索引集合内的N个载波的索引由M个载波的索引对应的波束的分布确定。
在一个可能的示例中,第三指示信息为Y比特信息,Y的取值为大于1的整数;Y比特信息具有用于通过比特位编码方式指示目标载波的索引。
在一个可能的示例中,Y的取值可以由网络设备通过RRC专用信令配置。
在一个可能的示例中,Y的取值满足以下至少一种方式:Y的取值由当前载波的索引所关联的候选 载波索引集合内的载波索引个数确定、Y的取值与N的取值具有映射关系。
在采用集成的单元的情况下,图13提供了又一种无线通信装置的功能单元组成框图。无线通信装置1300应用于非地面网络通信系统中的网络设备,具体包括:处理单元1302和通信单元1303。处理单元1302用于对网络设备的动作进行控制管理,例如,处理单元1302用于支持网络设备执行图5中的步骤以及用于本申请所描述的技术方案的其它过程。通信单元1303用于支持网络设备与非地面网络通信系统中的其他设备之间的通信。无线通信装置1300还可以包括存储单元1301,用于存储网络设备的程序代码和数据。
其中,处理单元1302可以是处理器或控制器,例如可以是CPU、DSP、ASIC、FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框、模块和电路。处理单元1302也可以是实现计算功能的组合,例如包含一个或多个微处理器组合、DSP和微处理器的组合等等。通信单元1303可以是通信接口、收发器、收发电路等,存储单元1301可以是存储器。当处理单元1302为处理器,通信单元1303为通信接口,存储单元1301为存储器时,本申请实施例所涉及的无线通信装置1300可以为图15所示的网络设备。
具体实现时,处理单元1302用于执行如上述方法实施例中由网络设备执行的任一步骤,且在执行诸如发送等数据传输时,可选择的调用通信单元1303来完成相应操作。下面进行详细说明。
处理单元1302用于:向终端发送第一下行控制信息DCI,第一DCI携带有第一指示信息;第一指示信息用于确定在第一DCI所调度的数据的重复传输期间内是否存在用于监听目标物理下行控制信道PDCCH的J个PDCCH监听时机,J的取值为大于1的整数;或者,第一指示信息用于确定在第一DCI所调度的数据的重复传输期间内的J个PDCCH监听时机上是否监听目标PDCCH。
需要说明的是,图13所述实施例中各个操作的具体实现可以详见上述图5所示的方法实施例中的描述,在此不再具体赘述。
可以看出,本申请实施例中,在NTN通信系统也考虑物联网协议中的重复传输技术的情况下,由于终端与卫星之间的数据的重复传输会存在持续时间较长的现象,因此本申请实施例考虑由网络设备向终端发送携带有第一指示信息的第一DCI,从而有利于实现由网络向终端指示在第一DCI所调度的数据的重复传输期间内是否存在用于监听目标PDCCH的J个监听时机;或者,实现由网络向终端指示在第一DCI所调度的数据的重复传输期间内的J个PDCCH监听时机上是否监听目标PDCCH,以及有利于保证非地面网络通信系统中一次数据的重复传输期间内的PDCCH监听时机配置过程的合理性和灵活性。
在一个可能的示例中,J个PDCCH监听时机中的相邻两个PDCCH监听时机之间的间隔满足以下一种方式:相邻两个PDCCH监听时机之间的间隔为K个重复单元、相邻两个PDCCH监听时机之间的间隔为K个子帧、相邻两个PDCCH监听时机之间的间隔为K个时隙、相邻两个PDCCH监听时机之间的间隔为K个无线资源单元、相邻两个PDCCH监听时机之间的间隔为K毫秒;K的取值为大于或等于1的整数。
在一个可能的示例中,K的取值由网络设备通过无线资源控制RRC信令或者系统信息块SIB配置。
在一个可能的示例中,PDCCH监听时机的时长由网络设备通过RRC信令或者SIB配置。
在一个可能的示例中,PDCCH监听时机的时长是由网络设备为每个载波单独配置的。
在一个可能的示例中,PDCCH监听时机的时长应用于一个小区内的所有载波。
在一个可能的示例中,第一指示信息用于指示在第一DCI所调度的数据的重复传输期间内是否存在J个PDCCH监听时机;或者,第一指示信息用于指示终端在第一DCI所调度的数据的重复传输期间内的J个PDCCH监听时机上是否监听目标PDCCH。
在一个可能的示例中,目标PDCCH用于承载第二DCI。
在一个可能的示例中,第二DCI携带有第二指示信息,第二指示信息用于指示第一DCI所调度的数据的重复传输期间内是否执行载波切换。
在一个可能的示例中,第一指示信息具体用于指示第一DCI所调度的数据的重复传输期间内是否由当前载波切换到目标载波以重复传输该数据;该当前载波为用于传输第一DCI的载波,该目标载波的索引(index)由第二DCI指示。
在一个可能的示例中,当前载波和目标载波各自对应不同波束。
在一个可能的示例中,第二指示信息可以为1比特信息或者X比特信息,X的取值为大于1的整数;其中,1比特信息可以用于通过比特位取值方式确定是否由当前载波切换到目标载波,或者,1比特信息可以用于通过比特位翻转方式确定是否由当前载波切换到目标载波;X比特信息可以用于通过比特位编码方式确定是否由当前载波切换到目标载波。
在一个可能的示例中,X的取值可以由网络设备通过RRC专用信令配置。
在一个可能的示例中,第二DCI还携带有第三指示信息,第三指示信息用于指示目标载波的索引。
在一个可能的示例中,目标载波的索引处于载波索引集合信息中;载波索引集合信息包括M个载波的索引和M个载波的索引中的每个载波索引关联的一个候选载波索引集合,M个载波的索引包括当前载波的索引,目标载波的索引具体处于当前载波的索引所关联的候选载波索引集合中;载波索引集合信息中的每个载波的索引对应一个波束,M的取值为大于1的整数;候选载波索引集合由M个载波的索引中的N个载波的索引组成,N的取值小于或等于M的取值。
在一个可能的示例中,载波索引集合信息可以由网络设备通过RRC专用信令配置;或者,载波索引集合信息是由预配置的。
在一个可能的示例中,载波索引集合信息可以满足以下至少一种方式:载波索引集合信息中的M个载波的索引由终端的当前位置信息和预设卫星星历表确定、载波索引集合信息中的候选载波索引集合内的N个载波的索引由M个载波的索引对应的波束的分布确定。
在一个可能的示例中,第三指示信息为Y比特信息,Y的取值为大于1的整数;Y比特信息具有用于通过比特位编码方式指示目标载波的索引。
在一个可能的示例中,Y的取值可以由网络设备通过RRC专用信令配置。
在一个可能的示例中,Y的取值满足以下至少一种方式:Y的取值由当前载波的索引所关联的候选载波索引集合内的载波索引个数确定、Y的取值与N的取值具有映射关系。
请参阅图14,图14是本申请实施例提供的一种终端的结构示意图。其中,终端1400包括处理器1410、存储器1420、通信接口1430和至少一个用于连接处理器1410、存储器1420、通信接口1430的通信总线。
存储器1420包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only  memory,ROM)、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器1420用于相关指令及数据。
通信接口1430用于接收和发送数据。
处理器1410可以是一个或多个CPU,在处理器1410是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
终端1400中的处理器1410用于读取存储器1420中存储的一个或多个程序1421以执行以下步骤:获取来自网络设备的第一下行控制信息DCI,第一DCI携带有第一指示信息;根据第一指示信息确定在第一DCI所调度的数据的重复传输期间内是否存在用于监听目标物理下行控制信道PDCCH的J个PDCCH监听时机,J的取值为大于1的整数;或者,根据第一指示信息确定在第一DCI所调度的数据的重复传输期间内的J个PDCCH监听时机上是否监听目标PDCCH。
需要说明的是,图14所述实施例中各个操作的具体实现可以详见上述图5所示的方法实施例中的描述,在此不再具体赘述。
可以看出,本申请实施例中,在NTN通信系统也考虑物联网协议中的重复传输技术的情况下,由于终端与卫星之间的数据的重复传输会存在持续时间较长的现象,因此本申请实施例考虑由网络设备向终端发送携带有第一指示信息的第一DCI,从而有利于实现由网络向终端指示在第一DCI所调度的数据的重复传输期间内是否存在用于监听目标PDCCH的J个监听时机;或者,实现由网络向终端指示在第一DCI所调度的数据的重复传输期间内的J个PDCCH监听时机上是否监听目标PDCCH,以及有利于保证非地面网络通信系统中一次数据的重复传输期间内的PDCCH监听时机配置过程的合理性和灵活性。
在一个可能的示例中,J个PDCCH监听时机中的相邻两个PDCCH监听时机之间的间隔满足以下一种方式:相邻两个PDCCH监听时机之间的间隔为K个重复单元、相邻两个PDCCH监听时机之间的间隔为K个子帧、相邻两个PDCCH监听时机之间的间隔为K个时隙、相邻两个PDCCH监听时机之间的间隔为K个无线资源单元、相邻两个PDCCH监听时机之间的间隔为K毫秒;K的取值为大于或等于1的整数。
在一个可能的示例中,K的取值由网络设备通过无线资源控制RRC信令或者系统信息块SIB配置。
在一个可能的示例中,PDCCH监听时机的时长由网络设备通过RRC信令或者SIB配置。
在一个可能的示例中,PDCCH监听时机的时长是由网络设备为每个载波单独配置的。
在一个可能的示例中,PDCCH监听时机的时长应用于一个小区内的所有载波。
在一个可能的示例中,第一指示信息用于指示在第一DCI所调度的数据的重复传输期间内是否存在J个PDCCH监听时机;或者,第一指示信息用于指示终端在第一DCI所调度的数据的重复传输期间内的J个PDCCH监听时机上是否监听目标PDCCH。
在一个可能的示例中,目标PDCCH用于承载第二DCI。
在一个可能的示例中,第二DCI携带有第二指示信息,第二指示信息用于指示第一DCI所调度的数据的重复传输期间内是否执行载波切换。
在一个可能的示例中,第一指示信息具体用于指示第一DCI所调度的数据的重复传输期间内是否由当前载波切换到目标载波以重复传输该数据;该当前载波为用于传输第一DCI的载波,该目标载波 的索引(index)由第二DCI指示。
在一个可能的示例中,当前载波和目标载波各自对应不同波束。
在一个可能的示例中,第二指示信息可以为1比特信息或者X比特信息,X的取值为大于1的整数;其中,1比特信息可以用于通过比特位取值方式确定是否由当前载波切换到目标载波,或者,1比特信息可以用于通过比特位翻转方式确定是否由当前载波切换到目标载波;X比特信息可以用于通过比特位编码方式确定是否由当前载波切换到目标载波。
在一个可能的示例中,X的取值可以由网络设备通过RRC专用信令配置。
在一个可能的示例中,第二DCI还携带有第三指示信息,第三指示信息用于指示目标载波的索引。
在一个可能的示例中,目标载波的索引处于载波索引集合信息中;载波索引集合信息包括M个载波的索引和M个载波的索引中的每个载波索引关联的一个候选载波索引集合,M个载波的索引包括当前载波的索引,目标载波的索引具体处于当前载波的索引所关联的候选载波索引集合中;载波索引集合信息中的每个载波的索引对应一个波束,M的取值为大于1的整数;候选载波索引集合由M个载波的索引中的N个载波的索引组成,N的取值小于或等于M的取值。
在一个可能的示例中,载波索引集合信息可以由网络设备通过RRC专用信令配置;或者,载波索引集合信息是由预配置的。
在一个可能的示例中,载波索引集合信息可以满足以下至少一种方式:载波索引集合信息中的M个载波的索引由终端的当前位置信息和预设卫星星历表确定、载波索引集合信息中的候选载波索引集合内的N个载波的索引由M个载波的索引对应的波束的分布确定。
在一个可能的示例中,第三指示信息为Y比特信息,Y的取值为大于1的整数;Y比特信息具有用于通过比特位编码方式指示目标载波的索引。
在一个可能的示例中,Y的取值可以由网络设备通过RRC专用信令配置。
在一个可能的示例中,Y的取值满足以下至少一种方式:Y的取值由当前载波的索引所关联的候选载波索引集合内的载波索引个数确定、Y的取值与N的取值具有映射关系。
请参阅图15,图15是本申请实施例提供的一种网络设备的结构示意图。其中,网络设备1500包括处理器1510、存储器1520、通信接口1530和至少一个用于连接处理器1510、存储器1520、通信接口1530的通信总线。
存储器1520包括但不限于是RAM、ROM、PROM或CD-ROM,该存储器1520用于存储相关指令及数据。
通信接口1530用于接收和发送数据。
处理器1510可以是一个或多个CPU,在处理器1510是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
网络设备1500中的处理器1510用于读取存储器1520中存储的一个或多个程序1521以执行以下步骤:向终端发送第一下行控制信息DCI,第一DCI携带有第一指示信息;第一指示信息用于确定在第一DCI所调度的数据的重复传输期间内是否存在用于监听目标物理下行控制信道PDCCH的J个PDCCH监听时机,J的取值为大于1的整数;或者,第一指示信息用于确定在第一DCI所调度的数据的重复传输期间内的J个PDCCH监听时机上是否监听目标PDCCH。
需要说明的是,图15所述实施例中各个操作的具体实现可以详见上述图5所示的方法实施例中的描述,在此不再具体赘述。
可以看出,本申请实施例中,在NTN通信系统也考虑物联网协议中的重复传输技术的情况下,由于终端与卫星之间的数据的重复传输会存在持续时间较长的现象,因此本申请实施例考虑由网络设备向终端发送携带有第一指示信息的第一DCI,从而有利于实现由网络向终端指示在第一DCI所调度的数据的重复传输期间内是否存在用于监听目标PDCCH的J个监听时机;或者,实现由网络向终端指示在第一DCI所调度的数据的重复传输期间内的J个PDCCH监听时机上是否监听目标PDCCH,以及有利于保证非地面网络通信系统中一次数据的重复传输期间内的PDCCH监听时机配置过程的合理性和灵活性。
在一个可能的示例中,J个PDCCH监听时机中的相邻两个PDCCH监听时机之间的间隔满足以下一种方式:相邻两个PDCCH监听时机之间的间隔为K个重复单元、相邻两个PDCCH监听时机之间的间隔为K个子帧、相邻两个PDCCH监听时机之间的间隔为K个时隙、相邻两个PDCCH监听时机之间的间隔为K个无线资源单元、相邻两个PDCCH监听时机之间的间隔为K毫秒;K的取值为大于或等于1的整数。
在一个可能的示例中,K的取值由网络设备通过无线资源控制RRC信令或者系统信息块SIB配置。
在一个可能的示例中,PDCCH监听时机的时长由网络设备通过RRC信令或者SIB配置。
在一个可能的示例中,PDCCH监听时机的时长是由网络设备为每个载波单独配置的。
在一个可能的示例中,PDCCH监听时机的时长应用于一个小区内的所有载波。
在一个可能的示例中,第一指示信息用于指示在第一DCI所调度的数据的重复传输期间内是否存在J个PDCCH监听时机;或者,第一指示信息用于指示终端在第一DCI所调度的数据的重复传输期间内的J个PDCCH监听时机上是否监听目标PDCCH。
在一个可能的示例中,目标PDCCH用于承载第二DCI。
在一个可能的示例中,第二DCI携带有第二指示信息,第二指示信息用于指示第一DCI所调度的数据的重复传输期间内是否执行载波切换。
在一个可能的示例中,第一指示信息具体用于指示第一DCI所调度的数据的重复传输期间内是否由当前载波切换到目标载波以重复传输该数据;该当前载波为用于传输第一DCI的载波,该目标载波的索引(index)由第二DCI指示。
在一个可能的示例中,当前载波和目标载波各自对应不同波束。
在一个可能的示例中,第二指示信息可以为1比特信息或者X比特信息,X的取值为大于1的整数;其中,1比特信息可以用于通过比特位取值方式确定是否由当前载波切换到目标载波,或者,1比特信息可以用于通过比特位翻转方式确定是否由当前载波切换到目标载波;X比特信息可以用于通过比特位编码方式确定是否由当前载波切换到目标载波。
在一个可能的示例中,X的取值可以由网络设备通过RRC专用信令配置。
在一个可能的示例中,第二DCI还携带有第三指示信息,第三指示信息用于指示目标载波的索引。
在一个可能的示例中,目标载波的索引处于载波索引集合信息中;载波索引集合信息包括M个载波的索引和M个载波的索引中的每个载波索引关联的一个候选载波索引集合,M个载波的索引包括当 前载波的索引,目标载波的索引具体处于当前载波的索引所关联的候选载波索引集合中;载波索引集合信息中的每个载波的索引对应一个波束,M的取值为大于1的整数;候选载波索引集合由M个载波的索引中的N个载波的索引组成,N的取值小于或等于M的取值。
在一个可能的示例中,载波索引集合信息可以由网络设备通过RRC专用信令配置;或者,载波索引集合信息是由预配置的。
在一个可能的示例中,载波索引集合信息可以满足以下至少一种方式:载波索引集合信息中的M个载波的索引由终端的当前位置信息和预设卫星星历表确定、载波索引集合信息中的候选载波索引集合内的N个载波的索引由M个载波的索引对应的波束的分布确定。
在一个可能的示例中,第三指示信息为Y比特信息,Y的取值为大于1的整数;Y比特信息具有用于通过比特位编码方式指示目标载波的索引。
在一个可能的示例中,Y的取值可以由网络设备通过RRC专用信令配置。
在一个可能的示例中,Y的取值满足以下至少一种方式:Y的取值由当前载波的索引所关联的候选载波索引集合内的载波索引个数确定、Y的取值与N的取值具有映射关系。
本申请实施例还提供了一种芯片,其中,该芯片包括处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述方法实施例中终端或网络设备所描述的部分或全部步骤。
本申请实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如上述方法实施例中终端或网络设备所描述的部分或全部步骤。
本申请实施例还提供了一种计算机程序产品,其中,所述计算机程序产品包括计算机程序,所述计算机程序可操作来使计算机执行如上述方法实施例中终端或网络设备所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
本申请实施例所描述的方法或者算法的步骤可以以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于终端或网络设备中。当然,处理器和存储介质也可以作为分立组件存在于终端或网络设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输。例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line, DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (40)

  1. 一种无线通信方法,其中,应用于非地面网络通信系统中的终端,所述非地面网络通信系统包括所述终端和网络设备;所述方法包括:
    获取来自网络设备的第一下行控制信息DCI,所述第一DCI携带有第一指示信息;
    根据所述第一指示信息确定在所述第一DCI所调度的数据的重复传输期间内是否存在用于监听目标物理下行控制信道PDCCH的J个PDCCH监听时机,所述J的取值为大于1的整数;或者,
    根据所述第一指示信息确定在所述第一DCI所调度的数据的重复传输期间内的所述J个PDCCH监听时机上是否监听所述目标PDCCH。
  2. 根据权利要求1所述的方法,其中,所述J个PDCCH监听时机中的相邻两个PDCCH监听时机之间的间隔满足以下一种方式:所述相邻两个PDCCH监听时机之间的间隔为K个重复单元、所述相邻两个PDCCH监听时机之间的间隔为K个子帧、所述相邻两个PDCCH监听时机之间的间隔为K个时隙、所述相邻两个PDCCH监听时机之间的间隔为K个无线资源单元、所述相邻两个PDCCH监听时机之间的间隔为K毫秒;所述K的取值为大于或等于1的整数。
  3. 根据权利要求2所述的方法,其中,所述K的取值由所述网络设备通过无线资源控制RRC信令或者系统信息块SIB配置。
  4. 根据权利要求1所述的方法,其中,所述PDCCH监听时机的时长由所述网络设备通过RRC信令或者SIB配置。
  5. 根据权利要求1所述的方法,其中,所述PDCCH监听时机的时长是由所述网络设备为每个载波单独配置的。
  6. 根据权利要求1所述的方法,其中,所述PDCCH监听时机的时长应用于一个小区内的所有载波。
  7. 根据权利要求1所述的方法,其中,所述第一指示信息用于指示在所述第一DCI所调度的数据的重复传输期间内是否存在所述J个PDCCH监听时机;或者,
    所述第一指示信息用于指示所述终端在所述第一DCI所调度的数据的重复传输期间内的所述J个PDCCH监听时机上是否监听所述目标PDCCH。
  8. 根据权利要求1所述的方法,其中,所述目标PDCCH用于承载第二DCI。
  9. 根据权利要求8所述的方法,其中,所述第二DCI携带有第二指示信息,所述第二指示信息用于指示所述第一DCI所调度的数据的重复传输期间内是否执行载波切换。
  10. 一种无线通信方法,其中,应用于非地面网络通信系统中的网络设备,所述非地面网络通信系统包括所述网络设备和终端;所述方法包括:
    向所述终端发送第一下行控制信息DCI,所述第一DCI携带有第一指示信息;
    所述第一指示信息用于所述终端确定在所述第一DCI所调度的数据的重复传输期间内是否存在用于监听目标物理下行控制信道PDCCH的J个PDCCH监听时机,所述J的取值为大于1的整数;或者,
    所述第一指示信息用于所述终端确定在所述第一DCI所调度的数据的重复传输期间内的所述J个PDCCH监听时机上是否监听所述目标PDCCH。
  11. 根据权利要求10所述的方法,其中,所述J个PDCCH监听时机中的相邻两个PDCCH监听时 机之间的间隔满足以下一种方式:所述相邻两个PDCCH监听时机之间的间隔为K个重复单元、所述相邻两个PDCCH监听时机之间的间隔为K个子帧、所述相邻两个PDCCH监听时机之间的间隔为K个时隙、所述相邻两个PDCCH监听时机之间的间隔为K个无线资源单元、所述相邻两个PDCCH监听时机之间的间隔为K毫秒;所述K的取值为大于或等于1的整数。
  12. 根据权利要求11所述的方法,其中,所述K的取值由所述网络设备通过无线资源控制RRC信令或者系统信息块SIB配置。
  13. 根据权利要求10所述的方法,其中,所述PDCCH监听时机的时长由所述网络设备通过RRC信令或者SIB配置。
  14. 根据权利要求10所述的方法,其中,所述PDCCH监听时机的时长是由所述网络设备为每个载波单独配置的。
  15. 根据权利要求10所述的方法,其中,所述PDCCH监听时机的时长应用于一个小区内的所有载波。
  16. 根据权利要求10所述的方法,其中,所述第一指示信息用于指示在所述第一DCI所调度的数据的重复传输期间内是否存在所述J个PDCCH监听时机;或者,
    所述第一指示信息用于指示所述终端在所述第一DCI所调度的数据的重复传输期间内的所述J个PDCCH监听时机上是否监听所述目标PDCCH。
  17. 根据权利要求10所述的方法,其中,所述目标PDCCH用于承载第二DCI。
  18. 根据权利要求17所述的方法,其中,所述第二DCI携带有第二指示信息,所述第二指示信息用于指示所述第一DCI所调度的数据的重复传输期间内是否执行载波切换。
  19. 一种无线通信装置,其中,应用于非地面网络通信系统中的终端,所述非地面网络通信系统包括所述终端和网络设备;所述装置包括处理单元和通信单元,所述处理单元用于:
    通过所述通信单元获取来自网络设备的第一下行控制信息DCI,所述第一DCI携带有第一指示信息;
    根据所述第一指示信息确定在所述第一DCI所调度的数据的重复传输期间内是否存在用于监听目标物理下行控制信道PDCCH的J个PDCCH监听时机,所述J的取值为大于1的整数;或者,根据所述第一指示信息确定在所述第一DCI所调度的数据的重复传输期间内的所述J个PDCCH监听时机上是否监听所述目标PDCCH。
  20. 根据权利要求19所述的装置,其中,所述J个PDCCH监听时机中的相邻两个PDCCH监听时机之间的间隔满足以下一种方式:所述相邻两个PDCCH监听时机之间的间隔为K个重复单元、所述相邻两个PDCCH监听时机之间的间隔为K个子帧、所述相邻两个PDCCH监听时机之间的间隔为K个时隙、所述相邻两个PDCCH监听时机之间的间隔为K个无线资源单元、所述相邻两个PDCCH监听时机之间的间隔为K毫秒;所述K的取值为大于或等于1的整数。
  21. 根据权利要求20所述的装置,其中,所述K的取值由所述网络设备通过无线资源控制RRC信令或者系统信息块SIB配置。
  22. 根据权利要求19所述的装置,其中,所述PDCCH监听时机的时长由所述网络设备通过RRC信令或者SIB配置。
  23. 根据权利要求19所述的装置,其中,所述PDCCH监听时机的时长是由所述网络设备为每个载波单独配置的。
  24. 根据权利要求19所述的装置,其中,所述PDCCH监听时机的时长应用于一个小区内的所有载波。
  25. 根据权利要求19所述的装置,其中,所述第一指示信息用于指示在所述第一DCI所调度的数据的重复传输期间内是否存在所述J个PDCCH监听时机;或者,
    所述第一指示信息用于指示所述终端在所述第一DCI所调度的数据的重复传输期间内的所述J个PDCCH监听时机上是否监听所述目标PDCCH。
  26. 根据权利要求19所述的装置,其中,所述目标PDCCH用于承载第二DCI。
  27. 根据权利要求26所述的装置,其中,所述第二DCI携带有第二指示信息,所述第二指示信息用于指示所述第一DCI所调度的数据的重复传输期间内是否执行载波切换。
  28. 一种无线通信装置,其中,应用于非地面网络通信系统中的网络设备,所述非地面网络通信系统包括所述网络设备和终端;所述装置包括处理单元和通信单元,所述处理单元用于:
    通过所述通信单元向所述终端发送第一下行控制信息DCI,所述第一DCI携带有第一指示信息;所述第一指示信息用于所述终端确定在所述第一DCI所调度的数据的重复传输期间内是否存在用于监听目标物理下行控制信道PDCCH的J个PDCCH监听时机,所述J的取值为大于1的整数;或者,所述第一指示信息用于所述终端确定在所述第一DCI所调度的数据的重复传输期间内的所述J个PDCCH监听时机上是否监听所述目标PDCCH。
  29. 根据权利要求28所述的装置,其中,所述J个PDCCH监听时机中的相邻两个PDCCH监听时机之间的间隔满足以下一种方式:所述相邻两个PDCCH监听时机之间的间隔为K个重复单元、所述相邻两个PDCCH监听时机之间的间隔为K个子帧、所述相邻两个PDCCH监听时机之间的间隔为K个时隙、所述相邻两个PDCCH监听时机之间的间隔为K个无线资源单元、所述相邻两个PDCCH监听时机之间的间隔为K毫秒;所述K的取值为大于或等于1的整数。
  30. 根据权利要求29所述的装置,其中,所述K的取值由所述网络设备通过无线资源控制RRC信令或者系统信息块SIB配置。
  31. 根据权利要求28所述的装置,其中,所述PDCCH监听时机的时长由所述网络设备通过RRC信令或者SIB配置。
  32. 根据权利要求28所述的装置,其中,所述PDCCH监听时机的时长是由所述网络设备为每个载波单独配置的。
  33. 根据权利要求28所述的装置,其中,所述PDCCH监听时机的时长应用于一个小区内的所有载波。
  34. 根据权利要求28所述的装置,其中,所述第一指示信息用于指示在所述第一DCI所调度的数据的重复传输期间内是否存在所述J个PDCCH监听时机;或者,
    所述第一指示信息用于指示所述终端在所述第一DCI所调度的数据的重复传输期间内的所述J个PDCCH监听时机上是否监听所述目标PDCCH。
  35. 根据权利要求28所述的装置,其中,所述目标PDCCH用于承载第二DCI。
  36. 根据权利要求35所述的装置,其中,所述第二DCI携带有第二指示信息,所述第二指示信息用于指示所述第一DCI所调度的数据的重复传输期间内是否执行载波切换。
  37. 一种终端,其中,包括处理器、存储器、通信接口以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述一个或多个程序包括用于执行如权利要求1-9任一项所述的方法中的步骤的指令。
  38. 一种网络设备,其中,包括处理器、存储器、通信接口以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述一个或多个程序包括用于执行如权利要求10-18任一项所述的方法中的步骤的指令。
  39. 一种计算机可读存储介质,其中,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-9或10-18中任一项所述的方法。
  40. 一种芯片,包括处理器,其中,所述处理器执行权利要求1-9或10-18中任一项所述方法的步骤。
PCT/CN2021/133750 2020-12-25 2021-11-27 无线通信方法与装置、终端和网络设备 WO2022135052A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011574405.8A CN114698130A (zh) 2020-12-25 2020-12-25 无线通信方法与装置、终端和网络设备
CN202011574405.8 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022135052A1 true WO2022135052A1 (zh) 2022-06-30

Family

ID=82129959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133750 WO2022135052A1 (zh) 2020-12-25 2021-11-27 无线通信方法与装置、终端和网络设备

Country Status (2)

Country Link
CN (1) CN114698130A (zh)
WO (1) WO2022135052A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117499932A (zh) * 2022-07-22 2024-02-02 大唐移动通信设备有限公司 重复传输次数确定方法、装置及存储介质
WO2024031555A1 (zh) * 2022-08-11 2024-02-15 深圳传音控股股份有限公司 控制方法、通信设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104471997A (zh) * 2013-06-27 2015-03-25 华为技术有限公司 载波切换方法、基站和用户设备
CN112654078A (zh) * 2019-10-12 2021-04-13 维沃移动通信有限公司 一种上行传输控制方法及终端

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104471997A (zh) * 2013-06-27 2015-03-25 华为技术有限公司 载波切换方法、基站和用户设备
CN112654078A (zh) * 2019-10-12 2021-04-13 维沃移动通信有限公司 一种上行传输控制方法及终端

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ASIA PACIFIC TELECOM: "Enhancements on HARQ in NTN", 3GPP DRAFT; R1-2009059, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946806 *
ERICSSON: "Correction in NR SRS carrier-based switching requirements", 3GPP DRAFT; R4-2016422, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Electronic Meeting; 20201102 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946976 *
SESSION CHAIR (INTERDIGITAL): "Report for NR-U, Power Savings, NTN and 2-step RACH", 3GPP DRAFT; R2-1916284, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 23 November 2019 (2019-11-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051828811 *

Also Published As

Publication number Publication date
CN114698130A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
US20230179294A1 (en) User equipment and base station
JP2018528651A (ja) 衛星通信システム内のベントパイプ中継器における不連続送信のための方法および装置
WO2022135052A1 (zh) 无线通信方法与装置、终端和网络设备
WO2022121710A1 (zh) 重复传输次数确定方法与装置、终端和网络设备
US20240014934A1 (en) Repetitive Communications for Improving Reliability of Satellite Communications
WO2022082757A1 (zh) 通信方法和装置
US20240031886A1 (en) Information reporting method and apparatus, equipment and storage medium
WO2022121680A1 (zh) 窗口偏移量确定方法与装置、终端和网络设备
CN111200486B (zh) 无线通信的方法和装置
WO2022135051A1 (zh) 跨载波数据传输方法与装置、终端和网络设备
WO2022214062A1 (zh) Pdcch监听方法与装置、终端和网络设备
WO2023078385A1 (zh) 数据传输方法及相关产品
WO2023116335A1 (zh) 一种通信方法及装置
US20240015794A1 (en) Coverage enhancements in ntn
WO2022127806A1 (zh) 一种无线通信的方法及装置
CN115580380A (zh) 无线通信的方法及装置
WO2022135053A1 (zh) 载波切换方法与装置、终端和网络设备
WO2021142663A1 (zh) 调度请求sr发送方法及相关装置
WO2022236574A1 (zh) 时域参数确定方法、终端设备及网络设备
EP4228328A1 (en) Non-terrestrial network epoch time indication considering sfn cycle
WO2023051407A1 (zh) 通信方法及装置
WO2023151099A1 (en) Configuration of multiple transmission segment durations
WO2021168651A1 (zh) 媒体接入控制层控制单元生效时间的确定方法及相关产品
WO2023065171A1 (zh) 数据传输处理方法、装置、设备及存储介质
US20220240219A1 (en) Method and apparatus for information transmission, device, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909051

Country of ref document: EP

Kind code of ref document: A1