WO2022135053A1 - 载波切换方法与装置、终端和网络设备 - Google Patents

载波切换方法与装置、终端和网络设备 Download PDF

Info

Publication number
WO2022135053A1
WO2022135053A1 PCT/CN2021/133751 CN2021133751W WO2022135053A1 WO 2022135053 A1 WO2022135053 A1 WO 2022135053A1 CN 2021133751 W CN2021133751 W CN 2021133751W WO 2022135053 A1 WO2022135053 A1 WO 2022135053A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
information
index
bit
current
Prior art date
Application number
PCT/CN2021/133751
Other languages
English (en)
French (fr)
Inventor
雷珍珠
赵思聪
周化雨
Original Assignee
展讯半导体(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯半导体(南京)有限公司 filed Critical 展讯半导体(南京)有限公司
Publication of WO2022135053A1 publication Critical patent/WO2022135053A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a carrier switching method and apparatus, a terminal, and a network device.
  • the 3rd generation partnership project (3GPP) is developing protocol standards for non-terrestrial network (NTN) communications, and the protocol standards mainly involve spaceborne vehicles or airborne equipment.
  • NTN non-terrestrial network
  • the protocol standards mainly involve spaceborne vehicles or airborne equipment.
  • airborne vehicle such as geostationary earth orbit satellites, low earth orbit satellites, highly elliptical orbit satellites, high-altitude platform stations (HAPS), etc.
  • a satellite in an NTN communication system generally generates one or more beams (beam, or beam footprint) on the ground, and the one or more beams form a cell on the ground.
  • the terminal located in the cell may be within the coverage of any one of all beams in the cell.
  • the terminal needs to perform beam switching frequently.
  • how to realize beam switching in the NTN communication system needs further research.
  • Embodiments of the present application provide a carrier switching method and device, a terminal, and network equipment, so as to realize carrier switching management through network configuration, and then realize beam switching management through carrier switching management, which is beneficial to avoid non-terrestrial networks caused by the movement of satellites. Interruption of communications, and improved reliability of non-terrestrial network communications.
  • an embodiment of the present application provides a carrier switching method, which is applied to a terminal in a non-terrestrial network communication system, where the non-terrestrial network communication system includes the terminal and a network device; the method includes:
  • Whether to switch the current carrier is determined according to the first indication information, where the current carrier is a carrier used for transmitting the first indication information, and the current carrier corresponds to one beam.
  • an embodiment of the present application provides a carrier switching method, which is applied to a network device in a non-terrestrial network communication system, where the non-terrestrial network communication system includes the network device and a terminal; the method includes:
  • the first indication information is used to indicate whether to switch the current carrier
  • the current carrier is a carrier used for transmitting the first indication information
  • the current carrier corresponds to a beam.
  • an embodiment of the present application provides a carrier switching apparatus, which is applied to a terminal in a non-terrestrial network communication system, where the non-terrestrial network system includes the terminal and network equipment; the apparatus includes a processing unit and a communication unit, The processing unit is used to:
  • Whether to switch the current carrier is determined according to the first indication information, where the current carrier is a carrier used for transmitting the first indication information, and the current carrier corresponds to one beam.
  • an embodiment of the present application provides a carrier switching apparatus, which is applied to network equipment in a non-terrestrial network communication system, where the non-terrestrial network communication system includes the network equipment and a terminal; the apparatus includes a processing unit and a communication unit, the processing unit is used to:
  • the first indication information is used to indicate whether to switch the current carrier
  • the current carrier is the carrier used for transmitting the first indication information
  • the current carrier corresponds to a beam.
  • an embodiment of the present application provides a terminal, including a processor, a memory, a communication interface, and one or more programs, wherein the one or more programs are stored in the memory and configured by the The processor is executed, and the one or more programs include instructions for executing steps in any method in the first aspect of the embodiments of this application.
  • embodiments of the present application provide a network device, including a processor, a memory, a communication interface, and one or more programs, wherein the one or more programs are stored in the memory and configured by The processor executes, and the one or more programs include instructions for executing steps in any of the methods in the second aspect of the embodiments of the present application.
  • an embodiment of the present application provides a chip, including a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the first aspect or the second aspect of the embodiment of the present application Some or all of the steps described in any method.
  • an embodiment of the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes a computer to execute the implementation of the present application Examples include some or all of the steps described in any of the methods of the first aspect or the second aspect.
  • an embodiment of the present application provides a computer program, wherein the computer program is operable to cause a computer to execute part or all of the steps described in any of the methods in the first aspect or the second aspect of the embodiments of the present application .
  • the computer program may be a software installation package.
  • the network device in the non-terrestrial network communication system sends the first indication information to the terminal in the non-terrestrial network communication system; then, the terminal acquires the first indication information, and according to the first indication
  • the information determines whether to switch the current carrier, which is the carrier used for transmitting the first indication information. Since the first indication information is configured by the network device, and the current carrier corresponds to a beam, carrier switching management (that is, whether to switch the current carrier) is implemented through network configuration, and beam switching management (that is, whether to switch the corresponding current carrier) is implemented through carrier switching management. beam), thereby helping to avoid the interruption of non-terrestrial network communication due to the movement of satellites, and to improve the reliability of non-terrestrial network communication.
  • FIG. 1 is a schematic diagram of the architecture of a non-terrestrial network communication system provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of the architecture of a transparent satellite communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of comparing signal reception quality between a terrestrial network communication system and a non-terrestrial network communication system provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of an architecture comparison of a non-terrestrial network communication system provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a beam ground distribution diagram provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of the beam number of each beam in a ground area formed by 19 beams provided by an embodiment of the present application;
  • FIG. 7 is a schematic flowchart of a carrier switching method provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another carrier switching method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the architecture of a non-terrestrial network communication scenario provided by an embodiment of the present application.
  • FIG. 10 is a block diagram of functional units of a carrier switching apparatus provided in an embodiment of the present application.
  • FIG. 11 is a block diagram of functional units of another carrier switching apparatus provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • non-terrestrial network non-terrestrial network
  • NTN non-terrestrial network
  • the non-terrestrial network communication system 10 may include a terminal 110 , an intra-cell reference point 120 , a satellite 130 , a non-terrestrial network gateway (NTN gateway) 140 and a network device 150 .
  • the terminal 110, the non-terrestrial network gateway 140 and the network device 150 may be located on the earth's surface, while the satellite 130 is located in the earth's orbit.
  • the satellites 130 can provide communication services to the geographic area covered by the signal, and can communicate with the terminals 110 located within the signal coverage area.
  • the terminal 110 is located in a certain cell, and the cell includes an intra-cell reference point 120 .
  • the wireless communication link between the terminal 110 and the satellite 130 is called a service link
  • the wireless communication link between the satellite 130 and the non-terrestrial network gateway (NTN gateway) 140 is called a supply link ( feeder link).
  • NTN gateway non-terrestrial network gateway
  • the network device 150 may be integrated into the same device, or may be separate devices, which are not specifically limited.
  • the terminal in this embodiment of the present application may be a user equipment (user equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a smart Terminal, wireless communication device, user agent or user equipment.
  • UE user equipment
  • an access terminal a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a smart Terminal, wireless communication device, user agent or user equipment.
  • the terminal may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication function handheld devices, computing devices or other processing devices connected to wireless modems, relay devices, in-vehicle devices, wearable devices, IoT devices, terminals in next-generation communication systems such as NR networks or future evolving public land mobile communication networks (public land mobile network, PLMN) terminals, etc., which are not specifically limited.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle; can be deployed on water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal may be a mobile phone (mobile phone), a tablet computer, a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, an industrial control (industrial control) wireless terminal equipment in , autonomous driving (self driving) in-vehicle equipment, remote medical (remote medical) wireless terminal equipment, smart grid (smart grid) wireless terminal equipment, transportation safety (transportation safety) in Wireless terminal equipment, wireless terminal equipment in a smart city or wireless terminal equipment in a smart home, etc.
  • VR virtual reality
  • AR augmented reality
  • industrial control wireless terminal equipment in autonomous driving (self driving) in-vehicle equipment
  • remote medical remote medical
  • smart grid smart grid wireless terminal equipment
  • transportation safety transportation safety
  • the satellite in the embodiment of the present application may be a spacecraft carrying a bent pipe payload or a regenerative payload signal transmitter, which usually operates at an altitude between 300 and 1500 km.
  • Low Earth Orbit (LEO) Low Earth Orbit (LEO) at altitudes between 7000 and 25000km
  • High elliptical orbit (HEO) at altitudes between 50,000km.
  • the satellites may be LEO satellites, MEO satellites, GEO satellites, or HEO satellites, etc. according to different orbital altitudes.
  • the signals sent by the satellites in the embodiments of the present application generally generate one or more beams (beams, or referred to as “given service areas”) on a given service area (given service area) bounded by its field of view (field of view).
  • beams beams, or referred to as “given service areas”
  • given service area bounded by its field of view (field of view).
  • beam footprint the shape of a beam on the ground can be elliptical, and the field of view of the satellite depends on the antenna and the minimum elevation angle, etc.
  • the non-terrestrial network gateway in this embodiment of the present application may be an earth station or gateway located on the earth's surface, and can provide enough radio frequency (RF) power and RF sensitivity to connect satellites.
  • the non-terrestrial network gateway may be a transport network layer (TNL) node.
  • RF radio frequency
  • TNL transport network layer
  • the network device in the embodiment of the present application may be a base station (base transceiver station) in a global system of mobile communication (GSM) communication system or a code division multiple access (code division multiple access, CDMA) communication system.
  • BTS base stations
  • nodeB, NB wideband code division multiple access
  • WCDMA wideband code division multiple access
  • evolutional node B, eNB in long term evolution (long term evolution, LTE) communication systems or eNodeB) or a base station (gNB) in a new radio (NR) communication system.
  • the network device may also be an access point (access point, AP) in a wireless local area network (WLAN), a relay station, a network device in a future evolved PLMN network, or a network device in an NTN communication system, and the like.
  • WLAN wireless local area network
  • relay station a network device in a future evolved PLMN network
  • NTN communication system and the like.
  • the gNB may include a centralized unit (CU) and a distributed unit (DU), and the gNB may also include an active antenna unit (AAU) .
  • the CU can implement part of the functions of the gNB, and the DU can also implement part of the functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, implementing the functions of the radio resource control (RRC) layer and the packet data convergence protocol (PDCP) layer;
  • the DU is responsible for processing physical layer protocols and real-time services.
  • RLC radio link control
  • MAC medium access control
  • PHY physical
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or converted from the information of the PHY layer, the higher-layer signaling (such as the RRC layer signaling) can be considered to be sent by the DU, or by the DU and AAU sent.
  • the network device may include one or more devices of a CU node, a DU node, and an AAU node.
  • the CU may be divided into network devices in an access network (radio access network, RAN), and the CU may also be divided into network devices in a core network (core network, CN), which is not specifically limited.
  • an embodiment of the present application provides a schematic diagram of the architecture of a communication system with a transparent satellite (transparent satellite), as shown in FIG. 2 .
  • terminals, non-terrestrial network gateways and gNBs are located on the earth's surface, while satellites are located in earth orbit.
  • satellites, non-terrestrial network gateways and gNBs can act as 5G radio access network (NG-radio access network, NG-RAN), and NG-RAN is connected to 5G core network through NG interface.
  • NG-radio access network NG-radio access network
  • NG-RAN 5G radio access network
  • NG-RAN 5G radio access network
  • NG-RAN 5G radio access network
  • NG-RAN 5G core network
  • the satellite payload implements frequency conversion and RF amplifiers in both uplink and downlink directions, and the satellite corresponds to an analog RF repeater.
  • different transparent satellites can be connected to the same gNB on the ground.
  • NB-IoT narrowband internet of things
  • the NB-IoT single-frequency cell has only a bandwidth of 180kHz, in addition to the narrow-band primary synchronization signal (NPSS), narrow-band secondary synchronization signal (NSSS), NSSS and narrow-band
  • NPSS narrow-band primary synchronization signal
  • NSSS narrow-band secondary synchronization signal
  • SIB-NB system information block narrow-band
  • NB-IoT supports multi-carrier configuration, and its carriers can be divided into two categories: anchor carrier and non-anchor carrier. Meanwhile, the same cell may include one anchor carrier and several non-anchor carriers, and the spectrum bandwidth of each carrier is 180 kHz, and the maximum spectrum span of all carriers in the cell does not exceed 20 MHz.
  • Anchor carrier There is only one carrier in a multi-carrier cell that supports carrying NPSS, NSSS, narrow-band physical broadcast channel (NPBCH), and narrow-band physical downlink control channel (NPDCCH) at the same time ) and a narrow-band physical downlink share channel (NPDSCH), the carrier is called the anchor carrier. Therefore, the terminal can monitor NPSS, NSSS, NPBCH, NPDCCH and NPDSCH information on the anchor carrier.
  • NPBCH narrow-band physical broadcast channel
  • NPDCCH narrow-band physical downlink control channel
  • NPDSCH narrow-band physical downlink share channel
  • Non-anchor carrier In a multi-carrier cell, there may be several carriers that only carry NPDCCH and NPDSCH, but do not carry NPSS, NSSS and NPBCH, which are called non-anchor carriers. Therefore, the terminal can transmit or receive data on the non-anchor carrier. In addition, before the terminal enters the connected state, the network will designate a carrier for subsequent downlink data transmission through a message (Msg4) in the random access process. When the terminal is in an idle state, the terminal can perform paging monitoring on the non-anchor carrier.
  • Msg4 message
  • the satellite In the NTN communication system, the satellite usually generates one or more beams (beam, or beam footprint) on the ground, and the shape of a beam on the ground can be an ellipse.
  • the beams generated by some satellites (such as LEO satellites) on the ground will also move on the ground with the movement of the satellites in their orbits; or, some satellites (such as LEO satellites or GEO satellites) generated on the ground.
  • the beam or cell does not move on the ground as the satellite moves in its orbit.
  • the difference in propagation distance between terminals such as UE in different geographical locations and the satellite is small ( That is, the path loss difference of signals corresponding to terminals in different geographical locations within the coverage of the same cell is small), which leads to the signal reception quality corresponding to terminals in different geographical locations within the coverage of the same beam/cell (including the downlink of the terminal).
  • the difference in reception quality or uplink reception quality of the base station is very small, as shown in Figure 3.
  • the architecture of the NTN communication system in the embodiment of the present application mainly includes an NTN communication architecture (ie, a transparent forwarding mode) with a transparent satellite (or called bent pipe payload) and a regenerative satellite (regenerative satellite). ) of the NTN communication architecture (ie regenerative signal mode), see Figure 4. Among them, (a) in FIG. 4 illustrates the NTN communication architecture with transparent satellites, and (b) in FIG. 4 illustrates the NTN communication architecture with regenerative satellites. In (a) of FIG. 4, the satellite 410 in the transparent repeater mode generates at least one beam 420 on the ground, and the at least one beam 420 can form a cell on the ground.
  • the terminal 430 located in the cell may be within the coverage of any one of all beams in the cell.
  • the satellite 440 regenerating the signal pattern generates at least one beam 450 on the ground, and the at least one beam 450 can form a cell on the ground.
  • the terminal 460 located in the cell may be within the coverage of any one of all beams in the cell.
  • the existing narrowband Internet of things (NB-IoT) or enhanced machine-type communication (enhanced machine-type communication, eMTC) adopts the technology of repeated transmission.
  • the maximum number of repeated transmissions for downlink transmission is 2048 times
  • the maximum number of repeated transmissions for uplink transmission is 128 times.
  • the number of repeated transmissions of the physical downlink share channel (PDSCH) or physical uplink shared channel (PUSCH) can be dynamically indicated by the downlink control information (DCI) scheduled by it, that is, There is a specific bit field in the DCI to indicate the number of repeated transmissions of the PDSCH or PUSCH.
  • the maximum number of repetitions (ie, Rmax) of the physical downlink control channel (PDCCH) may be semi-statically configured by RRC signaling or a system information block (SIB).
  • the network can dynamically indicate the number of repeated transmissions of the PDSCH/PUSCH through a specific bit field in the DCI that schedules the PDSCH/PUSCH.
  • Satellites in an NTN communication system typically generate one or more beams on the ground, and the one or more beams form cells on the ground. Meanwhile, the beam distribution among the one or more beams is called a beam pattern (beam pattern, or beam layout).
  • FIG. 5 illustrates a schematic structural diagram of a beam ground distribution diagram, wherein a hexagonal block diagram is used to represent a ground area formed by 19 beams.
  • Figure 6 illustrates the beam number of each beam in the ground area formed by 19 beams, and the beams between different hexagonal blocks have different beam numbers.
  • the terminal needs to perform beam switching frequently.
  • how to realize beam switching in the NTN communication system needs further research.
  • an embodiment of the present application provides a schematic flowchart of a carrier switching method, which is applied to a non-terrestrial network communication system, please refer to FIG. 7 .
  • the method includes:
  • the network device sends the first indication information to the terminal.
  • the first indication information may be used to indicate whether to switch the current carrier, where the current carrier is a carrier used for transmitting the first indication information, and the current carrier corresponds to one beam. Meanwhile, the beam is a beam among all beams in the serving cell where the terminal is located.
  • a satellite in an NTN communication system will generate one or more beams on the ground to form a cell, and a terminal located in the cell can be within the coverage of any one of all beams in the cell.
  • the cell is called the serving cell where the terminal is located.
  • the beam produced by the satellite on the ground also moves on the ground as the satellite moves. Therefore, in order to ensure that the communication connection between the terminal and the satellite is not interrupted, the terminal needs to perform beam switching frequently.
  • the embodiment of the present application considers that the current position of the terminal is approximately fixed for a period of time, and mainly analyzes the situation of beam switching caused by the constant movement of the satellite.
  • the embodiment of the present application considers beam switching to perform beam management by means of carrier switching, that is, each beam in all the beams in the cell corresponds to one or more carriers (that is, one carrier corresponds to One beam), and realize beam switching through carrier switching.
  • the embodiment of the present application considers that the network device sends the first indication information to the terminal, and the terminal determines whether to switch the current carrier according to the first indication information, so as to realize the beam switching management (that is, whether to switch the current carrier) through the carrier switching management (ie, whether to switch the current carrier). That is, whether to switch the beam corresponding to the current carrier), which is beneficial to avoid interruption of the NTN network communication caused by the movement of the satellite, and to improve the reliability of the NTN network communication.
  • the technical solutions in the embodiments of the present application are applicable to both the transparent forwarding mode and the regeneration signal mode.
  • the transparent forwarding mode the first indication information is sent by the network device on the ground.
  • the regeneration signal mode since the network device is located on the satellite, the first indication information is sent by the network device located on the satellite.
  • the network device can transmit service data, RRC dedicated signaling, system broadcast information, and downlink control to the terminal through the carrier.
  • Information downlink control information, DCI), etc.
  • the terminal can obtain the above-mentioned data, signaling or information through the carrier within a certain time. For this reason, the embodiment of the present application considers that the carrier used for transmitting the first indication information is called the current carrier.
  • the first indication information may be 1-bit information or X-bit information, where the value of X is an integer greater than 1; wherein, the 1-bit information may be used to determine whether to switch the current carrier through the value of bits, or, 1
  • the bit information can be used to determine whether to switch the current carrier through a bit inversion method; the X-bit information can be used to determine whether to switch the current carrier through a bit bit coding method.
  • the value of X may be configured by the network device through RRC dedicated signaling.
  • the length of the first indication information sent by the network device to the terminal may be 1 bit (bit) or X bits (bits).
  • the first indication information when the length of the first indication information is 1 bit, the first indication information may be referred to as 1-bit information, and the bit value manner of the 1-bit information includes 1 and 0, or the bits of the 1-bit information
  • the flipping mode includes bit flipping (eg, 1 is converted to 0, 0 is converted to 1) and bits are not flipped.
  • the first indication information may be referred to as X-bit information, and the bit encoding manner of the X-bit information includes any encoding combination of X-bits.
  • the bit coding modes of 2-bit information include 00, 01, 10 and 11.
  • the terminal may determine whether to switch the current carrier through the bit value in the first indication information; or, the terminal may use the bits in the first indication information to determine whether to switch the current carrier.
  • the switching method is used to determine whether to switch the current carrier; or, the terminal may determine whether to switch the current carrier through the bit coding method in the X-bit information. An example of this is given below.
  • the network device sends 1-bit information to the terminal. If the value of the bit in the 1-bit information is 1, the 1-bit information is used to instruct the terminal to switch the current carrier; if the value of the bit in the 1-bit information is 0, the 1-bit information is used to switch the current carrier. Instructs the terminal not to switch the current carrier. Or, if the value of the bit in the 1-bit information is 0, the 1-bit information is used to instruct the terminal to switch the current carrier; if the value of the bit in the 1-bit information is 1, the 1-bit information It is used to instruct the terminal not to switch the current carrier.
  • the network device sends 1-bit information to the terminal. If the bits in the 1-bit information are flipped (for example, 1 is converted into 0, 0 is converted into 1), the 1-bit information is used to instruct the terminal to switch the current carrier; if the bits in the 1-bit information are not flipped. , the 1-bit information is used to instruct the terminal not to switch the current carrier. Or, if the bits in the 1-bit information are inverted, the 1-bit information is used to instruct the terminal not to switch the current carrier; if the bits in the 1-bit information are not inverted, the 1-bit information is used to indicate The terminal switches the current carrier.
  • the network device sends 2-bit information to the terminal. If the bit coding mode in the 2-bit information is 00, the 2-bit information is used to instruct the terminal not to switch the current carrier; if the bit coding mode in the 2-bit information is not 00 (such as 01, 10 or 11) , the 2-bit information is used to instruct the terminal to switch the current carrier.
  • the first indication information is carried in the first DCI.
  • the network device sends the first indication information to the terminal through the first DCI. That is, the network device indicates to the terminal whether to switch the current carrier through the first indication information carried by the DCI.
  • the "first DCI” and “second DCI” in the embodiments of the present application are used to distinguish the DCIs delivered by the network device at different times, and the indication fields and indication information carried by the DCIs delivered at different times exist. There are no specific restrictions on this in case of different control purposes.
  • the first indication information may be an indication field carried by the first DCI, and the indication field may be used to indicate whether the terminal switches the current carrier.
  • the indication field may be a new or specific field in the DCI specified by the existing standard.
  • the first DCI may be scheduled DCI or non-scheduled DCI.
  • the scheduling DCI refers to DCI carrying data scheduling information, such as DCI used for scheduling PDSCH or PUSCH.
  • the first indication information in the scheduling DCI is used to indicate whether the terminal switches the current carrier to transmit the data scheduled by the scheduling DCI. That is, whether the data scheduled by the scheduling DCI is transmitted on the current carrier.
  • non-scheduled DCI refers to DCI that does not carry data scheduling information.
  • the first indication information in the non-scheduled DCI is used to indicate whether the terminal switches the current carrier to transmit data.
  • the terminal acquires the first indication information from the network device.
  • the terminal determines whether to switch the current carrier according to the first indication information.
  • the network device in the non-terrestrial network communication system sends the first indication information to the terminal in the non-terrestrial network communication system; then, the terminal acquires the first indication information, and according to the first indication
  • the information determines whether to switch the current carrier, which is the carrier used for transmitting the first indication information. Since the first indication information is configured by the network device, and the current carrier corresponds to a beam, carrier switching management (that is, whether to switch the current carrier) is implemented through network configuration, and beam switching management (that is, whether to switch the current carrier corresponding to the current carrier) is implemented through carrier switching management. beam), which is beneficial to avoid the interruption of non-terrestrial network communication due to the movement of satellites, and to improve the reliability of non-terrestrial network communication.
  • the embodiment of the present application considers that the terminal determines whether to switch the current carrier according to the first indication information configured by the network device, that is, the terminal needs to switch the current carrier or not. However, in the case that the terminal needs to switch the current carrier, the embodiment of the present application further considers the issue of which carrier the terminal is to switch to from the current carrier. To this end, the following will specifically introduce how the network device configures candidate carriers through the embodiment shown in FIG. 8 .
  • the embodiments of the present application provide a schematic flowchart of another carrier switching method, which is applied to a non-terrestrial network communication system, please refer to FIG. 8 .
  • the method includes:
  • the network device sends the first configuration information to the terminal.
  • the first configuration information may be used to configure an index (index) of a candidate carrier to be switched.
  • the terminal may directly determine the candidate carrier through the index of the candidate carrier.
  • the embodiment of the present application considers that the first configuration information is first configured by the network device to the terminal, The network device then sends the first indication information to the terminal, and finally the terminal determines whether to switch the current carrier through the first configuration information and the first indication information, and switches the current carrier to the candidate carrier in the first configuration information.
  • the first configuration information is configured by the network device through RRC dedicated signaling.
  • the network device sends the first configuration information to the terminal through RRC dedicated signaling.
  • the first configuration information may include carrier list information or carrier set information.
  • the carrier list information is composed of the indices of M carriers arranged in sequence, the indices of the M carriers include the index of the current carrier, the index of each carrier in the carrier list information corresponds to a beam, and the value of M is an integer greater than 1.
  • the network device first configures the terminal with carrier list information composed of indices of M carriers arranged in sequence, and then transmits the first information to the terminal through a certain carrier (ie, the current carrier) among the M carriers. Instructions.
  • the carriers in the carrier list information are arranged in order, when analyzing to which carrier the current carrier is to be switched to, it is necessary to consider the index of the current carrier in the location of the carrier list information.
  • the carrier set information may include an index of N carriers and a candidate carrier index set associated with the index of each carrier in the indices of the N carriers, the index of the N carriers includes the index of the current carrier, and each carrier set information in the carrier set information.
  • the index of each carrier corresponds to an integer greater than 1 for a beam N; the candidate carrier index set consists of the indices of P carriers in the indices of N carriers, and the value of P is less than or equal to the value of N.
  • the embodiment of the present application considers that the network device first configures the index of the N carriers and a candidate carrier index set associated with the index of each carrier in the indexes of the N carriers to the terminal. . Wherein, there is no arrangement order among the indices of the carriers in the indices of the N carriers and among the indices of the carriers in the candidate carrier index set. Then, the network device transmits the first indication information to the terminal through a certain carrier (ie, the current carrier) among the N carriers.
  • the index of each carrier in the carrier set information is associated with a candidate carrier index set, when analyzing which carrier the current carrier is to switch to, it is necessary to consider the carrier in the candidate carrier index set associated with the current carrier index. index.
  • the following embodiments of the present application will specifically describe how the indices of the M carriers, the indices of the N carriers, and the indices of the P carriers in the candidate carrier index set configured by the network device are determined.
  • the carrier list information may satisfy at least one of the following manners: the indices of the M carriers in the carrier list information are determined by the current location information of the terminal and the preset satellite ephemeris, and the M numbers in the carrier list information are determined by the current location information of the terminal and the preset satellite ephemeris.
  • the arrangement order among the index carriers is determined by the current location information of the terminal and the preset satellite ephemeris.
  • the embodiment of the present application considers that the current position of the terminal is approximately fixed for a period of time, and mainly analyzes the situation of beam switching caused by the constant movement of the satellite.
  • the terminal can obtain the current position information through its own global navigation satellite system (Global Navigation Satellite System, GNSS) calculation, and then send it to the network device.
  • the satellite has a fixed running track (the running track can be determined by the preset satellite ephemeris)
  • the embodiment of the present application considers that the network device determines the carrier list information according to the current location information of the terminal and the preset satellite ephemeris. The index of the M carriers in the carrier list information, thereby establishing the mapping relationship between the current position of the terminal and the running track of the satellite and the index of the carrier in the carrier list information.
  • the network device determines the arrangement order between the indices of the M carriers in the carrier list information according to the current location information of the terminal and the preset satellite ephemeris, thereby establishing the current location of the terminal and the running track of the satellite and the carrier list information.
  • the mapping relationship of the arrangement order between the indices of the carriers in Specific examples are described below.
  • the satellite 910 sequentially generates 10 beams on the ground along a fixed running trajectory, and each of the 10 beams corresponds to one carrier, ie, 10 carriers. Meanwhile, the indices corresponding to the 10 carriers are C0 to C9 in sequence.
  • the current position of the terminal 920 is in the area corresponding to the carrier index C3, so that the satellite 910 and the terminal 920 communicate through the carrier index C3 (ie, the index of the current carrier). Since the satellite 910 will run along the "moving direction of the satellite" shown in the figure, and the running track of the satellite 910 can be determined by the preset satellite ephemeris, the beam generated by the satellite 910 on the ground will also follow the running.
  • the beam corresponding to the carrier index C5 moves to the beam corresponding to the carrier index C8, so that the network device can be based on the current location information of the terminal 920 (that is, in the area corresponding to the carrier index C3) and the preset satellite ephemeris.
  • the table ie, the running track of the satellite 910 ) determines that the carrier list information is ⁇ C1, C3, C5, C8 ⁇ , and delivers the carrier list information to the terminal 920 through RRC dedicated signaling.
  • the carrier set information may satisfy at least one of the following manners: the indices of the N carriers in the carrier set information are determined by the current location information of the terminal and the preset satellite ephemeris, and the candidate carriers in the carrier set information The indices of the P carriers in the index set are determined by the distribution of the beams corresponding to the indices of the N carriers.
  • the terminal can obtain the current location information through its own GNSS calculation, and then send it to the network device. Then, the network device can determine the indices of the N carriers in the carrier set information according to the current location information of the terminal and the preset satellite ephemeris, so as to establish the current position of the terminal and the running track of the satellite and the index of the carrier in the carrier set information mapping relationship between them. Meanwhile, compared with the index of the carrier in the above carrier list information, the index of the carrier in the carrier set information does not consider the arrangement order.
  • the embodiment of the present application considers that the network device determines the indices of the carriers in the candidate carrier index set associated with the indices of the N carriers according to the distribution of the beams corresponding to the indices of the N carriers.
  • the indices of the P carriers are determined by the distribution of the beams corresponding to the indices of the N carriers, which may specifically include the following steps: determining the respective adjacent beams of the beams corresponding to the indices of the N carriers, and using the corresponding adjacent beams The carriers make up the indices of the P carriers. Specific examples are described below.
  • the satellite 910 sequentially generates 10 beams on the ground along a fixed running trajectory, and each of the 10 beams corresponds to one carrier, ie, 10 carriers.
  • the current position of the terminal 920 is in the area corresponding to the carrier index C3, so that the satellite 910 and the terminal 920 communicate through the carrier index C3 (ie, the index of the current carrier).
  • the network device determines the carrier index set ⁇ C3, C4, C5, C6, C7, C8, C9 ⁇ according to the current location information of the terminal 920 and the preset satellite ephemeris and is associated with each carrier index in the carrier index set Candidate carrier index set (ie, carrier set information).
  • the set of candidate carrier indexes associated with carrier index C3 is ⁇ C4, C5, C6 ⁇ .
  • the set of candidate carrier indices associated with carrier index C4 is ⁇ C5, C9 ⁇
  • the set of candidate carrier indices associated with carrier index C5 is ⁇ C7, C8, C9 ⁇ , and so on.
  • the network device delivers the carrier index set and the candidate carrier index set associated with each carrier index in the carrier index set to the terminal through RRC dedicated signaling.
  • the terminal acquires the first configuration information from the network device.
  • the network device sends the first indication information to the terminal.
  • the first indication information may be used to indicate whether to switch the current carrier, where the current carrier is a carrier used for transmitting the first indication information, and the current carrier corresponds to one beam. Meanwhile, the beam is a beam among all beams in the serving cell where the terminal is located.
  • FIG. 8 is the same as the embodiment shown in FIG. 7 , so the description of the first indication information can be seen in FIG. 7 , which is not repeated here.
  • the terminal acquires the first indication information from the network device.
  • the first indication information is carried in the first DCI.
  • the first DCI may be scheduling DCI or scheduling DCI.
  • the terminal determines whether to switch from the current carrier to the candidate carrier according to the first configuration information and the first indication information.
  • the following embodiments of the present application will specifically introduce how to determine whether to switch from the current carrier to the candidate carrier according to the first configuration information and the first indication information. That is, how the terminal determines whether to switch the current carrier according to the first configuration information configured by the network device and the first indication information delivered, and how to switch the current carrier to the candidate carrier.
  • determining whether to switch from the current carrier to the candidate carrier according to the first configuration information and the first indication information may include the following steps : determine whether to switch from the current carrier to the first carrier according to the carrier list information and the bit value mode in the 1-bit information, and the index of the first carrier is the index of the current carrier and the next carrier index at the location of the carrier list information; Or, whether to switch from the current carrier to the first carrier is determined according to the carrier list information and the bit inversion mode in the 1-bit information.
  • the current carrier is to be analyzed before the current carrier is analyzed.
  • the embodiment of the present application considers that the current carrier is to be switched to the next carrier whose index of the current carrier is in the location of the carrier list information, so as to implement carrier switching management through network configuration, and then implement beam switching management through carrier switching management. It is beneficial to avoid the interruption of non-terrestrial network communication caused by the movement of the satellite, and to improve the reliability of non-terrestrial network communication.
  • the 1-bit information is specifically used to indicate whether to switch from the current carrier to the first carrier through a bit value method
  • the index of the first carrier is the index of the current carrier at the next carrier index where the carrier list information is located; or, the 1-bit information is specifically used to indicate whether to switch from the current carrier to the first carrier by bit flipping.
  • the network device first delivers the carrier list information ⁇ C1, C3, C5, C8 ⁇ to the terminal through RRC dedicated signaling. Then, the network device configures the terminal with 1-bit information in the DCI through the RRC dedicated information.
  • the carrier index C3 is used to transmit the 1-bit information. If the value of the bit in the 1-bit information is 1, the 1-bit information is used to instruct the terminal to switch the carrier corresponding to the carrier index C3 to the carrier corresponding to the carrier index C5 for data transmission; if the 1-bit information contains The value of the bit value of 0 is 0, and the 1-bit information is used to instruct the terminal not to switch the carrier corresponding to the carrier index C3.
  • the 1-bit information is used to instruct the terminal to switch the carrier corresponding to the carrier index C3 to the carrier corresponding to the carrier index C5 for data transmission; if the 1-bit information The value of the bit in the information is 1, and the 1-bit information is used to instruct the terminal not to switch the carrier corresponding to the carrier index C3.
  • the network device first delivers the carrier list information ⁇ C1, C3, C5, C8 ⁇ to the terminal through RRC dedicated signaling. Then, the network device configures the terminal with 1-bit information in the DCI through the RRC dedicated information.
  • the carrier index C3 is used to transmit the 1-bit information. If the bits in the 1-bit information are inverted (for example, 1 is converted into 0, 0 is converted into 1), the 1-bit information is used to instruct the terminal to switch the carrier corresponding to carrier index C3 to the carrier corresponding to carrier index C5 to perform data transmission; if the bits in the 1-bit information are not inverted, the 1-bit information is used to instruct the terminal not to switch the carrier corresponding to the carrier index C3.
  • the 1-bit information is used to instruct the terminal not to switch the carrier corresponding to the carrier index C3; if the bits in the 1-bit information are not inverted, the 1-bit information The information is used to instruct the terminal to switch the carrier corresponding to the carrier index C3 to the carrier corresponding to the carrier index C5 for data transmission.
  • determining whether to switch from the current carrier to the candidate carrier according to the first configuration information and the first indication information may include the following steps : Determine whether to switch from the current carrier to the second carrier according to the carrier set information and the bit coding method in the X-bit information.
  • the index of the second carrier is in the candidate carrier index set associated with the index of the current carrier in the carrier set information.
  • a carrier index of , and the X-bit information is also used to indicate the index of the second carrier through bit coding.
  • each carrier in the carrier set information is associated with a candidate carrier index set, and the index of the carrier in the candidate carrier index set in the carrier set information is determined by the distribution of the beams corresponding to the indices of the N carriers, Therefore, when analyzing to which carrier the current carrier is to be switched, not only the beam distribution situation, but also the index of the carrier in the candidate carrier index set associated with the index of the current carrier needs to be considered.
  • the embodiment of the present application considers the carrier corresponding to the index of a carrier in the candidate carrier index set associated with the current carrier to be switched to the index of the current carrier, and has the index of which carrier in the candidate carrier index set is determined by X Bit information indication, so as to realize carrier switching management through network configuration, and then realize beam switching management through carrier switching management, which is beneficial to avoid the interruption of non-terrestrial network communication due to the movement of satellites, and improve the reliability of non-terrestrial network communication.
  • the X-bit information is configured by the network device through RRC dedicated signaling.
  • the network device configures the terminal with X-bit information in the DCI through RRC dedicated signaling.
  • the value of X satisfies at least one of the following ways: the value of X is determined by the number of carrier indices in the candidate carrier index set associated with the index of the current carrier, and the value of X and the value of P have a mapping relationship .
  • the network device can configure the value of X through the number of carrier indices in the candidate carrier index set in the carrier set information, so that the network configures X-bit information to indicate whether the terminal switches the current carrier, and the specific switching.
  • X-bit information To the index of which carrier in the candidate carrier index set associated with the index of the current carrier, to avoid excessive signaling overhead.
  • the X-bit information is specifically used to indicate whether to switch from the current carrier to the second carrier through bit coding
  • the second The carrier index is a carrier index in the candidate carrier index set associated with the current carrier index in the carrier set information; the X-bit information is also specifically used to indicate the index of the second carrier by bit coding.
  • the example illustrates that the network device first delivers the carrier index set ⁇ C3, C4, C5, C6, C7, C8, C9 ⁇ and the candidate carrier index set associated with each carrier index in the carrier index set to the terminal through RRC dedicated signaling. .
  • the set of candidate carrier indices associated with the carrier index C3 is ⁇ C4, C5, C6 ⁇ .
  • the network device configures the terminal with 2-bit information in the DCI through RRC dedicated signaling.
  • the carrier index C3 is used to transmit the 2-bit information.
  • the 2-bit information is used to instruct the terminal not to switch the carrier corresponding to the carrier index C3; if the bit coding mode in the 2-bit information is 01, the 2-bit information The information is used to instruct the terminal to switch to the carrier corresponding to the carrier index C4 for data transmission; if the bit coding mode in the 2-bit information is 10, the 2-bit information is used to instruct the terminal to switch to the carrier corresponding to the carrier index C5 for data transmission. Perform data transmission; if the bit coding mode in the 2-bit information is 11, the 2-bit information is used to instruct the terminal to switch to the carrier corresponding to the carrier index C6 for data transmission.
  • the network device in the non-terrestrial network communication system sends the first configuration information to the terminal in the non-terrestrial network communication system; secondly, the terminal obtains the first configuration information; thirdly, the network device sends the terminal to the terminal Send the first indication information; finally, the terminal acquires the first indication information, and determines whether to switch the current carrier according to the first configuration information and the first indication information, where the current carrier is the carrier used for transmitting the first indication information.
  • the embodiment of the present application considers that the first configuration information is configured to the terminal by the network device, and then the network device sends the first indication information to the terminal.
  • the terminal determines whether to switch the current carrier through the first configuration information and the first indication information, and switches the current carrier to the target carrier in the first configuration information. Since the first configuration information is used to configure the index of the candidate carrier to be switched, the network can configure the candidate carrier to be switched to the terminal. In addition, since the first configuration information and the first indication information are configured by the network device, and the current carrier corresponds to one beam, carrier switching management (that is, whether to switch the current carrier and whether to switch from the current carrier to the first configuration) is implemented through the network configuration.
  • the terminal or network device includes corresponding hardware structures and/or software modules for executing each function.
  • the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software-driven hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the terminal or network device may be divided into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated units can be implemented in the form of hardware, and can also be implemented in the form of software program modules. It should be noted that, the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division manners in actual implementation.
  • FIG. 10 provides a block diagram of functional units of a carrier switching apparatus.
  • the carrier switching apparatus 1000 is applied to a terminal in a non-terrestrial network communication system, and specifically includes: a processing unit 1002 and a communication unit 1003 .
  • the processing unit 1002 is used to control and manage the actions of the terminal.
  • the processing unit 1002 is used to support the terminal to perform the steps in FIG. 7 or FIG. 8 and other processes for the technical solutions described in this application.
  • the communication unit 1003 is used to support communication between the terminal and other devices in the non-terrestrial network communication system.
  • the carrier switching apparatus 1000 may further include a storage unit 1001 for storing program codes and data of the terminal.
  • the processing unit 1002 may be a processor or a controller, such as a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), or an application-specific integrated circuit (application-specific integrated circuit). integrated circuit, ASIC), field programmable gate array (FPGA), or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • the processing unit 1002 may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 1003 may be a communication interface, a transceiver, a transceiver circuit, etc., and the storage unit 1001 may be a memory.
  • the processing unit 1002 is a processor
  • the communication unit 1003 is a communication interface
  • the storage unit 1001 is a memory
  • the carrier switching apparatus 1000 involved in this embodiment of the present application may be the terminal shown in FIG. 12 .
  • the processing unit 1002 is configured to perform any step performed by the terminal in the above method embodiments, and when performing data transmission such as sending, the communication unit 1003 can be selectively invoked to complete corresponding operations.
  • data transmission such as sending
  • the communication unit 1003 can be selectively invoked to complete corresponding operations.
  • the processing unit 1002 is configured to: acquire the first indication information from the network device; determine whether to switch the current carrier according to the first indication information, the current carrier is the carrier used for transmitting the first indication information, and the current carrier corresponds to a beam.
  • the first indication information from the network device is obtained, and whether to switch the current carrier is determined according to the first indication information, and the current carrier is the carrier used for transmitting the first indication information. Since the first indication information is configured by the network device, and the current carrier corresponds to a beam, carrier switching management (that is, whether to switch the current carrier) is implemented through network configuration, and beam switching management (that is, whether to switch the current carrier corresponding to the current carrier) is implemented through carrier switching management. beam), which is beneficial to avoid the interruption of non-terrestrial network communication due to the movement of satellites, and to improve the reliability of non-terrestrial network communication.
  • the first indication information is 1-bit information or X-bit information, and the value of X is an integer greater than 1; the 1-bit information is used to indicate whether to switch the current carrier through a bit value; or, 1 The bit information is used to indicate whether to switch the current carrier through a bit inversion method; the X-bit information is used to indicate whether to switch the current carrier through a bit coding method.
  • the processing unit 1002 before acquiring the first indication information from the network device, is further configured to: acquire first configuration information from the network device, where the first configuration information is used to configure the candidate carrier to be switched In terms of determining whether to switch the current carrier according to the first indication information, the processing unit 1002 is specifically configured to: determine whether to switch from the current carrier to the candidate carrier according to the first configuration information and the first indication information.
  • the first configuration information is configured by the network device through RRC dedicated signaling.
  • the first configuration information includes carrier list information or carrier set information;
  • the carrier list information is composed of indices of M carriers arranged in sequence, and the indices of the M carriers include the index of the current carrier, and each of the carrier list information includes the index of the current carrier.
  • the index of each carrier corresponds to one beam, and the value of M is an integer greater than 1;
  • the carrier set information includes the index of the N carriers and a candidate carrier index set associated with the index of each carrier in the index of the N carriers, N
  • the index of the carrier includes the index of the current carrier, the index of each carrier in the carrier set information corresponds to a beam, and the value of N is an integer greater than 1;
  • the candidate carrier index set consists of the indices of the P carriers in the N carrier indices. composition, the value of P is less than or equal to the value of N.
  • the carrier list information satisfies at least one of the following manners: the indices of the M carriers in the carrier list information are determined by the current location information of the terminal and the preset satellite ephemeris, and the M carriers in the carrier list information The order of arrangement between the indexes of the terminal is determined by the current location information of the terminal and the preset satellite ephemeris; or, the carrier set information satisfies at least one of the following ways: the indices of the N carriers in the carrier set information are determined by the current location information of the terminal. Determined from the preset satellite ephemeris, and the indices of the P carriers in the candidate carrier index set in the carrier set information are determined by the distribution of the beams corresponding to the N carriers.
  • the processing unit 1002 is specifically configured to: determine whether to switch from the current carrier to the first carrier according to the carrier list information and the bit value mode in the 1-bit information, and the index of the first carrier is the index of the current carrier at the location of the carrier list information. The next carrier index; or, whether to switch from the current carrier to the first carrier is determined according to the carrier list information and the bit flip mode in the 1-bit information.
  • the processing unit determines whether to switch from the current carrier to the candidate carrier according to the first configuration information and the first indication information.
  • 1002 is specifically used for: determining whether to switch from the current carrier to the second carrier according to the carrier set information and the bit coding mode in the X-bit information, and the index of the second carrier is a candidate associated with the index of the current carrier in the carrier set information.
  • One carrier index in the carrier index set, and the X-bit information is also used to indicate the index of the second carrier through bit coding.
  • the X-bit information is configured by the network device through RRC dedicated signaling.
  • the value of X satisfies at least one of the following manners: the value of X is determined by the number of carrier indexes in the candidate carrier index set associated with the index of the current carrier, the value of X and the value of P Values have a mapping relationship.
  • the first indication information is carried in the first downlink control information DCI.
  • the first DCI is a scheduled DCI or a non-scheduled DCI.
  • FIG. 11 provides a block diagram of functional units of another carrier switching apparatus.
  • the carrier switching apparatus 1100 is applied to network equipment in a non-terrestrial network communication system, and specifically includes: a processing unit 1102 and a communication unit 1103 .
  • the processing unit 1102 is used to control and manage the actions of the network device.
  • the processing unit 1102 is used to support the network device to perform the steps in FIG. 7 or FIG. 8 and other processes for the technical solutions described in this application.
  • the communication unit 1103 is used to support communication between the network device and other devices in the non-terrestrial network communication system.
  • the carrier switching apparatus 1100 may further include a storage unit 1101 for storing program codes and data of the network device.
  • the processing unit 1102 may be a processor or a controller, for example, a CPU, DSP, ASIC, FPGA or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • the processing unit 1102 may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 1103 may be a communication interface, a transceiver, a transceiver circuit, etc., and the storage unit 1101 may be a memory. When the processing unit 1102 is a processor, the communication unit 1103 is a communication interface, and the storage unit 1101 is a memory, the carrier switching apparatus 1100 involved in this embodiment of the present application may be the network device shown in FIG. 13 .
  • the processing unit 1102 is configured to perform any step performed by the network device in the above method embodiments, and when performing data transmission such as sending, the communication unit 1103 can be selectively invoked to complete corresponding operations. A detailed description will be given below.
  • the processing unit 1102 is configured to: send first indication information to the terminal, where the first indication information is used to indicate whether to switch the current carrier, the current carrier is the carrier used for transmitting the first indication information, and the current carrier corresponds to one beam.
  • the first indication information is used to indicate whether to switch the current carrier
  • the current carrier is the carrier used for transmitting the first indication information . Since the first indication information is configured by the network device, and the current carrier corresponds to a beam, carrier switching management (that is, whether to switch the current carrier) is implemented through network configuration, and beam switching management (that is, whether to switch the current carrier corresponding to the current carrier) is implemented through carrier switching management. beam), which is beneficial to avoid the interruption of non-terrestrial network communication due to the movement of satellites, and to improve the reliability of non-terrestrial network communication.
  • the first indication information is 1-bit information or X-bit information, and the value of X is an integer greater than 1; the 1-bit information is used to indicate whether to switch the current carrier through a bit value; or, 1 The bit information is used to indicate whether to switch the current carrier through a bit inversion method; the X-bit information is used to indicate whether to switch the current carrier through a bit coding method.
  • the processing unit 1102 before sending the first indication information to the terminal, is further configured to: send first configuration information to the terminal, where the first configuration information is used to configure the index of the candidate carrier to be switched.
  • the first configuration information is configured by the network device through RRC dedicated signaling.
  • the first configuration information includes carrier list information or carrier set information;
  • the carrier list information is composed of indices of M carriers arranged in sequence, and the indices of the M carriers include the index of the current carrier, and each of the carrier list information includes the index of the current carrier.
  • the index of each carrier corresponds to one beam, and the value of M is an integer greater than 1;
  • the carrier set information includes the index of the N carriers and a candidate carrier index set associated with the index of each carrier in the index of the N carriers, N
  • the index of the carrier includes the index of the current carrier, the index of each carrier in the carrier set information corresponds to a beam, and the value of N is an integer greater than 1;
  • the candidate carrier index set consists of the indices of the P carriers in the N carrier indices. composition, the value of P is less than or equal to the value of N.
  • the carrier list information satisfies at least one of the following manners: the indices of the M carriers in the carrier list information are determined by the current location information of the terminal and the preset satellite ephemeris, and the M carriers in the carrier list information The order of arrangement between the indexes of the terminal is determined by the current location information of the terminal and the preset satellite ephemeris; or, the carrier set information satisfies at least one of the following ways: the indices of the N carriers in the carrier set information are determined by the current location information of the terminal. Determined from the preset satellite ephemeris, the indices of the P carriers in the candidate carrier index set in the carrier set information are determined by the distribution of the beams corresponding to the indices of the N carriers.
  • the 1-bit information is specifically used to indicate whether to switch from the current carrier to the first carrier through the bit value method, and the first The index of a carrier is the index of the current carrier at the next carrier index where the carrier list information is located; or, the 1-bit information is specifically used to indicate whether to switch from the current carrier to the first carrier by bit flipping.
  • the X-bit information is specifically used to indicate whether to switch from the current carrier to the second carrier through bit coding
  • the second The carrier index is a carrier index in the candidate carrier index set associated with the current carrier index in the carrier set information; the X-bit information is also specifically used to indicate the index of the second carrier by bit coding.
  • the X-bit information is configured by the network device through RRC dedicated signaling.
  • the value of X satisfies at least one of the following manners: the value of X is determined by the number of carrier indexes in the candidate carrier index set associated with the index of the current carrier, the value of X and the value of P Values have a mapping relationship.
  • the first indication information is carried in the first downlink control information DCI.
  • the first DCI is a scheduled DCI or a non-scheduled DCI.
  • FIG. 12 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • the terminal 1200 includes a processor 1210 , a memory 1220 , a communication interface 1230 and at least one communication bus for connecting the processor 1210 , the memory 1220 , and the communication interface 1230 .
  • the memory 1220 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM) or A portable read-only memory (compact disc read-only memory, CD-ROM), the memory 1220 is used for related instructions and data.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • Communication interface 1230 is used to receive and transmit data.
  • the processor 1210 may be one or more CPUs, and if the processor 1210 is one CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 1210 in the terminal 1200 is configured to read one or more programs 1221 stored in the memory 1220 to perform the following steps: obtain the first indication information from the network device; determine whether to switch the current carrier according to the first indication information, the current carrier For the carrier used for transmitting the first indication information, the current carrier corresponds to one beam.
  • the first indication information from the network device is obtained, and whether to switch the current carrier is determined according to the first indication information, and the current carrier is the carrier used for transmitting the first indication information. Since the first indication information is configured by the network device, and the current carrier corresponds to a beam, carrier switching management (that is, whether to switch the current carrier) is implemented through network configuration, and beam switching management (that is, whether to switch the current carrier corresponding to the current carrier) is implemented through carrier switching management. beam), which is beneficial to avoid the interruption of non-terrestrial network communication due to the movement of satellites, and to improve the reliability of non-terrestrial network communication.
  • the first indication information is 1-bit information or X-bit information, and the value of X is an integer greater than 1; the 1-bit information is used to indicate whether to switch the current carrier through a bit value; or, 1 The bit information is used to indicate whether to switch the current carrier through a bit inversion method; the X-bit information is used to indicate whether to switch the current carrier through a bit coding method.
  • the processor 1210 before acquiring the first indication information from the network device, is further configured to: acquire first configuration information from the network device, where the first configuration information is used to configure the candidate carrier to be switched In terms of determining whether to switch the current carrier according to the first indication information, the processor 1210 is specifically configured to: determine whether to switch from the current carrier to the candidate carrier according to the first configuration information and the first indication information.
  • the first configuration information is configured by the network device through RRC dedicated signaling.
  • the first configuration information includes carrier list information or carrier set information;
  • the carrier list information is composed of indices of M carriers arranged in sequence, and the indices of the M carriers include the index of the current carrier, and each of the carrier list information includes the index of the current carrier.
  • the index of each carrier corresponds to one beam, and the value of M is an integer greater than 1;
  • the carrier set information includes the index of the N carriers and a candidate carrier index set associated with the index of each carrier in the index of the N carriers, N
  • the index of the carrier includes the index of the current carrier, the index of each carrier in the carrier set information corresponds to a beam, and the value of N is an integer greater than 1;
  • the candidate carrier index set consists of the indices of the P carriers in the N carrier indices. composition, the value of P is less than or equal to the value of N.
  • the carrier list information satisfies at least one of the following manners: the indices of the M carriers in the carrier list information are determined by the current location information of the terminal and the preset satellite ephemeris, and the M carriers in the carrier list information The order of arrangement between the indexes of the terminal is determined by the current location information of the terminal and the preset satellite ephemeris; or, the carrier set information satisfies at least one of the following ways: the indices of the N carriers in the carrier set information are determined by the current location information of the terminal. Determined from the preset satellite ephemeris, and the indices of the P carriers in the candidate carrier index set in the carrier set information are determined by the distribution of the beams corresponding to the N carriers.
  • the processor 1210 is specifically configured to: determine whether to switch from the current carrier to the first carrier according to the carrier list information and the bit value manner in the 1-bit information, where the index of the first carrier is the index of the current carrier at the location of the carrier list information The next carrier index; or, whether to switch from the current carrier to the first carrier is determined according to the carrier list information and the bit flip mode in the 1-bit information.
  • the processor determines whether to switch from the current carrier to the candidate carrier according to the first configuration information and the first indication information. 1210 is specifically used to: determine whether to switch from the current carrier to the second carrier according to the carrier set information and the bit coding mode in the X-bit information, and the index of the second carrier is a candidate associated with the index of the current carrier in the carrier set information.
  • One carrier index in the carrier index set, and the X-bit information is also used to indicate the index of the second carrier through bit coding.
  • the X-bit information is configured by the network device through RRC dedicated signaling.
  • the value of X satisfies at least one of the following manners: the value of X is determined by the number of carrier indexes in the candidate carrier index set associated with the index of the current carrier, the value of X and the value of P Values have a mapping relationship.
  • the first indication information is carried in the first downlink control information DCI.
  • the first DCI is a scheduled DCI or a non-scheduled DCI.
  • FIG. 13 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device 1300 includes a processor 1310 , a memory 1320 , a communication interface 1330 and at least one communication bus for connecting the processor 1310 , the memory 1320 , and the communication interface 1330 .
  • the memory 1320 includes, but is not limited to, RAM, ROM, EPROM, or CD-ROM, and the memory 1320 is used to store related instructions and data.
  • Communication interface 1330 is used to receive and transmit data.
  • the processor 1310 may be one or more CPUs, and if the processor 1310 is one CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 1310 in the network device 1300 is configured to read one or more programs 1321 stored in the memory 1320 to perform the following steps: send first indication information to the terminal, the first indication information is used to indicate whether to switch the current carrier, the current carrier For the carrier used for transmitting the first indication information, the current carrier corresponds to one beam.
  • the first indication information is used to indicate whether to switch the current carrier
  • the current carrier is the carrier used for transmitting the first indication information . Since the first indication information is configured by the network device, and the current carrier corresponds to a beam, carrier switching management (that is, whether to switch the current carrier) is implemented through network configuration, and beam switching management (that is, whether to switch the current carrier corresponding to the current carrier) is implemented through carrier switching management. beam), which is beneficial to avoid the interruption of non-terrestrial network communication due to the movement of satellites, and to improve the reliability of non-terrestrial network communication.
  • the first indication information is 1-bit information or X-bit information, and the value of X is an integer greater than 1; the 1-bit information is used to indicate whether to switch the current carrier through a bit value; or, 1 The bit information is used to indicate whether to switch the current carrier through a bit inversion method; the X-bit information is used to indicate whether to switch the current carrier through a bit coding method.
  • the processing unit 1402 before sending the first indication information to the terminal, is further configured to: send first configuration information to the terminal, where the first configuration information is used to configure the index of the candidate carrier to be switched.
  • the first configuration information is configured by the network device through RRC dedicated signaling.
  • the first configuration information includes carrier list information or carrier set information;
  • the carrier list information is composed of indices of M carriers arranged in sequence, and the indices of the M carriers include the index of the current carrier, and each of the carrier list information includes the index of the current carrier.
  • the index of each carrier corresponds to one beam, and the value of M is an integer greater than 1;
  • the carrier set information includes the index of the N carriers and a candidate carrier index set associated with the index of each carrier in the index of the N carriers, N
  • the index of the carrier includes the index of the current carrier, the index of each carrier in the carrier set information corresponds to a beam, and the value of N is an integer greater than 1;
  • the candidate carrier index set consists of the indices of the P carriers in the N carrier indices. composition, the value of P is less than or equal to the value of N.
  • the carrier list information satisfies at least one of the following manners: the indices of the M carriers in the carrier list information are determined by the current location information of the terminal and the preset satellite ephemeris, and the M carriers in the carrier list information The order of arrangement between the indexes of the terminal is determined by the current location information of the terminal and the preset satellite ephemeris; or, the carrier set information satisfies at least one of the following ways: the indices of the N carriers in the carrier set information are determined by the current location information of the terminal. Determined from the preset satellite ephemeris, the indices of the P carriers in the candidate carrier index set in the carrier set information are determined by the distribution of the beams corresponding to the indices of the N carriers.
  • the 1-bit information is specifically used to indicate whether to switch from the current carrier to the first carrier through the bit value method, and the first The index of a carrier is the index of the current carrier at the next carrier index where the carrier list information is located; or, the 1-bit information is specifically used to indicate whether to switch from the current carrier to the first carrier by bit flipping.
  • the X-bit information is specifically used to indicate whether to switch from the current carrier to the second carrier through bit coding
  • the second The carrier index is a carrier index in the candidate carrier index set associated with the current carrier index in the carrier set information; the X-bit information is also specifically used to indicate the index of the second carrier by bit coding.
  • the X-bit information is configured by the network device through RRC dedicated signaling.
  • the value of X satisfies at least one of the following manners: the value of X is determined by the number of carrier indexes in the candidate carrier index set associated with the index of the current carrier, the value of X and the value of P Values have a mapping relationship.
  • the first indication information is carried in the first downlink control information DCI.
  • the first DCI is a scheduled DCI or a non-scheduled DCI.
  • An embodiment of the present application further provides a chip, wherein the chip includes a processor, configured to call and run a computer program from a memory, so that the device installed with the chip executes the execution of the terminal or network device in the above method embodiments. some or all of the steps described.
  • Embodiments of the present application further provide a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute the terminal as described in the foregoing method embodiments or some or all of the steps described by the network device.
  • the embodiments of the present application further provide a computer program product, wherein the computer program product includes a computer program, and the computer program is operable to cause the computer to execute part or all of the description of the terminal or network device in the foregoing method embodiments step.
  • the computer program product may be a software installation package.
  • the steps of the method or algorithm described in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in RAM, flash memory, ROM, erasable programmable read-only memory (erasable programmable read-only memory, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM), or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in a terminal or network device.
  • the processor and the storage medium may also exist in the terminal or network device as discrete components.
  • the functions described in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website site, computer, server, or data center via wired (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) means To another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, digital video disc (DVD)), or semiconductor media (eg, solid state disk (SSD)), etc. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种载波切换方法与装置、终端和网络设备,应用于非地面网络通信系统,该非地面网络通信系统包括终端和网络设备。该方法包括:网络设备向终端发送第一指示信息;终端获取来自网络设备的第一指示信息,并根据第一指示信息确定是否切换当前载波,当前载波为用于传输第一指示信息的载波,当前载波对应一个波束。可见,本申请实施例中,由于第一指示信息由网络设备配置,并且当前载波对应一个波束,因此通过网络配置实现载波切换管理,再通过载波切换管理实现波束切换管理,从而有利于避免因卫星的运动而导致非地面网络通信的中断,以及提高非地面网络通信的可靠性。

Description

载波切换方法与装置、终端和网络设备 技术领域
本申请涉及通信技术领域,尤其涉及一种载波切换方法与装置、终端和网络设备。
背景技术
目前,第三代合作伙伴计划(3rd generation partnership project,3GPP)正在制定关于非地面网络(non-terrestrial network,NTN)通信的协议标准,其协议标准主要涉及有航天设备(spaceborne vehicle)或者空运设备(airborne vehicle),例如同步地球轨道卫星、近地轨道卫星、高椭圆轨道卫星、高空平台站(high-altitude platform stations,HAPS)等。
NTN通信系统中的卫星通常会在地面上产生一个或多个波束(beam,或者称为beam footprint),并且该一个或多个波束在地面上会形成小区。其中,位于该小区内的终端可以处于该小区的所有波束中任一波束的覆盖范围内。
随着卫星沿着固定的轨道不断运动,该卫星在地面上产生的波束也会随着该卫星的运动而在地面上移动。因此,为了保证终端与该卫星之间的通信连接不中断,终端需要频繁进行波束切换。然而,如何实现NTN通信系统中的波束切换,还需要进一步研究。
发明内容
本申请实施例提供一种载波切换方法与装置、终端和网络设备,以期望通过网络配置实现载波切换管理,再通过载波切换管理实现波束切换管理,有利于避免因卫星的运动而导致非地面网络通信的中断,以及提高非地面网络通信的可靠性。
第一方面,本申请实施例提供一种载波切换方法,应用于非地面网络通信系统中的终端,所述非地面网络通信系统包括所述终端和网络设备;所述方法包括:
获取来自网络设备的第一指示信息;
根据所述第一指示信息确定是否切换当前载波,所述当前载波为用于传输所述第一指示信息的载波,所述当前载波对应一个波束。
第二方面,本申请实施例提供一种载波切换方法,应用于非地面网络通信系统中的网络设备,所述非地面网络通信系统包括所述网络设备和终端;所述方法包括:
向所述终端发送第一指示信息,所述第一指示信息用于指示是否切换当前载波,所述当前载波为用于传输所述第一指示信息的载波,所述当前载波对应一个波束。
第三方面,本申请实施例提供一种载波切换装置,应用于非地面网络通信系统中的终端,所述非地面网络系统包括所述终端和网络设备;所述装置包括处理单元和通信单元,所述处理单元用于:
通过所述通信单元获取来自网络设备的第一指示信息;
根据所述第一指示信息确定是否切换当前载波,所述当前载波为用于传输所述第一指示信息的载波,所述当前载波对应一个波束。
第四方面,本申请实施例提供一种载波切换装置,应用于非地面网络通信系统中的网络设备,所述非地面网络通信系统包括所述网络设备和终端;所述装置包括处理单元和通信单元,所述处理单元用于:
通过所述通信单元向所述终端发送第一指示信息,所述第一指示信息用于指示是否切换当前载波,所述当前载波为用于传输所述第一指示信息的载波,所述当前载波对应一个波束。
第五方面,本申请实施例提供一种终端,包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述一个或多个程序包括用于执行本申请实施例第一方面任一方法中的步骤的指令。
第六方面,本申请实施例提供一种网络设备,包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述一个或多个程序包括用于执行本申请实施例第二方面任一方法中的步骤的指令。
第七方面,本申请实施例提供了一种芯片,包括处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如本申请实施例第一方面或第二方面任一方法中所描述的部分或全部步骤。
第八方面,本申请实施例提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如本申请实施例第一方面或第二方面任一方法中所描述的部分或全部步骤。
第九方面,本申请实施例提供了一种计算机程序,其中,所述计算机程序可操作来使计算机执行如本申请实施例第一方面或第二方面任一方法中所描述的部分或全部步骤。该计算机程序可以为一个软件安装包。
可以看出,本申请实施例中,非地面网络通信系统中的网络设备向非地面网络通信系统中的终端发送第一指示信息;然后,终端获取该第一指示信息,并根据该第一指示信息确定是否切换当前载波,当前载波为用于传输第一指示信息的载波。由于第一指示信息由网络设备配置,并且当前载波对应一个波束,因此通过网络配置实现载波切换管理(即是否切换当前载波),再通过载波切换管理实现波束切换管理(即是否切换当前载波对应的波束),从而有利于避免因卫星的运动而导致非地面网络通信的中断,以及提高非地面网络通信的可靠性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种非地面网络通信系统的架构示意图;
图2是本申请实施例提供的一种具有透明卫星通信系统的架构示意图;
图3是本申请实施例提供的一种陆地网通信系统与非地面网络通信系统之间比较信号接收质量的结构示意图;
图4是本申请实施例提供的一种非地面网络通信系统的架构比较的架构示意图;
图5是本申请实施例提供的一种波束地面分布图的结构示意图;
图6是本申请实施例提供的一种由19个波束形成的地面区域中每个波束的波束编号的结构示意图;
图7是本申请实施例提供的一种载波切换方法的流程示意图;
图8是本申请实施例提供的又一种载波切换方法的流程示意图;
图9是本申请实施例提供的一种非地面网络通信场景的架构示意图;
图10是本申请实施例提供的一种载波切换装置的功能单元组成框图;
图11是本申请实施例提供的又一种载波切换装置的功能单元组成框图;
图12是本申请实施例提供的一种终端的结构示意图;
图13是本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、软件、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。下面结合附图,对本申请实施例进行详细介绍。
本申请实施例的技术方案可以应用于非地面网络(non-terrestrial network,NTN)通信系统中,而NTN通信系统一般采用卫星通信的方式向地面终端提供通信服务。
示例性的,本申请实施例应用的非地面网络通信系统,如图1所示。非地面网络通信系统10可以包括终端110、小区内参考点(reference point)120、卫星130、非地面网络网关(NTN gateway)140和网络设备150。其中,终端110、非地面网络网关140和网络设备150可以位于地球表面,而卫星130位于地球轨道。卫星130可以向信号覆盖的地理区域提供通信服务,并且可以与位于信号覆盖区域内的终端110进行通信。同时,终端110位于某个小区内,并且该小区包括一个小区内参考点120。此外,终端110与卫星130之间的无线通信链路称为服务链路(service link),而卫星130与非地面网络网关(NTN gateway)140之间的无线通信链路称为供给链路(feeder link)。需要说明的是,非地面网络网关(NTN gateway)140与网络设备150可以集成到同一个设备,也可以为分离的不同设备,对此不作具体限制。
本申请实施例结合终端、卫星和网络设备描述了各个实施例。下面对其进行具体介绍。
具体的,本申请实施例中的终端可以是用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、智能终端、无线通信设备、用户代理或用户装置。终端还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP) 电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、中继设备、车载设备、可穿戴设备、物联网设备、下一代通信系统例如NR网络中的终端或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端等,对此不作具体限定。
进一步的,终端可以部署在陆地上,包括室内或室外、手持、穿戴或车载;可以部署在水面上(如轮船等);还可以部署在空中(如飞机、气球和卫星等)。
进一步的,终端可以是手机(mobile phone)、平板电脑、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的车载设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
具体的,本申请实施例中的卫星可以是载有弯管有效载荷(bent pipe payload)或再生有效载荷(regenerative payload)信号发射机的航天器,其通常运行在300至1500km之间的高度的近地轨道(low earth orbit,LEO)、在7000至25000km之间的高度的中地轨道(medium earth orbit,MEO)、在35786km的高度的同步地球轨道(geostationary earth orbit,GEO)或者在400至50000km之间的高度的高椭圆轨道(high elliptical orbit,HEO)。也就是说,卫星按照轨道高度的不同可以为LEO卫星、MEO卫星、GEO卫星或者HEO卫星等。
进一步的,本申请实施例中的卫星发送的信号通常会在以其视场(field of view)为边界的给定服务区域(given service area)上产生一个或多个波束(beam,或者称为beam footprint)。同时,一个波束在地面上的形状可以为椭圆形,而卫星的视场取决于天线和最小仰角等。
具体的,本申请实施例中的非地面网络网关可以是位于地球表面的地球站或网关,并能够提供足够的无线射频(radio frequency,RF)功率和RF灵敏度以连接卫星。同时,非地面网络网关可以是传输网络层(transport network layer,TNL)节点。
具体的,本申请实施例中的网络设备可以是全球移动通讯(global system of mobile communication,GSM)通信系统或者码分多址(code division multiple access,CDMA)通信系统中的基站(base transceiver station,BTS)、宽带码分多址(wideband code division multiple access,WCDMA)通信系统中的基站(nodeB,NB)、长期演进(long term evolution,LTE)通信系统中的演进型基站(evolutional node B,eNB或eNodeB)或者新无线(new radio,NR)通信系统中的基站(gNB)。网络设备还可以是无线局域网WLAN中的接入点(access point,AP)、中继站、未来演进的PLMN网络中的网络设备或者NTN通信系统中的网络设备等。
需要说明的是,在一些网络部署中,gNB可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),而gNB还可以包括有源天线单元(active antenna unit,AAU)。其中,CU可以实现gNB的部分功能,而DU也可以实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC)层和分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能;DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。另外, AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因此,高层信令(如RRC层信令)可以认为是由DU发送的,或者由DU和AAU发送的。可以理解的是,网络设备可以包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,对此不做具体限制。
示例性的,本申请实施例提供一种具有透明卫星(transparent satellite)通信系统的架构示意图,如图2所示。其中,终端、非地面网络网关和gNB位于地球表面,而卫星位于地球轨道。同时,卫星、非地面网络网关和gNB可以作为5G无线接入网(NG-radio access network,NG-RAN),并且NG-RAN通过NG接口连接5G核心网。需要说明的是,卫星有效载荷在上行链路和下行链路方向都实现了频率转换和射频放大器,该卫星对应于模拟RF中继器。此外,不同的透明卫星可以连接到地面上的同一个gNB上。
在对本申请实施例提供的载波切换方法进行详细介绍之前,再对本申请所涉及的相关通信技术进行介绍。
1、窄带物理网通信(narrow band internet of things,NB-IoT)中的多载波
由于NB-IoT单频点小区只有180kHz的带宽,而该带宽上除了窄带主同步信号(narrow-band primary synchronization signal,NPSS)、窄带辅同步信号(narrow-band secondary synchronization signal,NSSS)NSSS和窄带系统信息块(system information block narrow-band,SIB-NB)的开销外,剩余业务信道容量很小,因此为了支持海量终端,需要采用多个频点来提高网络容量。
NB-IoT支持多载波配置,其载波可分为两类:锚定载波(anchor carrier)和非锚定载波(non-anchor carrier)。同时,同一个小区可以包括一个锚定载波和若干个非锚定载波,而每个载波的频谱带宽为180kHz,并且该小区内所有载波的最大频谱跨度不超过20MHz。
锚定载波:多载波小区中有且只有一个载波支持同时承载NPSS、NSSS、窄带物理广播信道(narrow-band physical broadcast channel,NPBCH)、窄带物理下行控制信道(narrow-band physical downlink control channel,NPDCCH)和窄带物理下行共享信道(narrow-band physical downlink share channel,NPDSCH),该载波称为锚定载波。因此,终端可以在锚定载波上监听NPSS、NSSS、NPBCH、NPDCCH和NPDSCH信息。
非锚定载波:多载波小区中可以有若干个只承载NPDCCH、NPDSCH,但不承载NPSS、NSSS和NPBCH的载波,该载波称为非锚定载波。因此,终端可以在非锚定载波上进行数据发送或接收。另外,在终端进入连接态之前,网络会通过随机接入过程中的消息(Msg4)指定一个载波用后续的下行数据传输。当终端处于空闲态时,终端可以在非锚定载波上进行寻呼(paging)的监听。
2、NTN通信系统
在NTN通信系统中,卫星通常会在地面上产生一个或多个波束(beam,或者称为beam footprint),而一个波束在地面上的形状可以为椭圆形。其中,部分卫星(例如LEO卫星)在地面上产生的波束也会随着该卫星在其轨道上的运动而在地面上移动;或者,部分卫星(例如LEO卫星或者GEO卫星)在地面上产生的波束或者小区不会随着该卫星在其轨道上的运动而在地面上移动。
由于卫星相对于地面的距离非常远(例如,GEO卫星是35786km),因此在同一个波束或者小区 的覆盖范围内,不同地理位置的终端(如UE)与卫星之间的传播距离差异较小(即同一个小区的覆盖范围内不同地理位置的终端对应的信号的路损差异较小),进而导致同一个波束/小区的覆盖范围内不同地理位置的终端对应的信号接收质量(包括终端的下行接收质量或者基站的上行接收质量)差异非常小,如图3所示。
在图3中的(a)所示的陆地网通信系统中,同一个小区的覆盖范围内具有不同地理位置的终端3201和终端3202。由于网络设备310到终端3201的传播距离与到终端3202的传播距离之间存在较大差异,因此导致终端3201对应的信号接收质量与终端3202对应的信号接收质量之间存在较大差异。而在图3中的(b)所示的NTN通信系统中,同一个波束/小区的覆盖范围内具有不同地理位置的终端3401和终端3402。由于卫星330到地面的距离非常远,因此卫星330到终端3401的传播距离与到终端3402的传播距离之间存在较小差异,从而导致终端3401对应的信号接收质量与终端3402对应的信号接收质量之间存在较小差异。
3、NTN通信系统的架构
本申请实施例中NTN通信系统的架构主要包括具有透明卫星(transparent satellite)(或称为弯管有效载荷(bent pipe payload))的NTN通信架构(即透明转发模式)和具有再生卫星(regenerative satellite)的NTN通信架构(即再生信号模式),请参阅图4。其中,图4中的(a)示例出具有透明卫星的NTN通信架构,而图4中的(b)示例出具有再生卫星的NTN通信架构。在图4中的(a)中,透明转发模式的卫星410在地面上产生至少一个波束420,并且该至少一个波束420可以在地面上形成一个小区。此时,位于该小区内的终端430可以处于该小区内的所有波束中任一波束的覆盖范围内。同理,在图4中的(b)中,再生信号模式的卫星440在地面上产生至少一个波束450,并且该至少一个波束450可以在地面上形成一个小区。此时,位于该小区内的终端460可以处于该小区内的所有波束中任一波束的覆盖范围内。
4、数据的重复传输
为了保证覆盖范围,现有窄带物联网(narrow band internet of things,NB-IoT)或增强型机器类型通信(enhanced machine-type communication,eMTC)采用了重复传输的技术。其中,针对下行传输的最大重复传输次数是2048次,而针对上行传输的最大重复传输次数为128次。另外,物理下行共享信道(physical downlink share channel,PDSCH)或物理上行共享信道(physical uplink share channel,PUSCH)的重复传输次数可以由其调度的下行控制信息(downlink control information,DCI)动态指示,即DCI存在特定的比特域用于指示PDSCH或PUSCH的重复传输次数。同时,物理下行控制信道(physical downlink control channel,PDCCH)的最大重复次数(即Rmax)可以由RRC信令或者系统信息块(system information block,SIB)半静态配置。
在陆地网通信系统(如图3所示)中,由于同一个小区的覆盖范围内不同地理位置的终端与基站之间的传播距离存在较大差异,因此在终端接收或者发送数据时,位于不同地理位置(比如小区中心或者小区边缘)的终端需要不同的数据的重复传输次数(即PDSCH/PUSCH/PRACH/PDCCH的重复传输次数)。目前,针对陆地网通信中的重复传输次数问题,网络可以通过由调度PDSCH/PUSCH的DCI中的特定比特域动态指示该PDSCH/PUSCH的重复传输次数。
5、波束分布图
NTN通信系统中的卫星通常会在地面上产生一个或多个波束,并且该一个或多个波束在地面上会形成小区。同时,该一个或多个波束之间的波束分布称为波束地面分布图(beam pattern,或者称为beam layout)。
示例性的,请参阅图5和图6。图5示例出一种波束地面分布图的结构示意图,其中,六边形框图用于表示由19个波束形成的地面区域。图6示例出由19个波束形成的地面区域中每个波束的波束编号,并且不同六边形框图之间的波束具有不同的波束编号。
随着卫星沿着固定的轨道不断运动,该卫星在地面上产生的波束也会随着该卫星的运动而在地面上移动。因此,为了保证终端与该卫星之间的通信连接不中断,终端需要频繁进行波束切换。然而,如何实现NTN通信系统中的波束切换,还需要进一步研究。
结合上述描述,本申请实施例提供一种载波切换方法的流程示意图,其应用于非地面网络通信系统,请参阅图7。该方法包括:
S710、网络设备向终端发送第一指示信息。
其中,第一指示信息可以用于指示是否切换当前载波,该当前载波为用于传输第一指示信息的载波,该当前载波对应一个波束。同时,该波束为终端所处服务小区内的所有波束中的波束。
需要说明的是,NTN通信系统中的卫星会在地面上产生一个或多个波束以形成小区,而位于该小区内的终端可以处于该小区内的所有波束中任一波束的覆盖范围内。此时,该小区称为终端所处服务小区。随着该卫星沿着固定的轨道不断运动,该卫星在地面上产生的波束也会随着该卫星的运动而在地面上移动。因此,为了保证终端与该卫星之间的通信连接不中断,终端需要频繁进行波束切换。
另外,由于卫星相对于地面的距离非常远,因此在一段时间内即便终端存在不断运动(即终端的位置不断变化)的情况,该终端与卫星之间的传播距离也变化较小。也就是说,相对于卫星的运动变化,该终端的运动变化较小。基于此,本申请实施例考虑将一段时间内终端的当前位置近似为固定不变,而主要分析由卫星的不断运动而导致波束切换的情况。
为了解决NTN通信系统中的波束切换问题,本申请实施例考虑将波束切换通过载波切换的方式进行波束管理,即小区内的所有波束中的每个波束对应一个或多个载波(即一个载波对应一个波束),并通过载波切换实现波束切换。为此,本申请实施例考虑由网络设备向终端发送第一指示信息,并由终端根据第一指示信息确定是否切换当前载波,从而通过载波切换管理(即是否切换当前载波)实现波束切换管理(即是否切换当前载波对应的波束),有利于避免因卫星的运动而导致NTN网络通信的中断,以及提高NTN网络通信的可靠性。
另外,本申请实施例中的技术方案既适用于透明转发模式也适用于再生信号模式。在透明转发模式下,第一指示信息由位于地面的网络设备发送。在再生信号模式下,由于网络设备位于卫星,因此第一指示信息由位于卫星的网络设备发送。
进一步需要说明的是,基于上述描述,由于本申请实施例考虑一个波束对应一个或多个载波的情况,因此网络设备可以通过载波向终端传输业务数据、RRC专用信令、系统广播信息、下行控制信息(downlink control information,DCI)等,而终端可以在某时刻内通过该载波获取上述数据、信令或信息。为此,本申请实施例考虑将用于传输第一指示信息的载波称为当前载波。
具体的,第一指示信息可以为1比特信息或者X比特信息,X的取值为大于1的整数;其中,1 比特信息可以用于通过比特位取值方式确定是否切换当前载波,或者,1比特信息可以用于通过比特位翻转方式确定是否切换当前载波;X比特信息可以用于通过比特位编码方式确定是否切换当前载波。
其中,X的取值可以由网络设备通过RRC专用信令配置。
需要说明的是,网络设备向终端发送的第一指示信息的长度可以是1比特(bit)或者X比特(bits)。其中,当第一指示信息的长度是1比特时,该第一指示信息可以称为1比特信息,并且该1比特信息的比特位取值方式包括1和0,或者该1比特信息的比特位翻转方式包括比特位翻转(如1转换成0、0转换成1)和比特位未翻转。
当第一指示信息的长度是X比特时,该第一指示信息可以称为X比特信息,并且该X比特信息的比特位编码方式包括X比特位的任意编码组合。例如,当X为2时,2比特信息的比特位编码方式包括00、01、10和11。
为此,在终端获取来自网络设备的第一指示信息之后,终端可以通过第一指示信息中的比特位取值方式来确定是否切换当前载波;或者,终端可以通过第一指示信息中的比特位翻转方式来确定是否切换当前载波;或者,终端可以通过X比特信息中的比特位编码方式确定是否切换当前载波。下面对其进行示例说明。
示例说明,网络设备向终端发送1比特信息。若该1比特信息中的比特位的取值为1,则该1比特信息用于指示终端切换当前载波;若该1比特信息中的比特位的取值为0,则该1比特信息用于指示终端不切换当前载波。或者,若该1比特信息中的比特位的取值为0,则该1比特信息用于指示终端切换当前载波;若该1比特信息中的比特位的取值为1,则该1比特信息用于指示终端不切换当前载波。
示例说明,网络设备向终端发送1比特信息。若该1比特信息中的比特位发生了翻转(如1转换成0、0转换成1),则该1比特信息用于指示终端切换当前载波;若该1比特信息中的比特位未发生翻转,则该1比特信息用于指示终端不切换当前载波。或者,若该1比特信息中的比特位发生了翻转,则该1比特信息用于指示终端不切换当前载波;若该1比特信息中的比特位未发生翻转,则该1比特信息用于指示终端切换当前载波。
示例说明,网络设备向终端发送2比特信息。若该2比特信息中的比特位编码方式为00,则该2比特信息用于指示终端不切换当前载波;若该2比特信息中的比特位编码方式不为00(如01、10或11),则该2比特信息用于指示终端切换当前载波。
具体的,第一指示信息携带在第一DCI中。
可以理解的是,本申请实施例考虑由网络设备通过第一DCI向终端发送第一指示信息。也就是说,网络设备通过DCI所携带的第一指示信息向终端指示是否切换当前载波。另外,本申请实施例中的“第一DCI”、“第二DCI”是用于区别网络设备在不同时刻下发的DCI,并且不同时刻下发的DCI所携带的指示域、指示信息等存在控制用途不同的情况,对此不作具体限制。
需要说明的是,第一指示信息可以为第一DCI携带的一个指示域,该指示域可以用于指示终端是否切换当前载波。另外,该指示域可以为现有标准规定的DCI中新增或特定的一个域。
进一步的,第一DCI可以为调度DCI或者非调度DCI。
需要说明的是,该调度DCI是指携带数据调度信息的DCI,比如用于调度PDSCH或者PUSCH的DCI。此时,该调度DCI中的第一指示信息用于指示终端是否切换当前载波以传输该调度DCI所调度 的数据。也就是说,该调度DCI所调度的数据是否在当前载波上传输。
另外,该非调度DCI是指不携带数据调度信息的DCI。此时,该非调度DCI中的第一指示信息用于指示终端是否切换当前载波以传输数据。
S720、终端获取来自网络设备的第一指示信息。
S730、终端根据第一指示信息确定是否切换当前载波。
可以看出,本申请实施例中,非地面网络通信系统中的网络设备向非地面网络通信系统中的终端发送第一指示信息;然后,终端获取该第一指示信息,并根据该第一指示信息确定是否切换当前载波,当前载波为用于传输第一指示信息的载波。由于第一指示信息由网络设备配置,并且当前载波对应一个波束,从而通过网络配置实现载波切换管理(即是否切换当前载波),再通过载波切换管理实现波束切换管理(即是否切换当前载波对应的波束),有利于避免因卫星的运动而导致非地面网络通信的中断,以及提高非地面网络通信的可靠性。
结合上述描述,本申请实施例考虑终端根据网络设备配置的第一指示信息来确定是否切换当前载波,即终端需要切换或不切换当前载波。然而,在终端需要切换当前载波的情况下,本申请实施例还进一步考虑终端具体由当前载波待切换到哪一个载波的问题。为此,下面将通过图8所述的实施例具体介绍网络设备如何配置候选载波。
与上述实施例一致,本申请实施例提供又一种载波切换方法的流程示意图,其应用于非地面网络通信系统,请参阅图8。该方法包括:
S810、网络设备向终端发送第一配置信息。
其中,第一配置信息可以用于配置待切换的候选载波的索引(index)。
需要说明的是,终端可以通过候选载波的索引直接确定该候选载波。
进一步需要说明的是,在图7所述实施例的基础上,为了进一步解决终端具体由当前载波切换到哪一个载波的问题,本申请实施例考虑先由网络设备向终端配置第一配置信息,再由网络设备向终端发送第一指示信息,最终由终端通过第一配置信息和第一指示信息确定是否切换当前载波,以及将当前载波切换到第一配置信息中的候选载波。
具体的,第一配置信息由网络设备通过RRC专用信令配置。
可以理解的是,本申请实施例考虑由网络设备通过RRC专用信令向终端发送第一配置信息。
具体的,第一配置信息可以包括载波列表信息或者载波集合信息。
其中,载波列表信息由M个载波的索引依次排列组成,M个载波的索引包括当前载波的索引,载波列表信息中的每个载波的索引对应一个波束,M的取值为大于1的整数。
需要说明的是,本申请实施例考虑网络设备先向终端配置由M个载波的索引依次排列组成的载波列表信息,再通过M个载波中的某个载波(即当前载波)向终端传输第一指示信息。另外,由于载波列表信息中的载波之间是按照顺序依次排列的,因此在分析当前载波待切换到哪一个载波时,需要考虑当前载波的索引于载波列表信息的所在位置。
其中,载波集合信息可以包括N个载波的索引和N个载波的索引中的每个载波的索引关联的一个候选载波索引集合,N个载波的索引包括当前载波的索引,载波集合信息中的每个载波的索引对应一个波束N的取值为大于1的整数;候选载波索引集合由N个载波的索引中的P个载波的索引组成,P的 取值小于或等于N的取值。
需要说明的是,与上述载波列表信息不同的是,本申请实施例考虑网络设备先向终端配置N个载波的索引和N个载波的索引中的每个载波的索引关联的一个候选载波索引集合。其中,N个载波的索引中的载波的索引之间以及候选载波索引集合中的载波的索引之间不存在排列顺序。然后,网络设备通过N个载波中的某个载波(即当前载波)向终端传输第一指示信息。另外,由于载波集合信息中的每个载波的索引关联一个候选载波索引集合,因此在分析当前载波待切换到哪一个载波时,需要考虑当前载波的索引所关联的候选载波索引集合内的载波的索引。
下面本申请实施例将具体介绍网络设备所配置的M个载波的索引、N个载波的索引和候选载波索引集合中的P个载波的索引是如何确定的。
在一个可能的示例中,载波列表信息可以满足以下至少一种方式:载波列表信息中的M个载波的索引由终端的当前位置信息和预设卫星星历表确定、载波列表信息中的M的索引个载波之间的排列顺序由终端的当前位置信息和预设卫星星历表确定。
需要说明的是,由于卫星相对于地面的距离非常远,因此在一段时间内即便终端存在不断运动(即终端的位置不断变化)的情况,该终端与卫星之间的传播距离也变化较小。也就是说,相对于卫星的运动变化,该终端的运动变化较小。基于此,本申请实施例考虑将一段时间内终端的当前位置近似为固定不变,而主要分析由卫星的不断运动而导致波束切换的情况。
进一步需要说明的是,终端可以通过自身的全球导航卫星系统(global navigation satellite system,GNSS)计算得到当前位置信息,再将其发送给网络设备。另外,由于卫星具有固定的运行轨迹(可以通过预设卫星星历表确定其运行轨迹),因此本申请实施例考虑由网络设备根据终端的当前位置信息和预设卫星星历表确定载波列表信息中的M个载波的索引,从而建立终端的当前位置以及卫星的运行轨迹与载波列表信息中的载波的索引之间的映射关系。同理,网络设备根据终端的当前位置信息和预设卫星星历表确定载波列表信息中的M个载波的索引之间的排列顺序,从而建立终端的当前位置以及卫星的运行轨迹与载波列表信息中的载波的索引之间的排列顺序的映射关系。下面进行具体示例说明。
示例说明,在图9中,卫星910沿着固定的运行轨迹在地面上依次产生10个波束,并且该10个波束中的每个波束对应一个载波,即10个载波。同时,该10个载波对应的索引依次是C0至C9。此时,终端920的当前位置处于载波索引C3对应的区域,从而卫星910与终端920之间通过载波索引C3(即当前载波的索引)进行通信。由于卫星910将沿着图中所示的“卫星运动方向”进行运行,并且卫星910的运行轨迹可以通过预设卫星星历表确定出,因此卫星910在地面上产生的波束也会随着运行而在地面上移动,如由载波索引C5对应的波束移动到载波索引C8对应的波束,从而网络设备可以根据终端920的当前位置信息(即处于载波索引C3对应的区域)和预设卫星星历表(即卫星910的运行轨迹)确定出载波列表信息为{C1,C3,C5,C8},并通过RRC专用信令将该载波列表信息下发给终端920。
在一个可能的示例中,载波集合信息可以满足以下至少一种方式:载波集合信息中的N个载波的索引由终端的当前位置信息和预设卫星星历表确定、载波集合信息中的候选载波索引集合内的P个载波的索引由N个载波的索引对应的波束的分布确定。
需要说明的是,与上述描述一致,终端可以通过自身的GNSS计算得到当前位置信息,再将其发送给网络设备。然后,网络设备可以根据终端的当前位置信息和预设卫星星历表确定载波集合信息中的 N个载波的索引,从而建立终端的当前位置以及卫星的运行轨迹与载波集合信息中的载波的索引之间的映射关系。同时,相比于上述载波列表信息中的载波的索引,载波集合信息中的载波的索引不考虑排列顺序。
另外,NTN通信系统中的卫星在地面上产生的一个或多个波束之间存在波束分布的情况,而该波束分布称为波束地面分布图。因此,本申请实施例考虑由网络设备根据N个载波的索引对应的波束的分布确定N个载波的索引所关联的候选载波索引集合内的载波的索引。
具体的,P个载波的索引由N个载波的索引对应的波束的分布确定,具体可以包括以下步骤:确定N个载波的索引对应的波束的各自相邻波束,并由各自相邻波束对应的载波组成P个载波的索引。下面进行具体示例说明。
示例说明,在图9中,卫星910沿着固定的运行轨迹在地面上依次产生10个波束,并且该10个波束中的每个波束对应一个载波,即10个载波。此时,终端920的当前位置处于载波索引C3对应的区域,从而卫星910与终端920之间通过载波索引C3(即当前载波的索引)进行通信。然后,网络设备根据终端920的当前位置信息和预设卫星星历表确定出载波索引集合{C3,C4,C5,C6,C7,C8,C9}和载波索引集合中的每个载波索引关联的候选载波索引集合(即载波集合信息)。其中,由于载波索引C3对应的波束其相邻的载波索引有载波索引C0、载波索引C1、载波索引C2、载波索引C4、载波索引C5和载波索引C6,并且卫星910将沿着图中所示的“卫星运动方向”进行运行,因此载波索引C3所关联的候选载波索引集合为{C4,C5,C6}。同理,载波索引C4所关联的候选载波索引集合为{C5,C9},载波索引C5所关联的候选载波索引集合为{C7,C8,C9},依次类推。最后,网络设备通过RRC专用信令将该载波索引集合和该载波索引集合中的每个载波索引所关联的候选载波索引集合下发给终端。
S820、终端获取来自网络设备的第一配置信息。
S830、网络设备向终端发送第一指示信息。
其中,第一指示信息可以用于指示是否切换当前载波,该当前载波为用于传输第一指示信息的载波,该当前载波对应一个波束。同时,该波束为终端所处服务小区内的所有波束中的波束。
需要说明的是,图8所述的实施例与图7所述的实施例一致,因此对于第一指示信息的描述详见图7所述,在此不再赘述。
S840、终端获取来自网络设备的第一指示信息。
具体的,第一指示信息携带在第一DCI中。
进一步的,第一DCI可以为调度DCI或者调度DCI。
S850、终端根据第一配置信息和第一指示信息确定是否由当前载波切换到候选载波。
下面本申请实施例将具体介绍如何根据第一配置信息和第一指示信息确定是否由当前载波切换到候选载波。也就说是,终端如何根据网络设备配置的第一配置信息和下发的第一指示信息确定是否切换当前载波,以及将当前载波待切换到候选载波。
在一个可能的示例中,若第一指示信息为1比特信息,并且候选载波为第一载波,则根据第一配置信息和第一指示信息确定是否由当前载波切换到候选载波,可以包括以下步骤:根据载波列表信息和1比特信息中的比特位取值方式确定是否由当前载波切换到第一载波,第一载波的索引为当前载波的索引于载波列表信息的所在位置的下一个载波索引;或者,根据载波列表信息和1比特信息中的比特位翻转 方式确定是否由当前载波切换到第一载波。
需要说明的是,由于载波列表信息中的载波的索引之间是按照顺序依次排列的,并且该排列顺序是由终端的当前位置信息和预设卫星星历表确定的,因此在分析当前载波待切换到哪一个载波时,不仅需要考虑终端的当前位置以及卫星的运行轨迹与载波列表信息中的载波的索引之间的排列顺序的映射关系,还需要考虑当前载波的索引于载波列表信息的所在位置。基于此,本申请实施例考虑将当前载波待切换到当前载波的索引于载波列表信息的所在位置的下一个载波,从而通过网络配置实现载波切换管理,再通过载波切换管理实现波束切换管理,有利于避免因卫星的运动而导致非地面网络通信的中断,以及提高非地面网络通信的可靠性。
在一个可能的示例中,若第一指示信息为1比特信息,并且所述候选载波为第一载波,则1比特信息具体用于通过比特位取值方式指示是否由当前载波切换到第一载波,所述第一载波的索引为当前载波的索引于载波列表信息的所在位置的下一个载波索引;或者,1比特信息具体用于通过比特位翻转方式指示是否由当前载波切换到第一载波。下面结合图7所述实施例中的1比特信息和图9进行示例说明。
示例说明,网络设备先通过RRC专用信令向终端下发载波列表信息{C1,C3,C5,C8}。然后,网络设备通过RRC专用信息在DCI中向终端配置1比特信息。其中,载波索引C3用于传输该1比特信息。若该1比特信息中的比特位的取值为1,则该1比特信息用于指示终端将载波索引C3对应的载波切换到载波索引C5对应的载波以进行数据传输;若该1比特信息中的比特位的取值为0,则该1比特信息用于指示终端不切换载波索引C3对应的载波。或者,若该1比特信息中的比特位的取值为0,则该1比特信息用于指示终端将载波索引C3对应的载波切换到载波索引C5对应的载波以进行数据传输;若该1比特信息中的比特位的取值为1,则该1比特信息用于指示终端不切换载波索引C3对应的载波。
示例说明,网络设备先通过RRC专用信令向终端下发载波列表信息{C1,C3,C5,C8}。然后,网络设备通过RRC专用信息在DCI中向终端配置1比特信息。其中,载波索引C3用于传输该1比特信息。若该1比特信息中的比特位发生了翻转(如1转换成0、0转换成1),则该1比特信息用于指示终端将将载波索引C3对应的载波切换到载波索引C5对应的载波以进行数据传输;若该1比特信息中的比特位未发生翻转,则该1比特信息用于指示终端不切换载波索引C3对应的载波。或者,若该1比特信息中的比特位发生了翻转,则该1比特信息用于指示终端不切换载波索引C3对应的载波;若该1比特信息中的比特位未发生翻转,则该1比特信息用于指示终端将载波索引C3对应的载波切换到载波索引C5对应的载波以进行数据传输。
在一个可能的示例中,若第一指示信息为X比特信息,并且候选载波为第二载波,则根据第一配置信息和第一指示信息确定是否由当前载波切换到候选载波,可以包括以下步骤:根据载波集合信息和X比特信息中的比特位编码方式确定是否由当前载波切换到第二载波,第二载波的索引为在载波集合信息中的当前载波的索引所关联的候选载波索引集合中的一个载波索引,X比特信息还用于通过比特位编码方式指示第二载波的索引。
需要说明的是,由于载波集合信息中的每个载波关联一个候选载波索引集合,并且载波集合信息中的候选载波索引集合内的载波的索引是由N个载波的索引对应的波束的分布确定,因此在分析当前载波待切换到哪一个载波时,不仅需要考虑波束分布情况,还需要考虑当前载波的索引所关联的候选载波索引集合内的载波的索引。基于此,本申请实施例考虑将当前载波待切换到当前载波的索引所关联的候 选载波索引集合中的一个载波的索引对应的载波,而具有是候选载波索引集合中的哪个载波的索引由X比特信息指示,从而通过网络配置实现载波切换管理,再通过载波切换管理实现波束切换管理,有利于避免因卫星的运动而导致非地面网络通信的中断,以及提高非地面网络通信的可靠性。
具体的,X比特信息由网络设备通过RRC专用信令配置。
可以理解的是,本申请实施例考虑由网络设备通过RRC专用信令在DCI中向终端配置X比特信息。
具体的,X的取值满足以下至少一种方式:X的取值由当前载波的索引所关联的候选载波索引集合内的载波索引个数确定、X的取值与P的取值具有映射关系。
可以理解的是,网络设备可以通过载波集合信息中的候选载波索引集合内的载波索引个数来配置X的取值,从而实现由网络配置X比特信息来指示终端是否切换当前载波,以及具体切换到当前载波的索引所关联的候选载波索引集合中的哪一个载波的索引,避免信令开销过大。同时,X比特信息中可能存在预留比特情况。例如,若当前载波的索引所关联的候选载波索引集合内的载波索引个数为3,则X的取值可以为2;若当前载波的索引所关联的候选载波索引集合内的载波索引个数为5,则X的取值可以为3。此时,该3比特信息中可能存在预留比特的情况。
在一个可能的示例中,若第一指示信息为X比特信息,并且候选载波为第二载波,则X比特信息具体用于通过比特位编码方式指示是否由当前载波切换到第二载波,第二载波的索引为在载波集合信息中的当前载波的索引所关联的候选载波索引集合中的一个载波索引;X比特信息还具体用于通过比特位编码方式指示第二载波的索引。
下面结合图7所述实施例中的X比特信息和图9进行示例说明。
示例说明,网络设备先通过RRC专用信令向终端下发载波索引集合{C3,C4,C5,C6,C7,C8,C9}和载波索引集合中的每个载波索引所关联的候选载波索引集合。其中,载波索引C3所关联的候选载波索引集合为{C4,C5,C6}。然后,网络设备通过RRC专用信令在DCI中向终端配置2比特信息。其中,载波索引C3用于传输该2比特信息。若该2比特信息中的比特位编码方式为00,则该2比特信息用于指示终端不切换载波索引C3对应的载波;若该2比特信息中的比特位编码方式为01,则该2比特信息用于指示终端切换到载波索引C4对应的载波以进行数据传输;若该2比特信息中的比特位编码方式为10,则该2比特信息用于指示终端切换到载波索引C5对应的载波以进行数据传输;若该2比特信息中的比特位编码方式为11,则该2比特信息用于指示终端切换到载波索引C6对应的载波以进行数据传输。
可以看出,本申请实施例中,非地面网络通信系统中的网络设备向非地面网络通信系统中的终端发送第一配置信息;其次,终端获取该第一配置信息;再次,网络设备向终端发送第一指示信息;最后,终端获取该第一指示信息,并根据该第一配置信息和该第一指示信息确定是否切换当前载波,当前载波为用于传输第一指示信息的载波。为了进一步解决终端具体由当前载波切换到哪一个载波(即目标载波)的问题,本申请实施例考虑先由网络设备向终端配置第一配置信息,再由网络设备向终端发送第一指示信息,最终由终端通过第一配置信息和第一指示信息确定是否切换当前载波,以及将当前载波切换到第一配置信息中的目标载波。由于第一配置信息用于配置待切换的候选载波的索引,从而实现由网络向终端配置待切换的候选载波。另外,由于第一配置信息和第一指示信息由网络设备配置,并且当前载波对应一个波束,从而通过网络配置实现载波切换管理(即是否切换当前载波,以及是否由当前载波切换到由第一配置信息配置的候选载波),再通过载波切换管理实现波束切换管理(即是否切换当前载波对应 的波束,以及是否由当前载波对应的波束切换到由第一配置信息配置的候选载波对应的波束),有利于避免因卫星的运动而导致非地面网络通信的中断,以及提高非地面网络通信的可靠性。
上述主要从方法侧中各个网元之间交互的角度对本申请实施例的方案进行了介绍。可以理解的是,终端或网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件与计算机软件的结合形式来实现。某个功能究竟以硬件或计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端或网络设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,只是一种逻辑功能划分,而实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图10提供了一种载波切换装置的功能单元组成框图。载波切换装置1000应用于非地面网络通信系统中的终端,具体包括:处理单元1002和通信单元1003。处理单元1002用于对终端的动作进行控制管理,例如,处理单元1002用于支持终端执行图7或图8中的步骤以及用于本申请所描述的技术方案的其它过程。通信单元1003用于支持终端与非地面网络通信系统中的其他设备之间的通信。载波切换装置1000还可以包括存储单元1001,用于存储终端的程序代码和数据。
其中,处理单元1002可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU)、通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框、模块和电路。处理单元1002也可以是实现计算功能的组合,例如包含一个或多个微处理器组合、DSP和微处理器的组合等等。通信单元1003可以是通信接口、收发器、收发电路等,存储单元1001可以是存储器。当处理单元1002为处理器,通信单元1003为通信接口,存储单元1001为存储器时,本申请实施例所涉及的载波切换装置1000可以为图12所示的终端。
具体实现时,处理单元1002用于执行如上述方法实施例中由终端执行的任一步骤,且在执行诸如发送等数据传输时,可选择的调用通信单元1003来完成相应操作。下面进行具体说明。
处理单元1002用于:获取来自网络设备的第一指示信息;根据第一指示信息确定是否切换当前载波,当前载波为用于传输第一指示信息的载波,当前载波对应一个波束。
需要说明的是,图10所述实施例中各个操作的具体实现可以详见上述图7或图8所示的方法实施例中的描述,在此不再具体赘述。
可以看出,本申请实施例中,通过获取来自网络设备的第一指示信息,并根据该第一指示信息确定是否切换当前载波,当前载波为用于传输第一指示信息的载波。由于第一指示信息由网络设备配置,并且当前载波对应一个波束,从而通过网络配置实现载波切换管理(即是否切换当前载波),再通过载波切换管理实现波束切换管理(即是否切换当前载波对应的波束),有利于避免因卫星的运动而导致非地面网络通信的中断,以及提高非地面网络通信的可靠性。
在一个可能的示例中,第一指示信息为1比特信息或者X比特信息,X的取值为大于1的整数;1比特信息用于通过比特位取值方式指示是否切换当前载波;或者,1比特信息用于通过比特位翻转方式指示是否切换所述当前载波;X比特信息用于通过比特位编码方式指示是否切换所述当前载波。
在一个可能的示例中,在获取来自所述网络设备的第一指示信息之前,处理单元1002还用于:获取来自网络设备的第一配置信息,第一配置信息用于配置待切换的候选载波的索引;在根据第一指示信息确定是否切换当前载波方面,处理单元1002具体用于:根据第一配置信息和第一指示信息确定是否由当前载波切换到候选载波。
在一个可能的示例中,第一配置信息由网络设备通过无线资源控制RRC专用信令配置。
在一个可能的示例中,第一配置信息包括载波列表信息或者载波集合信息;载波列表信息由M个载波的索引依次排列组成,M个载波的索引包括当前载波的索引,载波列表信息中的每个载波的索引对应一个波束,M的取值为大于1的整数;载波集合信息包括N个载波的索引和N个载波的索引中的每个载波的索引关联的一个候选载波索引集合,N个载波的索引包括当前载波的索引,载波集合信息中的每个载波的索引对应一个波束,N的取值为大于1的整数;候选载波索引集合由N个载波的索引中的P个载波的索引组成,P的取值小于或等于N的取值。
在一个可能的示例中,载波列表信息满足以下至少一种方式:载波列表信息中的M个载波的索引由终端的当前位置信息和预设卫星星历表确定、载波列表信息中的M个载波的索引之间的排列顺序由终端的当前位置信息和预设卫星星历表确定;或者,载波集合信息满足以下至少一种方式:载波集合信息中的N个载波的索引由终端的当前位置信息和预设卫星星历表确定、载波集合信息中的候选载波索引集合内的P个载波的索引由N个载波对应的波束的分布确定。
在一个可能的示例中,若第一指示信息为1比特信息,并且候选载波为第一载波,则在根据第一配置信息和第一指示信息确定是否由所述当前载波切换到目标载波方面,处理单元1002具体用于:根据载波列表信息和1比特信息中的比特位取值方式确定是否由当前载波切换到第一载波,第一载波的索引为当前载波的索引于载波列表信息的所在位置的下一个载波索引;或者,根据载波列表信息和1比特信息中的比特位翻转方式确定是否由当前载波切换到第一载波。
在一个可能的示例中,若第一指示信息为X比特信息,并且候选载波为第二载波,则在根据第一配置信息和第一指示信息确定是否由当前载波切换到候选载波方面,处理单元1002具体用于:根据载波集合信息和X比特信息中的比特位编码方式确定是否由当前载波切换到第二载波,第二载波的索引为在载波集合信息中的当前载波的索引所关联的候选载波索引集合中的一个载波索引,X比特信息还用于通过比特位编码方式指示第二载波的索引。
在一个可能的示例中,X比特信息由网络设备通过RRC专用信令配置。
在一个可能的示例中,X的取值满足以下至少一种方式:X的取值由当前载波的索引所关联的候选载波索引集合内的载波索引个数确定、X的取值与P的取值具有映射关系。
在一个可能的示例中,第一指示信息携带在第一下行控制信息DCI中。
在一个可能的示例中,第一DCI为调度DCI或者非调度DCI。
在采用集成的单元的情况下,图11提供了又一种载波切换装置的功能单元组成框图。载波切换装置1100应用于非地面网络通信系统中的网络设备,具体包括:处理单元1102和通信单元1103。处理 单元1102用于对网络设备的动作进行控制管理,例如,处理单元1102用于支持网络设备执行图7或图8中的步骤以及用于本申请所描述的技术方案的其它过程。通信单元1103用于支持网络设备与非地面网络通信系统中的其他设备之间的通信。载波切换装置1100还可以包括存储单元1101,用于存储网络设备的程序代码和数据。
其中,处理单元1102可以是处理器或控制器,例如可以是CPU、DSP、ASIC、FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框、模块和电路。处理单元1102也可以是实现计算功能的组合,例如包含一个或多个微处理器组合、DSP和微处理器的组合等等。通信单元1103可以是通信接口、收发器、收发电路等,存储单元1101可以是存储器。当处理单元1102为处理器,通信单元1103为通信接口,存储单元1101为存储器时,本申请实施例所涉及的载波切换装置1100可以为图13所示的网络设备。
具体实现时,处理单元1102用于执行如上述方法实施例中由网络设备执行的任一步骤,且在执行诸如发送等数据传输时,可选择的调用通信单元1103来完成相应操作。下面进行详细说明。
处理单元1102用于:向终端发送第一指示信息,第一指示信息用于指示是否切换当前载波,当前载波为用于传输第一指示信息的载波,当前载波对应一个波束。
需要说明的是,图11所述实施例中各个操作的具体实现可以详见上述图7、或图8所示的方法实施例中的描述,在此不再具体赘述。
可以看出,本申请实施例中,通过向非地面网络通信系统中的终端发送第一指示信息,第一指示信息用于指示是否切换当前载波,当前载波为用于传输第一指示信息的载波。由于第一指示信息由网络设备配置,并且当前载波对应一个波束,从而通过网络配置实现载波切换管理(即是否切换当前载波),再通过载波切换管理实现波束切换管理(即是否切换当前载波对应的波束),有利于避免因卫星的运动而导致非地面网络通信的中断,以及提高非地面网络通信的可靠性。
在一个可能的示例中,第一指示信息为1比特信息或者X比特信息,X的取值为大于1的整数;1比特信息用于通过比特位取值方式指示是否切换当前载波;或者,1比特信息用于通过比特位翻转方式指示是否切换当前载波;X比特信息用于通过比特位编码方式指示是否切换当前载波。
在一个可能的示例中,在向终端发送的第一指示信息之前,处理单元1102还用于:向终端发送第一配置信息,第一配置信息用于配置待切换的候选载波的索引。
在一个可能的示例中,第一配置信息由网络设备通过无线资源控制RRC专用信令配置。
在一个可能的示例中,第一配置信息包括载波列表信息或者载波集合信息;载波列表信息由M个载波的索引依次排列组成,M个载波的索引包括当前载波的索引,载波列表信息中的每个载波的索引对应一个波束,M的取值为大于1的整数;载波集合信息包括N个载波的索引和N个载波的索引中的每个载波的索引关联的一个候选载波索引集合,N个载波的索引包括当前载波的索引,载波集合信息中的每个载波的索引对应一个波束,N的取值为大于1的整数;候选载波索引集合由N个载波的索引中的P个载波的索引组成,P的取值小于或等于N的取值。
在一个可能的示例中,载波列表信息满足以下至少一种方式:载波列表信息中的M个载波的索引由终端的当前位置信息和预设卫星星历表确定、载波列表信息中的M个载波的索引之间的排列顺序由终端的当前位置信息和预设卫星星历表确定;或者,载波集合信息满足以下至少一种方式:载波集合信 息中的N个载波的索引由终端的当前位置信息和预设卫星星历表确定、载波集合信息中的候选载波索引集合内的P个载波的索引由N个载波的索引对应的波束的分布确定。
在一个可能的示例中,若第一指示信息为1比特信息,并且候选载波为第一载波,则1比特信息具体用于通过比特位取值方式指示是否由当前载波切换到第一载波,第一载波的索引为当前载波的索引于载波列表信息的所在位置的下一个载波索引;或者,1比特信息具体用于通过比特位翻转方式指示是否由当前载波切换到第一载波。
在一个可能的示例中,若第一指示信息为X比特信息,并且候选载波为第二载波,则X比特信息具体用于通过比特位编码方式指示是否由当前载波切换到第二载波,第二载波的索引为在载波集合信息中的当前载波的索引所关联的候选载波索引集合中的一个载波索引;X比特信息还具体用于通过比特位编码方式指示第二载波的索引。
在一个可能的示例中,X比特信息由网络设备通过RRC专用信令配置。
在一个可能的示例中,X的取值满足以下至少一种方式:X的取值由当前载波的索引所关联的候选载波索引集合内的载波索引个数确定、X的取值与P的取值具有映射关系。
在一个可能的示例中,第一指示信息携带在第一下行控制信息DCI中。
在一个可能的示例中,第一DCI为调度DCI或者非调度DCI。
请参阅图12,图12是本申请实施例提供的一种终端的结构示意图。其中,终端1200包括处理器1210、存储器1220、通信接口1230和至少一个用于连接处理器1210、存储器1220、通信接口1230的通信总线。
存储器1220包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器1220用于相关指令及数据。
通信接口1230用于接收和发送数据。
处理器1210可以是一个或多个CPU,在处理器1210是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
终端1200中的处理器1210用于读取存储器1220中存储的一个或多个程序1221以执行以下步骤:获取来自网络设备的第一指示信息;根据第一指示信息确定是否切换当前载波,当前载波为用于传输第一指示信息的载波,当前载波对应一个波束。
需要说明的是,图12所述实施例中各个操作的具体实现可以详见上述图7或图8所示的方法实施例中的描述,在此不再具体赘述。
可以看出,本申请实施例中,通过获取来自网络设备的第一指示信息,并根据该第一指示信息确定是否切换当前载波,当前载波为用于传输第一指示信息的载波。由于第一指示信息由网络设备配置,并且当前载波对应一个波束,从而通过网络配置实现载波切换管理(即是否切换当前载波),再通过载波切换管理实现波束切换管理(即是否切换当前载波对应的波束),有利于避免因卫星的运动而导致非地面网络通信的中断,以及提高非地面网络通信的可靠性。
在一个可能的示例中,第一指示信息为1比特信息或者X比特信息,X的取值为大于1的整数;1比特信息用于通过比特位取值方式指示是否切换当前载波;或者,1比特信息用于通过比特位翻转方式 指示是否切换所述当前载波;X比特信息用于通过比特位编码方式指示是否切换所述当前载波。
在一个可能的示例中,在获取来自所述网络设备的第一指示信息之前,处理器1210还用于:获取来自网络设备的第一配置信息,第一配置信息用于配置待切换的候选载波的索引;在根据第一指示信息确定是否切换当前载波方面,处理器1210具体用于:根据第一配置信息和第一指示信息确定是否由当前载波切换到候选载波。
在一个可能的示例中,第一配置信息由网络设备通过无线资源控制RRC专用信令配置。
在一个可能的示例中,第一配置信息包括载波列表信息或者载波集合信息;载波列表信息由M个载波的索引依次排列组成,M个载波的索引包括当前载波的索引,载波列表信息中的每个载波的索引对应一个波束,M的取值为大于1的整数;载波集合信息包括N个载波的索引和N个载波的索引中的每个载波的索引关联的一个候选载波索引集合,N个载波的索引包括当前载波的索引,载波集合信息中的每个载波的索引对应一个波束,N的取值为大于1的整数;候选载波索引集合由N个载波的索引中的P个载波的索引组成,P的取值小于或等于N的取值。
在一个可能的示例中,载波列表信息满足以下至少一种方式:载波列表信息中的M个载波的索引由终端的当前位置信息和预设卫星星历表确定、载波列表信息中的M个载波的索引之间的排列顺序由终端的当前位置信息和预设卫星星历表确定;或者,载波集合信息满足以下至少一种方式:载波集合信息中的N个载波的索引由终端的当前位置信息和预设卫星星历表确定、载波集合信息中的候选载波索引集合内的P个载波的索引由N个载波对应的波束的分布确定。
在一个可能的示例中,若第一指示信息为1比特信息,并且候选载波为第一载波,则在根据第一配置信息和第一指示信息确定是否由所述当前载波切换到目标载波方面,处理器1210具体用于:根据载波列表信息和1比特信息中的比特位取值方式确定是否由当前载波切换到第一载波,第一载波的索引为当前载波的索引于载波列表信息的所在位置的下一个载波索引;或者,根据载波列表信息和1比特信息中的比特位翻转方式确定是否由当前载波切换到第一载波。
在一个可能的示例中,若第一指示信息为X比特信息,并且候选载波为第二载波,则在根据第一配置信息和第一指示信息确定是否由当前载波切换到候选载波方面,处理器1210具体用于:根据载波集合信息和X比特信息中的比特位编码方式确定是否由当前载波切换到第二载波,第二载波的索引为在载波集合信息中的当前载波的索引所关联的候选载波索引集合中的一个载波索引,X比特信息还用于通过比特位编码方式指示第二载波的索引。
在一个可能的示例中,X比特信息由网络设备通过RRC专用信令配置。
在一个可能的示例中,X的取值满足以下至少一种方式:X的取值由当前载波的索引所关联的候选载波索引集合内的载波索引个数确定、X的取值与P的取值具有映射关系。
在一个可能的示例中,第一指示信息携带在第一下行控制信息DCI中。
在一个可能的示例中,第一DCI为调度DCI或者非调度DCI。
请参阅图13,图13是本申请实施例提供的一种网络设备的结构示意图。其中,网络设备1300包括处理器1310、存储器1320、通信接口1330和至少一个用于连接处理器1310、存储器1320、通信接口1330的通信总线。
存储器1320包括但不限于是RAM、ROM、EPROM或CD-ROM,该存储器1320用于存储相关指 令及数据。
通信接口1330用于接收和发送数据。
处理器1310可以是一个或多个CPU,在处理器1310是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
网络设备1300中的处理器1310用于读取存储器1320中存储的一个或多个程序1321以执行以下步骤:向终端发送第一指示信息,第一指示信息用于指示是否切换当前载波,当前载波为用于传输第一指示信息的载波,当前载波对应一个波束。
需要说明的是,图13所述实施例中各个操作的具体实现可以详见上述图7或图8所示的方法实施例中的描述,在此不再具体赘述。
可以看出,本申请实施例中,通过向非地面网络通信系统中的终端发送第一指示信息,第一指示信息用于指示是否切换当前载波,当前载波为用于传输第一指示信息的载波。由于第一指示信息由网络设备配置,并且当前载波对应一个波束,从而通过网络配置实现载波切换管理(即是否切换当前载波),再通过载波切换管理实现波束切换管理(即是否切换当前载波对应的波束),有利于避免因卫星的运动而导致非地面网络通信的中断,以及提高非地面网络通信的可靠性。
在一个可能的示例中,第一指示信息为1比特信息或者X比特信息,X的取值为大于1的整数;1比特信息用于通过比特位取值方式指示是否切换当前载波;或者,1比特信息用于通过比特位翻转方式指示是否切换当前载波;X比特信息用于通过比特位编码方式指示是否切换当前载波。
在一个可能的示例中,在向终端发送的第一指示信息之前,处理单元1402还用于:向终端发送第一配置信息,第一配置信息用于配置待切换的候选载波的索引。
在一个可能的示例中,第一配置信息由网络设备通过无线资源控制RRC专用信令配置。
在一个可能的示例中,第一配置信息包括载波列表信息或者载波集合信息;载波列表信息由M个载波的索引依次排列组成,M个载波的索引包括当前载波的索引,载波列表信息中的每个载波的索引对应一个波束,M的取值为大于1的整数;载波集合信息包括N个载波的索引和N个载波的索引中的每个载波的索引关联的一个候选载波索引集合,N个载波的索引包括当前载波的索引,载波集合信息中的每个载波的索引对应一个波束,N的取值为大于1的整数;候选载波索引集合由N个载波的索引中的P个载波的索引组成,P的取值小于或等于N的取值。
在一个可能的示例中,载波列表信息满足以下至少一种方式:载波列表信息中的M个载波的索引由终端的当前位置信息和预设卫星星历表确定、载波列表信息中的M个载波的索引之间的排列顺序由终端的当前位置信息和预设卫星星历表确定;或者,载波集合信息满足以下至少一种方式:载波集合信息中的N个载波的索引由终端的当前位置信息和预设卫星星历表确定、载波集合信息中的候选载波索引集合内的P个载波的索引由N个载波的索引对应的波束的分布确定。
在一个可能的示例中,若第一指示信息为1比特信息,并且候选载波为第一载波,则1比特信息具体用于通过比特位取值方式指示是否由当前载波切换到第一载波,第一载波的索引为当前载波的索引于载波列表信息的所在位置的下一个载波索引;或者,1比特信息具体用于通过比特位翻转方式指示是否由当前载波切换到第一载波。
在一个可能的示例中,若第一指示信息为X比特信息,并且候选载波为第二载波,则X比特信息 具体用于通过比特位编码方式指示是否由当前载波切换到第二载波,第二载波的索引为在载波集合信息中的当前载波的索引所关联的候选载波索引集合中的一个载波索引;X比特信息还具体用于通过比特位编码方式指示第二载波的索引。
在一个可能的示例中,X比特信息由网络设备通过RRC专用信令配置。
在一个可能的示例中,X的取值满足以下至少一种方式:X的取值由当前载波的索引所关联的候选载波索引集合内的载波索引个数确定、X的取值与P的取值具有映射关系。
在一个可能的示例中,第一指示信息携带在第一下行控制信息DCI中。
在一个可能的示例中,第一DCI为调度DCI或者非调度DCI。
本申请实施例还提供了一种芯片,其中,该芯片包括处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述方法实施例中终端或网络设备所描述的部分或全部步骤。
本申请实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如上述方法实施例中终端或网络设备所描述的部分或全部步骤。
本申请实施例还提供了一种计算机程序产品,其中,所述计算机程序产品包括计算机程序,所述计算机程序可操作来使计算机执行如上述方法实施例中终端或网络设备所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
本申请实施例所描述的方法或者算法的步骤可以以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于终端或网络设备中。当然,处理器和存储介质也可以作为分立组件存在于终端或网络设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输。例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (52)

  1. 一种载波切换方法,其特征在于,应用于非地面网络通信系统中的终端,所述非地面网络通信系统包括所述终端和网络设备;所述方法包括:
    获取来自所述网络设备的第一指示信息;
    根据所述第一指示信息确定是否切换当前载波,所述当前载波为用于传输所述第一指示信息的载波,所述当前载波对应一个波束。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息为1比特信息或者X比特信息,所述X的取值为大于1的整数;
    所述1比特信息用于通过比特位取值方式指示是否切换所述当前载波;或者,所述1比特信息用于通过比特位翻转方式指示是否切换所述当前载波;
    所述X比特信息用于通过比特位编码方式指示是否切换所述当前载波。
  3. 根据权利要求2所述的方法,其特征在于,在所述获取来自所述网络设备的第一指示信息之前,所述方法还包括:
    获取来自所述网络设备的第一配置信息,所述第一配置信息用于配置待切换的候选载波的索引;
    所述根据所述第一指示信息确定是否切换当前载波,包括:
    根据所述第一配置信息和所述第一指示信息确定是否由所述当前载波切换到所述候选载波。
  4. 根据权利要求3所述的方法,其特征在于,所述第一配置信息由所述网络设备通过无线资源控制RRC专用信令配置。
  5. 根据权利要求3所述的方法,其特征在于,所述第一配置信息包括载波列表信息或者载波集合信息;
    所述载波列表信息由M个载波的索引依次排列组成,所述M个载波的索引包括所述当前载波的索引,所述载波列表信息中的每个载波的索引对应一个波束,所述M的取值为大于1的整数;
    所述载波集合信息包括N个载波的索引和所述N个载波的索引中的每个载波的索引关联的一个候选载波索引集合,所述N个载波的索引包括所述当前载波的索引,所述载波集合信息中的每个载波的索引对应一个波束,所述N的取值为大于1的整数;
    所述候选载波索引集合由所述N个载波的索引中的P个载波的索引组成,所述P的取值小于或等于所述N的取值。
  6. 根据权利要求5所述的方法,其特征在于,所述载波列表信息满足以下至少一种方式:所述载波列表信息中的所述M个载波的索引由所述终端的当前位置信息和预设卫星星历表确定、所述载波列表信息中的所述M个载波的索引之间的排列顺序由所述终端的当前位置信息和所述预设卫星星历表确定;或者,
    所述载波集合信息满足以下至少一种方式:所述载波集合信息中的所述N个载波的索引由所述终端的当前位置信息和所述预设卫星星历表确定、所述载波集合信息中的所述候选载波索引集合内的所述P个载波的索引由所述N个载波的索引对应的波束的分布确定。
  7. 根据权利要求5所述的方法,其特征在于,若所述第一指示信息为所述1比特信息,并且所述候选载波为第一载波,则所述根据所述第一配置信息和所述第一指示信息确定是否由所述当前载波切换 到所述目标载波,包括:
    根据所述载波列表信息和所述1比特信息中的比特位取值方式确定是否由所述当前载波切换到所述第一载波,所述第一载波的索引为所述当前载波的索引于所述载波列表信息的所在位置的下一个载波索引;或者,
    根据所述载波列表信息和所述1比特信息中的比特位翻转方式确定是否由所述当前载波切换到所述第一载波。
  8. 根据权利要求5所述的方法,其特征在于,若所述第一指示信息为所述X比特信息,并且所述候选载波为第二载波,则所述根据所述第一配置信息和所述第一指示信息确定是否由所述当前载波切换到所述候选载波,包括:
    根据所述载波集合信息和所述X比特信息中的比特位编码方式确定是否由所述当前载波切换到所述第二载波,所述第二载波的索引为在所述载波集合信息中的所述当前载波的索引所关联的所述候选载波索引集合中的一个载波索引,所述X比特信息还用于通过比特位编码方式指示所述第二载波的索引。
  9. 根据权利要求8所述的方法,其特征在于,所述X比特信息由所述网络设备通过RRC专用信令配置。
  10. 根据权利要求8所述的方法,其特征在于,所述X的取值满足以下至少一种方式:所述X的取值由所述当前载波的索引所关联的所述候选载波索引集合内的载波索引个数确定、所述X的取值与所述P的取值具有映射关系。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述第一指示信息携带在第一下行控制信息DCI中。
  12. 根据权利要求11所述的方法,其特征在于,所述第一DCI为调度DCI或者非调度DCI。
  13. 一种载波切换方法,其特征在于,应用于非地面网络通信系统中的网络设备,所述非地面网络通信系统包括所述网络设备和终端;所述方法包括:
    向所述终端发送第一指示信息,所述第一指示信息用于指示是否切换当前载波,所述当前载波为用于传输所述第一指示信息的载波,所述当前载波对应一个波束。
  14. 根据权利要求13所述的方法,其特征在于,所述第一指示信息为1比特信息或者X比特信息,所述X的取值为大于1的整数;
    所述1比特信息用于通过比特位取值方式指示是否切换所述当前载波;或者,所述1比特信息用于通过比特位翻转方式指示是否切换所述当前载波;
    所述X比特信息用于通过比特位编码方式指示是否切换所述当前载波。
  15. 根据权利要求14所述的方法,其特征在于,在所述向所述终端发送的第一指示信息之前,所述方法还包括:
    向所述终端发送第一配置信息,所述第一配置信息用于配置待切换的候选载波的索引。
  16. 根据权利要求15所述的方法,其特征在于,所述第一配置信息由所述网络设备通过无线资源控制RRC专用信令配置。
  17. 根据权利要求15所述的方法,其特征在于,所述第一配置信息包括载波列表信息或者载波集合信息;
    所述载波列表信息由M个载波的索引依次排列组成,所述M个载波的索引包括所述当前载波的索引,所述载波列表信息中的每个载波的索引对应一个波束,所述M的取值为大于1的整数;
    所述载波集合信息包括N个载波的索引和所述N个载波的索引中的每个载波的索引关联的一个候选载波索引集合,所述N个载波的索引包括所述当前载波的索引,所述载波集合信息中的每个载波的索引对应一个波束,所述N的取值为大于1的整数;
    所述候选载波索引集合由所述N个载波的索引中的P个载波的索引组成,所述P的取值小于或等于所述N的取值。
  18. 根据权利要求17所述的方法,其特征在于,所述载波列表信息满足以下至少一种方式:所述载波列表信息中的所述M个载波的索引由所述终端的当前位置信息和预设卫星星历表确定、所述载波列表信息中的所述M个载波的索引之间的排列顺序由所述终端的当前位置信息和所述预设卫星星历表确定;或者,
    所述载波集合信息满足以下至少一种方式:所述载波集合信息中的所述N个载波的索引由所述终端的当前位置信息和所述预设卫星星历表确定、所述载波集合信息中的所述候选载波索引集合内的所述P个载波的索引由所述N个载波的索引对应的波束的分布确定。
  19. 根据权利要求17所述的方法,其特征在于,若所述第一指示信息为1比特信息,并且所述候选载波为第一载波,则所述1比特信息具体用于通过比特位取值方式指示是否由所述当前载波切换到所述第一载波,所述第一载波的索引为所述当前载波的索引于所述载波列表信息的所在位置的下一个载波索引;或者,
    所述1比特信息具体用于通过比特位翻转方式指示是否由所述当前载波切换到所述第一载波。
  20. 根据权利要求17所述的方法,其特征在于,若所述第一指示信息为X比特信息,并且所述候选载波为第二载波,则所述X比特信息具体用于通过比特位编码方式指示是否由所述当前载波切换到所述第二载波,所述第二载波的索引为在所述载波集合信息中的所述当前载波的索引所关联的所述候选载波索引集合中的一个载波索引;
    所述X比特信息还具体用于通过比特位编码方式指示所述第二载波的索引。
  21. 根据权利要求20所述的方法,其特征在于,所述X比特信息由所述网络设备通过RRC专用信令配置。
  22. 根据权利要求20所述的方法,其特征在于,所述X的取值满足以下至少一种方式:所述X的取值由所述当前载波的索引所关联的所述候选载波索引集合内的载波索引个数确定、所述X的取值与所述P的取值具有映射关系。
  23. 根据权利要求13-22任一项所述的方法,其特征在于,所述第一指示信息携带在第一下行控制信息DCI中。
  24. 根据权利要求23所述的方法,其特征在于,所述第一DCI为调度DCI或者非调度DCI。
  25. 一种载波切换装置,其特征在于,应用于非地面网络通信系统中的终端,所述非地面网络通信系统包括所述终端和网络设备;所述装置包括处理单元和通信单元,所述处理单元用于:
    通过所述通信单元获取来自所述网络设备的第一指示信息;
    根据所述第一指示信息确定是否切换当前载波,所述当前载波为用于传输所述第一指示信息的载波, 所述当前载波对应一个波束。
  26. 根据权利要求25所述的装置,其特征在于,所述第一指示信息为1比特信息或者X比特信息,所述X的取值为大于1的整数;
    所述1比特信息用于通过比特位取值方式指示是否切换所述当前载波;或者,所述1比特信息用于通过比特位翻转方式指示是否切换所述当前载波;
    所述X比特信息用于通过比特位编码方式指示是否切换所述当前载波。
  27. 根据权利要求26所述的装置,其特征在于,在所述获取来自所述网络设备的第一指示信息之前,所述处理单元还用于:
    获取来自所述网络设备的第一配置信息,所述第一配置信息用于配置待切换的候选载波的索引;
    所述根据所述第一指示信息确定是否切换当前载波,包括:
    根据所述第一配置信息和所述第一指示信息确定是否由所述当前载波切换到所述候选载波。
  28. 根据权利要求27所述的装置,其特征在于,所述第一配置信息由所述网络设备通过无线资源控制RRC专用信令配置。
  29. 根据权利要求27所述的装置,其特征在于,所述第一配置信息包括载波列表信息或者载波集合信息;
    所述载波列表信息由M个载波的索引依次排列组成,所述M个载波的索引包括所述当前载波的索引,所述载波列表信息中的每个载波的索引对应一个波束,所述M的取值为大于1的整数;
    所述载波集合信息包括N个载波的索引和所述N个载波的索引中的每个载波的索引关联的一个候选载波索引集合,所述N个载波的索引包括所述当前载波的索引,所述载波集合信息中的每个载波的索引对应一个波束,所述N的取值为大于1的整数;
    所述候选载波索引集合由所述N个载波的索引中的P个载波的索引组成,所述P的取值小于或等于所述N的取值。
  30. 根据权利要求29所述的装置,其特征在于,所述载波列表信息满足以下至少一种方式:所述载波列表信息中的所述M个载波的索引由所述终端的当前位置信息和预设卫星星历表确定、所述载波列表信息中的所述M个载波的索引之间的排列顺序由所述终端的当前位置信息和所述预设卫星星历表确定;或者,
    所述载波集合信息满足以下至少一种方式:所述载波集合信息中的所述N个载波的索引由所述终端的当前位置信息和所述预设卫星星历表确定、所述载波集合信息中的所述候选载波索引集合内的所述P个载波的索引由所述N个载波的索引对应的波束的分布确定。
  31. 根据权利要求29所述的装置,其特征在于,若所述第一指示信息为所述1比特信息,并且所述候选载波为第一载波,则在所述根据所述第一配置信息和所述第一指示信息确定是否由所述当前载波切换到所述目标载波方面,所述处理单元用于:
    根据所述载波列表信息和所述1比特信息中的比特位取值方式确定是否由所述当前载波切换到所述第一载波,所述第一载波的索引为所述当前载波的索引于所述载波列表信息的所在位置的下一个载波索引;或者,
    根据所述载波列表信息和所述1比特信息中的比特位翻转方式确定是否由所述当前载波切换到所 述第一载波。
  32. 根据权利要求29所述的装置,其特征在于,若所述第一指示信息为所述X比特信息,并且所述候选载波为第二载波,则在所述根据所述第一配置信息和所述第一指示信息确定是否由所述当前载波切换到所述候选载波方面,所述处理单元用于:
    根据所述载波集合信息和所述X比特信息中的比特位编码方式确定是否由所述当前载波切换到所述第二载波,所述第二载波的索引为在所述载波集合信息中的所述当前载波的索引所关联的所述候选载波索引集合中的一个载波索引,所述X比特信息还用于通过比特位编码方式指示所述第二载波的索引。
  33. 根据权利要求32所述的装置,其特征在于,所述X比特信息由所述网络设备通过RRC专用信令配置。
  34. 根据权利要求32所述的装置,其特征在于,所述X的取值满足以下至少一种方式:所述X的取值由所述当前载波的索引所关联的所述候选载波索引集合内的载波索引个数确定、所述X的取值与所述P的取值具有映射关系。
  35. 根据权利要求25-34任一项所述的装置,其特征在于,所述第一指示信息携带在第一下行控制信息DCI中。
  36. 根据权利要求35所述的装置,其特征在于,所述第一DCI为调度DCI或者非调度DCI。
  37. 一种载波切换装置,其特征在于,应用于非地面网络通信系统中的网络设备,所述非地面网络通信系统包括所述网络设备和终端;所述装置包括处理单元和通信单元,所述处理单元用于:
    通过所述通信单元向所述终端发送第一指示信息,所述第一指示信息用于指示是否切换当前载波,所述当前载波为用于传输所述第一指示信息的载波,所述当前载波对应一个波束。
  38. 根据权利要求37所述的装置,其特征在于,所述第一指示信息为1比特信息或者X比特信息,所述X的取值为大于1的整数;
    所述1比特信息用于通过比特位取值方式指示是否切换所述当前载波;或者,所述1比特信息用于通过比特位翻转方式指示是否切换所述当前载波;
    所述X比特信息用于通过比特位编码方式指示是否切换所述当前载波。
  39. 根据权利要求38所述的装置,其特征在于,在所述向所述终端发送的第一指示信息之前,所述处理单元还用于:
    向所述终端发送第一配置信息,所述第一配置信息用于配置待切换的候选载波的索引。
  40. 根据权利要求39所述的装置,其特征在于,所述第一配置信息由所述网络设备通过无线资源控制RRC专用信令配置。
  41. 根据权利要求39所述的装置,其特征在于,所述第一配置信息包括载波列表信息或者载波集合信息;
    所述载波列表信息由M个载波的索引依次排列组成,所述M个载波的索引包括所述当前载波的索引,所述载波列表信息中的每个载波的索引对应一个波束,所述M的取值为大于1的整数;
    所述载波集合信息包括N个载波的索引和所述N个载波的索引中的每个载波的索引关联的一个候选载波索引集合,所述N个载波的索引包括所述当前载波的索引,所述载波集合信息中的每个载波的索引对应一个波束,所述N的取值为大于1的整数;
    所述候选载波索引集合由所述N个载波的索引中的P个载波的索引组成,所述P的取值小于或等于所述N的取值。
  42. 根据权利要求41所述的装置,其特征在于,所述载波列表信息满足以下至少一种方式:所述载波列表信息中的所述M个载波的索引由所述终端的当前位置信息和预设卫星星历表确定、所述载波列表信息中的所述M个载波的索引之间的排列顺序由所述终端的当前位置信息和所述预设卫星星历表确定;或者,
    所述载波集合信息满足以下至少一种方式:所述载波集合信息中的所述N个载波的索引由所述终端的当前位置信息和所述预设卫星星历表确定、所述载波集合信息中的所述候选载波索引集合内的所述P个载波的索引由所述N个载波的索引对应的波束的分布确定。
  43. 根据权利要求41所述的装置,其特征在于,若所述第一指示信息为1比特信息,并且所述候选载波为第一载波,则所述1比特信息具体用于通过比特位取值方式指示是否由所述当前载波切换到所述第一载波,所述第一载波的索引为所述当前载波的索引于所述载波列表信息的所在位置的下一个载波索引;或者,
    所述1比特信息具体用于通过比特位翻转方式指示是否由所述当前载波切换到所述第一载波。
  44. 根据权利要求41所述的装置,其特征在于,若所述第一指示信息为X比特信息,并且所述候选载波为第二载波,则所述X比特信息具体用于通过比特位编码方式指示是否由所述当前载波切换到所述第二载波,所述第二载波的索引为在所述载波集合信息中的所述当前载波的索引所关联的所述候选载波索引集合中的一个载波索引;
    所述X比特信息还具体用于通过比特位编码方式指示所述第二载波的索引。
  45. 根据权利要求44所述的装置,其特征在于,所述X比特信息由所述网络设备通过RRC专用信令配置。
  46. 根据权利要求44所述的装置,其特征在于,所述X的取值满足以下至少一种方式:所述X的取值由所述当前载波的索引所关联的所述候选载波索引集合内的载波索引个数确定、所述X的取值与所述P的取值具有映射关系。
  47. 根据权利要求37-46任一项所述的装置,其特征在于,所述第一指示信息携带在第一下行控制信息DCI中。
  48. 根据权利要求47所述的装置,其特征在于,所述第一DCI为调度DCI或者非调度DCI。
  49. 一种终端,其特征在于,包括处理器、存储器、通信接口以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述一个或多个程序包括用于执行如权利要求1-12任一项所述的方法中的步骤的指令。
  50. 一种网络设备,其特征在于,包括处理器、存储器、通信接口以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述一个或多个程序包括用于执行如权利要求13-24任一项所述的方法中的步骤的指令。
  51. 一种计算机可读存储介质,其特征在于,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-12或13-24中任一项所述的方法。
  52. 一种芯片,包括处理器,其中,所述处理器执行权利要求1-12或13-24中任一项所述方法的 步骤。
PCT/CN2021/133751 2020-12-25 2021-11-27 载波切换方法与装置、终端和网络设备 WO2022135053A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011573922.3 2020-12-25
CN202011573922.3A CN114679245A (zh) 2020-12-25 2020-12-25 载波切换方法与装置、终端和网络设备

Publications (1)

Publication Number Publication Date
WO2022135053A1 true WO2022135053A1 (zh) 2022-06-30

Family

ID=82069565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133751 WO2022135053A1 (zh) 2020-12-25 2021-11-27 载波切换方法与装置、终端和网络设备

Country Status (2)

Country Link
CN (1) CN114679245A (zh)
WO (1) WO2022135053A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200313755A1 (en) * 2019-03-28 2020-10-01 Mediatek Inc. Assistance Information For Doppler Compensation In Non-Terrestrial Networks
CN111817835A (zh) * 2020-06-02 2020-10-23 中国信息通信研究院 一种波束切换指示方法、设备和系统
WO2020220871A1 (zh) * 2019-04-30 2020-11-05 大唐移动通信设备有限公司 一种波束切换方法和设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019210512A1 (zh) * 2018-05-04 2019-11-07 南通朗恒通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置
US20220086713A1 (en) * 2019-01-11 2022-03-17 Telefonaktiebolaget Lm Ericsson (Publ) System and method for facilitating index-based positioning in a non-terrestrial network
WO2020220309A1 (zh) * 2019-04-30 2020-11-05 Oppo广东移动通信有限公司 用于小区切换的方法及设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200313755A1 (en) * 2019-03-28 2020-10-01 Mediatek Inc. Assistance Information For Doppler Compensation In Non-Terrestrial Networks
WO2020220871A1 (zh) * 2019-04-30 2020-11-05 大唐移动通信设备有限公司 一种波束切换方法和设备
CN111817835A (zh) * 2020-06-02 2020-10-23 中国信息通信研究院 一种波束切换指示方法、设备和系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Summary #3 of 8.4.4 Other Aspects of NR-NTN", 3GPP DRAFT; R1-2009581, vol. RAN WG1, 10 November 2020 (2020-11-10), pages 1 - 47, XP051952862 *
SPREADTRUM COMMUNICATIONS: "Consideration on other design aspects for IOT NTN ", 3GPP TSG RAN WG1 MEETING #104B-E, E-MEETING, APRIL 12TH – APRIL 20TH, 2021; R1-2102476, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. R1-2102476, 2 April 2021 (2021-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 3, XP009537786 *
SPREADTRUM COMMUNICATIONS: "Consideration on other design aspects for IOT NTN for IOT NTN", 3GPP DRAFT; R1-2104451, vol. RAN WG1, 11 May 2021 (2021-05-11), pages 1 - 3, XP052006195 *
SPREADTRUM COMMUNICATIONS: "Consideration on other design aspects for IOT NTN", 3GPP DRAFT; R1-2100813, vol. RAN WG1, 18 January 2021 (2021-01-18), pages 1 - 3, XP051970550 *

Also Published As

Publication number Publication date
CN114679245A (zh) 2022-06-28

Similar Documents

Publication Publication Date Title
CN114614875B (zh) 重复传输次数确定方法与装置、终端和网络设备
WO2022135052A1 (zh) 无线通信方法与装置、终端和网络设备
US20230063901A1 (en) Sidelink feedback method and terminal device
CN114339999A (zh) 非地面网络通信方法与装置、终端和网络设备
CN116235548A (zh) 一种小区测量方法、电子设备及存储介质
CN113475024B (zh) 通信方法、装置、设备、系统及存储介质
US20220124669A1 (en) Communication method and apparatus, device, system, and storage medium
WO2022121680A1 (zh) 窗口偏移量确定方法与装置、终端和网络设备
WO2022135051A1 (zh) 跨载波数据传输方法与装置、终端和网络设备
WO2022021130A1 (zh) 选择初始带宽部分bwp的方法、终端设备和网络设备
WO2022214062A1 (zh) Pdcch监听方法与装置、终端和网络设备
WO2023116335A1 (zh) 一种通信方法及装置
WO2022135053A1 (zh) 载波切换方法与装置、终端和网络设备
WO2023273869A1 (zh) 信道状态信息报告的优先级确定方法与装置、相关设备
WO2022036612A1 (zh) 中继节点切换方法、终端设备和网络设备
WO2024016238A1 (zh) 无线通信的方法及装置
WO2022236574A1 (zh) 时域参数确定方法、终端设备及网络设备
WO2023138624A1 (zh) 通信方法与装置、终端设备
WO2024016836A1 (zh) 一种通信方法及装置
WO2023004532A1 (zh) 接入控制方法、终端及网络设备
WO2024125370A1 (zh) 通信方法和通信装置
WO2022237763A1 (zh) 信道监听方法与装置、终端和网络设备
CN114788362B (zh) 媒体接入控制层控制单元生效时间的确定方法及相关产品
WO2023230806A1 (zh) 无线通信的方法及设备
WO2024021705A1 (zh) 一种定位方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909052

Country of ref document: EP

Kind code of ref document: A1