WO2019210512A1 - 一种被用于无线通信的通信节点中的方法和装置 - Google Patents

一种被用于无线通信的通信节点中的方法和装置 Download PDF

Info

Publication number
WO2019210512A1
WO2019210512A1 PCT/CN2018/085623 CN2018085623W WO2019210512A1 WO 2019210512 A1 WO2019210512 A1 WO 2019210512A1 CN 2018085623 W CN2018085623 W CN 2018085623W WO 2019210512 A1 WO2019210512 A1 WO 2019210512A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
information
wireless signal
domain resource
frequency
Prior art date
Application number
PCT/CN2018/085623
Other languages
English (en)
French (fr)
Inventor
刘铮
张晓博
杨林
Original Assignee
南通朗恒通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通朗恒通信技术有限公司 filed Critical 南通朗恒通信技术有限公司
Priority to PCT/CN2018/085623 priority Critical patent/WO2019210512A1/zh
Priority to CN201880092795.XA priority patent/CN112020848B/zh
Publication of WO2019210512A1 publication Critical patent/WO2019210512A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present application relates to a transmission scheme in a wireless communication system, and more particularly to a method and apparatus for supporting different RAT (Radio Access Technology) multiplex transmission.
  • RAT Radio Access Technology
  • NB-IoT Near Band Internet of Things
  • 3GPP 3rd Generation Partner Project
  • eMTC Enhanced Machine Type Communication
  • the NB-IoT system of Rel-13 and the eMTC system of Rel-13 are enhanced in 3GPP Rel-14.
  • An important aspect of NB-IoT is to give non-anchor physical resource blocks more functions, such as support for paging channel transmission, support for random access channel transmission, etc., and introduces positioning and multicast functions.
  • Further enhancements to NB-IoT in 3GPP Rel-15 include reduced power consumption, enhanced measurement accuracy, and introduction of specialized scheduling requests.
  • the NB-IoT and eMTC systems are expected to coexist with the 5G NR system for a long time.
  • the existing NB-IoT and eMTC systems can coexist well with the LTE system.
  • the NB-IoT supports the In-band Operation Mode and the Guard-band Operation Mode. Smooth coexistence and resource reuse of LTE systems.
  • the eMTC system is attached to the LTE system from the beginning of design, and needs to use LTE synchronization signals to work properly.
  • NB-IoT and eMTC need to be able to achieve smooth coexistence with 5G NR due to their long-term existence.
  • the present application provides a solution to the problem that the NB-IoT and the eMTC coexist with the 5G NR, or any two different RATs coexist, and in the case of no conflict, the UE (User Equipment, User Equipment) in the present application
  • the UE User Equipment
  • the embodiments and embodiments can be applied to a base station and vice versa. Further, the features of the embodiments and the embodiments of the present application may be combined with each other arbitrarily without conflict.
  • the features in the embodiments and embodiments in the quipment, user equipment can be applied to the base station and vice versa.
  • the present application discloses a method in a first type of communication node for wireless communication, which includes:
  • the frequency domain resource occupied by the first wireless signal belongs to a first carrier, and the frequency domain resource occupied by the second wireless signal belongs to a second carrier, and the characteristic frequency of the first carrier and the second carrier.
  • the first carrier and the second carrier are non-orthogonal in the frequency domain; the first wireless signal and the second wireless signal are transmitted in the same serving cell; the first information is used Determining the second carrier; the first information is transmitted over an air interface.
  • the conversion of the first carrier to the second carrier supports a RAT-based transmission smoothing multiplexing (embedded in-band) into a carrier of another RAT, thereby reducing the pair
  • a RAT-based transmission smoothing multiplexing embedded in-band
  • the first wireless signal is transmitted in the first carrier, which ensures backward compatibility while providing the possibility of carrier conversion.
  • the above method is characterized by further comprising:
  • the second information is used to indicate at least one of the first carrier, the frequency domain resource occupied by the first wireless signal, and the time domain resource occupied by the first wireless signal.
  • the third information is used to indicate at least one of ⁇ frequency domain resources occupied by the second wireless signal, time domain resources occupied by the second wireless signal ⁇ ; the second information and the third Information is transmitted over the air interface.
  • the method is characterized in that: the frequency domain resources included in the first carrier and the second carrier all belong to a third carrier, and there is a wireless signal transmitted in the third carrier.
  • the second wireless signals are respectively transmitted by using different wireless access technologies.
  • the foregoing method is characterized in that the time domain resource occupied by the second wireless signal belongs to a target time domain resource pool, and the time domain resource occupied by the first wireless signal includes the target time domain.
  • the time domain resource outside the resource pool, the first information is also used to determine the target time domain resource pool.
  • the method is characterized in that a frequency domain interval between a characteristic frequency of the first carrier and a characteristic frequency of the second carrier belongs to one of X candidate frequency intervals, the X Is a positive integer, the first information indicating a frequency interval between a characteristic frequency domain of the first carrier and a characteristic frequency of the second carrier in the X candidate frequency intervals.
  • the above method is characterized by further comprising:
  • the fourth information is used to determine a characteristic frequency of the first carrier, and the fourth information is transmitted through the air interface.
  • the present application discloses a method in a second type of communication node for wireless communication, which includes:
  • the frequency domain resource occupied by the first wireless signal belongs to a first carrier, and the frequency domain resource occupied by the second wireless signal belongs to a second carrier, and the characteristic frequency of the first carrier and the second carrier.
  • the first carrier and the second carrier are non-orthogonal in the frequency domain; the first wireless signal and the second wireless signal are transmitted in the same serving cell; the first information is used Determining the second carrier; the first information is transmitted over an air interface.
  • the above method is characterized by further comprising:
  • the second information is used to indicate at least one of the first carrier, the frequency domain resource occupied by the first wireless signal, and the time domain resource occupied by the first wireless signal.
  • the third information is used to indicate at least one of ⁇ frequency domain resources occupied by the second wireless signal, time domain resources occupied by the second wireless signal ⁇ ; the second information and the third Information is transmitted over the air interface.
  • the method is characterized in that: the frequency domain resources included in the first carrier and the second carrier all belong to a third carrier, and there is a wireless signal transmitted in the third carrier.
  • the second wireless signals are respectively transmitted by using different wireless access technologies.
  • the foregoing method is characterized in that the time domain resource occupied by the second wireless signal belongs to a target time domain resource pool, and the time domain resource occupied by the first wireless signal includes the target time domain.
  • the time domain resource outside the resource pool, the first information is also used to determine the target time domain resource pool.
  • the method is characterized in that a frequency domain interval between a characteristic frequency of the first carrier and a characteristic frequency of the second carrier belongs to one of X candidate frequency intervals, the X Is a positive integer, the first information indicating a frequency interval between a characteristic frequency domain of the first carrier and a characteristic frequency of the second carrier in the X candidate frequency intervals.
  • the above method is characterized by further comprising:
  • the fourth information is used to determine a characteristic frequency of the first carrier, and the fourth information is transmitted through the air interface.
  • the present application discloses a first type of communication node device for wireless communication, which includes:
  • the first receiver module receives the first wireless signal
  • a second receiver module that receives the first information
  • a third receiver module receiving a second wireless signal
  • the frequency domain resource occupied by the first wireless signal belongs to a first carrier, and the frequency domain resource occupied by the second wireless signal belongs to a second carrier, and the characteristic frequency of the first carrier and the second carrier.
  • the first carrier and the second carrier are non-orthogonal in the frequency domain; the first wireless signal and the second wireless signal are transmitted in the same serving cell; the first information is used Determining the second carrier; the first information is transmitted over an air interface.
  • the first type of communication node device is characterized in that the second receiver module further receives the second information and receives the third information; wherein the second information is used to indicate ⁇ the At least one of a first carrier, a frequency domain resource occupied by the first wireless signal, and a time domain resource occupied by the first wireless signal, the third information being used to indicate ⁇ the second wireless At least one of a frequency domain resource occupied by the signal, and a time domain resource occupied by the second wireless signal; the second information and the third information are both transmitted through the air interface.
  • the first type of communication node device is characterized in that: the frequency domain resources included in the first carrier and the second carrier all belong to a third carrier, and one of the third carrier carriers exists in the third carrier.
  • the transmitted wireless signal and the second wireless signal are respectively transmitted using different wireless access technologies.
  • the first type of communication node device is characterized in that the time domain resource occupied by the second wireless signal belongs to a target time domain resource pool, and the time domain resource occupied by the first wireless signal includes The time domain resource outside the target time domain resource pool, the first information is further used to determine the target time domain resource pool.
  • the first type of communication node device is characterized in that a frequency domain interval between a characteristic frequency of the first carrier and a characteristic frequency of the second carrier belongs to X candidate frequency intervals.
  • the X is a positive integer
  • the first information indicates a frequency interval between a characteristic frequency domain of the first carrier and a characteristic frequency of the second carrier in the X candidate frequency intervals.
  • the first type of communication node device is characterized in that the first receiver module further receives fourth information; wherein the fourth information is used to determine a characteristic frequency of the first carrier, The fourth information is transmitted over the air interface.
  • the present application discloses a second type of communication node device for wireless communication, which includes:
  • a first transmitter module that transmits a first wireless signal
  • a second transmitter module that transmits the first information
  • a third transmitter module transmitting a second wireless signal
  • the frequency domain resource occupied by the first wireless signal belongs to a first carrier, and the frequency domain resource occupied by the second wireless signal belongs to a second carrier, and the characteristic frequency of the first carrier and the second carrier.
  • the first carrier and the second carrier are non-orthogonal in the frequency domain; the first wireless signal and the second wireless signal are transmitted in the same serving cell; the first information is used Determining the second carrier; the first information is transmitted over an air interface.
  • the second type of communication node device is characterized in that the second transmitter module further transmits second information and transmits third information; wherein the second information is used to indicate ⁇ the At least one of a first carrier, a frequency domain resource occupied by the first wireless signal, and a time domain resource occupied by the first wireless signal, the third information being used to indicate ⁇ the second wireless At least one of a frequency domain resource occupied by the signal, and a time domain resource occupied by the second wireless signal; the second information and the third information are both transmitted through the air interface.
  • the second type of communication node device is characterized in that: the frequency domain resources included in the first carrier and the second carrier belong to a third carrier, and one of the third carrier is present in the third carrier.
  • the transmitted wireless signal and the second wireless signal are respectively transmitted using different wireless access technologies.
  • the second type of communication node device is characterized in that the time domain resource occupied by the second wireless signal belongs to a target time domain resource pool, and the time domain resource occupied by the first wireless signal includes The time domain resource outside the target time domain resource pool, the first information is further used to determine the target time domain resource pool.
  • the second type of communication node device is characterized in that a frequency domain interval between a characteristic frequency of the first carrier and a characteristic frequency of the second carrier belongs to X candidate frequency intervals.
  • the X is a positive integer
  • the first information indicates a frequency interval between a characteristic frequency domain of the first carrier and a characteristic frequency of the second carrier in the X candidate frequency intervals.
  • the second type of communication node device is characterized in that the first transmitter module further transmits fourth information; the fourth information is used to determine a characteristic frequency of the first carrier, The fourth information is transmitted over the air interface.
  • the method of the present application has the following advantages:
  • the carrier of NB-IoT should be as close as possible to the PRB (Physical Resource Block) in 5G NR. Resource block) alignment, and in NB-IoT's Standalone Operation Mode, the adjacent carrier of the NB-IoT Anchor Carrier is deployed with a 200 kHz Channel Raster.
  • PRB Physical Resource Block
  • NB-IoT's Standalone Operation Mode the adjacent carrier of the NB-IoT Anchor Carrier is deployed with a 200 kHz Channel Raster.
  • the method in the present application by converting the carrier of the NB-IoT, the impact on resource scheduling in the 5G NR carrier is reduced, and resource utilization is improved.
  • the method in this application is also applicable to the case where another RAT carrier is embedded in the carrier of another RAT, and is not limited to the NB-IoT carrier being embedded in the 5G NR carrier.
  • the network side can be configured to determine which signals are transmitted in the original carrier and which signals are transmitted in the new carrier, and the backward compatibility is ensured while providing the possibility of carrier conversion.
  • FIG. 1 shows a flow chart of transmission of a first wireless signal, first information and second wireless signal, in accordance with an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of a base station device and a user equipment according to an embodiment of the present application
  • FIG. 5 illustrates a wireless signal transmission flow diagram in accordance with one embodiment of the present application
  • FIG. 6 is a schematic diagram showing a relationship between a first carrier and a second carrier according to an embodiment of the present application.
  • FIG. 7 shows a schematic diagram of a third carrier in accordance with an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of a relationship between a first carrier, a second carrier, and X candidate frequency intervals, in accordance with an embodiment of the present application
  • FIG. 9 is a block diagram showing the structure of a processing device in a first type of communication node according to an embodiment of the present application.
  • Figure 10 is a block diagram showing the structure of a processing device in a second type of communication node in accordance with one embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of transmission of a first wireless signal, a first information, and a second wireless signal, as shown in FIG. 1, in accordance with an embodiment of the present application.
  • each box represents a step.
  • the first type of communication node in the present application first receives the first wireless signal; then receives the first information; and then receives the second wireless signal; wherein the frequency domain resource occupied by the first wireless signal belongs to the first a carrier, a frequency domain resource occupied by the second wireless signal belongs to a second carrier, a characteristic frequency of the first carrier is different from a characteristic frequency of the second carrier, and the first carrier and the second carrier are Non-orthogonal in the frequency domain; the first wireless signal and the second wireless signal are transmitted in the same serving cell; the first information is used to determine the second carrier; the first information is transmitted through the air Interface transmission.
  • the method further includes: receiving the second information and the third information; the second information is used to indicate that the first carrier, a frequency domain resource occupied by the first wireless signal, the first At least one of time domain resources occupied by the wireless signal, the third information is used to indicate ⁇ frequency domain resources occupied by the second wireless signal, time domain resources occupied by the second wireless signal ⁇ At least one of the second information and the third information are transmitted through the air interface.
  • the frequency domain resources included in the first carrier and the second carrier all belong to a third carrier, and one wireless signal transmitted in the third carrier and the second wireless signal are respectively used. Different wireless access technologies are sent.
  • the time domain resource occupied by the second wireless signal belongs to a target time domain resource pool
  • the time domain resource occupied by the first wireless signal includes a time domain resource other than the target time domain resource pool.
  • the first information is also used to determine the target time domain resource pool.
  • the frequency domain interval between the characteristic frequency of the first carrier and the characteristic frequency of the second carrier belongs to one of X candidate frequency intervals, and the X is a positive integer, the first information.
  • a frequency interval between a characteristic frequency domain of the first carrier and a characteristic frequency of the second carrier is indicated in the X candidate frequency intervals.
  • the method further includes: receiving fourth information; the fourth information is used to determine a characteristic frequency of the first carrier, and the fourth information is transmitted by using the air interface.
  • the first wireless signal is transmitted through a DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the first wireless signal is used to transmit a code block (CB).
  • CB code block
  • the first wireless signal is used to transmit a TB (Transport Block).
  • TB Transport Block
  • the first wireless signal is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the first wireless signal is transmitted through a NPDSCH (Narrow-band Physical Downlink Shared Channel).
  • NPDSCH Narrow-band Physical Downlink Shared Channel
  • the first wireless signal is transmitted through a PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the first radio signal is transmitted by a PDCCH (Physical Downlink Control Channel) that is a SI-RNTI (System Information Radio Network Temporary Identity).
  • PDCCH Physical Downlink Control Channel
  • SI-RNTI System Information Radio Network Temporary Identity
  • the first wireless signal carries system information.
  • the first wireless signal carries DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the first wireless signal carries SIB1-NB (System Information Block type 1-Narrow Band).
  • SIB1-NB System Information Block type 1-Narrow Band
  • the first wireless signal carries an SIB (System Information Block).
  • SIB System Information Block
  • the first wireless signal is UE-specific.
  • the first wireless signal is Cell-Specific.
  • the first wireless signal is unicast.
  • the first wireless signal is broadcast.
  • a carrier to which a frequency domain resource occupied by transmitting the first information belongs is the first carrier.
  • a carrier to which a frequency domain resource occupied by transmitting the first information belongs is the second carrier.
  • the first information is transmitted through higher layer signaling.
  • the first information is transmitted through physical layer signaling.
  • the first information includes all or part of a high layer signaling.
  • the first information includes all or part of one physical layer signaling.
  • the first information includes all or part of an IE (Information Element) in an RRC (Radio Resource Control) signaling.
  • IE Information Element
  • RRC Radio Resource Control
  • the first information includes all or part of an IE (Information Element) in an RRC (Radio Resource Control) signaling.
  • IE Information Element
  • RRC Radio Resource Control
  • the first information is transmitted through a PBCH (Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel
  • the first information is transmitted through an NPBCH (Narrow Band Physical Broadcast Channel).
  • NPBCH Near Band Physical Broadcast Channel
  • the first information includes one or more fields in a MIB (Master Information Block).
  • MIB Master Information Block
  • the first information is transmitted through a DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the first information is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the first information is transmitted through an NPDSCH (Narrow Band Physical Downlink Shared Channel).
  • NPDSCH Narrow Band Physical Downlink Shared Channel
  • the first information includes one or more fields in an SIB (System Information Block).
  • SIB System Information Block
  • the first information is broadcast.
  • the first information is unicast.
  • the first information is Cell Specific.
  • the first information is user-specific (UE-specific).
  • the first information is transmitted through a PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the first information is transmitted by using a NPDCCH (Narrow Band Physical Downlink Control Channel).
  • NPDCCH Near Band Physical Downlink Control Channel
  • the first information includes all or part of a DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the first information is carried by Spare Bits in a Standalone Operation Mode in a MIB (Master Information Block).
  • MIB Master Information Block
  • the first information is carried by Spare Bits in a Guard-band Operation Mode in a MIB (Master Information Block).
  • MIB Master Information Block
  • the first information is carried by spare bits (Spare Bits) in the "Standalone-NB-r13" field in the "MasterInformationBlock-NB” message in 3GPP TS 36.331 (v14.3.0).
  • the first information is carried by spare bits (Spare Bits) in the "Guardband-NB-r13" field in the "MasterInformationBlock-NB” message in 3GPP TS 36.331 (v14.3.0).
  • the first information is carried by spare bits in the "Inband-Different PCI-NB-r13" field in the "MasterInformationBlock-NB” message in 3GPP TS 36.331 (v14.3.0). .
  • the determining, by the first information, the second carrier means that the first information is used by the first type of communication node to determine the second carrier.
  • the determining, by the first information, the second carrier means that the first information is used to directly indicate the second carrier.
  • the determining, by the first information, the second carrier means that the first information is used to indirectly indicate the second carrier.
  • the determining, by the first information, the second carrier means that the first information is used to explicitly indicate the second carrier.
  • the determining, by the first information, the second carrier means that the first information is used to implicitly indicate the second carrier.
  • the second wireless signal is transmitted through a DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the second wireless signal is used to transmit a code block (CB).
  • CB code block
  • the second wireless signal is used to transmit a TB (Transport Block).
  • the second wireless signal is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the second wireless signal is transmitted through a NPDSCH (Narrow-band Physical Downlink Shared Channel).
  • NPDSCH Narrow-band Physical Downlink Shared Channel
  • the second radio signal is transmitted through a PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the second wireless signal carries system information.
  • the second wireless signal carries DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the second wireless signal carries an SIB (System Information Block).
  • SIB System Information Block
  • the second wireless signal is UE-specific.
  • the second wireless signal is Cell-Specific.
  • the second wireless signal is unicast.
  • the second wireless signal is broadcast.
  • the first type of communication node is a NB-IoT (Narrow Band Internet of Things) User Equipment (UE).
  • NB-IoT Near Band Internet of Things
  • UE User Equipment
  • the first type of communication node is a 5G user equipment (UE, User Equipment).
  • UE User Equipment
  • the first type of communication node is an NR (New Radio) user equipment (UE).
  • NR New Radio
  • the first carrier is a carrier with a channel bandwidth of 200 kHz.
  • the first carrier is a carrier with a channel bandwidth of 180 kHz.
  • the first carrier is a carrier of a NB-IoT (Narrow Band Internet of Things) in a Standalone Operation Mode.
  • NB-IoT Near Band Internet of Things
  • the first carrier is a carrier of a NB-IoT (Narrow Band Internet of Things) in a Guard-band Operation Mode.
  • NB-IoT Near Band Internet of Things
  • the first carrier is a carrier of an NB-IoT (Narrow Band Internet of Things) in an in-band operation mode.
  • NB-IoT Near Band Internet of Things
  • the first carrier is one of channel bandwidth ( ⁇ 5MHz, 10MHz, 15MHz, 20MHz, 25MHz, 30MHz, 40MHz, 50MHz, 60MHz, 80MHz, 100MHz, 200MHz, 400MHz ⁇ ). Carrier.
  • the first carrier is a carrier having a channel bandwidth of one of ⁇ 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 20 MHz ⁇ .
  • the first carrier is a carrier of a 5G NR.
  • the first carrier is an LTE (Long Term Evolution) carrier.
  • LTE Long Term Evolution
  • the second carrier is a carrier with a channel bandwidth of 200 kHz.
  • the second carrier is a carrier with a channel bandwidth of 180 kHz.
  • the second carrier is a carrier of a NB-IoT (Narrow Band Internet of Things) in a Standalone Operation Mode.
  • NB-IoT Near Band Internet of Things
  • the second carrier is a carrier of a NB-IoT (Narrow Band Internet of Things) in a Guard-band Operation Mode.
  • NB-IoT Near Band Internet of Things
  • the second carrier is a carrier of an NB-IoT (Narrow Band-Internet of Things) in an in-band operation mode.
  • NB-IoT Near Band-Internet of Things
  • the second carrier is one of channel bandwidth ( ⁇ 5MHz, 10MHz, 15MHz, 20MHz, 25MHz, 30MHz, 40MHz, 50MHz, 60MHz, 80MHz, 100MHz, 200MHz, 400MHz ⁇ ). Carrier.
  • the second carrier is a carrier having a channel bandwidth of one of ⁇ 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 20 MHz ⁇ .
  • the second carrier is a carrier of 5G NR.
  • the second carrier is an LTE (Long Term Evolution) carrier.
  • LTE Long Term Evolution
  • the characteristic frequency of the first carrier is a predefined frequency value belonging to the first carrier
  • the characteristic frequency of the second carrier is the same predefined frequency value belonging to the second carrier.
  • the characteristic frequency of the first carrier is a channel raster defining the first carrier
  • the characteristic frequency of the second carrier is a channel grid defining the second carrier (Channel Raster).
  • the characteristic frequency of the first carrier is a center frequency of the first carrier
  • the characteristic frequency of the second carrier is a center frequency of the second carrier
  • the characteristic frequency of the first carrier is a center frequency of a frequency range represented by a channel bandwidth in the first carrier
  • a characteristic frequency of the second carrier is the second carrier The center frequency of the frequency range represented by the channel bandwidth.
  • the characteristic frequency of the first carrier is a center frequency of a frequency range represented by a transmission bandwidth configuration in the first carrier
  • a characteristic frequency of the second carrier is the first The center frequency of the frequency range represented by the transmission bandwidth configuration in the two carriers.
  • the non-orthogonality of the first carrier and the second carrier in the frequency domain means that one frequency domain resource belongs to the first carrier and the second carrier.
  • the non-orthogonality of the first carrier and the second carrier in the frequency domain means that there is one subcarrier (Subcarrier) belonging to the first carrier and the second carrier at the same time.
  • the sending of the first wireless signal and the second wireless signal in the same serving cell refers to: a service to which the sender of the first wireless signal and the sender of the second wireless signal belong
  • the cell (Serving Cell) is the same.
  • the sending of the first wireless signal and the second wireless signal in the same serving cell means that the first wireless signal and the second wireless signal adopt the same radio access technology (RAT) , Radio Access Technology) is transmitted in the same physical cell (Physical Cell).
  • RAT radio access technology
  • Physical Cell Physical Cell
  • the sending of the first wireless signal and the second wireless signal in the same serving cell refers to: sending a serving cell (Serving Cell) of the first wireless signal and the second wireless signal
  • the ECGI E-UTRAN Cell Global Identity
  • the sending of the first wireless signal and the second wireless signal in the same serving cell refers to: sending a serving cell (Serving Cell) of the first wireless signal and the second wireless signal
  • a serving cell Serving Cell
  • the NR cell global identity is the same.
  • the Air Interface is wireless.
  • the air interface includes a wireless channel.
  • the air interface is an interface between a second type of communication node and the first type of communication node.
  • the air interface is a Uu interface.
  • Embodiment 2 illustrates a schematic diagram of a network architecture in accordance with the present application, as shown in FIG. 2 is a diagram illustrating LTE (Long-Term Evolution), LTE-A (Long-Term Evolution Advanced), and a future 5G system network architecture 200.
  • the LTE network architecture 200 may be referred to as an EPS (Evolved Packet System) 200.
  • the EPS 200 may include one or more UEs (User Equipment) 201, E-UTRAN (Evolved UMTS Terrestrial Radio Access Network) 202, EPC (Evolved Packet Core) 210, and HSS (Home Subscriber Server, Home subscriber network server 220 and Internet service 230.
  • UEs User Equipment
  • E-UTRAN Evolved UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • HSS Home Subscriber Server, Home subscriber network server 220 and Internet service 230.
  • UMTS corresponds to the Universal Mobile Telecommunications System.
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown, the EPS provides packet switching services, although those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks that provide circuit switched services.
  • the E-UTRAN includes an evolved Node B (eNB) 203 and other eNBs 204.
  • the eNB 203 provides user and control plane protocol termination towards the UE 201.
  • the eNB 203 can connect to other eNBs 204 via an X2 interface (e.g., backhaul).
  • X2 interface e.g., backhaul
  • the eNB 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit receive point), or some other suitable terminology.
  • the eNB 203 provides the UE 201 with an access point to the EPC 210.
  • Examples of UEs 201 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, an MP3 player), a camera, a game console, a drone, an aircraft, a narrowband IoT device, a machine type communication device, a land vehicle, a car, a wearable device, or any other similar functional device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios global positioning systems
  • multimedia devices video devices
  • digital audio players For example, an MP3 player
  • a camera for example, an MP3 player
  • a game console a drone
  • a drone an aircraft
  • a narrowband IoT device a machine type communication device
  • a land vehicle a car
  • a wearable device or any other similar functional device.
  • UE 201 can also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, IoT device, client or some other suitable term.
  • the eNB 203 is connected to the EPC 210 through the S1 interface.
  • the EPC 210 includes an MME 211, other MMEs 214, an S-GW (Service Gateway) 212, and a P-GW (Packet Date Network Gateway) 213.
  • the MME 211 is a control node that handles signaling between the UE 201 and the EPC 210.
  • the MME 211 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a packet-switched streaming service.
  • the UE 201 corresponds to the first type of communication node device in this application.
  • the UE 201 supports carrier converted transmission.
  • the UE 201 supports the NB-IoT function.
  • the gNB 203 corresponds to the second type of communication node device in the present application.
  • the gNB 203 supports carrier converted transmission.
  • the gNB 203 supports the NB-IoT function.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with the present application, as shown in FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 is shown in three layers for a first type of communication node device (UE) and a second type of communication node device (gNB, eNB) Or the radio protocol architecture of a satellite or aircraft in NTN: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the first type of communication node device and the second type of communication node device through PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol). Convergence Protocol) Sublayer 304, which terminates at a second type of communication node device on the network side.
  • the first type of communication node device may have several upper layers above the L2 layer 305, including a network layer (eg, an IP layer) terminated at the P-GW on the network side and terminated at the connection.
  • a network layer eg, an IP layer
  • the application layer at the other end (eg, remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides for communication of the first type of communication node devices between the second type of communication node devices.
  • Cross-country mobile support The RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in one cell among the first type of communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the first type of communication node device and the second type of communication node device is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (i.e., radio bearers) and configuring the lower layers using RRC signaling between the second type of communication node devices and the first type of communication node devices.
  • the wireless protocol architecture of Figure 3 is applicable to the first type of communication node device in the present application.
  • the wireless protocol architecture of FIG. 3 is applicable to the second type of communication node device in this application.
  • the first wireless signal in the present application is generated in the RRC 306.
  • the first wireless signal in the present application is generated by the MAC 302.
  • the first wireless signal in the present application is generated by the PHY 301.
  • the first information in the present application is generated in the RRC 306.
  • the first information in the present application is generated in the MAC 302.
  • the first information in the present application is generated by the PHY 301.
  • the second wireless signal in the present application is generated in the RRC 306.
  • the second wireless signal in the present application is generated by the MAC 302.
  • the second wireless signal in the present application is generated by the PHY 301.
  • the second information in the present application is generated in the RRC 306.
  • the second information in the present application is generated in the MAC 302.
  • the second information in the present application is generated by the PHY 301.
  • the third information in the present application is generated in the RRC 306.
  • the third information in the present application is generated in the MAC 302.
  • the third information in the present application is generated by the PHY 301.
  • the fourth information in the present application is generated in the RRC 306.
  • the fourth information in the present application is generated in the MAC 302.
  • the fourth information in the present application is generated by the PHY 301.
  • Embodiment 4 shows a schematic diagram of a base station device and a given user equipment according to the present application, as shown in FIG. 4 is a block diagram of a gNB/eNB 410 in communication with a UE 450 in an access network.
  • a controller/processor 490, a memory 480, a receiving processor 452, a transmitter/receiver 456, a transmitting processor 455 and a data source 467 are included in the user equipment (UE 450), and the transmitter/receiver 456 includes an antenna 460.
  • Data source 467 provides an upper layer packet to controller/processor 490, which provides header compression decompression, encryption decryption, packet segmentation and reordering, and multiplexing and demultiplexing between logical and transport channels.
  • the L2 layer protocol for the user plane and the control plane is implemented, and the upper layer packet may include data or control information, such as DL-SCH or UL-SCH.
  • Transmit processor 455 implements various signal transmission processing functions for the L1 layer (ie, the physical layer) including encoding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling generation.
  • the various signal reception processing functions implemented by the receive processor 452 for the L1 layer (ie, the physical layer) include decoding, deinterleaving, descrambling, demodulation, de-precoding, and physical layer control signaling extraction, and the like.
  • the transmitter 456 is configured to convert the baseband signal provided by the transmit processor 455 into a radio frequency signal and transmit it via the antenna 460.
  • the receiver 456 converts the radio frequency signal received through the antenna 460 into a baseband signal and provides it to the receive processor 452.
  • a base station device (410) may include a controller/processor 440, a memory 430, a receive processor 412, a transmitter/receiver 416 and a transmit processor 415, and the transmitter/receiver 416 includes an antenna 420.
  • the upper layer packet arrives at the controller/processor 440, which provides header compression decompression, encryption and decryption, packet segmentation and reordering, and multiplexing and demultiplexing between the logical and transport channels to implement L2 layer protocol for user plane and control plane.
  • the upper layer packet may include data or control information such as DL-SCH or UL-SCH.
  • the transmit processor 415 implements various signal transmission processing functions for the L1 layer (ie, the physical layer) including encoding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer signaling (including synchronization signals and references). Signals, etc.) are generated.
  • the various signal reception processing functions implemented by the receive processor 412 for the L1 layer (ie, the physical layer) include decoding, deinterleaving, descrambling, demodulation, de-precoding, and physical layer signaling extraction, and the like.
  • the transmitter 416 is configured to convert the baseband signal provided by the transmitting processor 415 into a radio frequency signal and transmit it via the antenna 420.
  • the receiver 416 is configured to convert the radio frequency signal received by the antenna 420 into a baseband signal and provide the signal to the receiving processor 412.
  • upper layer packets (such as the first wireless signal and the upper layer packet carried by the second wireless signal in the present application) are provided to the controller/processor 440.
  • Controller/processor 440 implements the functionality of the L2 layer.
  • the controller/processor 440 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocation to the UE 450 based on various priority metrics.
  • the controller/processor 440 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 450, such as the first information, the second information, the third information, and the fourth information in the present application are all in the controller/processing Generated in 440.
  • the transmit processor 415 implements various signal processing functions for the L1 layer (ie, the physical layer), including coding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling generation, etc., modulation symbols
  • the parallel streams are divided and each stream is mapped to a corresponding multi-carrier subcarrier and/or multi-carrier symbol, which is then transmitted by the transmit processor 415 to the antenna 420 via the transmitter 416 in the form of a radio frequency signal.
  • the corresponding information of the first information, the second information, the third information and the fourth information in the application in the physical layer is mapped by the transmitting processor 415 onto the target air interface resource and mapped to the antenna 420 via the transmitter 416 in the form of a radio frequency signal.
  • each receiver 456 receives radio frequency signals through its respective antenna 460, each receiver 456 recovers the baseband information modulated onto the radio frequency carrier and provides baseband information to the receiving processor 452.
  • the receiving processor 452 implements various signal receiving processing functions of the L1 layer.
  • the signal receiving processing function includes the first wireless signal, the second wireless signal, the first information, the second information, the third information, and the fourth layer of the physical layer signal received in the present application, through the multi-carrier symbol stream Multicarrier symbols are demodulated based on various modulation schemes (eg, Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK)), followed by descrambling, decoding, and deinterleaving to recover on the physical channel
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • the controller/processor 490 implements the L2 layer, and the controller/processor 490 interprets the first wireless signal, the second wireless signal, the first information, the second information, the third information, and the fourth information in the present application.
  • the controller/processor can be associated with a memory 480 that stores program codes and data. Memory 480 can be referred to as a computer readable medium.
  • the UE 450 corresponds to the first type of communication node device in this application.
  • the gNB 410 corresponds to the second type of communication node device in the present application.
  • the UE 450 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be in process with the at least one
  • the UE 450 device is configured to: at least: receive the first wireless signal; receive the first information; receive the second wireless signal; wherein the frequency domain resource occupied by the first wireless signal belongs to the first carrier, and the second wireless The frequency domain resource occupied by the signal belongs to the second carrier, the characteristic frequency of the first carrier is different from the characteristic frequency of the second carrier, and the first carrier and the second carrier are non-orthogonal in the frequency domain;
  • the first wireless signal and the second wireless signal are transmitted in the same serving cell; the first information is used to determine the second carrier; the first information is transmitted over an air interface.
  • the UE 450 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by at least one processor, the action comprising: receiving a first wireless signal; Receiving the first information; receiving the second wireless signal; wherein the frequency domain resource occupied by the first wireless signal belongs to the first carrier, and the frequency domain resource occupied by the second wireless signal belongs to the second carrier, where the first The characteristic frequency of the carrier is different from the characteristic frequency of the second carrier, the first carrier and the second carrier are non-orthogonal in the frequency domain; the first wireless signal and the second wireless signal are in the same service A cell is transmitted; the first information is used to determine the second carrier; the first information is transmitted over an air interface.
  • the eNB 410 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be in process with the at least one Used together.
  • the gNB410 device at least: transmitting the first wireless signal; transmitting the first information; and transmitting the second wireless signal; wherein the frequency domain resource occupied by the first wireless signal belongs to the first carrier, and the second wireless signal is occupied by The frequency domain resource belongs to the second carrier, the characteristic frequency of the first carrier is different from the characteristic frequency of the second carrier, and the first carrier and the second carrier are non-orthogonal in the frequency domain;
  • the signal and the second wireless signal are transmitted in the same serving cell; the first information is used to determine the second carrier; the first information is transmitted over the air interface.
  • the eNB 410 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by at least one processor, the action comprising: transmitting a first wireless signal; Transmitting the first information; sending the second wireless signal; wherein the frequency domain resource occupied by the first wireless signal belongs to the first carrier, and the frequency domain resource occupied by the second wireless signal belongs to the second carrier, where the first The characteristic frequency of the carrier is different from the characteristic frequency of the second carrier, the first carrier and the second carrier are non-orthogonal in the frequency domain; the first wireless signal and the second wireless signal are in the same service A cell is transmitted; the first information is used to determine the second carrier; the first information is transmitted over an air interface.
  • the UE 450 corresponds to the first type of communication node in the present application.
  • the gNB 410 corresponds to the second type of communication node in the present application.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used for the reception of the first wireless signal in this application.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used for the reception of the second wireless signal in this application.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used for receipt of the first information in this application.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used for the receipt of the second information in this application.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used for the receipt of the third information in this application.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used for the reception of the fourth information in this application.
  • transmitter 416 (including antenna 420), transmit processor 415 and controller/processor 440 are used for the transmission of the first wireless signal in this application.
  • transmitter 416 (including antenna 420), transmit processor 415 and controller/processor 440 are used for the transmission of the second wireless signal in this application.
  • transmitter 416 (including antenna 420), transmit processor 415 and controller/processor 440 are used for the transmission of the first information in this application.
  • transmitter 416 (including antenna 420), transmit processor 415, and controller/processor 440 are used for the transmission of the second information in this application.
  • transmitter 416 (including antenna 420), transmit processor 415, and controller/processor 440 are used for the transmission of the third information in this application.
  • transmitter 416 (including antenna 420), transmit processor 415 and controller/processor 440 are used for the transmission of the fourth information in this application.
  • Embodiment 5 illustrates a wireless signal transmission flow chart according to one embodiment of the present application, as shown in FIG.
  • the second type of communication node N1 is the maintenance base station of the serving cell of the second type of communication node U2.
  • step S11 transmits fourth information, transmitting second information in a step S12, a first radio signal transmitted in step S13, the first information transmitted in step S14, in step S15 transmission
  • the third information is that the second wireless signal is transmitted in step S16.
  • the fourth information For the first type communication node U2, received at step S21, the fourth information, the second information received in step S22, the first radio signal received in step S23, the first information received in step S14, in step S25 the reception
  • the third information receives the second wireless signal in step S26.
  • the frequency domain resource occupied by the first wireless signal belongs to the first carrier
  • the frequency domain resource occupied by the second wireless signal belongs to the second carrier, the characteristic frequency of the first carrier, and the The characteristic frequencies of the second carrier are different, the first carrier and the second carrier are non-orthogonal in the frequency domain
  • the first wireless signal and the second wireless signal are sent in the same serving cell;
  • One information is used to determine the second carrier;
  • the first information is transmitted over an air interface;
  • the second information is used to indicate ⁇ the first carrier, a frequency domain resource occupied by the first wireless signal At least one of the time domain resources occupied by the first wireless signal, the third information is used to indicate ⁇ frequency domain resources occupied by the second wireless signal, occupied by the second wireless signal At least one of the time domain resources ⁇ ;
  • the second information and the third information are both transmitted through the air interface;
  • the fourth information is used to determine a characteristic frequency of the first carrier, the Four messages are transmitted over the air interface.
  • the second information is transmitted through higher layer signaling.
  • the second information is transmitted through physical layer signaling.
  • the second information includes all or part of a high layer signaling.
  • the second information includes all or part of one physical layer signaling.
  • the second information includes all or part of an IE (Information Element) in an RRC (Radio Resource Control) signaling.
  • IE Information Element
  • RRC Radio Resource Control
  • the second information includes all or part of an IE (Information Element) in an RRC (Radio Resource Control) signaling.
  • IE Information Element
  • RRC Radio Resource Control
  • the second information is transmitted through a PBCH (Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel
  • the second information is transmitted through an NPBCH (Narrow Band Physical Broadcast Channel).
  • NPBCH Near Band Physical Broadcast Channel
  • the second information includes one or more fields in a MIB (Master Information Block).
  • MIB Master Information Block
  • the second information is transmitted through a DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the second information is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the second information is transmitted through an NPDSCH (Narrow Band Physical Downlink Shared Channel).
  • NPDSCH Narrow Band Physical Downlink Shared Channel
  • the second information includes one or more fields in an SIB (System Information Block).
  • SIB System Information Block
  • the second information is broadcast.
  • the second information is unicast.
  • the second information is Cell Specific.
  • the second information is UE-specific.
  • the second information is transmitted by using a PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the second information is transmitted by using a NPDCCH (Narrow Band Physical Downlink Control Channel).
  • NPDCCH Near Band Physical Downlink Control Channel
  • the second information includes all or part of a DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the second information is carried by Spare Bits in a MIB (Master Information Block).
  • MIB Master Information Block
  • the second information is used to indicate that the first carrier, the frequency domain resource occupied by the first wireless signal, and the time domain resource occupied by the first wireless signal are at least
  • the first information is that the second information is used to directly indicate that the first carrier, the frequency domain resource occupied by the first wireless signal, and the time domain resource occupied by the first wireless signal are at least One.
  • the second information is used to indicate that the first carrier, the frequency domain resource occupied by the first wireless signal, and the time domain resource occupied by the first wireless signal are at least
  • the first information is that the second information is used to indirectly indicate that the first carrier, the frequency domain resource occupied by the first wireless signal, and the time domain resource occupied by the first wireless signal are at least One.
  • the second information is used to indicate that the first carrier, the frequency domain resource occupied by the first wireless signal, and the time domain resource occupied by the first wireless signal are at least
  • the second information is used to explicitly indicate ⁇ the first carrier, a frequency domain resource occupied by the first wireless signal, and a time domain resource occupied by the first wireless signal ⁇ At least one.
  • the second information is used to indicate that the first carrier, the frequency domain resource occupied by the first wireless signal, and the time domain resource occupied by the first wireless signal are at least
  • the second information is used to implicitly indicate ⁇ the first carrier, a frequency domain resource occupied by the first wireless signal, and a time domain resource occupied by the first wireless signal ⁇ At least one.
  • the third information is transmitted through higher layer signaling.
  • the third information is transmitted through physical layer signaling.
  • the third information includes all or part of a high layer signaling.
  • the third information includes all or part of one physical layer signaling.
  • the third information includes all or part of an IE (Information Element) in an RRC (Radio Resource Control) signaling.
  • IE Information Element
  • RRC Radio Resource Control
  • the third information includes all or part of an IE (Information Element) in an RRC (Radio Resource Control) signaling.
  • IE Information Element
  • RRC Radio Resource Control
  • the third information includes one or more fields in a MIB (Master Information Block).
  • MIB Master Information Block
  • the third information is transmitted through a DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the third information is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the third information is transmitted through an NPDSCH (Narrow Band Physical Downlink Shared Channel).
  • NPDSCH Narrow Band Physical Downlink Shared Channel
  • the third information is broadcast.
  • the third information is unicast.
  • the third information is Cell Specific.
  • the third information is UE-specific.
  • the third information is transmitted through a PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the third information is transmitted by using a NPDCCH (Narrow Band Physical Downlink Control Channel).
  • NPDCCH Near Band Physical Downlink Control Channel
  • the third information includes all or part of a DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the third information is carried by spare bits in the MIB (Master Information Block).
  • the third information is used to indicate that: at least one of a frequency domain resource occupied by the second wireless signal, and a time domain resource occupied by the second wireless signal is:
  • the third information is used to directly indicate at least one of ⁇ a frequency domain resource occupied by the second wireless signal and a time domain resource occupied by the second wireless signal ⁇ .
  • the third information is used to indicate that: at least one of a frequency domain resource occupied by the second wireless signal, and a time domain resource occupied by the second wireless signal is:
  • the third information is used to indirectly indicate at least one of ⁇ frequency domain resources occupied by the second wireless signal and time domain resources occupied by the second wireless signal ⁇ .
  • the third information is used to indicate that: at least one of a frequency domain resource occupied by the second wireless signal, and a time domain resource occupied by the second wireless signal is:
  • the third information is used to explicitly indicate at least one of ⁇ frequency domain resources occupied by the second wireless signal, time domain resources occupied by the second wireless signal ⁇ .
  • the third information is used to indicate that: at least one of a frequency domain resource occupied by the second wireless signal, and a time domain resource occupied by the second wireless signal is:
  • the third information is used to implicitly indicate at least one of ⁇ frequency domain resources occupied by the second wireless signal, time domain resources occupied by the second wireless signal ⁇ .
  • the first information and the third information in the present application are transmitted by the same signaling.
  • the first information and the third information in the present application are transmitted by using the same RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the first information and the third information in the present application are transmitted by using different signaling.
  • the first information and the third information in the present application are transmitted through the same physical channel.
  • the first information and the third information in the present application are transmitted through different physical channels.
  • the first information and the third information in the present application are transmitted by using the same PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the first information and the third information in the present application are transmitted by using two different PDSCHs (Physical Downlink Shared Channels).
  • PDSCHs Physical Downlink Shared Channels
  • the first information and the third information in the present application are jointly coded (Joint Coding) and transmitted through one and the same signaling.
  • the first information and the third information in the present application are jointly encoded and transmitted as the same field in the same signaling.
  • the first information and the third information in the present application are transmitted as two different fields in the same signaling.
  • the first information and the third information in the present application are jointly encoded and transmitted as the same IE (Information Element) in the same RRC signaling.
  • the first information and the third information in the present application are transmitted as two different IEs (Information Elements) in the same RRC signaling.
  • the fourth information is transmitted through higher layer signaling.
  • the fourth information is transmitted through physical layer signaling.
  • the fourth information includes all or part of a high layer signaling.
  • the fourth information includes all or part of one physical layer signaling.
  • the fourth information includes all or part of an IE (Information Element) in an RRC (Radio Resource Control) signaling.
  • IE Information Element
  • RRC Radio Resource Control
  • the fourth information includes all or part of an IE (Information Element) in an RRC (Radio Resource Control) signaling.
  • IE Information Element
  • RRC Radio Resource Control
  • the fourth information is transmitted through a PBCH (Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel
  • the fourth information is transmitted through an NPBCH (Narrow Band Physical Broadcast Channel).
  • NPBCH Near Band Physical Broadcast Channel
  • the fourth information includes one or more fields in a MIB (Master Information Block).
  • MIB Master Information Block
  • the fourth information is transmitted through a DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the fourth information is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the fourth information is transmitted through an NPDSCH (Narrow Band Physical Downlink Shared Channel).
  • NPDSCH Narrow Band Physical Downlink Shared Channel
  • the fourth information includes one or more fields in an SIB (System Information Block).
  • SIB System Information Block
  • the fourth information is broadcast.
  • the fourth information is unicast.
  • the fourth information is Cell Specific.
  • the fourth information is UE-specific.
  • the fourth information is carried by the synchronization signal.
  • the fourth information is carried by a PSS (Primary Synchronization Signal).
  • PSS Primary Synchronization Signal
  • the fourth information is carried by an SSS (Secondary Synchronization Signal).
  • the fourth information is carried by a PSS (Primary Synchronization Signal) and an SSS (Secondary Synchronization Signal).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the fourth information is carried by a sequence.
  • the fourth information is obtained by a Correlation operation on the sequence.
  • the fourth information is used to determine a characteristic frequency of the first carrier, that is, the fourth information is used by the first type of communication node to determine a characteristic frequency of the first carrier.
  • the fourth information is used to determine a characteristic frequency of the first carrier, that is, the fourth information is used to directly indicate a characteristic frequency of the first carrier.
  • the fourth information is used to determine a characteristic frequency of the first carrier, that is, the fourth information is used to indirectly indicate a characteristic frequency of the first carrier.
  • the fourth information is used to determine a characteristic frequency of the first carrier, that is, the fourth information is used to explicitly indicate a characteristic frequency of the first carrier.
  • the fourth information is used to determine a characteristic frequency of the first carrier, that is, the fourth information is used to implicitly indicate a characteristic frequency of the first carrier.
  • Embodiment 6 exemplifies a relationship of a first carrier and a second carrier according to an embodiment of the present application, as shown in FIG.
  • the horizontal axis represents time
  • the vertical axis represents frequency
  • the obliquely filled rectangle represents the first wireless signal
  • the cross-line filled rectangle represents the second wireless signal.
  • the frequency domain resource occupied by the first wireless signal in the application belongs to the first carrier
  • the frequency domain resource occupied by the second wireless signal in the present application belongs to the second carrier
  • the The characteristic frequency of one carrier is different from the characteristic frequency of the second carrier, the first carrier and the second carrier are non-orthogonal in the frequency domain; the first wireless signal and the second wireless signal are in the same
  • the serving cell is sent;
  • the time domain resource occupied by the second wireless signal belongs to the target time domain resource pool, and the time domain resource occupied by the first wireless signal includes time domain resources other than the target time domain resource pool.
  • the first information in the present application is used to determine the target time domain resource pool.
  • the target time domain resource pool includes consecutive time domain resources.
  • the target time domain resource pool includes discrete time domain resources.
  • the target time domain resource pool includes a time window.
  • the time domain resources included in the target time domain resource pool are limited.
  • the time domain resource occupied by the first wireless signal and the target time domain resource pool are orthogonal.
  • the time domain resource occupied by the first wireless signal and the target time domain resource pool are non-orthogonal.
  • the first information is further used to determine the target time domain resource pool, wherein the first information is further used by the first type of communication node to determine the target time domain resource pool.
  • the first information is further used to determine the target time domain resource pool, wherein the first information is further used to directly indicate the target time domain resource pool.
  • the first information is further used to determine the target time domain resource pool means that the first information is further used to indirectly indicate the target time domain resource pool.
  • the first information is further used to determine the target time domain resource pool means that the first information is further used to explicitly indicate the target time domain resource pool.
  • the first information is further used to determine the target time domain resource pool means that the first information is further used to implicitly indicate the target time domain resource pool.
  • Embodiment 7 illustrates a schematic diagram of a third carrier in accordance with one embodiment of the present application, as shown in FIG. In Fig. 7, the vertical axis represents the frequency, the obliquely filled rectangle represents the first wireless signal, and the cross-line filled rectangle represents the second wireless signal.
  • the frequency domain resources included in the first carrier and the second carrier in the present application all belong to a third carrier, and there is a wireless signal transmitted in the third carrier and in the present application.
  • the second wireless signals are respectively transmitted by using different wireless access technologies.
  • the third carrier is one of channel bandwidth ( ⁇ 5MHz, 10MHz, 15MHz, 20MHz, 25MHz, 30MHz, 40MHz, 50MHz, 60MHz, 80MHz, 100MHz, 200MHz, 400MHz ⁇ ). Carrier.
  • the third carrier is a carrier having a channel bandwidth of one of ⁇ 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 20 MHz ⁇ .
  • the third carrier is a carrier of 5G NR.
  • the third carrier is an LTE (Long Term Evolution) carrier.
  • LTE Long Term Evolution
  • the radio access technology (RAT) used to transmit the second radio signal is NB-IoT.
  • the radio access technology (RAT) used to transmit the second radio signal is LTE.
  • Embodiment 8 is a schematic diagram of a relationship between a first carrier, a second carrier, and X candidate frequency intervals, according to an embodiment of the present application, as shown in FIG.
  • the vertical axis represents the frequency
  • the obliquely filled rectangle represents the first carrier
  • the cross-line filled rectangle represents the second carrier
  • each of the dotted frame rectangles represents the second carrier corresponding to the X candidate frequency intervals.
  • the frequency domain interval between the characteristic frequency of the first carrier in the present application and the characteristic frequency of the second carrier in the present application belongs to one of X candidate frequency intervals, X is a positive integer.
  • the first information in the present application indicates a frequency interval between a characteristic frequency domain of the first carrier and a characteristic frequency of the second carrier in the X candidate frequency intervals.
  • the X candidate frequency intervals are predefined.
  • the X candidate frequency intervals are configurable.
  • 20 kHz is one of the X candidate frequency intervals.
  • 0 kHz is one of the X candidate frequency intervals.
  • 2.5 kHz is one of the X alternate frequency intervals.
  • 7.5 kHz is one of the X candidate frequency intervals.
  • -2.5 kHz is one of the X alternate frequency intervals.
  • -7.5 kHz is one of the X candidate frequency intervals.
  • a frequency domain interval between a characteristic frequency of the first carrier and a characteristic frequency of the second carrier is equal to one of ⁇ 20 kHz, 2.5 kHz, -2.5 kHz, 7.5 kHz, -7.5 kHz ⁇ .
  • the first information indicating, in the X candidate frequency intervals, a frequency interval between a characteristic frequency domain of the first carrier and a characteristic frequency of the second carrier is: A message directly indicating a frequency interval between a characteristic frequency domain of the first carrier and a characteristic frequency of the second carrier in the X candidate frequency intervals.
  • the first information indicating, in the X candidate frequency intervals, a frequency interval between a characteristic frequency domain of the first carrier and a characteristic frequency of the second carrier is:
  • a message indirectly indicates a frequency interval between a characteristic frequency domain of the first carrier and a characteristic frequency of the second carrier in the X candidate frequency intervals.
  • the first information indicating, in the X candidate frequency intervals, a frequency interval between a characteristic frequency domain of the first carrier and a characteristic frequency of the second carrier is: A message explicitly indicates a frequency interval between a characteristic frequency domain of the first carrier and a characteristic frequency of the second carrier in the X candidate frequency intervals.
  • the first information indicating, in the X candidate frequency intervals, a frequency interval between a characteristic frequency domain of the first carrier and a characteristic frequency of the second carrier is: A message implicitly indicating a frequency interval between a characteristic frequency domain of the first carrier and a characteristic frequency of the second carrier in the X candidate frequency intervals.
  • Embodiment 9 exemplifies a structural block diagram of a processing device of a first type of communication node device, as shown in FIG.
  • the first type of communication node device processing apparatus 900 is mainly composed of a first receiver module 901, a second receiver module 902, and a third receiver module 903.
  • the first receiver module 901 includes the transmitter/receiver 456 (including the antenna 460) of the present application, the receiving processor 452 and the controller/processor 490;
  • the second receiver module 902 includes the drawing 4 of the present application.
  • Transmitter/receiver 456 (including antenna 460), receive processor 452 and controller/processor 490;
  • third receiver module 903 includes transmitter/receiver 456 (including antenna 460) in FIG. 4 of the present application Receive processor 452 and controller/processor 490.
  • the first receiver module 901 receives the first wireless signal; the second receiver module 902 receives the first information; and the third receiver module 903 receives the second wireless signal; the first wireless signal
  • the frequency domain resource occupies the first carrier, the frequency domain resource occupied by the second wireless signal belongs to the second carrier, and the characteristic frequency of the first carrier and the characteristic frequency of the second carrier are different, the first The carrier and the second carrier are non-orthogonal in the frequency domain; the first wireless signal and the second wireless signal are transmitted in the same serving cell; the first information is used to determine the second carrier; The first information is transmitted over an air interface.
  • the second receiver module 902 further receives the second information and receives the third information, where the second information is used to indicate ⁇ the first carrier, the frequency occupied by the first wireless signal At least one of a domain resource, a time domain resource occupied by the first wireless signal, the third information is used to indicate ⁇ a frequency domain resource occupied by the second wireless signal, the second wireless signal At least one of the occupied time domain resources ⁇ ; the second information and the third information are both transmitted through the air interface.
  • the frequency domain resources included in the first carrier and the second carrier all belong to a third carrier, and one wireless signal transmitted in the third carrier and the second wireless signal are respectively used. Different wireless access technologies are sent.
  • the time domain resource occupied by the second wireless signal belongs to a target time domain resource pool
  • the time domain resource occupied by the first wireless signal includes a time domain resource other than the target time domain resource pool.
  • the first information is also used to determine the target time domain resource pool.
  • the frequency domain interval between the characteristic frequency of the first carrier and the characteristic frequency of the second carrier belongs to one of X candidate frequency intervals, and the X is a positive integer, the first information.
  • a frequency interval between a characteristic frequency domain of the first carrier and a characteristic frequency of the second carrier is indicated in the X candidate frequency intervals.
  • the first receiver module 901 also receives fourth information; wherein the fourth information is used to determine a characteristic frequency of the first carrier, the fourth information being transmitted over the air interface.
  • Embodiment 10 exemplifies a structural block diagram of a processing device in a second type of communication node device, as shown in FIG.
  • the processing device 1000 in the second type of communication node device is mainly composed of a first transmitter module 1001, a second transmitter module 1002, and a third transmitter module 1003.
  • the first transmitter module 1001 includes the transmitter/receiver 416 (including the antenna 420) of the present application, the transmitting processor 415 and the controller/processor 440;
  • the second transmitter module 1002 includes the drawing 4 of the present application.
  • third transmitter module 1003 includes transmitter/receiver 416 (including antenna 420) in FIG. 4 of the present application ), the processor 415 and the controller/processor 440.
  • the first transmitter module 1001 transmits a first wireless signal; the second transmitter module 1002 transmits first information; and the third transmitter module 1003 transmits a second wireless signal; the first wireless signal
  • the frequency domain resource occupies the first carrier, the frequency domain resource occupied by the second wireless signal belongs to the second carrier, and the characteristic frequency of the first carrier and the characteristic frequency of the second carrier are different, the first The carrier and the second carrier are non-orthogonal in the frequency domain; the first wireless signal and the second wireless signal are transmitted in the same serving cell; the first information is used to determine the second carrier;
  • the first information is transmitted over an air interface.
  • the second transmitter module 1002 further sends the second information and sends the third information, where the second information is used to indicate ⁇ the first carrier, the frequency occupied by the first wireless signal At least one of a domain resource, a time domain resource occupied by the first wireless signal, the third information is used to indicate ⁇ a frequency domain resource occupied by the second wireless signal, the second wireless signal At least one of the occupied time domain resources ⁇ ; the second information and the third information are both transmitted through the air interface.
  • the frequency domain resources included in the first carrier and the second carrier all belong to a third carrier, and one wireless signal transmitted in the third carrier and the second wireless signal are respectively used. Different wireless access technologies are sent.
  • the time domain resource occupied by the second wireless signal belongs to a target time domain resource pool
  • the time domain resource occupied by the first wireless signal includes a time domain resource other than the target time domain resource pool.
  • the first information is also used to determine the target time domain resource pool.
  • the frequency domain interval between the characteristic frequency of the first carrier and the characteristic frequency of the second carrier belongs to one of X candidate frequency intervals, and the X is a positive integer, the first information.
  • a frequency interval between a characteristic frequency domain of the first carrier and a characteristic frequency of the second carrier is indicated in the X candidate frequency intervals.
  • the first transmitter module 1001 further transmits fourth information; the fourth information is used to determine a characteristic frequency of the first carrier, and the fourth information is transmitted through the air interface.
  • the first type of communication node device in the present application includes but is not limited to a mobile communication device, a tablet computer, a notebook, an internet card, a low power consumption device, an eMTC device, an NB-IoT device, and an in-vehicle communication device.
  • the second type of communication node device, the base station or the network side device in the present application includes but is not limited to a macro communication base station, a micro cell base station, a home base station, a relay base station, an eNB, a gNB, a transmission receiving node TRP and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种用于无线通信的通信节点中的方法和装置。通信节点首先接收第一无线信号;接着接收第一信息;然后接收第二无线信号;所述第一无线信号所占用频域资源属于第一载波,所述第二无线信号所占用的频域资源属于第二载波,所述第一载波的特征频率和所述第二载波的特征频率不同,所述第一载波和所述第二载波在频域非正交;所述第一无线信号和所述第二无线信号在相同的服务小区被发送;所述第一信息被用于确定所述第二载波。本申请提高资源利用率并保持后向兼容。

Description

一种被用于无线通信的通信节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方案,特别是涉及支持不同RAT(Radio Access Technology无线接入技术)复用传输的方法和装置。
背景技术
为了满足多样化的物联网应用的需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)Rel-13中引入了一个新的窄带无线接入系统NB-IoT(Narrow Band Internet of Things,窄带物联网)。在NB-IoT系统之外,3GPP同时也在对eMTC(Enhanced Machine Type Communication)的特性进行标准化。NB-IoT和eMTC分别面向不同的目标市场需求。
在3GPP Rel-14中对Rel-13的NB-IoT系统和Rel-13的eMTC系统进行了增强。对于NB-IoT,很重要的一个增强方面就是赋予非锚物理资源块更多的功能,比如支持寻呼信道的传输,支持随机接入信道的传输等,同时引入了定位与组播的功能。在3GPP Rel-15中对NB-IoT进行进一步的增强,包括降低功耗,增强测量的精度,引入专门的调度请求等。特别的,随着Rel-15版本中对5G NR的标准制定的完成,NB-IoT和eMTC系统预计会和5G NR系统长期共存。
发明内容
现有的NB-IoT和eMTC系统可以和LTE系统很好的共存,比如NB-IoT支持的带内操作模式(In-band Operation Mode)和保护带操作模式(Guard-band Operation Mode)可以实现和LTE系统的平滑共存与资源复用。而eMTC系统从设计之初就是附着在LTE系统内部,需要利用LTE的同步信号等才能正常工作。随着5G NR的引入,NB-IoT和eMTC由于其长期存在,因而需要和5G NR也能够实现平滑共存。
本申请针对NB-IoT和eMTC与5G NR共存,或者任意两个不同的RAT共存时面临的问题提供了解决方案,在不冲突的情况下,本申请的UE(User Equipment,用户设备)中的实施例和实施例中的特征可以应用到基站中,反之亦然。进一步的,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。quipment,用户设备)中的实施例和实施例中的特征可以应用到基站中,反之亦然。
本申请公开了一种用于无线通信的第一类通信节点中的方法,其特征在于,包括:
接收第一无线信号;
接收第一信息;
接收第二无线信号;
其中,所述第一无线信号所占用频域资源属于第一载波,所述第二无线信号所占用的频域资源属于第二载波,所述第一载波的特征频率和所述第二载波的特征频率不同,所述第一载波和所述第二载波在频域非正交;所述第一无线信号和所述第二无线信号在相同的服务小区被发送;所述第一信息被用于确定所述第二载波;所述第一信息通过空中接口传输。
作为一个实施例,通过所述第一载波到所述第二载波的转换,支持了基于一种RAT的传输平滑复用(嵌入In-band)到另一种RAT的载波中,降低了对被嵌入的载波的影响,提高了资源利用率。
作为一个实施例,所述第一无线信号在所述第一载波中传输,在提供载波转换的可能的同时保证了后向兼容性。
根据本申请的一个方面,上述方法的特征在于,还包括:
接收第二信息;
接收第三信息;
其中,所述第二信息被用于指示{所述第一载波,所述第一无线信号所占用的频域资源,所述第一无线信号所占用的时域资源}中至少之一,所述第三信息被用于指示{所述第二无线信号所占用的频域资源,所述第二无线信号所占用的时域资源}中至少之一;所述第二信息和所述第三信息都通过所述空中接口传输。
根据本申请的一个方面,上述方法的特征在于,所述第一载波和所述第二载波所包括的频域资源都属于第三载波,存在一个在所述第三载波内传输的无线信号和所述第二无线信号分别采用不同的无线接入技术发送。
根据本申请的一个方面,上述方法的特征在于,所述第二无线信号所占用的时域资源属于目标时域资源池,所述第一无线信号所占用的时域资源包括所述目标时域资源池之外的时域资源,所述第一信息还被用于确定所述目标时域资源池。
根据本申请的一个方面,上述方法的特征在于,所述第一载波的特征频率和所述第二载波的特征频率之间的频域间隔属于X个备选频率间隔中之一,所述X是正整数,所述第一信息在所述X个备选频率间隔中指示所述第一载波的特征频域和所述第二载波的特征频率之间的频率间隔。
根据本申请的一个方面,上述方法的特征在于,还包括:
接收第四信息;
其中所述第四信息被用于确定所述第一载波的特征频率,所述第四信息通过所述空中接口传输。
本申请公开了一种用于无线通信的第二类通信节点中的方法,其特征在于,包括:
发送第一无线信号;
发送第一信息;
发送第二无线信号;
其中,所述第一无线信号所占用频域资源属于第一载波,所述第二无线信号所占用的频域资源属于第二载波,所述第一载波的特征频率和所述第二载波的特征频率不同,所述第一载波和所述第二载波在频域非正交;所述第一无线信号和所述第二无线信号在相同的服务小区被发送;所述第一信息被用于确定所述第二载波;所述第一信息通过空中接口传输。
根据本申请的一个方面,上述方法的特征在于,还包括:
发送第二信息;
发送第三信息;
其中,所述第二信息被用于指示{所述第一载波,所述第一无线信号所占用的频域资源,所述第一无线信号所占用的时域资源}中至少之一,所述第三信息被用于指示{所述第二无线信号所占用的频域资源,所述第二无线信号所占用的时域资源}中至少之一;所述第二信息和所述第三信息都通过所述空中接口传输。
根据本申请的一个方面,上述方法的特征在于,所述第一载波和所述第二载波所包括的频域资源都属于第三载波,存在一个在所述第三载波内传输的无线信号和所述第二无线信号分别采用不同的无线接入技术发送。
根据本申请的一个方面,上述方法的特征在于,所述第二无线信号所占用的时域资源属于目标时域资源池,所述第一无线信号所占用的时域资源包括所述目标时域资源池之外的时域资源,所述第一信息还被用于确定所述目标时域资源池。
根据本申请的一个方面,上述方法的特征在于,所述第一载波的特征频率和所述第二载波的特征频率之间的频域间隔属于X个备选频率间隔中之一,所述X是正整数,所述第一信息在所述X个备选频率间隔中指示所述第一载波的特征频域和所述第二载波的 特征频率之间的频率间隔。
根据本申请的一个方面,上述方法的特征在于,还包括:
发送第四信息;
其中所述第四信息被用于确定所述第一载波的特征频率,所述第四信息通过所述空中接口传输。
本申请公开了一种用于无线通信的第一类通信节点设备,其特征在于,包括:
第一接收机模块,接收第一无线信号;
第二接收机模块,接收第一信息;
第三接收机模块,接收第二无线信号;
其中,所述第一无线信号所占用频域资源属于第一载波,所述第二无线信号所占用的频域资源属于第二载波,所述第一载波的特征频率和所述第二载波的特征频率不同,所述第一载波和所述第二载波在频域非正交;所述第一无线信号和所述第二无线信号在相同的服务小区被发送;所述第一信息被用于确定所述第二载波;所述第一信息通过空中接口传输。
根据本申请的一个方面,上述第一类通信节点设备的特征在于,所述第二接收机模块还接收第二信息和接收第三信息;其中,所述第二信息被用于指示{所述第一载波,所述第一无线信号所占用的频域资源,所述第一无线信号所占用的时域资源}中至少之一,所述第三信息被用于指示{所述第二无线信号所占用的频域资源,所述第二无线信号所占用的时域资源}中至少之一;所述第二信息和所述第三信息都通过所述空中接口传输。
根据本申请的一个方面,上述第一类通信节点设备的特征在于,所述第一载波和所述第二载波所包括的频域资源都属于第三载波,存在一个在所述第三载波内传输的无线信号和所述第二无线信号分别采用不同的无线接入技术发送。
根据本申请的一个方面,上述第一类通信节点设备的特征在于,所述第二无线信号所占用的时域资源属于目标时域资源池,所述第一无线信号所占用的时域资源包括所述目标时域资源池之外的时域资源,所述第一信息还被用于确定所述目标时域资源池。
根据本申请的一个方面,上述第一类通信节点设备的特征在于,所述第一载波的特征频率和所述第二载波的特征频率之间的频域间隔属于X个备选频率间隔中之一,所述X是正整数,所述第一信息在所述X个备选频率间隔中指示所述第一载波的特征频域和所述第二载波的特征频率之间的频率间隔。
根据本申请的一个方面,上述第一类通信节点设备的特征在于,所述第一接收机模块还接收第四信息;其中所述第四信息被用于确定所述第一载波的特征频率,所述第四信息通过所述空中接口传输。
本申请公开了一种用于无线通信的第二类通信节点设备,其特征在于,包括:
第一发射机模块,发送第一无线信号;
第二发射机模块,发送第一信息;
第三发射机模块,发送第二无线信号;
其中,所述第一无线信号所占用频域资源属于第一载波,所述第二无线信号所占用的频域资源属于第二载波,所述第一载波的特征频率和所述第二载波的特征频率不同,所述第一载波和所述第二载波在频域非正交;所述第一无线信号和所述第二无线信号在相同的服务小区被发送;所述第一信息被用于确定所述第二载波;所述第一信息通过空中接口传输。
根据本申请的一个方面,上述第二类通信节点设备的特征在于,所述第二发射机模块还发送第二信息和发送第三信息;其中,所述第二信息被用于指示{所述第一载波,所述第一无线信号所占用的频域资源,所述第一无线信号所占用的时域资源}中至少之一, 所述第三信息被用于指示{所述第二无线信号所占用的频域资源,所述第二无线信号所占用的时域资源}中至少之一;所述第二信息和所述第三信息都通过所述空中接口传输。
根据本申请的一个方面,上述第二类通信节点设备的特征在于,所述第一载波和所述第二载波所包括的频域资源都属于第三载波,存在一个在所述第三载波内传输的无线信号和所述第二无线信号分别采用不同的无线接入技术发送。
根据本申请的一个方面,上述第二类通信节点设备的特征在于,所述第二无线信号所占用的时域资源属于目标时域资源池,所述第一无线信号所占用的时域资源包括所述目标时域资源池之外的时域资源,所述第一信息还被用于确定所述目标时域资源池。
根据本申请的一个方面,上述第二类通信节点设备的特征在于,所述第一载波的特征频率和所述第二载波的特征频率之间的频域间隔属于X个备选频率间隔中之一,所述X是正整数,所述第一信息在所述X个备选频率间隔中指示所述第一载波的特征频域和所述第二载波的特征频率之间的频率间隔。
根据本申请的一个方面,上述第二类通信节点设备的特征在于,所述第一发射机模块还发送第四信息;所述第四信息被用于确定所述第一载波的特征频率,所述第四信息通过所述空中接口传输。
作为一个实施例,本申请中的方法具有如下优点:
-NB-IoT在复用(In-band)到5G NR系统中时,为了尽量避免造成5G NR系统中的资源碎片,NB-IoT的载波要尽量和5G NR中的PRB(Physical Resource Block,物理资源块)对齐,而在NB-IoT的独立操作模式(Standalone Operation Mode)中,NB-IoT的锚载波(Anchor Carrier)的邻近载波是以200kHz的信道格栅(Channel Raster)来部署,这时复用在5G NR载波中时是无法和5G NR中的PRB边界对齐的。采用本申请中的方法,通过将NB-IoT的载波进行转换,降低了对5G NR载波中的资源调度的影响,提高了资源利用率。本申请中的方法也同样适用于其它的一种RAT载波嵌入到另一种RAT的载波中的情况,并不限于NB-IoT载波嵌入到5G NR载波中。
-采用本申请中的方法,网络侧可以通过配置来决定哪些信号在原载波中传输,哪些信号在新的载波中传输,在提供载波转换的可能性的同时保证了后向兼容性。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一无线信号,第一信息和第二无线信号的传输的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的基站设备和用户设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的一个实施例的第一载波和第二载波的关系的示意图;
图7示出了根据本申请的一个实施例的第三载波的示意图;
图8示出了根据本申请的一个实施例的第一载波,第二载波和X个备选频率间隔之间的关系的示意图;
图9示出了根据本申请的一个实施例的第一类通信节点中的处理装置的结构框图;
图10示出了根据本申请的一个实施例的第二类通信节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一无线信号,第一信息和第二无线信号的传输的流程图,如附图1所示。附图1中,每个方框代表一个步骤。
在实施例1中,本申请中的第一类通信节点首先接收第一无线信号;接着接收第一信息;然后接收第二无线信号;其中,所述第一无线信号所占用频域资源属于第一载波,所述第二无线信号所占用的频域资源属于第二载波,所述第一载波的特征频率和所述第二载波的特征频率不同,所述第一载波和所述第二载波在频域非正交;所述第一无线信号和所述第二无线信号在相同的服务小区被发送;所述第一信息被用于确定所述第二载波;所述第一信息通过空中接口传输。
作为一个实施例,还包括:接收第二信息和第三信息;所述第二信息被用于指示{所述第一载波,所述第一无线信号所占用的频域资源,所述第一无线信号所占用的时域资源}中至少之一,所述第三信息被用于指示{所述第二无线信号所占用的频域资源,所述第二无线信号所占用的时域资源}中至少之一;所述第二信息和所述第三信息都通过所述空中接口传输。
作为一个实施例,所述第一载波和所述第二载波所包括的频域资源都属于第三载波,存在一个在所述第三载波内传输的无线信号和所述第二无线信号分别采用不同的无线接入技术发送。
作为一个实施例,所述第二无线信号所占用的时域资源属于目标时域资源池,所述第一无线信号所占用的时域资源包括所述目标时域资源池之外的时域资源,所述第一信息还被用于确定所述目标时域资源池。
作为一个实施例,所述第一载波的特征频率和所述第二载波的特征频率之间的频域间隔属于X个备选频率间隔中之一,所述X是正整数,所述第一信息在所述X个备选频率间隔中指示所述第一载波的特征频域和所述第二载波的特征频率之间的频率间隔。
作为一个实施例,还包括:接收第四信息;所述第四信息被用于确定所述第一载波的特征频率,所述第四信息通过所述空中接口传输。
作为一个实施例,所述第一无线信号通过DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第一无线信号被用于传输一个编码块(CB,Code Block)。
作为一个实施例,所述第一无线信号被用于传输一个传输(TB,Transport Block)。
作为一个实施例,所述第一无线信号通过PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第一无线信号通过NPDSCH(Narrow-band Physical Downlink Shared Channel,窄带物理下行共享信道)传输。
作为一个实施例,所述第一无线信号通过PDCCH(Physical Downlink Control Channel,物理下行控制信道)传输。
作为一个实施例,所述第一无线信号通过以SI-RNTI(System Information Radio Network Temporary Identity,系统信息无线网络临时标识)的PDCCH(Physical Downlink Control Channel,物理下行控制信道)传输。
作为一个实施例,所述第一无线信号携带系统信息。
作为一个实施例,所述第一无线信号携带DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第一无线信号携带SIB1-NB(System Information Block type1-Narrow Band,窄带系统信息块类型1)。
作为一个实施例,所述第一无线信号携带SIB(System Information Block,系统 信息块)。
作为一个实施例,所述第一无线信号是用户设备特定的(UE-specific)。
作为一个实施例,所述第一无线信号是小区特定的(Cell-Specific)。
作为一个实施例,所述第一无线信号是单播的。
作为一个实施例,所述第一无线信号是广播的。
作为一个实施例,传输所述第一信息所占用的频域资源所属的载波(Carrier)是所述第一载波。
作为一个实施例,传输所述第一信息所占用的频域资源所属的载波(Carrier)是所述第二载波。
作为一个实施例,所述第一信息通过高层信令传输。
作为一个实施例,所述第一信息通过物理层信令传输。
作为一个实施例,所述第一信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第一信息包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第一信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的全部或部分IE(Information Element,信息单元)。
作为一个实施例,所述第一信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的一个IE(Information Element,信息单元)中的全部或部分域(Field)。
作为一个实施例,所述第一信息通过PBCH(Physical Broadcast Channel,物理广播信道)传输。
作为一个实施例,所述第一信息通过NPBCH(Narrow band Physical Broadcast Channel,窄带物理广播信道)传输。
作为一个实施例,所述第一信息包括MIB(Master Information Block,主信息块)中的一个或多个域(Field)。
作为一个实施例,所述第一信息通过一个DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第一信息通过一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第一信息通过一个NPDSCH(Narrow band Physical Downlink Shared Channel,窄带物理下行共享信道)传输。
作为一个实施例,所述第一信息包括一个SIB(System Information Block,系统信息块)中的一个或多个域(Field)。
作为一个实施例,所述第一信息是广播的。
作为一个实施例,所述第一信息是单播的。
作为一个实施例,所述第一信息是小区特定的(Cell Specific)。
作为一个实施例,所述第一信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第一信息通过PDCCH(Physical Downlink Control Channel,窄带物理下行控制信道)传输。
作为一个实施例,所述第一信息通过NPDCCH(Narrow band Physical Downlink Control Channel,窄带物理下行控制信道)传输。
作为一个实施例,所述第一信息包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,所述第一信息通过MIB(Master Information Block,主信息块)中的独立操作模式(Standalone Operation Mode)下的空余比特(Spare Bits)携带的。
作为一个实施例,所述第一信息通过MIB(Master Information Block,主信息块)中的保护带操作模式(Guard-band Operation Mode)下的空余比特(Spare Bits)携带 的。
作为一个实施例,所述第一信息通过3GPP TS36.331(v14.3.0)中的“MasterInformationBlock-NB”消息中的“Standalone-NB-r13”域中的空余比特(Spare Bits)携带的。
作为一个实施例,所述第一信息通过3GPP TS36.331(v14.3.0)中的“MasterInformationBlock-NB”消息中的“Guardband-NB-r13”域中的空余比特(Spare Bits)携带的。
作为一个实施例,所述第一信息通过3GPP TS36.331(v14.3.0)中的“MasterInformationBlock-NB”消息中的“Inband-DifferentPCI-NB-r13”域中的空余比特(Spare Bits)携带的。
作为一个实施例,所述第一信息被用于确定所述第二载波是指:所述第一信息被所述第一类通信节点用于确定所述第二载波。
作为一个实施例,所述第一信息被用于确定所述第二载波是指:所述第一信息被用于直接指示所述第二载波。
作为一个实施例,所述第一信息被用于确定所述第二载波是指:所述第一信息被用于间接指示所述第二载波。
作为一个实施例,所述第一信息被用于确定所述第二载波是指:所述第一信息被用于显式地指示所述第二载波。
作为一个实施例,所述第一信息被用于确定所述第二载波是指:所述第一信息被用于隐式地指示所述第二载波。
作为一个实施例,所述第二无线信号通过DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第二无线信号被用于传输一个编码块(CB,Code Block)。
作为一个实施例,所述第二无线信号被用于传输一个传输(TB,Transport Block)。
作为一个实施例,所述第二无线信号通过PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第二无线信号通过NPDSCH(Narrow-band Physical Downlink Shared Channel,窄带物理下行共享信道)传输。
作为一个实施例,所述第二无线信号通过PDCCH(Physical Downlink Control Channel,物理下行控制信道)传输。
作为一个实施例,所述第二无线信号携带系统信息。
作为一个实施例,所述第二无线信号携带DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第二无线信号携带SIB(System Information Block,系统信息块)。
作为一个实施例,所述第二无线信号是用户设备特定的(UE-specific)。
作为一个实施例,所述第二无线信号是小区特定的(Cell-Specific)。
作为一个实施例,所述第二无线信号是单播的。
作为一个实施例,所述第二无线信号是广播的。
作为一个实施例,所述第一类通信节点是一个NB-IoT(Narrow Band Internet of Things,窄带物联网)用户设备(UE,User Equipment)。
作为一个实施例,所述第一类通信节点是一个5G用户设备(UE,User Equipment)。
作为一个实施例,所述第一类通信节点是一个NR(New Radio,新空口)用户设备(UE,User Equipment)。
作为一个实施例,所述第一载波是一个信道带宽(Channel Bandwidth)为200kHz的载波。
作为一个实施例,所述第一载波是一个信道带宽(Channel Bandwidth)为180kHz的载波。
作为一个实施例,所述第一载波是一个NB-IoT(Narrow Band-Internet of Things,窄带物联网)在独立操作模式(Standalone Operation Mode)下的载波(Carrier)。
作为一个实施例,所述第一载波是一个NB-IoT(Narrow Band-Internet of Things,窄带物联网)在保护带操作模式(Guard-band Operation Mode)下的载波(Carrier)。
作为一个实施例,所述第一载波是一个NB-IoT(Narrow Band-Internet of Things,窄带物联网)在带内操作模式(In-band Operation Mode)下的载波(Carrier)。
作为一个实施例,所述第一载波是一个信道带宽(Channel Bandwidth)为{5MHz,10MHz,15MHz,20MHz,25MHz,30MHz,40MHz,50MHz,60MHz,80MHz,100MHz,200MHz,400MHz}中之一的载波(Carrier)。
作为一个实施例,所述第一载波是一个信道带宽(Channel Bandwidth)为{1.4MHz,3MHz,5MHz,10MHz,20MHz}中之一的载波(Carrier)。
作为一个实施例,所述第一载波是一个5G NR的载波(Carrier)。
作为一个实施例,所述第一载波是一个LTE(Long Term Evolution,长时演进)的载波(Carrier)。
作为一个实施例,所述第二载波是一个信道带宽(Channel Bandwidth)为200kHz的载波。
作为一个实施例,所述第二载波是一个信道带宽(Channel Bandwidth)为180kHz的载波。
作为一个实施例,所述第二载波是一个NB-IoT(Narrow Band-Internet of Things,窄带物联网)在独立操作模式(Standalone Operation Mode)下的载波(Carrier)。
作为一个实施例,所述第二载波是一个NB-IoT(Narrow Band-Internet of Things,窄带物联网)在保护带操作模式(Guard-band Operation Mode)下的载波(Carrier)。
作为一个实施例,所述第二载波是一个NB-IoT(Narrow Band-Internet of Things,窄带物联网)在带内操作模式(In-band Operation Mode)下的载波(Carrier)。
作为一个实施例,所述第二载波是一个信道带宽(Channel Bandwidth)为{5MHz,10MHz,15MHz,20MHz,25MHz,30MHz,40MHz,50MHz,60MHz,80MHz,100MHz,200MHz,400MHz}中之一的载波(Carrier)。
作为一个实施例,所述第二载波是一个信道带宽(Channel Bandwidth)为{1.4MHz,3MHz,5MHz,10MHz,20MHz}中之一的载波(Carrier)。
作为一个实施例,所述第二载波是一个5G NR的载波(Carrier)。
作为一个实施例,所述第二载波是一个LTE(Long Term Evolution,长时演进)的载波(Carrier)。
作为一个实施例,所述第一载波的特征频率是属于所述第一载波的一个预定义的频率值,所述第二载波的特征频率是属于所述第二载波的同样预定义的频率值。
作为一个实施例,所述第一载波的特征频率是定义所述第一载波的信道格栅(Channel Raster),所述第二载波的特征频率是定义所述第二载波的信道格栅(Channel Raster)。
作为一个实施例,所述第一载波的特征频率是所述第一载波的中心频率,所述第二载波的特征频率是所述第二载波的中心频率。
作为一个实施例,所述第一载波的特征频率是所述第一载波中的信道带宽(Channel bandwidth)所代表的频率范围的中心频率,所述第二载波的特征频率是所述第二载波中的信道带宽(Channel bandwidth)所代表的频率范围的中心频率。
作为一个实施例,所述第一载波的特征频率是所述第一载波中的传输带宽配置(Transmission bandwidth configuration)所代表的频率范围的中心频率,所述第二 载波的特征频率是所述第二载波中的传输带宽配置(Transmission bandwidth configuration)所代表的频率范围的中心频率。
作为一个实施例,所述第一载波和所述第二载波在频域非正交是指:存在一个频域资源同时属于所述第一载波和所述第二载波。
作为一个实施例,所述第一载波和所述第二载波在频域非正交是指:存在一个子载波(Subcarrier)同时属于所述第一载波和所述第二载波。
作为一个实施例,所述第一无线信号和所述第二无线信号在相同的服务小区被发送是指:所述第一无线信号的发送者和所述第二无线信号的发送者所属的服务小区(Serving Cell)相同。
作为一个实施例,所述第一无线信号和所述第二无线信号在相同的服务小区被发送是指:所述第一无线信号和所述第二无线信号采用相同的无线接入技术(RAT,Radio Access Technology)在相同的物理小区(Physical Cell)被发送。
作为一个实施例,所述第一无线信号和所述第二无线信号在相同的服务小区被发送是指:发送所述第一无线信号和所述第二无线信号的服务小区(Serving Cell)的ECGI(E-UTRAN Cell Global Identity,E-UTRAN小区全局标识)相同。
作为一个实施例,所述第一无线信号和所述第二无线信号在相同的服务小区被发送是指:发送所述第一无线信号和所述第二无线信号的服务小区(Serving Cell)的NR小区全局标识相同。
作为一个实施例,所述空中接口(Air Interface)是无线的。
作为一个实施例,所述空中接口(Air Interface)包括无线信道。
作为一个实施例,所述空中接口是第二类通信节点和所述第一类通信节点之间的接口。
作为一个实施例,所述空中接口是Uu接口。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统网络架构200的图。LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,E-UTRAN(演进UMTS陆地无线电接入网络)202,EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。其中,UMTS对应通用移动通信业务(Universal Mobile Telecommunications System)。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。E-UTRAN包括演进节点B(eNB)203和其它eNB204。eNB203提供朝向UE201的用户和控制平面协议终止。eNB203可经由X2接口(例如,回程)连接到其它eNB204。eNB203也可称为基站,基站收发台,无线电基站,无线电收发器,收发器功能,基本服务集合(BSS),扩展服务集合(ESS),TRP(发送接收点)或某种其它合适术语。eNB203为UE201提供对EPC210的接入点。UE201的实例包括蜂窝式电话,智能电话,会话起始协议(SIP)电话,膝上型计算机,个人数字助理(PDA),卫星无线电,全球定位系统,多媒体装置,视频装置,数字音频播放器(例如,MP3播放器),相机,游戏控制台,无人机,飞行器,窄带物联网设备,机器类型通信设备,陆地交通工具,汽车,可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台,订户台,移动单元,订户单元,无线单元,远程单元,移动装置,无线装置,无线通信装置,远程装置,移动订户台,接入终端,移动终端,无线终端,远程终端,手持机,用户代理,移动客户端,物联网设备,客户端或某个其它合适术语。eNB203 通过S1接口连接到EPC210。EPC210包括MME 211,其它MME214,S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME211是处理UE201与EPC210之间的信令的控制节点。大体上,MME211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一类通信节点设备。
作为一个实施例,所述UE201支持载波转换的传输。
作为一个实施例,所述UE201支持NB-IoT功能。
作为一个实施例,所述gNB203对应本申请中的所述第二类通信节点设备。
作为一个实施例,所述gNB203支持载波转换的传输。
作为一个实施例,所述gNB203支持NB-IoT功能。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于第一类通信节点设备(UE)和第二类通信节点设备(gNB,eNB或NTN中的卫星或飞行器)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一类通信节点设备与第二类通信节点设备之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的第二类通信节点设备处。虽然未图示,但第一类通信节点设备可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供第二类通信节点设备之间的对第一类通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在第一类通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于第一类通信节点设备和第二类通信节点设备的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用第二类通信节点设备与第一类通信节点设备之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一类通信节点设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二类通信节点设备。
作为一个实施例,本申请中的所述第一无线信号生成于所述RRC306。
作为一个实施例,本申请中的所述第一无线信号生成于所述MAC302。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一信息生成于所述RRC306。
作为一个实施例,本申请中的所述第一信息生成于所述MAC302。
作为一个实施例,本申请中的所述第一信息生成于所述PHY301。
作为一个实施例,本申请中的所述第二无线信号生成于所述RRC306。
作为一个实施例,本申请中的所述第二无线信号生成于所述MAC302。
作为一个实施例,本申请中的所述第二无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二信息生成于所述RRC306。
作为一个实施例,本申请中的所述第二信息生成于所述MAC302。
作为一个实施例,本申请中的所述第二信息生成于所述PHY301。
作为一个实施例,本申请中的所述第三信息生成于所述RRC306。
作为一个实施例,本申请中的所述第三信息生成于所述MAC302。
作为一个实施例,本申请中的所述第三信息生成于所述PHY301。
作为一个实施例,本申请中的所述第四信息生成于所述RRC306。
作为一个实施例,本申请中的所述第四信息生成于所述MAC302。
作为一个实施例,本申请中的所述第四信息生成于所述PHY301。
实施例4
实施例4示出了根据本申请的一个基站设备和给定用户设备的示意图,如附图4所示。图4是在接入网络中与UE450通信的gNB/eNB410的框图。
在用户设备(UE450)中包括控制器/处理器490,存储器480,接收处理器452,发射器/接收器456,发射处理器455和数据源467,发射器/接收器456包括天线460。数据源467提供上层包到控制器/处理器490,控制器/处理器490提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议,上层包中可以包括数据或者控制信息,例如DL-SCH或UL-SCH。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等。接收处理器452实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层控制信令提取等。发射器456用于将发射处理器455提供的基带信号转换成射频信号并经由天线460发射出去,接收器456用于通过天线460接收的射频信号转换成基带信号提供给接收处理器452。
在基站设备(410)中可以包括控制器/处理器440,存储器430,接收处理器412,发射器/接收器416和发射处理器415,发射器/接收器416包括天线420。上层包到达控制器/处理器440,控制器/处理器440提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议。上层包中可以包括数据或者控制信息,例如DL-SCH或UL-SCH。发射处理器415实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层信令(包括同步信号和参考信号等)生成等。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层信令提取等。发射器416用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去,接收器416用于通过天线420接收的射频信号转换成基带信号提供给接收处理器412。
在DL(Downlink,下行)中,上层包(比如本申请中的第一无线信号和第二无线信号所携带的上层包)提供到控制器/处理器440。控制器/处理器440实施L2层的功能。在DL中,控制器/处理器440提供包头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对UE450的无线电资源分配。控制器/处理器440还负责HARQ操作、丢失包的重新发射,和到UE450的信令,比如本申请中的第一信息,第二信息,第三信息和第四信息均在控制器/处理器440中生成。发射处理器415实施用于L1层(即,物理层)的各种信号处理功能,包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等,调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器415经由发射器416映射到天线420以射频信号的形式发射出去。本申请中的第一信息,第二信息,第三信息和第四信息在物理层的对应信道由发射处理器415映射到目标空口资源上并经由发射器416映射到天线420以射频信号的形式发射出去。在接收端, 每一接收器456通过其相应天线460接收射频信号,每一接收器456恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器452。接收处理器452实施L1层的各种信号接收处理功能。信号接收处理功能包括在本申请中的第一无线信号,第二无线信号,第一信息,第二信息,第三信息和第四信息的物理层信号的接收等,通过多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解扰,解码和解交织以恢复在物理信道上由gNB410发射的数据或者控制,随后将数据和控制信号提供到控制器/处理器490。控制器/处理器490实施L2层,控制器/处理器490对本申请中的第一无线信号,第二无线信号,第一信息,第二信息,第三信息和第四信息进行解读。控制器/处理器可与存储程序代码和数据的存储器480相关联。存储器480可称为计算机可读媒体。
作为一个实施例,所述UE450对应本申请中的所述第一类通信节点设备。
作为一个实施例,所述gNB410对应本申请中的所述第二类通信节点设备。
作为一个实施例,所述UE450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述UE450装置至少:接收第一无线信号;接收第一信息;接收第二无线信号;其中,所述第一无线信号所占用频域资源属于第一载波,所述第二无线信号所占用的频域资源属于第二载波,所述第一载波的特征频率和所述第二载波的特征频率不同,所述第一载波和所述第二载波在频域非正交;所述第一无线信号和所述第二无线信号在相同的服务小区被发送;所述第一信息被用于确定所述第二载波;所述第一信息通过空中接口传输。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一无线信号;接收第一信息;接收第二无线信号;其中,所述第一无线信号所占用频域资源属于第一载波,所述第二无线信号所占用的频域资源属于第二载波,所述第一载波的特征频率和所述第二载波的特征频率不同,所述第一载波和所述第二载波在频域非正交;所述第一无线信号和所述第二无线信号在相同的服务小区被发送;所述第一信息被用于确定所述第二载波;所述第一信息通过空中接口传输。
作为一个实施例,所述eNB410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:发送第一无线信号;发送第一信息;发送第二无线信号;其中,所述第一无线信号所占用频域资源属于第一载波,所述第二无线信号所占用的频域资源属于第二载波,所述第一载波的特征频率和所述第二载波的特征频率不同,所述第一载波和所述第二载波在频域非正交;所述第一无线信号和所述第二无线信号在相同的服务小区被发送;所述第一信息被用于确定所述第二载波;所述第一信息通过空中接口传输。
作为一个实施例,所述eNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一无线信号;发送第一信息;发送第二无线信号;其中,所述第一无线信号所占用频域资源属于第一载波,所述第二无线信号所占用的频域资源属于第二载波,所述第一载波的特征频率和所述第二载波的特征频率不同,所述第一载波和所述第二载波在频域非正交;所述第一无线信号和所述第二无线信号在相同的服务小区被发送;所述第一信息被用于确定所述第二载波;所述第一信息通过空中接口传输。
作为一个实施例,所述UE450对应本申请中的所述第一类通信节点。
作为一个实施例,所述gNB410对应本申请中的所述第二类通信节点。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中的所述第一无线信号的接收。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中的所述第二无线信号的接收。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中的所述第一信息的接收。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中的所述第二信息的接收。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中的所述第三信息的接收。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中的所述第四信息的接收。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于本申请中的所述第一无线信号的发送。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于本申请中的所述第二无线信号的发送。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于本申请中的所述第一信息的发送。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于本申请中的所述第二信息的发送。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于本申请中的所述第三信息的发送。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于本申请中的所述第四信息的发送。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。附图5中,第二类通信节点N1是第二类通信节点U2的服务小区的维持基站。
对于 第二类通信节点N1,在步骤S11中发送第四信息,在步骤S12中发送第二信息,在步骤S13中发送第一无线信号,在步骤S14中发送第一信息,在步骤S15中发送第三信息,在步骤S16中发送第二无线信号。
对于 第一类通信节点U2,在步骤S21中接收第四信息,在步骤S22中接收第二信息,在步骤S23中接收第一无线信号,在步骤S14中接收第一信息,在步骤S25中接收第三信息,在步骤S26中接收第二无线信号。
在实施例5中,所述第一无线信号所占用频域资源属于第一载波,所述第二无线信号所占用的频域资源属于第二载波,所述第一载波的特征频率和所述第二载波的特征频率不同,所述第一载波和所述第二载波在频域非正交;所述第一无线信号和所述第二无线信号在相同的服务小区被发送;所述第一信息被用于确定所述第二载波;所述第一信息通过空中接口传输;所述第二信息被用于指示{所述第一载波,所述第一无线信号所占用的频域资源,所述第一无线信号所占用的时域资源}中至少之一,所述第三信息被用于指示{所述第二无线信号所占用的频域资源,所述第二无线信号所占用的时域资源}中至少之一;所述第二信息和所述第三信息都通过所述空中接口传输;所述第四信息被用于确定所述第一载波的特征频率,所述第四信息通过所述空中接口传输。
作为一个实施例,所述第二信息通过高层信令传输。
作为一个实施例,所述第二信息通过物理层信令传输。
作为一个实施例,所述第二信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第二信息包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第二信息包括了一个RRC(Radio Resource Control,无线资源 控制)信令中的全部或部分IE(Information Element,信息单元)。
作为一个实施例,所述第二信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的一个IE(Information Element,信息单元)中的全部或部分域(Field)。
作为一个实施例,所述第二信息通过PBCH(Physical Broadcast Channel,物理广播信道)传输。
作为一个实施例,所述第二信息通过NPBCH(Narrow band Physical Broadcast Channel,窄带物理广播信道)传输。
作为一个实施例,所述第二信息包括MIB(Master Information Block,主信息块)中的一个或多个域(Field)。
作为一个实施例,所述第二信息通过一个DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第二信息通过一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第二信息通过一个NPDSCH(Narrow band Physical Downlink Shared Channel,窄带物理下行共享信道)传输。
作为一个实施例,所述第二信息包括一个SIB(System Information Block,系统信息块)中的一个或多个域(Field)。
作为一个实施例,所述第二信息是广播的。
作为一个实施例,所述第二信息是单播的。
作为一个实施例,所述第二信息是小区特定的(Cell Specific)。
作为一个实施例,所述第二信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第二信息通过PDCCH(Physical Downlink Control Channel,窄带物理下行控制信道)传输。
作为一个实施例,所述第二信息通过NPDCCH(Narrow band Physical Downlink Control Channel,窄带物理下行控制信道)传输。
作为一个实施例,所述第二信息包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,所述第二信息通过MIB(Master Information Block,主信息块)中的空余比特(Spare Bits)携带的。
作为一个实施例,所述第二信息被用于指示{所述第一载波,所述第一无线信号所占用的频域资源,所述第一无线信号所占用的时域资源}中至少之一是指:所述第二信息被用于直接指示{所述第一载波,所述第一无线信号所占用的频域资源,所述第一无线信号所占用的时域资源}中至少之一。
作为一个实施例,所述第二信息被用于指示{所述第一载波,所述第一无线信号所占用的频域资源,所述第一无线信号所占用的时域资源}中至少之一是指:所述第二信息被用于间接指示{所述第一载波,所述第一无线信号所占用的频域资源,所述第一无线信号所占用的时域资源}中至少之一。
作为一个实施例,所述第二信息被用于指示{所述第一载波,所述第一无线信号所占用的频域资源,所述第一无线信号所占用的时域资源}中至少之一是指:所述第二信息被用于显式地指示{所述第一载波,所述第一无线信号所占用的频域资源,所述第一无线信号所占用的时域资源}中至少之一。
作为一个实施例,所述第二信息被用于指示{所述第一载波,所述第一无线信号所占用的频域资源,所述第一无线信号所占用的时域资源}中至少之一是指:所述第二信息被用于隐式地指示{所述第一载波,所述第一无线信号所占用的频域资源,所述第一无线信号所占用的时域资源}中至少之一。
作为一个实施例,所述第三信息通过高层信令传输。
作为一个实施例,所述第三信息通过物理层信令传输。
作为一个实施例,所述第三信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第三信息包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第三信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的全部或部分IE(Information Element,信息单元)。
作为一个实施例,所述第三信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的一个IE(Information Element,信息单元)中的全部或部分域(Field)。
作为一个实施例,所述第三信息包括MIB(Master Information Block,主信息块)中的一个或多个域(Field)。
作为一个实施例,所述第三信息通过一个DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第三信息通过一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第三信息通过一个NPDSCH(Narrow band Physical Downlink Shared Channel,窄带物理下行共享信道)传输。
作为一个实施例,所述第三信息是广播的。
作为一个实施例,所述第三信息是单播的。
作为一个实施例,所述第三信息是小区特定的(Cell Specific)。
作为一个实施例,所述第三信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第三信息通过PDCCH(Physical Downlink Control Channel,窄带物理下行控制信道)传输。
作为一个实施例,所述第三信息通过NPDCCH(Narrow band Physical Downlink Control Channel,窄带物理下行控制信道)传输。
作为一个实施例,所述第三信息包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,所述第三信息通过MIB(Master Information Block,主信息块)中的空余比特(Spare Bits)携带的。
作为一个实施例,所述第三信息被用于指示{所述第二无线信号所占用的频域资源,所述第二无线信号所占用的时域资源}中至少之一是指:所述第三信息被用于直接指示{所述第二无线信号所占用的频域资源,所述第二无线信号所占用的时域资源}中至少之一。
作为一个实施例,所述第三信息被用于指示{所述第二无线信号所占用的频域资源,所述第二无线信号所占用的时域资源}中至少之一是指:所述第三信息被用于间接指示{所述第二无线信号所占用的频域资源,所述第二无线信号所占用的时域资源}中至少之一。
作为一个实施例,所述第三信息被用于指示{所述第二无线信号所占用的频域资源,所述第二无线信号所占用的时域资源}中至少之一是指:所述第三信息被用于显式地指示{所述第二无线信号所占用的频域资源,所述第二无线信号所占用的时域资源}中至少之一。
作为一个实施例,所述第三信息被用于指示{所述第二无线信号所占用的频域资源,所述第二无线信号所占用的时域资源}中至少之一是指:所述第三信息被用于隐式地指示{所述第二无线信号所占用的频域资源,所述第二无线信号所占用的时域资源}中至少之一。
作为一个实施例,本申请中的所述第一信息和所述第三信息通过相同的信令的传输的。
作为一个实施例,本申请中的所述第一信息和所述第三信息通过相同的RRC(Radio Resource Control,无线资源控制)信令传输的。
作为一个实施例,本申请中的所述第一信息和所述第三信息通过不同的信令的传输的。
作为一个实施例,本申请中的所述第一信息和所述第三信息通过相同的物理信道传输的。
作为一个实施例,本申请中的所述第一信息和所述第三信息通过不同的物理信道传输的。
作为一个实施例,本申请中的所述第一信息和所述第三信息通过同一个PDSCH(Physical  Downlink Shared Channel,物理下行共享信道)传输的。
作为一个实施例,本申请中的所述第一信息和所述第三信息通过两个不同的PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输的。
作为一个实施例,本申请中的所述第一信息和所述第三信息联合编码(Joint Coding)后通过一个相同的信令传输的。
作为一个实施例,本申请中的所述第一信息和所述第三信息联合编码后作为同一个信令中的同一个域(field)传输的。
作为一个实施例,本申请中的所述第一信息和所述第三信息作为同一个信令中的两个不同的域(field)传输的。
作为一个实施例,本申请中的所述第一信息和所述第三信息联合编码后作为同一个RRC信令中的同一个IE(Information Element,信息元素)传输的。
作为一个实施例,本申请中的所述第一信息和所述第三信息作为同一个RRC信令中的两个不同的IE(Information Element,信息元素)传输的。
作为一个实施例,所述第四信息通过高层信令传输。
作为一个实施例,所述第四信息通过物理层信令传输。
作为一个实施例,所述第四信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第四信息包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第四信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的全部或部分IE(Information Element,信息单元)。
作为一个实施例,所述第四信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的一个IE(Information Element,信息单元)中的全部或部分域(Field)。
作为一个实施例,所述第四信息通过PBCH(Physical Broadcast Channel,物理广播信道)传输。
作为一个实施例,所述第四信息通过NPBCH(Narrow band Physical Broadcast Channel,窄带物理广播信道)传输。
作为一个实施例,所述第四信息包括MIB(Master Information Block,主信息块)中的一个或多个域(Field)。
作为一个实施例,所述第四信息通过一个DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第四信息通过一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第四信息通过一个NPDSCH(Narrow band Physical Downlink Shared Channel,窄带物理下行共享信道)传输。
作为一个实施例,所述第四信息包括一个SIB(System Information Block,系统信息块)中的一个或多个域(Field)。
作为一个实施例,所述第四信息是广播的。
作为一个实施例,所述第四信息是单播的。
作为一个实施例,所述第四信息是小区特定的(Cell Specific)。
作为一个实施例,所述第四信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第四信息通过同步信号携带的。
作为一个实施例,所述第四信息通过PSS(Primary Synchronization Signal,主同步信号)携带的。
作为一个实施例,所述第四信息通过SSS(Secondary Synchronization Signal,辅同步信号)携带的。
作为一个实施例,所述第四信息通过PSS(Primary Synchronization Signal,主同步信号)和SSS(Secondary Synchronization Signal,辅同步信号)携带的。
作为一个实施例,所述第四信息通过序列携带的。
作为一个实施例,所述第四信息通过对序列的相关(Correlation)操作获得的。
作为一个实施例,所述第四信息被用于确定所述第一载波的特征频率是指:所述第四信息被所述第一类通信节点用于确定所述第一载波的特征频率。
作为一个实施例,所述第四信息被用于确定所述第一载波的特征频率是指:所述第四信息被用于直接指示所述第一载波的特征频率。
作为一个实施例,所述第四信息被用于确定所述第一载波的特征频率是指:所述第四信息被用于间接指示所述第一载波的特征频率。
作为一个实施例,所述第四信息被用于确定所述第一载波的特征频率是指:所述第四信息被用于显式地指示所述第一载波的特征频率。
作为一个实施例,所述第四信息被用于确定所述第一载波的特征频率是指:所述第四信息被用于隐式地指示所述第一载波的特征频率。
实施例6
实施例6示例了根据本申请的一个实施例的第一载波和第二载波的关系的示意图,如附图6所示。附图6中,横轴代表时间,纵轴代表频率,斜线填充的矩形代表第一无线信号,十字线填充的矩形代表第二无线信号。
在实施例6中,本申请中的所述第一无线信号所占用频域资源属于第一载波,本申请中的所述第二无线信号所占用的频域资源属于第二载波,所述第一载波的特征频率和所述第二载波的特征频率不同,所述第一载波和所述第二载波在频域非正交;所述第一无线信号和所述第二无线信号在相同的服务小区被发送;所述第二无线信号所占用的时域资源属于目标时域资源池,所述第一无线信号所占用的时域资源包括所述目标时域资源池之外的时域资源,本申请中的所述第一信息被用于确定所述目标时域资源池。
作为一个实施例,所述目标时域资源池包括连续的时域资源。
作为一个实施例,所述目标时域资源池包括离散的时域资源。
作为一个实施例,所述目标时域资源池包括一个时间窗。
作为一个实施例,所述目标时域资源池中包括的时域资源是有限的。
作为一个实施例,所述第一无线信号所占用的时域资源和所述目标时域资源池正交。
作为一个实施例,所述第一无线信号所占用的时域资源和所述目标时域资源池非正交。
作为一个实施例,所述第一信息还被用于确定所述目标时域资源池是指:所述第一信息还被所述第一类通信节点用于确定所述目标时域资源池。
作为一个实施例,所述第一信息还被用于确定所述目标时域资源池是指:所述第一信息还被用于直接指示所述目标时域资源池。
作为一个实施例,所述第一信息还被用于确定所述目标时域资源池是指:所述第一信息还被用于间接指示所述目标时域资源池。
作为一个实施例,所述第一信息还被用于确定所述目标时域资源池是指:所述第一信息还被用于显式地指示所述目标时域资源池。
作为一个实施例,所述第一信息还被用于确定所述目标时域资源池是指:所述第一信息还被用于隐式地指示所述目标时域资源池。
实施例7
实施例7示例了根据本申请的一个实施例的第三载波的示意图,如附图7所示。在附图7中,纵轴代表频率,斜线填充的矩形代表第一无线信号,十字线填充的矩形代表第二无线信号。
在实施例7中,本申请中的所述第一载波和所述第二载波所包括的频域资源都属于第三载波,存在一个在所述第三载波内传输的无线信号和本申请中的所述第二无线信号分别采用 不同的无线接入技术发送。
作为一个实施例,所述第三载波是一个信道带宽(Channel Bandwidth)为{5MHz,10MHz,15MHz,20MHz,25MHz,30MHz,40MHz,50MHz,60MHz,80MHz,100MHz,200MHz,400MHz}中之一的载波(Carrier)。
作为一个实施例,所述第三载波是一个信道带宽(Channel Bandwidth)为{1.4MHz,3MHz,5MHz,10MHz,20MHz}中之一的载波(Carrier)。
作为一个实施例,所述第三载波是一个5G NR的载波(Carrier)。
作为一个实施例,所述第三载波是一个LTE(Long Term Evolution,长时演进)的载波(Carrier)。
作为一个实施例,发送所述第二无线信号所采用的无线接入技术(RAT)为NB-IoT。
作为一个实施例,发送所述第二无线信号所采用的无线接入技术(RAT)为LTE。
作为一个实施例,存在一个在所述第三载波内传输的无线信号采用5G NR的无线接入技术发送。
作为一个实施例,存在一个在所述第三载波内传输的无线信号采用LTE的无线接入技术发送。
实施例8
实施例8根据本申请的一个实施例的第一载波,第二载波和X个备选频率间隔之间的关系的示意图,如附图8所示。在附图8中,纵轴代表频率,斜线填充的矩形代表第一载波,十字线填充的矩形代表第二载波,每个虚线框矩形代表X个备选频率间隔所对应的第二载波之外的第二载波的备选。
在实施例8中,本申请中的所述第一载波的特征频率和本申请中的所述第二载波的特征频率之间的频域间隔属于X个备选频率间隔中之一,所述X是正整数,本申请中的所述第一信息在所述X个备选频率间隔中指示所述第一载波的特征频域和所述第二载波的特征频率之间的频率间隔。
作为一个实施例,所述X个备选频率间隔是预定义的。
作为一个实施例,所述X个备选频率间隔是可配置的。
作为一个实施例,20kHz是所述X个备选频率间隔中之一。
作为一个实施例,0kHz是所述X个备选频率间隔中之一。
作为一个实施例,2.5kHz是所述X个备选频率间隔中之一。
作为一个实施例,7.5kHz是所述X个备选频率间隔中之一。
作为一个实施例,-2.5kHz是所述X个备选频率间隔中之一。
作为一个实施例,-7.5kHz是所述X个备选频率间隔中之一。
作为一个实施例,所述第一载波的特征频率和所述第二载波的特征频率之间的频域间隔等于{20kHz,2.5kHz,-2.5kHz,7.5kHz,-7.5kHz}中之一。
作为一个实施例,所述第一信息在所述X个备选频率间隔中指示所述第一载波的特征频域和所述第二载波的特征频率之间的频率间隔是指:所述第一信息在所述X个备选频率间隔中直接指示所述第一载波的特征频域和所述第二载波的特征频率之间的频率间隔。
作为一个实施例,所述第一信息在所述X个备选频率间隔中指示所述第一载波的特征频域和所述第二载波的特征频率之间的频率间隔是指:所述第一信息在所述X个备选频率间隔中间接指示所述第一载波的特征频域和所述第二载波的特征频率之间的频率间隔。
作为一个实施例,所述第一信息在所述X个备选频率间隔中指示所述第一载波的特征频域和所述第二载波的特征频率之间的频率间隔是指:所述第一信息在所述X个备选频率间隔中显式地指示所述第一载波的特征频域和所述第二载波的特征频率之间的频率间隔。
作为一个实施例,所述第一信息在所述X个备选频率间隔中指示所述第一载波的特征频域和所述第二载波的特征频率之间的频率间隔是指:所述第一信息在所述X个备选频率间隔 中隐式地指示所述第一载波的特征频域和所述第二载波的特征频率之间的频率间隔。
实施例9
实施例9示例了一个第一类通信节点设备的处理装置的结构框图,如附图9所示。附图9中,第一类通信节点设备处理装置900主要由第一接收机模块901,第二接收机模块902和第三接收机模块903组成。第一接收机模块901包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452和控制器/处理器490;第二接收机模块902包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452和控制器/处理器490;第三接收机模块903包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452和控制器/处理器490。
在实施例9中,第一接收机模块901,接收第一无线信号;第二接收机模块902,接收第一信息;第三接收机模块903,接收第二无线信号;所述第一无线信号所占用频域资源属于第一载波,所述第二无线信号所占用的频域资源属于第二载波,所述第一载波的特征频率和所述第二载波的特征频率不同,所述第一载波和所述第二载波在频域非正交;所述第一无线信号和所述第二无线信号在相同的服务小区被发送;所述第一信息被用于确定所述第二载波;所述第一信息通过空中接口传输。
作为一个实施例,第二接收机模块902还接收第二信息和接收第三信息;其中,所述第二信息被用于指示{所述第一载波,所述第一无线信号所占用的频域资源,所述第一无线信号所占用的时域资源}中至少之一,所述第三信息被用于指示{所述第二无线信号所占用的频域资源,所述第二无线信号所占用的时域资源}中至少之一;所述第二信息和所述第三信息都通过所述空中接口传输。
作为一个实施例,所述第一载波和所述第二载波所包括的频域资源都属于第三载波,存在一个在所述第三载波内传输的无线信号和所述第二无线信号分别采用不同的无线接入技术发送。
作为一个实施例,所述第二无线信号所占用的时域资源属于目标时域资源池,所述第一无线信号所占用的时域资源包括所述目标时域资源池之外的时域资源,所述第一信息还被用于确定所述目标时域资源池。
作为一个实施例,所述第一载波的特征频率和所述第二载波的特征频率之间的频域间隔属于X个备选频率间隔中之一,所述X是正整数,所述第一信息在所述X个备选频率间隔中指示所述第一载波的特征频域和所述第二载波的特征频率之间的频率间隔。
作为一个实施例,第一接收机模块901还接收第四信息;其中所述第四信息被用于确定所述第一载波的特征频率,所述第四信息通过所述空中接口传输。
实施例10
实施例10示例了一个第二类通信节点设备中的处理装置的结构框图,如附图10所示。在附图10中,第二类通信节点设备中的处理装置1000主要由第一发射机模块1001,第二发射机模块1002和第三发射机模块1003组成。第一发射机模块1001包括本申请附图4中的发射器/接收器416(包括天线420),发射处理器415和控制器/处理器440;第二发射机模块1002包括本申请附图4中的发射器/接收器416(包括天线420),发射处理器415和控制器/处理器440,第三发射机模块1003包括本申请附图4中的发射器/接收器416(包括天线420),发射处理器415和控制器/处理器440。
在实施例10中,第一发射机模块1001,发送第一无线信号;第二发射机模块1002,发送第一信息;第三发射机模块1003,发送第二无线信号;所述第一无线信号所占用频域资源属于第一载波,所述第二无线信号所占用的频域资源属于第二载波,所述第一载波的特征频率和所述第二载波的特征频率不同,所述第一载波和所述第二载波在频域非正交;所述第一无线信号和所述第二无线信号在相同的服务小区被发送;所述第一信息 被用于确定所述第二载波;所述第一信息通过空中接口传输。
作为一个实施例,第二发射机模块1002还发送第二信息和发送第三信息;其中,所述第二信息被用于指示{所述第一载波,所述第一无线信号所占用的频域资源,所述第一无线信号所占用的时域资源}中至少之一,所述第三信息被用于指示{所述第二无线信号所占用的频域资源,所述第二无线信号所占用的时域资源}中至少之一;所述第二信息和所述第三信息都通过所述空中接口传输。
作为一个实施例,所述第一载波和所述第二载波所包括的频域资源都属于第三载波,存在一个在所述第三载波内传输的无线信号和所述第二无线信号分别采用不同的无线接入技术发送。
作为一个实施例,所述第二无线信号所占用的时域资源属于目标时域资源池,所述第一无线信号所占用的时域资源包括所述目标时域资源池之外的时域资源,所述第一信息还被用于确定所述目标时域资源池。
作为一个实施例,所述第一载波的特征频率和所述第二载波的特征频率之间的频域间隔属于X个备选频率间隔中之一,所述X是正整数,所述第一信息在所述X个备选频率间隔中指示所述第一载波的特征频域和所述第二载波的特征频率之间的频率间隔。
作为一个实施例,第一发射机模块1001还发送第四信息;所述第四信息被用于确定所述第一载波的特征频率,所述第四信息通过所述空中接口传输。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一类通信节点设备,UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备等无线通信设备。本申请中的第二类通信节点设备,基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种用于无线通信的第一类通信节点中的方法,其特征在于,包括:
    接收第一无线信号;
    接收第一信息;
    接收第二无线信号;
    其中,所述第一无线信号所占用频域资源属于第一载波,所述第二无线信号所占用的频域资源属于第二载波,所述第一载波的特征频率和所述第二载波的特征频率不同,所述第一载波和所述第二载波在频域非正交;所述第一无线信号和所述第二无线信号在相同的服务小区被发送;所述第一信息被用于确定所述第二载波;所述第一信息通过空中接口传输。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    接收第二信息;
    接收第三信息;
    其中,所述第二信息被用于指示{所述第一载波,所述第一无线信号所占用的频域资源,所述第一无线信号所占用的时域资源}中至少之一,所述第三信息被用于指示{所述第二无线信号所占用的频域资源,所述第二无线信号所占用的时域资源}中至少之一;所述第二信息和所述第三信息都通过所述空中接口传输。
  3. 根据权利要求1或2中任一权利要求所述的方法,其特征在于,所述第一载波和所述第二载波所包括的频域资源都属于第三载波,存在一个在所述第三载波内传输的无线信号和所述第二无线信号分别采用不同的无线接入技术发送。
  4. 根据权利要求1至3中任一权利要求所述的方法,其特征在于,所述第二无线信号所占用的时域资源属于目标时域资源池,所述第一无线信号所占用的时域资源包括所述目标时域资源池之外的时域资源,所述第一信息还被用于确定所述目标时域资源池。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于,所述第一载波的特征频率和所述第二载波的特征频率之间的频域间隔属于X个备选频率间隔中之一,所述X是正整数,所述第一信息在所述X个备选频率间隔中指示所述第一载波的特征频域和所述第二载波的特征频率之间的频率间隔。
  6. 根据权利要求1至5中任一权利要求所述的方法,其特征在于,还包括:
    接收第四信息;
    其中所述第四信息被用于确定所述第一载波的特征频率,所述第四信息通过所述空中接口传输。
  7. 一种用于无线通信的第二类通信节点中的方法,其特征在于,包括:
    发送第一无线信号;
    发送第一信息;
    发送第二无线信号;
    其中,所述第一无线信号所占用频域资源属于第一载波,所述第二无线信号所占用的频域资源属于第二载波,所述第一载波的特征频率和所述第二载波的特征频率不同,所述第一载波和所述第二载波在频域非正交;所述第一无线信号和所述第二无线信号在相同的服务小区被发送;所述第一信息被用于确定所述第二载波;所述第一信息通过空中接口传输。
  8. 根据权利要求7所述的方法,其特征在于,还包括:
    发送第二信息;
    发送第三信息;
    其中,所述第二信息被用于指示{所述第一载波,所述第一无线信号所占用的频域资源,所述第一无线信号所占用的时域资源}中至少之一,所述第三信息被用于指示{所述第二无线信号所占用的频域资源,所述第二无线信号所占用的时域资源}中至少之一;所述第二信息和所述第三信息都通过所述空中接口传输。
  9. 根据权利要求7或8中任一权利要求所述的方法,其特征在于,所述第一载波和所述第二载波所包括的频域资源都属于第三载波,存在一个在所述第三载波内传输的无线信号和 所述第二无线信号分别采用不同的无线接入技术发送。
  10. 根据权利要求7至9中任一权利要求所述的方法,其特征在于,所述第二无线信号所占用的时域资源属于目标时域资源池,所述第一无线信号所占用的时域资源包括所述目标时域资源池之外的时域资源,所述第一信息还被用于确定所述目标时域资源池。
  11. 根据权利要求7至10中任一权利要求所述的方法,其特征在于,所述第一载波的特征频率和所述第二载波的特征频率之间的频域间隔属于X个备选频率间隔中之一,所述X是正整数,所述第一信息在所述X个备选频率间隔中指示所述第一载波的特征频域和所述第二载波的特征频率之间的频率间隔。
  12. 根据权利要求7至11中任一权利要求所述的方法,其特征在于,还包括:
    发送第四信息;
    其中所述第四信息被用于确定所述第一载波的特征频率,所述第四信息通过所述空中接口传输。
  13. 一种用于无线通信的第一类通信节点设备,其特征在于,包括:
    第一接收机模块,接收第一无线信号;
    第二接收机模块,接收第一信息;
    第三接收机模块,接收第二无线信号;
    其中,所述第一无线信号所占用频域资源属于第一载波,所述第二无线信号所占用的频域资源属于第二载波,所述第一载波的特征频率和所述第二载波的特征频率不同,所述第一载波和所述第二载波在频域非正交;所述第一无线信号和所述第二无线信号在相同的服务小区被发送;所述第一信息被用于确定所述第二载波;所述第一信息通过空中接口传输。
  14. 一种用于无线通信的第二类通信节点设备,其特征在于,包括:
    第一发射机模块,发送第一无线信号;
    第二发射机模块,发送第一信息;
    第三发射机模块,发送第二无线信号;
    其中,所述第一无线信号所占用频域资源属于第一载波,所述第二无线信号所占用的频域资源属于第二载波,所述第一载波的特征频率和所述第二载波的特征频率不同,所述第一载波和所述第二载波在频域非正交;所述第一无线信号和所述第二无线信号在相同的服务小区被发送;所述第一信息被用于确定所述第二载波;所述第一信息通过空中接口传输。
PCT/CN2018/085623 2018-05-04 2018-05-04 一种被用于无线通信的通信节点中的方法和装置 WO2019210512A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/085623 WO2019210512A1 (zh) 2018-05-04 2018-05-04 一种被用于无线通信的通信节点中的方法和装置
CN201880092795.XA CN112020848B (zh) 2018-05-04 2018-05-04 一种被用于无线通信的通信节点中的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/085623 WO2019210512A1 (zh) 2018-05-04 2018-05-04 一种被用于无线通信的通信节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2019210512A1 true WO2019210512A1 (zh) 2019-11-07

Family

ID=68387040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085623 WO2019210512A1 (zh) 2018-05-04 2018-05-04 一种被用于无线通信的通信节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN112020848B (zh)
WO (1) WO2019210512A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113259074A (zh) * 2020-02-08 2021-08-13 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114205061A (zh) * 2020-09-18 2022-03-18 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114679245A (zh) * 2020-12-25 2022-06-28 展讯半导体(南京)有限公司 载波切换方法与装置、终端和网络设备
CN114679244A (zh) * 2020-12-25 2022-06-28 展讯半导体(南京)有限公司 跨载波数据传输方法与装置、终端和网络设备
WO2023011180A1 (zh) * 2021-08-06 2023-02-09 华为技术有限公司 载波配置方法及通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106330789A (zh) * 2015-07-01 2017-01-11 上海朗帛通信技术有限公司 一种基于多用户叠加传输的pmch传输方法和装置
WO2018067224A1 (en) * 2016-10-03 2018-04-12 Qualcomm Incorporated Methods and apparatuses for a coexistence of 5g new radio technology with narrowband internet-of-things technology
CN107959646A (zh) * 2016-10-15 2018-04-24 上海朗帛通信技术有限公司 一种支持同步信号的ue、基站中的方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107182130B (zh) * 2016-03-10 2019-10-01 上海朗帛通信技术有限公司 一种基于蜂窝网的窄带通信的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106330789A (zh) * 2015-07-01 2017-01-11 上海朗帛通信技术有限公司 一种基于多用户叠加传输的pmch传输方法和装置
WO2018067224A1 (en) * 2016-10-03 2018-04-12 Qualcomm Incorporated Methods and apparatuses for a coexistence of 5g new radio technology with narrowband internet-of-things technology
CN107959646A (zh) * 2016-10-15 2018-04-24 上海朗帛通信技术有限公司 一种支持同步信号的ue、基站中的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Consideration of MMTC in 5G System Design", 3GPP TSG RAN WGI #84BIS, R1-162302, 15 April 2016 (2016-04-15), XP051080107 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113259074A (zh) * 2020-02-08 2021-08-13 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113259074B (zh) * 2020-02-08 2022-11-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114205061A (zh) * 2020-09-18 2022-03-18 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114205061B (zh) * 2020-09-18 2024-05-14 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114679245A (zh) * 2020-12-25 2022-06-28 展讯半导体(南京)有限公司 载波切换方法与装置、终端和网络设备
CN114679244A (zh) * 2020-12-25 2022-06-28 展讯半导体(南京)有限公司 跨载波数据传输方法与装置、终端和网络设备
WO2022135051A1 (zh) * 2020-12-25 2022-06-30 展讯半导体(南京)有限公司 跨载波数据传输方法与装置、终端和网络设备
WO2023011180A1 (zh) * 2021-08-06 2023-02-09 华为技术有限公司 载波配置方法及通信装置

Also Published As

Publication number Publication date
CN112020848A (zh) 2020-12-01
CN112020848B (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
US11818704B2 (en) Method and device in wireless communication
WO2019210512A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2019157974A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2018145607A1 (zh) 一种用于无线通信中的方法和装置
CN111884768B (zh) 一种用于无线通信的通信节点中的方法和装置
WO2018068642A1 (zh) 一种支持多载波通信的用户设备、基站中的方法和设备
US10750493B2 (en) Method and device in UE and base station for unlicensed spectrum
WO2018028444A1 (zh) 一种无线通信中的方法和装置
WO2020083039A1 (zh) 一种被用于无线通信的节点中的方法和装置
US11665037B2 (en) Method and device for wireless communication
CN110012540B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN109525377B (zh) 一种被用于窄带通信的用户设备、基站中的方法和装置
WO2019134152A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2018103611A1 (zh) 一种用户设备和基站中的方法和设备
CN113824665B (zh) 一种用于无线通信的节点中的方法和装置
US11510248B2 (en) Method and apparatus in user equipement and base station supporting enhanced random access procedure
CN110784290B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020052462A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020001247A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN111769920B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023103924A1 (zh) 一种用于无线通信的节点中的方法和装置
CN110771227B (zh) 一种被用于非授权频谱的用户设备、基站中的方法和装置
WO2020063265A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN109428699B (zh) 一种被用于窄带通信的用户设备、基站中的方法和装置
CN113939035A (zh) 一种用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01.04.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18917159

Country of ref document: EP

Kind code of ref document: A1