WO2019157974A1 - 一种用于无线通信的通信节点中的方法和装置 - Google Patents

一种用于无线通信的通信节点中的方法和装置 Download PDF

Info

Publication number
WO2019157974A1
WO2019157974A1 PCT/CN2019/074156 CN2019074156W WO2019157974A1 WO 2019157974 A1 WO2019157974 A1 WO 2019157974A1 CN 2019074156 W CN2019074156 W CN 2019074156W WO 2019157974 A1 WO2019157974 A1 WO 2019157974A1
Authority
WO
WIPO (PCT)
Prior art keywords
time window
wireless signal
time
information
air interface
Prior art date
Application number
PCT/CN2019/074156
Other languages
English (en)
French (fr)
Inventor
刘铮
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2019157974A1 publication Critical patent/WO2019157974A1/zh
Priority to US16/988,719 priority Critical patent/US11219016B2/en
Priority to US17/534,461 priority patent/US11523385B2/en
Priority to US17/971,648 priority patent/US11696264B2/en
Priority to US18/195,378 priority patent/US11963140B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance

Definitions

  • the present application relates to a transmission method and apparatus in a wireless communication system, and more particularly to an uplink non-granted transmission scheme and apparatus.
  • the application scenarios of future wireless communication systems are increasingly diversified, and different application scenarios impose different performance requirements on the system.
  • the new air interface technology was decided at the #72 (3rd Generation Partnership Project) RAN (Radio Access Network) #72 plenary meeting.
  • New Radio or 5G
  • WI Work Item
  • the 3GPP RAN#76 plenary meeting also passed the research project of Non-orthogonal multiple access (NoMA) under NR.
  • NoMA Non-orthogonal multiple access
  • the WI is started to standardize the relevant technology after the end of the SI.
  • the non-grant (Grant-Free) uplink transmission will be a key research method because of its low complexity requirements for the receiver.
  • the present application discloses a method for use in a first type of communication node in wireless communication, including:
  • the first information is used to determine a target time window
  • the second wireless signal occupies a second time window in a time domain
  • the second information is used to determine whether the second time window belongs to the target a time window and at least one of a relative positional relationship between the second time window and the target time window; an end time of the first time window is earlier than a start time of the target time window, the first wireless
  • the air interface resource occupied by the signal is used to determine at least a frequency domain resource occupied by the second wireless signal and a code domain resource occupied by the second wireless signal and at least one of a modulation and coding mode adopted by the second wireless signal.
  • One of the first information, the second information, the first wireless signal and the second wireless signal are transmitted over an air interface.
  • the network side can control whether the data portion of the non-granted transmission and other transmissions before and after (possibly based on grant or non-grant) collide and if the collision size in the case of a collision, The network device can thus perform collision avoidance in a scheduled manner by detection of the preamble sequence.
  • the method is characterized in that the second time window belongs to the target time window, and the time interval between the end time of the second time window and the end time of the target time window is not less than a difference between a length of time of the first time window and a length of time occupied by the first wireless signal.
  • the method is characterized in that the second time window includes a time domain resource outside the target time window, and a sending end time of the first wireless signal and the first time window
  • the length of the time interval of the ending time is the length of the first idle time
  • the length of the time interval between the start time of the first time window and the sending start time of the first wireless signal is the second idle time length
  • a length of a time interval between a start time of the second time window and a start time of the target time window is equal to the first idle time length, or an end time of the target time window and an end time of the second time window
  • the length of the time interval is equal to the length of the second idle time.
  • the second information configuration data portion collides with the previous transmission or with the subsequent transmission, thereby allowing the network side to perform the uplink control according to the transmission requirement.
  • the control of possible collisions only occurs in the latter transmission.
  • the subsequent transmission is downlink control, such as PDCCH, the control may collide only occurs in the previous transmission) for flexible control, ensuring maximum collision through scheduling. Avoid and improve transmission efficiency.
  • the above method is characterized by further comprising:
  • the third information is used to indicate P candidate air interface resources, one of the P candidate air interface resources occupied by the first wireless signal, and the P is a positive integer, the first Three messages are transmitted over the air interface.
  • the method is characterized in that the first information is used to indicate a first air interface resource pool, and the frequency domain resources included in the first air interface resource pool are occupied by the second wireless signal.
  • a frequency domain resource the code domain resource included in the first air interface resource pool includes a code domain resource occupied by the second wireless signal
  • the time domain resource included in the first air interface resource pool includes the target time a window
  • the air interface resource occupied by the first wireless signal is used to determine, in the first air interface resource pool, a frequency domain resource occupied by the second wireless signal and a code domain occupied by the second wireless signal At least one of the resources.
  • the present application discloses a method for a second type of communication node in wireless communication, which includes:
  • the first information is used to determine a target time window
  • the second wireless signal occupies a second time window in a time domain
  • the second information is used to determine whether the second time window belongs to the target a time window and at least one of a relative positional relationship between the second time window and the target time window; an end time of the first time window is earlier than a start time of the target time window, the first wireless
  • the air interface resource occupied by the signal is used to determine at least a frequency domain resource occupied by the second wireless signal and a code domain resource occupied by the second wireless signal and at least one of a modulation and coding mode adopted by the second wireless signal.
  • One of the first information, the second information, the first wireless signal and the second wireless signal are transmitted over an air interface.
  • the method is characterized in that the second time window belongs to the target time window, and the time interval between the end time of the second time window and the end time of the target time window is not less than a difference between a length of time of the first time window and a length of time occupied by the first wireless signal.
  • the method is characterized in that the second time window includes a time domain resource outside the target time window, and a sending end time of the first wireless signal and the first time window
  • the length of the time interval of the ending time is the length of the first idle time
  • the length of the time interval between the start time of the first time window and the sending start time of the first wireless signal is the second idle time length
  • a length of a time interval between a start time of the second time window and a start time of the target time window is equal to the first idle time length, or an end time of the target time window and an end time of the second time window
  • the length of the time interval is equal to the length of the second idle time.
  • the above method is characterized by further comprising:
  • the third information is used to indicate P candidate air interface resources, one of the P candidate air interface resources occupied by the first wireless signal, and the P is a positive integer, the first Three messages are transmitted over the air interface.
  • the method is characterized in that the first information is used to indicate a first air interface resource pool, and the frequency domain resources included in the first air interface resource pool are occupied by the second wireless signal.
  • a frequency domain resource the code domain resource included in the first air interface resource pool includes a code domain resource occupied by the second wireless signal
  • the time domain resource included in the first air interface resource pool includes the target time a window
  • the air interface resource occupied by the first wireless signal is used to determine, in the first air interface resource pool, a frequency domain resource occupied by the second wireless signal and a code domain occupied by the second wireless signal At least one of the resources.
  • the present application discloses a first type of communication node device used in wireless communication, which includes:
  • a first receiver receiving the first information and the second information
  • the first transmitter transmits the first wireless signal in the first time window
  • the first information is used to determine a target time window
  • the second wireless signal occupies a second time window in a time domain
  • the second information is used to determine whether the second time window belongs to the target a time window and at least one of a relative positional relationship between the second time window and the target time window; an end time of the first time window is earlier than a start time of the target time window, the first wireless
  • the air interface resource occupied by the signal is used to determine at least a frequency domain resource occupied by the second wireless signal and a code domain resource occupied by the second wireless signal and at least one of a modulation and coding mode adopted by the second wireless signal.
  • One of the first information, the second information, the first wireless signal and the second wireless signal are transmitted over an air interface.
  • the first type of communication node device is characterized in that the second time window belongs to the target time window, the end time of the second time window and the end time of the target time window
  • the length of the time interval is not less than a difference between a length of time of the first time window and a length of time occupied by the first wireless signal.
  • the first type of communication node device is characterized in that: the second time window includes a time domain resource outside the target time window, and a sending end time of the first wireless signal
  • the length of the time interval of the end time of the first time window is the length of the first idle time
  • the length of the time interval between the start time of the first time window and the sending start time of the first wireless signal is the second idle time.
  • a length of the time interval between the start time of the second time window and the start time of the target time window is equal to the first idle time length, or the end time of the target time window and the second time
  • the length of the time interval of the end time of the window is equal to the length of the second idle time.
  • the first type of communication node device is characterized in that the first receiver further receives third information, wherein the third information is used to indicate P candidate air interface resources, One of the P candidate air interface resources occupied by the first wireless signal, the P is a positive integer, and the third information is transmitted through the air interface.
  • the first type of communication node device is characterized in that the first information is used to indicate a first air interface resource pool, and the frequency domain resource included in the first air interface resource pool includes the first a frequency domain resource occupied by the second wireless signal, the code domain resource included in the first air interface resource pool includes a code domain resource occupied by the second wireless signal, and a time domain resource included in the first air interface resource pool Including the target time window, the air interface resource occupied by the first wireless signal is used to determine a frequency domain resource and the second wireless signal occupied by the second wireless signal in the first air interface resource pool. At least one of the code domain resources occupied.
  • the present application discloses a second type of communication node device used in wireless communication, which includes:
  • a third transmitter transmitting the first information and the second information
  • a third receiver if the first wireless signal is detected, receiving a second wireless signal
  • the first information is used to determine a target time window
  • the second wireless signal occupies a second time window in a time domain
  • the second information is used to determine whether the second time window belongs to the target a time window and at least one of a relative positional relationship between the second time window and the target time window; an end time of the first time window is earlier than a start time of the target time window, the first wireless
  • the air interface resource occupied by the signal is used to determine at least a frequency domain resource occupied by the second wireless signal and a code domain resource occupied by the second wireless signal and at least one of a modulation and coding mode adopted by the second wireless signal.
  • One of the first information, the second information, the first wireless signal and the second wireless signal are transmitted over an air interface.
  • the second type of communication node device is characterized in that the second time window belongs to the target time window, the end time of the second time window and the end time of the target time window
  • the length of the time interval is not less than a difference between a length of time of the first time window and a length of time occupied by the first wireless signal.
  • the second type of communication node device is characterized in that: the second time window includes a time domain resource outside the target time window, and a sending end time of the first wireless signal
  • the length of the time interval of the end time of the first time window is the length of the first idle time
  • the length of the time interval between the start time of the first time window and the sending start time of the first wireless signal is the second idle time.
  • a length of the time interval between the start time of the second time window and the start time of the target time window is equal to the first idle time length, or the end time of the target time window and the second time
  • the length of the time interval of the end time of the window is equal to the length of the second idle time.
  • the second type of communication node device is characterized in that the third transmitter further transmits third information; wherein the third information is used to indicate P candidate air interface resources, One of the P candidate air interface resources occupied by the first wireless signal, the P is a positive integer, and the third information is transmitted through the air interface.
  • the second type of communication node device is characterized in that the first information is used to indicate a first air interface resource pool, and the frequency domain resource included in the first air interface resource pool includes the first a frequency domain resource occupied by the second wireless signal, the code domain resource included in the first air interface resource pool includes a code domain resource occupied by the second wireless signal, and a time domain resource included in the first air interface resource pool Including the target time window, the air interface resource occupied by the first wireless signal is used to determine a frequency domain resource and the second wireless signal occupied by the second wireless signal in the first air interface resource pool. At least one of the code domain resources occupied.
  • the present application has the following main technical advantages:
  • the present application provides a network device that can control whether data in an uplink transmission needs to be reserved for collision avoidance according to scheduling requirements, achieves a balance between scheduling flexibility and resource utilization, and improves transmission efficiency.
  • the method provided by the present application allows the network side to control the possible collisions only after the uplink transmission, such as the SRS or the PUCCH, if the previous transmission is the uplink control, and if the subsequent transmission is the downlink control, such as the PDCCH, the control may collide. Only in the front transmission) for flexible control, to ensure maximum collision avoidance through scheduling, improve transmission efficiency.
  • FIG. 1 shows a flow chart of first information, second information, a first wireless signal and a second wireless signal according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of a first type of communication node and a second type of communication node in accordance with one embodiment of the present application
  • FIG. 5 illustrates a wireless signal transmission flow diagram in accordance with one embodiment of the present application
  • FIG. 6 shows another wireless signal transmission flowchart according to an embodiment of the present application
  • FIG. 7 is a schematic diagram showing a relationship between a first wireless signal and a second wireless signal according to an embodiment of the present application.
  • FIG. 8 is a diagram showing a relationship between a second time window and a target time window according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram showing a first idle time length and a second idle time length according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram showing P candidate air interface resources according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram showing a first air interface resource pool according to an embodiment of the present application.
  • FIG. 12 is a block diagram showing the structure of a processing device in a first type of communication node device according to an embodiment of the present application.
  • Figure 13 is a block diagram showing the structure of a processing device in a second type of communication node device in accordance with one embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of transmission of first information, second information, first wireless signal and second wireless signal according to an embodiment of the present application, as shown in FIG.
  • each box represents a step.
  • the first type of communication node in the present application first receives the first information and the second information; then transmits the first wireless signal in the first time window; and then transmits the second wireless signal; wherein, the a message is used to determine a target time window, the second wireless signal occupies a second time window in the time domain, the second information being used to determine whether the second time window belongs to the target time window and At least one of a relative positional relationship between the second time window and the target time window; an end time of the first time window is earlier than a start time of the target time window, and the air interface occupied by the first wireless signal
  • the resource is used to determine at least one of a frequency domain resource occupied by the second wireless signal and a code domain resource occupied by the second wireless signal and a modulation and coding mode used by the second wireless
  • the first information is transmitted through higher layer signaling.
  • the first information is transmitted through physical layer signaling.
  • the first information includes all or part of a high layer signaling.
  • the first information includes all or part of one physical layer signaling.
  • the first information is transmitted through a PBCH (Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel
  • the first information includes one or more fields in a MIB (Master Information Block).
  • MIB Master Information Block
  • the first information is transmitted through a DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the first information is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the first information includes one or more fields in an SIB (System Information Block).
  • SIB System Information Block
  • the first information includes one or more fields in the RMSI (Remaining System Information).
  • RMSI Remaining System Information
  • the first information includes all or part of an RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the first information is broadcast.
  • the first information is unicast.
  • the first information is Cell Specific.
  • the first information is user-specific (UE-specific).
  • the first information is transmitted through a PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the first information includes all or part of a DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the determining, by the first information, the target time window means that the first information is used by the first type of communication node to determine the target time window.
  • the using the first information to determine the target time window means that the first information directly indicates the target time window.
  • the using the first information to determine the target time window means that the first information indirectly indicates the target time window.
  • the using the first information to determine the target time window means that the first information explicitly indicates the target time window.
  • the using the first information to determine the target time window means that the first information implicitly indicates the target time window.
  • the determining, by the first information, the target time window means that the first information is used to indicate ⁇ the start time of the target time window and the end of the first time window At least one of the length of the time interval, the length of time of the target time window.
  • the determining, by the first information, the target time window means: the first information is used to indicate ⁇ the start time of the target time window and the start of the first time window At least one of the length of the time interval of the start time, and the length of time of the target time window.
  • the determining, by the first information, the target time window means: the first information is used to indicate a time length of the target time window, and a time domain position of the target time window At least one of ⁇ .
  • the second information is transmitted through higher layer signaling.
  • the second information is transmitted through physical layer signaling.
  • the second information includes all or part of a high layer signaling.
  • the second information includes all or part of one physical layer signaling.
  • the second information is transmitted through a PBCH (Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel
  • the second information includes one or more fields in a MIB (Master Information Block).
  • MIB Master Information Block
  • the second information is transmitted through a DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the second information is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the second information includes one or more fields in an SIB (System Information Block).
  • SIB System Information Block
  • the second information includes one or more fields in the RMSI (Remaining System Information).
  • RMSI Remaining System Information
  • the second information includes all or part of an RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the second information is broadcast.
  • the second information is unicast.
  • the second information is Cell Specific.
  • the second information is UE-specific.
  • the second information is transmitted through a PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the second information includes all or part of a DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the second information is used to determine whether the second time window belongs to the target time window and at least one of a relative positional relationship between the second time window and the target time window refers to
  • the second information is used by the first type of communication node to determine whether the second time window belongs to the target time window and at least a relative positional relationship between the second time window and the target time window One.
  • the second information is used to determine whether the second time window belongs to the target time window and at least one of a relative positional relationship between the second time window and the target time window refers to
  • the second information directly indicates whether the second time window belongs to the target time window and at least one of a relative positional relationship between the second time window and the target time window.
  • the second information is used to determine whether the second time window belongs to the target time window and at least one of a relative positional relationship between the second time window and the target time window refers to
  • the second information indirectly indicates whether the second time window belongs to the target time window and at least one of a relative positional relationship between the second time window and the target time window.
  • the second information is used to determine whether the second time window belongs to the target time window and at least one of a relative positional relationship between the second time window and the target time window refers to
  • the second information explicitly indicates whether the second time window belongs to the target time window and at least one of a relative positional relationship between the second time window and the target time window.
  • the second information is used to determine whether the second time window belongs to the target time window and at least one of a relative positional relationship between the second time window and the target time window refers to
  • the second information implicitly indicates whether the second time window belongs to the target time window and at least one of a relative positional relationship between the second time window and the target time window.
  • the first information and the second information are transmitted by the same signaling.
  • the first information and the second information are transmitted by using the same RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the first information and the second information are transmitted by different signaling.
  • the first information and the second information are transmitted through the same physical channel.
  • the first information and the second information are transmitted through different physical channels.
  • the first information and the second information are transmitted by using the same PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the first information and the second information are transmitted by using two different PDSCHs (Physical Downlink Shared Channels).
  • PDSCHs Physical Downlink Shared Channels
  • the first information and the second information are jointly encoded (Joint Coding) and transmitted through a same signaling.
  • the first information and the second information are jointly encoded and transmitted as the same field in the same signaling.
  • the first information and the second information are transmitted as two different fields in the same signaling.
  • the first information and the second information are jointly encoded and transmitted as the same IE (Information Element) in the same RRC signaling.
  • the first information and the second information are transmitted as two different IEs (Information Elements) in the same RRC signaling.
  • the first time window is a slot on the receiver side of the first wireless signal for a given one subcarrier spacing.
  • the first time window is a positive integer number of consecutive time slots (Slots) on the receiver side of the first wireless signal for a given one subcarrier spacing.
  • the first time window is a continuous number of consecutive sub-frames on the receiver side of the first wireless signal.
  • the start time and the end time of the first time window are aligned with the boundary of the receiver side multicarrier symbol of the first wireless signal.
  • the first time window is a slot of the first type of communication node side in the case of a given subcarrier spacing.
  • the first time window is a positive integer number of consecutive slots (Slots) on the first type of communication node side for a given one subcarrier spacing.
  • the first time window is a continuous number of consecutive subframes of the first type of communication node side.
  • the start time and the end time of the first time window are aligned with the boundary of the multi-carrier symbol of the first type of communication node side.
  • the first wireless signal is generated by a sequence of features.
  • the first wireless signal is transmitted through a PRACH (Physical Random Access Channel).
  • PRACH Physical Random Access Channel
  • the first wireless signal carries a preamble.
  • the first wireless signal is transmitted through a RACH (Random Access Channel).
  • RACH Random Access Channel
  • the first wireless signal is generated by a feature sequence, which is one of a ZC (Zadoff-Chu) sequence or a pseudo-random sequence.
  • a feature sequence which is one of a ZC (Zadoff-Chu) sequence or a pseudo-random sequence.
  • the first wireless signal is generated by a sequence of features, the signature sequence being one of an integer number of orthogonal sequences or non-orthogonal sequences.
  • the time length of the first time window is greater than the number of time domain resources occupied by the first wireless signal.
  • the length of time of the first time window is greater than the length of time occupied by the first wireless signal.
  • the first type of communication node transmits the first wireless signal in the first time window according to a downlink timing.
  • the first type of communication node sends the first wireless signal in the first time window according to a receiving time of a downlink time slot boundary as a sending start time of the first wireless signal.
  • the second wireless signal is transmitted through an UL-SCH (Uplink Shared Channel).
  • UL-SCH Uplink Shared Channel
  • the second wireless signal is transmitted through a PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the second wireless signal is a transport block (TB), and all or part of the bits are sequentially added by a CRC (Cyclic Redundancy Check), and the coded block is segmented.
  • Block Segmentation Code Block CRC Add, Rate Matching, Concatenation, Scrambling, Modulation Mapper, Layer Mapper, Precoding, Resources Resource Element Mapper, obtained after Baseband Signal Generation.
  • the second wireless signal is a transport block (TB), and all or part of the bits are sequentially added by a CRC (Cyclic Redundancy Check), and the coded block is segmented.
  • Block Segmentation Code Block CRC Add, Rate Matching, Concatenation, Scrambling, Modulation Mapper, Layer Mapper, Transform Precoding , Precoding, Resource Element Mapper, Baseband Signal Generation.
  • the second wireless signal is a positive integer coding block (CB), all or part of the bits are sequentially added by the coding block CRC, Rate Matching, Concatenation, Scrambling. , Modulation Mapper, Layer Mapper, Transform Precoding, Precoding, Resource Element Mapper, Baseband Signal Generation owned.
  • CB positive integer coding block
  • the second wireless signal is a positive integer coding block (CB), all or part of the bits are sequentially added by the coding block CRC, Rate Matching, Concatenation, Scrambling. , Modulation Mapper, Layer Mapper, Precoding, Resource Element Mapper, Baseband Signal Generation.
  • CB positive integer coding block
  • the relative positional relationship between the second time window and the target time window includes a time domain relationship between a start time of the second time window and a start time of the target time window.
  • the relative positional relationship between the second time window and the target time window includes a time domain relationship between a start time of the second time window and an end time of the target time window.
  • the relative positional relationship between the second time window and the target time window includes a time domain relationship between an end time of the second time window and an end time of the target time window.
  • the relative positional relationship between the second time window and the target time window includes a time domain relationship between an end time of the second time window and a start time of the target time window.
  • the second time window is orthogonal to the target time window.
  • the second time window and the target time window are non-orthogonal.
  • the second time window includes a positive integer number of consecutive multi-carrier symbols (OFDM Symbol, on the side of the first type of communication node in a given subcarrier spacing (SCS). Including CP).
  • OFDM Symbol on the side of the first type of communication node in a given subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • the second time window includes a positive integer number of consecutive multi-carrier symbols (OFDM) on the receiver side of the second wireless signal in a given one subcarrier spacing (SCS, Subcarrier Spacing) Symbol, including CP).
  • OFDM multi-carrier symbols
  • SCS subcarrier Spacing
  • the target time window is a slot of the first type of communication node side in the case of a given subcarrier spacing.
  • the target time window is a positive integer number of consecutive multi-carrier symbols (OFDM Symbol, including CP) on the first type of communication node side for a given one subcarrier spacing.
  • the target time window is a positive integer number of consecutive slots (Slots) on the first type of communication node side for a given subcarrier spacing.
  • the target time window is a positive integer number of consecutive sub-frames on the first type of communication node side.
  • the target time window is a slot on the receiver side of the second wireless signal for a given one subcarrier spacing.
  • the target time window is a positive integer number of consecutive multi-carrier symbols (OFDM Symbol, including CP) on the receiver side of the second wireless signal for a given one subcarrier spacing.
  • the target time window is a positive integer number of consecutive time slots (Slots) on the receiver side of the second wireless signal for a given one subcarrier spacing.
  • the target time window is a positive integer number of consecutive sub-frames on the receiver side of the second wireless signal.
  • the timing of the target time window is related to the timing of the first time window (Tming).
  • the start time and the end time of the target time window are aligned with the boundary of the multi-carrier symbol on the first type of communication node side.
  • the start time and the end time of the target time window are aligned with the boundary of the multi-carrier symbol on the receiver side of the second wireless signal.
  • the first time window, the second time window, and the target time window are time windows from the first type of communication node side.
  • the first time window, the second time window, and the target time window are time windows from a sender side of the first information.
  • the air interface resource occupied by the first wireless signal refers to at least one of a time-frequency resource and a code domain resource.
  • the air interface resource occupied by the first wireless signal is: ⁇ a time domain resource occupied by the first wireless signal, and a frequency domain resource occupied by the first wireless signal, the first At least one of the code domain resources occupied by the wireless signal.
  • the air interface resource occupied by the first wireless signal refers to at least one of generating a feature sequence of the first wireless signal and transmitting a time-frequency resource of the first wireless signal.
  • the code domain resource occupied by the second wireless signal refers to: generating a feature sequence resource of the second wireless signal.
  • the code domain resource occupied by the second wireless signal refers to: a scrambling code sequence resource for generating the second wireless signal.
  • the code domain resource occupied by the second wireless signal refers to: an interleaved sequence resource that generates the second wireless signal.
  • the code domain resource occupied by the second wireless signal refers to: generating an orthogonal code resource of the second wireless signal.
  • the code domain resource occupied by the second wireless signal refers to: generating a non-orthogonal code resource of the second wireless signal.
  • the time interval from the end time of the first time window to the start time of the target time window is not less than one X milliseconds, and the X is a predefined or configurable positive number.
  • the Air Interface is wireless.
  • the air interface includes a wireless channel.
  • the air interface is an interface between a second type of communication node and the first type of communication node.
  • the air interface is a Uu interface.
  • Embodiment 2 illustrates a schematic diagram of a network architecture in accordance with the present application, as shown in FIG. 2 is a diagram illustrating an NR 5G, LTE (Long-Term Evolution, Long Term Evolution) and LTE-A (Long-Term Evolution Advanced) system network architecture 200.
  • the NR 5G or LTE network architecture 200 may be referred to as an EPS (Evolved Packet System) 200.
  • the EPS 200 may include one or more UEs (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UEs User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core
  • 5G-CN 5G-Core Network
  • 5G core network 5G core network
  • HSS Home Subscriber Server
  • the NG-RAN includes an NR Node B (gNB) 203 and other gNBs 204.
  • the gNB 203 provides user and control plane protocol termination towards the UE 201.
  • the gNB 203 can be connected to other gNBs 204 via an Xn interface (eg, a backhaul).
  • gNB 203 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), a TRP (transmission and reception node), or some other suitable terminology,
  • the gNB 203 may be a satellite, an aircraft, or a ground base station relayed by satellite.
  • the gNB 203 provides the UE 201 with an access point to the EPC/5G-CN 210.
  • Examples of UEs 201 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, an MP3 player), a camera, a game console, a drone, an aircraft, a narrowband IoT device, a machine type communication device, a land vehicle, a car, a wearable device, or any other similar functional device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios global positioning systems
  • multimedia devices video devices
  • digital audio players For example, an MP3 player
  • a camera for example, an MP3 player
  • a game console a drone
  • a drone an aircraft
  • a narrowband IoT device a machine type communication device
  • a land vehicle a car
  • a wearable device or any other similar functional device.
  • a person skilled in the art may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN210 through the S1/NG interface.
  • the EPC/5G-CN210 includes an MME/AMF/UPF 211, other MME/AMF/UPF 214, an S-GW (Service Gateway) 212, and a P-GW (Packet Date Network Gateway) 213.
  • the MME/AMF/UPF 211 is a control node that handles signaling between the UE 201 and the EPC/5G-CN 210.
  • MME/AMF/UPF 211 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming Service (PSS).
  • IMS IP Multimedia Subsystem
  • PSS PS Streaming Service
  • the UE 201 corresponds to the first type of communication node device in this application.
  • the UE 201 supports non-granted uplink transmissions.
  • the gNB 203 corresponds to the second type of communication node device in the present application.
  • the gNB 203 supports non-granted uplink transmissions.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with the present application, as shown in FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 is shown in three layers for a first type of communication node device (UE) and a second type of communication node device (gNB, eNB) Or the radio protocol architecture of a satellite or aircraft in NTN: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the first type of communication node device and the second type of communication node device through PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol). Convergence Protocol) Sublayer 304, which terminates at a second type of communication node device on the network side.
  • the first type of communication node device may have several upper layers above the L2 layer 305, including a network layer (eg, an IP layer) terminated at the P-GW on the network side and terminated at the connection.
  • a network layer eg, an IP layer
  • the application layer at the other end (eg, remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides for communication of the first type of communication node devices between the second type of communication node devices.
  • Cross-country mobile support The RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in a cell between the first type of communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the first type of communication node device and the second type of communication node device is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (i.e., radio bearers) and configuring the lower layers using RRC signaling between the second type of communication node devices and the first type of communication node devices.
  • the wireless protocol architecture of Figure 3 is applicable to the first type of communication node device in the present application.
  • the wireless protocol architecture of FIG. 3 is applicable to the second type of communication node device in this application.
  • the first information in the present application is generated in the RRC 306.
  • the second information in the present application is generated in the RRC 306.
  • the first information in the present application is generated in the MAC 302.
  • the second information in the present application is generated in the MAC 302.
  • the first information in the present application is generated by the PHY 301.
  • the second information in the present application is generated by the PHY 301.
  • the first wireless signal in the present application is generated in the RRC 306.
  • the first wireless signal in the present application is generated by the MAC 302.
  • the first wireless signal in the present application is generated by the PHY 301.
  • the second wireless signal in the present application is generated in the RRC 306.
  • the second wireless signal in the present application is generated by the MAC 302.
  • the second wireless signal in the present application is generated by the PHY 301.
  • Embodiment 4 shows a schematic diagram of a base station device and a given user equipment according to the present application, as shown in FIG. 4 is a block diagram of a gNB/eNB 410 in communication with a UE 450 in an access network.
  • a controller/processor 490, a memory 480, a receiving processor 452, a transmitter/receiver 456, a transmitting processor 455 and a data source 467 are included in the user equipment (UE 450), and the transmitter/receiver 456 includes an antenna 460.
  • Data source 467 provides an upper layer packet to controller/processor 490, which provides header compression decompression, encryption decryption, packet segmentation and reordering, and multiplexing and demultiplexing between logical and transport channels.
  • the L2 layer protocol for the user plane and the control plane is implemented, and the upper layer packet may include data or control information, such as DL-SCH or UL-SCH.
  • Transmit processor 455 implements various signal transmission processing functions for the L1 layer (ie, the physical layer) including encoding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling generation.
  • the various signal reception processing functions implemented by the receive processor 452 for the L1 layer (ie, the physical layer) include decoding, deinterleaving, descrambling, demodulation, de-precoding, and physical layer control signaling extraction, and the like.
  • the transmitter 456 is configured to convert the baseband signal provided by the transmit processor 455 into a radio frequency signal and transmit it via the antenna 460.
  • the receiver 456 converts the radio frequency signal received through the antenna 460 into a baseband signal and provides it to the receive processor 452.
  • a base station device (410) may include a controller/processor 440, a memory 430, a receive processor 412, a transmitter/receiver 416 and a transmit processor 415, and the transmitter/receiver 416 includes an antenna 420.
  • the upper layer packet arrives at the controller/processor 440, which provides header compression decompression, encryption and decryption, packet segmentation and reordering, and multiplexing and demultiplexing between the logical and transport channels to implement L2 layer protocol for user plane and control plane.
  • the upper layer packet may include data or control information such as DL-SCH or UL-SCH.
  • the transmit processor 415 implements various signal transmission processing functions for the L1 layer (ie, the physical layer) including encoding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer signaling (including synchronization signals and references). Signals, etc.) are generated.
  • the various signal reception processing functions implemented by the receive processor 412 for the L1 layer (ie, the physical layer) include decoding, deinterleaving, descrambling, demodulation, de-precoding, and physical layer signaling extraction, and the like.
  • the transmitter 416 is configured to convert the baseband signal provided by the transmitting processor 415 into a radio frequency signal and transmit it via the antenna 420.
  • the receiver 416 is configured to convert the radio frequency signal received by the antenna 420 into a baseband signal and provide the signal to the receiving processor 412.
  • an upper layer packet (such as the first information, the second information, and the upper layer packet carried by the third information in the present application) is provided to the controller/processor 440.
  • Controller/processor 440 implements the functionality of the L2 layer.
  • the controller/processor 440 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocation to the UE 450 based on various priority metrics.
  • the controller/processor 440 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 450, such as the first information, the second information, and the third information in the present application are all in the controller/processor 440 generate.
  • Transmit processor 415 implements various signal processing functions for the L1 layer (ie, the physical layer), including signal decoding functions including coding and interleaving to facilitate forward error correction (FEC) at UE 450 and based on various modulation schemes (eg, Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK) modulates the baseband signal, separates the modulation symbols into parallel streams and maps each stream to a corresponding multicarrier subcarrier and/or multicarrier The symbols are then transmitted by the transmit processor 415 via the transmitter 416 to the antenna 420 in the form of a radio frequency signal.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • each receiver 456 receives radio frequency signals through its respective antenna 460, each receiver 456 recovers the baseband information modulated onto the radio frequency carrier and provides baseband information to the receiving processor 452.
  • the receiving processor 452 implements various signal receiving processing functions of the L1 layer.
  • the signal reception processing function includes the first information in the present application, the reception of the physical layer signals of the second information and the third information, and the like, and performs various modulation schemes based on multi-carrier symbols in the multi-carrier symbol stream (for example, binary Demodulation of phase shift keying (BPSK), quadrature phase shift keying (QPSK), followed by decoding and deinterleaving to recover data or control transmitted by the gNB 410 on the physical channel, and then providing data and control signals to the controller / Processor 490.
  • the controller/processor 490 implements the L2 layer, and the controller/processor 490 interprets the first information, the second information, and the third information in the present application.
  • the controller/processor can be associated with a memory 480 that stores program codes and data. Memory 480 can be referred to as a computer readable medium.
  • data source 467 is used to provide relevant configuration data for the signal to controller/processor 490.
  • Data source 467 represents all protocol layers above the L2 layer, and the second wireless signal in the present application is generated at data source 467.
  • the controller/processor 490 implements the L2 layer for the user plane and the control plane by providing header compression, encryption, packet segmentation and reordering, and multiplexing between the logical and transport channels based on the gNB 410's configuration allocation. protocol.
  • the controller/processor 490 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the gNB 410.
  • Transmit processor 455 implements various signal transmission processing functions for the L1 layer (ie, the physical layer).
  • Signal transmission processing functions include encoding, modulation, etc., dividing the modulation symbols into parallel streams and mapping each stream to a corresponding multi-carrier subcarrier and/or multi-carrier symbol for baseband signal generation, which is then mapped by transmitter 455 via transmitter 456.
  • the antenna 460 is transmitted in the form of a radio frequency signal, and the signals of the physical layer (including the generation and transmission of the first wireless signal in the present application and the processing of the second wireless signal at the physical layer) are generated by the transmission processor 455.
  • Receiver 416 receives radio frequency signals through its respective antenna 420, each receiver 416 recovers baseband information modulated onto the radio frequency carrier, and provides baseband information to receive processor 412.
  • the receiving processor 412 implements various signal receiving processing functions for the L1 layer (ie, the physical layer), including detection of the first wireless signal in the present application and reception of the second wireless signal at the physical layer, the signal receiving processing function including A multi-carrier symbol stream is acquired, followed by demodulation of the multi-carrier symbols in the multi-carrier symbol stream based on various modulation schemes, followed by decoding to recover data and/or control signals originally transmitted by the UE 450 over the physical channel. Data and/or control signals are then provided to controller/processor 440.
  • the L2 layer is implemented at the receive processor controller/processor 440.
  • the controller/processor can be associated with a memory 430 that stores program codes and data. Memory 430 can be a computer readable medium.
  • the UE 450 corresponds to the first type of communication node device in this application.
  • the gNB 410 corresponds to the second type of communication node device in the present application.
  • the UE 450 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be in process with the at least one Used together, the UE 450 device at least: receiving first information and second information; transmitting a first wireless signal in a first time window; transmitting a second wireless signal; wherein the first information is used to determine a target time a second wireless signal occupying a second time window in a time domain, the second information being used to determine whether the second time window belongs to the target time window and the second time window and the target At least one of a relative positional relationship of the time window; an end time of the first time window is earlier than a start time of the target time window, and an air interface resource occupied by the first wireless signal is used to determine the first a frequency domain resource occupied by the second wireless signal and a code domain resource occupied by the second wireless signal and a modulation code used by the second wireless signal At least one of the modes; the first information, the
  • the UE 450 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by the at least one processor, the action comprising: receiving the first information and the Transmitting a first wireless signal in a first time window; transmitting a second wireless signal; wherein the first information is used to determine a target time window, and the second wireless signal occupies a second time window in a time domain
  • the second information is used to determine whether the second time window belongs to the target time window and at least one of a relative positional relationship between the second time window and the target time window; the first time The end time of the window is earlier than the start time of the target time window, and the air interface resource occupied by the first wireless signal is used to determine the frequency domain resource and the second wireless signal occupied by the second wireless signal.
  • the gNB 410 device comprises: at least one processor and at least one memory, the at least one memory comprising computer program code; the at least one memory and the computer program code being configured to be in process with the at least one Used together.
  • the gNB 410 device at least: transmitting the first information and the second information; detecting the first wireless signal in the first time window; receiving the second wireless signal if the first wireless signal is detected; wherein the first Information is used to determine a target time window, the second wireless signal occupies a second time window in the time domain, the second information being used to determine whether the second time window belongs to the target time window and the At least one of a relative positional relationship between the second time window and the target time window; an end time of the first time window is earlier than a start time of the target time window, and the air interface resource occupied by the first wireless signal At least one of determining a frequency domain resource occupied by the second wireless signal and a code domain resource occupied by the second wireless signal and a modulation coding mode used by the second wireless signal;
  • the gNB 410 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by the at least one processor, the action comprising: transmitting the first information and the Two information; detecting a first wireless signal in a first time window; receiving a second wireless signal if the first wireless signal is detected; wherein the first information is used to determine a target time window, the first The second wireless signal occupies a second time window in the time domain, the second information being used to determine whether the second time window belongs to the target time window and a relative position of the second time window and the target time window At least one of the relationships; the end time of the first time window is earlier than the start time of the target time window, and the air interface resource occupied by the first wireless signal is used to determine that the second wireless signal is occupied. At least one of a frequency domain resource and a code domain resource occupied by the second wireless signal and a modulation and coding mode used by the second wireless signal; the first information Second information, the first wireless signal and
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used in the present application to receive the first information.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used in the present application to transmit the second information.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used in the present application to transmit the third information.
  • a transmitter 456 (including antenna 460), a transmit processor 452, and a controller/processor 490 are used in the present application to transmit the first wireless signal.
  • a transmitter 456 (including antenna 460), a transmit processor 452, and a controller/processor 490 are used in the present application to transmit the second wireless signal.
  • a transmitter 416 (including antenna 420), a transmit processor 415 and a controller/processor 440 are used to transmit the first information in the present application.
  • a transmitter 416 (including antenna 420), a transmit processor 415, and a controller/processor 440 are used to transmit the second information in this application.
  • a transmitter 416 (including antenna 420), a transmit processor 415, and a controller/processor 440 are used to transmit the third information in this application.
  • a receiver 416 (including antenna 420), a receive processor 412 and a controller/processor 440 are used to transmit the first wireless signal in the present application.
  • a receiver 416 (including antenna 420), a receive processor 412 and a controller/processor 440 are used to transmit the second wireless signal in the present application.
  • Embodiment 5 illustrates a wireless signal transmission flow chart according to one embodiment of the present application, as shown in FIG.
  • the second type of communication node N1 is the maintenance base station of the serving cell of the first type of communication node U2.
  • a third transmission information in step S11, the first transmission information in step S12, the second information transmitted in step S13, in step S14 is detected at a first time window in a first radio signal
  • the second wireless signal is received in step S15.
  • the third information For the first type communication node U2, received at step S21, the third information, the first information received in step S22, the second information received in step S23, step S24, transmits a first radio signal at a first time window The second wireless signal is transmitted in step S25.
  • the first information is used to determine a target time window
  • the second wireless signal occupies a second time window in a time domain
  • the second information is used to determine whether the second time window is At least one of a target time window and a relative positional relationship between the second time window and the target time window; an end time of the first time window is earlier than a start time of the target time window
  • the air interface resource occupied by the first wireless signal is used to determine a frequency domain resource occupied by the second wireless signal and a code domain resource occupied by the second wireless signal and a modulation adopted by the second wireless signal At least one of the encoding modes; the first information, the second information, the first wireless signal and the second wireless signal are all transmitted through an air interface; the third information is used to indicate P devices
  • the air interface resource is selected, and one of the P candidate air interface resources occupied by the first wireless signal, the P is a positive integer, and the third information is transmitted through the air interface.
  • the third information is transmitted through higher layer signaling.
  • the third information is transmitted through physical layer signaling.
  • the third information includes all or part of a high layer signaling.
  • the third information includes all or part of one physical layer signaling.
  • the third information is transmitted through a PBCH (Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel
  • the third information includes one or more fields in a MIB (Master Information Block).
  • MIB Master Information Block
  • the third information is transmitted through a DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the third information is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the third information includes one or more fields in an SIB (System Information Block).
  • SIB System Information Block
  • the third information includes one or more fields in the RMSI (Remaining System Information).
  • the third information includes all or part of one RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the third information is broadcast.
  • the third information is unicast.
  • the third information is Cell Specific.
  • the third information is UE-specific.
  • the third information is transmitted through a PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the third information includes all or part of a DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the first information and the third information are transmitted by the same signaling.
  • the first information and the third information are transmitted by using the same RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the first information and the third information are transmitted by different signaling.
  • the first information and the third information are transmitted through the same physical channel.
  • the first information and the third information are transmitted through different physical channels.
  • the first information and the third information are transmitted by using the same PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the first information and the third information are transmitted by using two different PDSCHs (Physical Downlink Shared Channels).
  • PDSCHs Physical Downlink Shared Channels
  • the first information and the third information are transmitted as two different fields in the same signaling.
  • the first information and the third information are transmitted as two different IEs (Information Elements) in the same RRC signaling.
  • the third information is used to indicate that the P candidate air interface resources are: the third information is used to directly indicate the P candidate air interface resources.
  • the third information is used to indicate that the P candidate air interface resources are: the third information is used to indirectly indicate the P candidate air interface resources.
  • the third information is used to indicate that the P candidate air interface resources are: the third information is used to implicitly indicate the P candidate air interface resources.
  • the third information is used to indicate that the P candidate air interface resources are: the third information is used to explicitly indicate the P candidate air interface resources.
  • Embodiment 6 illustrates another wireless signal transmission flow chart according to one embodiment of the present application, as shown in FIG.
  • the second type of communication node N3 is the maintenance base station of the serving cell of the first type of communication node U4.
  • the third transmission information in step S31, the first information transmitted in step S32, the second information transmitting step S33, step S34 is detected in a first radio signal at a first time window .
  • the third information For the first type communication node U4, received at step S41, the third information, the first information received in step S42, receives the second information step S43, in step S44, the radio transmitting a first signal at a first time window The second wireless signal is transmitted in step S45.
  • the first information is used to determine a target time window
  • the second wireless signal occupies a second time window in the time domain
  • the second information is used to determine whether the second time window is At least one of a target time window and a relative positional relationship between the second time window and the target time window; an end time of the first time window is earlier than a start time of the target time window
  • the air interface resource occupied by the first wireless signal is used to determine a frequency domain resource occupied by the second wireless signal and a code domain resource occupied by the second wireless signal and a modulation adopted by the second wireless signal At least one of the encoding modes; the first information, the second information, the first wireless signal and the second wireless signal are all transmitted through an air interface; the third information is used to indicate P devices
  • the air interface resource is selected, and one of the P candidate air interface resources occupied by the first wireless signal, the P is a positive integer, and the third information is transmitted through the air interface.
  • Embodiment 7 exemplifies a relationship of a first wireless signal and a second wireless signal according to an embodiment of the present application, as shown in FIG.
  • the horizontal axis represents time
  • the vertical axis represents frequency
  • the obliquely filled rectangle represents the first wireless signal
  • the cross-line filled rectangle represents the second wireless signal.
  • the air interface resource occupied by the first radio signal in the present application is used to determine the frequency domain resource occupied by the second radio signal in the present application and the code domain resource occupied by the second radio signal. And at least one of modulation coding methods employed by the second wireless signal.
  • the first wireless signal is generated by a sequence of features.
  • the first wireless signal is transmitted through a PRACH (Physical Random Access Channel).
  • PRACH Physical Random Access Channel
  • the first wireless signal carries a preamble.
  • the first wireless signal is transmitted through a RACH (Random Access Channel).
  • RACH Random Access Channel
  • the first wireless signal is generated by a feature sequence, which is one of a ZC (Zadoff-Chu) sequence or a pseudo-random sequence.
  • a feature sequence which is one of a ZC (Zadoff-Chu) sequence or a pseudo-random sequence.
  • the first wireless signal is generated by a sequence of features, the signature sequence being one of an integer number of orthogonal sequences or non-orthogonal sequences.
  • the second wireless signal is transmitted through an UL-SCH (Uplink Shared Channel).
  • UL-SCH Uplink Shared Channel
  • the second wireless signal is transmitted through a PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the second wireless signal is a transport block (TB), and all or part of the bits are sequentially added by a CRC (Cyclic Redundancy Check), and the coded block is segmented.
  • Block Segmentation Code Block CRC Add, Rate Matching, Concatenation, Scrambling, Modulation Mapper, Layer Mapper, Precoding, Resources Resource Element Mapper, obtained after Baseband Signal Generation.
  • the second wireless signal is a transport block (TB), and all or part of the bits are sequentially added by a CRC (Cyclic Redundancy Check), and the coded block is segmented.
  • Block Segmentation Code Block CRC Add, Rate Matching, Concatenation, Scrambling, Modulation Mapper, Layer Mapper, Transform Precoding , Precoding, Resource Element Mapper, Baseband Signal Generation.
  • the second wireless signal is a positive integer coding block (CB), all or part of the bits are sequentially added by the coding block CRC, Rate Matching, Concatenation, Scrambling. , Modulation Mapper, Layer Mapper, Transform Precoding, Precoding, Resource Element Mapper, Baseband Signal Generation owned.
  • CB positive integer coding block
  • the second wireless signal is a positive integer coding block (CB), all or part of the bits are sequentially added by the coding block CRC, Rate Matching, Concatenation, Scrambling. , Modulation Mapper, Layer Mapper, Precoding, Resource Element Mapper, Baseband Signal Generation.
  • CB positive integer coding block
  • the air interface resource occupied by the first wireless signal refers to at least one of a time-frequency resource and a code domain resource.
  • the air interface resource occupied by the first wireless signal is: ⁇ a time domain resource occupied by the first wireless signal, and a frequency domain resource occupied by the first wireless signal, the first At least one of the code domain resources occupied by the wireless signal.
  • the air interface resource occupied by the first wireless signal refers to at least one of generating a feature sequence of the first wireless signal and transmitting a time-frequency resource of the first wireless signal.
  • the code domain resource occupied by the second wireless signal refers to: generating a feature sequence resource of the second wireless signal.
  • the code domain resource occupied by the second wireless signal refers to: a scrambling code sequence resource for generating the second wireless signal.
  • the code domain resource occupied by the second wireless signal refers to: an interleaved sequence resource that generates the second wireless signal.
  • the code domain resource occupied by the second wireless signal refers to: generating an orthogonal code resource of the second wireless signal.
  • the code domain resource occupied by the second wireless signal refers to: generating a non-orthogonal code resource of the second wireless signal.
  • Embodiment 8 illustrates a schematic diagram of the relationship between a second time window and a target time window in accordance with one embodiment of the present application, as shown in FIG.
  • the horizontal axis represents time
  • the oblique line filled rectangle represents the first wireless signal
  • the intersecting line filled rectangle represents the second wireless signal.
  • the second time window in the present application belongs to the target time window in the present application, and the length of the time interval between the end time of the second time window and the end time of the target time window is not less than The difference between the length of time of the first time window and the length of time occupied by the first wireless signal.
  • the length of the time interval between the end time of the second time window and the end time of the target time window is equal to the length of time of the first time window and the length of time occupied by the first wireless signal. Difference.
  • the length of the time interval between the end time of the second time window and the end time of the target time window is less than the length of time of the first time window and the length of time occupied by the first wireless signal. Difference.
  • the length of time occupied by the first wireless signal includes a symbol time length and a time length of a CP (Cyclic Prefix).
  • all of the time domain resources in the second time window are included in the target time window.
  • the difference between the length of time of the first time window and the length of time occupied by the first radio signal is a format of a PRACH (Physical Random Access Channel).
  • the length of the idle time (Gap) under Format is a format of a PRACH (Physical Random Access Channel).
  • the length of the interval between the end time of the second time window and the end time of the target time window is equal to the length of a positive integer number of multicarrier symbols (including CP) at a given subcarrier interval. .
  • Embodiment 9 illustrates a schematic diagram of a first idle time length and a second idle time length according to one embodiment of the present application, as shown in FIG.
  • the horizontal axis represents time
  • the obliquely filled rectangle represents the first wireless signal
  • the intersecting line filled rectangle represents the second wireless signal
  • the upper portion of the case A and the case B respectively represent the transmitting end
  • the lower portion Represents the receiving end.
  • the second time window in the present application includes a time domain resource outside the target time window in the present application, and the sending end time of the first wireless signal in the present application is
  • the length of the time interval of the end time of the first time window in the application is the first idle time length
  • the length of the time interval between the start time of the first time window and the sending start time of the first wireless signal is a second idle time length
  • a length of a time interval between a start time of the second time window and a start time of the target time window is equal to the first idle time length, or an end time of the target time window
  • the length of the time interval of the end time of the second time window is equal to the length of the second idle time.
  • the first idle time length is related to a distance of the first type of communication node to a recipient of the first wireless signal.
  • the first idle time length is equal to the length of time of a positive integer number of multicarrier symbols (including CP).
  • the first idle time length is equal to a length of time of a non-positive integer multi-carrier symbol (including a CP).
  • the first idle time length is equal to a length of time of a sampling interval when a positive integer number of the first type of communication nodes are implemented.
  • the first idle time length is equal to a length of time (Gap) of a given PRACH (Physical Random Access Channel) format minus the first time.
  • the transmission delay of a wireless signal is equal to a length of time (Gap) of a given PRACH (Physical Random Access Channel) format minus the first time.
  • the second idle time length is related to a distance of the first type of communication node to a recipient of the first wireless signal.
  • the second idle time length is equal to the length of time of a positive integer number of multicarrier symbols (including the CP).
  • the second idle time length is equal to a length of time of a non-positive integer multi-carrier symbol (including a CP).
  • the second idle time length is equal to a length of time of a sampling interval when a positive integer number of the first type of communication nodes are implemented.
  • the second idle time length is equal to a transmission delay of the first wireless signal.
  • the length of time of the second time window is equal to the length of time of the target time window.
  • the length of time of the second time window and the length of time of the target time window are not equal.
  • the starting time of the second time window is earlier than the starting time of the target time window.
  • the start time of the second time window is later than the start time of the target time window.
  • the end time of the target time window is earlier than the end time of the second time window.
  • the end time of the target time window is later than the end time of the second time window.
  • Embodiment 10 illustrates a schematic diagram of P alternative air interface resources of one embodiment of the present application, as shown in FIG.
  • the horizontal axis represents the time domain
  • the horizontal vertical axis represents the frequency domain
  • the vertical axis represents the code domain
  • the rectangle filled with dots represents the air interface resources occupied by the first wireless signal
  • each solid line has no padded rectangle representation.
  • the third information in the application is used to indicate P candidate air interface resources, and the air interface resources occupied by the first wireless signal in the application are in the P candidate air interface resources.
  • the P is a positive integer, and the third information is transmitted through the air interface.
  • the first type of communication node randomly selects the air interface resources occupied by the first wireless signal in the P candidate air interface resources.
  • the selected one of the P candidate air interface resources includes at least one of ⁇ a time domain resource, a frequency domain resource, and a code domain resource ⁇ .
  • the air interface resource occupied by the first wireless signal is used to determine a frequency domain resource occupied by the second wireless signal and a code domain resource occupied by the second wireless signal in the application, and At least one of the modulation and coding modes adopted by the second wireless signal is: the location of the air interface resource occupied by the first wireless signal in the P candidate air interface resources is used to determine the second At least one of a frequency domain resource occupied by the wireless signal and a code domain resource occupied by the second wireless signal and a modulation and coding mode used by the second wireless signal.
  • the air interface resource occupied by the first wireless signal is used to determine a frequency domain resource occupied by the second wireless signal and a code domain resource occupied by the second wireless signal in the application
  • At least one of the modulation and coding modes used by the second radio signal is: the sequence index of the air interface resources occupied by the first radio signal in the P candidate air interface resources is used to determine the And at least one of a frequency domain resource occupied by the second wireless signal and a code domain resource occupied by the second wireless signal and a modulation and coding mode used by the second wireless signal.
  • Embodiment 11 illustrates a schematic diagram of a first air interface resource pool according to an embodiment of the present application, as shown in FIG.
  • the horizontal axis represents the time domain
  • the horizontal vertical axis represents the frequency domain
  • the vertical axis represents the code domain
  • the rectangle filled with dots represents the air interface resource occupied by the second wireless signal
  • the wirelessly filled rectangular parallelepiped represents the first air interface resource. Pool.
  • the first information in the application is used to indicate a first air interface resource pool
  • the frequency domain resource included in the first air interface resource pool includes the second wireless signal station in the application.
  • the code domain resource included in the first air interface resource pool includes the code domain resource occupied by the second wireless signal
  • the time domain resource included in the first air interface resource pool includes the target a time window
  • the air interface resource occupied by the first wireless signal is used to determine, in the first air interface resource pool, a frequency domain resource occupied by the second wireless signal and a code occupied by the second wireless signal At least one of the domain resources.
  • the first information is used to directly indicate the first air resource pool.
  • the first information is used to indirectly indicate the first air interface resource pool.
  • the first information is used to explicitly indicate the first air interface resource pool.
  • the first information is used to implicitly indicate the first air interface resource pool.
  • the first air interface resource pool occupies a continuous time domain resource.
  • the first air interface resource pool occupies discrete time domain resources.
  • the first air interface resource pool includes only one code domain resource corresponding to one feature sequence.
  • the first air interface resource pool includes Q candidate air interface resources, and the target air interface resource is one of the Q candidate air interface resources, where Q is a positive integer, and the second wireless signal station
  • the frequency domain resource is the same as the frequency domain resource in the target air interface resource
  • the code domain resource occupied by the second wireless signal is the same as the code domain resource in the target air interface resource
  • the target air interface resource is The time domain resource is the target time window.
  • the first air interface resource pool includes Q candidate air interface resources, and the target air interface resource is one of the Q candidate air interface resources, where Q is a positive integer, and the second wireless signal station
  • the frequency domain resource is the same as the frequency domain resource in the target air interface resource
  • the code domain resource occupied by the second wireless signal is the same as the code domain resource in the target air interface resource, where the target air interface resource is
  • the time domain resource is the target time window; the air interface resource occupied by the first wireless signal is used to determine, in the first air interface resource pool, a frequency domain resource occupied by the second wireless signal, and the first At least one of the code domain resources occupied by the second wireless signal means that the air interface resource occupied by the first wireless signal is used to determine the target air interface resource among the Q candidate air interface resources.
  • Embodiment 12 exemplifies a structural block diagram of a processing device in a first type of communication node device, as shown in FIG.
  • the first type of communication node device processing apparatus 1200 is mainly composed of a first receiver 1201, a first transmitter 1202, and a second transmitter 1203.
  • the first receiver 1201 includes a transmitter/receiver 456 (including an antenna 460), a receiving processor 452 and a controller/processor 490 in FIG. 4 of the present application; the first transmitter 1202 includes the same in FIG. 4 of the present application.
  • Transmitter/receiver 456 (including antenna 460), transmit processor 455 and controller/processor 490
  • the first receiver 1201 receives the first information and the second information; the first transmitter 1202 transmits the first wireless signal in the first time window; the second transmitter 1203 transmits the second wireless signal;
  • the first information is used to determine a target time window, the second wireless signal occupies a second time window in a time domain, and the second information is used to determine whether the second time window belongs to the target time window And at least one of a relative positional relationship between the second time window and the target time window; an end time of the first time window is earlier than a start time of the target time window, the first wireless signal station
  • the occupied air interface resource is used to determine at least one of a frequency domain resource occupied by the second wireless signal and a code domain resource occupied by the second wireless signal and a modulation and coding mode used by the second wireless signal.
  • the first information, the second information, the first wireless signal and the second wireless signal are all transmitted through an air interface.
  • the second time window belongs to the target time window, and a time interval between an end time of the second time window and an end time of the target time window is not less than a time of the first time window. The difference between the length and the length of time occupied by the first wireless signal.
  • the time domain resource outside the target time window is included in the second time window, and the time interval between the sending end time of the first wireless signal and the ending time of the first time window is a length of a first idle time, a length of a time interval between a start time of the first time window and a start time of sending the first wireless signal is a second idle time length; and a start time of the second time window
  • the length of the time interval of the start time of the target time window is equal to the length of the first idle time, or the length of the time interval between the end time of the target time window and the end time of the second time window is equal to the second The length of idle time.
  • the first receiver 1201 further receives the third information, where the third information is used to indicate P candidate air interface resources, and the P packets of the air interface resources occupied by the first wireless signal are used.
  • the third information is used to indicate P candidate air interface resources, and the P packets of the air interface resources occupied by the first wireless signal are used.
  • One of the air interface resources, the P is a positive integer, and the third information is transmitted through the air interface.
  • the first information is used to indicate a first air interface resource pool, and the frequency domain resource included in the first air interface resource pool includes a frequency domain resource occupied by the second wireless signal, where The code domain resource included in the air interface resource pool includes the code domain resource occupied by the second wireless signal, and the time domain resource included in the first air interface resource pool includes the target time window, the first wireless signal
  • the occupied air interface resource is used to determine at least one of a frequency domain resource occupied by the second wireless signal and a code domain resource occupied by the second wireless signal in the first air interface resource pool.
  • Embodiment 13 exemplifies a structural block diagram of a processing device in a second type of communication node device, as shown in FIG.
  • the second type of communication node device processing apparatus 1300 is mainly composed of a third transmitter 1301, a second receiver 1302, and a third receiver 1303.
  • the third transmitter 1301 includes the transmitter/receiver 416 (including the antenna 420), the transmitting processor 415 and the controller/processor 440 of FIG. 4 of the present application; the second receiver 1302 includes the same in FIG. 4 of the present application.
  • Transmitter/receiver 416 (including antenna 420), receive processor 412 and controller/processor 440; third receiver 1303 includes transmitter/receiver 416 (including antenna 420) in Figure 4 of the present application, receiving Processor 412 and controller/processor 440.
  • the third transmitter 1301 transmits the first information and the second information; the second receiver 1302 detects the first wireless signal in the first time window; if the first wireless signal is detected, the third Receiver 1303 receives a second wireless signal; wherein the first information is used to determine a target time window, the second wireless signal occupies a second time window in a time domain, and the second information is used to determine the Whether the second time window belongs to the target time window and at least one of a relative positional relationship between the second time window and the target time window; the end time of the first time window is earlier than the target time window
  • the air interface resource occupied by the first wireless signal is used to determine a frequency domain resource occupied by the second wireless signal and a code domain resource occupied by the second wireless signal, and the second wireless At least one of modulation coding modes adopted by the signal; the first information, the second information, the first wireless signal and the second wireless signal are all transmitted through an air interface.
  • the second time window belongs to the target time window, and a time interval between an end time of the second time window and an end time of the target time window is not less than a time of the first time window. The difference between the length and the length of time occupied by the first wireless signal.
  • the time domain resource outside the target time window is included in the second time window, and the time interval between the sending end time of the first wireless signal and the ending time of the first time window is a length of the first idle time, a length of the time interval between the start time of the first time window and the start time of the first wireless signal is a second idle time length; and a start time of the second time window
  • the length of the time interval of the start time of the target time window is equal to the length of the first idle time, or the length of the time interval between the end time of the target time window and the end time of the second time window is equal to the second The length of idle time.
  • the third transmitter 1301 further sends the third information, where the third information is used to indicate P candidate air interface resources, and the P packets of the air interface resources occupied by the first wireless signal are used.
  • the third information is transmitted through the air interface.
  • the first information is used to indicate a first air interface resource pool, and the frequency domain resource included in the first air interface resource pool includes a frequency domain resource occupied by the second wireless signal, where The code domain resource included in the air interface resource pool includes the code domain resource occupied by the second wireless signal, and the time domain resource included in the first air interface resource pool includes the target time window, the first wireless signal
  • the occupied air interface resource is used to determine at least one of a frequency domain resource occupied by the second wireless signal and a code domain resource occupied by the second wireless signal in the first air interface resource pool.
  • the first type of communication node device or UE or terminal in the present application includes but is not limited to a mobile phone, a tablet computer, a notebook, an internet card, a low power consumption device, an eMTC device, an NB-IoT device, an in-vehicle communication device, an aircraft, an aircraft, and none.
  • Wireless communication equipment such as man-machines and remote-controlled aircraft.
  • the second type of communication node device or base station or network side device in the present application includes but is not limited to a macro cell base station, a micro cell base station, a home base station, a relay base station, an eNB, a gNB, a transmission and reception node TRP, a relay satellite, and a satellite base station.
  • wireless communication equipment such as an air base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种用于无线通信的通信节点中的方法和装置。通信节点首先接收第一信息和第二信息;接着在第一时间窗中发送第一无线信号;然后发送第二无线信号;所述第一信息被用于确定目标时间窗,所述第二无线信号在时域占用第二时间窗,所述第二信息被用于确定所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一;所述第一时间窗的结束时刻早于所述目标时间窗的起始时刻,所述第一无线信号所占用的空口资源被用于确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源以及所述第二无线信号所采用的调制编码方式中至少之一。本申请提高非授予传输的资源利用率。

Description

一种用于无线通信的通信节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及上行非授予的传输方案和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或5G)进行研究,在3GPP RAN#75次全会上通过了新空口技术(NR,New Radio)的WI(Work Item,工作项目),开始对NR进行标准化工作。
为了能够适应多样的应用场景和满足不同的需求,在3GPP RAN#76次全会上还通过了NR下的非正交多址接入(NoMA,Non-orthogonal Multiple Access)的研究项目,该研究项目在R16版本开始,在SI结束后启动WI对相关技术进行标准化。在众多的NoMA传输方式中,非授予(Grant-Free)的上行传输由于其对接收机的复杂性要求低等优点将是重点研究的一种方式。
发明内容
在非授予上行传输中,尤其在RRC(Radio Resource Control,无线资源控制)非连接态的(RRC Inactive Mode或RRC Idle Mode)情况下,不同的用户设备的上行传输还没有同步。由于上行的非同步传输,在基于前导(Preamble)序列的非授予上行传输中,需要设计新的上行突发(Burst)的结构来降低非授予传输与基于授予的传输,非授予传输之间的碰撞,保证传输的成功。本申请提供了一种解决方案。需要说明的是,在不冲突的情况下,本申请的基站设备中的实施例和实施例中的特征可以应用到用户设备中,反之亦然。进一步的,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种用于无线通信中的第一类通信节点中的方法,其特征在于,包括:
接收第一信息和第二信息;
在第一时间窗中发送第一无线信号;
发送第二无线信号;
其中,所述第一信息被用于确定目标时间窗,所述第二无线信号在时域占用第二时间窗,所述第二信息被用于确定所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一;所述第一时间窗的结束时刻早于所述目标时间窗的起始时刻,所述第一无线信号所占用的空口资源被用于确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源以及所述第二无线信号所采用的调制编码方式中至少之一;所述第一信息,所述第二信息,所述第一无线信号和所述第二无线信号都通过空中接口传输。
作为一个实施例,通过所述第二信息配置所述第二时间窗与所述目标时间窗的关系(包括所述第二时间窗的长度是否限制在所述目标时间窗,如果不属于所述目标时间窗,和所述目标时间窗的相对位置),网络侧可以控制非授予传输时的数据部分和前后其它传输(可能是基于授予或非授予的)是否碰撞和如果碰撞情况下碰撞大小,网络设备从而可以通过前导序列的检测来采用调度的方式进行碰撞避免。
作为一个实施例,通过调度来避免碰撞,可以避免在数据传输时预留的空闲时间, 节省了头开销,提高了资源利用率。
根据本申请的一个方面,上述方法的特征在于,所述第二时间窗属于所述目标时间窗,所述第二时间窗的结束时刻与所述目标时间窗的结束时刻的时间间隔长度不小于所述第一时间窗的时间长度与所述第一无线信号所占用的时间长度的差值。
根据本申请的一个方面,上述方法的特征在于,所述第二时间窗中包括所述目标时间窗之外的时域资源,所述第一无线信号的发送结束时刻与所述第一时间窗的结束时刻的时间间隔长度为第一空闲时间长度,所述第一时间窗的起始时刻与所述第一无线信号的发送起始时刻的时间间隔长度为第二空闲时间长度;所述第二时间窗的起始时刻与所述目标时间窗的起始时刻的时间间隔长度等于所述第一空闲时间长度,或者所述目标时间窗的结束时刻与所述第二时间窗的结束时刻的时间间隔长度等于所述第二空闲时间长度。
作为一个实施例,在允许碰撞发生的情况下,所述第二信息配置数据部分是与前面的传输发生碰撞还是与后面的传输发生碰撞,从而允许网络侧根据传输需求(比如前面传输为上行控制,如SRS或PUCCH时,控制可能的碰撞只发生在后面传输,如果后面传输为下行控制,如PDCCH时,控制可能碰撞只发生在前面传输)来进行灵活控制,保证了最大限度通过调度进行碰撞避免,提高传输效率。
根据本申请的一个方面,上述方法的特征在于,还包括:
接收第三信息;
其中,所述第三信息被用于指示P个备选空口资源,所述第一无线信号所占用的空口资源所述P个备选空口资源中之一,所述P是正整数,所述第三信息通过所述空中接口传输。
根据本申请的一个方面,上述方法的特征在于,所述第一信息被用于指示第一空口资源池,所述第一空口资源池所包括的频域资源包括所述第二无线信号所占用的频域资源,所述第一空口资源池所包括的码域资源包括所述第二无线信号所占用的码域资源,所述第一空口资源池所包括的时域资源包括所述目标时间窗,所述第一无线信号所占用的空口资源被用于在所述第一空口资源池中确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源中至少之一。
本申请公开了一种用于无线通信中的第二类通信节点中的方法,其特征在于,包括:
发送第一信息和第二信息;
在第一时间窗中检测第一无线信号;
如果所述第一无线信号被检测到,接收第二无线信号;
其中,所述第一信息被用于确定目标时间窗,所述第二无线信号在时域占用第二时间窗,所述第二信息被用于确定所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一;所述第一时间窗的结束时刻早于所述目标时间窗的起始时刻,所述第一无线信号所占用的空口资源被用于确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源以及所述第二无线信号所采用的调制编码方式中至少之一;所述第一信息,所述第二信息,所述第一无线信号和所述第二无线信号都通过空中接口传输。
根据本申请的一个方面,上述方法的特征在于,所述第二时间窗属于所述目标时间窗,所述第二时间窗的结束时刻与所述目标时间窗的结束时刻的时间间隔长度不小于所述第一时间窗的时间长度与所述第一无线信号所占用的时间长度的差值。
根据本申请的一个方面,上述方法的特征在于,所述第二时间窗中包括所述目标时间窗之外的时域资源,所述第一无线信号的发送结束时刻与所述第一时间窗的结束时刻的时间间隔长度为第一空闲时间长度,所述第一时间窗的起始时刻与所述第一无线信号的发送起始时刻的时间间隔长度为第二空闲时间长度;所述第二时间窗的起始时刻与所 述目标时间窗的起始时刻的时间间隔长度等于所述第一空闲时间长度,或者所述目标时间窗的结束时刻与所述第二时间窗的结束时刻的时间间隔长度等于所述第二空闲时间长度。
根据本申请的一个方面,上述方法的特征在于,还包括:
发送第三信息;
其中,所述第三信息被用于指示P个备选空口资源,所述第一无线信号所占用的空口资源所述P个备选空口资源中之一,所述P是正整数,所述第三信息通过所述空中接口传输。
根据本申请的一个方面,上述方法的特征在于,所述第一信息被用于指示第一空口资源池,所述第一空口资源池所包括的频域资源包括所述第二无线信号所占用的频域资源,所述第一空口资源池所包括的码域资源包括所述第二无线信号所占用的码域资源,所述第一空口资源池所包括的时域资源包括所述目标时间窗,所述第一无线信号所占用的空口资源被用于在所述第一空口资源池中确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源中至少之一。
本申请公开了一种用于无线通信中的第一类通信节点设备,其特征在于,包括:
第一接收机,接收第一信息和第二信息;
第一发射机,在第一时间窗中发送第一无线信号;
第二发射机,发送第二无线信号;
其中,所述第一信息被用于确定目标时间窗,所述第二无线信号在时域占用第二时间窗,所述第二信息被用于确定所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一;所述第一时间窗的结束时刻早于所述目标时间窗的起始时刻,所述第一无线信号所占用的空口资源被用于确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源以及所述第二无线信号所采用的调制编码方式中至少之一;所述第一信息,所述第二信息,所述第一无线信号和所述第二无线信号都通过空中接口传输。
根据本申请的一个方面,上述第一类通信节点设备的特征在于,所述第二时间窗属于所述目标时间窗,所述第二时间窗的结束时刻与所述目标时间窗的结束时刻的时间间隔长度不小于所述第一时间窗的时间长度与所述第一无线信号所占用的时间长度的差值。
根据本申请的一个方面,上述第一类通信节点设备的特征在于,所述第二时间窗中包括所述目标时间窗之外的时域资源,所述第一无线信号的发送结束时刻与所述第一时间窗的结束时刻的时间间隔长度为第一空闲时间长度,所述第一时间窗的起始时刻与所述第一无线信号的发送起始时刻的时间间隔长度为第二空闲时间长度;所述第二时间窗的起始时刻与所述目标时间窗的起始时刻的时间间隔长度等于所述第一空闲时间长度,或者所述目标时间窗的结束时刻与所述第二时间窗的结束时刻的时间间隔长度等于所述第二空闲时间长度。
根据本申请的一个方面,上述第一类通信节点设备的特征在于,所述第一接收机还接收第三信息;其中,所述第三信息被用于指示P个备选空口资源,所述第一无线信号所占用的空口资源所述P个备选空口资源中之一,所述P是正整数,所述第三信息通过所述空中接口传输。
根据本申请的一个方面,上述第一类通信节点设备的特征在于,所述第一信息被用于指示第一空口资源池,所述第一空口资源池所包括的频域资源包括所述第二无线信号所占用的频域资源,所述第一空口资源池所包括的码域资源包括所述第二无线信号所占用的码域资源,所述第一空口资源池所包括的时域资源包括所述目标时间窗,所述第一无线信号所占用的空口资源被用于在所述第一空口资源池中确定所述第二无线信号所占 用的频域资源和所述第二无线信号所占用的码域资源中至少之一。
本申请公开了一种用于无线通信中的第二类通信节点设备,其特征在于,包括:
第三发射机,发送第一信息和第二信息;
第二接收机,在第一时间窗中检测第一无线信号;
第三接收机,如果所述第一无线信号被检测到,接收第二无线信号;
其中,所述第一信息被用于确定目标时间窗,所述第二无线信号在时域占用第二时间窗,所述第二信息被用于确定所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一;所述第一时间窗的结束时刻早于所述目标时间窗的起始时刻,所述第一无线信号所占用的空口资源被用于确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源以及所述第二无线信号所采用的调制编码方式中至少之一;所述第一信息,所述第二信息,所述第一无线信号和所述第二无线信号都通过空中接口传输。
根据本申请的一个方面,上述第二类通信节点设备的特征在于,所述第二时间窗属于所述目标时间窗,所述第二时间窗的结束时刻与所述目标时间窗的结束时刻的时间间隔长度不小于所述第一时间窗的时间长度与所述第一无线信号所占用的时间长度的差值。
根据本申请的一个方面,上述第二类通信节点设备的特征在于,所述第二时间窗中包括所述目标时间窗之外的时域资源,所述第一无线信号的发送结束时刻与所述第一时间窗的结束时刻的时间间隔长度为第一空闲时间长度,所述第一时间窗的起始时刻与所述第一无线信号的发送起始时刻的时间间隔长度为第二空闲时间长度;所述第二时间窗的起始时刻与所述目标时间窗的起始时刻的时间间隔长度等于所述第一空闲时间长度,或者所述目标时间窗的结束时刻与所述第二时间窗的结束时刻的时间间隔长度等于所述第二空闲时间长度。
根据本申请的一个方面,上述第二类通信节点设备的特征在于,所述第三发射机还发送第三信息;其中,所述第三信息被用于指示P个备选空口资源,所述第一无线信号所占用的空口资源所述P个备选空口资源中之一,所述P是正整数,所述第三信息通过所述空中接口传输。
根据本申请的一个方面,上述第二类通信节点设备的特征在于,所述第一信息被用于指示第一空口资源池,所述第一空口资源池所包括的频域资源包括所述第二无线信号所占用的频域资源,所述第一空口资源池所包括的码域资源包括所述第二无线信号所占用的码域资源,所述第一空口资源池所包括的时域资源包括所述目标时间窗,所述第一无线信号所占用的空口资源被用于在所述第一空口资源池中确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源中至少之一。
作为一个实施例,本申请具有如下主要技术优势:
-本申请提供了一种网络设备可以根据调度需求控制非授予上行传输中的数据是否需要预留空闲时间进行碰撞避免,实现了调度灵活性与资源利用率之间的平衡,提高传输效率。
-本申请提供的方法允许网络侧根据传输需求(比如前面传输为上行控制,如SRS或PUCCH时,控制可能的碰撞只发生在后面传输,如果后面传输为下行控制,如PDCCH时,控制可能碰撞只发生在前面传输)来进行灵活控制,保证了最大限度通过调度进行碰撞避免,提高传输效率。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信息,第二信息,第一无线信号和第二无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一类通信节点和第二类通信节点的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的一个实施例的另一幅无线信号传输流程图;
图7示出了根据本申请的一个实施例的第一无线信号和第二无线信号的关系的示意图;
图8示出了根据本申请的一个实施例的第二时间窗和目标时间窗的关系的示意图;
图9示出了根据本申请的一个实施例的第一空闲时间长度和第二空闲时间长度的示意图;
图10示出了根据本申请的一个实施例的P个备选空口资源的示意图;
图11示出了根据本申请的一个实施例的第一空口资源池的示意图;
图12示出了根据本申请的一个实施例的第一类通信节点设备中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的第二类通信节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信息,第二信息,第一无线信号和第二无线信号的传输的流程图,如附图1所示。附图1中,每个方框代表一个步骤。在实施例1中,本申请中的第一类通信节点首先接收第一信息和第二信息;接着在第一时间窗中发送第一无线信号;然后发送第二无线信号;其中,所述第一信息被用于确定目标时间窗,所述第二无线信号在时域占用第二时间窗,所述第二信息被用于确定所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一;所述第一时间窗的结束时刻早于所述目标时间窗的起始时刻,所述第一无线信号所占用的空口资源被用于确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源以及所述第二无线信号所采用的调制编码方式中至少之一;所述第一信息,所述第二信息,所述第一无线信号和所述第二无线信号都通过空中接口传输。
作为一个实施例,所述第一信息通过高层信令传输。
作为一个实施例,所述第一信息通过物理层信令传输。
作为一个实施例,所述第一信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第一信息包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第一信息通过PBCH(Physical Broadcast Channel,物理广播信道)传输。
作为一个实施例,所述第一信息包括MIB(Master Information Block,主信息块)中的一个或多个域(Field)。
作为一个实施例,所述第一信息通过一个DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第一信息通过一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第一信息包括一个SIB(System Information Block,系统信息块)中的一个或多个域(Field)。
作为一个实施例,所述第一信息包括RMSI(Remaining System Information,余下系统信息)中的一个或多个域(Field)。
作为一个实施例,所述第一信息包括一个RRC(Radio Resource Control,无线资源控制)信令的全部或部分。
作为一个实施例,所述第一信息是广播的。
作为一个实施例,所述第一信息是单播的。
作为一个实施例,所述第一信息是小区特定的(Cell Specific)。
作为一个实施例,所述第一信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第一信息通过PDCCH(Physical Downlink Control Channel,物理下行控制信道)传输。
作为一个实施例,所述第一信息包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,所述第一信息被用于确定所述目标时间窗是指:所述第一信息被所述第一类通信节点用于确定所述目标时间窗。
作为一个实施例,所述第一信息被用于确定所述目标时间窗是指:所述第一信息直接指示所述目标时间窗。
作为一个实施例,所述第一信息被用于确定所述目标时间窗是指:所述第一信息间接指示所述目标时间窗。
作为一个实施例,所述第一信息被用于确定所述目标时间窗是指:所述第一信息显式指示所述目标时间窗。
作为一个实施例,所述第一信息被用于确定所述目标时间窗是指:所述第一信息隐式指示所述目标时间窗。
作为一个实施例,所述第一信息被用于确定所述目标时间窗是指:所述第一信息被用于指示{所述目标时间窗的起始时刻和所述第一时间窗的结束时刻的时间间隔长度,所述目标时间窗的时间长度}中至少之一。
作为一个实施例,所述第一信息被用于确定所述目标时间窗是指:所述第一信息被用于指示{所述目标时间窗的起始时刻和所述第一时间窗的起始时刻的时间间隔长度,所述目标时间窗的时间长度}中至少之一。
作为一个实施例,所述第一信息被用于确定所述目标时间窗是指:所述第一信息被用于指示{所述目标时间窗的时间长度,所述目标时间窗的时域位置}中至少之一。
作为一个实施例,所述第二信息通过高层信令传输。
作为一个实施例,所述第二信息通过物理层信令传输。
作为一个实施例,所述第二信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第二信息包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第二信息通过PBCH(Physical Broadcast Channel,物理广播信道)传输。
作为一个实施例,所述第二信息包括MIB(Master Information Block,主信息块)中的一个或多个域(Field)。
作为一个实施例,所述第二信息通过一个DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第二信息通过一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第二信息包括一个SIB(System Information Block,系统信息块)中的一个或多个域(Field)。
作为一个实施例,所述第二信息包括RMSI(Remaining System Information,余下系统信息)中的一个或多个域(Field)。
作为一个实施例,所述第二信息包括一个RRC(Radio Resource Control,无线资源控制)信令的全部或部分。
作为一个实施例,所述第二信息是广播的。
作为一个实施例,所述第二信息是单播的。
作为一个实施例,所述第二信息是小区特定的(Cell Specific)。
作为一个实施例,所述第二信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第二信息通过PDCCH(Physical Downlink Control Channel,物理下行控制信道)传输。
作为一个实施例,所述第二信息包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,所述第二信息被用于确定所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一是指:所述第二信息被所述第一类通信节点用于确定所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一。
作为一个实施例,所述第二信息被用于确定所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一是指:所述第二信息直接指示所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一。
作为一个实施例,所述第二信息被用于确定所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一是指:所述第二信息间接指示所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一。
作为一个实施例,所述第二信息被用于确定所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一是指:所述第二信息显性指示所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一。
作为一个实施例,所述第二信息被用于确定所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一是指:所述第二信息隐性指示所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一。
作为一个实施例,所述第一信息和所述第二信息通过相同的信令的传输的。
作为一个实施例,所述第一信息和所述第二信息通过相同的RRC(Radio Resource Control,无线资源控制)信令传输的。
作为一个实施例,所述第一信息和所述第二信息通过不同的信令的传输的。
作为一个实施例,所述第一信息和所述第二信息通过相同的物理信道传输的。
作为一个实施例,所述第一信息和所述第二信息通过不同的物理信道传输的。
作为一个实施例,所述第一信息和所述第二信息通过同一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输的。
作为一个实施例,所述第一信息和所述第二信息通过两个不同的PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输的。
作为一个实施例,所述第一信息和所述第二信息联合编码(Joint Coding)后通过一个相同的信令传输的。
作为一个实施例,所述第一信息和所述第二信息联合编码后作为同一个信令中的同一个域(field)传输的。
作为一个实施例,所述第一信息和所述第二信息作为同一个信令中的两个不同的域(field)传输的。
作为一个实施例,所述第一信息和所述第二信息联合编码后作为同一个RRC信令中的同一个IE(Information Element,信息元素)传输的。
作为一个实施例,所述第一信息和所述第二信息作为同一个RRC信令中的两个不同的IE(Information Element,信息元素)传输的。
作为一个实施例,所述第一时间窗是在给定的一个子载波间隔情况下的一个所述第一无线信号的接收者侧的时隙(Slot)。
作为一个实施例,所述第一时间窗是在给定的一个子载波间隔情况下的所述第一无线信号的接收者侧的正整数个连续的时隙(Slot)。
作为一个实施例,所述第一时间窗是正整数个所述第一无线信号的接收者侧的连续的子帧(Subframe)。
作为一个实施例,所述第一时间窗的起始时刻和结束时刻和所述第一无线信号的接收者侧多载波符号的边界对齐。
作为一个实施例,所述第一时间窗是在给定的一个子载波间隔情况下的一个所述第一类通信节点侧的时隙(Slot)。
作为一个实施例,所述第一时间窗是在给定的一个子载波间隔情况下的所述第一类通信节点侧的正整数个连续的时隙(Slot)。
作为一个实施例,所述第一时间窗是正整数个所述第一类通信节点侧的连续的子帧(Subframe)。
作为一个实施例,所述第一时间窗的起始时刻和结束时刻和所述第一类通信节点侧多载波符号的边界对齐。
作为一个实施例,所述第一无线信号是由一个特征序列生成。
作为一个实施例,所述第一无线信号通过PRACH(Physical Random Access Channel,物理随机接入信道)传输的。
作为一个实施例,所述第一无线信号携带前导序列(Preamble)。
作为一个实施例,所述第一无线信号通过RACH(Random Access Channel,随机接入信道)传输。
作为一个实施例,所述第一无线信号由一个特征序列生成,所述特征序列是ZC(Zadoff-Chu)序列或伪随机序列中之一。
作为一个实施例,所述第一无线信号由一个特征序列生成,所述特征序列是整数个正交序列或非正交序列中之一。
作为一个实施例,所述第一时间窗的时间长度大于所述第一无线信号所占用的时域资源的数量。
作为一个实施例,所述第一时间窗的时间长度大于所述第一无线信号所占用的时间长度。
作为一个实施例,所述第一类通信节点按照下行的定时在所述第一时间窗中发送所述第一无线信号。
作为一个实施例,所述第一类通信节点按照下行时隙边界的接收时刻作为所述第一无线信号的发送起始时刻在所述第一时间窗中发送所述第一无线信号。
作为一个实施例,所述第二无线信号通过UL-SCH(Uplink Shared Channel,上行共享信道)传输的。
作为一个实施例,所述第二无线信号通过PUSCH(Physical Uplink Shared Channel,物理上行共享信道)传输的。
作为一个实施例,所述第二无线信号是一个传输块(TB,Transport Block)的全部或部分比特依次经过传输块CRC(Cyclic Redundancy Check,循环冗余校验)添加,编码块分段(Code Block Segmentation),编码块CRC添加,速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制映射器(Modulation Mapper),层映 射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),基带信号发生(Baseband Signal Generation)之后得到的。
作为一个实施例,所述第二无线信号是一个传输块(TB,Transport Block)的全部或部分比特依次经过传输块CRC(Cyclic Redundancy Check,循环冗余校验)添加,编码块分段(Code Block Segmentation),编码块CRC添加,速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),变换预编码(Transform Precoding),预编码(Precoding),资源粒子映射器(Resource Element Mapper),基带信号发生(Baseband Signal Generation)之后得到的。
作为一个实施例,所述第二无线信号是正整数编码块(CB,Code Block)的全部或部分比特依次经过编码块CRC添加,速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),变换预编码(Transform Precoding),预编码(Precoding),资源粒子映射器(Resource Element Mapper),基带信号发生(Baseband Signal Generation)之后得到的。
作为一个实施例,所述第二无线信号是正整数编码块(CB,Code Block)的全部或部分比特依次经过编码块CRC添加,速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),基带信号发生(Baseband Signal Generation)之后得到的。
作为一个实施例,所述第二时间窗与所述目标时间窗的相对位置关系包括:所述第二时间窗的起始时刻与所述目标时间窗的起始时刻的时域关系。
作为一个实施例,所述第二时间窗与所述目标时间窗的相对位置关系包括:所述第二时间窗的起始时刻与所述目标时间窗的结束时刻的时域关系。
作为一个实施例,所述第二时间窗与所述目标时间窗的相对位置关系包括:所述第二时间窗的结束时刻与所述目标时间窗的结束时刻的时域关系。
作为一个实施例,所述第二时间窗与所述目标时间窗的相对位置关系包括:所述第二时间窗的结束时刻与所述目标时间窗的起始时刻的时域关系。
作为一个实施例,所述第二时间窗与所述目标时间窗是正交的。
作为一个实施例,所述第二时间窗与所述目标时间窗是非正交的。
作为一个实施例,所述第二时间窗包括在给定的一个子载波间隔(SCS,Subcarrier Spacing)情况下的所述第一类通信节点侧的正整数个连续的多载波符号(OFDM Symbol,包括CP)。
作为一个实施例,所述第二时间窗包括在给定的一个子载波间隔(SCS,Subcarrier Spacing)情况下的所述第二无线信号的接收者侧的正整数个连续的多载波符号(OFDM Symbol,包括CP)。
作为一个实施例,所述目标时间窗是在给定的一个子载波间隔情况下的所述第一类通信节点侧的一个时隙(Slot)。
作为一个实施例,所述目标时间窗是在给定的一个子载波间隔情况下的所述第一类通信节点侧的正整数个连续的多载波符号(OFDM Symbol,包括CP)。
作为一个实施例,所述目标时间窗是在给定的一个子载波间隔情况下的所述第一类通信节点侧的正整数个连续的时隙(Slot)。
作为一个实施例,所述目标时间窗是所述第一类通信节点侧的正整数个连续的子帧(Subframe)。
作为一个实施例,所述目标时间窗是在给定的一个子载波间隔情况下的所述第二无线信号的接收者侧的一个时隙(Slot)。
作为一个实施例,所述目标时间窗是在给定的一个子载波间隔情况下的所述第二无 线信号的接收者侧的正整数个连续的多载波符号(OFDM Symbol,包括CP)。
作为一个实施例,所述目标时间窗是在给定的一个子载波间隔情况下的所述第二无线信号的接收者侧的正整数个连续的时隙(Slot)。
作为一个实施例,所述目标时间窗是所述第二无线信号的接收者侧的正整数个连续的子帧(Subframe)。
作为一个实施例,所述目标时间窗的定时(Timing)和所述第一时间窗的定时(Tming)有关。
作为一个实施例,所述目标时间窗的起始时刻和结束时刻和所述第一类通信节点侧的多载波符号的边界对齐。
作为一个实施例,所述目标时间窗的起始时刻和结束时刻和所述第二无线信号的接收者侧的多载波符号的边界对齐。
作为一个实施例,所述第一时间窗,所述第二时间窗,所述目标时间窗都是从所述第一类通信节点侧的时间窗。
作为一个实施例,所述第一时间窗,所述第二时间窗,所述目标时间窗都是从所述第一信息的发送者侧的时间窗。
作为一个实施例,所述第一无线信号所占用的空口资源是指时频资源和码域资源中至少之一。
作为一个实施例,所述第一无线信号所占用的空口资源是指:{所述第一无线信号所占用的时域资源,所述第一无线信号所占用的频域资源,所述第一无线信号所占用的码域资源}中至少之一。
作为一个实施例,所述第一无线信号所占用的空口资源是指生成所述第一无线信号的特征序列和传输所述第一无线信号的时频资源中至少之一。
作为一个实施例,所述第二无线信号所占用的码域资源是指:生成所述第二无线信号的特征序列资源。
作为一个实施例,所述第二无线信号所占用的码域资源是指:生成所述第二无线信号的扰码序列资源。
作为一个实施例,所述第二无线信号所占用的码域资源是指:生成所述第二无线信号的交织序列资源。
作为一个实施例,所述第二无线信号所占用的码域资源是指:生成所述第二无线信号的正交码资源。
为一个实施例,所述第二无线信号所占用的码域资源是指:生成所述第二无线信号的非正交码资源。
作为一个实施例,所述第一时间窗的结束时刻到所述目标时间窗的起始时刻的时间间隔不小于一个X毫秒,所述X是预定义或可配置的正数。
作为一个实施例,所述空中接口(Air Interface)是无线的。
作为一个实施例,所述空中接口(Air Interface)包括无线信道。
作为一个实施例,所述空中接口是第二类通信节点和所述第一类通信节点之间的接口。
作为一个实施例,所述空中接口是Uu接口。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统网络架构200的图。NR 5G或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core, 演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语,在NTN网络中,gNB203可以是卫星,飞行器或通过卫星中继的地面基站。gNB203为UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF 211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个实施例,所述UE201对应本申请中的所述第一类通信节点设备。
作为一个实施例,所述UE201支持非授予的上行传输。
作为一个实施例,所述gNB203对应本申请中的所述第二类通信节点设备。
作为一个实施例,所述gNB203支持非授予的上行传输。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于第一类通信节点设备(UE)和第二类通信节点设备(gNB,eNB或NTN中的卫星或飞行器)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一类通信节点设备与第二类通信节点设备之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的第二类通信节点设备处。虽然未图示,但第一类通信节点设备可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供第二类通信节点设备之间的对第一类通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在第一类 通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于第一类通信节点设备和第二类通信节点设备的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用第二类通信节点设备与第一类通信节点设备之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一类通信节点设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二类通信节点设备。
作为一个实施例,本申请中的所述第一信息生成于所述RRC306。
作为一个实施例,本申请中的所述第二信息生成于所述RRC306。
作为一个实施例,本申请中的所述第一信息生成于所述MAC302。
作为一个实施例,本申请中的所述第二信息生成于所述MAC302。
作为一个实施例,本申请中的所述第一信息生成于所述PHY301。
作为一个实施例,本申请中的所述第二信息生成于所述PHY301。
作为一个实施例,本申请中的所述第一无线信号生成于所述RRC306。
作为一个实施例,本申请中的所述第一无线信号生成于所述MAC302。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二无线信号生成于所述RRC306。
作为一个实施例,本申请中的所述第二无线信号生成于所述MAC302。
作为一个实施例,本申请中的所述第二无线信号生成于所述PHY301。
实施例4
实施例4示出了根据本申请的一个基站设备和给定用户设备的示意图,如附图4所示。图4是在接入网络中与UE450通信的gNB/eNB410的框图。
在用户设备(UE450)中包括控制器/处理器490,存储器480,接收处理器452,发射器/接收器456,发射处理器455和数据源467,发射器/接收器456包括天线460。数据源467提供上层包到控制器/处理器490,控制器/处理器490提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议,上层包中可以包括数据或者控制信息,例如DL-SCH或UL-SCH。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等。接收处理器452实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层控制信令提取等。发射器456用于将发射处理器455提供的基带信号转换成射频信号并经由天线460发射出去,接收器456用于通过天线460接收的射频信号转换成基带信号提供给接收处理器452。
在基站设备(410)中可以包括控制器/处理器440,存储器430,接收处理器412,发射器/接收器416和发射处理器415,发射器/接收器416包括天线420。上层包到达控制器/处理器440,控制器/处理器440提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议。上层包中可以包括数据或者控制信息,例如DL-SCH或UL-SCH。发射处理器415实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层信令(包括同步信号和参考信号等)生成等。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层信令提取等。发射器416用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去,接收器416用于通过天线420接收的射频信号转换成基带信号提供给接收处理器412。
在DL(Downlink,下行)中,上层包(比如本申请中的第一信息,第二信息,和第三信息所携带的上层包)提供到控制器/处理器440。控制器/处理器440实施L2层的功能。在DL 中,控制器/处理器440提供包头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对UE450的无线电资源分配。控制器/处理器440还负责HARQ操作、丢失包的重新发射,和到UE450的信令,比如本申请中的第一信息,第二信息,和第三信息均在控制器/处理器440中生成。发射处理器415实施用于L1层(即,物理层)的各种信号处理功能,信号处理功能包括译码和交织以促进UE450处的前向纠错(FEC)以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))对基带信号进行调制,将调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器415经由发射器416映射到天线420以射频信号的形式发射出去。本申请中的第一信息,第二信息和第三信息在物理层的对应信道由发射处理器415映射到目标空口资源上并经由发射器416映射到天线420以射频信号的形式发射出去。在接收端,每一接收器456通过其相应天线460接收射频信号,每一接收器456恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器452。接收处理器452实施L1层的各种信号接收处理功能。信号接收处理功能包括在本申请中的第一信息,第二信息和第三信息的物理层信号的接收等,通过多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解码和解交织以恢复在物理信道上由gNB410发射的数据或者控制,随后将数据和控制信号提供到控制器/处理器490。控制器/处理器490实施L2层,控制器/处理器490对本申请中的第一信息,第二信息和第三信息进行解读。控制器/处理器可与存储程序代码和数据的存储器480相关联。存储器480可称为计算机可读媒体。
在上行(UL)传输中,使用数据源467来将信号的相关配置数据提供到控制器/处理器490。数据源467表示L2层之上的所有协议层,本申请中的第二无线信号在数据源467生成。控制器/处理器490通过基于gNB410的配置分配提供标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,来实施用于用户平面和控制平面的L2层协议。控制器/处理器490还负责HARQ操作、丢失包的重新发射,和到gNB410的信令。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能。信号发射处理功能包括编码,调制等,将调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号进行基带信号生成,然后由发射处理器455经由发射器456映射到天线460以射频信号的形式发射出去,物理层的信号(包括本申请中的第一无线信号的生成与发射以及第二无线信号在物理层的处理)生成于发射处理器455。接收器416通过其相应天线420接收射频信号,每一接收器416恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器412。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能,包括本申请中的第一无线信号的检测以及第二无线信号在物理层的接收,信号接收处理功能包括获取多载波符号流,接着对多载波符号流中的多载波符号进行基于各种调制方案的解调,随后解码以恢复在物理信道上由UE450原始发射的数据和/或控制信号。随后将数据和/或控制信号提供到控制器/处理器440。在接收处理器控制器/处理器440实施L2层。控制器/处理器可与存储程序代码和数据的存储器430相关联。存储器430可以为计算机可读媒体。
作为一个实施例,所述UE450对应本申请中的所述第一类通信节点设备。
作为一个实施例,所述gNB410对应本申请中的所述第二类通信节点设备。
作为一个实施例,所述UE450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述UE450装置至少:接收第一信息和第二信息;在第一时间窗中发送第一无线信号;发送第二无线信号;其中,所述第一信息被用于确定目标时间窗,所述第二无线信号在时域占用第二时间窗,所述第二信息被用于确定所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一;所述第一时间窗的结束时刻早于所述目标时间窗的起始时刻,所述第一无线信号所占用的空口资源被用于确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源以及所述第二无线信号所采用的调制编码方式中至少之一;所述第一信息,所述第二信息,所 述第一无线信号和所述第二无线信号都通过空中接口传输。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信息和第二信息;在第一时间窗中发送第一无线信号;发送第二无线信号;其中,所述第一信息被用于确定目标时间窗,所述第二无线信号在时域占用第二时间窗,所述第二信息被用于确定所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一;所述第一时间窗的结束时刻早于所述目标时间窗的起始时刻,所述第一无线信号所占用的空口资源被用于确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源以及所述第二无线信号所采用的调制编码方式中至少之一;所述第一信息,所述第二信息,所述第一无线信号和所述第二无线信号都通过空中接口传输。
作为一个实施例,所述gNB410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:发送第一信息和第二信息;在第一时间窗中检测第一无线信号;如果所述第一无线信号被检测到,接收第二无线信号;其中,所述第一信息被用于确定目标时间窗,所述第二无线信号在时域占用第二时间窗,所述第二信息被用于确定所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一;所述第一时间窗的结束时刻早于所述目标时间窗的起始时刻,所述第一无线信号所占用的空口资源被用于确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源以及所述第二无线信号所采用的调制编码方式中至少之一;所述第一信息,所述第二信息,所述第一无线信号和所述第二无线信号都通过空中接口传输。
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信息和第二信息;在第一时间窗中检测第一无线信号;如果所述第一无线信号被检测到,接收第二无线信号;其中,所述第一信息被用于确定目标时间窗,所述第二无线信号在时域占用第二时间窗,所述第二信息被用于确定所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一;所述第一时间窗的结束时刻早于所述目标时间窗的起始时刻,所述第一无线信号所占用的空口资源被用于确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源以及所述第二无线信号所采用的调制编码方式中至少之一;所述第一信息,所述第二信息,所述第一无线信号和所述第二无线信号都通过空中接口传输。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一信息。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中发送所述第二信息。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中发送所述第三信息。
作为一个实施例,发射器456(包括天线460),发射处理器452和控制器/处理器490被用于本申请中发送所述第一无线信号。
作为一个实施例,发射器456(包括天线460),发射处理器452和控制器/处理器490被用于本申请中发送所述第二无线信号。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第一信息。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第二信息。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第三信息。
作为一个实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于发送本申请中的所述第一无线信号。
作为一个实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于发送本申请中的所述第二无线信号。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。在附图5中,第二类通信节点N1是第一类通信节点U2的服务小区的维持基站。
对于 第二类通信节点N1,在步骤S11中发送第三信息,在步骤S12中发送第一信息,在步骤S13中发送第二信息,在步骤S14中在第一时间窗中检测第一无线信号,在步骤S15中接收第二无线信号。
对于 第一类通信节点U2,在步骤S21中接收第三信息,在步骤S22中接收第一信息,在步骤S23中接收第二信息,在步骤S24中在第一时间窗中发送第一无线信号,在步骤S25中发送第二无线信号。
在实施例5中,所述第一信息被用于确定目标时间窗,所述第二无线信号在时域占用第二时间窗,所述第二信息被用于确定所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一;所述第一时间窗的结束时刻早于所述目标时间窗的起始时刻,所述第一无线信号所占用的空口资源被用于确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源以及所述第二无线信号所采用的调制编码方式中至少之一;所述第一信息,所述第二信息,所述第一无线信号和所述第二无线信号都通过空中接口传输;所述第三信息被用于指示P个备选空口资源,所述第一无线信号所占用的空口资源所述P个备选空口资源中之一,所述P是正整数,所述第三信息通过所述空中接口传输。
作为一个实施例,所述第三信息通过高层信令传输。
作为一个实施例,所述第三信息通过物理层信令传输。
作为一个实施例,所述第三信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第三信息包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第三信息通过PBCH(Physical Broadcast Channel,物理广播信道)传输。
作为一个实施例,所述第三信息包括MIB(Master Information Block,主信息块)中的一个或多个域(Field)。
作为一个实施例,所述第三信息通过一个DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第三信息通过一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第三信息包括一个SIB(System Information Block,系统信息块)中的一个或多个域(Field)。
作为一个实施例,所述第三信息包括RMSI(Remaining System Information,余下系统信息)中的一个或多个域(Field)。
作为一个实施例,所述第三信息包括一个RRC(Radio Resource Control,无线资源控制)信令的全部或部分。
作为一个实施例,所述第三信息是广播的。
作为一个实施例,所述第三信息是单播的。
作为一个实施例,所述第三信息是小区特定的(Cell Specific)。
作为一个实施例,所述第三信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第三信息通过PDCCH(Physical Downlink Control Channel,物 理下行控制信道)传输。
作为一个实施例,所述第三信息包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,所述第一信息和所述第三信息通过相同的信令的传输的。
作为一个实施例,所述第一信息和所述第三信息通过相同的RRC(Radio Resource Control,无线资源控制)信令传输的。
作为一个实施例,所述第一信息和所述第三信息通过不同的信令的传输的。
作为一个实施例,所述第一信息和所述第三信息通过相同的物理信道传输的。
作为一个实施例,所述第一信息和所述第三信息通过不同的物理信道传输的。
作为一个实施例,所述第一信息和所述第三信息通过同一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输的。
作为一个实施例,所述第一信息和所述第三信息通过两个不同的PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输的。
作为一个实施例,所述第一信息和所述第三信息作为同一个信令中的两个不同的域(field)传输的。
作为一个实施例,所述第一信息和所述第三信息作为同一个RRC信令中的两个不同的IE(Information Element,信息元素)传输的。
作为一个实施例,所述第三信息被用于指示所述P个备选空口资源是指:所述第三信息被用于直接指示所述P个备选空口资源。
作为一个实施例,所述第三信息被用于指示所述P个备选空口资源是指:所述第三信息被用于间接指示所述P个备选空口资源。
作为一个实施例,所述第三信息被用于指示所述P个备选空口资源是指:所述第三信息被用于隐性指示所述P个备选空口资源。
作为一个实施例,所述第三信息被用于指示所述P个备选空口资源是指:所述第三信息被用于显性指示所述P个备选空口资源。
实施例6
实施例6示例了根据本申请的一个实施例的另一幅无线信号传输流程图,如附图6所示。在附图6中,第二类通信节点N3是第一类通信节点U4的服务小区的维持基站。
对于 第二类通信节点N3,在步骤S31中发送第三信息,在步骤S32中发送第一信息,在步骤S33中发送第二信息,在步骤S34中在第一时间窗中检测第一无线信号。
对于 第一类通信节点U4,在步骤S41中接收第三信息,在步骤S42中接收第一信息,在步骤S43中接收第二信息,在步骤S44中在第一时间窗中发送第一无线信号,在步骤S45中发送第二无线信号。
在实施例6中,所述第一信息被用于确定目标时间窗,所述第二无线信号在时域占用第二时间窗,所述第二信息被用于确定所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一;所述第一时间窗的结束时刻早于所述目标时间窗的起始时刻,所述第一无线信号所占用的空口资源被用于确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源以及所述第二无线信号所采用的调制编码方式中至少之一;所述第一信息,所述第二信息,所述第一无线信号和所述第二无线信号都通过空中接口传输;所述第三信息被用于指示P个备选空口资源,所述第一无线信号所占用的空口资源所述P个备选空口资源中之一,所述P是正整数,所述第三信息通过所述空中接口传输。
实施例7
实施例7示例了根据本申请的一个实施例的第一无线信号和第二无线信号的关系的示意 图,如附图7所示。在附图7中,横轴代表时间,纵轴代表频率,斜线填充的矩形代表第一无线信号,十字线填充的矩形代表第二无线信号。
在实施例7中,本申请中的第一无线信号所占用的空口资源被用于确定本申请中的第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源以及所述第二无线信号所采用的调制编码方式中至少之一。
作为一个实施例,所述第一无线信号是由一个特征序列生成。
作为一个实施例,所述第一无线信号通过PRACH(Physical Random Access Channel,物理随机接入信道)传输的。
作为一个实施例,所述第一无线信号携带前导序列(Preamble)。
作为一个实施例,所述第一无线信号通过RACH(Random Access Channel,随机接入信道)传输。
作为一个实施例,所述第一无线信号由一个特征序列生成,所述特征序列是ZC(Zadoff-Chu)序列或伪随机序列中之一。
作为一个实施例,所述第一无线信号由一个特征序列生成,所述特征序列是整数个正交序列或非正交序列中之一。
作为一个实施例,所述第二无线信号通过UL-SCH(Uplink Shared Channel,上行共享信道)传输的。
作为一个实施例,所述第二无线信号通过PUSCH(Physical Uplink Shared Channel,物理上行共享信道)传输的。
作为一个实施例,所述第二无线信号是一个传输块(TB,Transport Block)的全部或部分比特依次经过传输块CRC(Cyclic Redundancy Check,循环冗余校验)添加,编码块分段(Code Block Segmentation),编码块CRC添加,速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),基带信号发生(Baseband Signal Generation)之后得到的。
作为一个实施例,所述第二无线信号是一个传输块(TB,Transport Block)的全部或部分比特依次经过传输块CRC(Cyclic Redundancy Check,循环冗余校验)添加,编码块分段(Code Block Segmentation),编码块CRC添加,速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),变换预编码(Transform Precoding),预编码(Precoding),资源粒子映射器(Resource Element Mapper),基带信号发生(Baseband Signal Generation)之后得到的。
作为一个实施例,所述第二无线信号是正整数编码块(CB,Code Block)的全部或部分比特依次经过编码块CRC添加,速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),变换预编码(Transform Precoding),预编码(Precoding),资源粒子映射器(Resource Element Mapper),基带信号发生(Baseband Signal Generation)之后得到的。
作为一个实施例,所述第二无线信号是正整数编码块(CB,Code Block)的全部或部分比特依次经过编码块CRC添加,速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),基带信号发生(Baseband Signal Generation)之后得到的。
作为一个实施例,所述第一无线信号所占用的空口资源是指时频资源和码域资源中至少之一。
作为一个实施例,所述第一无线信号所占用的空口资源是指:{所述第一无线信号所占用的时域资源,所述第一无线信号所占用的频域资源,所述第一无线信号所占用的码域资源}中至少之一。
作为一个实施例,所述第一无线信号所占用的空口资源是指生成所述第一无线信号的特征序列和传输所述第一无线信号的时频资源中至少之一。
作为一个实施例,所述第二无线信号所占用的码域资源是指:生成所述第二无线信号的特征序列资源。
作为一个实施例,所述第二无线信号所占用的码域资源是指:生成所述第二无线信号的扰码序列资源。
作为一个实施例,所述第二无线信号所占用的码域资源是指:生成所述第二无线信号的交织序列资源。
作为一个实施例,所述第二无线信号所占用的码域资源是指:生成所述第二无线信号的正交码资源。
作为一个实施例,所述第二无线信号所占用的码域资源是指:生成所述第二无线信号的非正交码资源。
实施例8
实施例8示例了根据本申请的一个实施例的第二时间窗和目标时间窗的关系的示意图,如附图8所示。在附图8中,横轴代表时间,斜线填充矩形代表第一无线信号,交叉线填充矩形代表第二无线信号。
在实施例8中,在本申请中的第二时间窗属于本申请中的目标时间窗,所述第二时间窗的结束时刻与所述目标时间窗的结束时刻的时间间隔长度不小于所述第一时间窗的时间长度与所述第一无线信号所占用的时间长度的差值。
作为一个实施例,所述第二时间窗的结束时刻与所述目标时间窗的结束时刻的时间间隔长度等于所述第一时间窗的时间长度与所述第一无线信号所占用的时间长度的差值。
作为一个实施例,所述第二时间窗的结束时刻与所述目标时间窗的结束时刻的时间间隔长度小于所述第一时间窗的时间长度与所述第一无线信号所占用的时间长度的差值。
作为一个实施例,所述第一无线信号所占用的时间长度包括符号时间长度和CP(Cyclic Prefix,循环前缀)的时间长度。
作为一个实施例,所述目标时间窗中包括所述第二时间窗中的所有的时域资源。
作为一个实施例,所述第一时间窗的时间长度与所述第一无线信号所占用的时间长度的差值为给定的一个PRACH(Physical Random Access Channel,物理随机接入信道)的格式(Format)下的空闲时间(Gap)的时间长度。
作为一个实施例,所述第一时间窗的时间长度与所述第一无线信号所占用的时间长度的差值为{2975Ts,21904Ts,2976Ts,1096Ts,2916Ts,96Ts,216Ts,360Ts,792Ts}中之一,其中Ts=1/30.72MHz。
作为一个实施例,所述第二时间窗的结束时刻与所述目标时间窗的结束时刻的时间间隔长度在一个给定的子载波间隔下等于正整数个多载波符号(包括CP)的时间长度。
实施例9
实施例9示例了根据本申请的一个实施例的第一空闲时间长度和第二空闲时间长度的示意图,如附图9所示。在附图9中,横轴代表时间,斜线填充的矩形代表第一无线信号,交叉线填充的矩形代表第二无线信号,在情况A和情况B的分别的上面部分代表发射端,下面部分代表接收端。
在实施例9中,本申请中的所述第二时间窗中包括本申请中的所述目标时间窗之外的时域资源,本申请中的所述第一无线信号的发送结束时刻与本申请中的所述第一时间窗的结束时刻的时间间隔长度为第一空闲时间长度,所述第一时间窗的起始时刻与所述第一无线信号的发送起始时刻的时间间隔长度为第二空闲时间长度;所述第二时间窗的起始时刻与所述目标时间窗的起始时刻的时间间隔长度等于所述第一空闲时间长度,或者所述目标时间窗的结 束时刻与所述第二时间窗的结束时刻的时间间隔长度等于所述第二空闲时间长度。
作为一个实施例,所述第一空闲时间长度和所述第一类通信节点到所述第一无线信号的接收者的距离有关。
作为一个实施例,所述第一空闲时间长度等于正整数个多载波符号(包括CP)的时间长度。
作为一个实施例,所述第一空闲时间长度等于非正整数个多载波符号(包括CP)的时间长度。
作为一个实施例,所述第一空闲时间长度等于正整数个所述第一类通信节点实现时的采样间隔的时间长度。
作为一个实施例,所述第一空闲时间长度等于给定的一个PRACH(Physical Random Access Channel,物理随机接入信道)的格式(Format)下的空闲时间(Gap)的时间长度减去所述第一无线信号的传输延时。
作为一个实施例,所述第一空闲时间长度等于{2975Ts,21904Ts,2976Ts,1096Ts,2916Ts,96Ts,216Ts,360Ts,792Ts}中之一减去所述第一无线信号的传输延时,其中Ts=1/30.72MHz。
作为一个实施例,所述第二空闲时间长度和所述第一类通信节点到所述第一无线信号的接收者的距离有关。
作为一个实施例,所述第二空闲时间长度等于正整数个多载波符号(包括CP)的时间长度。
作为一个实施例,所述第二空闲时间长度等于非正整数个多载波符号(包括CP)的时间长度。
作为一个实施例,所述第二空闲时间长度等于正整数个所述第一类通信节点实现时的采样间隔的时间长度。
作为一个实施例,所述第二空闲时间长度等于所述第一无线信号的传输延时。
作为一个实施例,所述第二时间窗的时间长度和所述目标时间窗的时间长度相等。
作为一个实施例,所述第二时间窗的时间长度和所述目标时间窗的时间长度不等。
作为一个实施例,所述第二时间窗的起始时刻早于所述目标时间窗的起始时刻。
作为一个实施例,所述第二时间窗的起始时刻晚于所述目标时间窗的起始时刻。
作为一个实施例,所述目标时间窗的结束时刻早于所述第二时间窗的结束时刻。
作为一个实施例,所述目标时间窗的结束时刻晚于所述第二时间窗的结束时刻。
实施例10
实施例10示例了本申请的一个实施例的P个备选空口资源的示意图,如附图10所示。在附图10中,横轴代表时域,水平纵轴代表频域,垂直轴代表码域,圆点填充的矩形代表第一无线信号所占用的空口资源,每个实线无填充的矩形代表P个备选空口资源中的第一无线信号所占用的空口资源之外的一个备选空口资源。
在实施例10中,本申请中的所述第三信息被用于指示P个备选空口资源,本申请中的所述第一无线信号所占用的空口资源所述P个备选空口资源中之一,所述P是正整数,所述第三信息通过所述空中接口传输。
作为一个实施例,所述第一类通信节点在所述P个备选空口资源中随机选择所述第一无线信号所占用的空口资源。
作为一个实施例,所述P个备选空口资源中的任意一个被选空口资源包括{一个时域资源,一个频域资源,一个码域资源}中至少之一。
作为一个实施例,所述第一无线信号所占用的空口资源被用于确定本申请中的所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源以及所述第二无线信号所采用的调制编码方式中至少之一是指:所述第一无线信号所占用的空口资源在所述P个备选 空口资源中的位置被用于确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源以及所述第二无线信号所采用的调制编码方式中至少之一。
作为一个实施例,所述第一无线信号所占用的空口资源被用于确定本申请中的所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源以及所述第二无线信号所采用的调制编码方式中至少之一是指:所述第一无线信号所占用的空口资源在所述P个备选空口资源中的顺序索引被用于确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源以及所述第二无线信号所采用的调制编码方式中至少之一。
实施例11
实施例11示例了根据本申请的一个实施例的第一空口资源池的示意图,如附图11所示。在附图11中,横轴代表时域,水平纵轴代表频域,垂直轴代表码域,圆点填充的矩形代表第二无线信号所占用的空口资源,无线填充的长方体代表第一空口资源池。
在实施例11中,本申请中的所述第一信息被用于指示第一空口资源池,所述第一空口资源池所包括的频域资源包括本申请中的所述第二无线信号所占用的频域资源,所述第一空口资源池所包括的码域资源包括所述第二无线信号所占用的码域资源,所述第一空口资源池所包括的时域资源包括所述目标时间窗,所述第一无线信号所占用的空口资源被用于在所述第一空口资源池中确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源中至少之一。
作为一个实施例,所述第一信息被用于直接指示所述第一空口资源池。
作为一个实施例,所述第一信息被用于间接指示所述第一空口资源池。
作为一个实施例,所述第一信息被用于显性指示所述第一空口资源池。
作为一个实施例,所述第一信息被用于隐性指示所述第一空口资源池。
作为一个实施例,所述第一空口资源池占用连续的时域资源。
作为一个实施例,所述第一空口资源池占用离散的时域资源。
作为一个实施例,所述第一空口资源池中仅包括一个特征序列所对应的码域资源。
作为一个实施例,所述第一空口资源池中包括Q个备选空口资源,目标空口资源为所述Q个备选空口资源中之一,所述Q是正整数,所述第二无线信号所占用的频域资源和所述目标空口资源中的频域资源相同,所述第二无线信号所占用的码域资源和所述目标空口资源中的码域资源相同,所述目标空口资源中的时域资源为所述目标时间窗。
作为一个实施例,所述第一空口资源池中包括Q个备选空口资源,目标空口资源为所述Q个备选空口资源中之一,所述Q是正整数,所述第二无线信号所占用的频域资源和所述目标空口资源中的频域资源相同,所述第二无线信号所占用的码域资源和所述目标空口资源中的码域资源相同,所述目标空口资源中的时域资源为所述目标时间窗;所述第一无线信号所占用的空口资源被用于在所述第一空口资源池中确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源中至少之一是指:所述第一无线信号所占用的空口资源被用于在所述Q个备选空口资源中确定目标空口资源。
实施例12
实施例12示例了一个第一类通信节点设备中的处理装置的结构框图,如附图12所示。附图12中,第一类通信节点设备处理装置1200主要由第一接收机1201,第一发射机1202和第二发射机1203组成。第一接收机1201包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452和控制器/处理器490;第一发射机1202包括本申请附图4中的发射器/接收器456(包括天线460),发射处理器455和控制器/处理器490,第二发射机1203包括发射器/接收器456(包括天线460),发射处理器455和控制器/处理器490。
在实施例12中,第一接收机1201接收第一信息和第二信息;第一发射机1202在第一时间窗中发送第一无线信号;第二发射机1203发送第二无线信号;其中,所述第一信息被用于 确定目标时间窗,所述第二无线信号在时域占用第二时间窗,所述第二信息被用于确定所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一;所述第一时间窗的结束时刻早于所述目标时间窗的起始时刻,所述第一无线信号所占用的空口资源被用于确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源以及所述第二无线信号所采用的调制编码方式中至少之一;所述第一信息,所述第二信息,所述第一无线信号和所述第二无线信号都通过空中接口传输。
作为一个实施例,所述第二时间窗属于所述目标时间窗,所述第二时间窗的结束时刻与所述目标时间窗的结束时刻的时间间隔长度不小于所述第一时间窗的时间长度与所述第一无线信号所占用的时间长度的差值。
作为一个实施例,所述第二时间窗中包括所述目标时间窗之外的时域资源,所述第一无线信号的发送结束时刻与所述第一时间窗的结束时刻的时间间隔长度为第一空闲时间长度,所述第一时间窗的起始时刻与所述第一无线信号的发送起始时刻的时间间隔长度为第二空闲时间长度;所述第二时间窗的起始时刻与所述目标时间窗的起始时刻的时间间隔长度等于所述第一空闲时间长度,或者所述目标时间窗的结束时刻与所述第二时间窗的结束时刻的时间间隔长度等于所述第二空闲时间长度。
作为一个实施例,第一接收机1201还接收第三信息;其中,所述第三信息被用于指示P个备选空口资源,所述第一无线信号所占用的空口资源所述P个备选空口资源中之一,所述P是正整数,所述第三信息通过所述空中接口传输。
作为一个实施例,所述第一信息被用于指示第一空口资源池,所述第一空口资源池所包括的频域资源包括所述第二无线信号所占用的频域资源,所述第一空口资源池所包括的码域资源包括所述第二无线信号所占用的码域资源,所述第一空口资源池所包括的时域资源包括所述目标时间窗,所述第一无线信号所占用的空口资源被用于在所述第一空口资源池中确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源中至少之一。
实施例13
实施例13示例了一个第二类通信节点设备中的处理装置的结构框图,如附图13所示。在附图13中,第二类通信节点设备处理装置1300主要由第三发射机1301,第二接收机1302和第三接收机1303组成。第三发射机1301包括本申请附图4中的发射器/接收器416(包括天线420),发射处理器415和控制器/处理器440;第二接收机1302包括本申请附图4中的发射器/接收器416(包括天线420),接收处理器412和控制器/处理器440;第三接收机1303包括本申请附图4中的发射器/接收器416(包括天线420),接收处理器412和控制器/处理器440。
在实施例13中,第三发射机1301发送第一信息和第二信息;第二接收机1302在第一时间窗中检测第一无线信号;如果所述第一无线信号被检测到,第三接收机1303接收第二无线信号;其中,所述第一信息被用于确定目标时间窗,所述第二无线信号在时域占用第二时间窗,所述第二信息被用于确定所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一;所述第一时间窗的结束时刻早于所述目标时间窗的起始时刻,所述第一无线信号所占用的空口资源被用于确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源以及所述第二无线信号所采用的调制编码方式中至少之一;所述第一信息,所述第二信息,所述第一无线信号和所述第二无线信号都通过空中接口传输。
作为一个实施例,所述第二时间窗属于所述目标时间窗,所述第二时间窗的结束时刻与所述目标时间窗的结束时刻的时间间隔长度不小于所述第一时间窗的时间长度与所述第一无线信号所占用的时间长度的差值。
作为一个实施例,所述第二时间窗中包括所述目标时间窗之外的时域资源,所述第一无线信号的发送结束时刻与所述第一时间窗的结束时刻的时间间隔长度为第一空闲时间长度, 所述第一时间窗的起始时刻与所述第一无线信号的发送起始时刻的时间间隔长度为第二空闲时间长度;所述第二时间窗的起始时刻与所述目标时间窗的起始时刻的时间间隔长度等于所述第一空闲时间长度,或者所述目标时间窗的结束时刻与所述第二时间窗的结束时刻的时间间隔长度等于所述第二空闲时间长度。
作为一个实施例,第三发射机1301还发送第三信息;其中,所述第三信息被用于指示P个备选空口资源,所述第一无线信号所占用的空口资源所述P个备选空口资源中之一,所述P是正整数,所述第三信息通过所述空中接口传输。
作为一个实施例,所述第一信息被用于指示第一空口资源池,所述第一空口资源池所包括的频域资源包括所述第二无线信号所占用的频域资源,所述第一空口资源池所包括的码域资源包括所述第二无线信号所占用的码域资源,所述第一空口资源池所包括的时域资源包括所述目标时间窗,所述第一无线信号所占用的空口资源被用于在所述第一空口资源池中确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源中至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一类通信节点设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二类通信节点设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种用于无线通信中的第一类通信节点中的方法,其特征在于,包括:
    接收第一信息和第二信息;
    在第一时间窗中发送第一无线信号;
    发送第二无线信号;
    其中,所述第一信息被用于确定目标时间窗,所述第二无线信号在时域占用第二时间窗,所述第二信息被用于确定所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一;所述第一时间窗的结束时刻早于所述目标时间窗的起始时刻,所述第一无线信号所占用的空口资源被用于确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源以及所述第二无线信号所采用的调制编码方式中至少之一;所述第一信息,所述第二信息,所述第一无线信号和所述第二无线信号都通过空中接口传输。
  2. 根据权利要求1所述的方法,其特征在于,所述第二时间窗属于所述目标时间窗,所述第二时间窗的结束时刻与所述目标时间窗的结束时刻的时间间隔长度不小于所述第一时间窗的时间长度与所述第一无线信号所占用的时间长度的差值。
  3. 根据权利要求1所述的方法,其特征在于,所述第二时间窗中包括所述目标时间窗之外的时域资源,所述第一无线信号的发送结束时刻与所述第一时间窗的结束时刻的时间间隔长度为第一空闲时间长度,所述第一时间窗的起始时刻与所述第一无线信号的发送起始时刻的时间间隔长度为第二空闲时间长度;所述第二时间窗的起始时刻与所述目标时间窗的起始时刻的时间间隔长度等于所述第一空闲时间长度,或者所述目标时间窗的结束时刻与所述第二时间窗的结束时刻的时间间隔长度等于所述第二空闲时间长度。
  4. 根据权利要求1至3中任一权利要求所述的方法,其特征在于,还包括:
    接收第三信息;
    其中,所述第三信息被用于指示P个备选空口资源,所述第一无线信号所占用的空口资源所述P个备选空口资源中之一,所述P是正整数,所述第三信息通过所述空中接口传输。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于,所述第一信息被用于指示第一空口资源池,所述第一空口资源池所包括的频域资源包括所述第二无线信号所占用的频域资源,所述第一空口资源池所包括的码域资源包括所述第二无线信号所占用的码域资源,所述第一空口资源池所包括的时域资源包括所述目标时间窗,所述第一无线信号所占用的空口资源被用于在所述第一空口资源池中确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源中至少之一。
  6. 一种用于无线通信中的第二类通信节点中的方法,其特征在于,包括:
    发送第一信息和第二信息;
    在第一时间窗中检测第一无线信号;
    如果所述第一无线信号被检测到,接收第二无线信号;
    其中,所述第一信息被用于确定目标时间窗,所述第二无线信号在时域占用第二时间窗,所述第二信息被用于确定所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一;所述第一时间窗的结束时刻早于所述目标时间窗的起始时刻,所述第一无线信号所占用的空口资源被用于确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源以及所述第二无线信号所采用的调制编码方式中至少之一;所述第一信息,所述第二信息,所述第一无线信号和所述第二无线信号都通过空中接口传输。
  7. 根据权利要求6所述的方法,其特征在于,所述第二时间窗属于所述目标时间窗,所述第二时间窗的结束时刻与所述目标时间窗的结束时刻的时间间隔长度不小于所述第一时间窗的时间长度与所述第一无线信号所占用的时间长度的差值。
  8. 根据权利要求6所述的方法,其特征在于,所述第二时间窗中包括所述目标时间 窗之外的时域资源,所述第一无线信号的发送结束时刻与所述第一时间窗的结束时刻的时间间隔长度为第一空闲时间长度,所述第一时间窗的起始时刻与所述第一无线信号的发送起始时刻的时间间隔长度为第二空闲时间长度;所述第二时间窗的起始时刻与所述目标时间窗的起始时刻的时间间隔长度等于所述第一空闲时间长度,或者所述目标时间窗的结束时刻与所述第二时间窗的结束时刻的时间间隔长度等于所述第二空闲时间长度。
  9. 根据权利要求6至8中任一权利要求所述的方法,其特征在于,还包括:
    发送第三信息;
    其中,所述第三信息被用于指示P个备选空口资源,所述第一无线信号所占用的空口资源所述P个备选空口资源中之一,所述P是正整数,所述第三信息通过所述空中接口传输。
  10. 根据权利要求6至9中任一权利要求所述的方法,其特征在于,所述第一信息被用于指示第一空口资源池,所述第一空口资源池所包括的频域资源包括所述第二无线信号所占用的频域资源,所述第一空口资源池所包括的码域资源包括所述第二无线信号所占用的码域资源,所述第一空口资源池所包括的时域资源包括所述目标时间窗,所述第一无线信号所占用的空口资源被用于在所述第一空口资源池中确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源中至少之一。
  11. 一种用于无线通信中的第一类通信节点设备,其特征在于,包括:
    第一接收机,接收第一信息和第二信息;
    第一发射机,在第一时间窗中发送第一无线信号;
    第二发射机,发送第二无线信号;
    其中,所述第一信息被用于确定目标时间窗,所述第二无线信号在时域占用第二时间窗,所述第二信息被用于确定所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一;所述第一时间窗的结束时刻早于所述目标时间窗的起始时刻,所述第一无线信号所占用的空口资源被用于确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源以及所述第二无线信号所采用的调制编码方式中至少之一;所述第一信息,所述第二信息,所述第一无线信号和所述第二无线信号都通过空中接口传输。
  12. 一种用于无线通信中的第二类通信节点设备,其特征在于,包括:
    第三发射机,发送第一信息和第二信息;
    第二接收机,在第一时间窗中检测第一无线信号;
    第三接收机,如果所述第一无线信号被检测到,接收第二无线信号;
    其中,所述第一信息被用于确定目标时间窗,所述第二无线信号在时域占用第二时间窗,所述第二信息被用于确定所述第二时间窗是否属于所述目标时间窗以及所述第二时间窗与所述目标时间窗的相对位置关系中至少之一;所述第一时间窗的结束时刻早于所述目标时间窗的起始时刻,所述第一无线信号所占用的空口资源被用于确定所述第二无线信号所占用的频域资源和所述第二无线信号所占用的码域资源以及所述第二无线信号所采用的调制编码方式中至少之一;所述第一信息,所述第二信息,所述第一无线信号和所述第二无线信号都通过空中接口传输。
PCT/CN2019/074156 2018-02-13 2019-01-31 一种用于无线通信的通信节点中的方法和装置 WO2019157974A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/988,719 US11219016B2 (en) 2018-02-13 2020-08-10 Method and device in communication node used for wireless communication
US17/534,461 US11523385B2 (en) 2018-02-13 2021-11-24 Method and device in communication node used for wireless communication
US17/971,648 US11696264B2 (en) 2018-02-13 2022-10-24 Method and device in communication node used for wireless communication
US18/195,378 US11963140B2 (en) 2018-02-13 2023-05-10 Method and device in communication node used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810149428.0A CN110167186B (zh) 2018-02-13 2018-02-13 一种用于无线通信的通信节点中的方法和装置
CN201810149428.0 2018-02-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/988,719 Continuation US11219016B2 (en) 2018-02-13 2020-08-10 Method and device in communication node used for wireless communication

Publications (1)

Publication Number Publication Date
WO2019157974A1 true WO2019157974A1 (zh) 2019-08-22

Family

ID=67619748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074156 WO2019157974A1 (zh) 2018-02-13 2019-01-31 一种用于无线通信的通信节点中的方法和装置

Country Status (3)

Country Link
US (4) US11219016B2 (zh)
CN (3) CN111586877B (zh)
WO (1) WO2019157974A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115066026B (zh) * 2019-09-12 2024-07-12 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112584429B (zh) * 2019-09-29 2022-05-27 大唐移动通信设备有限公司 基站、基站之间的通信方法、装置及存储介质
CN112688762B (zh) * 2019-10-17 2022-05-24 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115361737A (zh) * 2019-10-20 2022-11-18 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备
CN112751656B (zh) * 2019-10-30 2022-09-27 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112788567B (zh) * 2019-11-05 2022-06-21 上海朗帛通信技术有限公司 用于无线通信的通信节点中的方法和装置
CN112825497B (zh) * 2019-11-21 2022-07-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112839384B (zh) * 2019-11-25 2022-08-05 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114900213A (zh) * 2020-01-30 2022-08-12 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113285784B (zh) * 2020-02-19 2022-08-26 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US20220240261A1 (en) * 2021-01-22 2022-07-28 Qualcomm Incorporated Group-common dynamic indication of physical uplink control channel repetition factor
JP2024513741A (ja) * 2021-03-22 2024-03-27 中興通訊股▲ふん▼有限公司 サウンディング基準信号伝送のためのシステムおよび方法
CN117499958A (zh) * 2021-07-28 2024-02-02 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US20230292153A1 (en) * 2022-03-14 2023-09-14 Qualcomm Incorporated Rs tx/rx configuration for inter-base station cli measurement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162920A (zh) * 2015-04-09 2016-11-23 中兴通讯股份有限公司 一种通信方法及装置
CN106535353A (zh) * 2015-09-10 2017-03-22 华为技术有限公司 随机退避方法及装置
CN107026724A (zh) * 2016-02-02 2017-08-08 北京三星通信技术研究有限公司 一种信号发送与接收的方法和用户设备
CN107027179A (zh) * 2016-02-01 2017-08-08 上海朗帛通信技术有限公司 一种无线通信中的调度方法和装置
US20170251488A1 (en) * 2016-02-26 2017-08-31 Comcast Cable Communications, Llc Network Scheduling For Improved Reliability

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6314127B1 (en) * 1999-02-23 2001-11-06 Lucent Technologies Inc. System and method for enhancing signal reception
CN104955111B (zh) * 2014-03-31 2019-03-22 上海朗帛通信技术有限公司 一种非授权频带上的传输方法和装置
CN105530080B (zh) * 2014-09-30 2018-04-17 上海朗帛通信技术有限公司 一种蜂窝通信中的laa传输方法和装置
CN105721376B (zh) * 2014-12-05 2019-06-14 中国移动通信集团公司 基于tdd传输模式的非授权频谱干扰避免方法及基站
CN106165333B (zh) * 2014-12-10 2019-05-10 华为技术有限公司 一种发送、接收信号的方法、装置
US10383093B2 (en) * 2015-01-29 2019-08-13 Lg Electronics Inc. Method for transmitting data transmission resource allocation information in wireless LAN system, and apparatus therefor
CN107204837A (zh) * 2016-03-17 2017-09-26 上海朗帛通信技术有限公司 一种基于蜂窝网的低延迟通信的方法和装置
CN110932832B (zh) * 2016-05-01 2022-06-21 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN107396452B (zh) * 2016-05-14 2020-05-26 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN107690188B (zh) * 2016-08-05 2019-12-24 上海朗帛通信技术有限公司 一种无线传输中的方法和装置
ES2920000T3 (es) * 2017-01-06 2022-07-29 Guangdong Oppo Mobile Telecommunications Corp Ltd Método y dispositivo de transmisión de datos
CN109964413B (zh) * 2017-03-16 2021-07-27 上海朗帛通信技术有限公司 一种被用于多天线传输的用户设备、基站中的方法和装置
CN112332963A (zh) * 2017-04-27 2021-02-05 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN112600600A (zh) * 2017-07-12 2021-04-02 上海朗帛通信技术有限公司 一种用于无线通信的用户设备、基站中的方法和装置
CN112600653A (zh) * 2017-08-11 2021-04-02 上海朗帛通信技术有限公司 一种用于无线通信的用户设备、基站中的方法和装置
CN116388942A (zh) * 2017-11-13 2023-07-04 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019109307A1 (zh) * 2017-12-07 2019-06-13 南通朗恒通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111512689B (zh) * 2018-01-12 2023-04-04 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111447623A (zh) * 2018-04-27 2020-07-24 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US10951746B2 (en) * 2018-05-11 2021-03-16 Shanghai Langbo Communication Technology Company Limited Method and device in UE and base station used for wireless communication
CN110831193B (zh) * 2018-08-13 2021-12-24 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN116528343A (zh) * 2019-02-15 2023-08-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US12058740B2 (en) * 2019-06-06 2024-08-06 Shanghai Langbo Communication Technology Company Limited Method and device in communication node used for wireless communication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162920A (zh) * 2015-04-09 2016-11-23 中兴通讯股份有限公司 一种通信方法及装置
CN106535353A (zh) * 2015-09-10 2017-03-22 华为技术有限公司 随机退避方法及装置
CN107027179A (zh) * 2016-02-01 2017-08-08 上海朗帛通信技术有限公司 一种无线通信中的调度方法和装置
CN107026724A (zh) * 2016-02-02 2017-08-08 北京三星通信技术研究有限公司 一种信号发送与接收的方法和用户设备
US20170251488A1 (en) * 2016-02-26 2017-08-31 Comcast Cable Communications, Llc Network Scheduling For Improved Reliability

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Technical Specification Group Radio Access Network; Study on New Radio (NR) Access Technology Physical Layer Aspects (Release 14", 3GPP TR 38.802 V1.1.0, 31 January 2017 (2017-01-31), XP055631774 *

Also Published As

Publication number Publication date
CN111586877A (zh) 2020-08-25
US11523385B2 (en) 2022-12-06
CN111586871A (zh) 2020-08-25
CN111586871B (zh) 2022-11-25
US11696264B2 (en) 2023-07-04
US11219016B2 (en) 2022-01-04
US20230044234A1 (en) 2023-02-09
US20230276412A1 (en) 2023-08-31
CN110167186B (zh) 2020-06-30
US20210099984A1 (en) 2021-04-01
US11963140B2 (en) 2024-04-16
CN110167186A (zh) 2019-08-23
CN111586877B (zh) 2024-10-25
US20220086815A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
WO2019157974A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2019149050A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2019119411A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2018141231A1 (zh) 一种用于无线通信中的用户设备、基站中的方法和装置
WO2018024152A1 (zh) 一种无线通信中的方法和装置
WO2018145607A1 (zh) 一种用于无线通信中的方法和装置
WO2019179463A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN111884768B (zh) 一种用于无线通信的通信节点中的方法和装置
WO2020233406A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2019109270A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2018028444A1 (zh) 一种无线通信中的方法和装置
WO2019210512A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2018072605A1 (zh) 一种用户设备、基站中的随机接入的方法和装置
WO2020143481A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2019134152A1 (zh) 一种用于无线通信的通信节点中的方法和装置
CN111385905B (zh) 一种用于无线通信的通信节点中的方法和装置
WO2020156247A1 (zh) 一种用于无线通信的通信节点中的方法和装置
CN112134675B (zh) 一种被用于无线通信的节点中的方法和装置
CN110213792B (zh) 一种用于无线通信的通信节点中的方法和装置
CN115190637A (zh) 一种被用于无线通信的节点中的方法和装置
WO2023045863A1 (zh) 一种用于无线通信的节点中的方法和装置
CN116133132A (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/12/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19754496

Country of ref document: EP

Kind code of ref document: A1