WO2018028444A1 - 一种无线通信中的方法和装置 - Google Patents

一种无线通信中的方法和装置 Download PDF

Info

Publication number
WO2018028444A1
WO2018028444A1 PCT/CN2017/094835 CN2017094835W WO2018028444A1 WO 2018028444 A1 WO2018028444 A1 WO 2018028444A1 CN 2017094835 W CN2017094835 W CN 2017094835W WO 2018028444 A1 WO2018028444 A1 WO 2018028444A1
Authority
WO
WIPO (PCT)
Prior art keywords
signaling
time
target
low
latency
Prior art date
Application number
PCT/CN2017/094835
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2018028444A1 publication Critical patent/WO2018028444A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present application relates to transmission schemes in wireless communication systems, and more particularly to methods and apparatus for transmission of downlink signaling and downlink data.
  • TTI Transmission Time Interval
  • Subframe PRB
  • the Physical Resource Block (Ph) corresponds to one ms (milli-second) in time.
  • An LTE subframe includes two time slots (Time Slots), which are a first time slot and a second time slot, respectively, and the first time slot and the second time slot respectively occupy the first half of a LTE subframe. And the last half a millisecond.
  • the UE receives the downlink physical layer signaling by means of a Blind Decoding method, and a plurality of ALs (Aggregation Levels) corresponding to one downlink physical layer signaling.
  • PDCCH Physical Downlink Control Channel
  • ePDCCH enhanced PDCCH
  • Latency Reduction In the Latency Reduction (LR, Delay Reduction) topic of 3GPP (3rd Generation Partner Project) Release 14, an important application purpose is low-latency communication. In order to reduce the delay, the traditional LTE subframe structure needs to be redesigned, and a system design based on sTTI (short transport time interval) is being discussed.
  • sTTI short transport time interval
  • an intuitive method is to allocate a dedicated search space for DCI (Downlink Control Information) for each sTTI.
  • DCI Downlink Control Information
  • the present application discloses a method in a UE that is used for dynamic scheduling, which includes:
  • the first signaling is physical layer signaling, and in the first time window, a maximum of X detections are performed for the first signaling, where the X detections are respectively for X sets of RUs.
  • the K1 RU sets in the X RU sets are respectively K1 first RU sets, the X is a positive integer greater than or equal to the K1, and each of the K1 first RU sets is the first RU set.
  • the number of included RUs is the same, the first RU set includes Q1 RUs; the RU occupies the duration of one OFDM symbol in the time domain, and occupies the bandwidth of one subcarrier in the frequency domain, the X Is a positive integer greater than the K1, the K1 is a positive integer greater than 1, and the Q1 is a positive integer greater than 1; the first target RU set and the second target RU set are respectively the K1 first RU sets a first set of RUs, the first target RU set and the second target RU set share at least one RU; the time domain resources occupied by the RUs in the K1 first RU sets belong to the first time window
  • the first time window includes L time intervals, and the L is a positive integer greater than one.
  • the first target RU set and the second target RU set are respectively two ePDCCH candidates, and the first target RU set and the second target RU set correspond to the same AL.
  • the difference between this embodiment and the conventional method is that the first target RU set and the second target RU set can share the same RU.
  • the number of RUs included in at least two of the X RU sets is different.
  • the length of time of the first time window is 1 millisecond.
  • the length of time of the first time window is 0.5 milliseconds.
  • the L is 2.
  • the first signaling occupies all of the first set of RUs RU.
  • the time domain resources occupied by the first target RU set belong to one of the time intervals, and the time domain resources occupied by the second target RU set are distributed in a plurality of the time intervals.
  • the above embodiment can reduce the blocking rate (Rate) of resources allocated for the first signaling.
  • the duration of at least two of the L time intervals is different.
  • the L time intervals are continuous.
  • the L time intervals constitute the first time window.
  • the K1 is greater than two.
  • the method is characterized in that the time domain resources occupied by the second target RU set are distributed in L1 of the time intervals, and the L1 is greater than 1 and not greater than a positive integer of the L;
  • the RUs occupied by the second target RU set in any one of the time intervals can be reserved for a low-latency signaling, and the time domain resources occupied by the low-latency signaling belong to the corresponding time interval.
  • the foregoing aspect enables the second target RU set and the low-latency signaling to share a search space, which reduces redundancy caused by air interface resources reserved for downlink signaling.
  • the above aspect can reduce the blocking rate of resources allocated for the first signaling. If the RU occupied by the second target RU set within any one of the time intervals can only be reserved for a plurality of low latency signaling, if one of the plurality of low latency signaling is low latency The transmission of the signaling will cause the second set of target RUs to be unoccupied by the first signaling.
  • the low latency signaling is physical layer signaling.
  • a TTI Transport Time Interval
  • a TTI corresponding to the radio signal scheduled by the low-latency signaling is smaller than a TTI corresponding to the radio signal scheduled by the first signaling.
  • the time length of the time domain resource occupied by the wireless signal scheduled by the low-latency signaling is smaller than the time length of the time domain resource occupied by the wireless signal scheduled by the first signaling.
  • the scheduling delay corresponding to the low-latency signaling is smaller than the scheduling delay corresponding to the first signaling.
  • the scheduling delay corresponding to the given signaling means that the given signaling is used to schedule downlink transmission, and the sending deadline of the given signaling is to the given signal. The length of time between the transmission start times of the scheduled downlink wireless signals.
  • the scheduling delay corresponding to the given signaling refers to: the given signaling is used to schedule an uplink transmission, and the sending deadline of the given signaling is to the given signal. The length of time between the reception start times of the scheduled uplink wireless signals.
  • the being able to be reserved for one transmission low delay signaling means that there is at least one UE detecting target signaling on the candidate RU set. If the target signaling is transmitted in the candidate RU set, the target signaling occupies all RUs in the candidate RU set.
  • the set of candidate RUs includes the RUs that are occupied during any one of the time intervals.
  • the candidate RU set further includes the RUs other than the RUs occupied in any one of the time intervals.
  • the being able to be reserved for one transmission low delay signaling means that there is at least one UE detecting target signaling on the candidate RU set. If the target signaling is transmitted in the candidate RU set, the target signaling occupies all RUs in the candidate RU set.
  • the candidate RU set includes a candidate RU subset, and the pattern of the candidate RU subset in the associated time interval and the pattern of the RU occupied in any one of the time intervals in the associated time interval are the same.
  • the candidate RU subset is the candidate RU set.
  • the L1 is equal to the L.
  • the time domain resource occupied by the first target RU set belongs to one of the time intervals.
  • the first target RU set can be reserved for a low latency signaling.
  • the above method is characterized by further comprising:
  • the time domain resource occupied by the second target RU set is distributed in the L1 time intervals, the low delay signaling is physical layer signaling; and one of the L1 time intervals is given. a time interval, wherein a maximum of Y detections are performed for the corresponding low latency signaling,
  • the Y detections are respectively for the Y second RU sets, and the RUs occupied by the second target RU set in the given time interval belong to the Y second RU sets, and the Y is a positive integer.
  • the second RU set includes a positive integer number of the RUs.
  • the time-frequency resource occupied by the second target RU set is from a search space of the UE in each of the time intervals.
  • the above aspect can reduce the blind detection complexity of the UE, and the UE simultaneously completes the first signaling and the low in a larger search space composed of search spaces in each of the time intervals. Delayed signaling search.
  • the foregoing aspect can maintain a uniform resource index for the search space of the first signaling and the search space of the low-latency signaling, thereby avoiding collision of resource indexes.
  • the first target RU set is one of the Y second set of the second RU sets.
  • the number of RUs included in at least two of the Y second RU sets is different.
  • the time-frequency resources occupied by any two of the Y second set of RUs including the same number of RUs are orthogonal (ie, no RU is shared).
  • the above method is characterized in that the RU occupied by the second target RU set in the given time interval is composed of K2 of the second RU sets.
  • the above aspect can reduce buffers for the first signaling and the low latency signaling, reducing UE cost.
  • the number of RUs included in at least two of the K2 second RU sets is different.
  • the above method is characterized by further comprising:
  • the first signaling is correctly received in the K1 first RU sets, where the first signaling includes configuration information of the first wireless signal, and the configuration information includes ⁇ time occupied frequency Resource, MCS (Modulation and Coding Status), NDI (New Data Indicator), RV (Redundancy Version, Redundancy Version), HARQ (Hybrid Automatic Repeat reQuest) Request at least one of the process number ⁇ .
  • MCS Modulation and Coding Status
  • NDI New Data Indicator
  • RV Redundancy Version
  • HARQ Hybrid Automatic Repeat reQuest
  • the first signaling is used to determine the first time window.
  • a first bit block is used to generate the first wireless signal, the first signaling being used to determine a length of time of a transmission time corresponding to the first bit block.
  • the UE receives the first wireless signal in a second time window, and the second time window is the first time window.
  • the UE transmits a first wireless signal in a second time window, the second time window being subsequent to the first time window.
  • the length of time of the second time window is equal to the length of time of the first time window.
  • the first bit block is used to generate the first wireless signal, and the length of time of the transmission time corresponding to the first bit block is equal to the length of time of the first time window.
  • the first bit block is a transport block.
  • the first bit block includes 2 transport blocks, and the two transport blocks are space division multiplexed.
  • the first wireless signal is that the first bit block is sequentially subjected to channel coding, a modulation mapper, a layer mapper, and a precoding. (Precoding), Resource Element Mapper, output after OFDM signal generation.
  • a transmission channel corresponding to the first bit block is used to transmit the first bit block and is not used in a transmission time corresponding to the first bit block. Transmitting a transport block other than the first block of bits.
  • the transmission time corresponding to the first bit block is a TTI (Transport Time Interval) or a sTTI (short TTI) of the first bit block.
  • the above method is characterized by further comprising:
  • the L2 low-latency signalings are correctly received, and the L2 low-latency signalings respectively include configuration information of the L2 low-latency wireless signals, where the configuration information includes At least one of ⁇ occupied time-frequency resources, MCS, NDI, RV, HARQ process number ⁇ , the L2 being a positive integer less than or equal to the L1.
  • the low latency wireless signal is a downlink signal.
  • the time domain resources occupied by the L2 low latency signaling are respectively before the L2 the time intervals, and the low delay wireless signal is an uplink signal.
  • a low delay bit block is used to generate one of the low latency radio signals, the time length of the transmission time corresponding to the low delay bit block being less than the length of time of the first time window.
  • the L2 low latency signalings are used to determine the L2 low latency wireless signals, respectively.
  • L2 low-latency bit blocks are respectively used to generate the L2 low-latency radio signals, and the L2 low-latency signaling signals are respectively used to determine a transmission time corresponding to the first bit block. Length of time.
  • the low delay bit block is a transport block.
  • the low delay bit block comprises 2 transport blocks, the two transport blocks being space division multiplexed.
  • the low-latency wireless signal is a low-latency bit block sequentially subjected to channel coding, a modulation mapper, a layer mapper, a precoding, and a resource particle mapping.
  • Resource Element Mapper the output after the OFDM signal generation.
  • a transmission channel corresponding to the low-latency bit block is used to transmit the low-latency bit block and is not used in a transmission time corresponding to the low-latency bit block.
  • a transport block other than the low delay bit block is transmitted.
  • the transmission time corresponding to the low-latency bit block is an sTTI (short transport time interval) corresponding to the low-latency bit block.
  • the length of time of the transmission time corresponding to the low-latency bit block is equal to the length of time of the corresponding time interval.
  • the above method is characterized by further comprising:
  • the first HARQ-ACK information is used to determine whether the first wireless signal is correctly decoded, and the location of the time-frequency resource occupied by the first signaling in the target search space is used to determine the location.
  • the above aspect can avoid collision of HARQ-ACK resources.
  • the UE detects the low-latency wireless signal in the L target sub-search spaces, respectively.
  • the air interface resource is a time-frequency resource.
  • the air interface resource is a given code resource in a timing frequency resource, and the given timing frequency resource adopts a code division multiplexing manner.
  • an index of a lowest RU block occupied by the first signaling in an RU block included in the target search space is used to determine an air interface occupied by the first HARQ-ACK information. Resources.
  • the above method is characterized by further comprising:
  • the L2 low-latency HARQ-ACK information is used to determine whether the L2 low-latency wireless signals are correctly decoded; the time-frequency resources occupied by the L2 low-latency signaling are in a target search space.
  • the locations in the network are respectively used to determine the air interface resources occupied by the L2 low-latency HARQ-ACK information, where the target search space includes L target sub-search spaces, and the L target sub-search spaces are respectively in the time domain. Belong to the L time intervals.
  • the above aspect can avoid collision of HARQ-ACK resources.
  • the UE detects the low-latency wireless signal in the L target sub-search spaces, respectively.
  • the Y second RU sets constitute one of the L1 of the time intervals to give the target sub-search space in the time interval.
  • the method is characterized in that: a load size of the first signaling is related to a time domain location of the RU occupied by the first signaling; or The domain is related to a time domain location of the RU occupied by the first signaling.
  • the first signaling is used for uplink grant
  • the first wireless signal is an uplink wireless signal
  • the payload size is the number of bits of information bits.
  • the information bits include ⁇ use bits, padding bits, CRC bits ⁇ .
  • the wireless signal corresponding to the first signaling is that the information bits of the first signaling are sequentially subjected to channel coding, a modulation mapper, and a layer. Mapper, Precoding, Resource Element Mapper, output after OFDM signal generation.
  • the time domain resources occupied by the first target RU set belong to one of the time intervals, and the time domain resources occupied by the second target RU set are distributed in L1 of the time intervals, L1 is greater than 1 and not greater than a positive integer of the L.
  • the first signaling is transmitted in the first target RU set and the first signaling includes a first domain, the first domain is used to determine ⁇ the starting time of the second time window, At least one of durations of the second time window; or the first signaling is transmitted in the second target RU set, as compared to transmitting the first letter in the first target RU set The first domain is missing.
  • the present application discloses a method in a base station that is used for dynamic scheduling, which includes:
  • the first signaling is physical layer signaling, and the first signaling occupies one of the X RU sets, and the K1 RU sets in the X RU sets are respectively K1 first RU sets.
  • the X is a positive integer greater than or equal to the K1, and the number of RUs included in each of the first RU sets in the K1 first RU sets is the same, and the first RU set includes Q1 RUs.
  • the X is a positive integer greater than the K1, and the K1 is a positive integer greater than 1.
  • Q1 is a positive integer greater than 1; the first target RU set and the second target RU set are respectively a first RU set of the K1 first RU sets, the first target RU set and the second The target RU set shares at least one RU; the time domain resources occupied by the RUs in the K1 first RU sets belong to a first time window, where the first time The window includes L time intervals, and L is a positive integer greater than one.
  • the method is characterized in that the time domain resources occupied by the second target RU set are distributed in L1 of the time intervals, and the L1 is greater than 1 and not greater than a positive integer of the L;
  • the RUs occupied by the second target RU set in any one of the time intervals can be reserved for a low-latency signaling, and the time domain resources occupied by the low-latency signaling belong to the corresponding time interval.
  • the above method is characterized by further comprising:
  • the time domain resource occupied by the second target RU set is distributed in the L1 time intervals, the low latency signaling is physical layer signaling; and the time domain occupied by one low delay signaling is used.
  • the resource belongs to one of the time intervals, and for the one of the L1 time intervals, the maximum time Y detection is performed for the corresponding low delay signaling; the Y detections are respectively directed to Y second RU sets, the RUs occupied by the second target RU set in the given time interval belong to the Y second RU sets, the Y is a positive integer, and the second RU set A positive integer number of said RUs is included.
  • the above method is characterized in that the RU occupied by the second target RU set in the given time interval is composed of K2 of the second RU sets.
  • the above method is characterized by further comprising:
  • the first signaling is correctly received in the K1 first RU sets; the first signaling includes configuration information of the first wireless signal, and the configuration information includes ⁇ time occupied frequency At least one of resources, MCS, NDI, RV, HARQ process number ⁇ .
  • the base station transmits a first wireless signal in a second time window, the second time window being the first time window.
  • the base station receives the first wireless signal in a second time window, the second time window being subsequent to the first time window.
  • the length of time of the second time window is equal to the length of time of the first time window.
  • the above method is characterized by further comprising:
  • the L2 low-latency signalings are respectively configured, and the L2 low-latency signalings respectively include configuration information of the L2 low-latency wireless signals, where the configuration information includes ⁇ occupied time-frequency resources, At least one of MCS, NDI, RV, HARQ process number ⁇ , the L2 being a positive integer less than or equal to the L1.
  • the above method is characterized by further comprising:
  • the first HARQ-ACK information is used to determine whether the first wireless signal is correctly decoded; the location of the time-frequency resource occupied by the first signaling in the target search space is used to determine The air interface resource occupied by the first HARQ-ACK information, where the target search space includes L target sub-search spaces, and the L target sub-search spaces belong to the L time intervals respectively in the time domain.
  • the above method is characterized by further comprising:
  • L2 low-latency HARQ-ACK information wherein the L2 low-latency wireless signals are transmitted; or transmitting L2 low-latency HARQ-ACK information, wherein the L2 low-latency wireless signals are received;
  • the L2 low-latency HARQ-ACK information is used to determine whether the L2 low-latency radio signals are correctly decoded, and the time-frequency resources occupied by the L2 low-latency signaling are in a target search space.
  • the locations in the network are respectively used to determine the air interface resources occupied by the L2 low-latency HARQ-ACK information, where the target search space includes L target sub-search spaces, and the L target sub-search spaces are respectively in the time domain. Belong to the L time intervals.
  • the method is characterized in that: a load size of the first signaling is related to a time domain location of the RU occupied by the first signaling; or The domain is related to a time domain location of the RU occupied by the first signaling.
  • the first signaling is used for uplink grant.
  • the present application discloses a user equipment used for dynamic scheduling, which includes:
  • a first receiving module detecting the first signaling in the first time window and for using L1 Low delay signaling is detected in the time interval respectively;
  • the first signaling is physical layer signaling, and in the first time window, a maximum of X detections are performed for the first signaling, where the X detections are respectively for X sets of RUs.
  • the K1 RU sets in the X RU sets are respectively K1 first RU sets, the X is a positive integer greater than or equal to the K1; each of the K1 first RU sets is the first RU set The number of included RUs is the same, the first RU set includes Q1 RUs; the RU occupies the duration of one OFDM symbol in the time domain, and occupies the bandwidth of one subcarrier in the frequency domain, the X Is a positive integer greater than the K1, the K1 is a positive integer greater than 1, and the Q1 is a positive integer greater than 1; the first target RU set and the second target RU set are respectively the K1 first RU sets a first set of RUs, the first target RU set and the second target RU set share at least one RU; the time domain resources
  • the foregoing user equipment is characterized in that:
  • a first processing module receiving the first wireless signal in the second time window and respectively receiving the L2 low-latency wireless signals in the L2 time intervals; or transmitting the first wireless signal in the second time window and in the L2 time L2 low-latency wireless signals are respectively transmitted in the interval;
  • the first signaling is correctly received in the K1 first RU sets, where the first signaling includes configuration information of the first wireless signal, and the configuration information includes ⁇ time occupied frequency At least one of resources, MCS, NDI, RV, HARQ process number ⁇ ; L2 of the low-latency signaling are correctly received, and the L2 low-latency signaling respectively include the L2 low-latency wireless signals
  • the configuration information includes at least one of ⁇ occupied time-frequency resources, MCS, NDI, RV, HARQ process number ⁇ .
  • the L2 is a positive integer less than or equal to the L1.
  • the foregoing user equipment is characterized in that it further includes a second processing module, Used for at least one of the following:
  • the first HARQ-ACK information is used to determine whether the first wireless signal is correctly decoded; the location of the time-frequency resource occupied by the first signaling in the target search space is used to determine An air interface resource occupied by the first HARQ-ACK information, where the target search space includes L target sub-search spaces, and the L target sub-search spaces belong to the L time intervals respectively in a time domain; Low-latency HARQ-ACK information is used to determine whether the L2 low-latency radio signals are correctly decoded; the location of the time-frequency resources occupied by the L2 low-latency signaling in the target search space They are respectively used to determine air interface resources occupied by the L2 low-latency HARQ-ACK information.
  • the foregoing user equipment is characterized in that a domain in the first signaling is related to a time domain location of the RU occupied by the first signaling.
  • the first signaling is used for uplink grant.
  • the present application discloses a base station device used for dynamic scheduling, which includes:
  • a first transmitting module transmitting first signaling in a first time window and for transmitting one or more low latency signaling in L1 said time intervals;
  • the first signaling is physical layer signaling, and the first signaling occupies one of the X RU sets, and the K1 RU sets in the X RU sets are respectively K1 first RU sets.
  • the X is a positive integer greater than or equal to the K1; the number of RUs included in each of the first RU sets in the K1 first RU sets is the same, and the first RU set includes Q1 RUs; the duration in which the RU occupies one OFDM symbol in the time domain, occupying the bandwidth of one subcarrier in the frequency domain, the X being a positive integer greater than the K1, the K1 being a positive integer greater than one
  • the Q1 is a positive integer greater than one; the first target RU set and the second target RU set are respectively a first RU set of the K1 first RU sets The first target RU set and the second target RU set share at least one RU; the time domain resources occupied by the RUs in the K1 first RU set belong to a first time window
  • the foregoing base station device is characterized in that it further includes a third processing module,
  • the first signaling is correctly received in the K1 first RU sets.
  • the first signaling includes configuration information of the first wireless signal, where the configuration information includes at least one of ⁇ occupied time-frequency resources, MCS, NDI, RV, HARQ process number ⁇ ;
  • the low-latency signaling is sent by the first sending module, and the L2 low-latency signaling respectively includes configuration information of the L2 low-latency wireless signals, where the configuration information includes ⁇ occupied time-frequency resources, At least one of MCS, NDI, RV, HARQ process number ⁇ ; the L2 is a positive integer less than or equal to the L1.
  • the foregoing base station device is characterized by further comprising a fourth processing module, configured to: at least one of the following:
  • L2 low-latency HARQ-ACK information wherein the L2 low-latency wireless signals are transmitted and transmitted by the third processing module; or transmitting L2 low-latency HARQ-ACK information, wherein the L2 low-latency wireless The signal is sent and received by the third processing module;
  • the first HARQ-ACK information is used to determine whether the first wireless signal is correctly decoded, and the time-frequency resource occupied by the first signaling is in a target search space. And is used to determine an air interface resource occupied by the first HARQ-ACK information, where the target search space includes L target sub-search spaces, and the L target sub-search spaces belong to the L devices respectively in the time domain. a time interval; the L2 low-latency HARQ-ACK information is used to determine whether the L2 low-latency radio signals are correctly decoded; and the time-frequency resources occupied by the L2 low-latency signaling are in the The locations in the target search space are used to determine the air interface resources occupied by the L2 low-latency HARQ-ACK information, respectively.
  • the foregoing base station device is characterized in that: a load size of the first signaling is related to a time domain location of the RU occupied by the first signaling; or a domain in the first signaling Corresponding to the time domain location of the RU occupied by the first signaling.
  • the first signaling is used for uplink grant.
  • FIG. 1 shows a flow diagram of transmission of first signaling in accordance with one embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of a base station device and a given user equipment according to an embodiment of the present application
  • FIG. 5 shows a flow chart of downlink signaling transmission according to an embodiment of the present application
  • FIG. 6 shows a flow chart of transmitting a downlink wireless signal according to an embodiment of the present application
  • FIG. 7 shows a flow chart of transmitting an uplink wireless signal according to an embodiment of the present application
  • Figure 8 shows a schematic diagram of L being 2 in accordance with one embodiment of the present application.
  • Figure 9 shows a schematic diagram of L being 7 in accordance with one embodiment of the present application.
  • Figure 10 shows a schematic diagram of a search space in accordance with one embodiment of the present application.
  • Figure 11 shows a schematic diagram of a scheduling relationship in accordance with one embodiment of the present application.
  • FIG. 12 is a block diagram showing the structure of a processing device in a UE according to an embodiment of the present application.
  • FIG. 13 is a block diagram showing the structure of a processing device in a base station according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of transmission of first signaling in accordance with one embodiment of the present application, as shown in FIG.
  • each box represents a step.
  • the user equipment in the application detects the first signaling in the first time window; wherein the first signaling is physical layer signaling, in the first time window, The first signaling is performed for a maximum of X times of detection, and the X times of detection are respectively for X sets of RUs, and the K1 sets of RUs of the X sets of RUs are respectively K1 first sets of RUs, and the X is greater than or a positive integer equal to the K1; the number of RUs included in each of the first RU sets in the K1 first RU sets is the same, the first RU set includes Q1 RUs, and the RU is in time The duration of occupying one OFDM symbol in the domain, occupying the bandwidth of one subcarrier in the frequency domain, the X being a positive integer greater than the K1, the
  • the first target RU set and the second target RU set are respectively a first RU set of the K1 first RU sets, and the first target RU set and the second target RU set share at least one a time domain resource occupied by the RUs in the K1 first RU sets belongs to a first time window, where the first time window Includes L time intervals, the L is a positive integer greater than 1.
  • the number of RUs included in at least two of the X RU sets is different.
  • the length of time of the first time window is 1 millisecond.
  • the length of time of the first time window is 0.5 milliseconds.
  • the L is 2.
  • the first signaling occupies all the RUs in the first set of RUs.
  • the time domain resources occupied by the first target RU set belong to one of the time intervals, and the time domain resources occupied by the second target RU set are distributed in a plurality of the time intervals.
  • the duration of at least two of the L time intervals is continuous The time is different.
  • the L time intervals are continuous.
  • the L time intervals constitute the first time window.
  • the K1 is greater than two.
  • Embodiment 2 illustrates a schematic diagram of a network architecture in accordance with the present application, as shown in FIG. 2 is a diagram illustrating an NR 5G, LTE (Long-Term Evolution, Long Term Evolution) and LTE-A (Long-Term Evolution Advanced) system network architecture 200.
  • the NR 5G or LTE network architecture 200 may be referred to as an EPS (Evolved Packet System) 200 in some other suitable terminology.
  • EPS Evolved Packet System
  • the EPS 200 may include one or more UEs (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UEs User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core
  • 5G-Core Network 5G-Core Network
  • 5G core network 5G core network
  • HSS Home Subscriber Server
  • Internet service 230 Internet service 230.
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity.
  • the EPS provides packet switching services, although those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks or other cellular networks that provide circuit switched services.
  • the NG-RAN includes an NR Node B (gNB) 203 and other gNBs 204
  • the gNB 203 provides user and control plane protocol termination for the UE 201.
  • the gNB 203 can be connected to other gNBs 204 via an Xn interface (eg, a backhaul).
  • the gNB 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmission and reception point), or some other suitable terminology.
  • the gNB 203 provides the UE 201 with an access point to the EPC/5G-CN 210.
  • Examples of UEs 201 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, an MP3 player), a camera, a game console, a drone, an aircraft, a narrowband physical network device, a machine type communication device, a land vehicle, a car, a wearable device, or any other similar functional device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • UE 201 may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 passed The S1/NG interface is connected to the EPC/5G-CN210.
  • the EPC/5G-CN210 includes an MME/AMF/UPF 211, other MME/AMF/UPF 214, an S-GW (Service Gateway) 212, and a P-GW (Packet Date Network Gateway) 213.
  • the MME/AMF/UPF 211 is a control node that handles signaling between the UE 201 and the EPC/5G-CN 210.
  • MME/AMF/UPF 211 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming Service (PSS).
  • IMS IP Multimedia Subsystem
  • PSS PS Streaming Service
  • the UE 201 corresponds to the user equipment in this application.
  • the gNB 203 corresponds to a base station in the present application.
  • the UE 201 supports control and transmission of data in a short TTI.
  • the UE 201 supports multi-antenna control and data transmission.
  • the gNB 203 supports control and transmission of data in a short TTI.
  • the gNB 203 supports multi-antenna control and data transmission.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with the present application, as shown in FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 shows a radio protocol architecture for user equipment (UE) and base station equipment (gNB or eNB) in three layers: Layer 1 , layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the UE and the gNB through PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol). Convergence Protocol) Sublayer 304, which terminates at the gNB on the network side.
  • the UE may have several upper layers above the L2 layer 305, including a network layer (eg, an IP layer) terminated at the P-GW on the network side and terminated at the other end of the connection (eg, Application layer at the remote UE, server, etc.).
  • the PDCP sublayer 304 provides between different radio bearers and logical channels. Multiplexing.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in one cell between UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the wireless protocol architecture of Figure 3 is applicable to the user equipment in this application.
  • the radio protocol architecture of Figure 3 is applicable to the base station equipment in this application.
  • the first signaling in the present application is generated by the PHY 301.
  • the low latency signaling in the present application is generated by the PHY 301.
  • the first wireless signal in the present application is generated by the PHY 301.
  • the low latency wireless signal in the present application is generated by the PHY 301.
  • the first HARQ-ACK information in the present application is generated by the PHY 301.
  • the low-latency HARQ-ACK information in the present application is generated in the PHY 301.
  • Embodiment 4 shows a schematic diagram of a base station device and a given user equipment according to the present application, as shown in FIG. 4 is a block diagram of a gNB 410 in communication with a UE 450 in an access network.
  • a controller/processor 490, a memory 480, a receiving processor 452, a transmitter/receiver 456, a transmitting processor 455 and a data source 467, transmitter/connected are included in the user equipment (UE 450)
  • Receiver 456 includes an antenna 460.
  • Data source 467 provides an upper layer packet to controller/processor 490, which provides header compression decompression, encryption decryption, packet segmentation and reordering, and multiplexing and demultiplexing between logical and transport channels.
  • the L2 layer protocol for the user plane and the control plane is implemented, and the upper layer packet may include data or control information, such as DL-SCH or UL-SCH.
  • Transmit processor 455 implements various signal transmission processing functions for the L1 layer (ie, the physical layer) including encoding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling generation.
  • the various signal reception processing functions implemented by the receive processor 452 for the L1 layer (ie, the physical layer) include decoding, deinterleaving, descrambling, demodulation, de-precoding, and physical layer control signaling extraction, and the like.
  • the transmitter 456 is configured to convert the baseband signal provided by the transmit processor 455 into a radio frequency signal and transmit it via the antenna 460.
  • the receiver 456 converts the radio frequency signal received through the antenna 460 into a baseband signal and provides it to the receive processor 452.
  • a base station device (410) may include a controller/processor 440, a memory 430, a receive processor 412, a transmitter/receiver 416 and a transmit processor 415, and the transmitter/receiver 416 includes an antenna 420.
  • the upper layer packet arrives at the controller/processor 440, which provides header compression decompression, encryption and decryption, packet segmentation and reordering, and multiplexing and demultiplexing between the logical and transport channels to implement L2 layer protocol for user plane and control plane.
  • the upper layer packet may include data or control information such as DL-SCH or UL-SCH.
  • the transmit processor 415 implements various signal transmission processing functions for the L1 layer (ie, the physical layer) including coding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling (including PBCH, PDCCH). , PHICH, PCFICH, reference signal generation, etc., the first signaling and low delay signaling in this application are generated by the transmit processor 415.
  • the various signal reception processing functions implemented by the receive processor 412 for the L1 layer (ie, the physical layer) include decoding, deinterleaving, descrambling, demodulation, de-precoding, and physical layer control signaling extraction, and the like.
  • the transmitter 416 is configured to convert the baseband signal provided by the transmitting processor 415 into a radio frequency signal and transmit it via the antenna 420.
  • the receiver 416 is configured to convert the radio frequency signal received by the antenna 420 into a baseband signal and provide the signal to the receiving processor 412.
  • the upper layer packet DL-SCH is provided to the controller/processor 440.
  • Controller/processor 440 implements the functionality of the L2 layer.
  • the controller/processor 440 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocation to the UE 450 based on various priority metrics.
  • the controller/processor 440 is also responsible for HARQ operations (generation and reception of first HARQ-ACK information and low latency HARQ-ACK information in the present application), retransmission of lost packets, and signaling to the UE 450. Transmit processor 415 Various signal processing functions for the L1 layer (ie, the physical layer) are implemented.
  • Signal processing functions include decoding and interleaving to facilitate forward error correction (FEC) at the UE 450 and based on various modulation schemes (eg, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK)).
  • FEC forward error correction
  • modulation schemes eg, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK)
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • the baseband signal is modulated, the modulation symbols are divided into parallel streams and each stream is mapped to a corresponding multi-carrier subcarrier and/or multi-carrier symbol, which is then transmitted by the transmit processor 415 via the transmitter 416 to the antenna 420 in the form of a radio frequency signal. Go out.
  • the first signaling and low latency signaling in the present application are generated at the transmit processor 415.
  • the first wireless signal, low latency signal in the present application is mapped by the transmit processor 415 to the antenna 420 via the transmitter 416 in the form of a radio frequency signal.
  • each receiver 456 receives radio frequency signals through its respective antenna 460, each receiver 456 recovers the baseband information modulated onto the radio frequency carrier and provides baseband information to the receiving processor 452.
  • the receiving processor 452 implements various signal receiving processing functions of the L1 layer.
  • the signal receiving processing function includes monitoring the first signaling in the first time window in the application, detecting the low delay signaling in the L1 time intervals, receiving the first wireless signal, etc., in the multi-carrier symbol stream.
  • the multicarrier symbols are demodulated based on various modulation schemes (eg, Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK)), followed by decoding and deinterleaving to recover the transmission by gNB 410 on the physical channel.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • Data or control is then provided to the controller/processor 490.
  • the controller/processor 490 implements the L2 layer.
  • the controller/processor can be associated with a memory 480 that stores program codes and data. Memory 480 can be referred to as a computer readable medium.
  • a data source 467 is used to provide an upper layer packet including the first wireless signal or low delayed signal data to the controller/processor 490.
  • Data source 467 represents all protocol layers above the L2 layer.
  • Controller/processor 490 implements L2 for user plane and control plane by providing header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels over gNB 410 based radio resource allocation Layer protocol.
  • the controller/processor 490 is also responsible for HARQ operations (including the generation and reception of the first HARQ-ACK information and low-latency HARQ-ACK information in the present application), retransmission of lost packets, and signaling to the gNB 410.
  • Transmit processor 455 implements various signal transmission processing functions for the L1 layer (ie, the physical layer).
  • Signal transmission processing functions include encoding and interleaving to facilitate forward error correction (FEC) at the UE 450 and based on various modulation schemes (eg, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK)).
  • FEC forward error correction
  • modulation schemes eg, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK)
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • the low delay signal is transmitted by the transmit processor 415 via the transmitter 416 to the antenna 420 in the form of a radio frequency signal.
  • Receiver 416 receives radio frequency signals through its respective antenna 420, each receiver 416 recovers baseband information modulated onto the radio frequency carrier, and provides baseband information to receive processor 412.
  • the receiving processor 412 implements various signal receiving processing functions for the L1 layer (ie, the physical layer), and the signal receiving processing function includes receiving the first wireless signal, acquiring the multi-carrier symbol stream, and then the multi-carrier symbol stream in the present application.
  • Multi-carrier symbols in the process are demodulated based on various modulation schemes (eg, Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK)), followed by decoding and deinterleaving to recover on the physical channel by the UE 450 Raw transmitted data and/or control signals.
  • Data and/or control signals are then provided to controller/processor 440.
  • Controller/processor 440 implements the L2 layer.
  • the controller/processor can be associated with a memory 430 that stores program codes and data.
  • Memory 430 can be a computer readable medium.
  • the UE 450 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be
  • the processor is used together, the UE 450 device at least: detecting the first signaling in a first time window and detecting low delay signaling in each of the L1 time intervals; wherein the first signaling is physical Layer signaling, in the first time window, performing a maximum of X detections for the first signaling, the X detections being respectively for X RU sets, K1 RUs of the X RU sets
  • the set is respectively K1 first RU sets, the X is a positive integer greater than or equal to the K1; the number of RUs included in each first RU set in the K1 first RU sets is the same,
  • the first RU set includes Q1 RUs, the RU occupies the duration of one OFDM symbol in the time domain, and occupies the bandwidth of one subcarrier in the frequency domain, where
  • the K1 is a positive integer greater than 1.
  • the Q1 is a positive integer greater than one; the first target RU set and the second target RU set are respectively a first RU set of the K1 first RU sets, the first target RU set and the The second target RU set shares at least one RU; the time domain resources occupied by the RUs in the K1 first RU sets belong to a first time window, and the first time window includes L time intervals, and the L is greater than a positive integer of 1; a time domain resource occupied by the second target RU set is distributed in the L1 time intervals, the low latency signaling is physical layer signaling; for one of the L1 time intervals a time interval for which a maximum of Y detections are performed for respective low latency signaling, the Y detections being respectively for Y second RU sets, the second target RU set being in the given time interval
  • the occupied RU belongs to the Y second RU sets, Y is a positive integer, and the second RU set
  • the UE 450 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by the at least one processor, the action comprising: at the first time window Detecting the first signaling and detecting low-latency signaling respectively in the L1 time intervals; wherein the first signaling is physical layer signaling, and in the first time window, The first signaling is performed for a maximum of X times of detection, and the X times of detection are respectively for X sets of RUs, and the K1 sets of RUs of the X sets of RUs are respectively K1 first sets of RUs, and the X is greater than or a positive integer equal to the K1; the number of RUs included in each of the first RU sets in the K1 first RU sets is the same, the first RU set includes Q1 RUs, and the RU is in time The duration of occupying one OFDM symbol in the domain, occupying the bandwidth of one subcar
  • the first target RU set and the second target RU set are respectively a first RU set of the first set of the first RUs, the first target set of RUs and the second set of target RUs sharing at least one RU; a time domain occupied by the RUs in the K1 first set of RUs
  • the resource belongs to a first time window, the first time window includes L time intervals, and the L is a positive integer greater than 1; the time domain resources occupied by the second target RU set are distributed in the L1 time intervals.
  • the low-latency signaling is physical layer signaling; for a given time interval of the L1 time intervals, a maximum of Y detections are performed for the corresponding low-latency signaling, and the Y detections are respectively performed.
  • the RUs occupied by the second target RU set in the given time interval belong to the Y second RU sets, and the Y is a positive integer, and the second RU set is in the second RU set.
  • a positive integer number of said RUs is included.
  • the gNB 410 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be The processor is used together.
  • the gNB410 device transmits at least: the first signaling in the first time window and the one or more low-latency signaling in the L1 time intervals; wherein the first signaling is a physical layer signaling
  • the first signaling occupies one of the X sets of RUs, and the K1 sets of the RUs in the X sets of RUs are respectively K1 first set of RUs, and the X is greater than or equal to the positive of the K1 An integer; the number of RUs included in each of the first set of RUs is the same, the first set of RUs includes Q1 RUs, and the RU occupies one OFDM symbol in the time domain.
  • the duration of the bandwidth occupied by one subcarrier in the frequency domain; the X is greater than the K1 a positive integer, the K1 is a positive integer greater than 1, and the Q1 is a positive integer greater than 1; the first target RU set and the second target RU set are respectively the first one of the K1 first RU sets a RU set, the first target RU set and the second target RU set share at least one RU; the time domain resources occupied by the RUs in the K1 first RU set belong to a first time window, the first The time window includes L time intervals, the L is a positive integer greater than 1; the time domain resources occupied by the second target RU set are distributed in the L1 time intervals, and the low latency signaling is a physical layer letter
  • the time domain resource occupied by one of the low-latency signaling belongs to one of the time intervals, and for a given time interval of the L1 time intervals, a maximum of Y detections for the corresponding low-latency signaling Execute
  • the gNB 410 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: at a first time window Transmitting the first signaling and transmitting one or more low-latency signaling in the L1 time intervals; wherein the first signaling is physical layer signaling, and the first signaling occupies X
  • the K1 RU sets in the X RU sets are respectively K1 first RU sets, the X is a positive integer greater than or equal to the K1; and the K1 first RU sets are The number of RUs included in each first set of RUs is the same, and the first set of RUs includes Q1 RUs, and the RU occupies one OFDM symbol duration in the time domain, and occupies one subcarrier in the frequency domain.
  • the bandwidth of the carrier; the X is a positive integer greater than the K1, the K1 is a positive integer greater than 1, and the Q1 is a positive integer greater than 1; the first target RU set and the second target RU set are respectively Describe a first set of the first RUs of the K1 first RU sets, the first The target RU set and the second target RU set share at least one RU; the time domain resources occupied by the RUs in the K1 first RU sets belong to a first time window, and the first time window includes L time intervals
  • the L is a positive integer greater than 1; the time domain resources occupied by the second target RU set are distributed in the L1 time intervals, the low latency signaling is physical layer signaling; and the low latency is The time domain resource occupied by the signaling belongs to one of the time intervals, and for a given time interval of the L1 time intervals, a maximum of Y detections are performed for the corresponding low delay signaling, the Y times Detecting, respectively,
  • the UE 450 corresponds to the user equipment in this application.
  • gNB 410 corresponds to the base station in this application.
  • receiver 456 (including antenna 460) and receive processor 452 are used for monitoring of the first signaling in this application.
  • receiver 456 (including antenna 460) and receive processor 452 are used for monitoring low latency signaling in this application.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used in the present application to receive the first wireless signal.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used in the present application to receive low latency wireless signals.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used in the present application to receive the first HARQ-ACK information.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used in the present application to receive low latency HARQ-ACK information.
  • transmitter 456 (including antenna 460), transmit processor 455 and controller/processor 490 are used in the present application to transmit the first wireless signal.
  • transmitter 456 (including antenna 460), transmit processor 455 and controller/processor 490 are used in the present application to transmit low latency wireless signals.
  • transmitter 456 (including antenna 460), transmit processor 455 and controller/processor 490 are used in the present application to transmit first HARQ-ACK information.
  • transmitter 456 (including antenna 460), transmit processor 455 and controller/processor 490 are used in the present application to transmit low latency HARQ-ACK information.
  • transmitter 416 (including antenna 420) and transmit processor 415 are used to transmit the first signaling in this application.
  • transmitter 416 (including antenna 420) and transmit processor 415 are used to transmit low latency signaling in this application.
  • transmitter 416 (including antenna 420), transmit processor 415 and controller/processor 440 are used to transmit the first wireless signal in this application.
  • transmitter 416 (including antenna 420), transmit processor 415 and controller/processor 440 are used to transmit the low latency wireless signals in this application.
  • transmitter 416 (including antenna 420), transmit processor 415 and The controller/processor 440 is used to transmit the first HARQ-ACK information in this application.
  • transmitter 416 (including antenna 420), transmit processor 415 and controller/processor 440 are used to transmit the low latency HARQ-ACK information in this application.
  • receiver 416 (including antenna 420), receive processor 412 and controller/processor 440 are used to receive the first wireless signal in this application.
  • receiver 416 (including antenna 420), receive processor 412 and controller/processor 440 are used to receive the low latency wireless signals in this application.
  • receiver 416 (including antenna 420), receive processor 412 and controller/processor 440 are used to receive the first HARQ-ACK information in this application.
  • receiver 416 (including antenna 420), receive processor 412 and controller/processor 440 are used to receive the low latency HARQ-ACK information in this application.
  • Embodiment 5 illustrates a flow chart of downlink signaling transmission, as shown in FIG.
  • the base station N1 is a maintenance base station of the serving cell of the UE U2.
  • the steps in block F0 are optional.
  • the first signaling is transmitted in the first time window in step S11, and the L2 low-delay signaling is transmitted in the L2 time intervals.
  • the first signaling is detected in the first time window in step S21, and the low delay signaling is detected in each of the L1 time intervals.
  • the first signaling is physical layer signaling.
  • the first signaling occupies one of the X RU sets, and the K1 RU sets in the X RU sets are respectively K1 first RU sets, and the X is a positive integer greater than the K1.
  • the number of RUs included in each of the first set of RUs in the K1 first set of RUs is the same, and the first set of RUs includes Q1 RUs.
  • the RU occupies the duration of one OFDM symbol in the time domain, and occupies the bandwidth of one subcarrier in the frequency domain.
  • the X is a positive integer greater than the K1, the K1 is a positive integer greater than 1, and the Q1 is a positive integer greater than one.
  • the first target RU set and the second target RU set are respectively the first RU set of the K1 first RU sets, and the first target RU set and the second target RU set share at least one RU .
  • the time domain resources occupied by the RUs in the K1 first RU sets belong to a first time window, and the first time window includes L time intervals.
  • the L is a positive integer greater than one.
  • the second target RU The time domain resources occupied by the set are distributed in the L1 time intervals, and the low latency signaling is physical layer signaling.
  • the time domain resource occupied by one of the low latency signaling belongs to one of the time intervals.
  • the UE U2 Given the time interval for one of the L1 of the time intervals, the UE U2 performs a maximum of Y detections for the respective low latency signaling.
  • the Y detections are for the Y second RU sets, respectively.
  • the RUs occupied by the second target RU set in the given time interval belong to the Y second RU sets.
  • the Y is a positive integer.
  • the second set of RUs includes a positive integer number of the RUs.
  • the L2 time intervals are a subset of the L1 of the time intervals.
  • the Q1 is a positive integer multiple of 36.
  • the L1 is equal to the L
  • the L2 is equal to the L
  • the L is 2, or the L is 4, or the L is 7.
  • the X is equal to 44.
  • the Y is smaller than the X.
  • detecting a given signaling means: decoding for a received signal on a given set of RUs, if the correct decoding, the UE considers that the given signaling is sent, otherwise the UE considers the given Signaling was not sent.
  • Embodiment 6 illustrates a flow chart for transmitting a downlink wireless signal, as shown in FIG.
  • the base station N3 is a maintenance base station of the serving cell of the UE U4.
  • the steps in block F1 are optional.
  • the first signaling is transmitted in the first time window in step S31
  • the L2 low-delay signaling is transmitted in the L2 time intervals
  • the first wireless signal and the L2 low-delay wireless signals are transmitted in step S32.
  • the first signaling is detected in the first time window in step S41, and the low delay signaling is detected in the L1 time intervals, respectively, wherein the L2 low delays are respectively received in the L2 time intervals Signaling; receiving the first wireless signal and the L2 low-latency wireless signals in step S42; transmitting the first HARQ-ACK information and the L2 low-latency HARQ-ACK information in step S43.
  • the first signaling includes configuration information of the first wireless signal, where
  • the time domain resources occupied by the L2 low-latency signaling respectively belong to the L2 time intervals, and the L2 low-latency signaling respectively include configuration information of the L2 low-latency wireless signals, where the configuration information includes: At least one of the occupied time-frequency resources, MCS, NDI, RV, HARQ process number ⁇ .
  • the first HARQ-ACK information is used to determine if the first wireless signal is correctly decoded.
  • the L2 low-latency HARQ-ACK information is used to determine whether the L2 low-latency wireless signals are correctly decoded.
  • the first signaling is a DCI for a downlink grant
  • the L2 low-latency signaling is a DCI for a downlink grant, respectively.
  • the location of the time-frequency resource occupied by the first signaling in the target search space is used to determine an air interface resource occupied by the first HARQ-ACK information, where the target search space includes L Target sub-search spaces, the L target sub-search spaces belonging to the L time intervals respectively in the time domain.
  • the positions of the time-frequency resources occupied by the L2 low-latency signaling in the target search space are respectively used to determine the air interface resources occupied by the L2 low-latency HARQ-ACK information.
  • the target search space includes L target sub-search spaces, and the L target sub-search spaces belong to the L time intervals respectively in the time domain.
  • Embodiment 7 illustrates a flow chart for transmitting an uplink wireless signal, as shown in FIG.
  • the base station N5 is a maintenance base station of the serving cell of the UE U6.
  • the steps in block F2 are optional.
  • the first signaling is transmitted in the first time window in step S51
  • the L2 low-delay signaling is transmitted in the L2 time intervals
  • the first wireless signal and the L2 low-delay wireless signals are received in step S52. Transmitting the first HARQ-ACK information and the L2 low-latency HARQ-ACK information in step S53.
  • the first signaling is detected in the first time window in step S61, and the low delay signaling is respectively detected in the L1 time intervals, wherein the L2 low delays are respectively received in the L2 time intervals Signaling; transmitting the first wireless signal and the L2 low-latency wireless signals in step S62; receiving the first HARQ-ACK information and the L2 low-latency HARQ-ACK information in step S63.
  • the first signaling includes configuration information of the first wireless signal, where
  • the time domain resources occupied by the L2 low-latency signaling respectively belong to the L2 time intervals, and the L2 low-latency signaling respectively include configuration information of the L2 low-latency wireless signals, where the configuration information includes: At least one of the occupied time-frequency resources, MCS, NDI, RV, HARQ process number ⁇ .
  • the first HARQ-ACK information is used to determine if the first wireless signal is correctly decoded.
  • the L2 low-latency HARQ-ACK information is used to determine whether the L2 low-latency wireless signals are correctly decoded.
  • the first signaling is a DCI for uplink grant
  • the L2 low delay signaling is a DCI for uplink grant, respectively.
  • the location of the time-frequency resource occupied by the first signaling in the target search space is used to determine an air interface resource occupied by the first HARQ-ACK information, where the target search space includes L Target sub-search spaces, the L target sub-search spaces belonging to the L time intervals respectively in the time domain.
  • the positions of the time-frequency resources occupied by the L2 low-latency signaling in the target search space are respectively used to determine the air interface resources occupied by the L2 low-latency HARQ-ACK information.
  • the target search space includes L target sub-search spaces, and the L target sub-search spaces belong to the L time intervals respectively in the time domain.
  • Embodiment 8 exemplifies a diagram in which L is 2, as shown in FIG. In Figure 8, the slash filled squares are time-frequency resources reserved for downlink signaling.
  • the first time window is composed of two time intervals, that is, a first time interval and a second time interval.
  • the time-frequency resources reserved for downlink signaling are respectively included in the first time interval and the second time interval.
  • the duration of the first time window is 1 millisecond
  • the duration of the first time interval and the duration of the second time interval are respectively 0.5 milliseconds.
  • the L, the L1 and the L2 in the present application are both 2.
  • the time domain resources occupied by the first target RU set in the present application belong to the first time interval, and the time domain resources occupied by the second target RU set in the present application are simultaneously distributed. In the first time interval and the second time interval.
  • Embodiment 9 exemplifies a diagram in which L is 7, as shown in FIG.
  • the slash filled squares are time-frequency resources reserved for downlink signaling.
  • the first time window is composed of 7 time intervals, that is, time intervals ⁇ #1, #2, #3, #4, #5, #6, #7 ⁇ .
  • the time-frequency resources reserved for downlink signaling are respectively included in the seven time intervals.
  • the duration of the first time window is 1 millisecond, and the time intervals ⁇ #1, #2, #3, #4, #5, #6, #7 ⁇ respectively include 2 OFDM symbol.
  • the L1 in the present application is less than 7.
  • the time domain resources occupied by the first target RU set in the present application belong to the time interval ⁇ #1, #2, #3, #4, #5, #6, #7 ⁇
  • One of the time domain resources occupied by the second target RU set in the present application is simultaneously distributed in the time interval ⁇ #1, #2, #3, #4, #5, #6, #7 ⁇
  • the L1 is an even number less than 7.
  • the time-frequency resource reserved for downlink signaling is in a frequency domain position in the time interval ⁇ #1, #2, #3, #4, #5, #6, #7 ⁇ It is changing.
  • This sub-embodiment can improve the transmit diversity gain of the first signaling.
  • Embodiment 10 illustrates a schematic diagram of a search space, as shown in FIG.
  • the squares filled with m numbers represent m RU blocks, the m is ⁇ 1, 2, 4, 8 ⁇ , and the RU block includes one or more RUs, and the padding number is The index of the corresponding RU block.
  • RU blocks # ⁇ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 ⁇ belong to the first time interval
  • RU block# ⁇ 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31 ⁇ belong to the second time interval.
  • the low latency signaling may be 2, 4 or 8 based on the AL of the RU block:
  • the candidate locations in the corresponding first time interval are RU blocks # ⁇ 0, 1 ⁇ , # ⁇ 2, 3 ⁇ , # ⁇ 4, 5 ⁇ , # ⁇ 6, 7 ⁇ , # ⁇ 8,9 ⁇ ,# ⁇ 10,11 ⁇ ,# ⁇ 12,13 ⁇ ,# ⁇ 14,15 ⁇ ;
  • the candidate position in the corresponding second time interval is the RU block # ⁇ 16,17 ⁇ ,# ⁇ 18,19 ⁇ ,# ⁇ 20,21 ⁇ ,# ⁇ 22,23 ⁇ ,# ⁇ 24,25 ⁇ ,# ⁇ 26,27 ⁇ ,# ⁇ 28, 29 ⁇ , # ⁇ 30, 31 ⁇ .
  • the candidate locations in the corresponding first time interval are RU blocks # ⁇ 0,1,2,3 ⁇ , # ⁇ 4,5,6,7 ⁇ ,# ⁇ 8,9 , 10, 11 ⁇ , # ⁇ 12, 13, 14, 15 ⁇ ;
  • the candidate positions in the corresponding second time interval are RU blocks # ⁇ 16, 17, 18, 19 ⁇ , # ⁇ 20, 21, 22, 23 ⁇ ,# ⁇ 24,25,26,27 ⁇ ,# ⁇ 28,29,30,31 ⁇ .
  • the candidate locations in the corresponding first time interval are RU blocks # ⁇ 0,1,2,3,4,5,6,7 ⁇ ,# ⁇ 8,9,10, 11,12,13,14,15 ⁇ ; the candidate positions in the corresponding second time interval are RU blocks # ⁇ 16, 17, 18, 19, 20, 21, 22, 23 ⁇ , # ⁇ 24, 25, 26 , 27, 28, 29, 30, 31 ⁇ .
  • the first signaling may be 2, 4 or 8 based on the AL of the RU block:
  • the candidate locations are RU blocks # ⁇ 0, 1 ⁇ , # ⁇ 2, 3 ⁇ , # ⁇ 4, 5 ⁇ , # ⁇ 6, 7 ⁇ , # ⁇ 8, 9 ⁇ , # ⁇ 10,11 ⁇ ,# ⁇ 12,13 ⁇ ,# ⁇ 14,15 ⁇ ,# ⁇ 16,17 ⁇ ,# ⁇ 18,19 ⁇ ,# ⁇ 20,21 ⁇ ,# ⁇ 22,23 ⁇ ,# ⁇ 24,25 ⁇ ,# ⁇ 26,27 ⁇ ,# ⁇ 28,29 ⁇ ,# ⁇ 30,31 ⁇ ,# ⁇ 0,16 ⁇ ,# ⁇ 1,17 ⁇ ,# ⁇ 2,18 ⁇ ,# ⁇ 3,19 ⁇ ,# ⁇ 4,20 ⁇ ,# ⁇ 5,21 ⁇ ,# ⁇ 6,22 ⁇ ,# ⁇ 7,23 ⁇ ,# ⁇ 8,24 ⁇ ,# ⁇ 9,25 ⁇ ,# ⁇ 10 , 26 ⁇ , # ⁇ 11,27 ⁇ ,# ⁇ 12,28 ⁇ ,# ⁇ 13,29 ⁇ ,# ⁇ 14,30 ⁇ ,# ⁇ 15,31 ⁇ .
  • the candidate locations are RU blocks # ⁇ 0,1,2,3 ⁇ ,# ⁇ 4,5,6,7 ⁇ ,# ⁇ 8,9,10,11 ⁇ ,# ⁇ 12,13,14,15 ⁇ , ⁇ 16,17,18,19 ⁇ ,# ⁇ 20,21,22,23 ⁇ ,# ⁇ 24,25,26,27 ⁇ ,# ⁇ 28,29,30,31 ⁇ ,# ⁇ 0,1,16,17 ⁇ ,# ⁇ 2,3,18,19 ⁇ ,# ⁇ 4,5,20,21 ⁇ ,# ⁇ 6,7,22,23 ⁇ , ⁇ 8,9 , 24, 25 ⁇ , # ⁇ 10,11,26,27 ⁇ ,# ⁇ 12,13,28,29 ⁇ ,# ⁇ 14,15,30,31 ⁇ .
  • the candidate locations are RU blocks # ⁇ 0,1,2,3,4,5,6,7 ⁇ , # ⁇ 8,9,10,11,12,13,14, 15 ⁇ ,# ⁇ 16,17,18,19,20,21,22,23 ⁇ ,# ⁇ 24,25,26,27,28,29,30,31 ⁇ ,# ⁇ 0,1,2,3 ,16,17,18,19 ⁇ ,# ⁇ 4,5,6,7,20,21,22,23 ⁇ ,# ⁇ 8,9,10,11,24,25,26,27 ⁇ ,# ⁇ 12,13,14,15,28,29,30,31 ⁇ .
  • the RU is an RE (Resource Element).
  • the RU block is a CCE (Control Channel Element) or an eCCE (Enhanced CCE).
  • CCE Control Channel Element
  • eCCE Enhanced CCE
  • the RU block consists of 36 RUs.
  • the RU block consists of 9 RUs.
  • the first given UE and the second given UE are the same UE.
  • An advantage of this sub-embodiment is that the number of blind detections can be reduced (low-latency signaling and the first signaling can share part of candidate locations), thereby reducing UE complexity.
  • the RU blocks # ⁇ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 ⁇ constitute a first target sub-search space
  • the RU block # ⁇ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 ⁇ constitutes a second target sub-search space.
  • the target search space in the present application is composed of the first target sub-search space and the second target sub-search space.
  • the smallest index of the RU block occupied by the first signaling is used to determine an air interface resource occupied by the HARQ-ACK information associated with the first wireless signal.
  • the smallest index of the RU block occupied by the low-latency signaling is used to determine an air interface occupied by HARQ-ACK information associated with the corresponding low-latency wireless signal. Resources.
  • Embodiment 11 illustrates a schematic diagram of a scheduling relationship, as shown in FIG.
  • the first given signaling is transmitted in time interval #1, the occupied RU is marked as a slash; the second given signaling is transmitted in time interval #1 and time interval #2, occupied RU is like a cross line logo.
  • the time-frequency resources that may be scheduled by the first given signaling include a first candidate time-frequency resource (as indicated by an arrow AR3) and a second candidate time-frequency resource (as indicated by an arrow AR4),
  • the time-frequency resource that may be scheduled by the second given signaling is the second candidate time-frequency resource (as indicated by arrow AR5).
  • the first given signaling includes a first domain, where the first domain is used to determine whether the time-frequency resource scheduled by the first given signaling is a first candidate time-frequency resource or a second candidate time-frequency Resources.
  • the second given signaling lacks the first domain compared to the first given signaling.
  • the first given signaling schedules the second candidate resource, where the first given signaling is the first signaling in the present application.
  • the second given signaling is the first signaling in the present application.
  • the first given signaling and the second given signaling are used DCI granted on the uplink.
  • Embodiment 12 exemplifies a structural block diagram of a processing device in a UE, as shown in FIG.
  • the UE processing apparatus 1200 is mainly composed of a first receiving module 1201, a first processing module 1202, and a second processing module 1203, wherein the first processing module 1202 and the second processing module 1203 are respectively optional.
  • the first receiving module 1201 includes a transmitter/receiver 456 (including an antenna 460) in FIG. 4 of the present application, a receiving processor 452 and a memory 480.
  • the first processing module 1202 includes the data source 467, the transmitter/receiver 456 (including the antenna 460), the receiving processor 452, the transmitting processor 455, and the controller/processor 490 of FIG. 4 of the present application.
  • the second processing module 1203 includes the transmitter/receiver 456 (including the antenna 460), the receiving processor 452, the transmitting processor 455, and the controller/processor 490 of FIG. 4 of the present application.
  • the first receiving module 1201 detects the first signaling in the first time window and detects low delay signaling in each of the L1 time intervals.
  • the first processing module 1202 receives the first wireless signal in the second time window and respectively receives the L2 low-latency wireless signals in the L2 time intervals, and the second processing module 1203 transmits the first HARQ-ACK information and the L2 low-latency HARQs. - ACK information; or the first processing module 1202 transmits the first wireless signal in the second time window and respectively transmits the L2 low-latency wireless signals in the L2 time intervals, and the second processing module 1203 receives the first HARQ-ACK information and L2 low-latency HARQ-ACK information.
  • the time length of the TTI corresponding to the first wireless signal is greater than the time length of the TTI corresponding to the low-latency wireless signal.
  • the length of time of the TTI corresponding to the first wireless signal is equal to 1 millisecond.
  • the length of time of the TTI corresponding to the first wireless signal is equal to 0.5 milliseconds.
  • Embodiment 13 exemplifies a structural block diagram of a processing device in a base station, as shown in FIG.
  • the base station processing apparatus 1300 is mainly composed of a first sending module 1301, a third processing module 1302, and a fourth processing module 1303, wherein the third processing module 1302 and the fourth processing module 1303 is optional.
  • the first transmitting module 1301 includes the transmitter/receiver 416 (including the antenna 420) and the transmitting processor 415 of FIG. 4 of the present application.
  • the third processing module 1302 includes the transmitter/receiver 416 (including the antenna 420) of the present application, the transmitting processor 415, the receiving processor 412, and the controller/processor 440.
  • the fourth processing module 1303 includes the transmitter/receiver 416 (including the antenna 420) in the FIG. 4 of the present application, a transmitting processor 415, a receiving processor 412, and a controller/processor 440.
  • the first sending module 1301 sends the first signaling in the first time window and separately transmits the L2 low delay signaling in the L2 time intervals.
  • the third processing module 1302 transmits the first wireless signal in the second time window and the L2 low-latency wireless signals in the L2 time intervals, and the fourth processing module 1303 receives the first HARQ-ACK information and the L2 low-latency HARQs. - ACK information; or the third processing module 1302 receives the first wireless signal in the second time window and respectively receives the L2 low-latency wireless signals in the L2 time intervals, and the fourth processing module 1303 transmits the first HARQ-ACK information and L2 low-latency HARQ-ACK information.
  • the time domain resources occupied by the L2 low-latency signaling belong to the L2 time intervals, and the low-latency wireless signal is a downlink signal.
  • the time domain resources occupied by the L2 low-latency signaling are respectively before the L2 the time intervals, and the low-latency wireless signal is an uplink signal.
  • the UE or the interruption in the present application includes, but is not limited to, a mobile communication device such as a mobile phone, a tablet computer, a notebook computer, an internet card, a low-cost terminal, an NB-IoT terminal, an eMTC terminal, and an in-vehicle communication device.
  • the base station or network side device in this application includes but is not limited to a wireless communication device such as a macro cell base station, a micro cell base station, a home base station, and a relay base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种无线通信中的方法和装置。UE在在第一时间窗中检测第一信令。其中,所述第一信令是物理层信令。在所述第一时间窗中,针对所述第一信令最多X次检测被执行,所述X次检测分别针对X个RU集合,所述X个RU集合中包括第一目标RU集合和第二目标RU集合。第一目标RU集合和第二目标RU集合所包括的RU的数量是相同的,所述第一目标RU集合和所述第二目标RU集合共享至少一个RU。本发明能减少为下行信令预留的时频资源,提高系统的传输效率。进一步的,本发明能减少盲检测的复杂度,降低UE成本。

Description

一种无线通信中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方案,特别是涉及下行信令和下行数据的传输的方法和装置。
背景技术
现有的LTE(Long-term Evolution,长期演进)及LTE-A(Long Term Evolution Advanced,增强的长期演进)系统中,TTI(Transmission Time Interval,传输时间间隔)或者子帧(Subframe)或者PRB(Physical Resource Block,物理资源块)对(Pair)在时间上对应一个ms(milli-second,毫秒)。一个LTE子帧包括两个时隙(Time Slot),分别是第一时隙和第二时隙,且所述第一时隙和所述第二时隙分别占用一个LTE子帧的前半个毫秒和后半个毫秒。
传统的3GPP LTE系统中,UE(User Equipment,用户设备)通过盲检测(Blind Decoding)的办法接收下行物理层信令,一个下行物理层信令能对应的多个AL(Aggregation Level,聚合等级)的PDCCH(Physical Downlink Control Channel,物理下行控制信道)候选(Candidate)或者ePDCCH(enhanced PDCCH,增强的PDCCH)候选。对于给定的AL,对应同一个下行物理层信令的多个PDCCH候选或者ePDCCH候选是两两正交的(即所占用的时频资源不重叠)。
3GPP(3rd Generation Partner Project,第三代合作伙伴项目)Release 14中的Latency Reduction(LR,延迟降低)课题中,一个重要的应用目的就是低延迟通信。针对降低延迟的需求,传统的LTE的子帧结构需要被重新设计,基于sTTI(short Transport Time Interval,短传输时间间隔)的系统设计正在被讨论。
发明内容
为了降低调度延迟,一个直观的方法是为每个sTTI分配专门的用于DCI(Downlink Control Information,下行控制信息)的搜索空间。发明人通过研究发现,上述直观的方法可能增大用于DCI的搜索空间的 冗余(Overhead)。例如,如果给定子帧中存在针对不同时间长度TTI/sTTI的DCI,则基站要预留多个互相不能共享的搜索空间,降低了数据传输效率。
本申请针对这一问题提供了解决方案。需要说明的是,在不冲突的情况下,本申请的UE中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于动态调度的UE中的方法,其中,包括:
-在第一时间窗中检测第一信令;
其中,所述第一信令是物理层信令,在所述第一时间窗中,针对所述第一信令最多X次检测被执行,所述X次检测分别针对X个RU集合,所述X个RU集合中的K1个RU集合分别是K1个第一RU集合,所述X是大于或者等于所述K1的正整数,所述K1个第一RU集合中每个第一RU集合所包括的RU的数量是相同的,所述第一RU集合中包括Q1个RU;所述RU在时域上占用一个OFDM符号的持续时间,在频域上占用一个子载波的带宽,所述X是大于所述K1的正整数,所述K1是大于1的正整数,所述Q1是大于1的正整数;第一目标RU集合和第二目标RU集合分别是所述K1个第一RU集合中的一个第一RU集合,所述第一目标RU集合和所述第二目标RU集合共享至少一个RU;所述K1个第一RU集合中的RU所占用的时域资源属于第一时间窗,所述第一时间窗包括L个时间间隔,所述L是大于1的正整数。
作为一个实施例,所述第一目标RU集合和所述第二目标RU集合分别是两个ePDCCH候选,所述第一目标RU集合和所述第二目标RU集合对应相同的AL。本实施例和传统方法的区别在于,所述第一目标RU集合和所述第二目标RU集合能共享相同的RU。
作为一个实施例,所述X个RU集合中至少两个RU集合中所包括的RU的数量是不同的。
作为一个实施例,所述第一时间窗的时间长度是1毫秒。
作为一个实施例,所述第一时间窗的时间长度是0.5毫秒。
作为一个实施例,所述L为2。
作为一个实施例,所述第一信令占用一个所述第一RU集合中的所有 RU。
作为一个实施例,所述第一目标RU集合占用的时域资源属于一个所述时间间隔,所述第二目标RU集合占用的时域资源分布在多个所述时间间隔中。
上述实施例能降低为所述第一信令分配资源的阻塞(Blocking)率(Rate)。
作为一个实施例,所述L个时间间隔中至少有两个时间间隔的持续时间是不同的。
作为一个实施例,所述L个时间间隔是连续的。
作为一个实施例,所述L个时间间隔组成所述第一时间窗。
作为一个实施例,所述K1大于2。
根据本申请的一个方面,上述方法的特征在于,所述第二目标RU集合占用的时域资源分布在L1个所述时间间隔中,所述L1大于1且不大于所述L的正整数;所述第二目标RU集合在任意一个所述时间间隔之内占用的RU能被预留给一个低延迟信令,所述低延迟信令所占用的时域资源属于相应的所述时间间隔。
作为一个实施例,上述方面使得所述第二目标RU集合和所述低延迟信令能共享搜索空间,降低了预留给下行信令的空口资源所导致的冗余(Overhead)。
作为一个实施例,上述方面能减小为所述第一信令分配资源的阻塞率。如果所述第二目标RU集合在任意一个所述时间间隔之内占用的RU只能被预留给多个低延迟信令,则如果所述多个低延迟信令中的一个所述低延迟信令的发送将导致所述第二目标RU集合不可被所述第一信令占用。
作为一个实施例,所述低延迟信令是物理层信令。
作为一个实施例,所述低延迟信令所调度的无线信号对应的TTI(Transport Time Interval,传输时间间隔)小于所述第一信令所调度的无线信号对应的TTI。
作为一个实施例,所述低延迟信令所调度的无线信号占用的时域资源的时间长度小于所述第一信令所调度的无线信号占用的时域资源的时间长度。
作为一个实施例,所述低延迟信令对应的调度延迟小于所述第一信令对应的调度延迟。作为本实施例得一个子实施例,给定信令对应的调度延迟是指:所述给定信令被用于调度下行传输,所述给定信令的发送截止时刻到所述给定信令所调度的下行无线信号的发送起始时刻之间的时间长度。作为本实施例得一个子实施例,给定信令对应的调度延迟是指:所述给定信令被用于调度上行传输,所述给定信令的发送截止时刻到所述给定信令所调度的上行无线信号的接收起始时刻之间的时间长度。
作为一个实施例,所述能被预留给一个传输低延迟信令是指:存在至少一个UE在候选RU集合上检测目标信令。如果所述目标信令在所述候选RU集合中传输,所述目标信令占用所述候选RU集合中的全部RU。所述候选RU集合包括所述在任意一个所述时间间隔内占用的RU。作为本实施例的一个子实施例,所述候选RU集合还包括所述在任意一个所述时间间隔内占用的RU之外的RU。
作为一个实施例,所述能被预留给一个传输低延迟信令是指:存在至少一个UE在候选RU集合上检测目标信令。如果所述目标信令在所述候选RU集合中传输,所述目标信令占用所述候选RU集合中的全部RU。所述候选RU集合包括候选RU子集,所述候选RU子集在所属时间间隔内的图案和所述在任意一个所述时间间隔内占用的RU在所属时间间隔内的图案是相同的。作为本实施例的一个子实施例,所述候选RU子集是所述候选RU集合。
作为一个实施例,所述L1等于所述L。
作为一个实施例,所述第一目标RU集合占用的时域资源属于一个所述时间间隔。
作为上述实施例的一个子实施例,所述第一目标RU集合能被预留给一个低延迟信令。
根据本申请的一个方面,上述方法的特征在于,还包括:
-在L1个所述时间间隔中分别检测低延迟信令;
其中,所述第二目标RU集合占用的时域资源分布在所述L1个所述时间间隔中,所述低延迟信令是物理层信令;对于所述L1个时间间隔中的一个给定时间间隔,针对相应的所述低延迟信令最多Y次检测被执行, 所述Y次检测分别针对Y个第二RU集合,所述第二目标RU集合在所述给定时间间隔中所占用的RU属于所述Y个第二RU集合,所述Y是正整数,所述第二RU集合中包括正整数个所述RU。
作为一个实施例,上述方面中,所述第二目标RU集合所占用的时频资源来自于所述UE在每个所述时间间隔中的搜索空间。
作为一个实施例,上述方面能降低UE的盲检测复杂度,UE在由每个所述时间间隔中的搜索空间所组成的更大搜索空间中同时完成针对所述第一信令和所述低延迟信令的搜索。
作为一个实施例,上述方面能够为所述第一信令的搜索空间和所述低延迟信令的搜索空间维持统一的资源索引,避免了资源索引的冲突。
作为一个实施例,所述第一目标RU集合是所述Y个第二RU集合中的一个所述第二RU集合。
作为一个实施例,所述Y个第二RU集合中至少有两个第二RU集合中所包括的RU的数量不同。
作为一个实施例,所述Y个第二RU集合中任意两个包括相同RU数量的所述第二RU集合所占用的时频资源是正交的(即不共享RU)。
根据本申请的一个方面,上述方法的特征在于,所述第二目标RU集合在所述给定所述时间间隔中所占用的所述RU由K2个所述第二RU集合组成。
作为一个实施例,上述方面能减少用于所述第一信令和所述低延迟信令的缓冲器(Buffer),降低UE成本。
作为一个实施例,所述K2个所述第二RU集合中至少有两个第二RU集合中所包括的RU的数量不同。
根据本申请的一个方面,上述方法的特征在于,还包括:
-在第二时间窗中接收第一无线信号,或者在第二时间窗中发送第一无线信号;
其中,所述第一信令在所述K1个第一RU集合中被正确接收,所述第一信令包括所述第一无线信号的配置信息,所述配置信息包括{所占用的时频资源,MCS(Modulation and Coding Status,调制编码状态),NDI(New Data Indicator,新数据指示),RV(Redundancy Version,冗余版本),HARQ(Hybrid Automatic Repeat reQuest,混合自动重传 请求)进程号}中的至少之一。
作为一个实施例,所述第一信令被用于确定所述第一时间窗。
作为一个实施例,第一比特块被用于生成所述第一无线信号,所述第一信令被用于确定所述第一比特块对应的传输时间的时间长度。
作为一个实施例,所述UE在第二时间窗中接收第一无线信号,所述第二时间窗是所述第一时间窗。
作为一个实施例,所述UE在第二时间窗中发送第一无线信号,所述第二时间窗在所述第一时间窗之后。
作为一个实施例,所述第二时间窗的时间长度等于所述第一时间窗的时间长度。
作为一个实施例,第一比特块被用于生成所述第一无线信号,所述第一比特块对应的传输时间的时间长度等于所述第一时间窗的时间长度。
作为上述实施例的一个子实施例,所述第一比特块是传输块。
作为上述实施例的一个子实施例,所述第一比特块包括2个传输块,所述两个传输块是空分复用的。
作为上述实施例的一个子实施例,所述第一无线信号是所述第一比特块依次经过信道编码(Channel Coding),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),OFDM信号发生(Generation)之后的输出。
作为上述实施例的一个子实施例,在所述所述第一比特块对应的传输时间内,所述第一比特块对应的传输信道被用于传输所述第一比特块且不被用于传输所述第一比特块之外的传输块。
作为上述实施例的一个子实施例,所述所述第一比特块对应的传输时间是所述第一比特块对应的TTI(Transport Time Interval,传输时间间隔)或者sTTI(short TTI,短TTI)。
根据本申请的一个方面,上述方法的特征在于,还包括:
-在L2个时间间隔中分别接收L2个低延迟无线信号,或者在L2个时间间隔中分别发送L2个低延迟无线信号;
其中,L2个所述低延迟信令被正确接收,所述L2个所述低延迟信令分别包括所述L2个低延迟无线信号的配置信息,所述配置信息包括 {所占用的时频资源,MCS,NDI,RV,HARQ进程号}中的至少之一,所述L2是小于或者等于所述L1的正整数。
作为一个实施例,所述低延迟无线信号是下行信号。
作为一个实施例,所述L2个所述低延迟信令所占用的时域资源分别在所述L2个所述时间间隔之前,所述低延迟无线信号是上行信号。
作为一个实施例,一个低延迟比特块被用于生成一个所述低延迟无线信号,所述低延迟比特块对应的传输时间的时间长度小于所述第一时间窗的时间长度。
作为一个实施例,所述L2个所述低延迟信令分别被用于确定所述L2个低延迟无线信号。
作为一个实施例,L2个低延迟比特块分别被用于生成所述L2个低延迟无线信号,所述L2个所述低延迟信令分别被用于确定所述第一比特块对应的传输时间的时间长度。
作为上述实施例的一个子实施例,所述低延迟比特块是传输块。
作为上述实施例的一个子实施例,所述低延迟比特块包括2个传输块,所述两个传输块是空分复用的。
作为一个实施例,所述低延迟无线信号是低延迟比特块依次经过信道编码(Channel Coding),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),OFDM信号发生(Generation)之后的输出。
作为上述实施例的一个子实施例,在所述所述低延迟比特块对应的传输时间内,所述低延迟比特块对应的传输信道被用于传输所述低延迟比特块且不被用于传输所述低延迟比特块之外的传输块。
作为上述实施例的一个子实施例,所述所述低延迟比特块对应的传输时间是所述低延迟比特块对应的sTTI(short Transport Time Interval,短传输时间间隔)。
作为上述实施例的一个子实施例,所述所述低延迟比特块对应的传输时间的时间长度等于相应所述时间间隔的时间长度。
根据本申请的一个方面,上述方法的特征在于,还包括:
-发送第一HARQ-ACK信息,其中所述第一无线信号被接收;或者接收第一HARQ-ACK信息,其中所述第一无线信号被发送;
其中,所述第一HARQ-ACK信息被用于确定所述第一无线信号是否被正确译码,所述第一信令所占用的时频资源在目标搜索空间中的位置被用于确定所述第一HARQ-ACK信息所占用的空口资源,所述目标搜索空间包括L个目标子搜索空间,所述L个目标子搜索空间在时域上分别属于所述L个时间间隔。
作为一个实施例,上述方面能避免HARQ-ACK资源的冲突。
作为一个实施例,所述UE在所述L个目标子搜索空间分别检测所述低延迟无线信号。
作为一个实施例,所述空口资源是时频资源。
作为一个实施例,所述空口资源是给定时频资源中的给定码资源,所述给定时频资源采用码分复用的方式。
作为一个实施例,所述第一信令所占用的最低的RU块在所述目标搜索空间所包括的RU块中的索引被用于确定所述所述第一HARQ-ACK信息所占用的空口资源。
根据本申请的一个方面,上述方法的特征在于,还包括:
-发送L2个低延迟HARQ-ACK信息,其中所述L2个低延迟无线信号被接收;或者接收L2个低延迟HARQ-ACK信息,其中所述L2个低延迟无线信号被发送;
其中,所述L2个低延迟HARQ-ACK信息被用于确定所述L2个低延迟无线信号是否被正确译码;所述L2个所述低延迟信令所占用的时频资源在目标搜索空间中的位置分别被用于确定所述L2个低延迟HARQ-ACK信息所占用的空口资源,所述目标搜索空间包括L个目标子搜索空间,所述L个目标子搜索空间在时域上分别属于所述L个时间间隔。
作为一个实施例,上述方面能避免HARQ-ACK资源的冲突。
作为一个实施例,所述UE在所述L个目标子搜索空间分别检测所述低延迟无线信号。
作为一个实施例,所述Y个第二RU集合组成所述所述L1个所述时间间隔中的一个给定所述时间间隔中的所述目标子搜索空间。
根据本申请的一个方面,上述方法的特征在于,所述第一信令的负载尺寸和所述第一信令所占用的所述RU的时域位置有关;或者所述第一信令中的域和所述第一信令所占用的所述RU的时域位置有关。
作为一个实施例,所述第一信令被用于上行授予(Grant),及所述第一无线信号是上行无线信号。
作为一个实施例,所述负载尺寸是信息比特的比特数。
作为上述实施例的一个子实施例,所述信息比特包括{有用比特,填充比特,CRC比特}。
作为上述实施例的一个子实施例,所述第一信令对应的无线信号是所述第一信令的所述信息比特依次经过信道编码(Channel Coding),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),OFDM信号发生(Generation)之后的输出。
作为一个实施例,所述第一目标RU集合所占用的时域资源属于一个所述时间间隔,所述第二目标RU集合所占用的时域资源分布在L1个所述时间间隔中,所述L1大于1且不大于所述L的正整数。所述第一信令在所述第一目标RU集合中传输并且所述第一信令包括第一域,所述第一域被用于确定{所述第二时间窗的起始时刻,所述第二时间窗的持续时间}中的至少之一;或者所述第一信令在所述第二目标RU集合中传输,相比在所述第一目标RU集合中传输所述第一信令缺少了第一域。
本申请公开了一种被用于动态调度的基站中的方法,其中,包括:
-在第一时间窗中发送第一信令;
其中,所述第一信令是物理层信令,所述第一信令占用X个RU集合中的一个,所述X个RU集合中的K1个RU集合分别是K1个第一RU集合,所述X是大于或者等于所述K1的正整数,所述K1个第一RU集合中每个第一RU集合所包括的RU的数量是相同的,所述第一RU集合中包括Q1个RU;所述RU在时域上占用一个OFDM符号的持续时间,在频域上占用一个子载波的带宽;所述X是大于所述K1的正整数,所述K1是大于1的正整数,所述Q1是大于1的正整数;第一目标RU集合和第二目标RU集合分别是所述K1个第一RU集合中的一个第一RU集合,所述第一目标RU集合和所述第二目标RU集合共享至少一个RU;所述K1个第一RU集合中的RU所占用的时域资源属于第一时间窗,所述第一时 间窗包括L个时间间隔,所述L是大于1的正整数。
根据本申请的一个方面,上述方法的特征在于,所述第二目标RU集合占用的时域资源分布在L1个所述时间间隔中,所述L1大于1且不大于所述L的正整数;所述第二目标RU集合在任意一个所述时间间隔之内占用的RU能被预留给一个低延迟信令,所述低延迟信令所占用的时域资源属于相应的所述时间间隔。
根据本申请的一个方面,上述方法的特征在于,还包括:
-在L1个所述时间间隔中发送一个或者多个低延迟信令;
其中,所述第二目标RU集合占用的时域资源分布在所述L1个所述时间间隔中,所述低延迟信令是物理层信令;一个所述低延迟信令所占用的时域资源属于一个所述时间间隔,对于所述L1个所述时间间隔中的一个给定所述时间间隔,针对相应的所述低延迟信令最多Y次检测被执行;所述Y次检测分别针对Y个第二RU集合,所述第二目标RU集合在所述给定所述时间间隔中所占用的RU属于所述Y个第二RU集合,所述Y是正整数,所述第二RU集合中包括正整数个所述RU。
根据本申请的一个方面,上述方法的特征在于,所述第二目标RU集合在所述给定所述时间间隔中所占用的所述RU由K2个所述第二RU集合组成。
根据本申请的一个方面,上述方法的特征在于,还包括:
-在第二时间窗中发送第一无线信号,或者在第二时间窗中接收第一无线信号;
其中,所述第一信令在所述K1个第一RU集合中被正确接收;所述第一信令包括所述第一无线信号的配置信息,所述配置信息包括{所占用的时频资源,MCS,NDI,RV,HARQ进程号}中的至少之一。
作为一个实施例,所述基站在第二时间窗中发送第一无线信号,所述第二时间窗是所述第一时间窗。
作为一个实施例,所述基站在第二时间窗中接收第一无线信号,所述第二时间窗在所述第一时间窗之后。
作为一个实施例,所述第二时间窗的时间长度等于所述第一时间窗的时间长度。
根据本申请的一个方面,上述方法的特征在于,还包括:
-在L2个时间间隔中分别发送L2个低延迟无线信号,或者在L2个时间间隔中分别接收L2个低延迟无线信号;
其中,L2个所述低延迟信令被发送,所述L2个所述低延迟信令分别包括所述L2个低延迟无线信号的配置信息,所述配置信息包括{所占用的时频资源,MCS,NDI,RV,HARQ进程号}中的至少之一,所述L2是小于或者等于所述L1的正整数。
根据本申请的一个方面,上述方法的特征在于,还包括:
-接收第一HARQ-ACK信息,其中所述第一无线信号被发送;或者发送第一HARQ-ACK信息,其中所述第一无线信号被接收;
其中,所述第一HARQ-ACK信息被用于确定所述第一无线信号是否被正确译码;所述第一信令所占用的时频资源在目标搜索空间中的位置被用于确定所述第一HARQ-ACK信息所占用的空口资源,所述目标搜索空间包括L个目标子搜索空间,所述L个目标子搜索空间在时域上分别属于所述L个时间间隔。
根据本申请的一个方面,上述方法的特征在于,还包括:
-接收L2个低延迟HARQ-ACK信息,其中所述L2个低延迟无线信号被发送;或者发送L2个低延迟HARQ-ACK信息,其中所述L2个低延迟无线信号被接收;
其中,所述L2个低延迟HARQ-ACK信息被用于确定所述L2个低延迟无线信号是否被正确译码,所述L2个所述低延迟信令所占用的时频资源在目标搜索空间中的位置分别被用于确定所述L2个低延迟HARQ-ACK信息所占用的空口资源,所述目标搜索空间包括L个目标子搜索空间,所述L个目标子搜索空间在时域上分别属于所述L个时间间隔。
根据本申请的一个方面,上述方法的特征在于,所述第一信令的负载尺寸和所述第一信令所占用的所述RU的时域位置有关;或者所述第一信令中的域和所述第一信令所占用的所述RU的时域位置有关。
作为上述实施例的一个子实施例,所述第一信令被用于上行授予(Grant)。
本申请公开了一种被用于动态调度的用户设备,其中,包括:
-第一接收模块,在第一时间窗中检测第一信令以及用于在L1个 所述时间间隔中分别检测低延迟信令;
其中,所述第一信令是物理层信令,在所述第一时间窗中,针对所述第一信令最多X次检测被执行,所述X次检测分别针对X个RU集合,所述X个RU集合中的K1个RU集合分别是K1个第一RU集合,所述X是大于或者等于所述K1的正整数;所述K1个第一RU集合中每个第一RU集合所包括的RU的数量是相同的,所述第一RU集合中包括Q1个RU;所述RU在时域上占用一个OFDM符号的持续时间,在频域上占用一个子载波的带宽,所述X是大于所述K1的正整数,所述K1是大于1的正整数,所述Q1是大于1的正整数;第一目标RU集合和第二目标RU集合分别是所述K1个第一RU集合中的一个第一RU集合,所述第一目标RU集合和所述第二目标RU集合共享至少一个RU;所述K1个第一RU集合中的RU所占用的时域资源属于第一时间窗,所述第一时间窗包括L个时间间隔,所述L是大于1的正整数;所述第二目标RU集合占用的时域资源分布在所述L1个时间间隔中,所述低延迟信令是物理层信令;对于所述L1个时间间隔中的一个给定时间间隔,针对相应的所述低延迟信令最多Y次检测被执行,所述Y次检测分别针对Y个第二RU集合;所述第二目标RU集合在所述给定时间间隔中所占用的RU属于所述Y个第二RU集合,所述Y是正整数,所述第二RU集合中包括正整数个所述RU。
作为一个实施例,上述用户设备的特征在于,还包括:
-第一处理模块,在第二时间窗中接收第一无线信号以及在L2个时间间隔中分别接收L2个低延迟无线信号;或者在第二时间窗中发送第一无线信号以及在L2个时间间隔中分别发送L2个低延迟无线信号;
其中,所述第一信令在所述K1个第一RU集合中被正确接收,所述第一信令包括所述第一无线信号的配置信息,所述配置信息包括{所占用的时频资源,MCS,NDI,RV,HARQ进程号}中的至少之一;L2个所述低延迟信令被正确接收,所述L2个所述低延迟信令分别包括所述L2个低延迟无线信号的配置信息,所述配置信息包括{所占用的时频资源,MCS,NDI,RV,HARQ进程号}中的至少之一。所述L2是小于或者等于所述L1的正整数。
作为一个实施例,上述用户设备的特征在于,还包括第二处理模块, 用于以下至少之一:
-.发送第一HARQ-ACK信息,其中所述第一无线信号被所述第一处理模块接收;或者接收第一HARQ-ACK信息,其中所述第一无线信号被所述第一处理模块被发送;
-.发送L2个低延迟HARQ-ACK信息,其中所述L2个低延迟无线信号被所述第一处理模块接收;或者接收L2个低延迟HARQ-ACK信息,其中所述L2个低延迟无线信号被所述第一处理模块发送;
其中,所述第一HARQ-ACK信息被用于确定所述第一无线信号是否被正确译码;所述第一信令所占用的时频资源在目标搜索空间中的位置被用于确定所述第一HARQ-ACK信息所占用的空口资源,所述目标搜索空间包括L个目标子搜索空间,所述L个目标子搜索空间在时域上分别属于所述L个时间间隔;所述L2个低延迟HARQ-ACK信息被用于确定所述L2个低延迟无线信号是否被正确译码;所述L2个所述低延迟信令所占用的时频资源在所述目标搜索空间中的位置分别被用于确定所述L2个低延迟HARQ-ACK信息所占用的空口资源。
作为一个实施例,上述用户设备的特征在于,所述第一信令中的域和所述第一信令所占用的所述RU的时域位置有关。
作为上述实施例的一个子实施例,所述第一信令被用于上行授予(Grant)。
本申请公开了一种被用于动态调度的基站设备,其中,包括:
-第一发送模块,在第一时间窗中发送第一信令以及用于在L1个所述时间间隔中发送一个或者多个低延迟信令;
其中,所述第一信令是物理层信令,所述第一信令占用X个RU集合中的一个,所述X个RU集合中的K1个RU集合分别是K1个第一RU集合,所述X是大于或者等于所述K1的正整数;所述K1个第一RU集合中每个所述第一RU集合所包括的RU的数量是相同的,所述第一RU集合中包括Q1个RU;所述RU在时域上占用一个OFDM符号的持续时间,在频域上占用一个子载波的带宽,所述X是大于所述K1的正整数,所述K1是大于1的正整数,所述Q1是大于1的正整数;第一目标RU集合和第二目标RU集合分别是所述K1个第一RU集合中的一个第一RU集 合,所述第一目标RU集合和所述第二目标RU集合共享至少一个RU;所述K1个第一RU集合中的RU所占用的时域资源属于第一时间窗,所述第一时间窗包括L个时间间隔,所述L是大于1的正整数;所述第二目标RU集合占用的时域资源分布在所述L1个时间间隔中,所述低延迟信令是物理层信令,一个所述低延迟信令所占用的时域资源属于一个所述时间间隔;对于所述L1个所述时间间隔中的一个给定所述时间间隔,针对相应的所述低延迟信令最多Y次检测被执行,所述Y次检测分别针对Y个第二RU集合;所述第二目标RU集合在所述给定时间间隔中所占用的RU属于所述Y个第二RU集合,所述Y是正整数,所述第二RU集合中包括正整数个所述RU。
作为一个实施例,上述基站设备的特征在于,还包括第三处理模块,
-.在第二时间窗中发送第一无线信号以及在L2个时间间隔中分别发送L2个低延迟无线信号;或者在第二时间窗中接收第一无线信号以及在L2个时间间隔中分别接收L2个低延迟无线信号;
其中,所述第一信令在所述K1个第一RU集合中被正确接收。所述第一信令包括所述第一无线信号的配置信息,所述配置信息包括{所占用的时频资源,MCS,NDI,RV,HARQ进程号}中的至少之一;L2个所述低延迟信令被所述第一发送模块发送,所述L2个所述低延迟信令分别包括所述L2个低延迟无线信号的配置信息,所述配置信息包括{所占用的时频资源,MCS,NDI,RV,HARQ进程号}中的至少之一;所述L2是小于或者等于所述L1的正整数。
作为一个实施例,上述基站设备的特征在于,还包括第四处理模块,用于以下至少之一:
-.接收第一HARQ-ACK信息,其中所述第一无线信号被所述第三处理模块发送;或者发送第一HARQ-ACK信息,其中所述第一无线信号被所述第三处理模块发送接收;
-.接收L2个低延迟HARQ-ACK信息,其中所述L2个低延迟无线信号被所述第三处理模块发送发送;或者发送L2个低延迟HARQ-ACK信息,其中所述L2个低延迟无线信号被所述第三处理模块发送接收;
其中,所述第一HARQ-ACK信息被用于确定所述第一无线信号是否被正确译码,所述第一信令所占用的时频资源在目标搜索空间中的位 置被用于确定所述第一HARQ-ACK信息所占用的空口资源,所述目标搜索空间包括L个目标子搜索空间,所述L个目标子搜索空间在时域上分别属于所述L个时间间隔;所述L2个低延迟HARQ-ACK信息被用于确定所述L2个低延迟无线信号是否被正确译码;所述L2个所述低延迟信令所占用的时频资源在所述目标搜索空间中的位置分别被用于确定所述L2个低延迟HARQ-ACK信息所占用的空口资源。
作为一个实施例,上述基站设备的特征在于,所述第一信令的负载尺寸和所述第一信令所占用的所述RU的时域位置有关;或者所述第一信令中的域和所述第一信令所占用的所述RU的时域位置有关。
作为上述实施例的一个子实施例,所述第一信令被用于上行授予(Grant)。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令的传输的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的基站设备和给定用户设备的示意图;
图5示出了根据本申请的一个实施例的下行信令传输的流程图;
图6示出了根据本申请的一个实施例的传输下行无线信号的流程图;
图7示出了根据本申请的一个实施例的传输上行无线信号的流程图;
图8示出了根据本申请的一个实施例的L为2的示意图;
图9示出了根据本申请的一个实施例的L为7的示意图;
图10示出了根据本申请的一个实施例的搜索空间的示意图;
图11示出了根据本申请的一个实施例的调度关系的示意图;
图12示出了根据本申请的一个实施例的UE中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的基站中的处理装置的结构框图;
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信令的传输的流程图,如附图1所示。附图1中,每个方框代表一个步骤。在实施例1中,本申请中的用户设备在第一时间窗中检测第一信令;其中,所述第一信令是物理层信令,在所述第一时间窗中,针对所述第一信令最多X次检测被执行,所述X次检测分别针对X个RU集合,所述X个RU集合中的K1个RU集合分别是K1个第一RU集合,所述X是大于或者等于所述K1的正整数;所述K1个第一RU集合中每个第一RU集合所包括的RU的数量是相同的,所述第一RU集合中包括Q1个RU,所述RU在时域上占用一个OFDM符号的持续时间,在频域上占用一个子载波的带宽,所述X是大于所述K1的正整数,所述K1是大于1的正整数,所述Q1是大于1的正整数;第一目标RU集合和第二目标RU集合分别是所述K1个第一RU集合中的一个第一RU集合,所述第一目标RU集合和所述第二目标RU集合共享至少一个RU;所述K1个第一RU集合中的RU所占用的时域资源属于第一时间窗,所述第一时间窗包括L个时间间隔,所述L是大于1的正整数。
作为一个子实施例,所述X个RU集合中至少两个RU集合中所包括的RU的数量是不同的。
作为一个子实施例,所述第一时间窗的时间长度是1毫秒。
作为一个子实施例,所述第一时间窗的时间长度是0.5毫秒。
作为一个子实施例,所述L为2。
作为一个子实施例,所述第一信令占用一个所述第一RU集合中的所有RU。
作为一个子实施例,所述第一目标RU集合占用的时域资源属于一个所述时间间隔,所述第二目标RU集合占用的时域资源分布在多个所述时间间隔中。
作为一个子实施例,所述L个时间间隔中至少有两个时间间隔的持续 时间是不同的。
作为一个子实施例,所述L个时间间隔是连续的。
作为一个子实施例,所述L个时间间隔组成所述第一时间窗。
作为一个子实施例,所述K1大于2。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统网络架构200的图。NR 5G或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供面向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过 S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF 211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个子实施例,所述UE201对应本申请中的用户设备。
作为一个子实施例,所述gNB203对应本申请中的基站。
作为一个子实施例,所述UE201支持在短TTI中的控制和数据的传输。
作为一个子实施例,所述UE201支持多天线的控制和数据的传输。
作为一个子实施例,所述gNB203支持在短TTI中的控制和数据的传输。
作为一个子实施例,所述gNB203支持多天线的控制和数据的传输。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于用户设备(UE)和基站设备(gNB或eNB)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的 多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个子实施例,附图3中的无线协议架构适用于本申请中的用户设备。
作为一个子实施例,附图3中的无线协议架构适用于本申请中的基站设备。
作为一个子实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个子实施例,本申请中的所述低延迟信令生成于所述PHY301。
作为一个子实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个子实施例,本申请中的所述低延迟无线信号生成于所述PHY301。
作为一个子实施例,本申请中的所述第一HARQ-ACK信息生成于所述PHY301。
作为一个子实施例,本申请中的所述低延迟HARQ-ACK信息生成于所述PHY301。
实施例4
实施例4示出了根据本申请的一个基站设备和给定用户设备的示意图,如附图4所示。图4是在接入网络中与UE450通信的gNB410的框图。
在用户设备(UE450)中包括控制器/处理器490,存储器480,接收处理器452,发射器/接收器456,发射处理器455和数据源467,发射器/接 收器456包括天线460。数据源467提供上层包到控制器/处理器490,控制器/处理器490提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议,上层包中可以包括数据或者控制信息,例如DL-SCH或UL-SCH。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等。接收处理器452实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层控制信令提取等。发射器456用于将发射处理器455提供的基带信号转换成射频信号并经由天线460发射出去,接收器456用于通过天线460接收的射频信号转换成基带信号提供给接收处理器452。
在基站设备(410)中可以包括控制器/处理器440,存储器430,接收处理器412,发射器/接收器416和发射处理器415,发射器/接收器416包括天线420。上层包到达控制器/处理器440,控制器/处理器440提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议。上层包中可以包括数据或者控制信息,例如DL-SCH或UL-SCH。发射处理器415实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令(包括PBCH,PDCCH,PHICH,PCFICH,参考信号)生成等,本申请中的第一信令和低延迟信令通过发射处理器415生成。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层控制信令提取等。发射器416用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去,接收器416用于通过天线420接收的射频信号转换成基带信号提供给接收处理器412。
在DL(Downlink,下行)中,上层包DL-SCH提供到控制器/处理器440。控制器/处理器440实施L2层的功能。在DL中,控制器/处理器440提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对UE450的无线电资源分配。控制器/处理器440还负责HARQ操作(本申请中的第一HARQ-ACK信息和低延迟HARQ-ACK信息的生成与接收)、丢失包的重新发射,和到UE450的信令。发射处理器415 实施用于L1层(即,物理层)的各种信号处理功能。信号处理功能包括译码和交织以促进UE450处的前向纠错(FEC)以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))对基带信号进行调制,将调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器415经由发射器416映射到天线420以射频信号的形式发射出去。本申请中的第一信令和低延迟信令在发射处理器415生成,本申请中的第一无线信号,低延迟信号由发射处理器415经由发射器416映射到天线420以射频信号的形式发射出去。在接收端,每一接收器456通过其相应天线460接收射频信号,每一接收器456恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器452。接收处理器452实施L1层的各种信号接收处理功能。信号接收处理功能包括在本申请中在第一时间窗中监测第一信令,在L1个所述时间间隔中分别检测低延迟信令,接收第一无线信号等,通过多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解码和解交织以恢复在物理信道上由gNB410发射的数据或者控制,随后将数据和控制信号提供到控制器/处理器490。控制器/处理器490实施L2层。控制器/处理器可与存储程序代码和数据的存储器480相关联。存储器480可称为计算机可读媒体。
在UL(Uplink,上行)中,使用数据源467来将包括第一无线信号或低延迟信号数据的上层包提供到控制器/处理器490。数据源467表示L2层之上的所有协议层。控制器/处理器490通过基于gNB410的无线电资源分配提供标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,来实施用于用户平面和控制平面的L2层协议。控制器/处理器490还负责HARQ操作(包括本申请中的第一HARQ-ACK信息和低延迟HARQ-ACK信息的生成与接收)、丢失包的重新发射,和到gNB410的信令。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能。信号发射处理功能包括编码和交织以促进UE450处的前向错误校正(FEC)以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))对基带信号进行调制,将调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器455经由发射器456映射到天线460以射频信号的形式发射出去,本申请中的第一无线信 号,低延迟信号由发射处理器415经由发射器416映射到天线420以射频信号的形式发射出去。接收器416通过其相应天线420接收射频信号,每一接收器416恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器412。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能,信号接收处理功能包括本申请中的接收第一无线信号,获取多载波符号流,接着对多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解码和解交织以恢复在物理信道上由UE450原始发射的数据和/或控制信号。随后将数据和/或控制信号提供到控制器/处理器440。控制器/处理器440实施L2层。控制器/处理器可与存储程序代码和数据的存储器430相关联。存储器430可以为计算机可读媒体。
作为一个子实施例,所述UE450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述UE450装置至少:在第一时间窗中检测第一信令以及用于在L1个所述时间间隔中分别检测低延迟信令;其中,所述第一信令是物理层信令,在所述第一时间窗中,针对所述第一信令最多X次检测被执行,所述X次检测分别针对X个RU集合,所述X个RU集合中的K1个RU集合分别是K1个第一RU集合,所述X是大于或者等于所述K1的正整数;所述K1个第一RU集合中每个第一RU集合所包括的RU的数量是相同的,所述第一RU集合中包括Q1个RU,所述RU在时域上占用一个OFDM符号的持续时间,在频域上占用一个子载波的带宽,所述X是大于所述K1的正整数,所述K1是大于1的正整数,所述Q1是大于1的正整数;第一目标RU集合和第二目标RU集合分别是所述K1个第一RU集合中的一个第一RU集合,所述第一目标RU集合和所述第二目标RU集合共享至少一个RU;所述K1个第一RU集合中的RU所占用的时域资源属于第一时间窗,所述第一时间窗包括L个时间间隔,所述L是大于1的正整数;所述第二目标RU集合占用的时域资源分布在所述L1个时间间隔中,所述低延迟信令是物理层信令;对于所述L1个时间间隔中的一个给定时间间隔,针对相应的所述低延迟信令最多Y次检测被执行,所述Y次检测分别针对Y个第二RU集合,所述第二目标RU集合在所述给定时间间隔中所占用的RU属于所述Y个第二RU集合,所 述Y是正整数,所述第二RU集合中包括正整数个所述RU。
作为一个子实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一时间窗中检测第一信令以及用于在L1个所述时间间隔中分别检测低延迟信令;其中,所述第一信令是物理层信令,在所述第一时间窗中,针对所述第一信令最多X次检测被执行,所述X次检测分别针对X个RU集合,所述X个RU集合中的K1个RU集合分别是K1个第一RU集合,所述X是大于或者等于所述K1的正整数;所述K1个第一RU集合中每个第一RU集合所包括的RU的数量是相同的,所述第一RU集合中包括Q1个RU,所述RU在时域上占用一个OFDM符号的持续时间,在频域上占用一个子载波的带宽,所述X是大于所述K1的正整数,所述K1是大于1的正整数,所述Q1是大于1的正整数;第一目标RU集合和第二目标RU集合分别是所述K1个第一RU集合中的一个第一RU集合,所述第一目标RU集合和所述第二目标RU集合共享至少一个RU;所述K1个第一RU集合中的RU所占用的时域资源属于第一时间窗,所述第一时间窗包括L个时间间隔,所述L是大于1的正整数;所述第二目标RU集合占用的时域资源分布在所述L1个时间间隔中,所述低延迟信令是物理层信令;对于所述L1个时间间隔中的一个给定时间间隔,针对相应的所述低延迟信令最多Y次检测被执行,所述Y次检测分别针对Y个第二RU集合,所述第二目标RU集合在所述给定时间间隔中所占用的RU属于所述Y个第二RU集合,所述Y是正整数,所述第二RU集合中包括正整数个所述RU。
作为一个子实施例,所述gNB410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:在第一时间窗中发送第一信令以及用于在L1个所述时间间隔中发送一个或者多个低延迟信令;其中,所述第一信令是物理层信令,所述第一信令占用X个RU集合中的一个,所述X个RU集合中的K1个RU集合分别是K1个第一RU集合,所述X是大于或者等于所述K1的正整数;所述K1个第一RU集合中每个第一RU集合所包括的RU的数量是相同的,所述第一RU集合中包括Q1个RU,所述RU在时域上占用一个OFDM符号的持续时间,在频域上占用一个子载波的带宽;所述X是大于所述K1 的正整数,所述K1是大于1的正整数,所述Q1是大于1的正整数;第一目标RU集合和第二目标RU集合分别是所述K1个第一RU集合中的一个第一RU集合,所述第一目标RU集合和所述第二目标RU集合共享至少一个RU;所述K1个第一RU集合中的RU所占用的时域资源属于第一时间窗,所述第一时间窗包括L个时间间隔,所述L是大于1的正整数;所述第二目标RU集合占用的时域资源分布在所述L1个时间间隔中,所述低延迟信令是物理层信令;一个所述低延迟信令所占用的时域资源属于一个所述时间间隔,对于所述L1个时间间隔中的一个给定时间间隔,针对相应的所述低延迟信令最多Y次检测被执行,所述Y次检测分别针对Y个第二RU集合;所述第二目标RU集合在所述给定时间间隔中所占用的RU属于所述Y个第二RU集合,所述Y是正整数,所述第二RU集合中包括正整数个所述RU。
作为一个子实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一时间窗中发送第一信令以及用于在L1个所述时间间隔中发送一个或者多个低延迟信令;其中,所述第一信令是物理层信令,所述第一信令占用X个RU集合中的一个,所述X个RU集合中的K1个RU集合分别是K1个第一RU集合,所述X是大于或者等于所述K1的正整数;所述K1个第一RU集合中每个第一RU集合所包括的RU的数量是相同的,所述第一RU集合中包括Q1个RU,所述RU在时域上占用一个OFDM符号的持续时间,在频域上占用一个子载波的带宽;所述X是大于所述K1的正整数,所述K1是大于1的正整数,所述Q1是大于1的正整数;第一目标RU集合和第二目标RU集合分别是所述K1个第一RU集合中的一个第一RU集合,所述第一目标RU集合和所述第二目标RU集合共享至少一个RU;所述K1个第一RU集合中的RU所占用的时域资源属于第一时间窗,所述第一时间窗包括L个时间间隔,所述L是大于1的正整数;所述第二目标RU集合占用的时域资源分布在所述L1个时间间隔中,所述低延迟信令是物理层信令;一个所述低延迟信令所占用的时域资源属于一个所述时间间隔,对于所述L1个时间间隔中的一个给定时间间隔,针对相应的所述低延迟信令最多Y次检测被执行,所述Y次检测分别针对Y个第二RU集合;所述第二目标RU集合在所述给定时间间隔中所占用的RU属于所述Y个第二RU集合,所述Y是正整数,所述第二RU集合中包括正整数个所述RU。
作为一个子实施例,UE450对应本申请中的用户设备。
作为一个子实施例,gNB410对应本申请中的基站。
作为一个子实施例,接收器456(包括天线460)和接收处理器452被用于本申请中的第一信令的监测。
作为一个子实施例,接收器456(包括天线460)和接收处理器452被用于本申请中的低延迟信令的监测。
作为一个子实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收第一无线信号。
作为一个子实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收低延迟无线信号。
作为一个子实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收第一HARQ-ACK信息。
作为一个子实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收低延迟HARQ-ACK信息。
作为一个子实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送第一无线信号。
作为一个子实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送低延迟无线信号。
作为一个子实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送第一HARQ-ACK信息。
作为一个子实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送低延迟HARQ-ACK信息。
作为一个子实施例,发射器416(包括天线420)和发射处理器415被用于发送本申请中的第一信令。
作为一个子实施例,发射器416(包括天线420)和发射处理器415被用于发送本申请中的低延迟信令。
作为一个子实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的第一无线信号。
作为一个子实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的低延迟无线信号。
作为一个子实施例,发射器416(包括天线420),发射处理器415和 控制器/处理器440被用于发送本申请中的第一HARQ-ACK信息。
作为一个子实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的低延迟HARQ-ACK信息。
作为一个子实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于接收本申请中的第一无线信号。
作为一个子实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于接收本申请中的低延迟无线信号。
作为一个子实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于接收本申请中的第一HARQ-ACK信息。
作为一个子实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于接收本申请中的低延迟HARQ-ACK信息。
实施例5
实施例5示例了下行信令传输的流程图,如附图5所示。附图5中,基站N1是UE U2的服务小区的维持基站。附图5中,方框F0中的步骤是可选的。
对于基站N1,在步骤S11中在第一时间窗中发送第一信令,在L2个时间间隔中发送L2个低延迟信令。
对于UE U2,在步骤S21中在第一时间窗中检测第一信令,在L1个所述时间间隔中分别检测低延迟信令。
实施例5中,所述第一信令是物理层信令。所述第一信令占用X个RU集合中的一个,所述X个RU集合中的K1个RU集合分别是K1个第一RU集合,所述X是大于所述K1的正整数。所述K1个第一RU集合中每个所述第一RU集合所包括的RU的数量是相同的,所述第一RU集合中包括Q1个RU。所述RU在时域上占用一个OFDM符号的持续时间,在频域上占用一个子载波的带宽。所述X是大于所述K1的正整数,所述K1是大于1的正整数,所述Q1是大于1的正整数。第一目标RU集合和第二目标RU集合分别是所述K1个第一RU集合中的一个所述第一RU集合,所述第一目标RU集合和所述第二目标RU集合共享至少一个RU。所述K1个第一RU集合中的RU所占用的时域资源属于第一时间窗,所述第一时间窗包括L个时间间隔。所述L是大于1的正整数。所述第二目标RU 集合占用的时域资源分布在所述L1个所述时间间隔中,所述低延迟信令是物理层信令。一个所述低延迟信令所占用的时域资源属于一个所述时间间隔。对于所述L1个所述时间间隔中的一个给定所述时间间隔,UE U2针对相应的所述低延迟信令最多Y次检测被执行。所述Y次检测分别针对Y个第二RU集合。所述第二目标RU集合在所述给定所述时间间隔中所占用的RU属于所述Y个第二RU集合。所述Y是正整数。所述第二RU集合中包括正整数个所述RU。所述L2个时间间隔是所述L1个所述时间间隔的子集。
作为一个子实施例,所述Q1是36的正整数倍。
作为一个子实施例,所述L1等于所述L,所述L2等于所述L。
作为一个子实施例,所述L为2,或者所述L为4,或者所述L为7。
作为一个子实施例,所述所述X等于44。
作为一个子实施例,所述Y小于所述X。
作为一个子实施例,检测给定信令是指:针对给定RU集合上的接收信号进行译码,如果正确译码则UE认为所述给定信令被发送,否则UE认为所述给定信令未被发送。
实施例6
实施例6示例了传输下行无线信号的流程图,如附图6所示。附图6中,基站N3是UE U4的服务小区的维持基站。其中方框F1中的步骤是可选的。
对于基站N3,在步骤S31中在第一时间窗中发送第一信令,在L2个时间间隔中发送L2个低延迟信令;在步骤S32中发送第一无线信号和L2个低延迟无线信号;在步骤S33中接收第一HARQ-ACK信息和L2个低延迟HARQ-ACK信息。
对于UE U4,在步骤S41中在第一时间窗中检测第一信令,在L1个时间间隔中分别检测低延迟信令,其中在所述L2个时间间隔中分别接收所述L2个低延迟信令;在步骤S42中接收第一无线信号和L2个低延迟无线信号;在步骤S43中发送第一HARQ-ACK信息和L2个低延迟HARQ-ACK信息。
实施例6中,所述第一信令包括所述第一无线信号的配置信息,所 述L2个低延迟信令所占用的时域资源分别属于所述L2个时间间隔,所述L2个低延迟信令分别包括所述L2个低延迟无线信号的配置信息所述配置信息包括{所占用的时频资源,MCS,NDI,RV,HARQ进程号}中的至少之一。所述第一HARQ-ACK信息被用于确定所述第一无线信号是否被正确译码。所述L2个低延迟HARQ-ACK信息被用于确定所述L2个低延迟无线信号是否被正确译码。
作为一个子实施例,所述第一信令是用于下行授予(Grant)的DCI,所述L2个低延迟信令分别是用于下行授予的DCI。
作为一个子实施例,所述第一信令所占用的时频资源在目标搜索空间中的位置被用于确定所述第一HARQ-ACK信息所占用的空口资源,所述目标搜索空间包括L个目标子搜索空间,所述L个目标子搜索空间在时域上分别属于所述L个时间间隔。
作为一个子实施例,所述L2个所述低延迟信令所占用的时频资源在目标搜索空间中的位置分别被用于确定所述L2个低延迟HARQ-ACK信息所占用的空口资源,所述目标搜索空间包括L个目标子搜索空间,所述L个目标子搜索空间在时域上分别属于所述L个时间间隔。
实施例7
实施例7示例了传输上行无线信号的流程图,如附图7所示。附图7中,基站N5是UE U6的服务小区的维持基站。其中方框F2中的步骤是可选的。
对于基站N5,在步骤S51中在第一时间窗中发送第一信令,在L2个时间间隔中发送L2个低延迟信令;在步骤S52中接收第一无线信号和L2个低延迟无线信号;在步骤S53中发送第一HARQ-ACK信息和L2个低延迟HARQ-ACK信息。
对于UE U6,在步骤S61中在第一时间窗中检测第一信令,在L1个时间间隔中分别检测低延迟信令,其中在所述L2个时间间隔中分别接收所述L2个低延迟信令;在步骤S62中发送第一无线信号和L2个低延迟无线信号;在步骤S63中接收第一HARQ-ACK信息和L2个低延迟HARQ-ACK信息。
实施例7中,所述第一信令包括所述第一无线信号的配置信息,所 述L2个低延迟信令所占用的时域资源分别属于所述L2个时间间隔,所述L2个低延迟信令分别包括所述L2个低延迟无线信号的配置信息所述配置信息包括{所占用的时频资源,MCS,NDI,RV,HARQ进程号}中的至少之一。所述第一HARQ-ACK信息被用于确定所述第一无线信号是否被正确译码。所述L2个低延迟HARQ-ACK信息被用于确定所述L2个低延迟无线信号是否被正确译码。
作为一个子实施例,所述第一信令是用于上行授予(Grant)的DCI,所述L2个低延迟信令分别是用于上行授予的DCI。
作为一个子实施例,所述第一信令所占用的时频资源在目标搜索空间中的位置被用于确定所述第一HARQ-ACK信息所占用的空口资源,所述目标搜索空间包括L个目标子搜索空间,所述L个目标子搜索空间在时域上分别属于所述L个时间间隔。
作为一个子实施例,所述L2个所述低延迟信令所占用的时频资源在目标搜索空间中的位置分别被用于确定所述L2个低延迟HARQ-ACK信息所占用的空口资源,所述目标搜索空间包括L个目标子搜索空间,所述L个目标子搜索空间在时域上分别属于所述L个时间间隔。
实施例8
实施例8示例了L为2的示意图,如附图8所示。附图8中,斜线填充的方格是预留给下行信令的时频资源。
实施例8中,第一时间窗由两个时间间隔组成,即第一时间间隔和第二时间间隔。所述第一时间间隔和所述第二时间间隔中分别包括所述预留给下行信令的时频资源。
作为一个子实施例,所述第一时间窗的持续时间是1毫秒,所述第一时间间隔的持续时间和所述第二时间间隔的持续时间分别是0.5毫秒。
作为一个子实施例,本申请中的所述L,所述L1和所述L2都为2。
作为一个子实施例,本申请中的所述第一目标RU集合所占用的时域资源属于所述第一时间间隔,本申请中的所述第二目标RU集合所占用的时域资源同时分布在所述第一时间间隔和所述第二时间间隔中。
实施例9
实施例9示例了L为7的示意图,如附图9所示。附图9中,斜线填充的方格是预留给下行信令的时频资源。
实施例9中,第一时间窗由7个时间间隔组成,即时间间隔{#1,#2,#3,#4,#5,#6,#7}。所述7个时间间隔中分别包括所述预留给下行信令的时频资源。
作为一个子实施例,所述第一时间窗的持续时间是1毫秒,所述时间间隔{#1,#2,#3,#4,#5,#6,#7}中分别包括2个OFDM符号。
作为一个子实施例,本申请中的所述L1小于7。
作为一个子实施例,本申请中的所述第一目标RU集合所占用的时域资源属于所述时间间隔{#1,#2,#3,#4,#5,#6,#7}中的一个,本申请中的所述第二目标RU集合所占用的时域资源同时分布在所述时间间隔{#1,#2,#3,#4,#5,#6,#7}中的L1个所述时间间隔上,所述L1是小于7的偶数。
作为一个子实施例,所述预留给下行信令的时频资源在所述时间间隔{#1,#2,#3,#4,#5,#6,#7}中的频域位置是变化的。本子实施例能提高第一信令的发送分集增益。
实施例10
实施例10示例了搜索空间的示意图,如附图10所示。附图10中,被m个数字填充的方格代表了m个RU块,所述m是{1,2,4,8},所述RU块中包括一个或者多个RU,填充的数字是相应RU块的索引。
实施例10中,RU块#{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}属于第一时间间隔,RU块#{16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31}属于第二时间间隔。
对于第一给定UE,低延迟信令基于所述RU块的AL可能为2,4或者8:
-对于低延迟信令AL#2:相应的第一时间间隔中的候选位置是RU块#{0,1},#{2,3},#{4,5},#{6,7},#{8,9},#{10,11},#{12,13},#{14,15};相应的第二时间间隔中的候选位置是RU块#{16,17},#{18,19},#{20,21},#{22,23},#{24,25},#{26,27},#{28, 29},#{30,31}。
-对于低延迟信令AL#4:相应的第一时间间隔中的候选位置是RU块#{0,1,2,3},#{4,5,6,7},#{8,9,10,11},#{12,13,14,15};相应的第二时间间隔中的候选位置是RU块#{16,17,18,19},#{20,21,22,23},#{24,25,26,27},#{28,29,30,31}。
-对于低延迟信令AL#8:相应的第一时间间隔中的候选位置是RU块#{0,1,2,3,4,5,6,7},#{8,9,10,11,12,13,14,15};相应的第二时间间隔中的候选位置是RU块#{16,17,18,19,20,21,22,23},#{24,25,26,27,28,29,30,31}。
对于第二给定UE,第一信令基于所述RU块的AL可能为2,4或者8:
-对于第一信令AL#2:候选位置是RU块#{0,1},#{2,3},#{4,5},#{6,7},#{8,9},#{10,11},#{12,13},#{14,15},#{16,17},#{18,19},#{20,21},#{22,23},#{24,25},#{26,27},#{28,29},#{30,31},#{0,16},#{1,17},#{2,18},#{3,19},#{4,20},#{5,21},#{6,22},#{7,23},#{8,24},#{9,25},#{10,26},#{11,27},#{12,28},#{13,29},#{14,30},#{15,31}。
-对于第一信令AL#4:候选位置是RU块#{0,1,2,3},#{4,5,6,7},#{8,9,10,11},#{12,13,14,15},{16,17,18,19},#{20,21,22,23},#{24,25,26,27},#{28,29,30,31},#{0,1,16,17},#{2,3,18,19},#{4,5,20,21},#{6,7,22,23},{8,9,24,25},#{10,11,26,27},#{12,13,28,29},#{14,15,30,31}。
-对于第一信令AL#8:候选位置是RU块#{0,1,2,3,4,5,6,7},#{8,9,10,11,12,13,14,15},#{16,17,18,19,20,21,22,23},#{24,25,26,27,28,29,30,31},#{0,1,2,3,16,17,18,19},#{4,5,6,7,20,21,22,23},#{8,9,10,11,24,25,26,27},#{12,13,14,15,28,29,30,31}。
作为一个子实施例,所述RU是RE(Resource Element,资源粒子)。
作为一个子实施例,所述RU块是CCE(Control Channel Element,控制信道粒子)或者eCCE(enhanced CCE,增强的CCE)。
作为一个子实施例,所述RU块由36个RU组成。
作为一个子实施例,所述RU块由9个RU组成。
作为一个子实施例,所述第一给定UE和所述第二给定UE是同一个UE。本子实施例的优点是能降低盲检测的次数(低延迟信令和所述第一信令能共享部分候选位置),进而降低UE复杂度。
作为一个子实施例,RU块#{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}组成第一目标子搜索空间,RU块#{16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31}组成第二目标子搜索空间。本申请中的所述目标搜索空间由所述第一目标子搜索空间和所述第二目标子搜索空间组成。
作为上述实施例的一个子实施例,所述第一信令所占用的最小的所述RU块的索引被用于确定和所述第一无线信号相关联的HARQ-ACK信息所占用的空口资源。
作为上述实施例的一个子实施例,所述低延迟信令所占用的最小的所述RU块的索引被用于确定和相应所述低延迟无线信号相关联的HARQ-ACK信息所占用的空口资源。
实施例11
实施例11示例了调度关系的示意图,如附图11所示。附图11中,第一给定信令在时间间隔#1中传输,所占用的RU如斜线标识;第二给定信令在时间间隔#1和时间间隔#2中传输,所占用的RU如交叉线标识。
实施例11中,所述第一给定信令可能调度的时频资源包括第一候选时频资源(如箭头AR3所示)和第二候选时频资源(如箭头AR4所示),所述第二给定信令可能调度的时频资源是第二候选时频资源(如箭头AR5所示)。
所述第一给定信令中包括第一域,所述第一域被用于确定所述第一给定信令所调度的时频资源是第一候选时频资源还是第二候选时频资源。和所述第一给定信令相比,所述第二给定信令缺少所述第一域。
作为一个子实施例,所述第一给定信令调度所述第二候选资源,所述第一给定信令是本申请中的所述第一信令。
作为一个子实施例,所述第二给定信令是本申请中的所述第一信令。
作为一个子实施例,所述第一给定信令和所述第二给定信令都是用 于上行授予的DCI。
实施例12
实施例12示例了一个UE中的处理装置的结构框图,如附图12所示。附图12中,UE处理装置1200主要由第一接收模块1201,第一处理模块1202和第二处理模块1203组成,其中第一处理模块1202和第二处理模块1203分别是可选的。第一接收模块1201包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452和存储器480。第一处理模块1202包括本申请附图4中的数据源467,发射器/接收器456(包括天线460),接收处理器452,发射处理器455和控制器/处理器490。第二处理模块1203包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452,发射处理器455和控制器/处理器490。
第一接收模块1201在第一时间窗中检测第一信令以及用于在L1个所述时间间隔中分别检测低延迟信令。
第一处理模块1202在第二时间窗中接收第一无线信号以及在L2个时间间隔中分别接收L2个低延迟无线信号,第二处理模块1203发送第一HARQ-ACK信息以及L2个低延迟HARQ-ACK信息;或者第一处理模块1202在第二时间窗中发送第一无线信号以及在L2个时间间隔中分别发送L2个低延迟无线信号,第二处理模块1203接收第一HARQ-ACK信息以及L2个低延迟HARQ-ACK信息。
实施例12中,所述第一无线信号对应的TTI的时间长度大于所述低延迟无线信号对应的TTI的时间长度。
作为一个子实施例,所述第一无线信号对应的TTI的时间长度等于1毫秒。
作为一个子实施例,所述第一无线信号对应的TTI的时间长度等于0.5毫秒。
实施例13
实施例13示例了一个基站中的处理装置的结构框图,如附图13所示。附图13中,基站处理装置1300主要由第一发送模块1301,第三处理模块1302和第四处理模块1303组成,其中第三处理模块1302和第四处理模块 1303分别是可选的。第一发送模块1301包括本申请附图4中的发射器/接收器416(包括天线420)和发射处理器415。第三处理模块1302包括本申请附图4中的发射器/接收器416(包括天线420),发射处理器415,接收处理器412和控制器/处理器440。第四处理模块1303包括本申请附图4中的发射器/接收器416(包括天线420),发射处理器415,接收处理器412和控制器/处理器440。
第一发送模块1301在第一时间窗中发送第一信令以及用于在L2个时间间隔中分别发送L2个低延迟信令。
第三处理模块1302在第二时间窗中发送第一无线信号以及在L2个时间间隔中分别发送L2个低延迟无线信号,第四处理模块1303接收第一HARQ-ACK信息以及L2个低延迟HARQ-ACK信息;或者第三处理模块1302在第二时间窗中接收第一无线信号以及在L2个时间间隔中分别接收L2个低延迟无线信号,第四处理模块1303发送第一HARQ-ACK信息以及L2个低延迟HARQ-ACK信息。
作为一个子实施例,所述L2个所述低延迟信令所占用的时域资源分别属于L2个所述时间间隔,所述低延迟无线信号是下行信号。
作为一个子实施例,所述L2个所述低延迟信令所占用的时域资源分别在所述L2个所述时间间隔之前,所述低延迟无线信号是上行信号。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的UE或中断包括但不限于手机,平板电脑,笔记本,上网卡,低成本终端,NB-IoT终端,eMTC终端,车载通信设备等无线通信设备。本申请中的基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种被用于动态调度的UE中的方法,其中,包括:
    -在第一时间窗中检测第一信令;
    其中,所述第一信令是物理层信令,在所述第一时间窗中,针对所述第一信令最多X次检测被执行,所述X次检测分别针对X个RU集合,所述X个RU集合中的K1个RU集合分别是K1个第一RU集合,所述X是大于或者等于所述K1的正整数;所述K1个第一RU集合中每个第一RU集合所包括的RU的数量是相同的,所述第一RU集合中包括Q1个RU,所述RU在时域上占用一个OFDM符号的持续时间,在频域上占用一个子载波的带宽,所述X是大于所述K1的正整数,所述K1是大于1的正整数,所述Q1是大于1的正整数;第一目标RU集合和第二目标RU集合分别是所述K1个第一RU集合中的一个第一RU集合,所述第一目标RU集合和所述第二目标RU集合共享至少一个RU;所述K1个第一RU集合中的RU所占用的时域资源属于第一时间窗,所述第一时间窗包括L个时间间隔,所述L是大于1的正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述第二目标RU集合占用的时域资源分布在L1个所述时间间隔中,所述L1大于1且不大于所述L的正整数;所述第二目标RU集合在任意一个所述时间间隔之内占用的RU能被预留给一个低延迟信令,所述低延迟信令所占用的时域资源属于相应的所述时间间隔。
  3. 根据权利要求1或2中任一权利要求所述的方法,其特征在于,还包括:
    -在L1个所述时间间隔中分别检测低延迟信令;
    其中,所述第二目标RU集合占用的时域资源分布在所述L1个所述时间间隔中,所述低延迟信令是物理层信令;对于所述L1个时间间隔中的一个给定时间间隔,针对相应的所述低延迟信令最多Y次检测被执行,所述Y次检测分别针对Y个第二RU集合;所述第二目标RU集合在所述给定时间间隔中所占用的RU属于所述Y个第二RU集合,所述Y是正整数,所述第二RU集合中包括正整数个所述RU。
  4. 根据权利要求3所述的方法,其特征在于,所述第二目标RU集合在所述给定时间间隔中所占用的所述RU由K2个第二RU集合组成。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于, 还包括:
    -在第二时间窗中接收第一无线信号,或者在第二时间窗中发送第一无线信号;
    其中,所述第一信令在所述K1个第一RU集合中被正确接收,所述第一信令包括所述第一无线信号的配置信息,所述配置信息包括{所占用的时频资源,MCS,NDI,RV,HARQ进程号}中的至少之一。
  6. 根据权利要求3,4或5中任一权利要求所述的方法,其特征在于,还包括:
    -在L2个时间间隔中分别接收L2个低延迟无线信号,或者在L2个时间间隔中分别发送L2个低延迟无线信号;
    其中,L2个所述低延迟信令被正确接收,所述L2个所述低延迟信令分别包括所述L2个低延迟无线信号的配置信息,所述配置信息包括{所占用的时频资源,MCS,NDI,RV,HARQ进程号}中的至少之一,所述L2是小于或者等于所述L1的正整数。
  7. 根据权利要求5或6中任一权利要求所述的方法,其特征在于,还包括:
    -发送第一HARQ-ACK信息,其中所述第一无线信号被接收;或者接收第一HARQ-ACK信息,其中所述第一无线信号被发送;
    其中,所述第一HARQ-ACK信息被用于确定所述第一无线信号是否被正确译码,所述第一信令所占用的时频资源在目标搜索空间中的位置被用于确定所述第一HARQ-ACK信息所占用的空口资源,所述目标搜索空间包括L个目标子搜索空间,所述L个目标子搜索空间在时域上分别属于所述L个时间间隔。
  8. 根据权利要求6或7中任一权利要求所述的方法,其特征在于,还包括:
    -发送L2个低延迟HARQ-ACK信息,其中所述L2个低延迟无线信号被接收;或者接收L2个低延迟HARQ-ACK信息,其中所述L2个低延迟无线信号被发送;
    其中,所述L2个低延迟HARQ-ACK信息被用于确定所述L2个低延迟无线信号是否被正确译码,所述L2个所述低延迟信令所占用的时频资源在目标搜索空间中的位置分别被用于确定所述L2个低延迟 HARQ-ACK信息所占用的空口资源,所述目标搜索空间包括L个目标子搜索空间,所述L个目标子搜索空间在时域上分别属于所述L个时间间隔。
  9. 根据权利要求1至8中任一权利要求所述的方法,其特征在于,所述第一信令的负载尺寸和所述第一信令所占用的所述RU的时域位置有关;或者所述第一信令中的域和所述第一信令所占用的所述RU的时域位置有关。
  10. 一种被用于动态调度的基站中的方法,其中,包括:
    -在第一时间窗中发送第一信令;
    其中,所述第一信令是物理层信令,在所述第一时间窗中,针对所述第一信令最多X次检测被执行,所述X次检测分别针对X个RU集合,所述X个RU集合中的K1个RU集合分别是K1个第一RU集合,所述X是大于或者等于所述K1的正整数。所述K1个第一RU集合中每个第一RU集合所包括的RU的数量是相同的,所述第一RU集合中包括Q1个RU,所述RU在时域上占用一个OFDM符号的持续时间,在频域上占用一个子载波的带宽,所述X是大于所述K1的正整数,所述K1是大于1的正整数,所述Q1是大于1的正整数;第一目标RU集合和第二目标RU集合分别是所述K1个第一RU集合中的一个第一RU集合,所述第一目标RU集合和所述第二目标RU集合共享至少一个RU;所述K1个第一RU集合中的RU所占用的时域资源属于第一时间窗,所述第一时间窗包括L个时间间隔,所述L是大于1的正整数。
  11. 根据权利要求10所述的方法,其特征在于,所述第二目标RU集合占用的时域资源分布在L1个所述时间间隔中,所述L1大于1且不大于所述L的正整数;所述第二目标RU集合在任意一个所述时间间隔之内占用的RU能被预留给一个低延迟信令,所述低延迟信令所占用的时域资源属于相应的所述时间间隔。
  12. 根据权利要求10或11中任一权利要求所述的方法,其特征在于,还包括:
    -在L1个所述时间间隔中发送一个或者多个低延迟信令;
    其中,所述第二目标RU集合占用的时域资源分布在所述L1个时间间隔中,所述低延迟信令是物理层信令;一个所述低延迟信令所占用的时域资源属于所述L1个时间间隔中的一个时间间隔;对于所述L1个时间 间隔中的一个给定时间间隔,针对相应的所述低延迟信令最多Y次检测被执行,所述Y次检测分别针对Y个第二RU集合,所述第二目标RU集合在所述给定所述时间间隔中所占用的RU属于所述Y个第二RU集合,所述Y是正整数。所述第二RU集合中包括正整数个所述RU。
  13. 根据权利要求11所述的方法,其特征在于,所述第二目标RU集合在所述给定所述时间间隔中所占用的所述RU由K2个所述第二RU集合组成。
  14. 根据权利要求10至13中的任一权利要求所述的方法,其特征在于,还包括:
    -在第二时间窗中发送第一无线信号,或者在第二时间窗中接收第一无线信号;
    其中,所述第一信令在所述K1个第一RU集合中被正确接收,所述第一信令包括所述第一无线信号的配置信息,所述配置信息包括{所占用的时频资源,MCS,NDI,RV,HARQ进程号}中的至少之一。
  15. 根据权利要求12,13或14中任一权利要求所述的方法,其特征在于,还包括:
    -在L2个时间间隔中分别发送L2个低延迟无线信号,或者在L2个时间间隔中分别接收L2个低延迟无线信号;
    其中,L2个所述低延迟信令被发送,所述L2个所述低延迟信令分别包括所述L2个低延迟无线信号的配置信息,所述配置信息包括{所占用的时频资源,MCS,NDI,RV,HARQ进程号}中的至少之一,所述L2是小于或者等于所述L1的正整数。
  16. 根据权利要求14或15所述的方法,其特征在于,还包括:
    -接收第一HARQ-ACK信息,其中所述第一无线信号被发送;或者发送第一HARQ-ACK信息,其中所述第一无线信号被接收;
    其中,所述第一HARQ-ACK信息被用于确定所述第一无线信号是否被正确译码,所述第一信令所占用的时频资源在目标搜索空间中的位置被用于确定所述第一HARQ-ACK信息所占用的空口资源,所述目标搜索空间包括L个目标子搜索空间,所述L个目标子搜索空间在时域上分别属于所述L个时间间隔。
  17. 根据权利要求15或16中任一权利要求所述的方法,其特征在 于,还包括:
    -接收L2个低延迟HARQ-ACK信息,其中所述L2个低延迟无线信号被发送;或者发送L2个低延迟HARQ-ACK信息,其中所述L2个低延迟无线信号被接收;
    其中,所述L2个低延迟HARQ-ACK信息被用于确定所述L2个低延迟无线信号是否被正确译码,所述L2个所述低延迟信令所占用的时频资源在目标搜索空间中的位置分别被用于确定所述L2个低延迟HARQ-ACK信息所占用的空口资源,所述目标搜索空间包括L个目标子搜索空间,所述L个目标子搜索空间在时域上分别属于所述L个时间间隔。
  18. 根据权利要求10至17中任一权利要求所述的方法,其特征在于,所述第一信令的负载尺寸和所述第一信令所占用的所述RU的时域位置有关;或者所述第一信令中的域和所述第一信令所占用的所述RU的时域位置有关。
  19. 一种被用于动态调度的用户设备,其中,包括:
    -第一接收模块,在第一时间窗中检测第一信令以及用于在L1个所述时间间隔中分别检测低延迟信令;
    其中,所述第一信令是物理层信令,在所述第一时间窗中,针对所述第一信令最多X次检测被执行,所述X次检测分别针对X个RU集合,所述X个RU集合中的K1个RU集合分别是K1个第一RU集合,所述X是大于或者等于所述K1的正整数;所述K1个第一RU集合中每个第一RU集合所包括的RU的数量是相同的,所述第一RU集合中包括Q1个RU,所述RU在时域上占用一个OFDM符号的持续时间,在频域上占用一个子载波的带宽,所述X是大于所述K1的正整数,所述K1是大于1的正整数,所述Q1是大于1的正整数;第一目标RU集合和第二目标RU集合分别是所述K1个第一RU集合中的一个第一RU集合,所述第一目标RU集合和所述第二目标RU集合共享至少一个RU;所述K1个第一RU集合中的RU所占用的时域资源属于第一时间窗,所述第一时间窗包括L个时间间隔,所述L是大于1的正整数;所述第二目标RU集合占用的时域资源分布在所述L1个时间间隔中,所述低延迟信令是物理层信令;对于所述L1个时间间隔中的一个给定时间间隔,针对相应的所述低延 迟信令最多Y次检测被执行,所述Y次检测分别针对Y个第二RU集合,所述第二目标RU集合在所述给定时间间隔中所占用的RU属于所述Y个第二RU集合,所述Y是正整数,所述第二RU集合中包括正整数个所述RU。
  20. 一种被用于动态调度的基站设备,其中,包括:
    -第一发送模块,在第一时间窗中发送第一信令以及用于在L1个所述时间间隔中发送一个或者多个低延迟信令;
    其中,所述第一信令是物理层信令,所述第一信令占用X个RU集合中的一个,所述X个RU集合中的K1个RU集合分别是K1个第一RU集合,所述X是大于或者等于所述K1的正整数;所述K1个第一RU集合中每个第一RU集合所包括的RU的数量是相同的,所述第一RU集合中包括Q1个RU,所述RU在时域上占用一个OFDM符号的持续时间,在频域上占用一个子载波的带宽;所述X是大于所述K1的正整数,所述K1是大于1的正整数,所述Q1是大于1的正整数;第一目标RU集合和第二目标RU集合分别是所述K1个第一RU集合中的一个第一RU集合,所述第一目标RU集合和所述第二目标RU集合共享至少一个RU;所述K1个第一RU集合中的RU所占用的时域资源属于第一时间窗,所述第一时间窗包括L个时间间隔,所述L是大于1的正整数;所述第二目标RU集合占用的时域资源分布在所述L1个时间间隔中,所述低延迟信令是物理层信令;一个所述低延迟信令所占用的时域资源属于一个所述时间间隔,对于所述L1个时间间隔中的一个给定时间间隔,针对相应的所述低延迟信令最多Y次检测被执行,所述Y次检测分别针对Y个第二RU集合;所述第二目标RU集合在所述给定时间间隔中所占用的RU属于所述Y个第二RU集合,所述Y是正整数,所述第二RU集合中包括正整数个所述RU。
PCT/CN2017/094835 2016-08-06 2017-07-28 一种无线通信中的方法和装置 WO2018028444A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610637910.X 2016-08-06
CN201610637910.XA CN107690190B (zh) 2016-08-06 2016-08-06 一种无线通信中的方法和装置

Publications (1)

Publication Number Publication Date
WO2018028444A1 true WO2018028444A1 (zh) 2018-02-15

Family

ID=61151087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094835 WO2018028444A1 (zh) 2016-08-06 2017-07-28 一种无线通信中的方法和装置

Country Status (2)

Country Link
CN (1) CN107690190B (zh)
WO (1) WO2018028444A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112688762A (zh) * 2019-10-17 2021-04-20 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113133124A (zh) * 2019-12-31 2021-07-16 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113141241A (zh) * 2020-01-19 2021-07-20 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114598998A (zh) * 2020-12-07 2022-06-07 上海朗帛通信技术有限公司 一种用于无线通信的节点中的方法和装置
CN114793125A (zh) * 2021-01-26 2022-07-26 上海推络通信科技合伙企业(有限合伙) 一种用于无线通信的节点中的方法和装置
CN114793125B (zh) * 2021-01-26 2024-06-11 上海推络通信科技合伙企业(有限合伙) 一种用于无线通信的节点中的方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110611546B (zh) * 2018-06-14 2021-12-24 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140098754A1 (en) * 2012-10-09 2014-04-10 Qualcomm Incorporated Methods and apparatus for improved resource management in lte
CN105763308A (zh) * 2014-12-19 2016-07-13 上海朗帛通信技术有限公司 一种laa通信的方法和装置
CN105827377A (zh) * 2015-01-07 2016-08-03 上海朗帛通信技术有限公司 一种增强的ca传输方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102273293B (zh) * 2008-12-02 2014-04-16 三星电子株式会社 在多个工作带宽中调度分配的传输
US20100254329A1 (en) * 2009-03-13 2010-10-07 Interdigital Patent Holdings, Inc. Uplink grant, downlink assignment and search space method and apparatus in carrier aggregation
US9198181B2 (en) * 2012-03-19 2015-11-24 Blackberry Limited Enhanced common downlink control channels

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140098754A1 (en) * 2012-10-09 2014-04-10 Qualcomm Incorporated Methods and apparatus for improved resource management in lte
CN105763308A (zh) * 2014-12-19 2016-07-13 上海朗帛通信技术有限公司 一种laa通信的方法和装置
CN105827377A (zh) * 2015-01-07 2016-08-03 上海朗帛通信技术有限公司 一种增强的ca传输方法和装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112688762A (zh) * 2019-10-17 2021-04-20 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112688762B (zh) * 2019-10-17 2022-05-24 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113133124A (zh) * 2019-12-31 2021-07-16 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113133124B (zh) * 2019-12-31 2022-11-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113141241A (zh) * 2020-01-19 2021-07-20 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113141241B (zh) * 2020-01-19 2022-01-25 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114598998A (zh) * 2020-12-07 2022-06-07 上海朗帛通信技术有限公司 一种用于无线通信的节点中的方法和装置
EP4254994A4 (en) * 2020-12-07 2024-05-08 Shanghai Langbo Comm Tech Co Ltd METHOD AND APPARATUS FOR NODE USED IN WIRELESS COMMUNICATION
CN114793125A (zh) * 2021-01-26 2022-07-26 上海推络通信科技合伙企业(有限合伙) 一种用于无线通信的节点中的方法和装置
CN114793125B (zh) * 2021-01-26 2024-06-11 上海推络通信科技合伙企业(有限合伙) 一种用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN107690190B (zh) 2019-11-15
CN107690190A (zh) 2018-02-13

Similar Documents

Publication Publication Date Title
WO2019174530A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018024152A1 (zh) 一种无线通信中的方法和装置
WO2018024206A1 (zh) 一种被用于低延迟通信的用户设备、基站中的方法和装置
WO2019157974A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2018033009A1 (zh) 一种无线通信中的方法和装置
WO2018068642A1 (zh) 一种支持多载波通信的用户设备、基站中的方法和设备
WO2018028444A1 (zh) 一种无线通信中的方法和装置
WO2018145607A1 (zh) 一种用于无线通信中的方法和装置
WO2019237938A1 (zh) 一种用于无线通信的通信节点中的方法和装置
CN109219149B (zh) 一种被用于动态调度的用户设备、基站中的方法和装置
WO2019104470A1 (zh) 一种被用于非授权频谱的基站设备中的方法和装置
WO2018072615A1 (zh) 一种用于可变的校验比特数的ue、基站中的方法和装置
WO2019119479A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN110784923B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019006578A1 (zh) 一种被用于多天线通信的用户设备、基站中的方法和装置
CN109525377B (zh) 一种被用于窄带通信的用户设备、基站中的方法和装置
WO2019134152A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2018103611A1 (zh) 一种用户设备和基站中的方法和设备
WO2023072136A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022188749A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2018028620A1 (zh) 一种无线传输中的方法和装置
WO2020216013A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN110830920B (zh) 一种被用于无线通信节点中的方法和装置
WO2020024782A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17838574

Country of ref document: EP

Kind code of ref document: A1